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Inferring Waypoints Using Shortest Paths

Daniel A. Desmond, Kenneth N. Brown

Insight Centre for Data Analytics, Department of Computer Science, University
College Cork, Cork, Ireland
{daniel.desmond, ken.brown}@insight-centre.org

Abstract. We present a method for reconstructing intermediate desti-
nations from a GPS trace of a multi-part trip, without access to aggre-
gated statistics or datasets of previous traces. The method uses repeated
forwards and backwards shortest-path searches. We evaluate the algo-
rithm empirically on multi-part trips on real route maps. We show that
the algorithm can achieve up to 97% recall, and that the algorithm de-
grades gracefully as the GPS traces become sparse and irregular.

1 Introduction

Due to the increase in the use of smart phones and other navigation devices
which can store and send GPS or location data, mobility mining has become an
important field of research. One important aspect is the ability to reconstruct
some form of intent from location traces. For example, in security and surveil-
lance, there is a need to identify significant intermediate locations as a subject
moves around an environment. Similarly, in a missing persons search, valuable
information may be gained by identifying which previous locations were visited
by the person intentionally. In retail and marketing analysis, it is important to
know which retail or service locations are destinations in their own right, as
opposed to those which are visited opportunistically. In some cases, e.g. retail,
inference relies on mining large sets of traces in order to determine population
statistics. In other cases, e.g. missing persons, the activity is anomalous, and the
aim is to identify specific behaviour by that subject from a single trace.

In this paper, we focus on the anomalous case. Given a single GPS trace,
the aim is to identify the intermediate destinations within the trace, which we
call waypoints. We assume we have a model of the environment as a map with
distances and travel times, but no other data on popularity of locations or tra-
jectory frequencies. We make a default assumption that a person will attempt to
choose the shortest path between any two successive waypoints. We present an
algorithm based on repeated forward and backward searches for shortest paths
to infer the sequence of intermediate waypoints from the trace. We evaluate the
algorithm empirically using randomly generated multi-trip traces on a map of
the city of Rome. We demonstrate that, for a given tolerance, the algorithm
correctly infers up to 97% of the waypoints, and that the algorithm is robust to
irregular sampling in the trace and to blocks of missing readings.



The remainder of the paper is organised as follows: Section 2 discusses related
work. Our proposed approach to the problem is introduced in section 3. Section
4 describes the form of the experiments. The results of the experiments are
reported in section 5 and section 6 concludes the paper.

2 Related work

For shortest path routing the standard solution is Dijkstra’s algorithm [I]. Nu-
merous other algorithms using goal-directed techniques such as A* [2] and ALT
[3] focus the search towards the target, while hierarchical methods such as High-
way Hierarchies [4] and Contraction Hierarchies [5] require preprocessing of the
graph prior to implementing a modified bidirectional Dijkstra to find the short-
est path. Bast et al [0] give a comprehensive overview of route planning. Except
for Dijkstra’s algorithm, all of the methods referenced above require the desti-
nation in order to calculate the shortest path whereas Dijkstra’s algorithm is
a one-to-all shortest path algorithm which computes shortest paths to multiple
destinations in a single pass.

Prediction using GPS traces has centred on predicting destinations and look-
ing for patterns. The methods require the use of pattern recognition [7], hidden
Markov models [§] and other machine learning methods. Another predictive use
is that of identifying popular paths using clustering [9]. All of the methods above
require historical GPS information to build their models. Where sub-traces or
waypoints are used it again relates to predicting the destination after decompos-
ing traces into sub-traces [I0]. This method again requires a training set. Also
the methods referenced above make no use of a graph of the environment. Kafsi
et al [IT] tackle a similar problem to ours, trying to infer a set of waypoints from
a GPS trace. They assume a history of traces and estimate waypoints using a
method based on the computation of the entropy of conditional Markov trajec-
tories while not using time information to segment a trajectory. To the best of
our knowledge, we are the first to present a method for inferring waypoints using
only shortest path computations and not requiring historical data.

There are many trip planners available on-line such as google maps [12],
mapquest [I3] and some built using openstreetmap(OSM) [16] data such as osrm
[14] and graphhopper [15]. Graphhopper is an open source application in which
it is possible enter multi-point trips and download the trace data of a multi-point
trip, and offers numerous algorithms to calculate the shortest paths.

