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Chapter 1

Introduction

The term Constraint Satisfaction Problem (CSP) refers to a class of
NP-complete problems, a collection of difficult problems for which no fast
solution is known. The standard definition of a CSP involves variables, values,
and constraints: each variable must be assigned a value from a designated group
of possible values (also known as the variable’s domain), while a constraint on a
set of variables indicates permissible combinations of values for these variables.
Given a CSP, an important objective is to query whether it has a solution — an
assignment of each variable to a value such that all constraints are satisfied.
Solving a CSP usually requires chronological backtracking search that
interleaves variable assignments with various kinds of inferences in order to
reduce the search space.

A large body of important combinatorial optimization and AI problems can be
expressed as CSPs. These problem areas include computer vision, scheduling,
resource allocation, timetabling, bin packing, configuration, and bioinformatics.
Although the definition of CSP is universal, in the sense that nothing beyond
the triple (variables, values, and constraints) is necessary, further extensions or
specializations are often imposed on the CSP, in order to make the task of
modeling problems easier and the solving process faster. For example, although
a constraint may be described through explicitly listing all possible
combinations of values, it may also be described implicitly by mathematical
formulas or logical constructs. Some of the constraints invented for particular
purposes are counting constraints [R9́6], the regular language membership
constraint [Pes04], the AllDifferent constraint [Rég94], the Among constraint
[BC94], the Element constraint [HC88]. Variations of CSPs also exist, such as

1



1. Introduction

soft CSPs [BMR+99], partial CSPs [FW92], distributed CSPs [YDIK92], among
others. One crucial advantage of specialized constraints is that they also allow
specialized algorithms to be invented. These algorithms take advantage of the
extra properties of the constraints and are often much faster than the ones that
work on the general CSP model.

Specialized constraints together with other tools for mapping problems into
CSPs constitute the core of what is now called Constraint Programming (CP), a
form of declarative programming whose aim is to help ease the process of
problem solving by letting users focus more on modeling and less on the
implementation aspects. Different types of CP systems have been created,
ranging from basic solvers to large systems that include modeling and
programming language capability, for example, AbsCon [MLB01], Gecode
[Gec15], Choco [PFL14], JaCoP [JaC15], ILOG [IBM14], and MiniZinc
[NSB+07]. Another approach, Constraint Logic Programming, is an extension of
Logic Programming to include constraints (see [JM94] for a survey).

Despite the emergence of CP, the basic general CSP formulation continues to be
relevant as the fallback model for those cases where the problem in question
cannot be encoded efficiently by other means. For instance, in configuration
problems constraints often defy neat classification: the reason why one item is
compatible with some components but not with others can be a matter of
preferences that cannot be captured logically. As a result, the only way to
model these constraints is to enumerate compatible items explicitly.

In this dissertation, we study only the classical CSP model and the fundamental
algorithms for solving it. Specifically, we only consider the case where
constraints are explicitly given by listing permissible combinations of values —
this type of constraint is called an extensional or a table constraint. Despite
being an important class, extensional constraints have received much less
attention recently as most efforts have been channeled toward identifying new
types of specialized constraints and coming up with corresponding algorithms.
Regardless, improvements to algorithms for extensional constraints are
fundamental and this dissertation will show that there is still ample opportunity
for improvement in this area. By concentrating on extensional constraints, this
dissertation will attempt to improve existing techniques and algorithms by
examining them critically from the bottom up and approaching them from a
novel direction. Sections 1.1–1.4 of this introduction chapter briefly explain
various ideas that will be developed in this dissertation as well as previewing
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1.1 A new perspective on domain values

what will be studied in the upcoming chapters.

This dissertation is in publication-based format. Each chapter is reproduced
from a previously refereed and published paper with adjustment for layout and
formatting. No changes to contents are made except for Chapter 5, which was
revised and expanded to remove some minor errors and improve clarity. Each
chapter is self-contained, with its own introduction, background, and
conclusions sections. Chapters are arranged in order of publication date to
reflect how this research evolved over the years.

1.1 A new perspective on domain values

The first and major focus of this dissertation is on the representation of domain
values in the classical formulation of the CSP. This section gives an overview of
a new perspective on domain values that will form the basis for later chapters.
Traditionally, each domain value has been regarded as atomic. However, we will
show that domain values are essentially mutable: we can break domain values
down to smaller units and recombine them to form new values.

Domain values serve two purposes: structural and semantic. These two aspects
are intertwined in most CSP models, yet we would have more flexibility in
manipulating a CSP if they were decoupled. To this end, a value is viewed as
being composed of a set of labels (the ways the value can be expressed in a
solution) and its support structure (its relations, through connecting constraints,
to values in the domains of adjacent variables.)

Figure 1.1(1) illustrates an example CSP in microstructure format. (Binary
CSPs will be depicted in this format throughout this dissertation.) Our
convention is to use a dot to represent an individual domain value, a dashed
enclosure with dots inside to represent a variable domain, and a solid line
between two dots to show that the two values those two dots represent are
compatible. The label(s) for each value is/are placed next to the dot which
represents the value. The name of a variable is placed next to the dashed
enclosure which contains the dots representing the values in the domain of the
variable. To avoid cluttering, universal constraints, which forbid nothing, are
not depicted in any diagram. There are three variables (X, Y , and Z) in the
CSP in Figure 1.1(1); the domain of X is {d, e}, the domain of Y is {f , g}, and
the domain of Z is {a, b, c}. There are four solutions to this CSP: the possible
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1. Introduction

assignment tuples for the variable triple (X, Y, Z) are (d, a, f), (e, a, f), (e, b, g),
and (e, c, g).

X

Za b c

f gd e

Y

(1)

X

f g

Za a

e

bc

d

Y

(2)

Figure 1.1: Two equivalent CSPs. In (2), the domain of Z has been mutated.

Figure 1.1(2), which shows another CSP that is equivalent to Figure 1.1(1) in
term of solutions, illustrates two main features of the new approach to domain
values: different values can have the same label, while some values can have
multiple labels. In Figure 1.1(2), there are two values with the same singleton
label set {a} (the two dots marked with “a” in the figure) and there is one value
with a non-singleton set of labels1 {b, c} (the dot marked with “bc”).

