
Title Analysis and detection of security vulnerabilities in contemporary
software

Author(s) Pieczul, Olgierd

Publication date 2017

Original citation Pieczul, P. 2017. Analysis and detection of security vulnerabilities in
contemporary software. PhD Thesis, University College Cork.

Type of publication Doctoral thesis

Rights © 2017, Olgierd Pieczul.
http://creativecommons.org/licenses/by-nc-nd/3.0/

Embargo information No embargo required

Item downloaded
from

http://hdl.handle.net/10468/3975

Downloaded on 2017-09-05T00:07:44Z

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cork Open Research Archive

https://core.ac.uk/display/84073895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://hdl.handle.net/10468/3975

Analysis and Detection of Security
Vulnerabilities in Contemporary

Software

Olgierd Pieczul
M.Sc.

�
NATIONAL UNIVERSITY OF IRELAND, CORK

Department of Computer Science

Thesis submitted for the degree of
Doctor of Philosophy

January 2017

Head of Department: Prof. Cormac Sreenan

Supervisor: Dr Simon Foley

Research supported by IBM

Contents

Contents

List of Figures . v
List of Tables . vii
Abstract . ix
Acknowledgements . x

1 Introduction 1
1.1 Contemporary Software Development 1
1.2 Detecting Vulnerabilities as Anomalies 3
1.3 Thesis Layout and Previous Work 6

2 The Dark Side of the Code 8
2.1 Introduction . 8
2.2 A Microblog Application . 9
2.3 The Security Gap . 14

2.3.1 Accessing arbitrary URLs 14
2.3.1.1 Local network access 15
2.3.1.2 Redirect to a local site 16
2.3.1.3 Local file access 17

2.3.2 Modifying internal state of application 18
2.4 Unexpected Behavior Traces . 20
2.5 Conclusion . 21

3 Anomaly Detection 23
3.1 Introduction . 23
3.2 Overview of Intrusion Detection Techniques 24
3.3 From Knowledge to Behavior-Based Detection 26

3.3.1 Knowledge based systems 27
3.3.2 Statistical models . 28
3.3.3 Expert systems . 29
3.3.4 Operation sequence models 30
3.3.5 Process mining . 31

3.4 Exploring Sequence-Based Anomaly Detection in Software . . . 31
3.4.1 Data models . 32

3.4.1.1 Look-ahead pairs 32
3.4.1.2 Subsequences 34

Analysis and detection of security
vulnerabilities in contemporary software

i Olgierd Pieczul

Contents

3.4.1.3 Groups of subsequences 34
3.4.1.4 Frequency-based models 35
3.4.1.5 Richer models 35

3.4.2 Attacks . 35
3.5 Conclusion . 37

4 Practical Challenges of Anomaly Detection in Contemporary
Software 38
4.1 Introduction . 38
4.2 Abstraction and Scope . 39
4.3 Generating Baseline Activity . 41
4.4 Behavioral Reference Model . 43

4.4.1 Applicability to modern software platforms 43
4.4.2 Model expressiveness . 44

4.5 Conclusion . 46

5 Behavioral Norms 47
5.1 Introduction . 47
5.2 Events and Traces . 47
5.3 Scope and Filtering . 48
5.4 Strands and Partitions . 50
5.5 Norms . 52
5.6 Conclusion . 53

6 Exploring Behavioral Norms 54
6.1 Introduction . 54
6.2 Norms in HTTP Logs . 54

6.2.1 Strands for HTTP events 56
6.2.2 Norms for HTTP traces 57

6.3 N-gram Based Trace Equivalence 59
6.4 Norm Search . 61
6.5 Attribute Search . 62

6.5.1 N-gram based norm similarity 62
6.5.2 Implementation of attribute search 64

6.6 Attribute Search Evaluation . 65
6.6.1 Norms in a simulated system 65

6.6.1.1 Norms similarity and aggregation 68

Analysis and detection of security
vulnerabilities in contemporary software

ii Olgierd Pieczul

Contents

6.6.1.2 Simulating anomalies 70
6.6.2 Norms in an enterprise system 72
6.6.3 Discussion . 75

6.7 Modeling Behavior of Collaborating Systems 75
6.7.1 An online photograph sharing service 76
6.7.2 Norms in online photograph sharing service 77
6.7.3 Provider anomalies . 78
6.7.4 Anomalies across multiple collaborating providers 79
6.7.5 Discussion . 80

6.8 Conclusion . 81

7 Runtime Verification of Java Applications 83
7.1 Introduction . 83
7.2 Scope . 83
7.3 Modeling Trace Equivalence . 85

7.3.1 Approximating norms with n-grams 86
7.3.2 Groups and arrangements 87

7.4 Runtime Verification . 88
7.4.1 Verification algorithm . 90
7.4.2 Algorithm examples and discussion 91

7.5 Anomaly Manager . 95
7.6 Discussion . 96
7.7 Conclusion . 97

8 Experimental Evaluation 98
8.1 Introduction . 98
8.2 Experiment Setup . 99
8.3 Building Behavioral Profiles . 100
8.4 Vulnerability Tests . 101

8.4.1 Vulnerability test results 103
8.4.2 False negatives . 105
8.4.3 False positives . 106
8.4.4 Results interpretation . 107

8.5 False Positive Tests . 108
8.6 Discussion . 109

8.6.1 Anomaly prevention in practice 109

Analysis and detection of security
vulnerabilities in contemporary software

iii Olgierd Pieczul

Contents

8.6.2 Additional insights . 110
8.7 Conclusion . 111

9 Security Vulnerabilities 113
9.1 Dark Side of the Code Revisited 113
9.2 Methodology . 114
9.3 Struts Operation . 116

9.3.1 OGNL . 118
9.3.2 Struts Interceptors . 119

9.4 Tracing the Evolution of a Security Control 119
9.4.1 Tampering with OGNL 121
9.4.2 Accessing properties . 123
9.4.3 CookieInterceptor . 125

9.5 Analysis of Security Control Evolution 126
9.5.1 The dark side of the code 126

9.5.1.1 Report bias . 127
9.5.1.2 Security metric bias 128

9.5.2 Developer’s blind spots 129
9.5.3 Opportunistic fix . 130

9.5.3.1 Compatibility problems 130
9.5.4 Counter-intuitive mechanism 131

9.5.4.1 Assumptions about consumers 132
9.5.5 Evolution of phenomena 133

9.6 Conclusion . 134

10 Conclusion 135

A Vulnerability Test Cases 140
A.1 Test cases structure and setup 140
A.2 Test cases . 141

B False Positive Test Cases 147

References 149

Analysis and detection of security
vulnerabilities in contemporary software

iv Olgierd Pieczul

List of Figures

List of Figures

2.1 A message displayed by the application 9
2.2 Microblog application code: action class 10
2.3 Microblog application code: user class 11
2.4 Application dependency graph 12
2.5 Library method code . 13
2.6 Accessing URL through the application: expected operation . . 15
2.7 Accessing URL through the application: internal server 15
2.8 Accessing URL through the application: HTTP redirect 16
2.9 Accessing URL through the application: local files 17
2.10 Traces of message posting and user impersonation 20

3.1 Taxonomy of intrusion-detection systems, Debar et al [1] 24
3.2 Taxonomy of intrusion-detection systems, Axelsson [2] 26
3.3 Database growth curve for learning process, reprinted from [3] . 32

5.1 A sample trace appTrace . 48
5.2 A filtering of appTrace trace defined in Figure 5.1 49
5.3 Set of strands from the example in Figure 5.2 51

6.1 httpLog trace of HTTP requests 〈h1, . . . , h12〉 55
6.2 Strands from httpLog partitioned by attribute item 56
6.3 Strands from httpLog partitioned by attributes item and user 57
6.4 A behavioral norm from httpLog partitioned by attribute item

for operations {method, action} 58
6.5 Behavioral norms from httpLog partitioned by attributes

{user, item} and operations {method, action} 58
6.6 Strands from the HTTP log for cart creation and updates 59
6.7 Pseudo-code of the attribute search algorithm 64
6.8 A fragment of a log from simulated system 65
6.9 A sample user behavior scenario for simulated system (simplified) 66
6.10 Pseudo-code of norm aggregation algorithm 69
6.11 Number of aggregate norms for different norm similarity thresholds

(simulated system) . 69
6.12 A fragment of a log from a simulated system including roles . . 70

Analysis and detection of security
vulnerabilities in contemporary software

v Olgierd Pieczul

List of Figures

6.13 Number of aggregate norms for different norm similarity thresholds
for two configurations of simulated system with access control . 71

6.14 A fragment of a log from enterprise system 72
6.15 Number of aggregate norms for different norm similarity thresholds

(enterprise system) . 74
6.16 A partial log from the photo hosting service 76
6.17 Norms for user’s collaboration with photo hosting service provider 78
6.18 A log of two collaborating systems 79

7.1 A trace fragment of message posting and user impersonation . . 84
7.2 Traces for posting message with http and file URLs, lower

abstraction scope . 85
7.3 Sample strands of microblog application 86
7.4 Sample bi-gram sets for strands in Figure 7.3 87
7.5 Pseudo-code of runtime verification algorithm 90
7.6 Java Aspect for the microblog application calls 95
7.7 Java Anomaly Manager integration 96

8.1 Experiment setup . 99
8.2 Growth in behavioral norms . 101

9.1 A sample MVC Struts application code 117
9.2 OGNL context in the example application 118
9.3 Phenomena life cycle . 134

Analysis and detection of security
vulnerabilities in contemporary software

vi Olgierd Pieczul

List of Tables

List of Tables

4.1 Execution traces at different levels of abstraction 39

6.1 Norm model similarity calculation example 63
6.2 Some norms in the simulated system 67
6.3 Some norms in the enterprise system 73

7.1 N-gram groups . 89
7.2 N-gram group arrangements . 89
7.3 Runtime verification: anomaly-free sequence 92
7.4 Runtime verification: anomalous sequence with an unknown event 92
7.5 Runtime verification: anomalous sequence with an unknown n-gram 93
7.6 Runtime verification: anomalous sequence with an illegal arrange-

ment . 94

8.1 Attack outcomes on different versions of Struts 104

9.1 Security mechanism evolution: 2004–2015 120

B.1 False positive test cases outcomes on different versions of Struts 147

Analysis and detection of security
vulnerabilities in contemporary software

vii Olgierd Pieczul

I, Olgierd Pieczul, certify that this thesis is my own work and I have not obtained
a degree in this university or elsewhere on the basis of the work submitted in this
thesis.

Olgierd Pieczul

Analysis and detection of security
vulnerabilities in contemporary software

viii Olgierd Pieczul

Abstract

Abstract

Contemporary application systems are implemented using an assortment of high-
level programming languages, software frameworks, and third party components.
While this may help to lower development time and cost, the result is a complex
system of interoperating parts whose behavior is difficult to fully and properly
comprehend. This difficulty of comprehension often manifests itself in the form
of program coding errors that are not directly related to security requirements
but can have an impact on the security of the system.

The thesis of this dissertation is that many security vulnerabilities in contem-
porary software may be attributed to unintended behavior due to unexpected
execution paths resulting from the accidental misuse of the software components.
Unlike many typical programmer errors such as missed boundary checks or user
input validation, these software bugs are not easy to detect and avoid. While
typical secure coding best practices, such as code reviews, dynamic and static
analysis, offer little protection against such vulnerabilities, we argue that run-
time verification of software execution against a specified expected behavior can
help to identify unexpected behavior in the software.

The dissertation explores how building software systems using components may
lead to the emergence of unexpected software behavior that results in security
vulnerabilities. The thesis is supported by a study of the evolution of a pop-
ular software product over a period of twelve years. While anomaly detection
techniques could be applied to verify software verification at runtime, there are
several practical challenges in using them in large-scale contemporary software.
A model of expected application execution paths and a methodology that can be
used to build it during the software development cycle is proposed. The disserta-
tion explores its effectiveness in detecting exploits on vulnerabilities enabled by
software errors in a popular, enterprise software product.

Analysis and detection of security
vulnerabilities in contemporary software

ix Olgierd Pieczul

Acknowledgements

Acknowledgements

I wish to express my sincere appreciation to those who have con-

tributed to this thesis and supported me over the last few years.

In particular, I wish to express my gratitude to my supervisor Si-

mon Foley for the opportunity to learn from his knowledge and

experience. His high standards combined with enthusiastic support

created an invaluable environment to develop myself as a researcher.

I would like to thank my examiners, John Clark and Barry

O’Sullivan for a comprehensive, but enjoyable, examination and

many suggestions that helped me to improve my thesis.

I would also like to thank IBM Ireland for sponsoring my research

and, especially, Mike Roche for his valuable advice and guidance.

Last, but not least, special thanks to my wife Izabela. Her love,
support and encouragement provided me with energy to keep up
with all the hard work.

Analysis and detection of security
vulnerabilities in contemporary software

x Olgierd Pieczul

Chapter 1

Introduction

1.1 Contemporary Software Development

Contemporary application systems are implemented using an assortment of high-
level programming languages, software frameworks and third party components.
Current software frameworks enable developers to focus on the high-level func-
tionality of an application by hiding low-level details. System infrastructure de-
tails such as DBMS, local file systems and memory are encapsulated as object
storage; network connectivity is abstracted in terms of remote resource access,
user interaction and presentation is supported via a range of standard interfaces.

While this may help lower development time and cost, the result is a complex
system of interoperating parts whose behavior is difficult to fully and properly
comprehend. This difficulty of comprehension often manifests itself in the form
of program coding errors that are not directly related to security requirements
but can have a significant impact on the security of the system [4,5].

Interoperation of components, often implicit and outside of the high-level appli-
cation logic, may lead to enabling unintended and unexpected execution paths
in the system. Also, at the high level of abstraction, it may be difficult to antic-
ipate if and what low-level security controls should be considered. For example,
while an application may enforce the correct access controls in its high-level logic,
its programmer may have mistakenly relied on the software development frame-
work providing particular code injection defenses; alternatively, the framework
developer may have mistakenly relied on its consumers implementing their own
injection defenses, or, simply, that nobody had anticipated and/or understood

1

1. Introduction 1.1 Contemporary Software Development

the injection vulnerability.

The software industry’s approach to vulnerabilities includes security quality as-
surance processes such as code reviews, static analysis and penetration testing.
This approach may be quite effective in identifying typical and expected program-
ming errors such as buffer overflow and code injection. These simple vulnerabil-
ities often appear as easy to identify coding patterns or as a specific application
response to a typical malicious input. The software industry has developed stan-
dard lists of typical problems, such as OWASP Top 10 [6] or SANS 25 [7], together
with methodologies to identify them and best practices to avoid them. As a man-
ual review is often time-consuming and costly, there is a range of automated tools
that assist in identifying these types of problems through static analysis of the
source code, or dynamic analysis of application operation.

In contrast, vulnerabilities resulting from, often accidental, misuse of an inte-
grated software component are very difficult to identify. In the case of a manual
review, the reviewer must be aware of the possibility that a particular component
used in a given way may result in an unintended behavior of the application.
However, when programming at a high level of abstraction it is rarely possible to
cover the subtleties of all of the numerous components and their interoperation.
Even simple, and what may seem, obvious problems resulting from component
usage may be difficult to identify. For example, JSON Web Token (JWT) is a
popular standard for signed access tokens transferred between web parties. Natu-
rally, the software community developed a number of libraries that allow creation,
verification and processing of the tokens. However, in-line with the standard, but
unexpectedly to the consumers [8], the libraries often accepted tokens with a
none signature algorithm and empty signature, as valid. Surely, the developer
might have included a check to verify the signature algorithm, however, that
would have required them to be aware of the problem in the first place. Sim-
ilarly, the reviewer may not expect that the library, when called to verify the
token with a specific key, will accept tokens with no signature. Also, any tool
that assists in software vulnerability detection would not be able to find the bug
unless specifically configured for this problem. This is not unlikely as the problem
was generally unknown and eventually considered a vulnerability in a number of
JWT libraries [8].

It could be debatable whether the problem with the JWT implementation was,
in fact, a library vulnerability. RFC 7519 prescribes that every implementation
must support the none algorithm. The root cause of this issue should be rather

Analysis and detection of security
vulnerabilities in contemporary software

2 Olgierd Pieczul

1. Introduction 1.2 Detecting Vulnerabilities as Anomalies

viewed in terms of a misunderstanding between a developer of a library and a
developer of an application. The library developer may assume that the consumer
will verify that the token is signed with the right algorithm and focuses on just
verifying the signature, however specified. The developer of an application using
the library, in turn, may expect the library to ensure that the token is verified
against a specific key they provided to the library. While technically the problem
should probably be attributed to bad API design and poor documentation of
libraries, it demonstrates the general problem of development using components.
It creates a potential gap between the expected behavior of an application (for
example, that it verifies tokens using the algorithm for the provided key) and the
actual behavior (for example, that it verifies tokens, regardless of the algorithm).
The higher the abstraction, and more abstraction layers are included, the larger
the potential gap. For example, it is common that the application does not use
the token verification library directly, but rather some authentication framework,
that in turn uses the library.

One could argue that it is the responsibility of the consumer to understand the
underlying standard, and comprehensively review the documentation and the
source code, if available, of the component. However, this would defeat the very
purpose of building the application from components in order to separate low-
level concerns from the core application logic. In practice, during application
development, third-party components are not routinely reviewed or tested for
vulnerabilities. Some of the security vulnerabilities that gained notoriety in recent
years, such as Heartbleed and Shellshock, were deployed for many years before
they were discovered, despite being used by a large number of consumers and
developers. Also, the number of components used by contemporary software
and its dependencies is so large that even just managing them has emerged as a
challenge [9], never mind considering their security individually or when combined
together. For example, at the time of writing, the latest (December 2016) versions
of common web frameworks, struts2, play and spring-web add a further
24, 29 and 44 dependencies (respectively) to the application.

1.2 Detecting Vulnerabilities as Anomalies

Our hypothesis is that many software vulnerabilities can be attributed to pro-
gramming errors that enable unexpected software behavior. As these vulner-
abilities result in different from the intended activity of the application, it is

Analysis and detection of security
vulnerabilities in contemporary software

3 Olgierd Pieczul

1. Introduction 1.2 Detecting Vulnerabilities as Anomalies

worth investigating ways to systematically detect their exploitation. Runtime
verification [10] of software execution against a specified expected behavior may
help identify unexpected behavior in the software. For small applications, lim-
ited requirements on expected behavior can be specified a priori, for example as a
temporal proposition [10]; however, this approach does not scale when the require-
ment is to constrain the behavior across large complex systems of interoperating
components.

An alternative strategy used by anomaly detection techniques [11] is to learn a
behavioral reference profile from system logs of past normal behavior and use
this profile at runtime to validate application operation. In this context, the
unexpected operation of the application under an attack resulting from a vulner-
ability could be considered an execution anomaly. Anomaly detection techniques
have been applied to many types of system activity, including: network traf-
fic [12], program execution context [13] or sequences of program operations such
as operating system calls [14, 15] or JavaScript [16]. While the monitoring of
operation sequences is the most commonly proposed technique for detecting soft-
ware vulnerabilities, this approach has only been demonstrated in the context
of operating system calls in rather small applications. It is an open question if
it could be applied to modern software built as an arrangement of interacting
components. The practical challenges of applying these techniques to contempo-
rary enterprise software, such as dealing with complexity introduced by a large
number of components and alignment with software release processes focused on
fast and continuous delivery, have not been considered.

In this dissertation, we study the nature of vulnerabilities resulting from un-
expected application behavior due to component misuse and their detection as
execution anomalies. Focusing on Java enterprise applications, we present typical
vulnerabilities resulting from component misuse and demonstrate how easy it is
for the programmer to accidentally introduce them in the code. We also pro-
vide an in-depth case study of Apache Struts security controls, vulnerabilities,
and their remediation over twelve year period to confirm our findings. We also
analyze what effect the exploitation of such vulnerabilities has on the operation
of an application, in particular, if any deviation from the typical application ac-
tivity can be observed. This leads to an observation that for different types of
vulnerabilities the deviation can only be identified at some specific view of appli-
cation operation, such as input/output operations or sequences of method calls
of a specific component.

Analysis and detection of security
vulnerabilities in contemporary software

4 Olgierd Pieczul

1. Introduction 1.2 Detecting Vulnerabilities as Anomalies

In this dissertation, we in investigate what are the challenges of applying anomaly
detection in large-scale contemporary enterprise software. Current research of
anomaly detection applied to software execution and vulnerabilities is typically
considered in the context of system calls [14, 15, 17–19] and relatively simple
UNIX-style applications such as sendmail, lpr or even rm. While the system-
call view of application operation may be appropriate for such small programs,
it is not appropriate for complex systems including the platform, application
servers, frameworks and libraries. In addition, the operation can be viewed at
multiple levels of abstraction from the logs of user actions to operating system
calls. The combined activity of all these elements is too extensive to be useful in
practice. We discuss the challenges of selecting the appropriate level and reducing
the scope of the system activity. Also, building a reference model of the normal
behavior of a system requires collecting the baseline activity of the system in
a comprehensive manner. As today’s software is developed, built and deployed
fast, often on a daily basis, and in a highly automated manner, the process for
establishing the baseline behavior has to operate in a similar way. We investigate
potential mechanisms for acquiring a normal expected activity of an application
based on existing software development tools and practices such as functional
testing or security scanning.

Further, we consider the characteristics of the abstraction that would be ap-
propriate for modeling the behavior of contemporary systems for the purpose
of anomaly detection. We observe that many contemporary systems, such as
web applications, operate by processing distinct transactions. Therefore, we pro-
pose a model of behavioral norms: a generic framework for inferring repeating
transaction-like patterns of behavior from the logs of system operation. We pro-
pose a practical interpretation of the model using set of short-range correlations
between subsequent events (n-grams) and a mechanism to automatically identify
model parameters. We also discuss potential applications of the model, beyond
anomaly detection, such as monitoring system changes or identifying underlying,
emergent behaviors.

Finally, we discuss the implementation and integration strategies that enable
runtime verification of application activity using the model. The approach has
been evaluated by considering its effectiveness in identifying code vulnerabilities
across the twenty-six versions of Apache Struts over a period of five years.

Analysis and detection of security
vulnerabilities in contemporary software

5 Olgierd Pieczul

1. Introduction 1.3 Thesis Layout and Previous Work

The contributions contained within this dissertation are as follows:

• the introduction of the phenomenon of “dark side of the code”, the unex-
pected behavior of the application resulting from accidental misuse of the
software components, and a longitudinal study to confirm its existence in
real-world systems (Chapters 2 and 9);

• a formal model of behavioral norms with a general purpose framework for
inferring transaction-like behavioral patterns from system logs (Chapters 5
and 6), and

• an analysis of the challenges of applying anomaly detection to complex
contemporary software systems including a prototype implementation eval-
uated in a large-scale experiment (Chapters 4, 7 and 8).

1.3 Thesis Layout and Previous Work

This dissertation is organized as follows. In Chapter 2 we discuss the dark side of
the code and introduce a running example of contemporary software development
to illustrate how easy it is for a programmer to unwittingly introduce a program-
ming flaw/security vulnerability. Chapter 3 reviews existing anomaly detection
techniques with the focus on those techniques that could have the potential to
be useful in detecting anomalies in software execution. Chapter 4 considers the
key challenges encountered in applying such techniques to contemporary appli-
cation software. In Chapter 5, we present the model of behavioral norms and
in Chapter 6 we explore it in the context of possible applications. In Chapter 7
we present the interpretation of the behavioral norms model applied to traces of
Java applications, a runtime verification algorithm that is based on the model
and practical issues related to its implementation. Chapter 8 discusses the exper-
imental evaluation of the runtime verification mechanism, based on the full set
of nineteen vulnerabilities reported for twenty-six versions of Apache Struts over
a five year period. Chapter 9 presents the results of a longitudinal study on root
causes of the security vulnerabilities in Apache Struts over 12 years.

Earlier versions of the work described in this dissertation were published in the
following peer-reviewed papers.

Analysis and detection of security
vulnerabilities in contemporary software

6 Olgierd Pieczul

1. Introduction 1.3 Thesis Layout and Previous Work

• O. Pieczul and S. N. Foley. Discovering emergent norms in security logs. In
2013 IEEE Conference on Communications and Network Security (CNS -
SafeConfig), pages 438–445, 2013.

• O. Pieczul and S. N. Foley. Collaborating as normal: Detecting systemic
anomalies in your partner. In Security Protocols XXII: 22nd International
Workshop, Cambridge, UK, March 19-21, 2014, Revised Selected Papers,
pages 18–27. Springer International Publishing, 2014.

• O. Pieczul, S. N. Foley, and V. M. Rooney. I’m OK, You’re OK, the System’s
OK: Normative security for systems. In Proceedings of the 2014 Workshop
on New Security Paradigms, NSPW ’14, pages 95–104, New York, NY, USA,
2014. ACM.

• O. Pieczul and S. N. Foley. The dark side of the code. In Security Pro-
tocols XXIII: 23rd International Workshop, Cambridge, UK, March 31 -
April 2, 2015, Revised Selected Papers, pages 1–11. Springer International
Publishing, 2015.

• O. Pieczul and S. N. Foley. The evolution of a security control. In Security
Protocols XXIV: 24th International Workshop, Brno, Czech Republic, Re-
vised Selected Papers. Springer International Publishing, 2016. (to appear).

• O. Pieczul and S. N. Foley. Runtime detection of zero-day vulnerability
exploits in contemporary software systems. In Data and Applications Se-
curity and Privacy XXX: 30th Annual IFIP WG 11.3 Conference, DBSec
2016, Trento, Italy, July 18-20, 2016. Proceedings. Springer International
Publishing, 2016.

Analysis and detection of security
vulnerabilities in contemporary software

7 Olgierd Pieczul

Chapter 2

The Dark Side of the Code

“Beware of bugs in the above code; I have only proved it correct, not tried it.”

—Donald Knuth. Notes on the van Emde Boas construction of
priority deques: An instructive use of recursion, 1977

2.1 Introduction

Given the complexity of contemporary applications, and the manner of their
development, we argue that there will always be some aspect of their behavior
(ranging from application level to low-level system calls) that a programmer may
not have fully considered or comprehended. We refer to this as the dark side
of the code: the security gap that can exist between the behavior expected by
the programmer and the actual behavior of the implemented code. Improper
or incomplete comprehension means that security controls may not have been
considered this the security gap and, as a consequence, the unexpected behavior
arising from the code may give rise to a security vulnerability.

Even if the developer is aware of a particular coding vulnerability, they may
fail to correlate it with their own programming activity unless it is explicitly
highlighted [26]. It is, therefore, not surprising that all of the OWASP Top 10
security risks [6] relate to implementation flaws, with the majority in the form
of common coding mistakes. In addition, as the applications grow larger, the
understanding of old, legacy or just unchanged code decreases [27].

8

2. The Dark Side of the Code 2.2 A Microblog Application

One might argue that encapsulation and programming by contract [28] could
eliminate these security gaps; or, that one might attempt to model all unexpected
behaviors in the security gap in terms of a Dolev-Yao style attacker [29, 30] and
verify that the application code is in turn robust to failure against this attacker.
However, these approaches still require a full and proper comprehension of system
components and their interoperation (in terms of formal specification) which,
in itself, can have security gaps [31], let alone the challenge of scaling these
techniques to contemporary application systems.

In this chapter, we introduce a running example to explore the coding of a contem-
porary application. Despite being simple, the example is sufficient to illustrate
some challenges in using these frameworks and to demonstrate unexpected vul-
nerabilities arising from the security gap. Further, we present the security gap
between the expected and the actual behavior of the application as a source of
security vulnerabilities. Finally, we demonstrate how traces of application execu-
tion could be used to identify exploitation of vulnerabilities that arise from the
security gap.

2.2 A Microblog Application

A microblog social networking application provides an on-line facility for users
to post/share short text messages. The application provides a web interface
and a REST API for integration with various types of clients, including desktop
browsers and mobile devices. In addition, it parses posted messages, looking for
any links and creates snapshots that are displayed with a message. For example,

Figure 2.1: A message displayed by the application

Analysis and detection of security
vulnerabilities in contemporary software

9 Olgierd Pieczul

2. The Dark Side of the Code 2.2 A Microblog Application

Figure 2.1 depicts a message “My new house http://img/house” posted by user
frank, displayed by the application. The application is built using Apache
Struts, a popular Model-View-Controller framework for J2EE. Struts abstracts
application logic from HTTP request processing flow by encapsulating it into
objects called actions. Figure 2.2 shows how the action responsible for posting a
new message is implemented in just a few lines of code.

1 public class PostAction extends ApiAction {

3 private String text;

4 public void setText(String text) {

5 this.text = text;

6 }

8 public String execute() throws Exception {

9 Message message = new Message(text);

10 message.setAuthor(getUser());

11 String[] urls = TextUtils.getUrls(text);

12 for (String URL : urls) {

13 message.addLink(url);

14 Image snapshot = WebUtils.snapshot(url)

15 if (snapshot != null)

message.addImage(snapshot);

16 }

17 DAO.add(message);

18 return SUCCESS;

19 }

21 public User getUser() {

22 return session.get("user");

23 }

24 }

Figure 2.2: Microblog application code: action class

Actions can be mapped to specific URL paths, such as /api/post. Struts
handles routine tasks, including parameter validation, authentication, session
handling and CSRF protection. These actions enable Struts to set the HTTP

Analysis and detection of security
vulnerabilities in contemporary software

10 Olgierd Pieczul

2. The Dark Side of the Code 2.2 A Microblog Application

parameters using setters. For example, a call to the application including the
text parameter, such as

/api/post?text=My+new+house+http://img/house

results in Struts calling a setText method to provide the parameter value to the
action. This facilitates the separation of business logic from HTTP processing
concerns. Thus, rather than dealing with low-level operations such as accessing
parameters by name, the developer need only implement a public setter. This
makes the code reusable, easier to maintain, document and test.

Lines 10 and 21 of Figure 2.2 refer the User class. It is defined as a simple con-
tainer for user properties such as a name and a unique user identifier. Figure 2.3
provides a listing of the User class. It includes value fields such as user name
and identifier with public methods to get and set them, commonly referred to as
getters and setters. The application uses the User class as a container to encap-
sulate all user properties. The application records a current user in the server’s
session as an instance of User class. This value is available to the action class

1 public class User {

2 private String name;

3 public String getName() {

4 return name;

5 }

7 public void setName(String name) {

8 this.name = name;

9 }

11 private String id;

12 public String getId() {

13 return id;

14 }

16 public void setId(String id) {

17 this.id = id;

18 }

19 }

Figure 2.3: Microblog application code: user class

Analysis and detection of security
vulnerabilities in contemporary software

11 Olgierd Pieczul

2. The Dark Side of the Code 2.2 A Microblog Application

through the session variable set by Struts. Action class encapsulates access to
the current user with the getUser getter (Figure 2.2, Line 22).

While the high-level application code is clear and easy to follow, the program ab-
stractions that are used mean that the typical programmer will not overly concern
themselves with the specifics of the low-level behavior of the underlying frame-
work infrastructure. For example, at Line 17 the application uses the persistence
framework to save the message. The developer expects that the framework will
make a connection to a database (or reuse an existing one), formulate an SQL
statement from the message object fields and execute it.

Similarly, tasks such as parsing the message in order to look for web links or
obtain a snapshot for a URL are performed by third party libraries TextUtils
and WebUtils. Figure 2.4 shows a dependency graph of the application. Note

microblog

webutils struts2-core

textutils

commons-lang

dao minimal-json

core-renderer xwork-core

ognl

freemarker

commons-io

openjpa-jdbc derbyclient

itext

bcmail-jdk14

bcprov-jdk14 asm

asm-commons

asm-tree

openjpa-kernel

openjpa-lib commons-pool

commons-collections

Figure 2.4: Application dependency graph

that it includes only explicit dependencies of the application and its libraries.
The application server (with its own dependencies) and Java runtime are not
included. Also, a number of dependencies for common tasks, such as logging or
servlet API, are not included in the graph.

Documentation, such as Javadoc provided with the WebUtils.snapshot

source code in Figure 2.5, gives only a limited information about the method
behavior. From this, the developer can learn that it accesses the website speci-
fied by the URL, renders it, and returns an image of specified dimensions. The
programmer can expect that the library will verify the correctness of the provided

Analysis and detection of security
vulnerabilities in contemporary software

12 Olgierd Pieczul

2. The Dark Side of the Code 2.2 A Microblog Application

address (as an exception is thrown for an “incorrect URL”), and that it will check
for “communication problems” while the website is being accessed.

Studying the source code of the WebUtils.snapshot method in Figure 2.5,
we can see that the library, used by the application, is also implemented at a
similarly high level of abstraction. All logic related to accessing the remote web-

1 /**

2 * Create an image snapshot for a website

3 * @see #render(InputStream)

4 *

5 * @param website URL address of the website

6 * @param w image width

7 * @param h image height

8 * @return Image containing website snapshot

9 * @throws IOException communication problem

10 * @throws MalformedURLException incorrect URL

11 */

13 static public Image snapshot(String website, int w, int h)

throws IOException, MalformedURLException {

14 URL url = new URL(website);

15 URLConnection connection = url.openConnection();

16 InputStream input = connection.getInputStream();

17 Image image = RenderEngine.render(input, w, h);

18 return image;

19 }

Figure 2.5: Library method code

site in order to create the snapshot is covered in Lines 13–15 using the Java
Platform API URL and URLConnection classes. Looking at the first lines of
its documentation, the developer learns that a “Class URL represents a Uni-
form Resource Locator, a pointer to a ’resource’ on the World Wide Web”. The
documentation informs its reader that in the case of a malformed URL, the con-
structor will throw an exception. Furthermore, the documentation specifies that
URL.openConnection method returns “a connection to the remote object re-
ferred to by the URL”. The URLConnection class is explained in the docu-
mentation as: “The abstract class URLConnection is the superclass of all classes

Analysis and detection of security
vulnerabilities in contemporary software

13 Olgierd Pieczul

2. The Dark Side of the Code 2.3 The Security Gap

that represent a communications link between the application and a URL”. The
URLConnection.getInputStream “returns an input stream that reads from
this open connection”. The documentation also states that “if the read time-
out expires before data is available for read”, a SocketTimeoutException is
thrown. The language of the documentation also abstracts the low level details
by referring to fairly generic concepts such as connections, communication links
or remote objects.

2.3 The Security Gap

The convenience of using abstractions and their ability to handle security threats
relieves the developer from having to consider much of the low-level details. For
example, because object persistence frameworks do not require construction of
SQL queries, the programmer need not consider sanitizing user input in order
to prevent injection attacks. Similarly, allowing the MVC framework to provide
the Web presentation layer can reduce programmer concerns about application
output interfering with the output context, such as HTML, XML and JSON [32].
This does not excuse the programmer from considering security issues entirely,
rather the emphasis is on the security controls that are relevant to the application
code.

2.3.1 Accessing arbitrary URLs

Regardless of the effectiveness of the programming abstractions, it is reasonable
to expect that the developer does understand some of the underlying system
operation in order to identify possible threats and to counter them with adequate
security controls. For example, although not directly referenced in the application
code, it may be anticipated that the application will communicate over HTTP
with the remote website in order to create a snapshot. Figure 2.6 depicts a typical
flow of operations that relate to creating a website snapshot and delivering an
image to the user. A user sends a URL, the application connects to the server
and accesses a website, generates an image and sends it to the user. Thus, the
application should be permitted to make HTTP connections that are, to some
degree, controlled by application users through the URLs they enter, and this
may be a security threat.

Analysis and detection of security
vulnerabilities in contemporary software

14 Olgierd Pieczul

2. The Dark Side of the Code 2.3 The Security Gap

Figure 2.6: Accessing URL through the application: expected operation

2.3.1.1 Local network access

The application could be used to access systems—in the local network where
it is hosted—that are not normally accessible from the Internet. A malicious
user may, by posting a message with the URL in the local network, such as
http://10.0.0.1/router/admin, attempt to access systems that he should
not have access to.

Figure 2.7: Accessing URL through the application: internal server

In order to address this threat, the developer can code a security control in the
application that verifies that the URL’s host does not point to a local IP address,
before calling the library to create a snapshot. For example, the executemethod
can include:

InetAddress a = InetAddress.getByName(url.getHost());

if (a.isSiteLocalAddress()) throw new SecurityException();

To a casual reader, the microblog application (or even the WebUtils library)
code does not openly perform TCP/IP operations. The above threat was identi-
fied based on the programmer’s expectation of low-level application behavior.
Correlating high-level application behavior (accessing URLs) with the threat
(user-controlled network traffic) is a human task and, as such, is prone to hu-
man error. Failure to implement adequate security controls may not necessarily
mean that the developers are unaware of the threat or neglect security. As ob-
served previously, despite understanding a security problem, a developer may
unwittingly write code containing a vulnerability [26]. The cognitive effort that

Analysis and detection of security
vulnerabilities in contemporary software

15 Olgierd Pieczul

http://10.0.0.1/router/admin

2. The Dark Side of the Code 2.3 The Security Gap

is required to anticipate security problems is much greater if the details are ab-
stracted and the system contains interoperating components whose behavior is
not considered or understood.

2.3.1.2 Redirect to a local site

Consider again the microblog application extended with the security control to
prevent local URL access. Despite appearances, an attacker can bypass this check
as follows. We first note that the HTTP protocol (RFC 2616) allows a server to
redirect the client to another URL in order to fulfill the request through a defined
status code (such as 302) and a header. As depicted in Figure 2.8 the attack could
be performed as follows.

Figure 2.8: Accessing URL through the application: HTTP redirect

• An attacker sets up a website that redirects to the local target machine and
posts a message with URL to that website.

• The attacker’s website (public) URL will be accepted as not local and
WebUitls.snapshot is called.

• The Java library will access the website through url.openConnection

in the implementation of snapshot, follow the redirection, effectively con-
necting to a local address.

In order to prevent this attack, it is necessary for the programmer to modify the
utility library to explicitly handle redirects and verify the IP address each time,
before accessing the URL. This approach, however, may suffer a TOCTTOU

Analysis and detection of security
vulnerabilities in contemporary software

16 Olgierd Pieczul

2. The Dark Side of the Code 2.3 The Security Gap

vulnerability. In this case, there is a time gap between the verification of the IP
address and the HTTP connection to the corresponding URL. Within that time
gap, the mapping between the hostname and the IP address may be modified.
While past responses will typically be cached by the resolver, the attacker may
prevent the caching by creating a record with lowest possible Time To Live value
supported by Domain Name System, that is, 1 second. This is a variant of a DNS
Rebinding attack [33].

Perhaps, and rather than trying to implement the network-related security con-
trols in the application, a better strategy is to consider this a matter of the sys-
tem’s network configuration. In this case, it should be the systems and network
administrators, not the developers, that handle the problem by implementing ad-
equate firewall rules. While transferring administrative burdens to the consumer
is a common practice [34], it also pushes the abstraction further and may make
the threat equally difficult to identify.