3 Approach

Our hypotheses are

— Given a multipart trip constructed via shortest path point-to-point trips, the
individual destinations (waypoints) can be identified by a series of shortest
path computations.



— If the trace is irregularly sampled or has missing data, waypoints can still
be reliably inferred using shortest path computations.

Let G = {V, E, f} be a strongly connected, weighted, directed graph embed-
ded in a two-dimensional (2D) space. V is the set of vertices where each vertex
is a location in the space. E is the set of directed edges (v;,v;) where v;,v; € V
and so each edge represents a line in the space. f is a function f : E — N7T rep-
resenting the cost of traversing an edge. We restrict the the set of feasible points
to be any vertex, or any point on an edge line. A trip s is a sequence of points
and 5 is the last point in s. A multitrip M is a sequence of trips (s1, s2, ..., s;)
such that §; is the first point in s;41. A trace T = (t,ta,...,t;) is a sequence
of points sampled in order from the trips within a multitrip. Given a trace our
aim is to reconstruct the individual trips i.e. the endpoints (s1, $2, ..., s,-1) from
the multitrip. We allow a relaxation in which the output is a list of intervals
(la1, b1], [az, ba], ..., [a;, bj]) where 5; is contained within [a,, b;].

Since each point is a location in 2D space, each successive pair of points has
a direction between them. In order to recognise abrupt reversals of direction, we
define an a-heading change as follows

Definition 1. a-heading change: Difference between heading of travel from ¢;_
to t; and heading of travel from t; to ¢;41 is 180°+a°.

Since our underlying model represents a route map, we cannot assume com-
plete accuracy on travel times and distance, so we define an e-shortest path as
follows.

Definition 2. e-shortest path(time): Path P from A to B is an e-shortest path
from A to B if there is no other A, B path with time < time(P) - ¢, where ¢ is
measured in seconds.

Definition 3. e-shortest path(percentage): Path P from A to B is an e-shortest
path from A to B if there is no other A, B path with time < (1395%) * time(P),
where ¢ is a percentage.

The pseudocode for the Waypoint Estimation algorithm incorporating the
definitions for a-heading change and e-shortest path is shown in Algorithm
The inputs into the algorithm are the trace, allowable tolerance and heading tol-
erance. Initialize two lists, K to hold the estimations and ST to hold sub-traces
(lines 1-2). First we search for a-heading changes, extract these as waypoints
and split the trace into sub-traces using these extracted waypoints. Initally
subTraceStart is set to the first point on the trace (line 3). Iterate through
the trace looking for abrupt heading changes which are detected at line 10. Any
estimates found are added to K, a sub-trace is created and added to ST and
subTraceStart is set to the end of the interval (lines 11-13). Secondly for each
sub-trace, we use shortest path search to find further waypoints. For each sub-
trace initially source is set to the first point of the sub-trace (line 17) and while
we have not reached the end of the sub-trace we search forward from source until
we find a point on the sub-trace which is not a e-shortest path (line 19). This



point is marked as Y. Search backwards from Y until we find the first point on
the reverse search which is not a e-shortest path (line 20). This point is marked
as X. Add interval [X,Y] to list K (line 21). Set source to Y (line 22). When we
have reached the end of all the sub-traces return the list K of estimations found
(line 25).

When setting source after finding an estimation we have many points it could
be set to, these points are between the two ends of the previous estimation shown
as X and Y in Fig.[2l As our assumption is that the trace is made up of shortest
path point-to-point trips, if we select a point in the estimate that occurs prior
to the actual waypoint then this assumption would not hold as we would have
a shortest path from the source to the waypoint we have just estimated and a
second shortest path from this waypoint to the next waypoint. To remove this
uncertainty point Y is selected as the source for the next search as it should
occur after the waypoint.

Fig. 1: Outward search from source Fig. 2: Reverse search from point Y

4 Experiments

In this section we describe the creation of the graph, the test data and the values
for the allowable tolerance. For these experiments we use the city of Rome as a
test bed. Fig. [3] shows a map of Rome with one of the test routes. The algorithm
was implemented in Java 1.8 using the eclipse IDE and run on a machine using
Windows 10, an i7 CPU at 2.1 GHz and 7GB of RAM dedicated to the JVM.

The graph of the road network was created from OSM data. The only mod-
ification made was that extra nodes were added to ensure that nodes were not
seperated by more than 20m.