One characteristic of the older CSP representation in Figure 1.1(1) is that each
value has a unique singleton label set, which allows us to refer to a value by its
label alone. By contrast, in Figure 1.1(2), in order to precisely and formally
refer to a specific domain value, we will use an ordered pair that has the value’s
labels as the first component and a cross-product of compatible values as the
second component, to indicate the value’s support structure. For instance, in
Figure 1.1(2), the two values with the same label set {a}, are formally denoted
by ({a}, {d}×{f }) and ({a}, {e}×{f }), whereas the value with the set of labels
{b, c} is referred to as ({b,c}, {e}×{g}).

A complex assignment tuple (that is one which involves a value with multiple
labels) is equivalent to multiple simple assignment tuples, in which each value
has only a single label. For instance, consider value bc (from now on we will
simply refer to a value by its label set if the set is unique): the only complex
assignment tuple involving bc is (e, bc, g), which in turn is equivalent to two
simple assignment tuples (e, b, g) and (e, c, g).

This new perspective on domain values underpins three chapters: Chapter 2,
Chapter 3, and Chapter 5.2 The key ideas of these chapters are previewed in

1To avoid cluttering our diagrams, we simply represent a set of labels by concatenating its
members without adding any extra symbol — e.g. a stands for {a} and bc stands for {b, c}.

2Chapter 4 does not require the new viewpoint on domain values. It comes before Chapter
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Figure 1.2: A CSP and its two transformations.

subsections 1.1.1–1.1.3.

1.1.1 Domain transmutation

Chapter 2 introduces domain transmutation,3 the process through which
domain values are split and recombined in order to eliminate all duplicate value
fragments. Domain transmutation can produce CSPs with smaller search
spaces, leading to shorter solving times.

Figure 1.2 illustrates. Figure 1.2(1) shows a CSP in microstructure format,
while Figure 1.2(2) shows the result of splitting and merging value fragments in
the domain of variable X. Figure 1.2(3) shows the result of subsequently
transmutating the domain of Y . All three CSPs have the same solution set.
This process is explained in detail below.

Consider the three values a, b, and c for X in Figure 1.2(1). Using the label and
support structure notation, these three values are denoted by ({a},
{d,e}×{h,i}×{j,k}), ({b}, {d,e}×{h,i}×{j}) and ({c}, {d,e}×{h,i}×{k}). Value a
can be split into two fragments: ({a}, {d,e}×{h,i}×{j}) and ({a},
{d,e}×{h,i}×{k}). The support structure of the first fragment of a is identical to
that of b, while the support structure of the second fragment of a is identical to
that of c. These two pairs of values can then be merged together by combining
their labels. Thus, after merging we obtain two new values: ({a,b},
{d,e}×{h,i}×{j}) and ({a,c}, {d,e}×{h,i}×{k}), depicted as ab and ac in Figure
1.2(2).

5 because the paper it is based on was published before that of Chapter 5, in keeping with the
chronological ordering.

3Transmutation — a term from Nuclear Chemistry — describes a change in the number of
protons in the nucleus of an atom, producing an atom with a different atomic number.

5 Chavalit Likitvivatanavong
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Similarly, consider values d and e for Y in Figure 1.2(2). Using the label and the
support structure notation, these values are denoted by ({d}, {ab,ac}×{h,i}) and
({e}, {ab,ac}×{h}). Value d can be split into two fragments: ({d}, {ab,ac}×{h})
and ({d}, {ab,ac}×{i}). The first fragment can be combined with e. The result
is shown in Figure 1.2(3). No duplicate value fragments exist at this point.

1.1.2 Extracting microstructure

In Chapter 3, the notion of value fragment is generalized to include assignment
tuples that span multiple variables. This allows an assignment tuple to be
unraveled and extracted from a CSP’s microstructure. Chapter 3 gives the
algorithm that performs this task and proves that it is sound and complete.

Figure 1.3(1) illustrates the idea. Suppose we want to designate the assignment
tuple (b, d, g) for (X, Y, Z) as a non-solution. The usual approach would be to
add a new ternary constraint that disallows (b, d, g). It is unsafe to directly
delete one of b, d, or g from the domains since solutions involving them may be
inadvertently eliminated in the process.

Figure 1.3(2) shows an equivalent CSP in which some domain values in Figure
1.3(1) are split. The solutions of the CSP in Figure 1.3(1) are the same as those
of the CSP in Figure 1.3(2). The assignment tuple (b, d, g) in Figure 1.3(2),
however, is now singled out (by the process that will be explained in Chapter 3)
and thus we can simply remove ({b}, {d}×{g}) or ({d}, {b}×{g}) or ({g},
{b}×{d}) from the CSP to mark (b, d, g) as a non-solution — removing one is
enough because the other two values would be removed by consistency
processing. Figure 1.3(3) depicts the resulting CSP in which the non-solution
(b, d, g) has been eliminated. The CSP remains a binary CSP — there was no
need to introduce a ternary constraint.

1.1.3 Virtual interchangeability

Two values are interchangeable [Fre91] if replacing one with the other in a
solution produces another solution. Given a group of interchangeable values,
keeping one value and eliminating the rest helps simplify the CSP without
affecting its satisfiability.

Chapter 5 proposes the concept of virtual interchangeability (VI), a type of
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Figure 1.3: The assignment tuple (b, d, g) in (1) has been singled out in (2) and
removed in (3).
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fg
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Figure 1.4: In (1), d is virtually interchangeable with e while f is virtually inter-
changeable with g. Both pairs of values are merged in (2).

interchangeability that can be detected locally. Values are virtually
interchangeable if their support structures are almost identical — that is, they
are the same except for one connecting constraint. Chapter 5 will show that a
group of virtually interchangeable values can be compactly represented by just a
single value. Several researchers, [Coo14, CMTZ14, CDE15], have recently
compared VI to related concepts such as forbidden patterns, the broken-triangle
property, and variable and value elimination. In particular, it is worth noting
that the merging of a group of VI values into one has inspired the BTP-merging
rule in [CMTZ14].