2.3.1.3 Local file access

Regardless of how this network protection is implemented, the web application
still contains an even more serious and unexpected vulnerability. It allows ap-
plication clients to access custom files from the web server’s file system. The
access mechanism, called scheme, of a Uniform Resource Identifier can be file,
in addition to http and https. In this case, as depicted on Figure 2.9,

Figure 2.9: Accessing URL through the application: local files

• the application client posts a message with URL file:///etc/passwd

and,

• the application generates an image representing file contents.

Analysis and detection of security
vulnerabilities in contemporary software

17 Olgierd Pieczul

2. The Dark Side of the Code 2.3 The Security Gap

This behavior may not have been anticipated by the application developer who,
upon reading associated library documentation, understood that the method
WebUtils.snapshot should be called with a “website address” and which
throws an exception if that address is “incorrect”. Similarly, the library devel-
oper might have been misled by the Java URL/URLConnection documentation
and method names referring to “connections” and “sockets” and did not expect
that their code could be used to access regular files. While, the URL class Javadoc
includes a reference to file URL scheme, it is mentioned only once, in one of the
constructors’ documentation. Other platforms include similar, often misleading,
features. For example, the function file_get_contents in PHP, despite its
name, allows accessing remote resources if a URL is provided as a file name.

To avoid this vulnerability, the developer must implement specific code that
checks whether the URL specifies a website address. However, other URL-
related problems may emerge. For example, in another part of the applica-
tion, it may be required to verify whether a URL matches a set of accepted
URLs. The Java equals method can be used (explicitly or implicitly via
the Set.contains method) as a standard way to test object equality. Us-
ing this method is convenient when comparing URL objects, as it respects that
a hostname and protocol are case-insensitive and some port numbers are op-
tional. For example, http://example.com/, http://example.com:80/
and HTTP://EXAMPLE.COM/ are equal URLs despite their different string rep-
resentation. What may not be anticipated by the programmer, is that when
comparing two URL objects, the equals method resolves their hostnames and
considers them equal if they point to the same IP address. In this case the URL
http://example.com/ is considered equal to http://attacker.com/,
provided that the attacker has targeted their host to example.com’s IP ad-
dress. This unexpected behavior may lead to security vulnerabilities if URLs are
used for white/black listing, or to ensure the Same Origin Policy (RFC 6454).
While the behavior of URL.equals is documented and the corresponding secu-
rity issues are considered [35], the developer may not consider checking that part
of documentation to be necessary, especially if the code may not explicitly invoke
the method.

2.3.2 Modifying internal state of application

The application contains yet another vulnerability, resulting from its interop-
eration with Struts framework. In Struts, elements of business logic are im-

Analysis and detection of security
vulnerabilities in contemporary software

18 Olgierd Pieczul

2. The Dark Side of the Code 2.3 The Security Gap

plemented using actions, such as the PostAction in Figure 2.2. Actions are
separated from the low-level details such as the handling HTTP requests. This
allows code to be reusable in different contexts and allows developers to focus
on business logic. For instance, Struts processes HTTP request parameters and
makes them available to the action. When parameters are processed, the frame-
work looks for action setters that match the parameter names and invokes those
action setters in order to set the value. This mechanism is discussed in detail
in Chapter 9. For example, the PostAction contains public method setText
to handle the text parameter. When client calls /api/post?text=Hello,
Struts calls PostAction.setText("Hello") to provide the value to the ac-
tion, before invoking PostAction.execute.

A developer, familiar with Struts, will most likely be aware that request pa-
rameters may be used to call public setters defined by the action. They may
not expect, however, that defining a public getter method getUser may make
the user’s session exposed to manipulation. Suppose that this method was
not intended to be a part of the action’s interface, rather, it is implemented
by the programmer as a means to provide convenient access to the user ob-
ject from the session. The method returns a User object, which is a container
for various user attributes, such as name and identifier, and corresponding get-
ters and setters. The combination of a public getter returning the User ob-
ject and public setters within User class makes it possible to manipulate user
information request parameters. For example, an attacker Alice can invoke
/api/post?text=Hello&user.id=frank in order to modify the user-id
stored in the session to Frank and submit a message on Frank’s behalf. The
developer may not be aware, that Struts method names are interpreted as
OGNL [36] expressions and, and that user.id=frank is translated into a se-
quence of method calls corresponding to getUser().setId("frank").

This oversight by the developer illustrates how easy it can be to program an
unexpected execution path that compromises security. Accessing object fields
through a chain of getters and setters is a useful and documented feature of
Struts. However, it can come as a surprise to a programmer, who is focused more
on application-level development, that something as intuitive as implementing a
getter for the current user results in a security vulnerability.

This problem is further highlighted by an almost identical vulnerability (CVE-
2014-0094) that was found within Struts itself. Even though the consequences of
exposing a public getter may have been clear to the Struts developers, it is easy

Analysis and detection of security
vulnerabilities in contemporary software

19 Olgierd Pieczul

2. The Dark Side of the Code 2.4 Unexpected Behavior Traces

to overlook the fact that every Java object (and therefore, every Struts action)
also contains a getClass method. This results in an unintended exposure of
an action’s Class object through request parameters. By crafting a parameter,
such as class.classLoader..., the attacker can manipulate the applica-
tion’s class loader and, as a result, execute custom code on the server hosting the
application [24]. Unfortunately, even after the problem was discovered (CVE-
2014-0094), the implemented remedy was incomplete. The initial remedy black-
listed the class parameter, however, it did not consider uppercase parameters
(such as Class). Eventually, three more vulnerabilities (CVE-2014-0112, CVE-
2014-0113 and CVE-2014-0116) were reported on incomplete remedies before the
issue was believed addressed. The evolution of Struts vulnerabilities related to
processing request parameters is discussed in detail in Chapter 9.

2.4 Unexpected Behavior Traces

The vulnerabilities in the microblog application result from the unexpected,
though completely valid, operation of the application. This activity may mean
that the application executed a different code path than was intended by the
developer. For example, Figure 2.10 presents two traces of application activ-
ity. These traces include Java method calls of, or by, the microblog application

ParamsInt: PostAction.setText("Hello")

Dispatcher: PostAction.execute()

PostAction: PostAction.getUser()

PostAction: Message.setAuthor([USER])

PostAction: TextUtils.getUrls("Hello")

PostAction: DAO.add([MESSAGE])

PostAction: PostAction.return(SUCCESS)

ParamsInt: PostAction.setText("Hello")

ParamsInt: PostAction.getUser()

ParamsInt: User.setId("frank")

Dispatcher: PostAction.execute()

PostAction: PostAction.getUser()

PostAction: Message.setAuthor([User])

PostAction: TextUtils.getUrls("Hello")

PostAction: DAO.add([MESSAGE])

PostAction: PostAction.return(SUCCESS)

Figure 2.10: Traces of message posting and user impersonation

in a form of Caller: Class.method(arguments). For example, the first
line captures ParamsInt class calling PostAction.setText method . The
left-hand side trace captures the posting of a message with a text “Hello”. The
right-hand side trace captures the posting of the same message while exploiting
the getter vulnerability as presented in Section 2.3.2. It includes two additional
method calls, corresponding to setting the user identifier.

This example demonstrates that it may be possible to identify an attack ex-

Analysis and detection of security
vulnerabilities in contemporary software

20 Olgierd Pieczul

2. The Dark Side of the Code 2.5 Conclusion

ploiting a vulnerability that arises from a programming error, by comparing the
application’s execution trace with a trace of typical, normal behavior. Our re-
search hypothesis is that this could be generalized into a systematic technique to
detect high-level application attacks as execution anomalies.

However, there are a number of challenges that should be considered. The exam-
ple traces were deliberately chosen to include the view of application execution in
which the attack is evident, that is, method calls of the application itself. There
are many more method calls that are executed for message posting activity, meth-
ods of: the application server, Struts framework, numerous libraries and so forth.
If a different view was chosen, for example, application server methods, the at-
tack might not have been evident. Also, the comparison was made only against a
single, closely matching trace that, apart from the anomalous fragment, included
exactly the same order of events and, equal method call arguments. In practice,
the record of typical application execution may include numerous traces with
varying order of operations and method arguments that may be only relevant for
a particular execution. A comparison against a set of past traces may result in
frequent false positives, that is identifying harmless execution as anomalous, due
to small differences in the trace structure or arguments.

To address this, some level of abstraction has to be introduced in order to allow
approximate matching between the past and new traces. However, the approx-
imation can not go too far, as that may, in turn, lead to false negatives, that
is considering traces of malicious behavior as normal. For example, a behavior
abstracted to just a list of Java classes contained in past traces would not allow
the identification of the anomalous behavior in Figure 2.10.

2.5 Conclusion

Given the complexity of contemporary applications, we argue that there will
always be a security gap between the code’s actual behavior and the behavior
expected by the programmer. We refer to this unexpected behavior as the dark
side of the code. The cognitive overload on the programmer increases with the
level of the programming abstractions used and, in turn, increases the likelihood of
errors that lead to security vulnerabilities. The examples presented in this chapter
illustrate how programming oversights, in what seems to be trivial, high-level
application code, can result in a series of security issues whose identification and
prevention requires an in-depth understanding of a framework, low-level libraries

Analysis and detection of security
vulnerabilities in contemporary software

21 Olgierd Pieczul

2. The Dark Side of the Code 2.5 Conclusion

and a number of network protocols. That these kinds of oversights do occur
in practice, has been demonstrated in a longitudinal study of the Struts code
changes [24], discussed in Chapter 9.

A malicious activity permitted by programming errors could potentially be iden-
tified by comparing application execution traces with traces of past, normal be-
havior of an application. We put forward a hypothesis that attacks attempting
to exploit software vulnerabilities arising from the dark side of the code could be
detected systematically as execution anomalies. Such detection, however, may be
difficult in practice. In Chapter 3 we consider anomaly detection techniques that
could be useful for this task.

Analysis and detection of security
vulnerabilities in contemporary software

22 Olgierd Pieczul

Chapter 3

Anomaly Detection

3.1 Introduction

“Exploitation of a system’s vulnerabilities involves abnormal use of the
system; therefore, security violations could be detected from abnormal pat-
terns of system usage.”

This hypothesis has been put forward in one of the earliest [37] studies on in-
trusion detection systems. It matches the observation in Chapter 2, that an
exploitation of a vulnerability that arises from a security gap follows a valid,
though unexpected, execution path of an application.

This chapter explores the area of intrusion detection [38], in particular techniques
that could be potentially useful in identifying unexpected behavior in contempo-
rary application systems. It provides a general overview of the key types and
properties of intrusion detection systems. As our focus is on detecting anomalous
behavior without a priori knowledge of specific misbehavior patterns, we examine
existing techniques focusing on those that support some degree of automation in
learning the behavior of the system. We also study the most promising techniques
that have already been used to identify anomalies in software execution, and as-
sess their suitability for the vulnerabilities caused by the kinds of programming
errors discussed in Chapter 2.

23

3. Anomaly Detection
3.2 Overview of Intrusion Detection

Techniques

3.2 Overview of Intrusion Detection Techniques

Intrusion detection is a large and increasingly growing field of computer security.
Over the years a number of techniques have been developed that focus on different
types of intrusions, using a variety of mechanisms. This led to a number of
attempts to provide a systematic classification of intrusion detection systems.
For example, the taxonomy depicted in Figure 3.1 [1] classifies IDS through four
characteristics: detection method, behavior on detection, audit source location
and usage frequency and provides key classes for each characteristic.

Figure 3.1: Taxonomy of intrusion-detection systems, Debar et al [1]

Each of the classes contains further sub-classes that are not presented in Fig-
ure 3.1. For example, the knowledge-based detection class includes expert systems,
signature analysis, Petri nets and state-transition analysis. This classification was
later extended to include more characteristics and classes [39].

Characteristics can describe technical means of detecting an intrusion as well as
operational aspects of existing IDS systems. For example, following the cate-
gories in Figure 3.1, the behavior on detection may be active, that is, provide a
countermeasure for the attack, or passive, for example, issue an alert. This dis-

Analysis and detection of security
vulnerabilities in contemporary software

24 Olgierd Pieczul

3. Anomaly Detection
3.2 Overview of Intrusion Detection

Techniques

tinction is typically a characteristic of a specific system and the functions it offers,
rather than a property of the underlying detection technique. Some techniques,
however, are only suitable for one type of reaction to an intrusion.

Similarly, considering the host or network audit source location is not necessarily
important. While most of the anomaly detection techniques applied to software
are host-based [2, 15], observing network activity of a system may allow for the
systematic identification of unexpected behavior. Today, a network is used not
only for communication between the system and its environment, such as users
or infrastructure, but also for its core, internal operation. Many contemporary
applications are built using a micro-service architecture, where a number of inde-
pendent components communicate over a network using well-defined protocols.
Also, many systems use cloud services for storage and processing and software be-
havior could be analyzed through the interfaces on which they communicate [21].

Another characteristic in Figure 3.1 is usage frequency. This characteristic is also
not relevant to our investigation. While continuous monitoring may be preferred
for the runtime detection of anomalies in software execution, it may be also useful
to perform an analysis of software logs periodically or after an incident. Also,
some detection techniques are not capable of operating fully on-line and can only
identify anomalies when analyzing complete portions of activity, a posteriori.

These three characteristics: behavior on detection, audit source location and usage
frequency, are to some extent not relevant to our research as they mostly reflect
implementation and operational details of the actual intrusion detection products.

Another taxonomy [2], classifies IDS according to two key groups of properties,
depicted in Figure 3.2. Here, the characteristics related to detection techniques
are considered separately from other, operational characteristics of the system.
Our primary focus is on the “detection method” [1] or “detection principles” [2]
characteristic. Knowledge-based [1] or signature [2] detection focuses on identi-
fying attacks based on knowledge accumulated from known incidents. The goal
of behavior-based [1] or anomaly [2] detection is to identify system behavior that
is unusual when compared with activity of the system observed during a known
normal state.

Analysis and detection of security
vulnerabilities in contemporary software

25 Olgierd Pieczul

3. Anomaly Detection
3.3 From Knowledge to Behavior-Based

Detection

Figure 3.2: Taxonomy of intrusion-detection systems, Axelsson [2]

3.3 From Knowledge to Behavior-Based
Detection

In practice, typical intrusion detection systems share aspects on both of knowl-
edge and behavior-based detection methods. In the following, we describe the pri-
mary approaches taken when implementing IDS, starting from purely knowledge-
based and concluding with mostly behavior-based. We do not follow any par-
ticular methodology but discuss common underlying techniques and assess their
applicability to detecting vulnerabilities in software.

Analysis and detection of security
vulnerabilities in contemporary software

26 Olgierd Pieczul

3. Anomaly Detection
3.3 From Knowledge to Behavior-Based

Detection

3.3.1 Knowledge based systems

Rule-based systems [40–42] are the most popular techniques that are used to
implement knowledge-based intrusion detection systems. A system contains a
set of predefined rules for known attacks or other behaviors that are undesirable.
System operation, such as execution traces or network traffic, is monitored for
any activity matching pre-configured rules. For example, it is a common practice
to prevent root users from accessing their account using the FTP protocol. An
attempt to access an account in such a way may indicate system misconfiguration
or an attacker’s reconnaissance. Intrusion detection systems, such as Snort [41],
can be configured to detect such suspicious activity by prescribing a rule, such as
the following.

alert tcp any any -> any any 21 (content:"user root";)

This rule configures Snort to generate an alert if it detects a packet destined
to port 21 (FTP) containing the string “user root”. Even though this is a
very simple scenario, this rule is easy to bypass. For example, commands in
the FTP protocol are case-insensitive and both spaces and tabs are allowed as
delimiters. Strings like “USER␣ROOT” or “user〈TAB〉root”, representing the
same suspicious activity, will not be captured. To properly match such string, a
more advanced rule should be defined:

alert tcp any any -> any 21 (flow:to_server,established;\

content:"root"; pcre:"/user\s+root/i";)

This simple example shows that even for a simple misuse scenario, defining a com-
prehensive rule is nontrivial. The user of such intrusion detection system needs
to know that the particular activity, such as accessing an FTP server as root, is
not intended and should be monitored. This example shows that identifying and
properly specifying rules faces the same kind of challenges as avoiding security
vulnerabilities, as discussed in Chapter 2. The system administrator does not
have to specify all rules themselves. The standard distribution of Snort includes
almost 3500 rules created by the community, with over 800 enabled by default.
The rule set is continuously revised and the paid rule subscription is updated on
a nearly daily basis [43].

Another popular knowledge-based detection technique is using attack signatures
[41,42]. Rather than using general rules to define the misbehavior, the signature-
based system looks for a specific pattern indicating a particular attack, known

Analysis and detection of security
vulnerabilities in contemporary software

27 Olgierd Pieczul

3. Anomaly Detection
3.3 From Knowledge to Behavior-Based

Detection

as a signature. A signature may describe a sequence of actions that the system
performs or data that it receives during the attack. Often, intrusion detection
systems provide both rule and signature based matching [41,42]. Rule or signature
based IDS can be also applied to software, most commonly as malware detection
tools.

The key advantage of using knowledge-based systems is their low false-positive
rate and high performance [42, 44]. This is because they typically perform very
simple verification using precise criteria defining known attacks. Their main
challenge is the inability to detect previously unknown or unexpected misuse sce-
narios. As new attack techniques or mutations of existing ones are discovered, the
set of signatures becomes obsolete and the protection weakens. New attacks need
to be continuously recorded and rule sets kept up to date. Also, the modern ad-
vanced malware uses polymorphism to modify its behavior making the detection
more difficult [45].

The anomaly detection is based on the assumption that a deviation from system’s
normal behavior may represent an intrusion. The key benefit of this approach is
an ability to detect unknown or unexpected attacks. Contrary to knowledge-based
systems, the a priori expert knowledge, such as definitions of attacks, does not
need to be specified. In practice, however, behavior-based mechanisms include a
knowledge-based component which may include specification of what character-
istic to monitor, what kind of deviation should be classified as an anomaly, and
so forth.

3.3.2 Statistical models

Statistical models [46–49] are among the simplest and most popular ways to define
normal behavior. The key operation of such systems is to probe various system
characteristics periodically and compare the results with baseline metrics. For
example, it may be expected that a certain number of unsuccessful login attempts
is normal, so an unusually high number may indicate a brute-force attack. A
system may be configured with a value that sets a threshold for the number of
failed login attempts that represent normal behavior. If the threshold is reached,
the system may generate an alert. A certain amount of knowledge is required, for
example: the fact that a particular characteristic (number of unsuccessful logins)
is interesting, where the data can be obtained from, and the threshold value. The
difficulty in implementing this approach grows with the size of the system and a

Analysis and detection of security
vulnerabilities in contemporary software

28 Olgierd Pieczul

3. Anomaly Detection
3.3 From Knowledge to Behavior-Based

Detection

number of properties of the system behavior that should be taken into account.

A more useful approach is to automatically infer normal system characteristics
from its past operation. For example, the number of unsuccessful logins may
be established by analyzing system logs. Normal operation of the system may
be modeled in a more fine-grained way. For example, the system may learn the
typical working hours and the location from which its users log in, based on
previously recorded activity. It may also learn the normal patterns separately
for individuals and groups of users [46]. Although it is possible to establish the
thresholds automatically, the significance of the characteristics monitored by the
system needs to be understood first. In addition, the statistic-based models can
capture only relatively simple intrusion scenarios defined as quantity or frequency
of discrete actions. Another problem to consider is natural fluctuations in quan-
tities of events due to workload, time of day, the day of week or month [49].
Regardless how well the system can establish the baseline values, it still requires
the expert knowledge in order to specify what properties of the system behavior,
such as the number of failed login attempts, should be monitored.

3.3.3 Expert systems

Anomaly detection expert systems [13, 50–52] use rules that are generated auto-
matically based on recorded past behavior. For example, Wisdom and Sense [13]
uses a system audit log that contains information about individual program exe-
cutions, such as the name of the program, the user and their role, time of execu-
tion, CPU time, etc. The system analyzes the audit log and builds a rule forest
in order to identify repeating patterns of correlations between various attributes.
Such patterns may vary from generic, such as “the valid terminals are T1, . . . ,
Tn”, to very specific: “on Tuesday between 6:00 am and 7:00 am when the user
has a system operator privileges and is using terminal T3, only commands that
cause very little direct disk activity are used”. A step further is to generate rules
based on correlation of several subsequent events [50]. The key advantage of this
system, compared with statistical models, is that it automatically detects the
characteristics of the system that are important and should be included in the
model. These rules may reflect intended security policies, as well as characteris-
tics that are not expected or considered important, but useful to consider when
asserting system’s correct operation. Such rules result from the system config-
uration, usage patterns or the environment in which it operates. The system
performance may be improved by tuning the rules based on operator feedback,

Analysis and detection of security
vulnerabilities in contemporary software

29 Olgierd Pieczul

3. Anomaly Detection
3.3 From Knowledge to Behavior-Based

Detection

for example when a false positive is detected [52].

Taking this approach allows building a model of system behavior with a limited
amount of expert knowledge. However, it requires detailed, expert information
about log structure and data types of its elements, criteria to map continuous
values, such as time or CPU usage, into discrete clusters. More recently, simi-
lar techniques were applied to automatically generate security policies for Java
Security Manager [53] or Android [54] that represent permitted access that ap-
plications require during the normal operation.

3.3.4 Operation sequence models

A different approach for building behavior models is to look for correlations be-
tween consecutive operations. It is based on the assumption that normal system
activity can be described as a collection of repeating sequences of operations, and
a system under an attack will produce different, previously unknown, sequences.
For example, in an order-processing purchase system, it may be normal to first
create an order and then issue an invoice. Deviation from that pattern (for ex-
ample, issuing an invoice without prior order) may be detected as an anomaly.

The seminal application of this technique [14, 17]focuses on sequences of UNIX
system calls resulting from program execution. In this model, traces of applica-
tion’s system calls are decomposed into a set of short sub-sequences, known as
n-grams, capturing short-range correlations between subsequent events. Execu-
tion of the application is validated against the set of sequences and, if it does not
match it is considered an anomaly. A number of small size experiments, covering
a few typical UNIX services with selected vulnerabilities, have been performed.
These experiments demonstrate that this technique can, in principle, be useful for
the identification of anomalies caused by vulnerabilities. Also, other techniques
that use more advanced data models such as machine learning or state machines
have been proposed [55–58]. We discuss them in more detail in Section 3.4.1.

The operation sequence based anomaly detection requires less expert knowledge
than expert systems, such as Wisdom and Sense [13], as the only characteristic
considered is the order of events in a sequence. Some knowledge, however, is
required. For instance, it has to be specified which elements of the log represent
the operation and should be used to build the model. While much of the research
focuses on UNIX system call names, the selection as to which elements of the
trace describe the operation is not trivial in other execution environments [20].

Analysis and detection of security
vulnerabilities in contemporary software

30 Olgierd Pieczul

3. Anomaly Detection
3.4 Exploring Sequence-Based Anomaly

Detection in Software

Logs may also need to be processed before the behavioral model is built. For
example, an application may start new threads to perform some parts of its logic
concurrently, causing event sequences to be randomly interleaved. The detection
mechanism may have to handle this by explicitly recognizing certain operations
[14, 17], and separating the traces accordingly. Also, the configuration of the
model, such as the length of the sub-sequence, may vary between platforms and
applications and have to be established by experts or through experiments [59].

3.3.5 Process mining

Process mining [60,61] combines machine learning and data mining with process
modeling and analysis. Its purpose is to discover and monitor underlying pro-
cesses by extracting knowledge from event logs. For example, the audit trails of
a workflow management system or the transaction logs of an enterprise resource
planning system can be used to discover models describing processes, organiza-
tions and products. Process models allow modeling system behaviors in richer
structures such as Petri nets [62]. Process mining techniques have been applied
to security audits [63]. The model obtained using process mining techniques is
useful in detecting violations according to known security requirements, such as
authorization, separation of duties or conflict of interest. However, these secu-
rity requirements have to be prescribed by the experts and are not inferred from
the logs. A more general approach to anomaly detection using process mining
that could be applied to any level of abstraction is proposed [62], however, it is
only demonstrated on rather high-level business processes [62, 64]. In general,
while process mining could be potentially applied to detect anomalies in software
execution, the practicalities of that approach are mostly unexplored.

3.4 Exploring Sequence-Based Anomaly
Detection in Software

The unexpected behavior of an application resulting from an attack caused by a
programming error as described in Chapter 2, manifested itself through additional
method calls in the execution trace. Therefore, we argue that anomaly detection
techniques centered around a temporal ordering of operations such as [3,14,20,25]
are suitable for identifying such attacks systematically. In this section, we explore
this group of anomaly detection systems.

Analysis and detection of security
vulnerabilities in contemporary software

31 Olgierd Pieczul

3. Anomaly Detection
3.4 Exploring Sequence-Based Anomaly

Detection in Software

The operation of the system involves learning the model, such as a set of n-
grams, from traces of past executions of the application and then examining new
traces (online or offline) against the model. Typically, the learning phase involves
processing traces of system activity captured over long periods. As more data is
processed, the model becomes increasingly more precise. For example, Figure 3.3
depicts the number of unique n-grams of length used in the experiment in relation
to the number of all such n-grams processed, as presented in [3]. The detection

Figure 3.3: Database growth curve for learning process, reprinted from [3]

phase analyzes the execution trace of an application and identifies any deviations
from the behavior captured in the model. Typically [3, 14], the anomaly is only
reported if a previously-set deviations threshold value is exceeded.

3.4.1 Data models

Sequences of data are used in a number of domains, such as bioinformatics,
weather prediction and intrusion detection. This led to the development of sev-
eral techniques for modeling sequence data and identifying anomalies [65]. In
the following sections, we present key sequence-based data models and anomaly
detection techniques that have been proposed for software execution [3, 14,25].

3.4.1.1 Look-ahead pairs

In the original implementation of sequence-based anomaly detection for UNIX
systems [14], the model was built using look-ahead pairs. A pair with the look-

Analysis and detection of security
vulnerabilities in contemporary software

32 Olgierd Pieczul

3. Anomaly Detection
3.4 Exploring Sequence-Based Anomaly

Detection in Software

ahead value of k is a mapping between a system call name, and the following sys-
tem calls at positions 1, 2, . ., k. The pairs are constructed by analyzing a sequence
using a sliding window of value k+1. For example, consider the sequence of system
calls 〈open, read, mmap, mmap, open, getrlimit, mmap, close〉,
as presented in [14]. Look-ahead values for the first position of the window are
presented in a table below.

call position 1 position 2 positon 3

open read mmap mmap

read mmap mmap

mmap mmap

If the same call name, such as open repeats a number of times the look-ahead
values are added at the respective positions. The table below represents look-
ahead values for the entire sequence.

call position 1 position 2 positon 3

open read,

gretrlimit

mmap mmap

read mmap mmap open

mmap mmap,

open,

close

getrlimit mmap

getrlimit mmap close

close

Anomaly detection is performed by validating a sequence against the look-ahead
values. For example, a sequence 〈open, read, write, close〉 is anomalous
as it does not match value at position 2.

The length of the sequence is an important parameter and has to be carefully set.
When too short, the application activity may not be captured precisely enough to
detect anomalies [59]. Too long sequences may make the model overly strict and
result in many false positives. At one extreme (k = 1) the model would contain
just a set of acceptable system calls, at another (k equal to trace length) in one
that precisely enforces learning traces.

Analysis and detection of security
vulnerabilities in contemporary software

33 Olgierd Pieczul

3. Anomaly Detection
3.4 Exploring Sequence-Based Anomaly

Detection in Software

3.4.1.2 Subsequences

An alternative way to model short-range correlations between subsequent events
is to record sequences of given length, also known as n-grams [17]. An n-gram of
a sequence is a subsequence of length n. For example, the following depicts the
set of n-grams of length 3 for the sequence discussed in previous section.

{〈open, read, mmap〉, 〈read, mmap, mmap〉,
〈mmap, mmap, open], 〈mmap, open, getrlimit〉,
〈open, getrlimit, mmap〉, 〈getrlimit, mmap, close〉}

Detecting anomalies using n-grams is done by examining whether each n-gram
from a sequence is included in the previously recorded set of n-grams. To achieve
greater precision, n-grams may include markers for beginning and end of a se-
quence. For example, the set may additionally include 〈START, open, read〉
and 〈mmap, close, END〉, with START and END acting as the markers.

Both sequences and look-ahead pairs are very similar data structures and their
efficacy to model the normal behavior of software execution have been compared.
While sequences have been first considered more suitable [17], the in-depth analy-
sis [66] revealed that look-ahead pairs may be in fact superior.

3.4.1.3 Groups of subsequences

The data models discussed in previous two sections map application execution
into a single set of short-range correlations. In practice, however, systems may op-
erate by executing distinct transactions. For example, a network server typically
operates by performing a sequence of operations in response to a client’s request.
Execution traces of requests of the same type may be similar to each other and
different from traces of other types of requests. Rather than capturing all n-
grams into a single set, they could be partitioned according to transaction types
in order to provide a more precise model [20, 25]. Detecting anomalies in such
models requires comparing the sequence against all sets separately, though many
non-matching sets may be quickly disregarded to reduce the search scope. Even if
the system does not explicitly exhibit transaction-like behavior, partitioning long
execution traces may be done using several criteria such as a group of routines,
procedures, functions, threads or forked processes or activity intervals [67].

Analysis and detection of security
vulnerabilities in contemporary software

34 Olgierd Pieczul

3. Anomaly Detection
3.4 Exploring Sequence-Based Anomaly

Detection in Software

3.4.1.4 Frequency-based models

Techniques discussed so far are focused only on enumerating short sequences with
no consideration to how often a sequence appears in the execution trace. In prac-
tice, some sequences may be much more common than others and frequency of
their appearance may be used to build a more precise model. The relative fre-
quency of n-gram appearance in the normal traces can be recorded [68] but is
unsuitable for on-line processing, as the entire sequence is required for compar-
ison. Other models [69] are based on a priori knowledge about frequencies of
certain executions during an intrusion in relation to their normal frequency. The
requirement of previous knowledge makes them unsuitable to detecting previously
unknown intrusions, such as exploitation of unknown software vulnerabilities.

3.4.1.5 Richer models

All techniques presented so far are centered around matching the equality of a
certain short sequence of program execution against short sequences that define
normal behavior. Rather than capturing the explicit sequences, the key char-
acteristics of temporal order in software execution traces could be learned. For
example, the relations between events in system call n-grams [14, 17] could be
captured as a set of rules [58], as follows.

normal:- p2=open,p7=read

normal:- p2=open,p7=open

...

abnormal:- true

The first rule prescribes that if the system call at position 2 is open and the
call position 7 is read than the sequence is normal. The second, that if the
system calls at positions 2 and 7 are open than the sequence is normal. Finally,
if none of the rules are matched, the sequence is considered abnormal. Other
techniques include the discovery of sequences of a variable length [55, 56], finite
state machines [56] and neural networks [57].

3.4.2 Attacks

The sequence-based techniques introduce some level of approximation of system
behavior that can be used to evade the anomaly detection. Some studies [59,70]

Analysis and detection of security
vulnerabilities in contemporary software

35 Olgierd Pieczul

3. Anomaly Detection
3.4 Exploring Sequence-Based Anomaly

Detection in Software

suggest that the successful results in detecting attacks using those techniques
[3, 14] were possible because of a fortunate selection of model properties such as
sliding window size. They point out that some attacks used in the experiments
[3,14] would not have been detected if the size was lower. Also, they demonstrate
that exploits for other vulnerabilities, and slightly modified versions of the exploits
used in the experiment, can not be detected with the sliding window size selected
in the experiment.

A more deliberate way of subverting the system call anomaly detection is the
mimicry attack [71]. Mimicry attacks are centered around purposely modifying
the attack in order to be indistinguishable from the normal behavior [72] and
thus evading the anomaly detection. The attack for sequence-based models is
performed by constructing a malicious sequence of actions that the attacker in-
tends to perform, entirely from the allowed short-range sequences. This could be
achieved by adding so-called “nullified” system calls that have no important side
effect, such as opening a missing file, between the calls that are of interest to an
attacker.

This mimicry technique has a number of limitations. First, performing the attack
requires the knowledge about the model of normal behavior for the particular tar-
get system [71]. While one could argue that the system should be secure even
if the attacker has a full knowledge of its operation, in practice it may be hard
or impossible to obtain that information. The operation may vary substantially
between application instances and can depend on configuration and the environ-
ment [15]. Also, the operations that the attacker intends to inject, must exist
in the model in some form. In addition, such attacks are only possible if the
application has a vulnerability that allows injection of a precise sequence of oper-
ations, such as buffer overflow or cross-site scripting. That, in turn, means that
it may be impossible to make the entire sequence free from anomalies, as the
“preamble” [73] sequence that enables the injection is not under the control of
the attacker.

The feasibility of the attack may also depend on the precision of the model.
The longer, and less common, the n-grams are, the harder it may be to craft
the malicious sequence. Overly long attack sequences may not be technically
suitable for injection, for example, due to limitations of the input that attacker
has available to use. We are not aware of any studies on mimicry attacks for the
models that include additional context attributes such as caller class [20, 25] or
data flow elements [18,19,74], though we speculate that such attacks may be very

Analysis and detection of security
vulnerabilities in contemporary software

36 Olgierd Pieczul

3. Anomaly Detection 3.5 Conclusion

hard to implement in practice. In addition, implementations that use higher-level
operations, such as Java method calls [25] instead of low-level system calls may
significantly limit an attacker’s ability to inject any sequences that would be useful
for performing an attack as they are constrained to the high-level, application-
specific operations. Finally, richer models may further limit the possibility of
successful mimicry attacks. For example, partitioning the application behavior
based on transactions [25] limits the set of available n-grams.

3.5 Conclusion

The behavior-based intrusion detection techniques often require some degree of
expert knowledge to guide their operation. We argue that operation sequence
based techniques provide the right balance between the behavior and knowledge-
based approaches and have been applied to detecting attacks against software
components for the last 20 years. However, the existing research in this area tends
to be focused on simple software components and a narrow view of application
activity through UNIX system calls.

The experimental evidence for the efficacy of these techniques is limited. Typi-
cally, their processing speed, model size, accuracy and false positive rate is com-
pared to the previously published work, in particular to [14,17]. The comparison
is often based on the same datasets, that is, traces of UNIX programs such as
sendmail, lpr and inetd, but the assessment criteria differ and the results
are difficult to compare. The only attempt to evaluate multiple techniques more
systematically [3] is also focused on the same few applications and correspond-
ing vulnerabilities. Taking the narrow view (UNIX system calls), and the small
scale of the experiments performed, it is difficult to make any definite conclusions
about the efficacy of these techniques in identifying software execution anomalies
in general, outside the scope of UNIX system calls of a few selected programs.
Applicability of the anomaly detection techniques to large-scale, layered systems
running on modern software platforms remains mostly unexplored.

Analysis and detection of security
vulnerabilities in contemporary software

37 Olgierd Pieczul

Chapter 4

Practical Challenges of
Anomaly Detection in
Contemporary Software

4.1 Introduction

As discussed in Chapter 2, an application system program has a security gap when
a developer’s misunderstanding means that an attacker can exploit the difference
between its expected behavior versus its actual behavior and, for which security
controls do not exist. This chapter considers how the security gap might be
reduced by checking the runtime behavior of the component against a model
of its expected behavior. Runtime verification [75] is the process of observing
system execution and validating that specified properties are upheld, or that the
execution is consistent with a testing oracle. For example, a predicate stating
that each acquire has a matching release in a (re-entrant) Lock class [76].
However, runtime verification alone cannot address the security gap: a typical
developer faces similar challenges when encoding all properties of the expected
behavior for the runtime verification, as when implementing the system with no
security vulnerabilities.

As discussed in Chapter 3, the use of anomaly detection in software execution
has tended to focus on relatively small-scale homogeneous applications [14]. How-
ever, the example in Chapter 2 illustrates that even very simple contemporary

38

4. Practical Challenges of Anomaly
Detection in Contemporary
Software 4.2 Abstraction and Scope

applications are large systems of interconnected components. The applicability
of these anomaly detection techniques has not been explored for modern software
development and delivery. This chapter considers the key challenges encountered
in applying anomaly detection techniques to contemporary application software.
Without loss of generality, the discussion is focused on a common enterprise sce-
nario of a web application built on a high-level software platform (Java) and an
MVC framework (Apache Struts), such as the microblog web application pre-
sented in Chapter 2.

4.2 Abstraction and Scope

The activity of an application is observed as a sequence of events, such as a
system log. These observations can be made at different levels of abstraction, as
depicted in Figure 4.1. For example, the microblog application activity could be

Abstraction
level

Sample events

User actions User edit post
User post submission

HTTP requests GET /ui/components/editor
GET /ui/style/editor.css
GET /ui/static/emoji.jpg
POST /api/post?text=Hello

Method calls ParamsInt: PostAction.setText("Hello")
Dispatcher: PostAction.execute()
PostAction: PostAction.getUser()
PostAction: HashMap.get("user")

Virtual machine > BCU checkForExistingClass:
classnamePtr=00007FFAE019A286,
classLoader=00007FFAE004AC88

> BCU createROMClassFromClassFile:
loadData=00007FFAE87F4EB0

> BCU build ROMClass start
[classname=java/util/Collection]

System calls open("/usr/lib/jvm/"..., O_RDONLY) = 3
read(3, "\177ELF\2\1\1\0\0." ..., 832) = 832
fstat(3, {st_mode=S_IFREG|0755, ...}) = 0

Table 4.1: Execution traces at different levels of abstraction

Analysis and detection of security
vulnerabilities in contemporary software

39 Olgierd Pieczul

4. Practical Challenges of Anomaly
Detection in Contemporary
Software 4.2 Abstraction and Scope

observed as a series of high-level user actions, such as editing, posting or viewing a
message. At a lower level of abstraction, the operations can be observed as HTTP
calls to the application server. Further lower levels of abstraction describe the
activity of the application code and its libraries, Java virtual machine, operating
system, and so forth. The objective is to use the observed activity/log of the
system to build a behavior reference model for use in anomaly detection. The
challenge is determining a level of abstraction that enables anomalous execution
paths to identify security vulnerabilities. While, without a loss of generality, we
focus on different abstraction levels in context of software systems monitoring, in
other event sources, such as SIEM, different criteria could be used for selecting
interesting events.