Algorithm 1: Waypoint Estimation
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input : Allowable Tolerance &
input : Heading Tolerance «
input : Trace T'
output: List K of estimates
List K
List ST // will hold the calculated sub-traces
subTraceStart <— T[0]
for i < 2 to last point in T do
previous <+— T[i — 2]
current <— T'[i — 1]
next <— TVi|
headingl <— heading traveled from previous to current
heading2 <— heading traveled from current to next
if difference between headingl and heading2 is an a-heading change then
add interval [previous, next] to K
add sub-trace from subT'raceStart to previous to ST
subTraceStart <— next
end
end
for st € ST do
source <— st[0]
while not at end of st do
Searching from source find first point Y on trace which is not a
e-shortest path (Fig. [1)
Searching back from Y find first point X on reverse search which is not
a e-shortest path (Fig.
add interval [X,Y] to K
source «— Y

end
end
return K




Twelve test routes were created. The waypoints were randomly selected from
the original graph data and the routes then created as shortest path point-to-
point routes using graphhopper. The number of waypoints pre route varied from
17 to 22 and the duration of the routes varied between 6.61 and 9.86 hours.
Graphhopper was chosen to create the routes because the latitude, longitude
and timestamp of points along the trip could be exported. These routes were
then sampled so that the points occured at regular intervals so as to simulate
a GPS trace. A byproduct of the sampling was that except for a few cases the
actual waypoint would not appear on the trace. Edge costs in graphhopper are
hidden and are not necessarily the same edge costs used in our calculations.

The routes were created with the following parameters

— Mean times between readings ranging from 20 seconds to 70 seconds at 10
second intervals

— Standard deviation in the times between readings being equal to 0.0, 2.5 and
5.0 seconds (simulates time variation between readings)

Fig. 3: Map of Rome containing one of the test routes

To simulate when a trace is missing readings due to the signal being dropped
blocks of readings were removed from the traces. Table [l| shows the parameters
used to remove points from the traces



Mean time between | precentage of | size of blocks to
readings (secs) readings removed| be removed
20, 30 7 3-7
40, 50 6 3-6
60, 70 5 3-5

Table 1: Parameters used to remove blocks of readings

For these experiments different combinations of times and precentages were
used as allowable tolerance. Four of each were chosen and combined to make up
16 different combinations. The times selected were 5, 10, 15 and 20 seconds. The
percentages were 2.5, 5, 7.5 and 10 %. The heading tolerance was set to 5°.

5 Results

To evaluate the algorithm we use a number of measures. These are: performance
as the allowable difference between the midpoint of the estimation and the ac-
tual time of the waypoint varies from 0 to 300 seconds and the performance of
estimating waypoints as the mean time between readings increases. For each of
these the following were measured: number of estimations returned as a percent-
age of actual waypoints, percentage of waypoints correctly estimated, precentage
of incorrect estimations.

Due to number of combinations of tests carried out not all can documented
here. Fig. [d show the trends in the measures detailed as the mean time between
readings and the allowable difference are varied when ¢ is set to 5% and 15
seconds with no points missing on the trace

Fig. 4alshows that as expected the percentage of correct estimations increase
as the allowable difference increases and conversely the percentage of false es-
timations reduces. Also of note is that the percentage of estimates is greater
than 100%. This means that if we correctly estimate all waypoints, there may
be a number of false readings. Fig. [4D] shows that as the time between readings
increased the percentage of correct estimations reduced, as did the number of
estimates while the percentage of false estimations remained steady. Both charts
show that varying the standard deviation of the time between readings has a
negligible effect on the percentages returned.
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Fig. 4: Results for € of 5 % and 15 seconds for a complete trace

Fig. [ba] and Fig. [Bb] show similar results for the same values of ¢ when the
traces are missing blocks of readings.

Tableshows a summary where the standard deviation of mean time between
readings is 0.0 and the allowable difference is 200 seconds, where the performance
only slightly varies for different combinations of e.