As an example, consider the domain of Y in the CSP in Figure 1.4(1). Value d
is virtually interchangeable with value e, while value f is virtually
interchangeable with value g. The CSP in Figure 1.4(2) is modified from that in
Figure 1.4(1) by merging d with e and merging f with g (though union of label
sets). The merging preserves solutions but also introduces spurious ones. For
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instance, of the two simple assignment tuples that are represented by the
complex assignment tuple (c, de, h) in Figure 1.4(2), only one, (c, e, h), is a
consistent assignment for the original CSP; the other, (c, d, h) is spurious — it is
not a consistent assignment tuple of the original CSP. The crucial point is that,
with respect to VI, having multiple labels does not necessarily mean that every
one of them is legitimate; VI only guarantees that at least one of them is. But
this is enough to ensure that a VI-compressed variant of a CSP (another CSP
derived by merging some VI values in the original) is equivalent, in terms of
satisfiability, to the original CSP — each of them admits a consistent
assignment tuple if and only if the other one also does.

To obtain, from a complex assignment tuple which satisfies a VI-compressed
CSP, a consistent simple assignment tuple for the original CSP, each label in
the tuple for the VI-compressed CSP has to be examined against the original
CSP. However, this checking phase is computationally inexpensive and can, of
course, be eliminated if the sole objective is to ascertain whether the original
CSP is satisfiable or not.

Given that (c, de, h) is a solution to the CSP in Figure 1.4(2), we know a
solution to the CSP in Figure 1.4(1) exists according to the property of VI. If
the goal is to find out whether the CSP in Figure 1.4(1) is satisfiable, then we
can stop here, knowing that it is. If a solution is required as well, one can be
obtained from the complex assignment tuple (c, de, h). This is done by
generating the two simple assignment tuples that are implicit in (c, de, h) —
that is, (c, d, h) and (c, e, h) — and checking their consistencies against the CSP
in Figure 1.4(1). Only (c, e, h) is consistent; therefore, (c, e, h) is a solution of
the original CSP.

1.2 A refutation approach to interchangeability

Neighborhood interchangeability (NI) [Fre91] is a type of local
interchangeability and was the first local interchangeability to be proposed.
Two values are neighborhood interchangeable if their support structures are
identical. For example, in Figure 1.1(1), values b and c are NI with each other.
Removing or grouping neighborhood interchangeable values together eliminates
redundancy and improve overall solving time [BCZ01, LCF05, WF99, Has93].

NI can be detected in quadratic time by the discrimination tree algorithm (DT)
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[Fre91]. DT works by assuming zero knowledge and by building up relationships
between values. One disadvantage is that determining whether two values are
NI with each other requires all values in the adjacent variables to be tested.

Chapter 4 proposes a different method that is able to detect values that are not
NI early on, without checking all the values. Instead of testing whether values
are NI, we assume they all are NI in the beginning and try to disprove this
assumption when new information comes along. When enough is known about a
value such that the value is certain not to be NI with any other value, it can be
immediately removed from future consideration. The new algorithm is proved
to have a better lower bound than the DT algorithm.

1.3 Breaking up Simple Tabular Reduction

Since the difficulty of a CSP correlates with the size of its search space, a
common solving strategy involves removing inconsistent parts of the CSP to
help reduce the search space. Generalized arc consistency (GAC) algorithms
remove, from the domain of a variable, any value that supports no compatible
value in the domain of a connected variable. GAC algorithms are generally a
key component of many CSP solvers due to the effectiveness and long research
history of the approach.

Simple Tabular Reduction (STR)[Ull07], in particular in its optimized form
STR2 [Lec11], is a state-of-the-art GAC algorithm for table constraints. Before
the development of STR, conventional GAC algorithms on table constraints
shared two important traits. First, compatible tuples were actively sought for
each domain value in order to establish that the value was arc consistent.
Second, the table was static throughout the search; the only changes to the CSP
occurred in variable domains.

STR differs from these algorithms by not trying to systematically search for a
specific tuple, but by processing the whole table to maintain the property that
every tuple must be valid (that is, each tuple involves only values that are
currently present in the domains at the time the algorithm is invoked.) Tuples
that are found to be invalid are immediately removed. Domain values are
collected from the remaining tuples and any value that is not produced during
this collection process must therefore be inconsistent. STR2 improves on STR
by skipping over some columns during the traversal of the table.
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Algorithm 1: High-level structure of STR2
while somecondition do

. . .

. . .

. . .

. . .
if somecondition then exit with flag1
. . .
if somecondition then exit with flag2
. . .
exit with flag3

Because a value’s presence in its domain must be re-checked every time STR2 is
invoked on a constraint, STR2 has a fixed lower bound equal to the sum of the
domain size of all the variables involved in the constraint. The cost of this task
takes up more of STR2’s execution time as domains become larger or become
more resistant to reduction during backtracking search.

The lower bound can be recognized simply by looking at STR2’s structure,
which is shown in Algorithm 1 (irrelevant details are hidden). There are three
points where STR2 can exit (the lines containing flag1, flag2, flag3 in the
algorithm), all of which come after the while loop at the beginning of the
algorithm. It is clear that the work done by the loop is unavoidable and thus
makes up STR2’s lower bound. Chapter 6 will show that the while loop can be
broken up into three smaller loops and then rearranged into inter-dependent
phases so that the algorithm can exit even when the original loop is only
partially finished, thereby improving the lower bound of the algorithm.
Algorithm 2 illustrates.

Algorithm 2: Result after breaking up the while loop of Algorithm 1
while somecondition do

. . .

if somecondition then exit with flag1
while somecondition do

. . .

if somecondition then exit with flag2
while somecondition do

. . .

exit with flag3

Domain Value Mutation and other
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X Y Z

1 a f l

2 b f m

3 e g m

4 a f m

5 b g o

6 a h o

7 d h o

8 b i n

9 c j k

(1) Standard table

X Y Z

a {1,4,6} f {1,2,4} k {9}
b {2,5,8} g {3,5} l {1}
c {9} h {6,7} m {2,3,4}
d {7} i {8} n {8}
e {3} j {9} o {5,6,7}

(2) Dual table

Figure 1.5: Standard and dual representations of a ternary constraint involving
three variables X, Y , and Z.