Security vulnerabilities occur at different levels of abstraction. Building refer-
ence models from observations of low-level interactions, such as operating system
calls [14, 77, 78] or JavaScript [16] calls has been shown to be quite effective in
detecting specific type of exploits, such as buffer overflow vulnerabilities or cross-
site scripting. However, the anomalous execution paths in the microblog example
may not be detected at the level of abstraction comparable with [14, 77, 78]. At
that level, application activity can be only viewed through network connections,
file access, database operations, memory and process management, and so forth.
A high-level anomaly, such as modifying a server-side session though an HTTP
request parameter, described in Chapter 2, may not be reflected in that view.
Similarly, making observations based on HTTP requests may not be sufficient.
Web application firewalls that look for anomalies in the request structure, such as
new or absent attributes [18], may detect the session manipulation attack, as it
involves adding a request parameter that is not normally used by the application.
However, the second attack presented in Chapter 2, that is accessing local files
through website preview, can not be detected though such a simple analysis. A
malicious input (the file URL) is a part of free-text data of the message con-
tent and, as such, is not normally examined by web firewalls. A rule-based web
application firewall could be configured to explicitly detect types of URLs that
are not allowed, but this would require the awareness of the particular problem of
URL handling by the application, which is not the case we are considering here.

We propose the analysis algorithm [20], described in Chapter 6, that discovers
a level of event abstraction that provides good anomaly-detection accuracy in
transaction-like behaviors; it has proven quite effective in discriminating actions
(methods) that remain static from the parameters that can change within a trans-
action.

Analysis and detection of security
vulnerabilities in contemporary software

40 Olgierd Pieczul

4. Practical Challenges of Anomaly
Detection in Contemporary
Software 4.3 Generating Baseline Activity

In our experiments, discussed in Chapter 8, we found that observing (Java) ap-
plication behavior in terms of its method calls and permission checks is most
effective in distinguishing the unexpected execution paths that lead to software
vulnerabilities. In practice, however, it is unrealistic to monitor every underlying
method call invoked as a consequence of application operation. For example, a
few lines of the microblog application Java code in Figure 2.2, Chapter 2, can
generate several thousands of method calls. For comparison, a simple “Hello
World” Java program execution involves over 100,000 method calls, with almost
30001 just to print the message. Therefore, the scope of observation should be
restricted to methods that belong to the specific component(s) of interest.

4.3 Generating Baseline Activity

A baseline of observed activity must be obtained in order to build the behavior
reference model for the software component. In order to be applicable to an
enterprise environment, the technique of establishing baseline activity has to be
systematic, repeatable and aligned with application development/deployment life
cycle. Most importantly, the baseline generation must provide sufficient coverage
for the normal/expected behavior of the application.

A common position is that a satisfactory baseline can be obtained as a recording
of “normal” activity obtained through monitoring application operation in its
target environment [14–16]. For example, the reference profile for lpr in [3] was
built based on traces of 15 months of operation in one environment and two weeks
in another. Such extensive data collection time may provide an excellent coverage
of the normal activity, but has practical limitations for enterprise software and
environments. As the software industry adopts faster and more automated deliv-
ery approaches, and software releases are as frequent as on a daily basis, building
a (normal) baseline based on observation of an application in the production
environment is impractical. It would require the application to be active for a
significant length of time without anomaly detection. It also may be impossible
to obtain a sufficient baseline before it becomes obsolete due to changes to the
application or updates to the underlying components.

We argue that it is more appropriate to obtain the baseline and corresponding
behavioral model during the software testing phase. In [23] we suggest that unit

1IBM J9 JVM, 1.7

Analysis and detection of security
vulnerabilities in contemporary software

41 Olgierd Pieczul

4. Practical Challenges of Anomaly
Detection in Contemporary
Software 4.3 Generating Baseline Activity

tests might be used to generate the necessary system logs. Such baseline is useful
if the required scope and level of abstraction is consistent with the unit tests.
Notwithstanding coverage, unit tests are typically constructed for a specific com-
ponent, in isolation, and may only be suitable for relatively simple components
or utility libraries. An alternative approach is using functional and integration
tests to generate the baseline. Enterprise software is often subjected to extensive
testing, usually highly automated and with controlled coverage. Also, in popular
continuous delivery models, automated testing is one of the critical elements of
software development, with the amount of code implemented for testing often
exceeding that of an actual application. Traces resulting from such software tests
may provide a reliable and systematic baseline model. However, as with unit
tests, the functional test coverage is usually built only to a certain satisfactory
level but it is rarely complete. Additional coverage may be obtained using fuzz
testing or application scanners that automatically exercise an application in order
to perform non-functional types of testing such as security or performance. The
application scanners often use functional test execution as its starting point and
then extend the coverage by exploring the application further in an automated
fashion. In summary, the coverage is depending of the chosen test-regime cho-
sen and in practice different test-regimes can be used to achieve different level of
coverage based on needs and cost.

In our experiments (Chapter 8) we found that using an application scanner allows
the system to be explored in a comprehensive, unbiased and repeatable manner
and was the most effective for our task [25, 54]. The scanner explores the ap-
plication extensively in order to discover its structure, parameters, cookies and
so forth, and also engages in a series of tests in an attempt to discover secu-
rity vulnerabilities. While the scanner interacts via high-level requests to the
application’s external interfaces, a system log/trace of the consequent low-level
operations on the underlying system is generated. The scanner alone may not
be sufficient in larger, real-world configurations. Evaluating the efficacy of auto-
mated scanning and combining multiple development-time techniques to acquire
baseline behavior is a subject for future research.

Analysis and detection of security
vulnerabilities in contemporary software

42 Olgierd Pieczul

4. Practical Challenges of Anomaly
Detection in Contemporary
Software 4.4 Behavioral Reference Model

4.4 Behavioral Reference Model

4.4.1 Applicability to modern software platforms

Nearly all of the techniques presented in Chapter 3 are discussed in the context
of UNIX system calls, following the first, seminal work in this area [14]. The view
of application behavior through system calls is attractive as it captures a fairly
narrow, but important part of application activity, often related to security, such
as performing input/output operations and executing processes. However, this
view may not be useful for modern applications that are based on layered software
platforms. While the focus may be on the behavior of the web application itself,
the trace of system calls may be mostly reflecting the activity of underlying com-
ponents, such as execution environment, application server and web application
framework. The high-level behavior of the application, which may be important
for analysis may not be represented at all in such a low-level trace. Even if some
portion of that behavior is captured using system calls, it may be insignificant in
comparison with the activity of the platform that supports it. It may be required
to capture an application’s activity at a different level of abstraction and restrict
it to the application-specific operations. Software platforms may provide other
integration points that resemble system calls but operate at a level more suitable
for the analysis of application behavior. For example, the Security Manager that
is invoked for every security-related operation could be a natural integration point
for Java applications [53]. Still, a large portion of the behavior, such as the one
described in the previous sections, can not be captured. An alternative approach
may be to use a more fine-grained trace of Java method calls.

There is a substantial difference between system calls and high-level language
method calls. The number of system calls is rather limited, with around 300
for typical Linux and BSD systems, and the same set of common calls is used
by most of the applications. In comparison, the application may use thousands
of methods and many of them may be specific to the application itself or even
certain part of the code. This difference may impact the efficacy of the anomaly
detection and the configuration parameters. For example, a typical length of the
n-grams used in the experiments focused on system calls [15] was in the range of
10. It may be possible that much shorter sequences may be suitable to model the
higher-level operation of the system. This is due to the fact that, intuitively, the
shorter sequences from a large set of application-specific calls may have the same
entropy as the longer sequences from a smaller set of common general-purpose

Analysis and detection of security
vulnerabilities in contemporary software

43 Olgierd Pieczul

4. Practical Challenges of Anomaly
Detection in Contemporary
Software 4.4 Behavioral Reference Model

system calls.

4.4.2 Model expressiveness

Data models used to represent the software behavior capture various correlations
to record temporal ordering of operations. The expressiveness of the data model,
that is how well it represents the actual activity of the software, impacts the effi-
cacy of the corresponding techniques in identifying different types of anomalies in
program execution. The simplest of the models, focused on short-range correla-
tions of actions, can be quite effective in detecting previously unknown sequences
of actions. These models are particularly efficient in detecting foreign code exe-
cution due to attacks, such as the buffer overflow [14] or cross-site scripting [16],
involving execution of operations that are not covered in the baseline. The focus
is on the behavior that is new, such as an additional sequence of system calls.
However, software vulnerabilities do not necessarily have to manifest themselves
through additional elements in the system traces. For example, a typical sequence
for a business transaction may contain a segment representing the execution of a
security mechanism. An attack may represent itself by a sequence in which this
segment is missing. Such a sequence may be accepted as it does not introduce
anything unknown. While some models, such as finite state machines [56], could
in principle detect such anomalies, theses type of attacks are mostly unexplored.

In many applications, activity may be contained in finite and separate units of
work, where a sequence of operations that has a clear beginning and end, and
follows some repeatable pattern. Application behavior may contain multiple such
transaction-like work units. For example, operation of the microblog application
at a method call level, can be modeled as a collection of different kinds of trans-
action behaviors, such as posting a message or reading a message. The anomaly
detection techniques discussed in Chapter 3, with the exception of those discussed
in Section 3.4.1.3, aggregate the entire behavior of the system. While the system
may run a number of distinct processes, only a single blended behavior of the
entire system is captured. For example, an application providing 50 REST APIs
could be more precisely represented as 50 separate, smaller models than a single
model that includes the combined behavior of all of them. Blending transac-
tions may reduce anomaly detection accuracy of techniques that use simple data
structures, such as sets of n-grams, because any input sequence is matched to all
known n-grams, regardless if they ever appear in this arrangement.

Analysis and detection of security
vulnerabilities in contemporary software

44 Olgierd Pieczul

4. Practical Challenges of Anomaly
Detection in Contemporary
Software 4.4 Behavioral Reference Model

The majority of operation sequence anomaly detection techniques focus solely on
the control flow and do not consider any additional context, such as call arguments
or relationship between operations, that may be available in the trace. This limits
the ability of the system to identify attacks that do not modify the control flow
of the application [79]. Such attacks often result from the vulnerabilities, such as
injection or insecure direct object reference, that are among the most common in
contemporary software [6]. For example, consider the following trace fragment,
produced by a variant of the Java-based microblog system presented in Chapter 2.
The trace has a format of CallerClass: Class.method(arguments).

SessionHandler: PostAction.setUser("frank")

PostAction: Message.setAuthor("frank")

The first method call represents the web framework processing the session and
providing a user identifier from the server-side session to the application. The
second method call represents the application setting the author of a message. If
only the class and method are considered as an operation, the sequence used by
the model takes form of 〈PostAction.setUser, Message.setAuthor〉.

However, the fact that the value of the argument (frank) is the same in both
method calls may be an important part of the application’s normal behavior.
For example, an application may contain a programming error that derives the
second attribute from a request parameter, rather than current user’s object.
As the request parameter could be modified by the user, they could exploit the
vulnerability and post a message on behalf of someone else. In this case, the trace
would be as follows.

SessionHandler: PostAction.setUser("frank")

PostAction: Message.setAuthor("alice")

Even if only the control flow of the application is considered, the decision on
what elements of the traces are considered as representing that flow may have an
impact on the expressiveness of the model. For instance, the fact that methods
are called by specific classes (SessionHandler and PostAction) may be also
an important part of application’s normal behavior. A different vulnerability
may involve allowing alternative inputs for the current user. For example, the
application developer could mistakenly enable an HTTP cookie handler in the
application framework, in addition to a session handler. A malicious user may
exploit this by disregarding the session and adding an HTTP cookie named user
and set its value to a different user identifier. The web framework would then
process the cookie instead of the session, resulting in the following trace.

Analysis and detection of security
vulnerabilities in contemporary software

45 Olgierd Pieczul

4. Practical Challenges of Anomaly
Detection in Contemporary
Software 4.5 Conclusion

CookieHandler: PostAction.setUser("alice")

PostAction Message.setAuthor("alice")

In order to identify these two anomalies, the behavioral model should consider
caller class as a part of the operation, and the fact that the argument of two sub-
sequent calls, under normal circumstances, is the same. This problem is partially
addressed by models that focus on data flow [18, 19] or combine data flow with
control flow [74, 78]. These techniques take into account system call attributes
and provide heuristics to match their value based on typical types, for example
by identifying files in the same directory. Other techniques use additional context
attributes, such as caller class, in its model of normal behavior [20, 25] and as
considered in Chapter 8.

Correlations between sequences of operations and their target values can be used
to discover repeating patterns of behavior and [20] uses this to develop an auto-
mated technique to partition a system trace into a collection of behavioral norms.
In our experiments we use these behavioral norms [20], described in Chapter 5,
to provide a reference model for anomaly detection. A collection of behavioral
norms is generated, from the baseline activity log of Java events, for a given
scope and level of abstraction, each corresponding to a sequence of method calls
parameterized by common target attributes.

4.5 Conclusion

Using anomaly detection techniques in order to identify vulnerabilities in contem-
porary software is the area mostly unexplored in the existing research. Focusing
on the common Java-based web application scenario from Chapter 2, we explored
the key challenges of putting anomaly detection into use for runtime verification
of complex, layered software, built according to the modern development princi-
ples. One of the challenges is the identification of the right level of abstraction
to monitor application behavior and selection of the scope that could provide the
view for identifying anomalies caused by vulnerabilities accidentally introduced
by programmers. We explored the approaches for establishing the baseline appli-
cation behavior and observed that automated application testing and scanning is
the most practical way to acquire it in a typical software development life cycle.
Finally, based on the review of anomaly detection techniques applicable to soft-
ware from Chapter 3, we consider the characteristics of the anomaly detection
techniques that make them suitable for our task.

Analysis and detection of security
vulnerabilities in contemporary software

46 Olgierd Pieczul

Chapter 5

Behavioral Norms

5.1 Introduction

In this chapter, we present a refined formal definition of the model of behavioral
norms that was first introduced in [20]. The model is specified using the Z
notation [80] and has been syntax and type checked using the fuzz checker [81].

5.2 Events and Traces

To illustrate the model, Figure 5.1 gives a log appTrace of the microblog appli-
cation PostAction execution from Chapter 2. Note, for ease of understanding,
many of the events for Java method calls in that execution have been discarded.
Section 5.3 considers how the selection of events is done in a systematic way. The
trace depicts a Java method call log of events 〈e1, . . . , e20〉.

An event represents an observation of some interaction with a system. We focus
on events drawn from system logs, for example,
34 T2 org.struts.Dispatcher net.micro.PostAction setText "Hello world"

denotes an event from a web application. Let Event denote set of all possible
events.

[Event]

The different characteristics of an event can be described in terms of its attributes:

47

5. Behavioral Norms 5.3 Scope and Filtering

id thr caller class method argument

e1 34 T2 com.web.HttpHandler org.struts.Dispatcher dispatch [Request]

e2 34 T2 org.struts.Dispatcher net.micro.PostAction setText "Hello world"

e3 34 T2 org.struts.Dispatcher net.micro.PostAction execute

e4 34 T2 net.micro.PostAction net.micro.PostAction getUser

e5 34 T2 net.micro.PostAction java.lang.HashMap get "user"

e6 34 T2 net.micro.PostAction net.micro.Message setAuthor [USER]

e7 34 T2 net.micro.PostAction org.utils.TextUtils getUrls "Hello world"

e8 34 T2 net.micro.PostAction com.data.DAO add [MESSAGE]

e9 34 T2 net.micro.PostAction net.micro.PostAction return SUCCESS

e10 34 T2 com.web.HttpHandler com.web.HttpHandler sendResponse [Response]

e11 39 T2 com.web.HttpHandler org.struts.Dispatcher dispatch [Request]

e12 39 T2 org.struts.Dispatcher net.micro.PostAction setText "Hi there!"

e13 39 T2 org.struts.Dispatcher net.micro.PostAction execute

e14 39 T2 net.micro.PostAction net.micro.PostAction getUser

e15 39 T2 net.micro.PostAction java.lang.HashMap get "user"

e16 39 T2 net.micro.PostAction net.micro.Message setAuthor [USER]

e17 39 T2 net.micro.PostAction org.utils.TextUtils getUrls "Hi there!"

e18 39 T2 net.micro.PostAction com.data.DAO add [MESSAGE]

e19 39 T2 net.micro.PostAction net.micro.PostAction return SUCCESS

e20 39 T2 com.web.HttpHandler com.web.HttpHandler sendResponse [Response]

Figure 5.1: A sample trace appTrace

operations, parameters and other information about the event. For example, the
Java method call log could be described in terms of attributes: request id, the
thread in which call was made, the caller, the called class and method

names as well as the first method argument if any. While an event may be
regarded as defined in terms of a collection of attributes, we do not prescribe any
particular attributes or structure on an event.

A trace is a sequence of events. Let Trace define the set of all traces.

Trace == seq Event

For example, Figure 5.1 depicts a trace of web application events 〈e1, e2 . . . , e20〉.

5.3 Scope and Filtering

A scope is used to hide events or to remove events/attributes that are not con-
sidered of interest. Let SCOPE be the set of all possible partial functions that
map events to their abstract form.

SCOPE == Event� Event

Analysis and detection of security
vulnerabilities in contemporary software

48 Olgierd Pieczul

5. Behavioral Norms 5.3 Scope and Filtering

For example, microblogScope: Event � Event is a partial function defined
for all events with either caller or class in the microblog application package
(net.micro.*) that maps to events including caller and class (restricted
to the class name only), method and argument attributes.

The filter function applies a scope to a given trace.

filter : Trace × SCOPE " Trace

∀ trace : Trace; scope : SCOPE •
filter(trace, scope) = squash(trace � scope)

In Z, a trace of type (seq Event) is encoded as a function of type (� Event),
and, therefore, the filter of a trace for a given scope is the sequential composition
of that trace and scope, compacted to a sequence using the squash function [80].
For example, the trace in Figure 5.2 is a filtered version of a trace in Figure 5.1:
filter(appTrace, microblogScope).

id caller class method argument

f1 34 Dispatcher PostAction setText "Hello world"

f2 34 Dispatcher PostAction execute

f3 34 PostAction PostAction getUser

f4 34 PostAction HashMap get "user"

f5 34 PostAction Message setAuthor [USER]

f6 34 PostAction TextUtils getUrls "Hello world"

f7 34 PostAction DAO add [MESSAGE]

f8 34 PostAction PostAction return SUCCESS

f9 39 Dispatcher PostAction setText "Hi there!"

f10 39 Dispatcher PostAction execute

f11 39 PostAction PostAction getUser

f12 39 PostAction HashMap get "user"

f13 39 PostAction Message setAuthor [USER]

f14 39 PostAction TextUtils getUrls "Hi there!"

f15 39 PostAction DAO add [MESSAGE]

f16 39 PostAction PostAction return SUCCESS

Figure 5.2: A filtering of appTrace trace defined in Figure 5.1

Analysis and detection of security
vulnerabilities in contemporary software

49 Olgierd Pieczul

5. Behavioral Norms 5.4 Strands and Partitions

5.4 Strands and Partitions

An event equivalence relation ∼ : Event # Event defines classes of events
that are considered to have common characteristics. Let EqE define the set of all
event equivalence relations.

EqE == { ∼ : Event# Event | ∀ a : Event; b : Event; c : Event •
a ∼ a ∧ a ∼ b ⇔ b ∼ a ∧ (a ∼ b ∧ b ∼ c)⇔ a ∼ c}

For example, HTTP events

34 Dispatcher PostAction execute

34 PostAction PostAction getUser

are defined as class-equivalent as they both represent methods within the same
Java class. Alternatively, the events

34 Dispatcher PostAction setText

34 Dispatcher PostAction execute

are defined as caller-equivalent as they refer to methods invoked from the same
caller class. Event equivalence does not need to be defined based on equality of
attributes. For example, all events in the trace can be considered equivalent as
the caller or class belong to the same Java package. Also, an event equivalence
relation may consider multiple attributes.

A strand is a trace of events that share a common characteristic. Given an
equivalence relation ∼ defined over events then define Strand(∼) to be the set
of all possible traces of equivalent events. Note, ran(g) denotes range of the
function g.

Strand : EqE"�Trace

∀ ∼ : EqE •
Strand(∼) = {t : Trace | (∀ a, b : ran(t) • a ∼ b)}

For example, if ∼{id} denotes event equivalence based on equality of the id at-
tribute then traces 〈f1, f2, f3〉 and 〈f2, f4, f6〉 of events from Figure 5.2 are members
of Strand(∼{id}), while trace 〈f8, f9〉 is not a member.

Any trace can be partitioned into a set of strands that preserve the event ordering

Analysis and detection of security
vulnerabilities in contemporary software

50 Olgierd Pieczul

5. Behavioral Norms 5.4 Strands and Partitions

in the original trace. Define function prtn(∼, t) to be the partitioning of the trace
t into a set of strands according to the event equivalence relation ∼. For example,
by event id-equivalence, the log is partitioned into two strands 〈f1, . ., f8〉 and
〈f9, . ., f16〉, reflecting two separate HTTP requests with identifiers 34 and 39.

In practice different types of equivalence relations, not based on attribute equality,
can be used based on need and specific use case. For example, events containing
a path to a file could be considered equivalent if the path points to the same
directory.

For simplicity of presentation, subsequent examples are scoped to only
four attributes, the caller; the class that has been called; the
method name and, the first method argument, if any, in a Caller:

class.method(argument) format. Using this format, the trace from Fig-
ure 5.2 is depicted as the set of two strands in Figure 5.3.

{〈Dispatcher: PostAction.setText("Hello world"),

Dispatcher: PostAction.execute,

PostAction: PostAction.getUser,

PostAction: HashMap.get("user"),

PostAction: Message.setAuthor([USER]),

PostAction: TextUtils.getUrls("Hello world"),

PostAction: DAO.add([MESSAGE]),

PostAction: PostAction.return(SUCCESS)〉,
〈Dispatcher: PostAction.setText("Hi there!"),

Dispatcher: PostAction.execute,

PostAction: PostAction.getUser,

PostAction: HashMap.get("user"),

PostAction: Message.setAuthor([USER]),

PostAction: TextUtils.getUrls("Hi there!"),

PostAction: DAO.add([MESSAGE]),

PostAction: PostAction.return(SUCCESS)〉}

Figure 5.3: Set of strands from the example in Figure 5.2

Analysis and detection of security
vulnerabilities in contemporary software

51 Olgierd Pieczul

5. Behavioral Norms 5.5 Norms

5.5 Norms

A behavioral norm is a set of traces that is considered to define a comparable be-
havioral pattern. For example, traces 〈f1, f2〉 and 〈f9, f10〉 from the log in Figure 5.2
represent comparable PostAction.setText/PostAction.execute Struts
action dispatcher behavior and are (behaviorally) different to 〈f2, f3〉.

A trace equivalence relation defines classes of traces having comparable behavior.
Let EqT define the set of all trace equivalence relations.

EqT == { ≈ : Trace# Trace | ∀ a : Trace; b : Trace; c : Trace •
a ≈ a ∧ a ≈ b ⇔ b ≈ a ∧ (a ≈ b ∧ b ≈ c)⇔ a ≈ c}

Given a trace equivalence relation ≈ then Norm(≈) defines the set of all possible
norms based on ≈.

Norm : EqT "�(�Trace)

∀ ≈ : EqT •
Norm(≈) = {c : �Trace | ∀ t1, t2 : c • t1 ≈ t2}

For example, the set of traces {〈f1, f2〉, 〈f8, f9〉} could represent an action dispatcher
norm drawn from Figure 5.2, characterizing a fragment of request processing
sequence.

A set of traces is partitioned by trace equivalence relation into a set of norms.
Define prtn(≈,T) to be the partitioning of the set of traces T into a set of
norms based on the trace equivalence relation ≈. Norms are defined in terms
of the application of a trace equivalence relation to a strand partition of a log.
Formally, given a log l, an event equivalence relation ∼ and a strand equivalence
relation ≈ then the set of norms is defined as prtn(≈, prtn(∼, l)).

The two strands depicted in Figure 5.2 give a view that reflects an id attribute-
centric view of the method call log. Within each strand, there is a common
pattern of behavior, specifically, a sequence of methods that are invoked in order
to post a message. This repeating pattern can be characterized in terms of the
norm based on the trace equivalence relation defined as equality of traces with
respect to {caller, class, method} attributes. In this case, the strands
in Figure 5.3 are equivalent and the set of strands in that figure also depicts a
norm.

Analysis and detection of security
vulnerabilities in contemporary software

52 Olgierd Pieczul

5. Behavioral Norms 5.6 Conclusion

Intuitively, the above represents a transaction-style behavior pattern in the events
of the Java method log. The norm is a collection of strands that have an equivalent
behavior pattern, each carried out on an identified target (in this case, id).

The set of norms for a particular log could be interpreted as the profile of system
behavior captured by the log. Note that due to very short log we used to illustrate
the model, the profile includes only a single norm. In practice, software execution
logs are longer and result in a larger number of norms. Chapter 7 provides
examples for further norms for the microblog application. In the next chapter,
we demonstrate how different event and trace equivalences result in different
profiles, reflecting different kinds of patterns of behavior within the system [20].

5.6 Conclusion

Behavioral norms provide a general-purpose framework for inferring transaction-
like patterns of behavior from system logs. The model is based on event equiva-
lence relation that partitions the log into distinct traces, each related to a partic-
ular transaction, called strands, and trace equivalence relation that group them
into norms. In addition, events and traces can be filtered to allow focus on specific
events and attributes, removing parts of the log that do not have to be consid-
ered. In following chapters we demonstrate how the model can be interpreted
and applied in practice.

Analysis and detection of security
vulnerabilities in contemporary software

53 Olgierd Pieczul

Chapter 6

Exploring Behavioral
Norms

6.1 Introduction

The behavioral norms, introduced in Chapter 5, provide a general purpose mod-
eling framework for transaction-style behaviors. The introduction of the model
focused on low levels of abstraction such as method calls. In this chapter, we
explore the model at higher levels of abstraction. We first present how different
selections of model equivalence relations can lead to identifying different views
into system behavior when observed through an HTTP log. Further, we de-
scribe and evaluate a technique to automatically identify model parameters for
such traces. Finally, we discuss potential uses of behavioral norms to model a
behavior of multiple collaborating systems.

6.2 Norms in HTTP Logs

Figure 6.1 depicts an HTTP log of events 〈h1, . . . , h12〉 generated, for example, by
a web-based order processing system. Each line defines an HTTP request event
described using the Common Log Format [82] with attributes: remote host,
user, [time], "request" line, response status and length in bytes.

Suppose that the request portion of an HTTP request event is defined in
terms of the attributes: HTTP method, action (the first part of the URI) and

54

6. Exploring Behavioral Norms 6.2 Norms in HTTP Logs

host user time request status bytes

h1 10.20.3.11 frank [05/Nov/2012:09:11:26] "PUT /order/4c4712 HTTP/1.1" 200 1724

h2 10.43.9.1 alice [05/Nov/2012:13:18:46] "PUT /order/1d261e HTTP/1.1" 200 4354

h3 10.1.12.1 lucy [05/Nov/2012:16:30:16] "GET /order/4c4712 HTTP/1.1" 200 6356

h4 10.1.12.1 lucy [05/Nov/2012:16:32:32] "PUT /invoice/4c4712 HTTP/1.1" 200 2326

h5 10.1.12.1 lucy [05/Nov/2012:17:46:06] "GET /order/1d261e HTTP/1.1" 200 8320

h6 10.20.3.11 frank [05/Nov/2012:17:47:33] "GET /invoice/4c4712 HTTP/1.1" 200 2925

h7 10.1.12.1 lucy [05/Nov/2012:17:48:35] "PUT /invoice/1d261e HTTP/1.1" 200 221

h8 10.20.3.11 frank [06/Nov/2012:09:10:07] "PUT /order/61ec0c HTTP/1.1" 200 3327

h9 10.76.13.8 alice [06/Nov/2012:09:58:48] "GET /invoice/1d261e HTTP/1.1" 200 6366

h10 10.1.12.2 lucy [06/Nov/2012:14:34:31] "GET /order/61ec0c HTTP/1.1" 200 2727

h11 10.1.12.2 lucy [06/Nov/2012:14:47:20] "PUT /invoice/61ec0c HTTP/1.1" 200 9326

h12 10.20.3.11 frank [06/Nov/2012:16:01:45] "GET /invoice/61ec0c HTTP/1.1" 200 332

Figure 6.1: httpLog trace of HTTP requests 〈h1, . . . , h12〉

item (the second). This way, the request line could be viewed as "method
/action/item HTTP/1.1". The names of the attributes correspond with the
role they have in the event. The names of attributes are introduced to improve
the readability of the following discussion. We do not assume that it is required
that their role is understood and they could be well referred to as the first and
the second part of the URI. For example, in Figure 6.1 the event h1 represents
the action of putting the order identified as 4c4712.

In Chapter 5 we introduced event scoping and trace filtering. We often want to
scope an event by specific attributes. Let AttributeName denote set of all event
attributes

[AttributeName]

and e@A denote the attribute scoping function that scopes an event e to the set
of attribute names in A.

@ : Event × (�AttributeName)" Event

For example, h1@{method, action} =[PUT, order]. For clarity of pre-
sentation events are represented as collections of attribute values enclosed in
[square brackets].

Similarly, a trace, strand and norm attribute scoping function X@A is defined
as the attribute scoping (based on attributes in A) of events in the trace, strand
and norm X respectively. For example, the following listing depicts scopedLog
defined as httpLog@{user,method,action,item}.

Analysis and detection of security
vulnerabilities in contemporary software

55 Olgierd Pieczul

6. Exploring Behavioral Norms 6.2 Norms in HTTP Logs

scopedLog = httpLog@{user,method,action,item} =

〈[frank, PUT, order, 4c4712], [alice, PUT, order, 1d261e],

[lucy, GET, order, 4c4712], [lucy, PUT, invoice, 4c4712],

[lucy, GET, order, 1d261e], [frank, GET, invoice, 4c4712],

[lucy, PUT, invoice, 1d261e], [frank, PUT, order, 61ec0c],

[alice, GET, invoice, 1d261e], [lucy, GET, order, 61ec0c],

[lucy, PUT, invoice, 61ec0c], [frank, GET, invoice, 61ec0c]〉

6.2.1 Strands for HTTP events

Strands are defined as traces of equivalent events. Let ∼A denote the event
equivalence relation based on equality of the attributes in A. Given a set of
attributes A and events e, f : Event then define

e ∼A f ⇔ e@A = f@A

for example, h1 ∼{method} h2. For date defined as a date portion of the time
attribute, ∼{date} equivalence partitions httpLog into the two strands 〈h1, . ., h7〉
and 〈h8, . ., h12〉, reflecting the common practice of “rolling” logs on a daily basis.
An alternative view might consider requests from the same user to be equivalent,
partitioning the log into three strands involving frank, alice and lucy.

The event equivalence relation ∼{item}, defined in terms of item-equality, groups
events together as actions carried out on an order. In this case Figure 6.2 is a set of
strands, based on the equivalence relation ∼{item}, defined over the log scoped to
{user, method, action, item} attributes: prtn(∼{item}, scopedLog).
The value of an attribute used in the equivalence relation is underlined.

{〈[frank, PUT, order, 4c4712], [lucy, GET, order, 4c4712],

[lucy, PUT, invoice, 4c4712], [frank, GET, invoice, 4c4712]〉,
〈[alice, PUT, order, 1d261e], [lucy, GET, order, 1d261e],

[lucy, PUT, invoice, 1d261e], [alice, GET, invoice, 1d261e]〉,
〈[frank, PUT, order, 61ec0c], [lucy, GET, order, 61ec0c],

[lucy, PUT, invoice, 61ec0c], [frank, GET, invoice, 61ec0c]〉}

Figure 6.2: Strands from httpLog partitioned by attribute item

An alternative view that partitions the log according to the equivalence relation
∼{item,user} into strands of operations carried out by a given user on a given item

Analysis and detection of security
vulnerabilities in contemporary software

56 Olgierd Pieczul

6. Exploring Behavioral Norms 6.2 Norms in HTTP Logs

is depicted in Figure 6.3.

{〈[frank, PUT, order, 4c4712], [frank, GET, invoice, 4c4712]〉,
〈[frank, PUT, order, 61ec0c], [frank, GET, invoice, 61ec0c]〉,
〈[alice, PUT, order, 1d261e], [alice, GET, invoice, 1d261e]〉,
〈[lucy, GET, order, 4c4712], [lucy, PUT, invoice, 4c4712]〉,
〈[lucy, GET, order, 1d261e], [lucy, PUT, invoice, 1d261e]〉,
〈[lucy, GET, order, 61ec0c], [lucy, PUT, invoice, 61ec0c]〉}

Figure 6.3: Strands from httpLog partitioned by attributes item and user

6.2.2 Norms for HTTP traces

Trace scoping can be used to construct a definition for trace equivalence whereby,
given traces t, s, a set of attributes A and a trace attribute scoping function @,
then

t ≈A s ⇔ t@A ≡ s@A

The three strands depicted in Figure 6.2, prtn(∼{item},scopedLog) reflect an
item-centric view of the HTTP log. Within each strand there is a common
pattern of behavior, specifically, item ordering actions followed by item invoicing
actions. This behavior may be defined in terms of norm

prtn(≈{method,action}, prtn(∼{item},scopedLog))

depicted in Figure 6.4, with the attributes used for trace equivalence in bold.
Note that the norm contains only a single set of strands, the same as depicted in
Figure 6.2. The norm is a collection of strands that have an equivalent behavior
pattern (according to ≈{method,action}), each carried out on an identified target
(in this case, item). Scoping the strands to the set of attributes used for trace
equivalence that is,

prtn(≈{method,action}, prtn(∼{item},scopedLog))@{method,action}

reduces the norm into the following single strand representing the common se-
quence of order processing operations.

{{〈[PUT, order], [GET, order], [PUT, invoice], [GET, invoice]〉}}

Analysis and detection of security
vulnerabilities in contemporary software

57 Olgierd Pieczul

6. Exploring Behavioral Norms 6.2 Norms in HTTP Logs

{{〈[frank, PUT, order, 4c4712], [lucy, GET, order, 4c4712],

[lucy, PUT, invoice, 4c4712], [frank, GET, invoice, 4c4712]〉,
〈[alice, PUT, order, 1d261e], [lucy, GET, order, 1d261e],

[lucy, PUT, invoice, 1d261e], [alice, GET, invoice, 1d261e]〉,
〈[frank, PUT, order, 61ec0c], [lucy, GET, order, 61ec0c],

[lucy, PUT, invoice, 61ec0c], [frank, GET, invoice, 61ec0c]〉}}

Figure 6.4: A behavioral norm from httpLog partitioned by attribute item for
operations {method, action}

Different event and trace equivalences result in different norms, reflecting different
kinds of patterns of behavior within the system. For example, Figure 6.3 depicts
a partition of the log into strands that define the actions of a given user on a
given item. The strand

〈[frank, PUT, order, 4c4712], [frank, GET, invoice, 4c4712]〉

from this partition represents frank ordering and invoice-processing item
4c4712. Across these strands is a repeating user-order-invoice behavior
norm that can be identified in terms of strands that have equivalent method
and action attributes, that is, by the (strand) trace equivalence relation
≈{method,action}. In this case, the strand partition of the log (given in Figure 6.1)
is partitioned by prtn(≈{method,action}, prtn(∼{user,item},scopedLog)) into a cus-
tomer norm and a merchant norm, depicted in Figure 6.5. A customer (norm)

{{〈[frank, PUT, order, 4c4712], [frank, GET, invoice, 4c4712]〉,
〈[frank, PUT, order, 61ec0c], [frank, GET, invoice, 61ec0c]〉,
〈[alice, PUT, order, 1d261e], [alice, GET, invoice, 1d261e]〉},
{〈[lucy, GET, order, 4c4712], [lucy, PUT, invoice, 4c4712]〉,
〈[lucy, GET, order, 1d261e], [lucy, PUT, invoice, 1d261e]〉,
〈[lucy, GET, order, 61ec0c], [lucy, PUT, invoice, 61ec0c]〉}}

Figure 6.5: Behavioral norms from httpLog partitioned by attributes {user,
item} and operations {method, action}

puts orders and gets invoices while the merchant (norm) gets orders and puts
invoices. These norms also suggest user roles, whereby Frank and Alice are cus-
tomers and Lucy is the merchant. Consequently, scoping the strands to the set
of attributes used in the trace equivalence,

prtn(≈{user,item}, prtn(∼{item},scopedLog))@{user, item}

Analysis and detection of security
vulnerabilities in contemporary software

58 Olgierd Pieczul

6. Exploring Behavioral Norms 6.3 N-gram Based Trace Equivalence

reduces norms to singleton sets of strands representing the common sequence of
order processing operations by users in different roles.

{{〈[PUT, order], [GET, order]〉},
{〈[PUT, invoice], [GET, invoice]〉}}

6.3 N-gram Based Trace Equivalence

The sample strands used to illustrate the behavioral norms in HTTP logs in the
previous section were deliberately simple in order to present the basic concepts
of the model. Within those strands, the trace equivalence relation is defined as
simple equality of traces scoped to certain attributes. This, however, is impracti-
cal for larger traces that capture more complex behaviors than just simple static
sequences. For example, Figure 6.6 depicts a set of 10 item-centric strands from
another log fragment of the HTTP application, scoped to {method, action}
attributes.1 The strands capture sequences of operations related to the creation

PUT cart

POST cart

PUT order

PUT cart

POST cart

POST cart

PUT order

PUT cart

POST cart

POST cart

POST cart

PUT order

PUT cart

POST cart

POST cart

POST cart

POST cart

PUT order

PUT cart

POST cart

POST cart

POST cart

POST cart

POST cart

PUT order

PUT cart

POST cart

DELETE cart

PUT cart

POST cart

POST cart

DELETE cart

PUT cart

POST cart

POST cart

POST cart

DELETE cart

PUT cart

POST cart

POST cart

POST cart

POST cart

DELETE cart

PUT cart

POST cart

POST cart

POST cart

POST cart

POST cart

DELETE cart

Figure 6.6: Strands from the HTTP log for cart creation and updates

of a shopping cart, updating it (adding and removing items) and proceeding with
an order (first 5) or deleting the cart (last 5). Scoping the trace to operation

1For improved readability, we omit the set {} and event [] parentheses.

Analysis and detection of security
vulnerabilities in contemporary software

59 Olgierd Pieczul

6. Exploring Behavioral Norms 6.3 N-gram Based Trace Equivalence

attributes provides a level of abstraction, and the log might have contained a
number of instances of, for example, creating a cart with three items and then
putting an order.

However, even such simple activity, captured at the limited scope, may result in
a large number of strands that, even though are representing very similar behav-
ior, are different. Partitioning this set of strands using trace equivalence relation
defined as trace equality will result in ten distinct norms. It is more practical
to use an approximate matching that will allow strands with small structural
differences, such as repetition of the same sub-sequence, to be considered equiv-
alent. We decided to approximate strands as collections of n-grams [14], short
sub-sequences of a trace. In general, n-grams are sets of sub-sequences of size n
of a given sequence. For example, sequences 〈a, b, a, b〉, 〈a, b, a, b,

a, b〉 and 〈a, b, a, b, a, b, a, b〉 can be all represented by a set of
two 2-grams {〈a, b〉, 〈b, a〉}.