Confusion matrices were also constructed to evaluate the algorithm perfor-
mance for estimating waypoints. The output from the algorithm is a sequence
of k intervals, you can expand this by adding k + 1 non-overlapping additional
intervals so that every point of the trace is contained in exactly one of the in-
tervals. A true positive is an original interval that contains a waypoint. A true
negative is an additional interval that does not contain a waypoint. A false nega-
tive is an additional interval that does contain a waypoint and a false positive is
an interval that does not contain a waypoint. For a trace with n waypoints there
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Fig. 5: Results for € of 5 % and 15 seconds for a trace missing blocks of readings



5 % Estimated % Correct % False
. None Blocks None Blocks None Blocks
Percentage| Time .. .. .. .. . .
missing |missing ||missing |missing ||missing |missing

2.5 5 104.89 103.30 91.02 90.09 13.86 13.22
2.5 10 104.89 103.30 91.02 90.09 13.86 13.22
2.5 15 104.89 103.30 90.95 90.01 13.94 13.29
2.5 20 104.89 103.30 90.95 90.01 13.94 13.29
5 5 104.89 103.30 91.02 90.09 13.86 13.22
5 10 104.89 103.30 91.02 90.09 13.86 13.22
5 15 104.89 103.30 91.09 90.16 13.79 13.15
5 20 104.89 |103.30 91.09 90.16 13.79 13.15
7.5 5 104.89 103.30 91.02 90.09 13.86 13.22
7.5 10 104.89 |103.30 91.02 90.09 13.86 13.22
7.5 15 104.89 103.30 91.09 90.16 13.79 13.15
7.5 20 104.89 |103.30 91.09 90.16 13.79 13.15
10 5 104.89 103.30 91.02 90.09 13.86 13.22
10 10 104.89 |103.30 91.02 90.09 13.86 13.22
10 15 104.89 103.30 91.09 90.16 13.79 13.15
10 20 104.89 |103.30 91.09 90.16 13.79 13.15

Table 2: Summary of performance of Algorithm

will be n positive conditions and n+1 negative conditions. For each trace we
will have m estimations. Fig. [] details the relationships in the confusion matrix.

For populating the matrix the true positive can be calculated by comparing
the estimates to the waypoints and if a waypoint is in an estimate then it is a
true positive. When all the true positives have found then the remainder of the
matrix can be filled in.

Across all variations of mean time between readings the number of points in
the routes ranged from 350 to 1774, and the average number of trace points per
interval per test ranged from 3.5 to 18. Fig. [Ta] shows the confusion matrix when
there are no missing readings in the trace and Fig. when there are missing
readings in the trace.

Predicted
Predicted Condition Positive Predicted Condition Negative

== | Condition L .
g Positive True Positive False Negative n
-
) Condition - .
L [ Nogatve False Positive True Negative n+1

m 2n+1-m 2n +1

Fig. 6: Confusion Matrix



Predicted Predicted

Predicted Condition Positive Predicted Condition Negative Predicted Condition Positive Predicted Condition Negative
®© |Gondten 18.79 0.54 19.33 ® [Soaten 18.62 0.71 19.33
3 g
< [ 1.48 18.85 2033 | | < Vo 1.44 18.89 2033
20.27 19.39 39.66 20.06 19.60 39.66
(a) Complete trace (b) Trace missing blocks of points

Fig. 7: Confusion matrices for traces

Table [3]shows relevant measures of the efficacy of the algorithm in estimating
waypoints. These show that the algorithm has high levels of accuracy, precision
and recall, and that it performs equally in both the case that the trace is complete
or the trace is missing blocks of data.

No missing readings Missing blocks of readings
Precision 0.927 0.928
Accuracy 0.949 0.946
Recall 0.972 0.963

Table 3: Efficiency of Algorithm

6 Conclusion

In this paper we have identified a method to infer where waypoints may occur in a
GPS trace which does not require any prior knowledge about the person creating
the trace or the timestamps on the trace only a graph of the area concerned.
Our algorithm consists of two stages: looking for heading changes which infer a
waypoint exists, and after splitting the trace into sub-traces between the heading
changes exploiting shortest path calculations to infer where other waypoints may
exist. With this method we achived a recall of up to 97%, a precision of 93% and
an accuracy of 95% and the algorithm degrades gracefully as the GPS traces
become sparse and irregular.

Future work will incorporate improving the algorithm to make it more robust
in the real world. This will involve checking the assumption the people travel
the shortest path between two points by studying available trace data. Paths are
selected based on estimates with true values being determined by driving speed,
congestion, traffic lights, pedestrian crossings, etc. The effects of incorporating
these into the graph will be examined along with using timestamp data from
GPS traces. We will extend the experiments to measure the effect of GPS traces
which contain errors. Finally we will integrate these shortest path methods with
existing data analytic methods in mobility mining to improve inference.
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