1.4 Dual representation for table constraints

Chapter 7 proposes dual representation for table constraints and introduces
STR3, an optimal GAC algorithm that works on this representation.

As stated in Section 1.3, the idea behind Simple Tabular Reduction is to remove
invalid tuples from tables as soon as possible in a systematic fashion. STR3 is
based on the same principle as STR [Ull07] and STR2 [Lec11] but employs a
different representation of table constraints. Similar to a few other algorithms
(e.g., GAC-allowed [BR97] and GAC-va [LS06]), STR3 provides an index for
each constraint table, enabling a tuple sought with respect to a domain value to
be found without visiting irrelevant tuples, thus reducing time complexity.
Figure 1.5 shows an example for a ternary constraint. Importantly, for each
constraint, STR3 maintains some specific data structures designed so that no
constraint tuple is processed more than once along any path through the search
tree, going from the root to a leaf.

Most of the GAC algorithms for table constraints previously introduced in the
literature suffer from repeatedly traversing the same tables or related data
structures during search [Lec11, CY10]. In contrast, STR3 avoids such
repetition and is path-optimal: each element of a table is examined at most
once along any path of the search tree. An important feature of STR3 is that it
is designed specifically to be interleaved with backtracking search, where the
goal is to maintain the consistency while minimizing the cost of backtracking.
As such, unlike most other GAC algorithms, STR3 is only applicable within the
context of search: STR3 maintains GAC, but before commencement of search,
GAC must be enforced by some other algorithm, such as STR2 for example.
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1.5 Outline of this dissertation

In summary, this dissertation is organized as follows:

• Chapter 1: Introduction

• Chapter 2: Domain Transmutation in Constraint Satisfaction Problems.
This chapter is reproduced from the following publication:

“Domain Transmutation in Constraint Satisfaction Problems”,
James Bowen and Chavalit Likitvivatanavong,
Proceedings of AAAI-04, 2004.

• Chapter 3: Extracting Microstructure in Binary Constraint Networks.
This chapter is reproduced from the following publication:

“Extracting Microstructure in Binary Constraint Networks”,
Chavalit Likitvivatanavong and Roland H. C. Yap,
LNAI 4651 Recent Advances in Constraints, 2007, Springer-Verlag.

• Chapter 4: A Refutation Approach to Neighborhood Interchangeability in
CSPs.
This chapter is reproduced from the following publication:

“A Refutation Approach to Neighborhood Interchangeability in CSPs”,
Chavalit Likitvivatanavong and Roland H. C. Yap,
Proceedings of the 21st Australasian Joint Conference on Artificial
Intelligence (AI-08), December, 2008.

• Chapter 5: Eliminating Redundancy in CSPs Through Merging and
Subsumption of Domain Values.
This chapter is a revision of the following publication:

“Eliminating Redundancy in CSPs Through Merging and Subsumption of
Domain Values”,
Chavalit Likitvivatanavong and Roland H. C. Yap,
ACM SIGAPP Applied Computing Review, Volume 13, Issue 2, 2013.

• Chapter 6: Improving the Lower Bound of Simple Tabular Reduction.
This chapter is reproduced from the following publication:

“Improving the Lower Bound of Simple Tabular Reduction”,
Christophe Lecoutre, Chavalit Likitvivatanavong, and Roland H. C. Yap,
Constraints, Volume 20, Issue 1, Pages 100–108, January 2015.
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• Chapter 7: STR3: A path-optimal filtering algorithm for table
constraints.
This chapter is reproduced from the following publication:

“STR3: A path-optimal filtering algorithm for table constraints”,
Christophe Lecoutre, Chavalit Likitvivatanavong, and Roland H. C. Yap,
Artificial Intelligence, Volume 220, Pages 1–27, March 2015.
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Chapter 2

Domain Transmutation in
Constraint Satisfaction Problems

2.1 Abstract

We study local interchangeability of values in constraint networks based on a
new approach where a single value in the domain of a variable can be treated as
a combination of “sub-values”. We present an algorithm for breaking up values
and combining identical fragments. Experimental results show that the
transformed problems take less time to solve for all solutions and yield more
compactly-representable, but equivalent, solution sets. We obtain new
theoretical results on context dependent interchangeability and full
interchangeability, and suggest some other applications.

2.2 Introduction

Interchangeability of domain values was first reported by [Fre91], where
neighborhood interchangeability (NI) and neighborhood substitutability (NS)
are identified as local properties that can be exploited to remove redundant
values, either as a preprocessing step or during search [BF92, Has93]. NI was
later extended to cover interchangeable values in different variables [CN98].

We present a new approach to local interchangeability in this chapter.
Normally, each domain value is treated as atomic. Our idea is to “split the
atom” — a domain value can be split into several “sub-values” (Figure 2.1) so
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a

b dc e

(a)
a a a a

b c d e

(b)

Figure 2.1: Value a can be split into four fragments.

that interchangeable fragments from other values can then be merged to avoid
duplicate search effort during the solving process.

Figure 2.2 illustrate. The problems depicted are in microstructure form: each
edge connects compatible values in the domains of two variables. Figure 2.2a
shows the original problem, while 2.2b shows the result of splitting and merging
sub-atomic value fragments in the domain of X (a process which, by analogy
with Nuclear Chemistry,1 we call domain transmutation). Figure 2.2c shows the
result of subsequently transmutating the domain of Y .

Consider, for example, the values a, b and c shown in 2.2a. Value a supports the
following tuples in Y×Z×W : (d,h,j), (d,h,k), (d,i,j), (d,i,k), (e,h,j), (e,h,k),
(e,i,j) and (e,i,k). We denote this support relationship concisely by ({a},
{d,e}×{h,i}×{j,k}). The supports of b and c are ({b}, {d,e}×{h,i}×{j}) and ({c},
{d,e}×{h,i}×{k}). No two of the values a, b and c are NI. However, a is
neighborhood-substitutable for b and also for c.