Let ngrams define a function that maps a trace to corresponding set of n-grams.

ngrams : Trace × 1"�Trace

∀ t : Trace; n : 1 • ngrams(t, n) = {ng : Trace | ng in t ∧ #ng = n}

Note, in Z in denotes a sub-sequence relation.

For example, the set of n-grams for the first strand in Figure 6.6 is

{〈[PUT, cat], [POST, cart]〉, 〈[POST, cart], [PUT, cart]〉},

and the set for the four subsequent strands is

{〈[PUT, cat], [POST, cart]〉, 〈[POST, cart], [POST, cart]〉,
〈[POST, cart], [PUT, cart]〉}.

N-grams can be used to construct a definition for trace equivalence, whereby
traces with the same sets of n-grams are considered equivalent. Given traces t, s,
a set of attributes A attribute scoping function @, and n-gram length n

t ≈n
A s ⇔ ngrams(t@A, n) = ngrams(s@A, n).

For example, the equivalence relation ≈2
{method,action} partitions ten strands in

Figure 6.6 into four norms, including strands 1, 2–5, 6 and 7–10 respectively. Note
that the set of n-grams represents an equivalence class for the corresponding set

Analysis and detection of security
vulnerabilities in contemporary software

60 Olgierd Pieczul

6. Exploring Behavioral Norms 6.4 Norm Search

of strands. Therefore, where no ambiguity arises, when discussing norms created
using n-gram equivalence relation, we refer to the set of n-grams as “norm”.
Section 7.3.1 provides further examples of n-gram norms for traces of application
method calls.

6.4 Norm Search

In previous sections we demonstrated that the selection of equivalence rela-
tions, and the event attributes that are used to define them, results in differ-
ent norms. A norm identifies common sequences of operations carried out rel-
ative to a target. Let O and T denote sets of attributes intended to represent
the operation and the target of events, respectively. For example, in the event
[frank, PUT, order, 4c4712] the attributes {method, action} are
the operation ([PUT, order]) and attribute item is the target (4c4712).
Event equivalence relation ∼T distinguishes targets while strand equivalence re-
lation ≈O distinguishes operations. For example, in Figure 6.4, order-invoice
operations are carried out relative to item targets.

Identifying norms in a log involves partitioning that log into strands using an
event equivalence relation and then partitioning the strands into norms using a
trace equivalence relation. Given operation and target attribute sets O and T ,
respectively, then l@(O ∪ T) gives the view of interest of the log l. In this case,
the norms of log l, defined as

NO
T (l) = prtn(≈O, prtn(∼T , l))@O

are intended to represent patterns of operations on targets. Note that events not
in O ∪ T are considered superfluous while targets are not explicitly included in
the final set of norms since their existence is implicit in the strands they relate to.
In order to identify meaningful norms in the log, it is crucial to properly select the
attributes to be used in respective equivalence relations. Also, in the case of the
n-gram based trace equivalence, it is required to define the length of the n-grams.
In the next section, we discuss a systematic technique for identifying the best
selection of these parameters, using false-positive and false-negative metrics.

Analysis and detection of security
vulnerabilities in contemporary software

61 Olgierd Pieczul

6. Exploring Behavioral Norms 6.5 Attribute Search

6.5 Attribute Search

In this section we demonstrate a systematic approach for identifying the attributes
suitable for the norm model and, consequently, the norms themselves. We are in-
terested in identifying likely target and operation attributes for event and strand
equivalence relations that generate norms that provide meaningful characteriza-
tions of a system’s behavior. Considering a norm defined as a time operation
on a method target, that is,

prtn(≈{time}, prtn(∼{method},httpLog))

does not reveal anything interesting about the httpLog. However, the norms in
Figure 6.5 do reveal potentially interesting customer and merchant related norms.

The intention is to compute these norms NO
T (l) on the basis of a single learning

log l. The effectiveness of using NO
T (l) as a representative model of the given

system’s behavioral norms is determined by comparison with the norms generated
by a further test log t of valid interactions of the system.

LetMO
T (l, t) define an operation that compares the norms of NO

T (l) and NO
T (t)

and returns a measure in [0..1] that indicates their degree of similarity to each
other, whereby a higher value indicates a greater degree of similarity. Intuitively,
MO

T (l, t) gives a measure of the false negatives when one treats NO
T (l) as a model

of the behavioral norms in the system. The higher numerical value represents a
lower measure of false negatives. A measure of the false positives for NO

T (l) as a
model of behavioral norms is given by MO

T (l, c), where c is a control log of the
system, that is a log with sequence perturbations that are known not to occur in
the system. Section 6.5.1 outlines the encoding ofMO

T (l, t) based on n-grams.

6.5.1 N-gram based norm similarity

As discussed in Section 6.3 n-grams provide an approximate trace matching and
can be used to implement the trace equivalence relation (≈). This is generalized
to norms, whereby a set of strands (a norm) is encoded as a set of n-grams
that provide an (approximate) method to test a strand for membership of a
norm. A variation of the Jaccard coefficient [83] is used to provide a measure
of the similarity between two sets (norms) of n-grams. Jaccard coefficient is the
simplest metric for set similarity defined as the size of the intersection of the

Analysis and detection of security
vulnerabilities in contemporary software

62 Olgierd Pieczul

6. Exploring Behavioral Norms 6.5 Attribute Search

sets divided by the size of the union of the sets. In our experiments focused on
identifying attributes we have found the measure provided by Jaccard coefficient
sufficient. Future work should consider usage of another set similarity measures
and its applicability.

Let J (n,m) denote this measure between norms n and m:

J (n,m) = | n ∩m |
| n ∪m |

Given a log l and a test trace t then the average of the best of the Jaccard
coefficients from the log norms in NO

T (l) to the test norms in NO
T (t) defines a

similarity measure between the sets of norms is 0. Thus, given operation and
target attributes O and T , log and test traces l and t, and an underlying n-gram
model then define:

MO
T (l, t) =

∑
n∈N O

T (l)

(maxm∈N O
T (t) J (n,m)

| NO
T (l) |

)

The same calculation is used to define the similarity MO
T (l, c) between the log

trace t and the control trace c.

Intuitively,MO
T (l, t) measures how well the norms in set NO

T (l) are covered in set
NO

T (t). This measure is not a distance in the mathematical sense. For example, if
NO

T (l) and NO
T (t) are equal or NO

T (l) is a subset of NO
T (t) the similarity measure

is 1. If NO
T (l) contains norms that have no n-grams in common with any norm

in NO
T (t), the similarity measure is 0. Table 6.1 demonstrates the calculation of

model similarity metric. The first part of the table contains norms {n1, n2, n3}
for the log l, and the second norms {m1,m2,m3} the log t. The norms contain n-
grams from the set {a1, . . . , a5}. The third part of the table includes all Jaccard
coefficients between norms for the two logs with maximal value highlighted in
bold. The similarity between the two sets is an average of the maximal values,
that is 0.64.

NO
T (l)

n1 {a1, a2}
n2 {a1, a2, a3, a5}
n3 {a1, a5}

NO
T (t)

m1 {a1, a2}
m2 {a1, a2, a3, a4}
m3 {a2, a3}

J (n,m) m1 m2 m3

n1 1.00 0.50 0.00
n2 0.50 0.60 0.50
n3 0.33 0.20 0.00

Table 6.1: Norm model similarity calculation example

Analysis and detection of security
vulnerabilities in contemporary software

63 Olgierd Pieczul

6. Exploring Behavioral Norms 6.5 Attribute Search

6.5.2 Implementation of attribute search

Given traces l (log), t (test) and c (control), the attribute search finds operation
attributes O and target attributes T and an n-gram model (≈) resulting in the
best values for MO

T (l, t) and MO
T (l, c). A prototype of this search has been

implemented [20]. Figure 6.7 depicts the pseudo-code of the attribute search
algorithm. Given the traces (l, t, c) and the set of event attributes A the algorithm

function attributeSearch(l, t, c, A)
targets = 2A \ {∅}
for (T in targets) {

operations = 2(A\T) \ {∅}
for (O in operations) {

result[O][T] = [MO
T(l, t), MO

T(l, c)]
}

}

return result

}

Figure 6.7: Pseudo-code of the attribute search algorithm

returns the similarity measures for the pairs of operation and target attributes
within A. Note that 2A denotes the power set of the set of attributes, that is
all possible sets of attributes defined by A. The algorithm iterates over possible
sets of attributes for the target and operation and calculates the norm similarity
metrics for each attribute pair. Note that the attributes selected for the target
are not considered for operation. This is because these attributes are used to
separate strands from each other, and therefore have a static value within the
strand, which makes them unsuitable to be operation attributes. Also, empty
sets of attributes are not considered in the search. While the implementation is
quite effective for demonstrating this for the moderately-sized logs and attribute
sets described in the next section, we have not focused on search efficiency. In
principle, the search is exponential in its parameters. Note that other parameters
of the model, such as the length of n-gram, are externalized from the algorithm.
The algorithm can be used to find the optimal values for those parameters by
iterating over the candidate values for the parameters. For example, in order to
find the best n-gram length, the attribute search may be repeated for each of the
sizes. Also, one could first identify the best operation/target attributes for one
n-gram length and then execute the algorithm for a range of n-gram lengths and
reduced set of good operation/target attributes.

Analysis and detection of security
vulnerabilities in contemporary software

64 Olgierd Pieczul

6. Exploring Behavioral Norms 6.6 Attribute Search Evaluation

6.6 Attribute Search Evaluation

Two experiments were carried out in order to evaluate whether the norm model
attributes, and corresponding norms, could be discovered from system logs. Sec-
tion 6.6.1 describes the discovery of norms from the logs of a simulated system.
Section 6.6.2 documents norms that were discovered in our study of a complex
enterprise-grade application system.

6.6.1 Norms in a simulated system

A system that simulated the execution of the HTTP example in Section 6.2 was
developed. It was extended to include additional actions such as cart, payment,
dispatch and return, and methods such as POST and DELETE. The fragment
of sample execution of the application is depicted in Figure 6.8. The objective

user method action item

userA PUT payment 1d261e

userB DELETE order 1d261e

userD GET dispatch 61ec0c

userF PUT return 4c4712

userC POST order 1d261e

userD GET cart 4c4712

userF PUT invoice 61ec0c

userG POST payment 1d261e

userB GET invoice 4c4712

userE DELETE cart 61ec0c

Figure 6.8: A fragment of a log from simulated system

of this experiment was to demonstrate that norms could be discovered in logs of
systems that were fabricated deliberately to have repeating patterns within their
apparently random-looking behavior. In particular, that the attribute search
would find the sets of operation O and target T attributes as expected.

The system was built as a collection of concurrent users, engaging HTTP events.
A simple control-flow model was used to specify user behavior scenarios in terms
of repeating sequences of events to be carried out across (random) items. Fig-
ure 6.9 depicts sample scenario, where each operation representing an operation

Analysis and detection of security
vulnerabilities in contemporary software

65 Olgierd Pieczul

6. Exploring Behavioral Norms 6.6 Attribute Search Evaluation

executed by a user in a transaction, such as operation12: [$user1, GET,

invoice]. During the simulation, a set of users is selected at random to execute
sequences from the choice defined by the scenario.

SCENARIO [

SEQUENCE {

operation12

operation4

operation31

operation14

}

CHOICE {

SEQUENCE {

operation37

operation17

}

SEQUENCE {

operation37

operation17

}

}

LOOP {

operation17

operation57

operation10

operation3

}

CHOICE {

SEQUENCE {

operation12

operation9

}

}

SEQUENCE {

operation11

operation4

operation7

operation24

operation35

operation10

operation68

}

]

Figure 6.9: A sample user behavior scenario for simulated system (simplified)

The simulation comprised of 500 transactions performed by a group of 25 users,
each selecting executions at random from the choice of 30 randomly generated
scenarios. Running the simulation twice generated different learning l and test t
traces, each containing approximately 50,000 events. A similar sized control log
c was generated by re-running the simulation, with the different set of scenarios.
The search was repeated three times to consider the norm models using n-gram
size of 3, 5 and 7.

While the event attributes included user, method, action and item, it should
be noted that in this experiment no information was provided to the search al-
gorithm that might a priori suggest candidate operation and target attributes.
Each event also included a transaction identifier (trans) that tied the event to
a unique execution sequence within a user behavior scenario.

Table 6.2 provides a selection of operation and target attributes for different n-
gram sizes, along with MO

T (l, t) (false negative) and MO
T (l, c) (false positive)

measures based on the simulated log traces l, t and c.

These results suggest, as expected, that the repeating pattern of method-action
operations carried out on transactions (trans) is a good norm; providing a high

Analysis and detection of security
vulnerabilities in contemporary software

66 Olgierd Pieczul

6. Exploring Behavioral Norms 6.6 Attribute Search Evaluation

operation O target T n MO
T (l, t) MO

T (l, c)

trans user 3 0.14 0.45
item method, user 7 0.18 0.47
trans item 3 0.18 0.46
method, action user 5 0.28 0.00
method, user trans 3 0.32 0.01
method, action item, user 3 0.75 0.02
method, action trans 7 0.78 0.03
method, action trans 5 0.81 0.00
method, action trans 3 0.85 0.02

Table 6.2: Some norms in the simulated system

degree of similarity between the learning and test logs (few false negatives) and
a low degree of similarity between the learning and control logs (few false posi-
tives). While attribute trans was intentionally constructed to provide a unique
transaction identifier for the user-scenario, it is interesting to note that the search
also suggests the pair {user, item} as a reasonable set of target attributes.
On further investigation it turned out that in the simulation logs, it was more
likely that the execution scenarios of different users involved different items, that
is, there were relatively few instances of order-invoice transactions involving mul-
tiple users. This could be regarded as an unexpected norm that emerged as a
consequence of the simulation design.

The problem of finding the best selection of attributes is exponential with respect
to the number of attributes in the event. For five attributes, an exhaustive search
over space of all possible combinations of attribute for target (25), operation (also
25) and n-gram sizes (3) would require 3072 algorithm iterations. Thanks to some
basic optimizations (such as not considering operation attributes in targets) in
the experiment we reduced that number to 510 which took about 30 minutes on a
mid range laptop. It should be noted that the experiment was performed using an
early implementation of the norm model [20]. The later efficient implementation,
as described in Chapter 7, significantly reduced model comparison time, to values
in range of 80 milliseconds on the same setup. Using that implementation, the
search process could be reduced to under a minute.

Analysis and detection of security
vulnerabilities in contemporary software

67 Olgierd Pieczul

6. Exploring Behavioral Norms 6.6 Attribute Search Evaluation

6.6.1.1 Norms similarity and aggregation

Encoding the strands with n-grams provides only a small degree of approximation.
For example, for 500 execution traces in the experiment, the number of norms
(represented as distinct n-gram sets) for operation {method, action} and
target trans is in the range of 400-450. That means that only some of the
strands converge to the same n-gram sets.

A further experiment was performed to observe how similar to each other are the
norms generated for the simulated system trace. While this experiment is not
related to the attribute search, it provides an insight into potential applications of
the behavioral norms model. In this experiment we select decreasing thresholds of
similarity (from 1 to 0 with step 0.01) and aggregate the norms that are similar
(according to Jaccard coefficient) to each other over that threshold. Because
norms are sets of n-grams, the aggregation is a union of the sets of n-grams. As a
result, we obtain a set of norms aggregated at all 101 similarity levels. Figure 6.10
depicts the pseudo-code of the algorithm used in the experiment.

The experiment was performed for 10 different simulations of the user behavior
scenarios in the system. Figure 6.11 plots the numbers of aggregate norms for
decreasing thresholds of norm similarity. With a degree of similarity of 1, the
norms must exactly match and there is a large number of distinct norms, many
with very similar but strictly different behavior. With a degree of similarity of
0, traces of the same events but differently ordered are matched and, as a result,
there is effectively one norm that blends all system activities. Note that this level
of similarity when applied to an n-gram based model, reduces behavioral norms
to a set of n-grams, as described in [17].

Inspecting Figure 6.11 reveals that 30 distinct aggregate norms are identified
for a substantial range of the norm similarity threshold values between 0.5 and
0.05. Recall that in configuring the control-flow model, logs were generated by
users repeatedly selecting, at random, from a choice of 30 different execution
scenarios. On inspection, each norm corresponds to one of the execution scenarios,
confirming that the proposed operation O and target T attributes reflect the
patterns of behavior that were intended. Naturally, the model with similarity
levels in this range is not useful for the purpose anomaly detection, however, this
experiment demonstrates a potential additional application of the norm model,
that is, identifying underlying patterns of behavior in an application. In the case
of the simulated system, analysis of the HTTP log allowed the identification of

Analysis and detection of security
vulnerabilities in contemporary software

68 Olgierd Pieczul

6. Exploring Behavioral Norms 6.6 Attribute Search Evaluation

function aggregate(N) {

for (sim 1..0 step -0.01) {

norms[sim] = N
repeat:

for (n in norms[sim]) {

for (m in norms[sim]) {

if (n 6= m ∧ J (n, m) > sim) {

norms[sim] = norms[sim]\{n, m}
norms[sim] = norms[sim]∪{n ∪m}
goto repeat

}

}

}

}

return norms

}

Figure 6.10: Pseudo-code of norm aggregation algorithm

0

50

100

150

200

250

300

350

400

450

500

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

No
rm

s

Similarity

Figure 6.11: Number of aggregate norms for different norm similarity thresholds
(simulated system)

Analysis and detection of security
vulnerabilities in contemporary software

69 Olgierd Pieczul

6. Exploring Behavioral Norms 6.6 Attribute Search Evaluation

the patterns of user behavior.

6.6.1.2 Simulating anomalies

In the following experiment, the system simulating the HTTP application was
extended to model an access control mechanism. The access control was imple-
mented by assigning each of the scenarios and each of the users one of five roles:
Customer, Merchant, Warehouse, Support and Supervisor. The sim-
ulation has been modified, so that scenarios are only executed by users with a
matching role. For illustration, the part of a scenario related to making an order
may only be executed by users with the role Customer, while the part related
to issuing an invoice, by users with the role Merchant. Information about user
role was included as an additional event attribute and new events contained 6
attributes (method, action, user, item, role, trans). Figure 6.12 depicts
a typical trace of the system including roles.

user role method action item

userA Customer PUT payment 1d261e

userB Customer DELETE order 1d261e

userD Warehouse GET dispatch 61ec0c

userF Customer PUT return 4c4712

userC Merchant POST order 1d261e

Figure 6.12: A fragment of a log from a simulated system including roles

The attribute search was performed for the modified system. Optimal values iden-
tified by the search are {role, method, action} for the operation and trans
for the target. It should be noted that, compared with the system without the
access control capability, the operation includes role in addition to method and
action. Inclusion of the role attribute makes the operation more precisely de-
fined (for example, “GET invoice as Customer” compared to just “GET invoice”)
and produces a more accurate norm model. The norm aggregation, as presented
in Figure 6.13 (Access control enabled) shows the result similar to the original
system (without access control) and reflects 30 scenarios for a large similarity
threshold value range.

In the second part of this experiment, the simulation was modified to model a
security flaw. The access control was disabled so any user could run any scenario

Analysis and detection of security
vulnerabilities in contemporary software

70 Olgierd Pieczul

6. Exploring Behavioral Norms 6.6 Attribute Search Evaluation

regardless of their role. The intention of this change was to simulate an accidental
misconfiguration that breaks security control and check how such change will
reflect on system’s norms. The analysis of the number of aggregate norms for
different similarity threshold values was performed on the trace from modified
system. Figure 6.13 shows the number of aggregate norms in relation to the
similarity threshold value for both executions (with access control enabled and
disabled) of the system with the access control capability.

This experiment shows that, at the lower similarity threshold values, the opera-
tion of the system with broken access control is reflected using more aggregate
norms than the one with the access control functioning properly. Although both
systems were executing the same 30 scenarios, they produce traces that are be-
haviorally different according to identified norm attributes. In the system with
enabled access control, different executions of the same scenario produced traces
only different because of the control flow. For norm similarity threshold values
between 0.5 and 0.05 the executions of the same scenario were considered equiv-
alent. In the system with broken access control, executions of the same scenario,
but with different roles, produced traces in which operations were also different.
Even at low similarity levels such traces could not be considered equivalent and
were parts of different norms.

0

50

100

150

200

250

300

350

400

450

500

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

No
rm

s

Similarity

Access	control	enabled

Access	control	disabled

Figure 6.13: Number of aggregate norms for different norm similarity thresholds
for two configurations of simulated system with access control

Analysis and detection of security
vulnerabilities in contemporary software

71 Olgierd Pieczul

6. Exploring Behavioral Norms 6.6 Attribute Search Evaluation

This experiment demonstrates that for certain thresholds of norm similarity the
change in the system’s behavior may be identified by observing the number of
aggregate norms that emerge from that system. This is possible without a priori
knowledge about what behavior the individual norms actually represent.

6.6.2 Norms in an enterprise system

The second experiment was based around an enterprise Java-based social software
application. This application provides its users with social communication and
content management. The objective of this experiment was to investigate the
efficacy of the attribute search in an existing large-scale application system.

The application server running the social software application was configured to
include a custom Java Security Manager that recorded every permission check
as an event. Six attributes of the events logged by the manager were con-
sidered: type of permission (attribute perm, with values FilePermission,
SocketPermission, etc.); action (with values, open, read, etc.); name of
application server’s thread used to perform the operation; application’s user
on behalf of which the thread executes, and name of the class that invoked the
code requiring the permission. Time was recorded using reduced precision. A
fragment of the trace from the system is depicted in Figure 6.14.

time class perm action thread user

[05/Nov/2012:09:11] UploadAction File open Thread-4 frank@example.com

[05/Nov/2012:09:11] DownloadAction Socket connect Thread-5 lucy@example.com

[05/Nov/2012:09:11] UploadAction File write Thread-4 frank@example.com

[05/Nov/2012:09:11] DownloadHelper Socket write Thread-5 lucy@example.com

[05/Nov/2012:09:11] DownloadHelper File read Thread-5 lucy@example.com

Figure 6.14: A fragment of a log from enterprise system

The application was invoked 1,500 times via its REST API in order to execute
11 different high-level operations related to file management functionality of the
application: get service status, upload new file, update file contents, change file
name, download file, delete file, create folder, change folder name, delete folder,
add file to folder and remove file from folder. The file and folder names and file
contents were selected at random and file size was between 100 bytes to 500 kilo-
bytes. The REST API calls were made concurrently for 10 different application
users. This was done twice in order to generate the learning and test traces, each
containing about 30,000 events, each representing recorded permission check. The
logs from the Java Security Manager were not scoped in any way.

Analysis and detection of security
vulnerabilities in contemporary software

72 Olgierd Pieczul

6. Exploring Behavioral Norms 6.6 Attribute Search Evaluation

The control trace was created by randomly reordering events from the test trace,
in order to use the same events, but in an order different than during normal
execution of the application. The attribute search was executed separately for
the norm models with n-gram sizes of 3, 5 and 7. Table 6.3 provides a selec-
tion of operation and target attributes, along withMO

T (l, t) (false negative) and
MO

T (l, c) (false positive) measures that were computed during the search. The
results in Table 6.3 are for an n-gram size of 3, which, when analyzing this sys-
tem, produced better results, that is lower measures for both false positive (lower
numerical value) and false negative (higher numerical value).

operation O target T MO
T (l, t) MO

T (l, c)

perm action, thread, user 0.38 0.49
class, user action, prtm, time 0.15 0.01
name, perm thread, trace 0.51 0.37
perm time, user 0.99 0.11
class, perm time, user 0.97 0.07
class, perm thread, time, user 0.99 0.08
action, class thread, time, user 0.92 0.00
action, class, perm thread, time, user 0.92 0.00

Table 6.3: Some norms in the enterprise system

The results show that the best candidates for operation are the combinations of
action, perm and class attributes. It is interesting to note that the oper-
ation with attributes {action, class} has results comparable to {action,
class, perm}. Intuitively, the latter seems to be a better choice as it de-
fines actual operation more precisely ([SomeClass, open, file] compared
to just [SomeClass, open]). However, it is common that every permis-
sion has a distinct set of actions specific to that permission. For example,
FilePermission is defined in terms of read, write, execute, delete
actions, while SocketPermission is defined in terms of accept, connect,
listen and resolve actions. Thus, for this system, permission name does not
provide any additional information to the operation.

Studying the effect that the norms aggregation has on the number of norms
identified in NO

T (l), for the best O and T , provides some interesting insights. In
Figure 6.15, when the threshold of norm similarity varies between, 0.34 and 0.17,
then 11 aggregate norms are identified. This is expected, as these 11 aggregate
norms effectively correspond with the underlying behavior patterns resulting from

Analysis and detection of security
vulnerabilities in contemporary software

73 Olgierd Pieczul

6. Exploring Behavioral Norms 6.6 Attribute Search Evaluation

repeatedly invoking the 11 different REST API calls in order to populate the log.

0

100

200

300

400

500

600

700

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

No
rm

s

Similarity

Figure 6.15: Number of aggregate norms for different norm similarity thresholds
(enterprise system)

However, Figure 6.15 also points to the presence of other potential patterns of
behavior in the system. There are three other regions in the graph that suggest
different numbers of aggregate norms. For similarity threshold values: between
0.66 and 0.55 there are 140 norms, between 0.49 and 0.45 there are 68 norms, and
there are 7 norms between 0.17 and 0.05. We conjecture that these additional
norms are a consequence of the application, or its underlying infrastructure, per-
forming different kinds of internal operations for the same REST API calls. For
example, for the same API call the application may, at one time, retrieve an
object from remote storage while retrieving it from local cache another time; an
application may once have established a connection, while at another time uses
a previously established connection from a connection pool. Traces generated by
different execution paths are sufficiently different to be result in distinct norms
where a high degree of norm similarity is required. This means that it may be pos-
sible to use multiple threshold levels in order to simultaneously observe a larger
number of more precise norms or a smaller number of more general ones. This
experiment was a preliminary attempt to validate that meaningful norms can be
identified in a real and complex enterprise system. In building the experiment,

Analysis and detection of security
vulnerabilities in contemporary software

74 Olgierd Pieczul

6. Exploring Behavioral Norms
6.7 Modeling Behavior of Collaborating

Systems

many simplifications had to be made, such as ignoring client-side caching and
calling only the REST API rather than accessing application through the web
interface as a user.

6.6.3 Discussion

We demonstrated that it is possible to discover correct norm model attributes
without any prior knowledge about the system. In addition, aggregating norms
allows identifying underlying patterns of behavior of the system characterized by
the set of aggregate norms. Such norms may provide an efficient way to compare
and evaluate system behavior during its life cycle. For example, in Section 6.6.1.2
we demonstrated how the number of norms increases after an accidental mis-
configuration of the system. Future research should consider if observation of
the emergent behavior defined by the norms aggregated to a certain similarity
threshold could be used as a general technique for monitoring system behavior
operation. Norm discovery and the associated parameters such as similarity or
false positive and false negative metrics are intended to provide an insight into
the system operation, but these values do not correspond to the performance of
anomaly detection mechanism built on norms. Similarly, the discovery process is
not typically part of the end-to-end operation of anomaly detection, rather a step
that allows the identification of suitable parameters for particular application or
a platform. A number of possible further applications of behavioral norms is
considered in [22].

6.7 Modeling Behavior of Collaborating
Systems

In previous sections we have shown how different configuration of the norm model
may lead to different views of the system. In this section we show how behav-
ioral norms could be used to model a behavior of multiple systems collaborating
together and used to identify anomalies in that behavior.

Analysis and detection of security
vulnerabilities in contemporary software

75 Olgierd Pieczul

6. Exploring Behavioral Norms
6.7 Modeling Behavior of Collaborating

Systems

6.7.1 An online photograph sharing service

Consider an on-line photograph hosting and sharing service. The service allows
users to upload and store their photographs, establish a network of friends with
whom to share photographs, comment on photographs, and so forth. The service
also provides activity tracking of the users and their friends. Users can view the
actions they have performed (for example, the photographs they uploaded and
when), and limited tracking of the actions of other users (for example, accesses
and comments on the photographs they share). For example, Figure 6.16 provides
a fragment of a log of such actions that are visible to the user frank.

time user context action id extra

2013-11-04 16:53:05 frank self login - -

2013-11-04 16:55:21 frank self uploadPhoto img23 Holidays 2013

2013-11-04 16:57:55 frank self uploadPhoto img24 New bike

2013-11-04 17:01:03 frank self share img23 lucy

2013-11-04 17:04:29 lucy friend viewPhoto img23 -

2013-11-04 17:05:18 frank self share img24 alice

2013-11-04 17:05:19 lucy friend comment img23 I wish, I was there...

2013-11-04 17:21:34 alice friend viewPhoto img24 -

2013-11-04 17:22:01 alice friend comment img24 Nice|

Figure 6.16: A partial log from the photo hosting service

This activity data need not necessarily come from a conventional text log. Action-
s/events may be presented to the consumer by the provider using a web interface
or as a feed in some common format such as RSS or ATOM and we assume that a
consumer is able to view the events relevant to its interaction with the provider.
Events are comprised of attributes; the events in Figure 6.16 have attributes that
provide time of event, user name, action carried out, and whether the action
is carried out by the user viewing the log (the context value self) a friend
or other user, the image id, and any extra data.

Studying Figure 6.16, we see that frank logs-in, uploads two photographs, shares
photographs with users lucy and alice who in turn view and comment. A
closer inspection of the log in Figure 6.16 reveals what appears to be two, in-
terleaving, transaction-like patterns of behavior. In the first, frank uploads a
photo img23, shares it with lucy who then views and comments. In the sec-
ond, the same sequence of actions occur in relation to frank sharing img24

with user alice. This analysis identifies a simple transaction-style behavior in
the log fragment.

〈uploadPhoto, sharePhoto, viewPhoto, commentPhoto〉

Analysis and detection of security
vulnerabilities in contemporary software

76 Olgierd Pieczul

6. Exploring Behavioral Norms
6.7 Modeling Behavior of Collaborating

Systems

In identifying these transaction style patterns it is important to distinguish the
roles that are played by the different event attributes. Intuitively, the attribute
value action represents the operation being carried out by the event and this
operation is effectively parameterized by the image identifier (target attribute
id). Further study of the log is required to decide whether the user, context
and extra attribute values should play a role in this transaction.

6.7.2 Norms in online photograph sharing service

Considering the log fragment in Figure 6.16, the attribute search process may
discover a behavioral norm model, and the corresponding norm, depicted as:2:

〈self.uploadPhoto, self.sharePhoto, friend.viewPhoto,

friend.commentPhoto〉

with attributes context and action representing the event operation on a
common target attribute id. time and extra are considered to have no dis-
cernible effect on behavior. Thus, the log sub-sequence
2013-11-04 16:55:21 frank self uploadPhoto img23 Holidays 2013

2013-11-04 17:01:03 frank self share img23 lucy

2013-11-04 17:04:29 lucy friend viewPhoto img23 -

2013-11-04 17:05:19 lucy friend comment img23 I wish, I was there...

is a valid instantiation of the above norm, while the sub-sequence
2013-11-04 16:55:21 frank self uploadPhoto img23 Holidays 2013

2013-11-04 17:01:03 frank self share img23 lucy

2013-11-04 17:04:29 lucy friend viewPhoto img23 -

2013-11-04 17:05:19 lucy friend comment img24 I wish, I was there...

is not a valid instantiation of the norm as it does not involve a common photo-
graph id.

Figure 6.17 depicts likely behavioral norms that might be discovered if given a
complete provider log for Frank. The first norm describes the behavior that can
be observed from Figure 6.16. The other norms represent additional kinds of
typical normal behavior, such as Frank viewing photos shared by other users, or
connecting with friends.

These discovered norms provide an insight into the behavior of the provider.
Frank and his community usage patterns and configuration, such as privacy set-
tings, are reflected in these norms. For example, Frank uses the service’s default

2For improved readability, we depict norms as representative sequences of operations.

Analysis and detection of security
vulnerabilities in contemporary software

77 Olgierd Pieczul

6. Exploring Behavioral Norms
6.7 Modeling Behavior of Collaborating

Systems

〈self.uploadPhoto, self.sharePhoto, friend.viewPhoto, friend.commentPhoto〉
〈friend.uploadPhoto, friend.sharePhoto, self.viewPhoto, self.commentPhoto〉
〈friend.uploadPhoto, self.viewPhoto, self.commentPhoto〉
〈other.requestConnect, self.acceptConnect〉
〈self.requestConnect, other.acceptConnect〉

Figure 6.17: Norms for user’s collaboration with photo hosting service provider

privacy policy that considers newly uploaded photos as private. This requires him
to explicitly share every photo before it is viewed by other users. Some of Frank’s
friends have a similar configuration, and this is reflected in the second norm.
Other friends configured their account differently to make all of their uploaded
photos visible to their friends or public, by default. This behavior is captured in
the third norm, which lacks an explicit sharing operation.

6.7.3 Provider anomalies

Assume that Frank’s photo hosting service wishes to attract additional traffic and
increase the amount of content that is available to their users. To do this, they
decide to change their default application behavior. The change is to make all new
content visible to the user’s friends by default. Users can still configure the policy
explicitly in order to override the default behavior. Unaware of the new default
setting, Frank continues to use the service and uploads new images. Frank’s
friends may now see the image instantly, without Frank’s explicit action to share.
This change is made only to the default behavior of the application. It does
not modify application’s terms of use nor the privacy policy. Frank still has the
right to restrict his content, configure his policy differently, or remove any of his
content. While this provider change may be done entirely legally, it has a negative
effect on Frank’s use of the application. This situation is somewhat similar to the
phenomenon of the “dark side of the code” discussed in Chapter 2, though, the
security gap exists between provider’s behavior expected by the consumer and
the actual behavior.

Frank’s set of norms may be used to detect this application change. His service
provider, after the change, will start generating logs that cannot be matched
to the norms in Figure 6.17. This unrecognized activity may be considered an
anomaly and alert Frank to investigate the change. Performing norm discovery
on the new log can reveal that a new norm has emerged.

〈self.uploadPhoto, friend.viewPhoto, friend.commentPhoto〉

Analysis and detection of security
vulnerabilities in contemporary software

78 Olgierd Pieczul

6. Exploring Behavioral Norms
6.7 Modeling Behavior of Collaborating

Systems

PRINT SERVICE (provider=print) HOSTING SERVICE (provider=host)

time user context action id time user context action id

19:31:05 frank self newOrder

19:31:19 frank prtsvc listPhotos

19:31:20 frank prtsvc getThumbnail img01

19:31:20 frank prtsvc getThumbnail img02

...

19:31:21 frank prtsvc getThumbnail img08

19:33:41 frank self select img03

19:33:52 frank self select img07

19:34:06 frank prtsvc getPhoto img03

19:34:08 frank prtsvc getPhoto img07

19:36:02 frank self submitOrder

Figure 6.18: A log of two collaborating systems

This anomaly is specific to Frank’s interaction with the service. For other users,
such as those whose photos are intentionally shared with others by default, the
change has no impact. For such users, the above norm would already be consid-
ered an acceptable norm (based on the analysis of their logs).

6.7.4 Anomalies across multiple collaborating providers

Continuing the example, Frank uses an additional service provider: an on-line
photograph printing service. Using this service he can order prints for his pho-
tographs on-line and have them delivered to his friends and family. The service
is integrated with the photograph hosting provider. This is convenient for Frank
as he can give the printing site permission to access his photographs and order
prints without the need to re-upload. The access delegation can be done using
a standard protocol such as OAuth [84]. In a typical scenario, Frank accesses
the printing service, and selects his hosting service as the location of images.
The printing service accesses his account and downloads photograph miniatures.
Frank selects the photographs that he wants to be printed and the printing ser-
vice, with its delegated authority from the photograph sharing service, downloads
the full size image files for each of them.

The logs (visible to Frank) from both providers for such a scenario are presented
at Listing 6.18. Log events now originate from two different service providers
and this is distinguished by a new event attribute provider in the logs. In
addition, events for actions performed on behalf of Frank by the printing service
provider have a context attribute value prtsvc in the hosting provider log.
Frank has given the printing service a permission to access his photos. While

Analysis and detection of security
vulnerabilities in contemporary software

79 Olgierd Pieczul

6. Exploring Behavioral Norms
6.7 Modeling Behavior of Collaborating

Systems

short-lived permission delegations are possible in schemes such as OAuth, many
providers offer long-lived offline permissions, which are often requested by the
third-party providers [85], irrespective of the dangers. The expected behavior
is that the service will only access the photos when Frank places a print order.
Technically however, there is no such restriction and the print service may access
the photos at any time. Frank can only trust that this service provider will behave
properly. Analyzing the hosting service log in isolation, the following norm may
be discovered.

〈prtsvc.listPhotos, prtsvc.getThumbnail, prtsvc.getPhoto〉

This norm represents a typical way in which a print service accesses user pho-
tographs when interacting with the hosting service. With its delegated permission
from Frank, the printing service could decide to download all of Frank’s photos
in the background without interaction with Frank. This activity will generate a
log in the hosting service. Based on the behavioral norm above, however, this
activity can be regarded as a normal behavior.

Building the behavioral norms from the individual printer service log is insufficient
to fully capture the interaction between consumer and the two providers. The
norms should be discovered from a single log that aggregates the events from
both service providers. In this case, log operations are characterized in terms of
three attributes: provider.context.action with a sample norm

〈print.self.newOrder, host.prtsvc.listPhotos,

host.prtsvc.getThumbnail, print.self.select,

host.prtsvc.getPhoto, print.self.completeOrder〉

This norm captures an aggregated behavior of all of the parties collaborating
together. Any activity of printing service unrelated to Frank’s print ordering will
be considered abnormal, as it will not match the norm.

6.7.5 Discussion

Consumer security is impacted by the provider services with which it directly or
indirectly interacts. Individually, providers may have different motivations in pro-
viding service and the security mechanisms available to the consumer to control
interaction tend to be weak. For example, service providers often provide only
coarse-grained access controls to their consumers. When multiple applications

Analysis and detection of security
vulnerabilities in contemporary software

80 Olgierd Pieczul

6. Exploring Behavioral Norms 6.8 Conclusion

need to collaborate, they may be given more access than is actually required.
We argue that anomaly detection style techniques can be used by a consumer to
monitor interactions with providers. The challenge is to formulate a sufficiently
precise model of normal interaction and we propose that consumers mine their
provider logs to build profiles of past, presumably acceptable, behavior.

Conventional anomaly detection is routinely used to help protect a provider from
malicious consumers; we have considered using anomaly detection to protect a
consumer from multiple, possibly collaborating, providers. A single consumer
transaction may span multiple providers interacting with each other and the
consumer. Prescribing rules for each of the providers separately is not sufficient.
As seen in Section 6.7.4, an anomaly may not manifest itself when only single
provider-centric rules are considered. The anomaly may be an acceptable activity
from the individual provider, but be unacceptable when considered part of a value
chain.