The value a can be split into two fragments: ({a}, {d,e}×{h,i}×{j}) and ({a},
{d,e}×{h,i}×{k}). The first fragment of a is interchangeable with b, while the
second fragment of a is interchangeable with c. Instead of eliminating one of the
interchangeable fragments, we merge them together and use their combined
labels as the new value’s label, to indicate its origin. Thus, after merging we
have two values: ({a,b}, {d,e}×{h,i}×{j}) and ({a,c}, {d,e}×{h,i}×{k}),
depicted as ab and ac in 2.2b.

Similarly, consider the values d and e in 2.2b. The supports of d and e are ({d},
{ab,ac}×{h,i}) and ({e}, {ab,ac}×{h}). However, d can be split into two
fragments: ({d}, {ab,ac}×{h}) and ({d}, {ab,ac}×{i}). The first fragment is
interchangeable with e. The result is 2.2c. No two values from the same domain
intersect in this problem.

1Transmutation — a change in the number of protons in the nucleus of an atom,
producing an atom with a different atomic number.
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Figure 2.2: A CSP and its two transformations.

As demonstrated, our approach subsumes both NI and NS, but it does so by
applying the NI principle to value-fragments. Indeed, while standard NS cannot
preserve the solution set of a CSP, our approach can, precisely because it treats
value-substitutability as fragment-interchangeability. For example, the solution
ac-de-hk in 2.2c corresponds to four solutions in the original problem: (a,d,h,k),
(a,e,h,k) (c,d,h,k), and (c,e,h,k).

We will show empirically that domain transmutation can reduce the amount of
time needed to find all solutions, as well as enable more compact
representations of solution sets. This is essential in certain interactive
constraint-based applications, such as interactive design-advice systems [O’S02]:
sometimes, to make his next interactive decision, a design engineer needs to be
able to examine all consistent assignments to the variables involved in a
sub-region of the overall CSP, and to see how similar they are to each other.
Another application involves compiling CSPs [WF99]: all solutions to a
sub-problem are required in order to create a meta-variable, after which NI is
employed to reduce domain size.

2.3 Background

We focus on binary CSPs since non-binary constraints can be converted into
binary constraints.

Definition 1 (Binary CSP) A binary CSP P is a triplet (V ,D, C) where V is
the finite set of variables, D = ⋃

V∈V DV where DV is the finite set of possible
values for V (sometimes we denote DV by D(V )), and C is a finite set of
constraints such that each CXY ∈C is a subset of DX×DY indicating the
compatible pairs of values for X and Y , where X 6=Y . If CXY ∈C, then
CYX = {(y, x) | (x, y) ∈ CXY } is also in C. The neighborhood of variable V ,
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denoted by NV , is the set {W | CVW ∈ C}.

A partial assignment is a function π :W ⊆ V → D such that π(W )∈DW for all
W ∈W; we denote the function domain by dom(π). π is consistent iff for all
CXY ∈ C such that X, Y ∈ dom(π), (π(X), π(Y )) ∈ CXY ; we denote consistency
of π by cons(π). π is a solution iff dom(π) = V and cons(π).The set of all
solutions for P is denoted by Sols(P). We use P|W to denote the CSP induced
by W ⊆ V.

Given a partial assignment π, we define π[a/b] to be the partial assignment
where π[a/b](V ) = b if π(V ) = a; otherwise π[a/b](V ) = π(V ).

At this point we extend the usual definition of a value to a 2-tuple in order to
clearly distinguish between its syntax (label) and semantics (support). This
lower-level detail is only of theoretical concern and can be safely ignored in
other contexts.

Definition 2 (Values) A value a is a 2-tuple (L, σ) where L is a set of labels,
while σ, called support, is a function σ : NV → 2D such that σ(W ) ⊆ DW for
any W ∈NV . We use La to denote the set of labels of a and use σa to denote the
support of a. A value a in D of the CSP P = (V ,D, C) must be valid, that is,
σa(W ) = {b ∈ DW | (a, b) ∈ CVW} for any W ∈NV .

Let L = ⋃
a∈DLa be the set of all labels. A partial label assignment is a function

λ :W ⊆ V → L such that λ(W ) ∈ ⋃
a∈DW

La for all W ∈W. Given a partial
assignment π, we denote πlabel to be the set of partial label assignments
{λ | λ(V ) ∈ Lπ(V )}. For any set of partial assignments X , we use Xlabel to
denote ⋃

π∈Xπlabel.

The new definition allows a variable domain to contain values having the same
label but differrent supports (e.g. Figure 2.1b). Note that NI is still allowed: it
is possible to have values with the same supports but different labels. However,
values having both the same labels and supports are not permitted. In practice,
when structure can no longer be used to differentiate values, each label can still
be made unique and yet indicate its origin simply by appending to it some
suffix. (e.g. r1 and r2 in Figure 2.3b). A solution can be converted back to the
original format in time O(|V|).

Each value can have multiple labels so that we can combine NI values without
losing any solution (unlike the standard practice where only one value is kept).
For example ({a}, {x}×{y}) and ({b}, {x}×{y}) can be replaced by a single
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value ({a,b}, {x}×{y}). Any solution π involving ({a,b}, {x}×{y}) can be
converted using πlabel . Throughout this chapter, we always assume CSPs with
no NI values since NI values are trivially handled by this approach.

Given a CSP we define the following operations on values, analogous to the
usual operations on sets.

Definition 3 (Operations on Values) Let a and b be two values in DV .

The intersection of a and b (denoted by a� b) is a value c where Lc = La ∪ Lb
and σc(W ) = σa(W ) ∩ σb(W ) for all W ∈ NV . The intersection is undefined
(denoted by a� b = ∅) if there exists a variable X ∈ NV such that
σa(X) ∩ σb(X) = ∅. Two values a and b, are said to be disjoint if a� b = ∅. A
set of values is disjoint if its members are pairwise disjoint.