Another difficulty in determining normal interaction is distinguishing accept-
able and unacceptable provider interaction. Simply comparing provider behavior
against known and precise access control rules is not sufficient. Section 6.7.3 il-
lustrated how provider misbehavior can be subtle and within the boundaries of
the contract, but is a deviation from normal/past interactions. There is a number
of factors that may contribute to definition of normal, such as functionality pro-
vided by application, user specific configuration and her usage patterns. What
is acceptable to one consumer may be a risk to another. All of these factors
may change over time in unpredictable ways and have unexpected impact on the
consumer.

6.8 Conclusion

Behavioral norms provide a generic framework to model repeating patterns of
behavior inferred from system logs. The model is based on equivalence relations
that partition the log into strands and group strands together into norms. We
have presented, that specifying different types of equivalence may result in a dif-
ferent view of system operation and discovering potentially new and unexpected
runtime characteristics of the system. In addition, considering the combined view
of multiple collaborating systems may allow the discovery of common patterns
of their operation and be potentially useful in identifying anomalies. We demon-
strated that the norm model configurations can be discovered automatically and

Analysis and detection of security
vulnerabilities in contemporary software

81 Olgierd Pieczul

6. Exploring Behavioral Norms 6.8 Conclusion

evaluated it experimentally. The experiments suggest that the search mechanism
can be quite efficient in identifying log event attributes that could be used to
build norm model equivalence relations.

While this dissertation focused mainly on applying behavioral norms for the pur-
pose of anomaly detection, the model may have other security applications. Ob-
serving system norms, changes in its number and structure over time may help
to identify security problems. Developing theories about the emergent norms
and their security applications is a topic for future research. In [22] we discuss
how norms can be interpreted in the context of various security properties of the
system.

Analysis and detection of security
vulnerabilities in contemporary software

82 Olgierd Pieczul

Chapter 7

Runtime Verification of
Java Applications

7.1 Introduction

In previous chapters, we described the model of behavioral norms and some of its
interpretations. This chapter includes an in-depth discussion on how the model
could be applied to application behavior at the level of Java method calls and used
to detect anomalies that arise from vulnerabilities caused by the dark side of the
code. Based on the discussion in previous chapters, we introduce an interpretation
of scope and trace equivalence in the context of Java applications. We also
introduce a runtime verification algorithm and discuss how it can be applied to
identifying and preventing exploitation of the vulnerabilities during application
execution. The operation of the algorithm is demonstrated through various types
of anomalous execution traces. Finally, we present the strategy for algorithm
implementation and integration of runtime verification with Java applications.
Without loss of generality, the discussion in this chapter is focused around, and
illustrated with, the Java microblog application introduced in Chapter 2.

7.2 Scope

In Section 2.4 on page 20, we presented two traces of application execution.
The first trace captured the execution of the microblog application in response

83

7. Runtime Verification of Java
Applications 7.2 Scope

to posting a message. The second trace resulted from an attack exploiting a
public getter vulnerability that allowed the change of the current user recorded
in the application’s session. Figure 7.1 depicts both traces using Caller:

Class.method format. As the message contains no URLs, the portion of logic

ParamsInt: PostAction.setText

Dispatcher: PostAction.execute

PostAction: PostAction.getUser

PostAction: Message.setAuthor

PostAction: TextUtils.getUrls

PostAction: DAO.add

PostAction: PostAction.return

ParamsInt: PostAction.setText

ParamsInt: PostAction.getUser

ParamsInt: User.setId

Dispatcher: PostAction.execute

PostAction: PostAction.getUser

PostAction: Message.setAuthor

PostAction: TextUtils.getUrls

PostAction: DAO.add

PostAction: PostAction.return

Figure 7.1: A trace fragment of message posting and user impersonation

related to creating website snapshot is not executed. The listing does not include
every Java method invocation. The full trace would typically contain many thou-
sands of events for the action execution, including the methods that belong to
the application, dependent libraries, application server and Java standard library.
Instead, the trace is scoped to calls of methods in classes from the application’s
Java package, that is net.micro and calls made by classes in that package.
For example, the call Dispatcher: PostAction.setText, made by Struts
to set the message text in the application’s action class, is in scope because the
PostAction class is in the application’s package. The call, PostAction:
TextUtils.getUrls, by the application to textutils library to identify
URLs, is in scope because the caller class is in the package. Many other calls
meet both criteria. In addition, only certain attributes (caller, class and
method) are included in the trace. Other values, such as the full stack trace or
heap status, while available at the method execution time, were considered out
of scope.

Selecting the correct scope is essential in order to identify unexpected code execu-
tion. For example, the events related to the execution that results from exploiting
the public getter vulnerability (discussed in Section 2.3.2, page 18) are included in
the trace presented at the right-hand side of Figure 7.1. It includes two additional
events, that are missing from the trace on the left-hand side.

However, the second vulnerability of the microblog application, that is, accessing

Analysis and detection of security
vulnerabilities in contemporary software

84 Olgierd Pieczul

7. Runtime Verification of Java
Applications 7.3 Modeling Trace Equivalence

arbitrary files for URLs included in a message text(Section 2.3.1.3, page 17), can
not be observed through traces at this scope. For example, the trace for posting
a message with a single http link and a single file link are indistinguishable
at the scope that only includes application methods. A different selection of
the scope makes this vulnerability more apparent. For example, the scope that
includes methods of the WebUtils library and all Java permission checks is shown
in Figure 7.2. At this scope, the traces reflect the difference in two execution
paths of the application, that is, opening an HTTP URL and a file URL.

WebUtils: URL.init

WebUtils: URL.openConnection

WebUtils: URLConnection.getInputStream

HttpURLConnection: URL.GET

HttpURLConnection: Socket.connect

HttpURLConnection: Socket.resolve

HttpURLConnection: Socket.connect

WebUtils: RenderEngine.render

WebUtils: WebUtils.return

WebUtils: URL.init

WebUtils: URL.openConnection

WebUtils: URLConnection.getInputStream

FileURLConnection: File.read

WebUtils: RenderEngine.render

WebUtils: WebUtils.return

Figure 7.2: Traces for posting message with http and file URLs, lower ab-
straction scope

7.3 Modeling Trace Equivalence

Figure 7.3 depicts sample strands from the execution of PostAction code. The
strands originate from the log of method calls, partitioned to separate calls that
are executed for different application’s transactions that process HTTP requests.
The partitioning is done with the event equivalence relation based on the common
transaction identifier of HTTP requests. We will focus on the strands scoped
to class and method attributes. Trace 1 captures the posting of a message
without a URL in its text, Traces 2, 3 and 4 posting of messages that include
one, two and three URL links respectively. Traces 5-8 capture posting of messages
when snapshots for some of the URLs can not be taken, for example due to an
incorrect URL or the web server being not accessible at the time. These strands
capture just a small portion of possible strands within the scope, and many more
execution paths are possible with different numbers of URL links, various error
conditions, and so forth. Because the strands are scoped to the class/method
name only, they represent a number of instances that differ by attributes which
are not in the scope. For example, there could have been a number of strands

Analysis and detection of security
vulnerabilities in contemporary software

85 Olgierd Pieczul

7. Runtime Verification of Java
Applications 7.3 Modeling Trace Equivalence

for posting a message without a URL in the log of system execution, but there is
only a single sequence that represents them in the selected scope.

Trace 1

PostAction.setText

PostAction.execute

PostAction.getUser

Message.setAuthor

TextUtils.getUrls

DAO.add

PostAction.return

Trace 2

PostAction.setText

PostAction.execute

PostAction.getUser

Message.setAuthor

TextUtils.getUrls

Message.addLink

WebUtils.snapshot

Message.addImage

DAO.add

PostAction.return

Trace 3

PostAction.setText

PostAction.execute

PostAction.getUser

Message.setAuthor

TextUtils.getUrls

Message.addLink

WebUtils.snapshot

Message.addImage

Message.addLink

WebUtils.snapshot

Message.addImage

DAO.add

PostAction.return

Trace 4

PostAction.setText

PostAction.execute

PostAction.getUser

Message.setAuthor

TextUtils.getUrls

Message.addLink

WebUtils.snapshot

Message.addImage

Message.addLink

WebUtils.snapshot

Message.addImage

Message.addLink

WebUtils.snapshot

Message.addImage

DAO.add

PostAction.return

Trace 5

PostAction.setText

PostAction.execute

PostAction.getUser

Message.setAuthor

TextUtils.getUrls

Message.addLink

WebUtils.snapshot

Message.addImage

Message.addLink

WebUtils.snapshot

DAO.add

PostAction.return

Trace 6

PostAction.setText

PostAction.execute

PostAction.getUser

Message.setAuthor

TextUtils.getUrls

Message.addLink

WebUtils.snapshot

Message.addLink

WebUtils.snapshot

Message.addImage

DAO.add

PostAction.return

Trace 7

PostAction.setText

PostAction.execute

PostAction.getUser

Message.setAuthor

TextUtils.getUrls

Message.addLink

WebUtils.snapshot

Message.addLink

WebUtils.snapshot

DAO.add

PostAction.return

Trace 8

PostAction.setText

PostAction.execute

PostAction.getUser

Message.setAuthor

TextUtils.getUrls

Message.addLink

WebUtils.snapshot

Message.addLink

WebUtils.snapshot

Message.addLink

WebUtils.snapshot

DAO.add

PostAction.return

Figure 7.3: Sample strands of microblog application

7.3.1 Approximating norms with n-grams

A norm is defined in Section 5.5, page 52, as a set of equivalent traces. It is prac-
tical to use an approximate matching that will allow strands with small structural
differences, such as repetition of the same sub-sequence, to be considered equiva-
lent. Section 6.3 discusses n-gram interpretation of the trace equivalence relation.
A set of n-grams can act as a norm and represent a number of equivalent strands.
Figure 7.4 presents the set of n-grams1 corresponding with traces from Figure 7.3.

1For improved readability, we omit the set {} and sequence 〈〉 parentheses that would
normally be used around sets and n-grams .

Analysis and detection of security
vulnerabilities in contemporary software

86 Olgierd Pieczul

7. Runtime Verification of Java
Applications 7.3 Modeling Trace Equivalence

Set 1 (Trace 1)

PostAction.setText, PostAction.execute

PostAction.execute, PostAction.getUser

PostAction.getUser, Message.setAuthor

Message.setAuthor, TextUtils.getUrls

TextUtils.getUrls, DAO.add

DAO.add, PostAction.return

Set 2 (Trace 2)

PostAction.setText, PostAction.execute

PostAction.execute, PostAction.getUser

PostAction.getUser, Message.setAuthor

Message.setAuthor, TextUtils.getUrls

TextUtils.getUrls, Message.addLink

Message.addLink, WebUtils.snapshot

WebUtils.snapshot, Message.addImage

Message.addImage, DAO.add

DAO.add, PostAction.return

Set 3 (Trace 3 & 4)

PostAction.setText, PostAction.execute

PostAction.execute, PostAction.getUser

PostAction.getUser, Message.setAuthor

Message.setAuthor, TextUtils.getUrls

TextUtils.getUrls, Message.addLink

Message.addLink, WebUtils.snapshot

WebUtils.snapshot, Message.addImage

Message.addImage, Message.addLink

Message.addImage, DAO.add

DAO.add, PostAction.return

Set 4 (Trace 5)

PostAction.setText, PostAction.execute

PostAction.execute, PostAction.getUser

PostAction.getUser, Message.setAuthor

Message.setAuthor, TextUtils.getUrls

TextUtils.getUrls, Message.addLink

Message.addLink, WebUtils.snapshot

WebUtils.snapshot, Message.addImage

Message.addImage, Message.addLink

WebUtils.snapshot, DAO.add

DAO.add, PostAction.return

Set 5 (Trace 6)

PostAction.setText, PostAction.execute

PostAction.execute, PostAction.getUser

PostAction.getUser, Message.setAuthor

Message.setAuthor, TextUtils.getUrls

TextUtils.getUrls, Message.addLink

Message.addLink, WebUtils.snapshot

WebUtils.snapshot, Message.addImage

Message.addImage, DAO.add

DAO.add, PostAction.return

Set 6 (Trace 7 & 8)

PostAction.setText, PostAction.execute

PostAction.execute, PostAction.getUser

PostAction.getUser, Message.setAuthor

Message.setAuthor, TextUtils.getUrls

TextUtils.getUrls, Message.addLink

Message.addLink, WebUtils.snapshot

WebUtils.snapshot, DAO.add

DAO.add, PostAction.return

Figure 7.4: Sample bi-gram sets for strands in Figure 7.3

7.3.2 Groups and arrangements

Software execution strands typically consist of a number of common sub-
sequences that appear in a number of strands. For example, the strands of
PostAction execution often include the same opening and closing sequence
of events. Consequently, the n-gram sets built from the strands contain a num-
ber of common n-grams which appear in many sets. When comparing sets in
Figure 7.4, it could be observed that they mostly include common subsets of n-
grams and differ only by a few n-grams. In this section we describe a different
representation of sets of n-grams that reduces the redundancy caused by common
repeating groups of n-grams.

Analysis and detection of security
vulnerabilities in contemporary software

87 Olgierd Pieczul

7. Runtime Verification of Java
Applications 7.4 Runtime Verification

A group defined over a collection of sets is a common subset of elements that
always appear together in the sets in a collection. For example, in the collection
of sets

{a, b, c}, {a, b}, {a, b, c, d}, {e, f }, {e, f , g},

the following groups can be defined

{a, b}, {e, f }, {c}, {d}, {g}.

The group {a, b} means that every set containing element a will also contain
element b, and vice versa.

Sets of n-grams built from strands often contain distinct subsets of
n-grams that always appear together and could be represented as
groups. Groups may be a part of a longer, continuous sequence
of operations, such as 〈TextUtils.getUrls, Message.addLink〉 and
〈Message.addLink, WebUtils.snapshot〉. Also, some n-grams may rep-
resent sequences that always occur in the strand, for example a common
beginning (〈PostAction.setText, PostAction.execute〉) and ending
(〈DAO.add, PostAction.return〉). Table 7.1 depicts groups for the n-gram
sets from Figure 7.4. Note that if some n-gram does not always appear with
some other n-grams it becomes a singleton group.

Grouping n-grams allows for more compact representation of n-gram sets as ar-
rangements of groups. For example, six n-gram sets from Figure 7.4 may be
represented as the six-group arrangements in Table 7.2.

7.4 Runtime Verification

The model of groups and arrangements is used to create a reference profile of
application behavior. That profile is used to verify the application activity at
runtime. As described in Section 7.3, the strands used to build the profile orig-
inate from the log of method calls, partitioned in order to separate calls that
are executed for different application’s transactions that process HTTP requests.
Therefore, the runtime verification mechanism should be able to distinguish ap-
plication operation in different transactions. Verifying that a complete strand
matches a reference profile created using a model of groups and arrangements is

Analysis and detection of security
vulnerabilities in contemporary software

88 Olgierd Pieczul

7. Runtime Verification of Java
Applications 7.4 Runtime Verification

Group n-grams

Group 1 {〈PostAction.setText, PostAction.execute〉,
〈PostAction.execute, PostAction.getUser〉,
〈PostAction.getUser, Message.setAuthor〉,
〈Message.setAuthor, TextUtils.getUrls〉,
〈DAO.add, PostAction.return〉}

Group 2 {〈TextUtils.getUrls, DAO.add〉}

Group 3 {〈TextUtils.getUrls, Message.addLink〉,
〈Message.addLink, WebUtils.snapshot〉}

Group 4 {〈WebUtils.snapshot, Message.addImage〉}

Group 5 {〈WebUtils.snapshot, Message.addLink〉}

Group 6 {〈WebUtils.snapshot, DAO.add〉}

Group 7 {〈Message.addImage, Message.addLink〉}

Group 8 {〈Message.addImage, Dao.add〉}

Table 7.1: N-gram groups

Arrangement Groups Group Arrangements

Arrangement 1 {1, 2} Group 1 {1, 2, 3, 4, 5, 6}
Arrangement 2 {1, 3, 4, 8} Group 1 {1, 2, 3, 4, 5, 6}
Arrangement 3 {1, 3, 4, 7, 8} Group 3 {2, 3, 4, 5, 6}
Arrangement 4 {1, 3, 4, 6, 7} Group 4 {2, 3, 4, 5}
Arrangement 5 {1, 3, 4, 5, 6} Group 5 {5, 6}
Arrangement 6 {1, 3, 5, 6} Group 6 {4, 5, 6}

Group 7 {3, 4}
Group 8 {2, 3}

Table 7.2: N-gram group arrangements

Analysis and detection of security
vulnerabilities in contemporary software

89 Olgierd Pieczul

7. Runtime Verification of Java
Applications 7.4 Runtime Verification

trivial. It requires computing n-grams for the strand and checking if the same
set is defined by any of the arrangements in the profile. However, it can not be
used for verifying software execution at runtime. The runtime verification should
detect anomalies for every observed event, that is, in most cases where only some
portion of an execution trace is available. In this section, we discuss the algo-
rithm that allows online anomaly detection against reference profiles generated
according to the behavioral norm model.

7.4.1 Verification algorithm

Given a sequence of past events in the transaction that lead to the current state
of the transaction, the algorithm in Figure 7.5 checks whether processing the
next event in this current state can result in anomalies. It relies on the refer-
ence profile, generated according to groups and arrangements model defined in
terms of three variables: a set of profile.events, a mapping between n-
grams and corresponding groups (profile.groups), and a mapping between
groups and arrangements in which they appear (profile.arrangements).
The current state of a transaction identified by id is captured using three vari-
ables: state[id].ngram, which captures recent events, an initially empty
set of state[id].groups already observed in the transaction and, a set of
possible state[id].arrangements for the transaction, initially equal to
profile.arrangements.

global variables: profile, state

function check(event) {

id = transId(event)

if (event /∈ profile.events) return false // unknown event

push(state[id].ngram, event)

if (state[id].ngram[0] == null) return null // too short

group = profile.groups[ngram]

if (group == ∅) return false // unkown n-gram

if (group ∈ state[id].groups) return true // already known group

state[id].groups = state[id].groups ∪ {group} // record group

state[id].arrangements =

(state[id].arrangements ∩ profile.arrangements[group])

return (state[id].arrangements 6= ∅) // is arrangement acceptable?

}

Figure 7.5: Pseudo-code of runtime verification algorithm

Analysis and detection of security
vulnerabilities in contemporary software

90 Olgierd Pieczul

7. Runtime Verification of Java
Applications 7.4 Runtime Verification

Operator [] references mapping element by index and function push appends
an element to the end of an array, removing elements from the beginning, if
necessary. The transId function returns a unique identifier of the transaction
that the event belongs to. It is the same identifier that was used to partition
application log into strands that were used to generate the reference profile. This,
for example, could be the value of certain event attributes.

The algorithm first checks if the event is contained in the profile. Then, provided
that enough events were captured, it checks whether there is a matching n-gram
for the event. It then checks if the group for the n-gram was already observed
in the current transaction and, if it was, it returns a positive result. If the
group was not yet observed, the algorithm checks whether the arrangements for
the group intersect with possible arrangements for the groups observed so far
for the transaction. This means that for every event, the algorithm performs
only very simple operations such adding elements to sets, set intersection and
set membership check. The only state variables that have to be kept for the
transaction are: an array of n last events for the n-gram, a growing set of observed
groups and a shrinking set of possible arrangements. The implementation of the
algorithm in Java uses integers to represent the events and a hash table to map
the events to the corresponding integer. Also, groups and arrangements, are
implemented as collections of integers, so all set operations performed by the
algorithm are made using simple integer comparisons.

7.4.2 Algorithm examples and discussion

Table 7.3 depicts the state in subsequent invocations of the runtime verification
algorithm for an anomaly-free application execution. The columns represent:
event position in a trace, event processed by the algorithm and fields of the
state[id] variable after processing of each event. The numbers in groups

and arrangements columns refer the identifiers of groups and arrangements in
tables 7.1 and 7.2.

For the first event, the algorithm verifies that the event is included in the profile,
appends it to the ngram array and returns, as the n-gram is not yet complete.
For the second event, the ngram state variable becomes fully set and the al-
gorithm identifies the group for the n-gram (1, underlined) and corresponding
arrangements. The state at this point means that one group (1) was observed
and possible arrangements include {1, 2, 3, 4, 5, 6}. The value of the groups

Analysis and detection of security
vulnerabilities in contemporary software

91 Olgierd Pieczul

7. Runtime Verification of Java
Applications 7.4 Runtime Verification

event ngram groups arrangements

1 PostAction.setText 〈null, PostAction.setText〉 {} {1, 2, 3, 4, 5, 6}
2 PostAction.execute 〈PostAction.setText, PostAction.execute〉 {1} {1, 2, 3, 4, 5, 6}
3 PostAction.getUser 〈PostAction.execute, PostAction.getUser〉 {1} {1, 2, 3, 4, 5, 6}
4 Message.setAuthor 〈PostAction.getUser, Message.setAuthor〉 {1} {1, 2, 3, 4, 5, 6}
5 TextUtils.getUrls 〈Message.setAuthor, TextUtils.getUrls〉 {1} {1, 2, 3, 4, 5, 6}
6 Message.addLink 〈TextUtils.getUrls, Message.addLink〉 {1, 3} {2, 3, 4, 5, 6}
7 WebUtils.snapshot 〈Message.addLink, WebUtils.snapshot〉 {1, 3} {2, 3, 4, 5, 6}
8 Message.addImage 〈WebUtils.snapshot, Message.addImage〉 {1, 3, 4} {2, 3, 4, 5}
9 DAO.add 〈Message.addImage, DAO.add〉 {1, 3, 4, 8} {2, 3}
10 PostAction.return 〈DAO.add, PostAction.return〉 {1, 3, 4, 8} {2, 3}

Table 7.3: Runtime verification: anomaly-free sequence

remains unchanged until the event number 6 when a new group (3, underlined) is
identified. The arrangements variable is changed to reflect that the group is
included in a different set of arrangements than in the current state and becomes
an intersection of both sets. Similar operations continue with more groups being
added and, consequently, fewer possible arrangements left in the state until the
end of execution of the strand.

Table 7.4 depicts an execution with where an unknown method is executed. This
may, for example, result from exploiting an unprotected setter method in the
common APIAction class. This case is not covered in our discussion in Chap-
ter 2; vulnerabilities that may arise from method getters and setters are dis-
cussed in detail in Chapter 9. The event APIAction.setUser is not included
in profile.events and the algorithm returns false indicating an anomaly.
Note that depending on implementation of the runtime verification mechanism,
the execution of the current thread may be interrupted at this point, that is
before invoking the anomalous method call. To make the discussion more com-
prehensive, we assume that execution is not interrupted and the thread continues
to execute. It is worth noting that the value of the state.ngram variable

event state: ngram groups arrangements

1 PostAction.setText 〈null, PostAction.setText〉 {} {1, 2, 3, 4, 5, 6}
2 APIAction.setUser 〈null, PostAction.setText〉 {} {1, 2, 3, 4, 5, 6}
3 PostAction.execute 〈PostAction.setText, PostAction.execute〉 {} {1, 2, 3, 4, 5, 6}
4 PostAction.getUser 〈PostAction.execute, PostAction.getUser〉 {1} {1, 2, 3, 4, 5, 6}
5 Message.setAuthor 〈PostAction.getUser, Message.setAuthor〉 {1} {1, 2, 3, 4, 5, 6}
6 TextUtils.getUrls 〈Message.setAuthor, TextUtils.getUrls〉 {1} {1, 2, 3, 4, 5, 6}
7 DAO.add 〈TextUtils.getUrls, DAO.add〉 {1, 2} {1}
8 PostAction.return 〈DAO.add, PostAction.return〉 {1, 2} {1}

Table 7.4: Runtime verification: anomalous sequence with an unknown event

Analysis and detection of security
vulnerabilities in contemporary software

92 Olgierd Pieczul

7. Runtime Verification of Java
Applications 7.4 Runtime Verification

does not change, as the algorithm returns immediately after recognizing an un-
known event. This is, however, an arbitrary implementation decision. The algo-
rithm may be implemented differently in order to append the anomalous event
to the state.ngram variable. In this case, the anomaly for event 2 would
propagate to the event 3, which would also be considered anomalous as the n-
gram 〈PostAction.setUser, PostAction.execute〉 is not included in
the profile.

Table 7.5 depicts an execution that results from the attack discussed above in Sec-
tion 7.2, in which application session is modified due to the exposure of the public
getter PostAction.getUser. The attack involves executing application meth-

event ngram groups arrangements

1 PostAction.setText 〈null, PostAction.setText〉 {} {1, 2, 3, 4, 5, 6}
2 PostAction.getUser 〈PostAction.setText, PostAction.getUser〉 {} {1, 2, 3, 4, 5, 6}
3 User.setId 〈PostAction.getUser, PostAction.getUser〉 {} {1, 2, 3, 4, 5, 6}
4 PostAction.execute 〈PostAction.getUser, PostAction.execute〉 {} {1, 2, 3, 4, 5, 6}
5 PostAction.getUser 〈PostAction.execute, PostAction.getUser〉 {1} {1, 2, 3, 4, 5, 6}
6 Message.setAuthor 〈PostAction.getUser, Message.setAuthor〉 {1} {1, 2, 3, 4, 5, 6}
7 TextUtils.getUrls 〈Message.setAuthor, TextUtils.getUrls〉 {1} {1, 2, 3, 4, 5, 6}
8 DAO.add 〈TextUtils.getUrls, DAO.add〉 {1, 2} {1}
9 PostAction.return 〈DAO.add, PostAction.return〉 {1, 2} {1}

Table 7.5: Runtime verification: anomalous sequence with an unknown n-gram

ods PostAction.getUser and User.setId. The first method is included in
the profile so, it passes the first check made by the algorithm. However, because
it is executed directly after PostAction.setText and the corresponding n-
gram is not part of the profile, the algorithm flags this execution as an anomaly.
Subsequently, if we assume that the execution is not interrupted, the execution
of User.setId is considered anomalous due to an unknown event.

In the examples discussed in this chapter, the scope includes only class

and method attributes. In practice, however, it would be more appro-
priate to include the caller attribute, as it is done during experiments
discussed in Chapter 8. At this scope, the profile would include the
[PostAction: PostAction.getUser] event, as this is the way the method
is called. During the attack, however, the event at position 2 would be
[ParamsInt: PostAction.getUser] because the method is called by the
Struts parameters interceptor. In this case, the method execution would be still
considered anomalous but for a different reason, that is due to an unknown event.
Note that, the simple check on whether an event is contained in the profile, be-

Analysis and detection of security
vulnerabilities in contemporary software

93 Olgierd Pieczul

7. Runtime Verification of Java
Applications 7.4 Runtime Verification

fore validating the n-gram, may be quite effective in identifying anomalies at this
level of abstraction. This is different from most techniques discussed in Chapter 3
which focused on common, general purpose operating system calls, such as open
or read. At that level of abstraction, it is not practical to verify system calls
against the set of system calls that are included in the trace as, most likely, this
would be all common calls made by every application. Also, the inclusion of the
caller class makes the model much more resistant to mimicry attacks. Typically,
the attacker will be constrained to inject method calls using some entry point.
The mechanism of injection is reflected in the trace, making it harder to craft
any malicious sequence. For example, while Struts ParametersInterceptor
allows calling public getter methods, each such call is reflected in the trace with
the interceptor as a caller class. But, if the profile was built using the scope
including the caller class, it would prescribe that the only method that can be
invoked by the interceptor is PostAction.setText.

Table 7.1 depicts an execution that results in an illegal arrangement. The anomaly
is observed at event 11. The n-gram for this event is part of Group 5, which is
included in arrangements {5, 6}. However, based on the thread execution up
to this event, the only legal arrangements are {3, 4}. As there are no common
arrangements between the two sets, the algorithm considers the event anomalous
due to an impossible arrangement. Note that the sequence represents a normal
execution of an application so this case represents a false positive. The profile
we use in the example is built using only 8 sample traces so it is expected that it
does not cover the entire normal behavior of the application.

event ngram groups arrangements

1 PostAction.setText 〈null, PostAction.setText〉 {} {1, 2, 3, 4, 5, 6}
2 PostAction.execute 〈PostAction.setText, PostAction.execute〉 {1} {1, 2, 3, 4, 5, 6}
3 PostAction.getUser 〈PostAction.execute, PostAction.getUser〉 {1} {1, 2, 3, 4, 5, 6}
4 Message.setAuthor 〈PostAction.getUser, Message.setAuthor〉 {1} {1, 2, 3, 4, 5, 6}
5 TextUtils.getUrls 〈Message.setAuthor, TextUtils.getUrls〉 {1} {1, 2, 3, 4, 5, 6}
6 Message.addLink 〈TextUtils.getUrls, Message.addLink〉 {1, 3} {2, 3, 4, 5, 6}
7 WebUtils.snapshot 〈Message.addLink, WebUtils.snapshot〉 {1, 3} {2, 3, 4, 5, 6}
8 Message.addImage 〈WebUtils.snapshot, Message.addImage〉 {1, 3, 4} {2, 3, 4, 5}
9 Message.addLink 〈Message.addImage, Message.addLink〉 {1, 3, 4, 7} {3, 4}
10 WebUtils.snapshot 〈Message.addLink, WebUtils.snapshot〉 {1, 3, 4, 7} {3, 4}
11 Message.addLink 〈WebUtils.snapshot, Message.addLink〉 {1, 3, 4, 5, 7} {}
12 WebUtils.snapshot 〈Message.addLink, WebUtils.snapshot〉 {1, 3} {}
13 DAO.add 〈TextUtils.getUrls, DAO.add〉 {1, 2} {}
14 PostAction.return 〈DAO.add, PostAction.return〉 {1, 3, 4, 8} {}

Table 7.6: Runtime verification: anomalous sequence with an illegal arrangement

Analysis and detection of security
vulnerabilities in contemporary software

94 Olgierd Pieczul

7. Runtime Verification of Java
Applications 7.5 Anomaly Manager

7.5 Anomaly Manager

While traditional logging may be useful for retrospective detection of anomalous
behavior, integrating runtime verification/anomaly detection with the applica-
tion provides the ability to interrupt application execution before the anomalous
operations are executed. The Security Manager is a natural integration point for
monitoring and controlling Java application execution. For example, as discussed
in Section 7.2, an attack exploiting the URL handling vulnerability of microblog
application could be identified by observing the permission checks.

It is limited, however, to the operations which result in permission checks, such
as input/output operations or security related activity, such as access to crypto-
graphic keys. In particular, it would not be possible to identify the public getter
vulnerability as the relevant activity is not in the scope of the Java Security Man-
ager. An arbitrary off-the-shelf component might not have been programmed with
its own permissions. In this case, it is insufficient to rely on the Security Manager,
and an additional integration point is required. It could be implemented using
Java Aspects that allow intercepting invocation of methods and adding a custom
code to execute before or after each call.

We have developed an Anomaly Manager that supports behavioral norm-based
anomaly detection for Java applications. It is a runtime library that implements
the Java Security Manager interface that traps permission checks from which it
can generate a baseline/behavior reference profile, or it can monitor application
execution for compliance with a previously generated behavior profile. We have
also implemented a Java Aspect that intercepts method calls in the scope of inter-
est. The basic structure of the aspect for the microblog application in the scope
discussed in this chapter is depicted in Figure 7.6. The @Before annotation
prescribes that the aspect intercepts calls to methods of classes in net.micro

1 @Aspect public class BehaviorAspect {

2 @Before("call(* net.micro..*()) || within(net.micro..*)")

3 public void intercept(JoinPoint context) {

4 Permission perm = new ExecPermission(context);

5 SecurityManager.getSecurityManager().checkPermission(perm);

6 }

7 }

Figure 7.6: Java Aspect for the microblog application calls

Analysis and detection of security
vulnerabilities in contemporary software

95 Olgierd Pieczul

7. Runtime Verification of Java
Applications 7.6 Discussion

package, or any call made by classes within that package. The Aspect invokes the
intercept method, providing the execution context that includes information
such as caller, class and method. A special type of permission is created using
that context information and the Security Manager is called to check it. This, in
turn, activates the anomaly manager that verifies the method call in the context
of the profile and the current state. In this arrangement, the manager may inter-
rupt the execution of the current thread (for example, by throwing an exception)
if an anomalous call is detected and prevent its execution.

The overall structure of the integration is depicted in Figure 7.7.

Figure 7.7: Java Anomaly Manager integration

7.6 Discussion

The n-gram interpretation of the behavioral norms model could be viewed as
similar to the n-gram based models focused on detecting anomalous system calls,
such as stide [14,17], discussed in Chapter 3. Both approaches use n-grams to
implement approximate sequence matching but there are a number of differences.
The primary difference is that behavioral norms use separate sets to capture
behaviorally different transactions, which makes the model more precise when
compared to sdite in which all application activity is blended into a single
set of n-grams. The increased precision may not be evident in the context of
the simple examples used in this chapter that contained traces of a single API
call/Struts Action. However, the full profile of the microblog application would
be built using traces from a number of different API calls, such as searching,
viewing and deleting messages. For illustration, the behavioral norms profile
could be reduced to the profile presented in [17] by creating a union of all n-gram
sets. Also, including context attributes, such as the caller class, significantly
increases the precision of the model.

Analysis and detection of security
vulnerabilities in contemporary software

96 Olgierd Pieczul

7. Runtime Verification of Java
Applications 7.7 Conclusion

Systems such as stide often use a threshold value, such as the number of mis-
matches against the profile observed before the trace is considered anomalous.
This may not be practical at the method call abstraction level since one or two
injected method calls may be enough to successfully exploit a vulnerability. This
means that the baseline behavior for the norms-based system must be very com-
prehensive in order reduce the number of false positives. Also, it appears that
the increased precision of the model and usage of application-specific method call
names, rather than general-purpose system calls, makes it possible to use much
shorter n-grams and consequently reduce the size of the profile.

7.7 Conclusion

The model of behavioral norms provides a generic framework for capturing a
transaction-like behavior. In this chapter we presented an interpretation of the
model focused on Java method calls. The scoping of method calls may be done
using various attributes of the method execution context. We focused on Java
packages, caller, class and method. The trace equivalence can be implemented
using an approximate sequence matching using n-grams. This allows reducing the
profile size and cover typical control flow structures such as conditions and loops.
Encoding the profile using the groups and arrangements representation allows the
further reduction of its size and optimization of the profile for anomaly detection.

The n-gram interpretation focuses only on the attributes that represent an opera-
tion and its context, such as class and caller. The operation attributes repeat
in the same form in every strand. However, the log also includes other attributes
for which the value may be different in different strands, but remains unchanged
within the strand. For example, in the normal operation of PostAction, the
value returned by method User.getUser (such as frank) is always the same
as the argument of the Message.setAuthor method. Further research should
consider how such correlations of attributes can be included in the n-gram based
model.

We presented an anomaly detection algorithm that allows the verification of the
application execution at runtime for every individual method call within scope.
We also discussed the strategy for integrating the anomaly detection with the
application using the Anomaly Manager. Using Java Security manager and As-
pects allows the enablement of the runtime verification in existing applications
without any code changes in the application itself.

Analysis and detection of security
vulnerabilities in contemporary software

97 Olgierd Pieczul

Chapter 8

Experimental Evaluation

8.1 Introduction

Our hypothesis is that unknown security vulnerabilities in software components
can be identified as runtime anomalies arising from unexpected execution paths.
In this chapter, we evaluate the hypothesis experimentally. In previous chapters,
we focused on the microblog system and corresponding vulnerabilities at the
scope of the application code. While this provided an easy to follow example for
our discussion it is not appropriate for the experimental evaluation. Testing this
hypothesis using a catalog of vulnerabilities hand-crafted for the purpose, may
provide insight, but their design can be contrived/“cherry-picked” and is not an
effective evaluation of whether the approach would work “in the wild”.

We therefore decided to test the hypothesis against a well established and popular
enterprise-scale software component that has a history of security vulnerabilities.
The experiment still uses the microblog application, but at a different scope.
Rather than analyzing the behavior of the application itself, we focused on one
of the libraries it uses, that is Apache Struts. Struts is a popular and mature
Model-View-Controller used by a number of enterprise applications [86].

The prior research on the subject of detecting anomalous software behavior re-
sulting from exploiting vulnerabilities [3, 14, 17, 18] also based their experiments
on the actual vulnerabilities in real-life applications. However, often just a few
selected vulnerabilities were considered. For example, the anomaly detection sys-
tem presented in [17] is evaluated using three vulnerabilities in sendmail, one in
lpr and one in wu-ftpd. As we are interested in verifying how effective anomaly

98

8. Experimental Evaluation 8.2 Experiment Setup

detection is in identifying software vulnerabilities in practice, we decided to con-
sider a complete set of vulnerabilities reported over a long time frame. In the
following we considered the vulnerability history of twenty-six versions of Apache
Struts over a five-year period, starting with version 2.3.1, released in December
2011, to version 2.3.24.1 released in May 2015. In particular, the objective is
to test whether vulnerabilities reported against earlier versions of software can
be identified as anomalies, while those same anomalies are not reported against
later versions of the software in which the corresponding vulnerability has been
remedied.

In the following sections, we describe how the experiment was set up and per-
formed to systematically establish baseline behavior of the application, generate
the profile and test it against the vulnerabilities. We also present the results of
the experiment with the analysis and discussion.

8.2 Experiment Setup

Figure 8.1 outlines the key elements of the experimental setup. In order to evalu-

Figure 8.1: Experiment setup

ate Struts behavior in its typical environment, we developed a small Struts-based
web application based on the microblog program described in Chapter 2. The
application makes conventional use of Struts, with a standard configuration.

The application system is built automatically and the experiment is carried out
separately for each version of Struts. Experiment characteristics, such as ex-
ecution times and sizes, were comparable for the different versions of Struts.
Experiments were orchestrated by Apache Maven and each iteration for a dif-
ferent Struts version comprised of two phases. In the first phase, a trace of the
application system’s execution is generated and from which the behavioral profile

Analysis and detection of security
vulnerabilities in contemporary software

99 Olgierd Pieczul

8. Experimental Evaluation 8.3 Building Behavioral Profiles

is built for the given version of Struts. In the second phase, the effectiveness of
anomaly checking based on the generated behavioral profile is verified.

8.3 Building Behavioral Profiles

A commercial application security scanner was run against the microblog web
application. The scanner configuration was standard and not tailored in any
particular way for Struts. The same scanner configuration was repeatedly used
against each deployment of the application with a different version of Struts.
The scanner operates in two phases. First, it crawls the application by access-
ing every URL, following every link to discover its structure and functionality.
This phase is assisted by a set of simple automated functional tests that cover
various basic features of the application such as posting a message, which the
scanner intercepts to learn the initial set of URLs. This is a standard practice
to improve the automatic discovery of the scanner [87]. In the second phase, the
scanner interacts with the microblog web application, black-box testing an ex-
tensive collection of known vulnerabilities and misconfigurations. This scanning
is considered to represent the kind of application interaction that is expected by
the developer. The Java Anomaly Manager was deployed with the application
and used to build/check the behavior profile in each experiment.