The union of a and b (denoted by a⊕ b) is a value c where Lc = La and
σc(W ) = σa(W ) ∪ σb(W ) for all W ∈ NV . The union is undefined (denoted by
a⊕ b = ∅) if La 6= Lb or there exist two or more variables X ∈ NV such that
σa(X) 6= σb(X). The subtraction of b from a (denoted by a	 b) is the smallest
set2 of disjoint values C such that ⊕(C ∪ {a� b}) = a.

Value a is subsumed3 by b (denoted by a v b) if σa(W ) ⊆ σb(W ) for all
W ∈ NV .

We will continue to use cross-product representation to denote supports for a
value. For instance, consider values ({a}, {d,e}×{h,i}×{j,k}) and ({b},
{d,e}×{h,i}×{j}), which are depicted by their labels a and b in Figure 2.2a.
Their intersection is ({a,b}, {d,e}×{h,i}×{j}). Another example: ({x,y},
{a,b}×{c}) � ({y,z}, {a}×{c,d}) = ({x,y,z}, {a}×{c}).

It should be emphasized that the result of subtraction may be a set of values.
Consider ({a}, {d,e}×{f,g}) 	 ({b}, {d}×{f }). The result is a set {({a},
{e}×{f,g}), ({a}, {d}×{g})}. (This kind of fragmentation is not uncommon. On
a larger scale, extracting subproblems can also fracture the remainder of a CSP
[FH95].)

Lemma 1 Let a and b be values in DV and let W ∈ NV .

(1) Let S ⊆ DW , then S ⊆ σa(W ) iff a ∈ ⋂
d∈S σd(V ).

(2) C = {a� b} ∪ (a	 b) ∪ (b	 a) is disjoint4. Moreover,

2Subtraction is unique, although we do not have enough space to provide the proof.
3a is neighborhood substitutable for b if and only if b v a.
4Recall that the subtraction of two values may result in a collection of values.
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{π | cons(π) ∧ (dom(π) = {V } ∪NV ) ∧ (π(V ) ∈ {a, b})}label =
{π | cons(π) ∧ (dom(π) = {V } ∪NV ) ∧ (π(V ) ∈ C )}label.

(3) � and ⊕ are idempotent, commutative, and associative.

We now formally define domain transmutation.

Definition 4 (Transmutation) Given a CSP P = (V ,D, C). For any V ∈ V,
a transmutation of DV (denoted by trans(DV )) is a variable domain D′V such
that,

(1) D′V is disjoint.

(2) Sols(P|{V}∪NV
)label = Sols(P ′|{V}∪NV

)label , where P ′ is the CSP in which DV

is replaced by D′V and all constraints involving V have been updated5 by values
in DV . We denote P ′ by trans(P , V ).

In a domain transmutation, no two values overlap and all the solutions
involving the original domain are preserved. An algorithm for transmutating a
domain will be given in the next section. Effects of domain transmutation are
shown in the following theorem, whose proof is omitted.

Theorem 1 (Transmutation Effects) Given a CSP P = (V ,D, C), let
trans(P , V ) = (V ,D′, C ′),

(1) If b ∈ D′(V ), then there exists some a ∈ D(V ) such that b v a and such
that, for any solution π for trans(P , V ) where π(V ) = b, there also exists the
solution π[b/a] for P.

(2) If π is a solution for P such that π(V ) = a, then there is exactly one
c ∈ D′(V ) , c v a, such that π[a/c] is a solution for trans(P , V ).

Proposition 1 (Upper Bound on Search Space) Given a CSP P = (V,
D, C), we denote maxassign(P) to be the number of possible partial assignments
π such that dom(π) = V. For any binary CSP P, maxassign(trans(P , V )) 6
maxassign(P) for all V ∈ V.

In the rest of this section, we will obtain new results on other types of
interchangeability based on transmutation.

Context dependent interchangeability (CDI) was proposed in [WFC96] in an
attempt to capture interchangeability in a limited situation. CDI is rephrased
as follows.

5To make values in D′
V valid.
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Figure 2.3: An example of the transmutation process.

Definition 5 (Context Dependent Interchangeability) Values a and b in
DV are context dependent interchangeable iff there exist two solutions π1 and
π2 such that π1(V ) = a and π2 = π1[a/b].

Theorem 2 (Intersection of CDI Values) Values a and b in DV are CDI
for a CSP P = (V ,D, C) iff in trans(P , V ) = (V ,D′, C ′) there is exactly one
c ∈ D′(V ) such that c v a and c v b and there exists a solution π such that
π(V ) = c.

Proof: (⇒) From Theorem 1(2) we have c1 and c2 and two solutions π[a/c1] and
π[a/c2] (= π[a/b][b/c2]) for trans(P , V ). But c1 and c2 must be the same value
because otherwise c1 � c2 6= ∅ (π(W ) ∈ c1(W ) ∩ c2(W ) for all W ∈ NV ),
contradicting Definition 4(1).

(⇐) Given a solution π in trans(P , V ) such that π(V ) = c where c v a and
c v b, then π[c/a] and π[c/b] are solutions of P according to Theorem 1(1). 2

Collorary 1 (Necessary Condition for CDI) If values a and b in DV are
CDI then a� b 6= ∅.

Theorem 2 tells us that two values are CDI iff both share the same sub-value
and that sub-value is part of a solution. As a result, CDI can be seen as a local
condition followed by a global condition. In [WFC96], however, CDI is viewed
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2. Domain Transmutation in Constraint Satisfaction Problems

as a single global condition and has to be detected indirectly by a non-CSP
method.

We can exploit this property to find CDI values by transmutating a domain and
then solving the resulting problem independently using any CSP algorithm.
E.g., to check whether a and b in Figure 2.2a are CDI, one only needs to check
whether ab in 2.2c is involved in any solution. If two values do not intersect,
such as h and i in 2.2a, we can tell immediately that they are not CDI
according to Corollary 1.

We next consider the relation between full interchangeability (FI) [Fre91] and
transmutation. [Fre91] showed that NI implies FI. But what happens when
values are FI but not NI? Theorem 3 gives the answer.

Definition 6 (Full Interchangeability) Two values a and b in DV are FI iff
for any solution π,

(1) if π(V ) = a then π[a/b] is a solution.

(2) if π(V ) = b then π[b/a] is a solution.

In contrast to FI, CDI has a weaker requirement in that values do not need to
be interchangeable in all solutions — just some of them. On the other hand, FI
values do not need to be involved in any solution, whereas it is necessary for
CDI.

Theorem 3 (FI Pruning) Two values a and b in DV are FI iff for any
solution π, (π(V ) ∈ {a, b})⇒ (π(W ) ∈ σa�b(W ) for all W ∈ NV ).

Sketch of Proof: Contrapositive of the fact: there exists a solution π such that
π(V ) = a but π[a/b] is not a solution iff there exists W ∈NV such that
π(W ) /∈ σa�b(W ). 2

Collorary 2 (Necessary Condition for FI) If a� b = ∅ then a and b are FI
iff neither takes part in a solution.

The common way of finding FI values is to look for two values that can be
interchangeable in the solution sets. We will show how to use Theorem 3 to
reduce the search effort.

Consider the CSP in 2.3a; suppose that there is an extra constraint between V1

and V3, whose only nogoods are {(c,f),(d,h)}. Suppose we are interested in
finding FI values in V2, whose domain is {r,g,b,x,y,z}, and after transmutation
becomes what is shown in 2.3b. The potential FI pairs of values are r-g, g-b,
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r-b, and x-y. Although any pair of values that do not intersect can still trivially
be FI, this is uninteresting since according to Corollary 2 both of them must not
take part in any solution; thus interchangeability of z can be ruled out because
it does not intersect with other values.

We can remove rg, gb, and rb from the domain since their involvement in
solutions does not affect FI. The domain is now {r1,r2,g1,g2,b1,b2,x1,y1}.

To find all the solutions, suppose we try to instantiate V2 in the order
(r1,r2,g1,g2,b1,b2,x1,y1). The first solution involves r1. According to Theorem 3,
r cannot be FI with any other values and so we can rule out r-g and r-b.
Moreover, r2 can be removed from the domain since its involvement in a
solution does not give us any new information.

Next we try g1, and it too takes part in a solution. By the same reasoning, we
infer that g cannot be FI with any other values, and so we can prune g2. We are
now done with FI regarding {r,g,b} — no FI value involving one of them exists
— and so values b1 and b2 can be removed.

We carry on with values x1 and y1 that are left in the domain; neither is
involved in a solution. There is no value left and by Theorem 3, we conclude
that x and y are FI.

2.4 Domain Transmutation Procedure

The procedure for transmutating the domain of a single variable is stated as
pseudo-code below.

Theorem 4 (Correctness) Algorithm transmutate produces a domain
transmutation.

Proof: At the end of the algorithm output is a disjoint set of values by
induction on the size of output and Lemma 1(2). Since the algorithm depends
only on � and 	 to split values, all solutions are preserved by Lemma 1(2).
Therefore output satisfies Definition 4 2

The following theorem shows that each variable needs to be transmutated by
the algorithm at most once.

Theorem 5 (Transmutation Quiescence) If a variable domain DV is a
transmutation, any subsequent transmutation attempt using the algorithm will
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Algorithm 3: transmutate(V )
1 input ← DV

2 output ← ∅
3 while input 6= ∅ do
4 Select and delete any a from input
5 match ← false
6 while (not match) and (next b in output exists ) do
7 if a� b 6= ∅ then
8 match ← true
9 A ← a	 b

10 B ← b	 a
11 Replace b in output with a� b and all values in B
12 Put all values in A back to input
13 if (not match) then
14 Insert a to output
15 Where possible, union values in output
16 DV ← output
17 Update all constraints connecting V

result in no change.

Proof: This is obviously true if no variable domain in NV is altered. Otherwise,
we will show that after DV has been transmutated, it remains disjoint
regardless of any domain transmutation in NV .

Let P be the CSP (V ,D,C) just after DV has been transmutated. Let a and b be
values in D(V ). Both are disjoint according to Definition 4(1) and so there must
be a variable W ∈ NV such that σa(W ) ∩ σb(W ) = ∅. Consider trans(P ,W ) =
(V ,D′, C ′) and let us suppose that c ∈ σa(W ) ∩ σb(W ) 6= ∅ as a result of
transmutating W, for some value c ∈ D′(W ).

By Lemma 1(1), {a, b} ⊆ σc(V ). Since c ∈ D′(W ), by Theorem 1(1) c v d for
some d ∈ D(W ). That means {a, b} ⊆ σc(V ) ⊆ σd(V ). By Lemma 1(1),
d ∈ σa(W ) ∩ σb(W ) — contradicting σa(W ) ∩ σb(W ) = ∅ for P .

Hence the assumption is false and σa(W ) ∩ σb(W ) remains empty after W is
transmutated. 2

Note that union in line 15 is used in re-combining remaining fragmented values
from the same source, although the smallest possible domain transmutation is
not required by Definition 4.
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During transmutation the size of output could be very large if there many
fragments of values left after intersection. If so, it is very unlikely that the
values inside can be combined so that the resulting domain is smaller than the
original. Therefore we use the transmutation cutoff heuristic which imposes an
upper bound on the size of output; if it exceeds the upper bound,
transmutation is aborted.

The overall transmutation process involves transmutating each variable domain,
one by one, in some order. The order in which variables are processed affects
the result. Figure 2.3 shows sample transmutations: 2.3a is the original, 2.3b
shows the result of processing in the order (V2, V1, V3), while the CSP in 2.3c is
obtained with either (V1, V3, V2) or (V3, V1, V2). (In fact, the CSP in 2.3b results
from the transmutation of V2 alone and subsequent attempts to transmutate V1

and V3 result in no change.)