When describing the anomaly detection in Chapter 7, we focused on the applica-
tion behavior from the perspective of application’s own method calls. In our ex-
periment, we consider the behavior of Struts, in terms of how it is used by the ap-
plication. Therefore, the Anomaly Manager’s Aspect was configured to intercept
all method calls within the Struts packages, that is org.apache.struts2.*.,
corresponding to 473 distinct methods that are used in the context of the mi-
croblog web application. Also, 143 different caller classes are included in the
profile. A single scan experiment resulted in around 9000 HTTP requests to the
microblog web application URLs with a range of inputs, taking 8 minutes to
complete. In monitoring the execution of the application during this scan, the
Anomaly Manager generates a 237-megabyte trace containing 2.76 million Struts
events, and a set of behavioral norms generated within approximately a further
5 seconds, running on a mid-range computer1.

The behavior profile was built using request identifier attribute for the target

1Intel i5-4300U 1.90GHz, 8GB RAM

Analysis and detection of security
vulnerabilities in contemporary software

100 Olgierd Pieczul

8. Experimental Evaluation 8.4 Vulnerability Tests

and permission/class name and action/method for the operation. Also, as initial
experiments indicated no difference in the results with n-gram sizes up to 7 we
have selected size of 3 as the most memory efficient. Despite the size of the
trace, the resulting profile is quite compact. All of the captured Struts activity
is abstracted to 65 behavioral norms taking 40 kilobytes of memory.

Figure 8.2 plots an example of the number of distinct norms generated, against
the number of HTTP requests made by the scanner to the application deployed
with Struts version 2.3.1. From the start of the scan, as the number of HTTP
requests increase, the number of norms resulting from the requests rapidly in-
crease initially, and then appear to stabilize. This graph suggests that our scan
size of 8963 HTTP requests is adequate, after which no new norms are identified.
Similar results were achieved for the other versions of Struts.

Figure 8.2: Growth in behavioral norms

Having generated a behavioral norm profile for a given version of Struts and
included it with the Anomaly Manager in the application deployment, the second
phase of the experiment involves testing the effectiveness of using the behavioral
model to detect vulnerabilities for that version of Struts.

8.4 Vulnerability Tests

At the time of the experiment and based on the Common Vulnerabilities and Ex-
posures (CVE) entries in the National Vulnerability Database, there were nine-
teen different vulnerabilities known to the general public for the twenty-six ver-
sions of Struts under study. For each vulnerability, the CVE advisory was studied
alongside the vulnerable Struts code and the remediated version of the code, and

Analysis and detection of security
vulnerabilities in contemporary software

101 Olgierd Pieczul

8. Experimental Evaluation 8.4 Vulnerability Tests

an attack vector exploiting the vulnerability was developed. Note that we do not
include the vulnerability CVE-2013-6348 that applies to a development-time tool
Configuration Browser Plugin [88]. This vulnerability is incorrectly attributed to
Struts library in CVE records, but it is not included Struts security bulletin. Also,
some vulnerabilities were reported in the time-frame of our experiment, but for
earlier versions of Struts. Of the nineteen vulnerabilities, attacks for the eighteen
listed in Table 8.1 were developed; we could not find enough information to re-
produce the vulnerability identified in CVE-2012-4386. For each vulnerability, we
implemented an automated test case which attempts to exploit the vulnerability
and verify that the exploitation was successful. Appendix A provides definitions
of all the test cases.

For example, CVE-2013-2115 is a vulnerability that allows a remote attacker to
execute arbitrary OGNL code [36], discussed in Chapter 9, code via a crafted
request. It affects Struts JSP tags for rendering URLs. In order to render a
URL for a search action, including the current page’s parameters, the developer
implements the following code.

<s:url action="SearchAction" includeParams="all">

The tag is evaluated to /api/search?name=Frank. Using the tag is conve-
nient and relieves the developer from having to manually map actions to URLs
and passing parameters, thus further separating application logic from low-level
details. However, the code for processing the tag suffers from a security vulner-
ability. An attacker may add a request parameter by including OGNL code and
that code will be evaluated when processing the tag. For example, the official se-
curity advisory for this vulnerability (CVE-2013-2115) describes that an attacker
may append

x=$[@java.lang.Runtime@getRuntime().exec('cmd')]

to the page parameters. The OGNL code, enclosed in ${} is evaluated and
custom Java code is executed by the application. However, the attack results in
activity caused not only by an unexpected Struts execution path, but also by the
injected code involved in creating a process and accessing a file binary. Rather
than injecting malicious code that results in significantly different behavior, each
test case attempts to inject benign code that simply sets a variable that can
be subsequently checked to determine the success of the attack. Note, setting
a variable is not in the scope of Struts methods, or the activity captured by
AspectJ and does not get flagged as an anomaly in itself. The objective of each

Analysis and detection of security
vulnerabilities in contemporary software

102 Olgierd Pieczul

8. Experimental Evaluation 8.4 Vulnerability Tests

test is to generate the minimal behavior needed to explore the path of the attack,
but it does not engage in subsequent behavior that might be easily recognized as
anomalous in its own right. In this way, the test case is intended to represent a
worst-case scenario for anomaly detection.

In many cases developing the vulnerability test cases was not trivial. A number
of the vulnerabilities are not clearly described in their respective advisories and
sometimes the details are intentionally undisclosed. For example, CVE-2013-4310
(discussed below) is described as allowing “to bypass security constraints under
certain conditions”. It further explains that “more details will available later
on when the patch will be widely adopted”. Similarly, CVE-2015-1831 “allows
remote attackers to ‘compromise internal state of an application’ via unspecified
vectors”. In order to prepare test cases for these vulnerabilities, it was necessary
to understand their nature through an analysis of source code changes of Struts
and experimentation.

8.4.1 Vulnerability test results

Table 8.1 contains2 the outcome of testing each of the eighteen reported vulnera-
bilities against each of the twenty-six versions of Struts. Each table cell contains
three outcomes. The first outcome indicates whether it was reported that the
particular version of Struts was indeed affected (+), or not (−) by the vulnerabil-
ity. The second outcome specifies whether the execution of the attack test case
for that vulnerability was successful (+), or not (−). The third outcome specifies
whether the Anomaly Manager detected anomalous behavior during execution
of the test case (+), or not (−). For example, the outcome +++ means that
the version had the reported vulnerability, that the attack test case successfully
executed and that anomalies were detected (true positive).

Considering CVE-2013-2115, the URL tag vulnerability described above, we see
from Table 8.1, that the attack test case successfully exploited this vulnerabil-
ity, and was detected as an anomaly, for all versions 2.3.1 – 2.3.14.1 publicly
announced to be vulnerable (+++). A closer examination of the following execu-
tion trace fragment, generated from the attack test case, identifies the anomaly
as OGNL code used in rendering the URL.

2Presented as a table, keeping in mind Edward R. Tufte’s (2004) observation that “small
non-comparative highly labeled data sets usually belong in tables”.

Analysis and detection of security
vulnerabilities in contemporary software

103 Olgierd Pieczul

8. Experimental Evaluation 8.4 Vulnerability Tests

CVE ID 2.3.1 2.3.4 2.3.14 2.3.14.1 2.3.14.2 2.3.15 2.3.15.1 2.3.16 2.3.16.1 2.3.16.2 2.3.16.3 2.3.20 2.3.24 2.3.24.1

CVE-2015-5209 +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ −−−

CVE-2015-1831 −−− −−− −−− −−− −−− −−− −−− −−− −−− −−− −−− +++ −−− −−−

CVE-2014-7809 ++− ++− ++− ++− ++− ++− ++− ++− ++− ++− ++− −−− −−− −−−

CVE-2014-0116 +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ −−+ −−+ −−+ −−+

CVE-2014-0113 +++ +++ +++ +++ +++ +++ +++ +++ +++ −−+ −−+ −−+ −−+ −−+

CVE-2014-0112 +++ +++ +++ +++ +++ +++ +++ +++ +++ −−− −−− −−− −−− −−−

CVE-2014-0094 +++ +++ +++ +++ +++ +++ +++ +++ −−− −−− −−− −−− −−− −−−

CVE-2013-4316 +++ +++ +++ +++ +++ +++ +++ −−− −−− −−− −−− −−− −−− −−−

CVE-2013-4310 ++− ++− ++− ++− ++− ++− ++− −−− −−− −−− −−− −−− −−− −−−

CVE-2013-2251 +++ +++ +++ +++ +++ +++ −−− −−− −−− −−− −−− −−− −−− −−−

CVE-2013-2248 +++ +++ +++ +++ +++ +++ −−− −−− −−− −−− −−− −−− −−− −−−

CVE-2013-2135 +++ +++ +++ +++ +++ −−− −−− −−− −−− −−− −−− −−− −−− −−−

CVE-2013-2134 +++ +++ +++ +++ +++ −−− −−− −−− −−− −−− −−− −−− −−− −−−

CVE-2013-2115 +++ +++ +++ +++ −−− −−− −−− −−− −−− −−− −−− −−− −−− −−−

CVE-2013-1966 +++ +++ +++ −++ −−− −−− −−− −−− −−− −−− −−− −−− −−− −−−

CVE-2013-1965 +++ +++ +++ −++ −−− −−− −−− −−− −−− −−− −−− −−− −−− −−−

CVE-2012-4387 +++ +++ −−− −−− −−− −−− −−− −−− −−− −−− −−− −−− −−− −−−

CVE-2012-0393 +++ −−− −−− −−− −−− −−− −−− −−− −−− −−− −−− −−− −−− −−−

vulnerable attack successful anomalies not vulnerable attack failed no anomalies

Note that some outcomes were identical for different versions of Struts, and in the interest of
space: version 2.3.4 covers 2.3.1.1, 2.3.1.2 and 2.3.3; 2.3.14 covers 2.3.4.1, 2.3.7, 2.3.8 and 2.3.12;
2.3.15 covers 2.3.14.3, and 2.3.16 covers 2.3.15.2 and 2.3.15.3; 2.3.24 covers 2.3.20.1.

Table 8.1: Attack outcomes on different versions of Struts

Analysis and detection of security
vulnerabilities in contemporary software

104 Olgierd Pieczul

8. Experimental Evaluation 8.4 Vulnerability Tests

DefaultUrlHelper DefaultUrlHelper.translateAndEncode

DefaultUrlHelper DefaultUrlHelper.translateVariable

OgnlInvoke invoke

ServletUrlRenderer ComponentUrlProvider.getAnchor

ServletUrlRenderer ComponentUrlProvider.isPutInContext

Examining execution traces may help identify that part of the code that is respon-
sible for the vulnerability. Indeed, a study of subsequent versions of the Struts
source code that repair the vulnerability reveals that the issue was attributed
to translateVariable that invoked OGNL processing. In the repaired code,
the method was removed as unnecessary. Consequently, translateAndEncode
method (which called translateVariable) was renamed to simply encode.

Carrying out the same test case on subsequent non-vulnerable versions 2.3.14.2
– 2.3.24.1 results in an unsuccessful attack and no anomalous behavior (−−−),
which is as expected. The corresponding trace fragment for those versions shows
that no OGNL code execution—the root cause of the vulnerability in previous
versions—was observed in the context of URL rendering:

DefaultUrlHelper DefaultUrlHelper.encode

ServletUrlRenderer ComponentUrlProvider.getAnchor

ServletUrlRenderer ComponentUrlProvider.isPutInContext

Some tests executed with unanticipated outcomes. A surprising result −++, indi-
cates a successful attack test case, with the anomaly detected (true positive), for
Struts version 2.3.14.1 for which no vulnerability was reported in CVE-2013-1965
and CVE-2013-1966. A closer examination of these two vulnerabilities confirms
that, contrary to publicly available information, version 2.3.14.1 is indeed vulner-
able. In addition, the release notes of version 2.3.14.2 refer to incomplete fixes
for the previous security vulnerability.

8.4.2 False negatives

In most cases, Table 8.1 reports that the anomaly detection identified successful
attacks on vulnerable versions, while attempted/unsuccessful attacks on non-
vulnerable versions were not identified as anomalous. The table, however, reports
two vulnerabilities with a false negative result (++−), that is, a successful attack
on a vulnerable version for which anomalous behavior was not observed.

Analysis and detection of security
vulnerabilities in contemporary software

105 Olgierd Pieczul

8. Experimental Evaluation 8.4 Vulnerability Tests

One false negative arises from CVE-2014-7809: a Cross-Site Request Forgery
vulnerability caused by a predictable token generated using a weak generator. It
allows an attacker, knowing a previous value of a token used for CSRF prevention,
to predict the value of the next token and to use it to perform a CSRF attack
against an authenticated user. Although the attack is caused by a simple coding
error, we argue that it does not arise from an unexpected path of code execution.
A request with the token generated by the attacker results in exactly the same
behavior as a legitimate request made by the user. As such, it can not be detected
as an anomaly in the execution path.

Another false negative arises from CVE-2013-4310, which reports an ability to
bypass security constraints. Our investigation discovered that this vulnerability
is only applicable to applications that have a somewhat unusual security mecha-
nism. As mentioned in Chapter 2, actions in Struts are the basic unit of an appli-
cation’s business logic and are normally mapped to specific URL paths (such as
/api/post). Struts offers an alternative addressing through URL parameters
with action prefix, such as /api/other?action:post. The vulnerability
describes a scenario when a security control, implemented outside struts, based
on specific URL pattern is bypassed using the alternative addressing. It could
be argued that this scenario does not really describe a Struts vulnerability, but
rather a faulty security control that a documented feature of Struts allows to fa-
cilitate. In our experiment, the attack exploiting CVE-2013-4310 was undetected
because the microblog application included use of action: prefixes. Addressing
actions though parameters was considered a normal behavior of the application
and, when executed during the attack, did not cause anomalous behavior.

8.4.3 False positives

In two instances, the test cases result in false positives, that is, anomalous be-
havior is detected for an unsuccessful attempt to exploit non-vulnerable version
(−−+). This outcome is observed for CVE-2014-0114 and CVE-2014-0116 in
versions where these vulnerabilities are repaired. They are variants of the prob-
lem discussed in Chapter 2 where the internal state of an application can be
modified through a chain of getters and setters, and in this case, though crafted
cookies. A study of the attack test cases reveals that the anomalous behavior is
related to the special treatment that Struts gives to particular cookie names. The
original vulnerabilities were repaired by adding a blacklist of disallowed cookie
names (such as starting with class). Thus, processing a normal cookie results

Analysis and detection of security
vulnerabilities in contemporary software

106 Olgierd Pieczul

8. Experimental Evaluation 8.4 Vulnerability Tests

in a behavior that is different to processing a cookie with a blacklisted name.
However, in its standard configuration, the application scanner does not gener-
ate a request involving a Struts blacklisted cookie and, therefore, the generated
profile of expected behavior does not include an execution path corresponding to
the security processing of a blacklisted cookie. Thus, the test case, while not an
attack, is flagged as an anomaly.

One might be tempted to argue that if the application scanner was explicitly con-
figured to generate/use blacklisted cookie names in its requests, then we might no
longer have a false positive. This corresponds to making adjustments to anomaly
detection based on what is known about vulnerabilities. While this is perfectly
normal in practice, it is contrary to the purpose of our experiment which was to
evaluate the ability to identify unknown vulnerabilities/zero-day attacks. Over-
all, this part of the experiment indicates that all vulnerabilities that could be at-
tributed to unintended code execution paths in Struts were successfully detected.
It also shows that, with one exception of blacklisted cookies, in non-vulnerable
versions, where a malicious request is properly handled by the application no
anomalous behavior is reported.

8.4.4 Results interpretation

Many past studies of anomaly detection techniques [3,14] provide summary met-
rics intended to represent the efficacy of the technique. For example, based on our
experiment, one could have calculated how many vulnerabilities were detected in
comparison with the total number of vulnerabilities; or how many false positives
were observed. However, we argue that the extensive analysis of the results in the
previous sections provides better means to understand the efficacy of the method
and its applicability in real life systems.

We believe that although the experiment was comprehensive in comparison with
prior work, providing summary metrics would be inappropriate. The values would
be affected by several factors that are independent of the performance of our run-
time verification technique. For instance, the experiment was based only on dis-
covered and publicly known vulnerabilities. Any change in the set of vulnerabili-
ties used in the experiment would have an effect on the final metric. For example,
if the CSRF vulnerability CVE-2014-7809 (false negative), was not discovered, or
if we used a different period, the metric would be significantly different. Also, the
metric would have been different if CVE-2013-4310, a questionable vulnerability

Analysis and detection of security
vulnerabilities in contemporary software

107 Olgierd Pieczul

8. Experimental Evaluation 8.5 False Positive Tests

discussed in Section 8.4.2, was not attributed to Struts. On the other hand, as
we discuss in Section 8.6.2 and in more detail in Chapter 9, some CVE records
cover instances of incomplete remediation of previously reported vulnerabilities.
This means that what could be considered a single vulnerability, is represented
in the results multiple times just because it happened to be recorded multiple
times in CVE. Chapter 9 includes further discussion on the problems of using
quantitative metrics in these kinds of studies and the benefits of carrying out a
more qualitative style of analysis of the vulnerabilities.

8.5 False Positive Tests

On generating an expected model of behavior (for a given version of Struts) we
check that the set of norms is sufficiently complete by engaging a further standard
application scan and confirm that no anomalies are identified. This confirms
that normal, expected behavior is properly recognized by the Anomaly Manager.
However, for the purposes of the evaluation, we are interested in confirming that
the anomaly detection can also discriminate between attacking behavior that
exploits a vulnerability versus other behavior that executes code in the region of
the vulnerability, but does not actually exploit the vulnerability. To this end, a
suite of functional tests were developed to check this ability to discriminate.

For example, the URL tag vulnerability CVE-2013-2115 described in Section 8.4
involves passing a crafted value through a URL parameter. The test calls an
application using an additional parameter but without OGNL code. Some vul-
nerabilities require more advanced test cases. For example, the attack test case
for CVE-2013-2251 involves passing a crafted string through a Struts-specific re-
quest parameter (action:), allowing indirect action addressing. We developed
two further functional test cases that check this particular functionality. The
first test ActionPrefix uses the indirect addressing, but with a correct ac-
tion name, and checks that the requested action was called. The second test
WrongActionPrefix uses an incorrect action but checks whether the applica-
tion replied with an expected and corresponding error. The purpose of these tests
is to check whether the anomaly detection actually reacts to a genuine vulner-
able path of execution or whether the path from the related valid functionality
is flagged as an anomaly. By exercising the functionality normally (even if in an
error scenario) and during the attack we can distinguish between these two cases.

Overall, we developed nineteen test cases that explore non-attacking behavior in

Analysis and detection of security
vulnerabilities in contemporary software

108 Olgierd Pieczul

8. Experimental Evaluation 8.6 Discussion

the region of the eighteen vulnerabilities, described in Appendix B. The outcome-
score of each test is similar to the vulnerability tests and represented using two
values. The first outcome value reports whether the test was successful, that
is whether the tested functionality worked correctly. Note that because we have
also tested an application’s response to an incorrect request, a successful outcome
may mean that the application correctly responded to an incorrect value, for
example by presenting an error page. The second outcome value reports whether
an anomaly was detected during execution of the test. Most of the test outcomes
indicate a successful test with no anomalies. However, in two cases the outcome
indicates a test failure with no anomalies observed. These are the test cases for
indirect action addressing using action: prefix. The test fails for all versions
from 2.3.15.2. This is because, as a response to CVE-2013-4310, this functionality
was disabled.

8.6 Discussion

8.6.1 Anomaly prevention in practice

A further experiment was carried out to confirm that detected attacks could also
be prevented by the Anomaly Manager. The results match those reported in
Table 8.1 and we found that the attack could be interrupted before the anoma-
lous operation occurs. We did not observe any interruption during application
scanning (expected behavior) nor during the functional test run.

The execution is interrupted by throwing a security exception by the Anomaly
Manager, which is consistent with the default Java Security Manager. The ex-
ception does not need to be explicitly handled by the application and, by default
it only interrupts the execution. As with any other security manager, an ap-
plication may attempt to catch the exception and attempt to recover or clean
up. For example, it may roll back a transaction or log the anomaly with some
application-specific information such as a current user or source IP address.

Anomaly detection/prevention adds a performance overhead that should be con-
sidered. Verifying an activity against the model consists of simple operations,
such as hash table lookups and integer set operations. In order to integrate
anomaly detection with the application, we used a Java Security Manager and
Aspect Oriented Programming, as discussed in Chapter 7. These tools are rou-

Analysis and detection of security
vulnerabilities in contemporary software

109 Olgierd Pieczul

8. Experimental Evaluation 8.6 Discussion

tinely used for implementing security mechanisms [89] and their performance
impact has been investigated [90,91]. During the Struts experiment, the average
time to process an HTTP request from the scanner to the application took 4950µs
without instrumentation. With the Anomaly Manger enabled for runtime veri-
fication, the average time increased by 3.85% to 5140µs. However, the increase
depends on how much of application activity is covered by runtime verification:
in the experiment this was limited to the Struts library. The evaluation has been
carried out using Java and instrumentation tools, such as AspectJ, designed for
that platform. For other platforms, different techniques of integration should be
considered. The memory requirements for the runtime verification are minimal.
As described in Chapter 7, the state has to be kept for every active transaction
(a worker thread in the case of Java web applications). The state contains three
sets of integers: an n-gram (integer identifiers of n recent events), set of observed
groups identifiers and set of possible arrangement identifiers.

In the experiment, we relied on an automated scanner in order to learn the
application’s expected behavior. The purpose of using this type of tool was to
ensure that application is explored in an unbiased, repeatable way. However, we
do not consider application security scanning as the only possible way to identify
baseline behavior. Automated functional or integration test could be also a good
way to exercise expected behavior of an application and can be combined with
the scanner. Also, enterprise application testing tools include more advanced
testing techniques, such as glass-box scanning [92], that combines dynamic testing
with the source code analysis. Note that the application scanner may trigger an
unexpected behavior, which if unattended to, becomes part of the norms used
in runtime verification. However, this phenomenon was not observed during our
experiments. Furthermore, we assume that any unexpected behavior identified
during scanning would likely represent some form of an attack known/tested by
the scanner, which the developer would remediate by modifying the source code.
An alternative approach is automated test case generation based on simulated
user behavior [54]. Applicability and efficacy of various automated methods to
acquire normal behavior baseline is a subject for future research.

8.6.2 Additional insights

Part of our experimental setup involved inspecting the code bases of different
versions of Struts in order to identify the vulnerable code and implement the
attack tests. In carrying out this detailed code-level review we observed a num-

Analysis and detection of security
vulnerabilities in contemporary software

110 Olgierd Pieczul

8. Experimental Evaluation 8.7 Conclusion

ber of programming phenomena across the different versions. In particular, the
phenomena that some generic functionality of Struts allows for a specific execu-
tion scenario that compromised security. The otherwise harmless features, such
as addressing actions, setting their parameters and evaluating expressions, when
used in a particular way allowed unintended operations. For example, CVE-2014-
0094, CVE-2014-0112, CVE-2014-0113, CVE-2014-0116 and CVE-2015-1831 ex-
ploit the feature that allows setting action properties through HTTP request
parameters/cookies and accessing sensitive objects, such as a session or class
loader.

Overall, we observed that the majority of the programming issues relate to rather
simple programming errors. In particular, while a general functionality was imple-
mented, a specific, unexpected execution pattern was not considered nor handled
by the code. In some cases, such as accessing the class loader via a parameter
(CVE-2014-0094) we observed that developers were surely aware that accessing
properties through parameters can be a security risk [24]. Some specific param-
eters, such as session object, were blacklisted but others that are less obvious,
such as class, were not. In other cases, when a vulnerability was identified in
one part of the framework it was not immediately correlated to another part that
was also vulnerable [24]. For example, the fix for CVE-2014-0094 addressed class
loader manipulation through request parameters but did not provide the fix for
the same attack using cookies. Our analysis of Struts vulnerabilities seems to
confirm other studies [24, 26], discussed in Chapter 9, that indicate that devel-
opers tend to repeat security errors even when they are aware of a particular
vulnerability.

8.7 Conclusion

Performing a comprehensive and controlled evaluation of anomaly detection with
the objective of identifying contemporary software vulnerabilities is a difficult
task. There is a major effort required to acquire information about the vul-
nerabilities and develop corresponding test cases. Also, the results should be
interpreted very carefully, as there could be a number of external factors that
could potentially affect the results. Often, there is only a limited number of vul-
nerabilities that are available for each software component and they appear for
different, often non-compatible versions. Some components, even though critical
for the security of the system, can not be tested directly or in isolation because,

Analysis and detection of security
vulnerabilities in contemporary software

111 Olgierd Pieczul

8. Experimental Evaluation 8.7 Conclusion

like Struts, their conventional operation interleaves with other components.

In the case of the microblog application, our experiments demonstrate that it
is possible to learn a sufficiently rich model of the application’s expected use of
Struts such that it can be used to detect anomalies in its subsequent use of Struts.
Indeed, results indicate that all seventeen execution path-related vulnerabilities
identified over twenty-six versions of Struts over five years can be effectively
identified as anomalies. We limited our experiments to Struts operation in the
context of the particular application.

The deeper analysis of Struts vulnerabilities suggests that they indeed may be
resulting from the developer’s oversights caused by the dark side of the code,
discussed in Chapter 2. The vulnerabilities in the scope of our experiment typi-
cally appear in the context of other components such as the OGNL language or
Java class loader. In the next chapter, we discuss the results of in-depth analysis
of Struts vulnerabilities over a period of 12 years and attempt to discover what
could be their root causes.

Analysis and detection of security
vulnerabilities in contemporary software

112 Olgierd Pieczul

Chapter 9

Security Vulnerabilities

9.1 Dark Side of the Code Revisited

In Chapter 2, we introduced the phenomenon of the dark side of the code. Using
an example, we argued that software development at a high level of abstraction,
using components that abstract low-level details may lead to security vulnera-
bilities. These vulnerabilities result from unexpected behavior that arises from
component interoperation. We also argued that this type of vulnerabilities are
particularly difficult to identify in the development process. However, Chapter 2
did not present any evidence that the dark side of the code problem actually
happens in software developed and deployed in real-world settings. Also, when
analyzing results of the experiment in the previous chapter we identified that
some vulnerabilities in Apache Struts could indeed be caused by integrating com-
ponents without a proper understanding of the consequences it has on the overall
application operation. We have also noticed that some vulnerabilities, once iden-
tified, may re-appear in future versions of the software either due to incomplete
fixes or continued misunderstanding of the underlying problem, which could likely
be caused by the security gap. In this chapter, we investigate how common is
this phenomenon in software “in the wild”.

Research aimed at gaining insights into the appearance of vulnerabilities in soft-
ware has tended towards quantitative studies. Metrics such as a number of bugs
over time, their rate of appearance, type and severity, can be gathered and sta-
tistically analyzed [93, 94]. Such measurements may point to interesting trends,
however, they rely on their hypothesis and the efficacy of the underlying data

113

9. Security Vulnerabilities 9.2 Methodology

which, for example, may include attributes such as CVSS scores and lines of
code. Furthermore, it cannot help one understand why particular security weak-
nesses persist over time and cannot be properly addressed, nor what causes the
implementation of a weak security mechanism. While a quantitative study can
provide a basis for supporting a hypothesis, where a hypothesis does not form
the basis of the research question an exploratory approach is informative.

In this chapter, we take an exploratory approach to gaining insights into the rea-
sons why developers introduce software vulnerabilities. Informed by qualitative
research techniques, we carried out a systematic study of the evolution of secu-
rity vulnerabilities over a long period of time with a view to discovering security-
relevant phenomena that emerge. We continue to focus on Apache Struts, and in
order to provide a sufficiently in-depth analysis, we consider a particular Struts
functionality. We provide the background necessary to understand the technical
account given on the evolution of the control discusses a number of phenomena
that emerge during the analysis of this control.

9.2 Methodology

While in Chapter 8 Struts was used mainly because of its popularity and a num-
ber of vulnerabilities in a short period of time, our rationale in selecting it for this
analysis are different. Struts is a mature and widely used package that has been
developed according to best practices, both in terms of code implementation as
well as development life cycle, with a documented policy and change management
process. The security processes surrounding Struts are transparent and include
documented processes for reporting vulnerabilities and publishing security advi-
sories. We focused our attention on the functionality of one particular Struts
security control that has had a series of reported security vulnerabilities and has
evolved over time. The chosen control is sufficiently critical to ensure both inter-
nal and public interest in identifying security problems, and that reported issues
are treated seriously by the development team.

We performed a systematic analysis of the Struts source code published over
twelve years from 2004 to 2015. This was done in a qualitative style, whereby
the objective was to identify security-related phenomena, or patterns, that
emerge from the activity of making code revisions. The analysis focused
on the code changes that arose as a consequence of, and/or were the cause
of, the security advisories over that period. In particular, these were re-

Analysis and detection of security
vulnerabilities in contemporary software

114 Olgierd Pieczul

9. Security Vulnerabilities 9.2 Methodology

lated to a security control that is responsible for preventing the injection
of malicious code into the framework via the parameters of web page re-
quests. This security control checks parameter values passed to the Struts
ParametersInterceptor and CookieInterceptor, preventing their mis-
use. Note that the ParametersInterceptor functionality originated in the
XWork project and was later merged into Struts; the XWork source was subject
of the analysis during this initial period.

We reviewed: the security advisories/vulnerability publications; code-updates
(security-related or otherwise); related discussions on the development mailing
list, and other publications often contributed by the vulnerability reporters who
sometimes provided additional technical details. Often, only partial details of an
attack were published and, in all cases, it was possible to re-construct/implement
the attacking code by reverse-engineering the code changes and published infor-
mation. This led to the analysis of over 300 security-relevant code changes over
the evolution of Struts.

In carrying out this analysis we identified the code changes that had an impact on
security, either fixing a known vulnerability or introducing a security issue. For
ease of exposition, the analysis is summarized in terms of aggregate changes over
releases that culminate in a published security-related release. In this way, we
believe that our inferences about the developer’s intentions are more reliable than
those based on (possibly incomplete) changes made in between security releases.
While the observation of changes in-between the releases may provide an insight
into security mechanism evolution, it was not clear whether the changes at these
stages could be considered complete. As a result, we discovered 20 key security-
related changes, that are summarized in Table 9.1.

During our investigation, we identified elements of the security mechanism and
mapped the changes into the corresponding categories, given by the right-hand
columns in the table. Each row of the table covers a key change to the secu-
rity mechanism including the time of the change and the status of the security
mechanism after the change. The identified changes often take a simplified form,
of a regular expression or an acronym, representing the essence of the change.
For simplicity, the significant element of the change is highlighted using bold
text. Note that the categories discovered during the analysis are not related to
the actual structure of the code, as the corresponding security mechanisms were
routinely moved/refactored within the source code, given different names and so
forth. Section 9.4 provides the detailed discussion about the changes and their

Analysis and detection of security
vulnerabilities in contemporary software

115 Olgierd Pieczul

9. Security Vulnerabilities 9.3 Struts Operation

interpretation.

Throughout this process we strove to make observations about vulnerabilities,
repairs and coding activities, based solely on the evidence in this corpus.

9.3 Struts Operation

This section provides an overview of those parts of Struts that are required to
understand our analysis of the security control used in the study. In order to
provide a sufficiently detailed discussion in this chapter we present further tech-
nical details of Struts, using an example. One of the features of Struts is the
ability to easily separate the business logic from the operational details related
to processing HTTP requests. For example, consider a sample piece of code of
a web application responsible for handling a request to add an application user
by an administrator, presented in Figure 9.1. The listing shows three parts of
the application: class User encapsulates the details of an application user; class
AddUser, implemented as Struts action, provides the logic for adding a user to
the system, and the JSP provides the fragment of the view (a page is presented
when the action is complete).

Note that AddUser does not contain any web-specific logic, which is handled by
Struts. It defines getter and setter methods (getNewUser and setNewUser, re-
spectively) for retrieving and setting the user object, and a setSession method
(required by SessionAware) interface for Struts to set the Session object. For
example, the client may send a request such as:

http://app/user/add?newUser.name=john&newUser.role=support

in order to add new support user. The request is received by Struts which, based
on its configuration, decides whether it should be processed by the AddUser

action. It instantiates the class and then (as it implements SessionAware
interface) calls setSession method with a session map for the current user.
Struts then parses the parameters, creates a new User object using the values
from the request, and provides it to the action using the setNewUser method.
Subsequently, the execute method executes, taking advantage of all the prop-
erties that have been set. After the user is added, the response is rendered and,
during this process, the JSP code also refers to the action properties such as a
newly added user and session.

Analysis and detection of security
vulnerabilities in contemporary software

116 Olgierd Pieczul

9. Security Vulnerabilities 9.3 Struts Operation

public class User {

private String name;

private String role;

... // getters and setters for fields

public boolean isAdmin() {

return (role.equals("admin"));

}

}

public class AddUser extends ActionSupport implements SessionAware {

private User newUser;

public User getNewUser() {

return newUser;

}

public void setNewUser(User user) {

this.newUser = user;

}

public void setSession(Map session) { // for SessionAware

this.session = session;

}

public String execute() throws Exception {

if (session.get("user").isAdmin()) {

DAO.add(newUser);

return SUCCESS;

}

}

}

<s:property value="#session['user'].name"/> added user <s:property

value="newUser.name"/> with role <s:property value="newUser.role"/>

Figure 9.1: A sample MVC Struts application code

Analysis and detection of security
vulnerabilities in contemporary software

117 Olgierd Pieczul

9. Security Vulnerabilities 9.3 Struts Operation

9.3.1 OGNL

Struts uses Object-Graph Navigation Language (OGNL) [36], an expression lan-
guage used primarily to get and set properties of Java objects. OGNL expres-
sions are evaluated against a collection of objects called context. One of the
objects, called root, is distinguished as the default root of the object graph.
When processing a request, Struts sets the current action object (for exam-
ple AddUser) as the root. In the example in Section 9.3, the expression
newUser.name is used both in request parameters and also in the JSP file.
The values are being accessed through public getters and setters. For exam-
ple, the OGNL newUser.name to get the name of an object is equivalent to
Java code action.getNewUser().getName(). Similarly, using OGNL to
set a value expressed as newUser.name to alice is equivalent to Java code
action.getNewUser().setName("alice").

Other Struts-specific objects, such as session, request and application configu-
ration, are also included in the OGNL context. For example, the expression
#session['user'].name can be used to access a name property of an ob-
ject that exists in the session map under index 'user'. Finally, the context
contains a number of variables that control the OGNL processor’s behavior, such
as rules for accessing classes depending on its type, access restrictions and caching.
Figure 9.2 provides an overview of context structure at the time of execution of
AddUser action.

Figure 9.2: OGNL context in the example application

Analysis and detection of security
vulnerabilities in contemporary software

118 Olgierd Pieczul

9. Security Vulnerabilities
9.4 Tracing the Evolution of a Security

Control

9.3.2 Struts Interceptors

Struts interceptors, upon which our study is based, parse request parameters and
set corresponding values in action objects. Interceptors in Struts are responsible
for handling common tasks before/after the action is executed. Typical tasks
performed by interceptors is handling HTTP requests (such as request parameters
or cookies), input validation, access control, caching and so forth.

Processing of the request parameters is performed by ParametersInterceptor.
Our study started on the code published at the beginning of 2004, with the re-
lease of the XWork 1.0 library in which the interceptor was first implemented
before being merged into Struts. Since then, the functional requirements of the
parameter interceptor have not changed. It iterates over each parameter and
sets the action values using parameter name as OGNL expression to identify
the object, and parameter value as the value to set. Starting from June 2007,
CookieInterceptor sets action properties based on HTTP cookies.

9.4 Tracing the Evolution of a Security Control

The parameters and cookie interceptors allow clients to provide custom OGNL
expressions that are evaluated by Struts. OGNL expressions can result in the ex-
ecution of custom code which accesses program variables. From its first release,
this functionality has been considered a security threat and, a mitigating security
control has always formed a part of its implementation. In this section, we sys-
tematically trace the evolution of this control over a 12 year period: 2004–2015.
The results are summarized in Table 9.1 and described in detail in the remainder
of the section.

In January 2004 the interceptor included just one security measure: disabling
Java method execution (ME) through OGNL. By default, OGNL allows Java
methods to be called in a manner similar to field access. For example, an
attempt to set a value of a property specified by expressionmap[method()]
results in the invocation of method against the root object in order to
get the value to be used as map key. Disabling the method execution
is implemented using a custom OGNL method accessor and controlled by
context['xwork.MethodAccessor.denyMethodExecution'] variable.

Analysis and detection of security
vulnerabilities in contemporary software

119 Olgierd Pieczul

9. Security Vulnerabilities
9.4 Tracing the Evolution of a Security

Control

date accepted parameters accepted cookies excluded patterns OGNL

Jan 2004 [empty] n/a n/a ME

Dec 2004 excluded: {'=', ',' ,'#'} n/a n/a ME

Feb 2007 excluded: {'=', ',' ,'#', ':'} n/a dojo\..* ME

Jun 2007 excluded: {'=', ',' ,'#', ':'} [empty] dojo\..* ME

Jul 2008 excluded: {'=', ',' ,'#', ':'} [empty] dojo\..*

Jul 2008 [empty] dojo\..* ME, SM

Oct 2008 [\p{Graph}&&[^,#:=]]* [empty] dojo\..*

Aug 2010 [a-zA-Z0-9\.\]\[\(\)_'\s]+ [empty] dojo\..*,^struts\..* ME, SM, SC

Dec 2011 [a-zA-Z0-9\.\]\[\(\)_'\s]+ [a-zA-Z0-9\.\]\[_'\s]+ dojo\..*,^struts\..* ME, SM, SC

Dec 2011 [a-zA-Z0-9\.\]\[\(\)_']+ [a-zA-Z0-9\.\]\[_'\s]+ dojo\..*,^struts\..* ME, SM, SC

Jan 2012 [a-zA-Z0-9\.\]\[_'\s]+ dojo\..*,^struts\..*

Apr 2012 [a-zA-Z0-9\.\]\[_'\s]+

Aug 2012 [a-zA-Z0-9\.\]\[_'\s]+

Mar 2014 [a-zA-Z0-9\.\]\[_'\s]+

Apr 2014 [a-zA-Z0-9\.\]\[_'\s]+

Apr 2014 [a-zA-Z0-9\.\]\[_'\s]+

May 2014 [a-zA-Z0-9\.\]\[_'\s]+

Dec 2014 [a-zA-Z0-9\.\]\[_'\s]+

May 2015 [a-zA-Z0-9\.\]\[_'\s]+

Sep 2015 [a-zA-Z0-9\.\]\[_'\s]+

ME, SM

ex: {'=', ',' ,'#', ':', \u0023}

ME, SM, SC

\w+((\.\w+)|(\[\d+\])|(\(\d+\))|
(\['\w+'\])|(\('\w+'\)))*

ME, SM,
SC, EE

\w+((\.\w+)|(\[\d+\])|(\(\d+\))|
(\['\w+'\])|(\('\w+'\)))*

dojo\..*,^struts\..*,^session\..*,^request\..*,^application\..*,
^servlet(Request|Response)\..*,parameters\...*

ME, SM,
SC, EE

\w+((\.\w+)|(\[\d+\])|(\(\d+\))|
(\['\w+'\])|(\('\w+'\)))* [100]

dojo\..*,^struts\..*,^session\..*,^request\..*,^application\..*,
^servlet(Request|Response)\..*,parameters\...*

ME, SM,
SC, EE

\w+((\.\w+)|(\[\d+\])|(\(\d+\))|
(\['\w+'\])|(\('\w+'\)))* [100]

^class\..*,^dojo\..*,^struts\..*,^session\..*,
^request\..*,^application\..*,^servlet(Rrequest|
Response)\..*,^parameters\..*,^action:.*,^method:.*

ME, SM,
SC, EE

\w+((\.\w+)|(\[\d+\])|(\(\d+\))|
(\['\w+'\])|(\('\w+'\)))* [100]

(.*\.|^|.*|\[('|"))(c|C)lass(\.|('|")]|\[).*,^dojo\..*,
^struts\..*,^session\..*,^request\..*,^application\..*,
^servlet(Request|Response)\..*,^parameters\..*

ME, SM,
SC, EE

\w+((\.\w+)|(\[\d+\])|(\(\d+\))|
(\['\w+'\])|(\('\w+'\)))* [100]

default: (.*\.|^|.*|\[('|”))class(\.|('|”)]|\[).*; params: ^dojo\..*,
^struts\..*,^session\..*,^request\..*,^application\..*,
^servlet(Request|Response)\..*,^parameters\..*

ME, SM,
SC, EE

\w+((\.\w+)|(\[\d+\])|(\(\d+\))|
(\['\w+'\])|(\('\w+'\)))* [100]

(.*\.|^|.*|\[('|”))class(\.|('|”)]|\[).*,^dojo\..*,^struts\..*,
^session\..*,^request\..*,^application\..*,
^servlet(Request|Response)\..*,^parameters\..*

ME, SM,
SC, EE

\w+((\.\w+)|(\[\d+\])|(\(\d+\))|
(\['(\w|[\u4e00-\u9fa5])+'\])|
(\('(\w|[\u4e00-\u9fa5])+'\)))*

config/params: ^action:.*,^method:.* (priority)
default: (.*\.|^|.*|\[('|"))\bclass(\.|('|")]|\[).*,(^|.*#),dojo(\.|\[).*,
(^|.*#)struts(\.|\[).*,(^|.*#)session(\.|\[).*,(^|.*#)request(\.|\[).*,
(^|.*#)application(\.|\[).*,(^|.*#)servlet(Request|Response)
(\.|\[).*,(^|.*#)parameters(\.|\[).*,(^|.*#)context(\.|\[).*,
(^|.*#)_memberAccess(\.|\[).*

ME, SM,
SC, EE, EC

\w+((\.\w+)|(\[\d+\])|(\(\d+\))|
(\['(\w|[\u4e00-\u9fa5])+'\])|
(\('(\w|[\u4e00-\u9fa5])+'\)))*

(^|.*#)(dojo|struts|session|request|application|
servlet(Request|Response)|parameters|context|
_memberAccess)(\.|\[).*", ^(action|method):.*

ME, SM,
SC, EE, EC

\w+((\.\w+)|(\[\d+\])|(\(\d+\))|
(\['(\w|[\u4e00-\u9fa5])+'\])|(\
('(\w|[\u4e00-\u9fa5])+'\)))*

(^|\%\{)((#?)(top(\.|\['|\[")|\[\d\]\.)?)(dojo|struts|session|
request|response|application|servlet(Request|Response|
Context)|parameters|context|_memberAccess)(\.|\[).*,
^(action|method):.*

ME, SM,
SC, EE, EC

Table 9.1: Security mechanism evolution: 2004–2015

Analysis and detection of security
vulnerabilities in contemporary software

120 Olgierd Pieczul

9. Security Vulnerabilities
9.4 Tracing the Evolution of a Security

Control

9.4.1 Tampering with OGNL

The first vulnerability that was identified since the initial release relates
to overwriting context variables via parameters. For example, a pa-
rameter and also an OGNL expression #session['user'].role may
be used to set the role of the current user stored in the session. A
more advanced expression may set a number of properties at once while
still retaining original behavior, that is, setting the newUser parameter:
#session['user'].role=admin,#testMode=true,newUser.name'.

In December 2004 the problem was fixed by modifying the interceptor to check
if the name is acceptable, by verifying it against a blacklist of characters, using
the following condition.

if (name.indexOf('=') != -1 || name.indexOf(',') != -1 ||

name.indexOf('#') != -1)

In July 2008 it was reported that the fix was incomplete, because the # char-
acter can be encoded using its Unicode \u0023 replacement, for example, by
using a parameter \u0023session['user'].role=admin. This problem
was fixed by adding string \u0023 to the blacklist. Note that the other two
already blacklisted characters, which could also be represented using the Unicode
string, were not included in the Unicode form. Shortly after, the fix was further
modified in a twofold way. First, the code was modified and the check routine
replaced with a regular expression: [\p{Graph}&&[^,#:=]]*. Note that the
Unicode replacements for the characters were no longer excluded. In addition,
the interceptor was modified to run OGNL operations against a separate tempo-
rary instance of the context object (SC), without Struts-specific variables such as
session preventing their manipulation.

At the same time, a new problem was discovered. OGNL allows accessing static
fields in Java objects using the @class@field notation. For example, expres-
sion @java.lang.System@exit(0).foo can be used to call static exit()
method, causing the JVM to exit. Static methods provided by the Java standard
library can be used to perform a number of operations, including executing cus-
tom commands. This problem was fixed by adding an option to disable static
method access (SM) in OGNL and disabling it by default.

A vulnerability in this security mechanism was found in July 2010. It took
advantage of the fact that context variables were still accessible through the
Unicode “trick” and that the OGNL-specific context variables controlling access

Analysis and detection of security
vulnerabilities in contemporary software

121 Olgierd Pieczul

9. Security Vulnerabilities
9.4 Tracing the Evolution of a Security

Control

to method execution, were available without restriction on the temporary context.

This allows a modification of the OGNL runtime configuration, allowing method
execution and eventually custom method execution. An example sequence of
OGNL expressions for the attack could be the following [95].

#_memberAccess['allowStaticMethodAccess'] = true

#foo = new java.lang.Boolean("false")

#context['xwork.MethodAccessor.denyMethodExecution'] = #foo

#rt = @java.lang.Runtime@getRuntime()

#rt.exec('mkdir /tmp/PWNED')

Such a sequence could be encoded in a parameter, bypassing the blacklist,
by using Unicode replacements for the #=, characters. This vulnerability re-
sulted in a change in the regular expression to a stricter whitelist of characters:
[a-zA-Z0-9\.\]\[\(\)_'\s]+ effectively disallowing usage of the Unicode
replacements.

A year after this change, there was a report that while the restriction worked
for regular methods it did not apply to public constructors. While exe-
cution of methods by OGNL was disabled through custom accessors, the
logic did not cover constructor invocation. Some constructors may be use-
ful to an attacker, such as FileWriter constructor creating or overwrit-
ing a file (new java.io.FileWriter('filename')). Rather than dis-
abling constructor invocation in the existing custom accessor, the issue was
fixed by disallowing a white space character, essential for constructor syntax,
in the parameter name. As a result, the regular expression was modified to
[a-zA-Z0-9\.\]\[\(\)_']+.

A few weeks later, in December 2011 the new way of bypassing the restriction
was discovered [96]. It took advantage of OGNL’s ability to evaluate the con-
tent of variables that already exist in the context. The attack requires setting
two parameters. The first parameter uses an acceptable name but has a value
containing the OGNL expression, and the second refers to the first, for instance,
as an array key. For example, an attacker may first set the value of existing pa-
rameter to an expression, newUser.name=OGNL code and then evaluate the
parameter value by referencing its name, z[(newUser.name)(0)]=0. When
the second parameter is evaluated, OGNL will attempt to establish an index of
z property, and evaluate the expression stored in newUser.name. In effect,
the vulnerability allows character-based restrictions on parameter names to be
bypassed. This, in turn, enables access to context variables that control method

Analysis and detection of security
vulnerabilities in contemporary software

122 Olgierd Pieczul

9. Security Vulnerabilities
9.4 Tracing the Evolution of a Security

Control

execution restrictions and lead to executing custom code. The vulnerability was
fixed by modifying the regular expression for an acceptable name, yet again. This
time, it matched characters such as [] or () only in a specific context so as to
disallow expressions that may evaluate other variables. An additional logic to
control the expression evaluation (EE) was added to OGNL customization code.

The last vulnerability related to tampering with OGNL using parameter names
was reported and fixed in August 2012. As parsing OGNL parameters requires
significant processing effort it is attractive as a target for denial of service attacks.
Requests with particularly long/complex OGNL expressions can be used to ex-
haust system resources. The problem was fixed by limiting the size of parameter
names to 100 characters.

9.4.2 Accessing properties

Another set of security problems related to processing request parameters relate
to the ability to access properties of the root (action) object. In OGNL, access
to the properties is controlled by the method or field access modifier in Java.
For example, the newUser property is accessible because of the public getter
getNewUser. If the method was defined as private or protected then the access
would not be possible. The relationship between the ability to access and actual
method access may not be clear or always intended. It may happen that the
developer’s code already has an object that would perfectly suit use within an
action, but it includes a public method that should not be exposed. For example,
a different implementation of the example application Section 9.3 may use the
User object but does not intend to allow the user to set the role parameter. In
February 2007 a configuration parameter named excludeParams was provided
in order to allow developers to prevent access to some properties. The parameter
can be set to a comma-delimited set of regular expressions defining patterns for
parameter names that should be ignored by the interceptor. Initially, the param-
eter was set by default to ^dojo\..* and shortly after also ^struts\..*.

Struts uses a dependency injection software pattern. In particular, it allows
action classes to acquire certain common runtime information by implementing
specific interfaces such as SessionAware or RequestAware. The example ap-
plication in Section 9.3 implements SessionAware interface and corresponding
setSession method. This instructs Struts to call it with the current server’s
session before action execution. Note that implementing a corresponding public

Analysis and detection of security
vulnerabilities in contemporary software

123 Olgierd Pieczul

9. Security Vulnerabilities
9.4 Tracing the Evolution of a Security

Control

getter (not required by the interface) could open up a session for manipulation
using request parameter, such as session['user'].role. If the application
implements such getter, it is expected to restrict access to the parameter in the
configuration.

Between 2007 and 2011 various reporters pointed out that implementing a set-
ter, as required by Struts interfaces may also allow for manipulation. While the
user may not directly access session attributes due to the lack of a getter, it
may override a session object provided to the action. For example, a parame-
ter session.user=a results in creating a new Map with the user key. The
use of this vulnerability is rather limited [97] but, in certain cases, it may allow
unintended manipulation of application internals. In April 2012, a fix was even-
tually implemented by including a number of common parameter names such as
session to the excludeParams list. The problem was not completely solved
as it only protects a few commonly used properties and the override mechanism
is still available.

A more significant problem was discovered in March 2014. Every Java object
contains a getClass method that returns a Java class for that object. The
returned Class object contains a number of getters and setters, in particular
getClassLoader, which returns an instance of the current class loader. Ac-
cess to this object allows manipulation of the application server’s internal state
and allows for custom code execution [98]. The first attempt to fix the vulnerabil-
ity was to add ^class\.. pattern to excludeParams. Within a few days, a
number of vulnerabilities related to an incomplete fix were reported. One was the
pattern matches class string at the beginning of the parameter name (^), but
the class property does not necessarily have to be accessed through the root.
As all Java objects contain getClass method, the class loader manipulation can
be done through any of them, for example newUser.class.classLoader...
Another reported vulnerability related to the fact that OGNL allows specify-
ing parameters in upper-case form, such as Class, which are not matched by
the regular expression. An improvement was published on the Struts web page
as a hotfix, in the form of suggested custom configuration of the interceptor
(.*\.|^|.*|\[('|"))(c|C)lass(\.|('|")]|\[).*. It must be noted
that, while an upper-case version was considered only for class, but not for
session, request and others that were previously excluded. Eventually, the
code performing the regular expression matching was modified to ignore case,
and the expression was simplified.

Analysis and detection of security
vulnerabilities in contemporary software

124 Olgierd Pieczul

9. Security Vulnerabilities
9.4 Tracing the Evolution of a Security

Control

The series of fixes related to the class attribute resulted in a number of rather
ad-hoc code changes that were rationalized in December 2014. The default set
of excluded patterns was moved from the configuration file directly to the utility
class used for pattern matching. Two, security unrelated, patterns were kept in
the configuration file. However, the code was implemented in a way that con-
figuration parameters overwrote the default set, effectively removing all security
related excluded patterns. This problem was fixed by moving the two patterns
to the code and leaving the configuration empty.

The last vulnerability relates to a special variable called top, implemented for the
Struts-specific handling of OGNL, allowing access to the root object. Effectively,
this variable allowed excluded patterns of parameters to be bypassed by allowing
variables to be addressed in a way that does not match the regular expressions.
As a result, the top parameter was added to the list of excluded patterns.

Finally, a more comprehensive fix was implemented. In addition to a regular ex-
pression specifying parameter names, a custom OGNL property accessor provided
by Struts was modified to exclude classes (EC) by their types and package names.
For example, any attempt to access an object of a type java.lang.Class, or
any class in javax package (specific to J2EE objects such as session), will be
rejected. This mechanism does not have the weaknesses of the string matching
approach that was repeatedly bypassed, as the verification of the object type is
done at OGNL accessor level, regardless of how the expression was constructed.
However, the list of excluded classes and package names is rather arbitrary.

9.4.3 CookieInterceptor

Since June 2007, Struts includes the CookieInterceptor with functionality
similar to ParametersInterceptor but applicable to HTTP cookies. The
interceptor iterates over the cookies sent with the request and sets the value indi-
cated by the OGNL expression provided by the cookie name. In the interceptor
configuration, the developer may set the parameters/cookie names to processed
or specify to accept all cookies.

Our analysis revealed that in several instances, problems that were applicable to
both interceptors were fixed only for the ParametersInterceptor. At the
time of the first release of CookieInterceptor, the developers were aware of
OGNL tampering issues and the rudimentary protection was already implemented
for parameters, as presented in Table 9.1. However, it took over four years and

Analysis and detection of security
vulnerabilities in contemporary software

125 Olgierd Pieczul

9. Security Vulnerabilities 9.5 Analysis of Security Control Evolution

an external reporter to implement the whitelist of accepted characters, similar to
that for parameters.

Additionally, issues related to accessing parameters, described in Section 9.4.2
were not considered for cookies for quite some time. Until April 2014 there
was no restriction as to what properties can be accessed with cookies and the
excludeParams configuration directive was applicable only to parameters. In
particular, the initial fix for the critical class loader manipulation issue was also
only applied to parameters. Only after the problem was explicitly reported was
the problem fixed, though only for the class property and not for the session,
request, and so forth.

9.5 Analysis of Security Control Evolution

As we traced the evolution of the security control, as outlined in the previous
section, we observed a number of repeating phenomena related to introduction
and persistence of vulnerabilities, and inhibitors to the proper implementation of
the security control.

9.5.1 The dark side of the code

One challenge is the difficulty of properly understanding every aspect of an ap-
plication’s operation. Modern software development is built layer upon layer of
components, each encapsulating lower level detail. However, security issues often
relate to low-level details that are not always accessible to the developer. As a
result, programmers rarely understand all the operational details of the entire
stack. This problem, referred to as the “dark side of the code” [23], discussed
Chapter 2, can be viewed as a gap between the possible operation of the applica-
tion as perceived by the developer and the actual operation of which the software
is capable. While this dissertation and [23] argue, in principle, for the existence
of the dark side of the code, our study observed this phenomenon occurring in a
number of vulnerabilities and confirm its existence in practice.

When the Struts interceptor developers designed the initial set of forbidden char-
acters, they did not consider their Unicode alternatives that were later used to
bypass the blacklist based security control. The OGNL library allows the use
of such replacements, however, there is inadequate information concerning the

Analysis and detection of security
vulnerabilities in contemporary software

126 Olgierd Pieczul

9. Security Vulnerabilities 9.5 Analysis of Security Control Evolution

scope in which the characters can be used. In its coverage of string literals, the
official OGNL documentation makes a vague mention of escape characters. In ad-
dition, the information provided about escaping characters is done in the context
of string delimiters such as " and ' and could be easily interpreted as applying
only to them. The same issue applies to OGNL’s ability to address properties
using upper case characters.

Similarly, that the getClass method, implemented by the JVM and existing
in every Java object, may be used to perform an attack might not have been
expected by the Struts developer. The complexity of this attack confirms that
an in-depth understanding of the Java internals, as well as the class loader spe-
cific to the application server, is required in order to develop an attack vector.
Additionally, the developers might not have expected that access to public con-
structors, exploited later as file overwrite attack, could be harmful. As it is the
best practice in object oriented programming to not implement constructors that
cause any side effects, it may be difficult to appreciate that Java standard library
includes one that allows writing a file.

9.5.1.1 Report bias

A dark side can also exist when it comes to both documenting and/or interpret-
ing vulnerability reports; the extent of the security problem may not be fully
appreciated in its reporting. Security vulnerabilities are often identified by secu-
rity researchers who are external to the development team. Usually, the issue is
reported with a detailed description of the problem, example attack vector, and
so forth. Upon receiving the information about the problem, the developers may
follow a detailed report in isolation, as the prescription for the vulnerability’s
remedy. However, often the reporter may not have a complete understanding of
the application and their report may be incomplete; or they may limit their focus
to a representative example. The vulnerability, however, may have a broader
scope than that identified by the report or there may be further attack vectors
related to the same root cause of the issue.

In Struts, the sequence of fixes related to the class property exemplifies this
phenomenon. Each time, the remediation was shaped by the way the issue was
reported. This is exemplified by the usage of the class parameter at the begin-
ning of an expression (while it can be used for any object) and failing to provide
the protection for CookieInterceptor.

Analysis and detection of security
vulnerabilities in contemporary software

127 Olgierd Pieczul

9. Security Vulnerabilities 9.5 Analysis of Security Control Evolution

Similarly, an issue related to the exposure of constructors when using OGNL
was reported as a problem that led to the overwriting of custom files. Although
this was only one example of the attack vector, this is how the vulnerability was
described in Struts official advisory, despite the problem having a broader scope.
In reality, a number of other actions are possible, provided the availability of a
suitable public constructor in the class path [99].

9.5.1.2 Security metric bias

During the analysis, the vulnerabilities were compared to the published official se-
curity advisories. We noticed that in many cases, the CVSS score did not properly
represent the problem. This can be attributed to an incomplete understanding
of the problem when the report was published. The CVSS documentation ac-
knowledges that the characteristics of a vulnerability can change over time; the
temporal metrics, used to calculate the temporal score include properties such
as exploitability or remediation level. However, it is the base metrics, such as
Confidentiality/Integrity Impact that often change as the problem is better un-
derstood.

For example, CVE-2008-6504 describing the Unicode vector to bypass the black-
list of characters has a CVSS score of 5.0. The impact metrics for Confidentiality
and Integrity are, None and Partial, respectively. Another occurrence of the same
problem, that resulted from an incomplete fix due to adding a temporary context
object, published in CVE-2010-1870 has the same score. This is, however, not
consistent with the actual impact of the vulnerability. Access to context variables
effectively allows execution of custom Java code, system commands, and more.
It is likely that the team was not aware of the impact when the first advisory
was published; in the second case, however, the official advisory points out the
variables used to control method execution. The last vulnerability CVE-2012-
0392 reported for this problem, relating to evaluating OGNL expressions using
two parameters, has correct Confidentiality/Integrity Impact metrics of Complete
and the overall score of 9.3. Even though, in hindsight, it is clear that the im-
pact of all three issues was the same, the published information is still incorrect,
something that can only be revealed by detailed analysis.

Thus, CVSS values can be biased by the understanding of the problem at the
time of advisory publication. Therefore, and irrespective of the objectivity of the
measure, it may not be appropriate to use CVSS in a temporal context: using it

Analysis and detection of security
vulnerabilities in contemporary software

128 Olgierd Pieczul

9. Security Vulnerabilities 9.5 Analysis of Security Control Evolution

to compare the (in)security of an application may lead to incorrect conclusions.
The extent to which this may influence the results of past studies is a subject for
further investigation.

9.5.2 Developer’s blind spots

Anticipating security problems requires a cognitive effort and often is a distrac-
tion from the main objective of the developer. Oliveira et al. [26] show that
developers often fail to correlate security problems to their workload even if they
are aware of the problem in general. Oliveira’s experimental hypothesis was that
vulnerabilities can be blind spots in developer’s heuristic-based decision-making
processes: while a programmer focuses on implementing code to meet functional
demands, which is cognitively demanding, they tend to assume common, but
not edge, cases. Supporting the hypothesis, the study [26] found that 53% of
its participants knew about a particular coding vulnerability, but they did not
correlate it with an experimental programming activity assigned to them unless
it was explicitly highlighted.

Our analysis confirms the existence of this phenomenon in a mature product and
experienced team. Even where developers are expected to be aware of the secu-
rity problems (as they encountered them in the past), they may fail to consider
them. When the cookie interceptor was implemented, the developers were aware
of possible issues related to evaluating OGNL expressions without restrictions.
Some of the restrictions were already implemented for the parameters interceptor.
Yet, for three years the corresponding protection was not considered for cookies.
Similarly, the access to Struts-specific top object, that allowed bypassing the
excluded parameters list was well understood by the team. The top object facil-
itates the extensions to OGNL provided in Struts and, as such, it is described in
the documentation. However, for almost four years when various parameters were
excluded for security reasons, it was not considered in the regular expressions.

Overlooking the unrestricted access to public constructors could also be partially
attributed the problem of developer’s blind spots. While, at first, the developers
might not have been aware of the potential security exposure it introduces (dark
side), it was no longer the case after July 2010, when usage of the constructor was
highlighted to the team in the context of another reported vulnerability. Also,
the example exploit, included in the advisory published on the Struts website,
explicitly used the Boolean class constructor. While invoking the constructor

Analysis and detection of security
vulnerabilities in contemporary software

129 Olgierd Pieczul

9. Security Vulnerabilities 9.5 Analysis of Security Control Evolution

was not a primary objective of the attack, it was used to facilitate it. The usage
of a constructor was not considered when preparing the fix for the previous issue,
even though it could have been easily included.

9.5.3 Opportunistic fix

When developing the fix for a security problem, developers may prefer an imple-
mentation that fits their existing code. While the fix related to the root cause
of the problem may be more suitable and more comprehensive, developers tend
to develop fixes that are more convenient to implement and that do not cause
disruption to the existing code structure.

Prevention against modification of context variables or execution of custom code
was first implemented using simple pattern matching of OGNL expressions, rather
than by limiting OGNL’s capability to perform these operations, which followed
later. While we do not know why exactly this approach was taken, our analysis
of the source code from 2004 shows that, in the code structure of the time, a more
comprehensive solution required major changes in a number of helper classes and,
perhaps, in the OGNL itself. Over time, and in response to numerous issues,
a more comprehensive solution was implemented at lower level of abstraction,
explicitly interacting with OGNL processor.

Similarly, prevention against class loader manipulation was first implemented
by adding a pattern to the list of excluded parameters, which was already in
place. Only after a series of vulnerabilities arising primarily from the gaps in
the regular expressions were reported, a more comprehensive fix, which involved
specification of excluded classes and packages, was implemented. However, at
the time of writing the defense against constructor execution still relies solely on
the regular expression matching, specifically the lack of the white space among
allowed characters. As the regular expressions were often bypassed in the past, it
may be more suitable to include protection against constructor execution at the
OGNL level.

9.5.3.1 Compatibility problems

Sometimes, fixes to vulnerabilities are sub-optimal in the interest of compatibility
with older versions and existing consumer workloads. Software consumers may
rely on a particular functionality that was subsequently identified as a source of

Analysis and detection of security
vulnerabilities in contemporary software

130 Olgierd Pieczul

9. Security Vulnerabilities 9.5 Analysis of Security Control Evolution

the security problems. Thus, there must be a trade-off between a comprehensive
fix that breaks consumer’s code and a weaker fix that may not fully address the
problem or contribute to security vulnerabilities in the future, for example by the
introduction of the dark side of the code.

In Struts, many vulnerabilities were related to execution of static methods. As
many applications take advantage of this functionality, it prevented the Struts
team disabling it completely, which would be a preferred fix. Instead, the static
method execution was controlled through configuration. As a result, the property
controlling method execution disablement became a frequent target for other
vulnerabilities and allowed escalating any context manipulation issue to remote
code execution. Completely turning off this functionality is being planned since
2014 and developers are warned that it should be considered obsolete. Similarly,
the plan to remove the top object was recently announced.

9.5.4 Counter-intuitive mechanism

Some fixes can mean that security controls in a software component can be-
come difficult to understand or counter-intuitive. While the component may not,
strictly speaking, contain a vulnerability, systems using it may introduce their
own vulnerabilities, due to incorrect usage of the security controls.

The problems of developers not properly understanding the relationship between
method access and property exposure were discussed in Section 9.4.2. Anecdo-
tally, many application developers are not aware of the problems arising from
implementing public getters/setters for sensitive objects, or are unaware of ex-
posing them through inheriting a class that contains such methods. The Struts
team also fall victim to that problem with the class property, which has not
been considered for over 10 years.

Initially, the excludeParams configuration property was not implemented as
a security mechanism. It was intended to make the interceptor ignore some
URL parameters that are used by other layers of the application. For exam-
ple, a popular JavaScript framework dojo often uses dojo.preventCache

parameter for its own purpose. Such parameters will not have the matching
properties in the action classes, and attempting to process them through the
ParametersInterceptor results in errors/exceptions, hence they are easy to
spot and include in the configuration. Some patterns (such as ^dojo\..) were
set in the default Struts configuration file shipped within the Struts JAR file.

Analysis and detection of security
vulnerabilities in contemporary software

131 Olgierd Pieczul

9. Security Vulnerabilities 9.5 Analysis of Security Control Evolution

At that time, Developers could specify other, application-specific parameters in
their application’s configuration file. It was not a concern that the developer
would overwrite the default pattern by setting their set of specific patterns, as
the application developers are normally aware what non-action parameters their
application uses, and would include a full list of those parameters in their config-
uration file.

Then, gradually, in order to remediate reported vulnerabilities, security related
parameters were added to the default configuration and the excludedParams
setting become a part of Struts security mechanism. After that, in order to
maintain the security, the application developer has to find the current set of
patterns from the default configuration file and include it when specifying patterns
in the application-specific file, as otherwise they would overwrite the pre-defined
security-related patterns. In addition, each time the application upgrades Struts
to a new version, the process has to be repeated as the new version may contain
new patterns. At one point the Struts team itself accidentally became a victim of
this process. In version 2.3.20, released in December 2014, the code responsible
for applying the patterns has been modified. Most of the patterns had been moved
to a separate class handling pattern matching for both (parameter and cookie)
interceptors. The two remaining patterns were kept in the default configuration
file. This change overwrote the patterns for security-related properties (such as
class) contained in the struts code, by those in the default configuration file.
As a result, the release 2.3.20 had effectively re-enabled all previously fixed attack
vectors related to property access. The eventual fix to the problem was moving
the two patterns from the configuration to the code. The fix did not address the
problem of overriding security-related excluded patterns by the configuration,
but simply meant that the default configuration was empty. Now, in order to set
their own excluded patterns, the application developer has to obtain the current
version of the default patterns from the Struts Java code and append their own
patterns.

9.5.4.1 Assumptions about consumers

A factor that contributes to the implementation of a counter-intuitive security
mechanism is incorrect assumptions about the consumers’ understanding of se-
curity mechanisms. The developers may not be aware that a typical consumer
does not understand all subtleties of the security framework. In analyzing the
discussion on the Struts issue tracking system, we noticed that some of the ini-

Analysis and detection of security
vulnerabilities in contemporary software

132 Olgierd Pieczul

9. Security Vulnerabilities 9.5 Analysis of Security Control Evolution

tial reports on security problems were dismissed, due to the existence of technical
means to counter default insecure behavior by specific configuration or customiza-
tion. Some of these issues were eventually admitted as vulnerabilities and the
default behavior was changed.

Struts developers might not have realized how counter-intuitive the management
of the excludeParams property was until it impacted on themselves. In fact,
at the time of publishing the fix for the accidental overwriting (described in the
previous section), one of the developers opened an issue in the Struts tracking
system to make the patterns additive.

Another example of this problem is the exposure of J2EE objects, such as ses-
sion or request through public getters and setters, required by the dependency
injection mechanism, as described in Section 9.4.2. It was assumed that applica-
tion developers would implement their own protection, such as custom parameter
checks. However, it is unlikely that a casual Struts consumer will be aware of
such an option or the need to use it. Many application developers are not even
aware that the implementation of the getter to match a setter is not required
by Struts interfaces; it is a common Java practice to implement matching get-
ters, but clearly poor Struts practice as it may expose sensitive properties such
as session. In November 2016, a query [98] to a popular GitHub repository
shows 8,337 instances where a class implementing SessionAware interface also
implements a public getSession method. Eventually, access to these objects
was recently disabled at OGNL level, regardless of getter/setter access modifiers
or their inclusion in the excluded patterns.

9.5.5 Evolution of phenomena

During our analysis, we noticed that the above-mentioned phenomena tend to
appear in the order given in Figure 9.3: they evolve as the developer’s knowledge
about the security problem and understanding of the issue and the consequences
of fix increases. At first, the developer may not be aware, or only partially
aware, of a potential security problem. This may be caused by an incomplete
understanding of the full operation of the application or relying on an incomplete
advisory by the third-party. As they become more aware, developers may fail to
remediate the problem fully due to the blind spots in their programming process.
Also, the fix may be applied only to some scenarios or to some parts of the
system but not the other. Later, the developed fix may not be comprehensive

Analysis and detection of security
vulnerabilities in contemporary software

133 Olgierd Pieczul

9. Security Vulnerabilities 9.6 Conclusion

Figure 9.3: Phenomena life cycle

or not fix the root cause of the problem. This may be a result of an attempt to
implement the fix with the least possible effort, or the technical constraints, such
as compatibility with previous versions. Finally, the resulting security mechanism
may be counter-intuitive, resulting in its incorrect usage by the consumers. Note
that the end of the sequence at one level of abstraction may become a starting
point for the security problem at a higher level of abstraction, where the counter-
intuitive mechanism of a framework or library contributes to the problem with
comprehending system’s low-level details (dark side of the code) of the consuming
application.

9.6 Conclusion

A systematic analysis of the Struts parameter and cookie interceptor controls
over 12 years was carried out. A number of phenomena emerged in the evolu-
tion of the control, and these provide insights into why insufficient controls were
implemented. In addition, we observed that the phenomena have their own life
cycle as developers’ understanding of security issues increase.

In particular, the “dark side of the code”, discussed in Chapter 2, stands out
as the primary cause of the vulnerabilities, with other, such as developers blind
spots or opportunistic approach to issue fixing, emerging from it. The majority
of the identified issues are related to interoperation between Struts and OGNL.
At first, it was considered an abstraction that allowed an easy enablement of rich
parameters within Struts without considering any details of OGNL language or
the supporting library. However, as subsequent vulnerabilities were identified,
that abstraction was gradually broken. Eventually, Struts included a significant
amount of customization to the OGNL processor and controls that often interleave
significantly with its operation. In fact, it were these changes that have proven
to be most effective and properly fixed the vulnerabilities.

Analysis and detection of security
vulnerabilities in contemporary software

134 Olgierd Pieczul

Chapter 10

Conclusion

Code reuse, typically in the form of software libraries and, recently, cloud services
is a foundation of contemporary software development. It allows developers to
dedicate their time and energy to core business logic of the application, instead of
considering all the common and routine low-level details. The increased develop-
ment velocity and the reduced cost come at a price of losing control of application
operation, and enabling unexpected behaviors that undermine its intended secu-
rity controls. These unexpected behaviors, which we define as the dark side of
the code, often result in security vulnerabilities that are not visible at the high
abstraction level that developers work on, and are therefore very difficult to de-
tect using typical security practices. It is a kind of paradox that developing at a
high level of abstraction involves encapsulating low-level details, but ensuring the
security of an application involves breaking this abstraction and consideration of
those details.

Anomaly detection was used in the past to identify attacks exploiting software
vulnerabilities, but most of the work considered simple software and a small num-
ber of vulnerabilities. Our hypothesis is that anomaly detection techniques could
be used to detect instances of the unexpected behavior and help with the identi-
fication of underlying vulnerabilities. The goal was to investigate how practical
it is to apply anomaly detection to large contemporary software in real world
development and deployment scenarios. This necessitated identifying the key
challenges of this approach. Focusing on a common scenario of Java web appli-
cations, we considered problems of selecting an appropriate abstraction level and
scope in which application behavior should be monitored, acquiring the baseline
behavior and finding a suitable model to abstract it.

135

10. Conclusion

Analysis of sample applications and vulnerabilities led to the observation that
monitoring application method call sequences provides the view of application
activity most suitable for anomaly detection. Because the system operation at
this level has often a form of distinct transactions, we developed a general model
of behavioral norms to capture this type of behavior. Inspired by previous work
in the area, we provided an interpretation of the model based on n-grams and
implemented a proof of concept runtime verification component that allows easy
integration with existing applications.

Evaluating the proposed mechanism was a challenging task. As our focus was not
only on the efficacy of the anomaly detection technique but also its applicability
as a practical solution for modern large-scale software, we had to perform a suffi-
ciently comprehensive experiment. We validated the runtime verification system
against the complete set of nineteen vulnerabilities reported over a five-year pe-
riod for Apache Struts. Preparing the experiment involved examination of these
vulnerabilities, which often required in-depth analysis of the source code changes
in order to develop corresponding test cases. The outcome of the experiment
suggests that the anomaly detection can, in principle, be a useful technique for
discovering the unexpected application behavior resulting from attacks exploiting
software errors.

The analysis of the results led to a number of insights into the nature and root
causes of the programming errors. In order to better understand these problems,
we increased the time frame of our investigation to twelve years and analyzed the
evolution of one part of the Struts framework in more detail. We identified that
the accidental misuse of software components due to an incorrect and insufficient
understanding of their operation was the primary reason for developers to intro-
duce security vulnerabilities. We also discovered a range of related phenomena.

Below we summarize results, contributions, limitations and future research areas
for the three main themes of this dissertation.

The dark side of the code The first contribution is the discovery of the phe-
nomenon of “dark side of the code” (Chapter 2), the unexpected behavior of the
application resulting from accidental misuse of software components. The study,
which covered twelve years of evolution of security controls and vulnerabilities
in Apache Struts (Chapter 9), confirmed the existence of the dark side “in the
wild”. It also led to the discovery and confirmation of other phenomena that
contribute to security weaknesses in the software and hinder the remediation.

Analysis and detection of security
vulnerabilities in contemporary software

136 Olgierd Pieczul

10. Conclusion

This phenomena, while at a high level related to general area of developer’s flaws
in software engineering provide a new, security-specific interpretation of those
problems point out to new root causes of their appearance. This analysis also
demonstrated the importance of qualitative studies of software vulnerabilities as
well as the effort that is required to perform them.

Recognizing the dark side of the code as a separate problem of secure software
engineering can lead to better understanding of the mechanisms that cause de-
velopers to introduce security vulnerabilities in component-based software. This
may allow improving software development and deployment processes by provid-
ing specific solutions that can reduce the security gap. In the future research,
we plan to develop a set of practices for safe component development and com-
position that can help to avoid accidental component misuse and corresponding
security vulnerabilities.

Model of behavioral norms The second contribution is the definition of the
formal model of behavioral norms (Chapter 5). It is a general purpose frame-
work for inferring transaction-like behavioral patterns from the system logs. We
have demonstrated that behavioral norms could be used in model various types
of system traces and events, such as application method calls, HTTP logs, sys-
tem permission checks and API calls between separate collaborating web services
(Chapter 6). We have also proposed the technique of automatic discovery of
model parameters and evaluated it using simulated and a real-world systems.
Finally, we explored other applications of the behavioral norms model, in par-
ticular the discovery of the underlying patterns of system and user behavior by
behavioral norms aggregation (Chapter 6).

We have presented a simple interpretation of the model using sets of n-grams.
This implementation was sufficient to demonstrate the application of the model
for detecting anomalies in software, in the scope of our experiments. The future
research should evaluate the suitability of other anomaly detection techniques
such as sequences of variable length [55,56], finite state machines [56] and neural
networks [57]. These alternative data models may be used to improve the per-
formance and expressiveness of the model and also provide new properties that
can be used to analyze system structure and operation through the analysis of
the norms.

Analysis and detection of security
vulnerabilities in contemporary software

137 Olgierd Pieczul

10. Conclusion

Anomaly detection in real-world, contemporary software The third con-
tribution is the analysis of challenges of applying anomaly detection to large-scale
contemporary software systems (Chapter 4). We identified the key problems that
are typically not considered in the previous research, such as the selection of ab-
straction level and scope and acquiring baseline system behavior in a way that
could be applicable to modern software engineering practices.

Informed by these problems, we proposed a mechanism and prototype implemen-
tation of the runtime verification for Java (Chapter 7). It should be straight-
forward to adapt this mechanism to similar platforms, such as .NET. However,
other very different platforms, such as Node.js, with dynamically typed language
and extensive use of concurrency become increasingly popular in the enterprise
configurations. It remains an open question how difficult it could be to adopt
our techniques to such environments. The usage of Aspects allowed easy inte-
gration with Java applications but it may result in unacceptable performance
degradation. Future research should consider alternative ways to enable runtime
verification such as direct integration with Java Virtual Machine. Also, we dis-
cussed a number of potential ways to generate the baseline behavior. Using an
application scanner combined with automated functional tests provided satisfac-
tory coverage in the scope of our experiments. Future research should examine
efficacy of application scanning in context larger applications running in produc-
tion systems and applicability of other automated methods of collecting a baseline
behavior such as glass-box testing or automatic test generation. This may lead
to improved coverage and development of more advanced methodologies suitable
for software in production configurations.

The runtime verification mechanism was experimentally evaluated in the context
of nineteen vulnerabilities reported for Apache Struts versions over a five year
period. Experiment results confirm that the anomaly detection can be applied
to complex contemporary software components and provided further insight into
the practical challenges of this task. It is, to the best of our knowledge, the
first analysis of the efficacy of anomaly detection in the context of the full set of
security vulnerabilities reported over a long time period for a real-world software
system.

While the experiment was comprehensive when compared to the other work on
the subject [14, 15, 17–19], it considered only a single, albeit complex, software
component. Future research should consider if similar results could be achieved
for other software. Also, it remains an open question what would be the perfor-

Analysis and detection of security
vulnerabilities in contemporary software

138 Olgierd Pieczul

10. Conclusion

mance of anomaly detection if it was applied to multiple components simulta-
neously. Future research should consider different strategies, such as combining
the behavior of components or monitoring its operation in isolation, and their
impact anomaly detection efficacy, model size and performance overhead. This
will provide a further insight into applicability of anomaly detection to software
at scale and may lead to development of more advanced model interpretations or
integration mechanisms.

Analysis and detection of security
vulnerabilities in contemporary software

139 Olgierd Pieczul

Appendix A

Vulnerability Test Cases

A.1 Test cases structure and setup

All test cases are based on making an HTTP request to an application and val-
idating the result. Test cases were designed to reduce the amount of operations
caused by exploitation to the necessary minimum. For that reason, the test
cases do not perform any useful attacks. In order to achieve that the application
included a number of elements that made the attacks easier to perform and ver-
ify. For example, the action classes for the application include a public test()
method, that, if set, adds the additional exploited=true value to the appli-
cation response structure. If set, that value is reflected in the standard JSON
response generated by application APIs.

Note that additional code added to the application in order simplify the test cases
do not affect Struts operation that is the subject of the experiment. The tests
would be possible without introducing the additional code, just at higher cost
and potentially involving more operations, often from Struts itself. Therefore,
the additional code allows the testing of the worst case scenarios for runtime
verification. Other, specific additions or setup steps are discussed in context of
specific test cases.

In general the test cases are defined in perform following steps:

• test setup, such as setting a specific variable or clearing state (optional),

• HTTP request to perform an attack,

• verification whether the attack was successful, and

140

A. Vulnerability Test Cases A.2 Test cases

• optional cleanup.

The steps such as setup or cleanup were usually done by making a call to a
separate J2EE service servlet operating outside of Struts, and not covered
in the scope of runtime verification. The servlet performs operations such as
checking variable value or setting up a class loader. It is also used for cleanup
operations, such as resetting value to its default state. Those cleanup operations
are not included in below test case definitions.

A.2 Test cases

CVE-2012-0393: Unrestricted access to public constructors

Setup For this test we implemented a TestClass with a public con-
structor. The class includes a static field constructorCalled
that is set on constructor invocation and publically accessible.

Request /api/post?text=x[new tests.TestClass()]

Check Variable TestClass.constructorCalled is set.

To improve the readability the request paths and parameters in the text are
encoded according to RFC 3986. For example, in this test case, the actual request
URI is /api/add?text=x%5bnew%20tests.TestClass()%5d.

CVE-2012-4387: No restriction for OGNL parameter
length

Request /api/add?text=a&〈500-char-parameter-name〉=z

Check Request fails due to invalid parameter name. In fixed versions
the parameter is ignored and request is successful.

Analysis and detection of security
vulnerabilities in contemporary software

141 Olgierd Pieczul

A. Vulnerability Test Cases A.2 Test cases

CVE-2013-1965: Improper handling of parameters during
a redirect

Setup An application included a parameter that, when set, makes struts
action to complete with a ’redirect’ return value. struts.xml
application configuration specifies that for that return value an
HTTP redirect should be sent.

Request /api/post?text=${test()}&redirect=true

Check JSON response includes exploited: true.

CVE-2013-1966: Improper OGNL parameter handling in
’url’ tag

Setup Application HTML includes a tag 〈s:url
action="SearchAction" includeParams="all"〉.
Application includes additional testSetStatus() method
that sets application status variable that is rendered in JSP
view inside a META tag to exploited.

Request /ui/main?z=${testSetStatus()}

Check HTML response includes 〈meta name='status'

content='exploited'〉 string.

CVE-2013-2115: incomplete fix for CVE-2013-1966

Setup As in CVE-2013-1966

Request /ui/main?z=1${testSetStatus()}

Check As in CVE-2013-1966

Analysis and detection of security
vulnerabilities in contemporary software

142 Olgierd Pieczul

A. Vulnerability Test Cases A.2 Test cases

CVE-2013-2134: Improper handling of OGNL in request
wildcard matching

Setup The application configuration includes a wildcard match for un-
knonw API names to render standard JSON response indicating
an error

Request /api/${test()}

Check JSON response includes exploited: true

CVE-2013-2135: Double-evaluation of OGNL parameters

Setup The application struts.xml configuration includes a directive
to pass the value of text variable to the JSP view for JSON
processing.

Request /api/post?text=${%{test()}}

Check JSON response includes exploited: true

CVE-2013-2248: Unrestricted redirect to user-specified lo-
cation

Request /api/post?redirect:http://example.net/

Check Response includes 302 code and Location header with value
http://example.net/.

CVE-2013-2251: Improper handling of OGNL in the pa-
rameter prefixes

Request /api/post?action:${test()}

Check JSON response includes exploited: true

Analysis and detection of security
vulnerabilities in contemporary software

143 Olgierd Pieczul

A. Vulnerability Test Cases A.2 Test cases

CVE-2013-4310: Bypassing external access controls using
’action:’ prefix

Setup Discussed in detail in Section 8.4.2. Application includes a J2EE
filter to prevent access to /api/private API implementing an
action that returns private: true in its JSON response.

Request /api/post?action:private

Check JSON response includes private: true

CVE-2013-4316: Unrestricted Dynamic Method Invoca-
tion enabled by default

Request /api/post!test

Check JSON response includes exploited: true

CVE-2014-0094: Unrestricted access to ’class’ property

Setup A custom implementation extending Tomcat Java Class Loader
used by the application, which includes an exploited field with
associated getter and setter.

Request /api/post?text=a&class.classLoader.exploited=1

Check The class loader exploited field is set to 1.

CVE-2014-0112: Incomplete fix for CVE-2014-0094

Setup As in CVE-2014-0094.

Request /api/post?text=a&Class.classLoader.exploited=1

Check As in CVE-2014-0094.

Analysis and detection of security
vulnerabilities in contemporary software

144 Olgierd Pieczul

A. Vulnerability Test Cases A.2 Test cases

CVE-2014-0113: Access to ’class’ parameter using cookies

Setup As in CVE-2014-0094.

Request /api/post?text=a including an HTTP header Cookie:

class.classLoader.exploited=1.

Check As in CVE-2014-0094.

CVE-2014-0116: Access to context variables using cookies

Setup Application includes a custom implementation of
HTTPServletResponse including a static exploited

field.

Request /api/post?text=a including an HTTP header Cookie:

response.exploited=1

Check HTTPServletResponse.exploited is set to 1.

CVE-2014-7809: Predictable CSRF token

Setup A specific action is configured in to be protected using Struts
CSRF protection. The attack normally involves calculating
CSRF token using a previous value. However, in this test case tha
actual value is obtained using service servlet. The fact that
the value is not actually calculated does not affect the outcome
of the test.

Request Call to the action including the token.

Check Request not rejected by CSRF protection.

CVE-2015-1831: Parameter restrictions accidentally dis-
abled in the default configuration

Setup As in CVE-2014-0116.

Request /api/post?text=a&response.exploited=1

Check As in CVE-2014-0116.

Analysis and detection of security
vulnerabilities in contemporary software

145 Olgierd Pieczul

A. Vulnerability Test Cases A.2 Test cases

CVE-2015-5209: Parameter restrictions bypassed using
’top’ parameter

Request /api/post?text=a&top.session[user].id=frank

Check Application session’s user variable’s id property is frank.

Analysis and detection of security
vulnerabilities in contemporary software

146 Olgierd Pieczul

Appendix B

False Positive Test Cases

Table B.1 includes the results of false positive tests. These test cases are imple-

Test case 2.3.1 2.3.4 2.3.14 2.3.14.1 2.3.14.2 2.3.15 2.3.15.1 2.3.16 2.3.16.1 2.3.16.2 2.3.16.3 2.3.20 2.3.24 2.3.24.1

UnkwnonAction +− +− +− +− +− +− +− +− +− +− +− +− +− +−

PostAction +− +− +− +− +− +− +− +− +− +− +− +− +− +−

ViewAcion +− +− +− +− +− +− +− +− +− +− +− +− +− +−

NoParameters +− +− +− +− +− +− +− +− +− +− +− +− +− +−

MissingParameter +− +− +− +− +− +− +− +− +− +− +− +− +− +−

MissingParameter2 +− +− +− +− +− +− +− +− +− +− +− +− +− +−

WrongParameter +− +− +− +− +− +− +− +− +− +− +− +− +− +−

WrongParameter2 +− +− +− +− +− +− +− +− +− +− +− +− +− +−

ActionPrefix +− +− +− +− +− +− +− −− −− −− −− −− −− −−

WrongActionPrefix +− +− +− +− +− +− +− −− −− −− −− −− −− −−

ValidRedirect +− +− +− +− +− +− +− +− +− +− +− +− +− +−

GoodCookie +− +− +− +− +− +− +− +− +− +− +− +− +− +−

BadCookieName +− +− +− +− +− +− +− +− +− +− +− +− +− +−

BadCookieValue +− +− +− +− +− +− +− +− +− +− +− +− +− +−

NoURLBadCookie +− +− +− +− +− +− +− +− +− +− +− +− +− +−

PrivateAction +− +− +− +− +− +− +− +− +− +− +− +− +− +−

UIAction +− +− +− +− +− +− +− +− +− +− +− +− +− +−

ExtraUrlParameter +− +− +− +− +− +− +− +− +− +− +− +− +− +−

UIWrongPath + − +− +− +− +− +− +− +− +− +− +− +− +− +−

Note that some outcomes were identical for different versions of Struts, and in the interest of
space: version 2.3.4 covers 2.3.1.1, 2.3.1.2 and 2.3.3; 2.3.14 covers 2.3.4.1, 2.3.7, 2.3.8 and 2.3.12;
2.3.15 covers 2.3.14.3, and 2.3.16 covers 2.3.15.2 and 2.3.15.3; 2.3.24 covers 2.3.20.1.

Table B.1: False positive test cases outcomes on different versions of Struts

147

B. False Positive Test Cases

mented to exercise Struts in operations similar to the ones used by vulnerabilities,
such as making a request with a parameter that does not exist, or incorrect action
name, but without actually exploiting the vulnerability. Each outcome specifies
whether the test was successful and if any anomalies were detected during the test.
For example outcome +− indicates successful test with no anomalies detected.

The UnknownAction, PostAction and ViewAction test cases make HTTP
requests with URLs that map to no action in the application, PostAction and
ViewAction respectively. The NoParameters test case makes PostAction
request with no parameters, MissingParameter makes a request with missing
required parameter and MissingParameter2 with missing parameter but with
the other valid parameter present. Similarly, WrongParameter makes a request
with one incorrect parameter name and WrongParameter2 with one parame-
ter incorrect and the other correct. ActionPrefix test case makes a request
with action: prefix, as discussed in Section 8.4.2, with correct action name,
and WrongActionPrefix with an incorrect one. The ValidRedirect test
case exercises additional action in the application that results in an (intended)
redirect to a third-party website. The three Cookie-related test cases exercise
usage of cookies with a correct name and cookies with incorrect (not whitelisted)
name, and value. The PrivateAction is the test case specific to CVE-2013-
4310, making an authenticated call (allowed by J2EE filter) to the private API.
UIAction makes a casual usage of the UI, UIWrongPath the UI action with
incorrect path and ExtraURLParameter includes additional parameter to the
UI request, relevant to CVE-2013-1966.

The outcome of each test case is specific to the action. Often it is just verifying
that the action succeeded or an expected error was returned.

Analysis and detection of security
vulnerabilities in contemporary software

148 Olgierd Pieczul

Index

behavioral norms model, 47

dark side of the code, 8, 126

Event, 47
event equivalence

attribute based ∼A, 56
generic ∼, 50

event scope
attribute scoping @, 55
generic, 48

Jaccard coefficient J (n,m), 62

microblog application, 9

n-grams, 34, 60
Norm, 52
norm set similarityMO

T (l, t), 62
norms for log NO

T (l), 61

Strand, 50
Struts

interceptors, 119
cookie, 125
parameters, 119

OGNL, 118
operation, 10, 116

Trace, 48
trace equivalence

attribute-based ≈A, 57
generic ≈, 52

149

References

[1] H. Debar, M. Dacier, and A. Wespi. Towards a taxonomy of intrusion-
detection systems. Comput. Netw., 31(9):805–822, April 1999.

[2] S. Axelsson. Intrusion detection systems: A survey and taxonomy. Tech-
nical report, Department of Computer Engineering, Chalmers University of
Technology, 2000.

[3] C. Warrender, S. Forrest, and B. A. Pearlmutter. Detecting intrusions using
system calls: Alternative data models. In IEEE Symposium on Security and
Privacy, pages 133–145, 1999.

[4] D. Gollmann. Software security – the dangers of abstraction. In The Fu-
ture of Identity in the Information Society, volume 298 of IFIP Advances
in Information and Communication Technology, pages 1–12. Springer Berlin
Heidelberg, 2009.

[5] H. H. Thompson. Why security testing is hard. IEEE Security and Privacy,
1(4):83–86, July 2003.

[6] OWASP Foundation. OWASP Top 10 2013, 2013. https://www.owasp.
org/index.php/Top_10_2013.

[7] SANS Institute. CWE/SANS TOP 25 Most Dangerous Software Errors, 3.0
edition, 2011.

[8] T. McLean. Critical vulnerabilities in JSON Web Token libraries.
Blog post https://www.chosenplaintext.ca/2015/03/31/jwt-
algorithm-confusion.html, accessed 2 December 2016, 2015.

[9] P. Abate, R. D. Cosmo, R. Treinen, and S. Zacchiroli. Dependency solving:
A separate concern in component evolution management. Journal of Systems
and Software, 85(10):2228 – 2240, 2012. Automated Software Evolution.

150

https://www.owasp.org/index.php/Top_10_2013
https://www.owasp.org/index.php/Top_10_2013
https://www.chosenplaintext.ca/2015/03/31/jwt-algorithm-confusion.html
https://www.chosenplaintext.ca/2015/03/31/jwt-algorithm-confusion.html

REFERENCES

[10] N. Delgado, A. Q. Gates, and S. Roach. A taxonomy and catalog of runtime
software-fault monitoring tools. IEEE Trans. Softw. Eng., 2004.

[11] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM Comput. Surv., 41(3):15:1–15:58, July 2009.

[12] C. Kruegel and G. Vigna. Anomaly detection of web-based attacks. In
Proceedings of the 10th ACM Conference on Computer and Communications
Security, CCS ’03, pages 251–261, New York, NY, USA, 2003. ACM.

[13] H. S. Vaccaro and G. E. Liepins. Detection of anomalous computer session
activity. In IEEE Symposium on Security and Privacy, pages 280–289, 1989.

[14] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A Sense of
Self for Unix Processes. In Proceedings of the 1996 IEEE Symposium on
Security and Privacy, SP ’96, pages 120–, Washington, DC, USA, 1996.
IEEE Computer Society.

[15] S. Forrest, S. Hofmeyr, and A. Somayaji. The evolution of system-call mon-
itoring. In Proceedings of the 2008 Annual Computer Security Applications
Conference, ACSAC ’08, pages 418–430, Washington, DC, USA, 2008. IEEE
Computer Society.

[16] P. Raman. Jaspin: Javascript based anomaly detection of cross-site scripting
attacks. Master’s thesis, Carleton University, 2008.

[17] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection using se-
quences of system calls. J. Comput. Secur., 6(3):151–180, August 1998.

[18] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On the Detection of Anoma-
lous System Call Arguments, pages 326–343. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2003.

[19] S. Bhatkar, A. Chaturvedi, and R. Sekar. Dataflow anomaly detection. In
Proceedings of the 2006 IEEE Symposium on Security and Privacy, SP ’06,
pages 48–62, Washington, DC, USA, 2006. IEEE Computer Society.

[20] O. Pieczul and S. N. Foley. Discovering emergent norms in security logs. In
2013 IEEE Conference on Communications and Network Security (CNS -
SafeConfig), pages 438–445, 2013.

[21] O. Pieczul and S. N. Foley. Collaborating as normal: Detecting systemic
anomalies in your partner. In Security Protocols XXII: 22nd International

Analysis and detection of security
vulnerabilities in contemporary software

151 Olgierd Pieczul

REFERENCES

Workshop, Cambridge, UK, March 19-21, 2014, Revised Selected Papers,
pages 18–27. Springer International Publishing, 2014.

[22] O. Pieczul, S. N. Foley, and V. M. Rooney. I’m OK, You’re OK, the System’s
OK: Normative security for systems. In Proceedings of the 2014 Workshop
on New Security Paradigms, NSPW ’14, pages 95–104, New York, NY, USA,
2014. ACM.

[23] O. Pieczul and S. N. Foley. The dark side of the code. In Security Protocols
XXIII: 23rd International Workshop, Cambridge, UK, March 31 - April 2,
2015, Revised Selected Papers, pages 1–11. Springer International Publishing,
2015.

[24] O. Pieczul and S. N. Foley. The evolution of a security control. In Security
Protocols XXIV: 24th International Workshop, Brno, Czech Republic, Re-
vised Selected Papers. Springer International Publishing, 2016. (to appear).

[25] O. Pieczul and S. N. Foley. Runtime detection of zero-day vulnerability
exploits in contemporary software systems. In Data and Applications Se-
curity and Privacy XXX: 30th Annual IFIP WG 11.3 Conference, DBSec
2016, Trento, Italy, July 18-20, 2016. Proceedings. Springer International
Publishing, 2016.

[26] D. Oliveira, M. Rosenthal, N. Morin, K.-C. Yeh, J. Cappos, and Y. Zhuang.
It’s the psychology stupid: How heuristics explain software vulnerabilities
and how priming can illuminate developer’s blind spots. In Proceedings of
the 30th Annual Computer Security Applications Conference, ACSAC ’14,
pages 296–305, New York, NY, USA, 2014. ACM.

[27] G. J. Holzmann. Code inflation. IEEE Software, 32(2):10–13, Mar 2015.

[28] B. Meyer. Applying "design by contract". IEEE Computer, 25(10):40–51,
1992.

[29] S. Foley. A non-functional approach to system integrity. IEEE Journal on
Selected Areas in Communications, 21(1), Jan 2003.

[30] P. Ryan. Mathematical models of computer security. In R. Focardi and
R. Gorrieri, editors, Foundations of Security Analysis and Design, volume
2171 of Lecture Notes in Computer Science, pages 1–62. Springer Berlin /
Heidelberg, 2001.

Analysis and detection of security
vulnerabilities in contemporary software

152 Olgierd Pieczul

REFERENCES

[31] S. Chong, J. Guttman, A. Datta, A. Myers, B. Pierce, P. Schaumont, T.
Sherwood, and N. Zeldovich. Report on the NSF workshop on formal meth-
ods for security. Available at https://arxiv.org/abs/1608.00678.,
August 2016.

[32] A. Leff and J. T. Rayfield. Web-application development using the mod-
el/view/controller design pattern. In Enterprise Distributed Object Com-
puting Conference, 2001. EDOC ’01. Proceedings. Fifth IEEE International,
pages 118–127, 2001.

[33] C. Jackson, A. Barth, A. Bortz, W. Shao, and D. Boneh. Protecting browsers
from DNS rebinding attacks. In ACM CCS 07, 2007.

[34] D. Davis. Compliance defects in public-key cryptography. In Proceedings
of the 6th Conference on USENIX Security Symposium, Focusing on Appli-
cations of Cryptography, SSYM’96, pages 17–17, Berkeley, CA, USA, 1996.
USENIX Association.

[35] Carnegie Mellon University. CERT Secure Coding Standards – VOID 2
MET21-J. Do not invoke equals() or hashCode() on URLs. https://www.
securecoding.cert.org/confluence/x/5wHEAw.

[36] D. Davidson. Ognl language guide, 2004.

[37] D. E. Denning. An intrusion-detection model. In IEEE Symposium on
Security and Privacy, pages 118–133, 1986.

[38] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung. Intrusion detection
system: A comprehensive review. Journal of Network and Computer Appli-
cations, 36(1):16 – 24, 2013.

[39] H. Debar, M. Dacier, and A. Wespi. A revised taxonomy for intrusion-
detection systems. Annales Des Télécommunications, 55(7):361–378, 2000.

[40] T. F. Lunt and R. Jagannathan. A prototype real-time intrusion-detection
expert system. In Security and Privacy, 1988. Proceedings., 1988 IEEE
Symposium on, pages 59–66, 1988.

[41] M. Roesch. Snort - lightweight intrusion detection for networks. In Proceed-
ings of the 13th USENIX Conference on System Administration, LISA ’99,
pages 229–238, Berkeley, CA, USA, 1999. USENIX Association.

[42] M. A. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee, Y. Yi, and K. Park.
Kargus: A highly-scalable software-based intrusion detection system. In

Analysis and detection of security
vulnerabilities in contemporary software

153 Olgierd Pieczul

https://arxiv.org/abs/1608.00678
https://www.securecoding.cert.org/confluence/x/5wHEAw
https://www.securecoding.cert.org/confluence/x/5wHEAw

REFERENCES

Proceedings of the 2012 ACM Conference on Computer and Communications
Security, CCS ’12, pages 317–328, New York, NY, USA, 2012. ACM.

[43] Snort. Snort subscriber rule set categories. Online https://www.snort.
org/rules_explanation, retrieved 10 Nov 2016.

[44] E. Albin and N. C. Rowe. A realistic experimental comparison of the suricata
and snort intrusion-detection systems. In Advanced Information Networking
and Applications Workshops (WAINA), 2012 26th International Conference
on, pages 122–127, March 2012.

[45] J. Newsome, B. Karp, and D. X. Song. Polygraph: Automatically generating
signatures for polymorphic worms. In IEEE Symposium on Security and
Privacy, pages 226–241, 2005.

[46] H. S. Javitz and A. Valdes. The SRI IDES Statistical Anomaly Detector. In
IEEE Symposium on Security and Privacy, pages 316–326, 1991.

[47] P. Helman and G. E. Liepins. Statistical foundations of audit trail analysis
for the detection of computer misuse. IEEE Trans. Software Eng., 19(9):886–
901, 1993.

[48] D. Anderson, T. F. Lunt, H. Javitz, A. Tamaru, and A. Valdes. Detect-
ing unusual program behavior using the statistical component of the next-
generation intrusion detection expert system (nides). Technical report, SRI
International. Computer Science Laboratory, 1995.

[49] C. Wang, K. Viswanathan, L. Choudur, V. Talwar, W. Satterfield, and K.
Schwan. Statistical techniques for online anomaly detection in data cen-
ters. In 12th IFIP/IEEE International Symposium on Integrated Network
Management (IM 2011) and Workshops, pages 385–392, May 2011.

[50] H. S. Teng, K. Chen, and S. C. Lu. Adaptive real-time anomaly detection
using inductively generated sequential patterns. In Research in Security and
Privacy, 1990. Proceedings., 1990 IEEE Computer Society Symposium on,
pages 278–284, May 1990.

[51] W. Lee, S. J. Stolfo, and K. W. Mok. Adaptive intrusion detection: A data
mining approach. Artificial Intelligence Review, 14(6):533–567, 2000.

[52] Z. Yu, J. J. P. Tsai, and T. Weigert. An automatically tuning intrusion
detection system. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 37(2):373–384, April 2007.

Analysis and detection of security
vulnerabilities in contemporary software

154 Olgierd Pieczul

https://www.snort.org/rules_explanation
https://www.snort.org/rules_explanation

REFERENCES

[53] H. Inoue and S. Forrest. Anomaly intrusion detection in dynamic execu-
tion environments. In Proceedings of the 2002 Workshop on New Security
Paradigms, NSPW ’02, pages 52–60, New York, NY, USA, 2002. ACM.

[54] K. Jamrozik, P. von Styp-Rekowsky, and A. Zeller. Mining sandboxes. In
Proceedings of the 38th International Conference on Software Engineering,
ICSE ’16, pages 37–48, New York, NY, USA, 2016. ACM.

[55] A. Wespi, M. Dacier, and H. Debar. Intrusion detection using variable-length
audit trail patterns. In Proceedings of the Third International Workshop on
Recent Advances in Intrusion Detection, RAID ’00, pages 110–129, London,
UK, UK, 2000. Springer-Verlag.

[56] C. Marceau. Characterizing the behavior of a program using multiple-length
n-grams. In Proceedings of the 2000 Workshop on New Security Paradigms,
NSPW ’00, pages 101–110, New York, NY, USA, 2000. ACM.

[57] A. K. Ghosh, A. Schwartzbard, and M. Schatz. Learning program behav-
ior profiles for intrusion detection. In Proceedings of the 1st Conference
on Workshop on Intrusion Detection and Network Monitoring - Volume 1,
ID’99, pages 6–6, Berkeley, CA, USA, 1999. USENIX Association.

[58] W. Lee, S. J. Stolfo, and P. K. Chan. Learning Patterns from Unix Process
Execution Traces for Intrusion Detection, 1997.

[59] K. M. C. Tan and R. A. Maxion. "Why 6?" Defining the operational limits
of stide, an anomaly-based intrusion detector. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 188–201, 2002.

[60] W. van der Aalst, T. Weijters, and L. Maruster. Workflow mining: Discover-
ing process models from event logs. IEEE Trans. on Knowl. and Data Eng.,
16(9):1128–1142, September 2004.

[61] W. van der Aalst, K. M. van Hee, J. M. E. M. van der Werf, and M. Verdonk.
Auditing 2.0: Using process mining to support tomorrow’s auditor. IEEE
Computer, 43(3):90–93, 2010.

[62] W. M. P. van der Aalst and A. K. A. de Medeiros. Process mining and
security: Detecting anomalous process executions and checking process con-
formance. Electron. Notes Theor. Comput. Sci., 121:3–21, February 2005.

[63] R. Accorsi and T. Stocker. On the exploitation of process mining for security
audits: The conformance checking case. In Proceedings of the 27th Annual

Analysis and detection of security
vulnerabilities in contemporary software

155 Olgierd Pieczul

REFERENCES

ACM Symposium on Applied Computing, SAC ’12, pages 1709–1716, New
York, NY, USA, 2012. ACM.

[64] F. Bezerra and J. Wainer. Algorithms for anomaly detection of traces in logs
of process aware information systems. Inf. Syst., 38(1):33–44, March 2013.

[65] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection for discrete
sequences: A survey. IEEE Trans. on Knowl. and Data Eng., 24(5):823–839,
May 2012.

[66] H. Inoue and A. Somayaji. Lookahead pairs and full sequences: A tale of
two anomaly detection methods. In in: Proceedings of the 2nd Annual Sym-
posium on Information Assurance (Academic track of the 10th NYS Cyber
Security Conference, pages 9–19, 2007.

[67] X. Shu, D. Yao, and N. Ramakrishnan. Unearthing stealthy program attacks
buried in extremely long execution paths. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security, CCS ’15,
pages 401–413, New York, NY, USA, 2015. ACM.

[68] M. Damashek. Gauging similarity with n-grams: Language-independent
categorization of text. Science, 267(5199):843–848, 1995.

[69] P. Helman and J. Bhangoo. A statistically based system for prioritizing
information exploration under uncertainty. Trans. Sys. Man Cyber. Part A,
27(4):449–466, July 1997.

[70] K. M. C. Tan, K. S. Killourhy, and R. A. Maxion. Undermining an Anomaly-
Based Intrusion Detection System Using Common Exploits, pages 54–73.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.

[71] D. Wagner and P. Soto. Mimicry attacks on host-based intrusion detection
systems. In Proceedings of the 9th ACM Conference on Computer and Com-
munications Security, CCS ’02, pages 255–264, New York, NY, USA, 2002.
ACM.

[72] J. E. Tapiador and J. A. Clark. Masquerade mimicry attack detection: A
randomised approach. Computers & Security, 30(5):297 – 310, 2011. Ad-
vances in network and system security.

[73] H. G. Kayacik and A. N. Zincir-Heywood. On the contribution of preamble
to information hiding in mimicry attacks. In Advanced Information Net-

Analysis and detection of security
vulnerabilities in contemporary software

156 Olgierd Pieczul

REFERENCES

working and Applications Workshops, 2007, AINAW ’07. 21st International
Conference on, volume 1, pages 632–638, May 2007.

[74] P. Li, H. Park, D. Gao, and J. Fu. Bridging the gap between data-flow
and control-flow analysis for anomaly detection. In Proceedings of the 2008
Annual Computer Security Applications Conference, ACSAC ’08, pages 392–
401, Washington, DC, USA, 2008. IEEE Computer Society.

[75] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime
verification. In Verification, Model Checking, and Abstract Interpretation,
pages 44–57. Springer, 2004.

[76] D. Jin, P. O. Meredith, C. Lee, and G. Roşu. Javamop: Efficient parametric
runtime monitoring framework. In Proceedings of the 34th International Con-
ference on Software Engineering, ICSE ’12, pages 1427–1430. IEEE Press,
2012.

[77] G. Creech and J. Hu. A semantic approach to host-based intrusion detec-
tion systems using contiguousand discontiguous system call patterns. IEEE
Trans. Comp., 2014.

[78] F. Maggi, M. Matteucci, and S. Zanero. Detecting intrusions through sys-
tem call sequence and argument analysis. IEEE Trans. Dependable Secur.
Comput., 2010.

[79] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-control-
data attacks are realistic threats. In Proceedings of the 14th Conference on
USENIX Security Symposium - Volume 14, SSYM’05, pages 12–12, Berkeley,
CA, USA, 2005. USENIX Association.

[80] J. M. Spivey. The Z notation - a reference manual. Prentice Hall Interna-
tional Series in Computer Science. Prentice Hall, 1989.

[81] J. M. Spivey. The fuzz manual. The Spivey Partnership, 1992.

[82] A. Luotonen. The common logfile format. http://www.w3.org/pub/

WWW/Daemon/User/Config/Logging.html, 1995.

[83] M. R. Anderberg. Cluster analysis for applications. Probability and mathe-
matical statistics. Academic Press, 1973.

[84] D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749 (Proposed
Standard), October 2012.

Analysis and detection of security
vulnerabilities in contemporary software

157 Olgierd Pieczul

http://www.w3.org/pub/WWW/Daemon/User/Config/Logging.html
http://www.w3.org/pub/WWW/Daemon/User/Config/Logging.html

REFERENCES

[85] S.-T. Sun and K. Beznosov. The devil is in the (implementation) details:
An empirical analysis of oauth sso systems. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security, CCS ’12, pages 378–
390, New York, NY, USA, 2012. ACM.

[86] Securityfocus. Apache Struts CVE-2016-1182 Security Bypass Vulnerability.
http://www.securityfocus.com/bid/91067, accessed 27 Novem-
ber 2016, 2016. List of affected products.

[87] IBM. IBM Security AppScan Enterprise Manual – Recording QA automation
test scripts with the Manual Explorer tool, 9.0.3 edition, 2015.

[88] Apache Struts. Config Browser Plugin. Online, https://struts.

apache.org/docs/config-browser-plugin.html.

[89] B. De Win, B. Vanhaute, and B. De Decker. Security through aspect-
oriented programming. In B. De Decker, F. Piessens, J. Smits, and E.
Van Herreweghen, editors, Advances in Network and Distributed Systems
Security, volume 78 of IFIP International Federation for Information Pro-
cessing, pages 125–138. Springer US, 2002.

[90] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, J. Lhoták, O.
Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Optimising
aspectj. In Proceedings of the 2005 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’05, pages 117–128, New
York, NY, USA, 2005. ACM.

[91] A. Herzog and N. Shahmehri. Performance of the Java security manager.
Computers & Security, 24(3):192–207, 2005.

[92] IBM. IBM Security AppScan Enterprise Manual – Glass box scanning: test-
ing application code during a scan, 9.0.3 edition, 2015.

[93] F. Massacci, S. Neuhaus, and V. H. Nguyen. After-life vulnerabilities: A
study on firefox evolution, its vulnerabilities, and fixes. In Proceedings of the
Third International Conference on Engineering Secure Software and Sys-
tems, ESSoS’11, pages 195–208, Berlin, Heidelberg, 2011. Springer-Verlag.

[94] D. Mitropoulos, V. Karakoidas, P. Louridas, G. Gousios, and D. Spinellis.
Dismal code: Studying the evolution of security bugs. In Proceedings of the
LASER 2013 (LASER 2013), pages 37–48, Arlington, VA, 2013. USENIX.

Analysis and detection of security
vulnerabilities in contemporary software

158 Olgierd Pieczul

http://www.securityfocus.com/bid/91067
https://struts.apache.org/docs/config-browser-plugin.html
https://struts.apache.org/docs/config-browser-plugin.html

REFERENCES

[95] M. Kydyraliev. CVE-2010-1870: Struts2/XWork remote com-
mand execution. o0o Security Team blog, 2010. online; accessed
2016-01-21, http://blog.o0o.nu/2010/07/cve-2010-1870-

struts2xwork-remote.html.

[96] M. Kydyraliev. CVE-2011-3923: Yet another Struts2 Remote Code
Execution. o0o Security Team blog, 2011. online; accessed
2016-01-21, http://blog.o0o.nu/2012/01/cve-2011-3923-yet-
another-struts2.html.

[97] J. Long. Struts 2 Session Tampering via SessionAware/RequestAware
WW-3631. Code Secure blog, 2011. online; accessed 2016-01-
21, http://codesecure.blogspot.ca/2011/12/struts-2-

session-tampering-via.html.

[98] Z. Ashraf. Analysis of recent struts vulnerabilities in parameters and cookie
interceptors, their impact and exploitation. IBM Security Intelligence portal,
2014. online; accessed 2015-05-21.

[99] J. Dahse. Multiple vulnerabilities in Apache Struts2 and property oriented
programming with Java, 2011. online; accessed 2016-01-21.

Analysis and detection of security
vulnerabilities in contemporary software

159 Olgierd Pieczul

http://blog.o0o.nu/2010/07/cve-2010-1870-struts2xwork-remote.html
http://blog.o0o.nu/2010/07/cve-2010-1870-struts2xwork-remote.html
http://blog.o0o.nu/2012/01/cve-2011-3923-yet-another-struts2.html
http://blog.o0o.nu/2012/01/cve-2011-3923-yet-another-struts2.html
http://codesecure.blogspot.ca/2011/12/struts-2-session-tampering-via.html
http://codesecure.blogspot.ca/2011/12/struts-2-session-tampering-via.html

	List of Figures
	List of Tables
	Abstract
	Acknowledgements
	1 Introduction
	1.1 Contemporary Software Development
	1.2 Detecting Vulnerabilities as Anomalies
	1.3 Thesis Layout and Previous Work

	2 The Dark Side of the Code
	2.1 Introduction
	2.2 A Microblog Application
	2.3 The Security Gap
	2.3.1 Accessing arbitrary URLs
	2.3.1.1 Local network access
	2.3.1.2 Redirect to a local site
	2.3.1.3 Local file access

	2.3.2 Modifying internal state of application

	2.4 Unexpected Behavior Traces
	2.5 Conclusion

	3 Anomaly Detection
	3.1 Introduction
	3.2 Overview of Intrusion Detection Techniques
	3.3 From Knowledge to Behavior-Based Detection
	3.3.1 Knowledge based systems
	3.3.2 Statistical models
	3.3.3 Expert systems
	3.3.4 Operation sequence models
	3.3.5 Process mining

	3.4 Exploring Sequence-Based Anomaly Detection in Software
	3.4.1 Data models
	3.4.1.1 Look-ahead pairs
	3.4.1.2 Subsequences
	3.4.1.3 Groups of subsequences
	3.4.1.4 Frequency-based models
	3.4.1.5 Richer models

	3.4.2 Attacks

	3.5 Conclusion

	4 Practical Challenges of Anomaly Detection in Contemporary Software
	4.1 Introduction
	4.2 Abstraction and Scope
	4.3 Generating Baseline Activity
	4.4 Behavioral Reference Model
	4.4.1 Applicability to modern software platforms
	4.4.2 Model expressiveness

	4.5 Conclusion

	5 Behavioral Norms
	5.1 Introduction
	5.2 Events and Traces
	5.3 Scope and Filtering
	5.4 Strands and Partitions
	5.5 Norms
	5.6 Conclusion

	6 Exploring Behavioral Norms
	6.1 Introduction
	6.2 Norms in HTTP Logs
	6.2.1 Strands for HTTP events
	6.2.2 Norms for HTTP traces

	6.3 N-gram Based Trace Equivalence
	6.4 Norm Search
	6.5 Attribute Search
	6.5.1 N-gram based norm similarity
	6.5.2 Implementation of attribute search

	6.6 Attribute Search Evaluation
	6.6.1 Norms in a simulated system
	6.6.1.1 Norms similarity and aggregation
	6.6.1.2 Simulating anomalies

	6.6.2 Norms in an enterprise system
	6.6.3 Discussion

	6.7 Modeling Behavior of Collaborating Systems
	6.7.1 An online photograph sharing service
	6.7.2 Norms in online photograph sharing service
	6.7.3 Provider anomalies
	6.7.4 Anomalies across multiple collaborating providers
	6.7.5 Discussion

	6.8 Conclusion

	7 Runtime Verification of Java Applications
	7.1 Introduction
	7.2 Scope
	7.3 Modeling Trace Equivalence
	7.3.1 Approximating norms with n-grams
	7.3.2 Groups and arrangements

	7.4 Runtime Verification
	7.4.1 Verification algorithm
	7.4.2 Algorithm examples and discussion

	7.5 Anomaly Manager
	7.6 Discussion
	7.7 Conclusion

	8 Experimental Evaluation
	8.1 Introduction
	8.2 Experiment Setup
	8.3 Building Behavioral Profiles
	8.4 Vulnerability Tests
	8.4.1 Vulnerability test results
	8.4.2 False negatives
	8.4.3 False positives
	8.4.4 Results interpretation

	8.5 False Positive Tests
	8.6 Discussion
	8.6.1 Anomaly prevention in practice
	8.6.2 Additional insights

	8.7 Conclusion

	9 Security Vulnerabilities
	9.1 Dark Side of the Code Revisited
	9.2 Methodology
	9.3 Struts Operation
	9.3.1 OGNL
	9.3.2 Struts Interceptors

	9.4 Tracing the Evolution of a Security Control
	9.4.1 Tampering with OGNL
	9.4.2 Accessing properties
	9.4.3 CookieInterceptor

	9.5 Analysis of Security Control Evolution
	9.5.1 The dark side of the code
	9.5.1.1 Report bias
	9.5.1.2 Security metric bias

	9.5.2 Developer's blind spots
	9.5.3 Opportunistic fix
	9.5.3.1 Compatibility problems

	9.5.4 Counter-intuitive mechanism
	9.5.4.1 Assumptions about consumers

	9.5.5 Evolution of phenomena

	9.6 Conclusion

	10 Conclusion
	A Vulnerability Test Cases
	A.1 Test cases structure and setup
	A.2 Test cases

	B False Positive Test Cases
	References