The CSP in 2.3b has larger domains than the original CSP in 2.3a, so it can be
expected that it would take more time to solve. As a heuristic, we have chosen
never to accept a domain transmutation if domain size is increased; we call this
the transmutation acceptance heuristic. While variable domains can, in
principle, be transmutated in any order, we always pick the variable whose
transmutation leads to the maximum domain size reduction. To achieve this, we
tentatively consider the transmutation of each variable in the network; if there
is no variable whose domain size is reduced by the transmutation procedure, we
terminate the process. The same approach is applied for subsequent variable
transmutations. We need only recompute tentative transmutations for the
domains of the variables that are immediate neighbors of the variable whose
domain has been transmutated.

2.5 Experimental Results

We tested the transmutate algorithm and solved the transmutated problems for
all solutions over randomly generated CSPs with ten variables6 and six values in
each domain, varying density from 0.2 to 0.8 with 0.05 increment step, while
tightness ranges from 0.2 to 0.8 with the same increment. We used model B
random problem generator, with “flawless” constraint generation [GMP+01].

6These problems may appear small but, as will be discussed later, many real-world uses of
the approach involve only small regions of larger network.
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Figure 2.4: Experimental results: saving percentage on the number of constraint
checks. The legends refer to density.
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For each data-point, the number of constraint checks required to compute all
solutions and the number of representations needed to express these solutions
are computed and averaged over 100 problem instances. We gathered the data
for both transmutated and original problems. The solver is MAC-3 with
dom/deg variable ordering. For the transmutation cutoff heuristic, we fixed the
upper bound of the output queue to be ten times the size of the domain (60).

It may appear that our experimental problems are too small, but remember that
all solutions are to be computed. Since the solving time increases exponentially
with the problem size, finding all solutions in larger networks therefore has few
practical uses, and is not studied here. Indeed, as explained in the introduction,
all solutions are needed only for relatively small subnetworks in larger CSPs —
for creating meta-variables or for user perspicuity of subnetworks. Furthermore,
since we tested the algorithm over a wide range of density and tightness, we had
to settle on a relatively small problem size to keep the experimental time in
check. However we believe the trend seen in the experiments in this chapter can
be extrapolated to larger problems without significant loss of accuracy.

Because transmutation time is always an insignificant fraction of the time
needed to compute all the solutions of a CSP, it is always worthwhile trying the
transmutation. In our setting, it takes just a few seconds to transmutate a (50,
10, 0.5, 0.5)7 instance.

The results are shown in the graphs, in which the legends refer to density.
While the transmutation cannot guarantee to reduce the number of constraint
checks needed to compute all solutions to a CSP, it can produce huge savings.
From the graphs, we see that more domain transmutation occurred for problems
with lower density or lower tightness, as either case will lead to a lot of value
combination; a similar reduction holds for the solution representation. On the
other hand, in the worst case we have seen in the experimental data, which
occurred only at a few data-points, the number of extra constraint checks for a
transmutated CSP is no more than one or two percent of the untransmutated
CSP.

7A tuple (n, m, density, tightness) denotes a CSP where n is the number of variables and
m is the domain size for each variable.
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2.6 Other Applications

Domain transmutation can be used for other purposes as well. Three
applications are described in this section.

2.6.1 Robustness

We can exploit the combination of values after transmutation to achieve
robustness for a single solution simply by ordering values during search based
on the size of their labels. For example, suppose (a, abc, b, bc, c) is the
transmutated domain of some variable. During search, it would be ordered as
(abc, bc, a, b, c). The first solution obtained will be the most robust in this
variable. That is, if a solution found involves abc, we know that it corresponds
to three solutions in the original problem and should one of the three values be
unavailable, it can be immediately replaced with either of the other two without
any change to the rest of the solution. The advantage of this approach is that
the transmutation process is independent of the solving process and thus no
specialized solver is required. We can also order the variables for search based
on which variables should be more robust to changes.

But, since variables are instantiated in order, there may be a case where the
solver would prefer a solution which is very robust at one variable and brittle at
another, rather than a uniformly robust solution: e.g., a solution tuple (abcd, efg,
hi, j) may be found before (ac, ef, hi, jk). [GPR98] provides formalization and
more details on solution robustness. In contrast, [Les94] propose an algorithm
that gives a single maximal bundling of solutions.

2.6.2 Decision Problems

In Definition 3, union is restricted to fragments that come from the same value
so as to preserve the solutions. However, satisfiability remains unchanged when
the restriction is lifted, although a solution cannot easily be converted back.

Definition 7 (Extended Union) Let a and b be two values in DV . The
extended union of a and b (denoted by a⊗ b) is a value c where Lc = La ∪ Lb
and σc(W ) = σa(W ) ∪ σb(W ) for all W ∈ NV . The extended union is undefined
(denoted by a⊗ b = ∅) if there exist two or more variables X ∈ NV such that
σa(X) 6= σb(X).
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Theorem 6 (Satisfaction of Extended Union) Consider two values a and
b in CSP P such that a⊗ b 6= ∅, and the resulting CSP P ′ where a and b are
replaced by a⊗ b. P is satisfiable iff P ′ is satisfiable.

For example, consider ({a}, {x}×{y}) and ({b}, {x}×{z}) in DV , where y and z
are in DW , W ∈ NV . Both can be combined into ({a,b}, {x}×{y,z}). Given a
solution π involving ({a,b}, {x}×{y,z}), there must be another solution
involving either ({a}, {x}×{y}) or ({b}, {x}×{z}), although we cannot tell which
one without inspecting π(W ).

In a situation where satisfiability of problems is the only concern, extended
union can be used on its own to prune values during preprocessing or during
search, similar to NI. And, unlike basic domain transmutation, the resulting
domain is guaranteed to be smaller than the original.

Using extended union in domain transmutation can sometimes dramatically
reduce the domain size. For example, the domain of V2 in Figure 2.3b can be
reduced from 13 values to 4 should we use extended union in the algorithm.

2.6.3 Finding a Single Solution

Even though Proposition 1 tells us that the upper bound on the search space for
a transmutated CSP is smaller than its original, this is not in any way an
indication of the actual search effort. In fact, in our preliminary, unreported
experiments, the results are mixed. This is simply a consequence of conventional
CSP solvers, where each value’s support is established as the search progresses,
and discarded afterward during backtracking. As the problem gets harder (more
backtracking) and the domain size gets larger8, finding a support for each value
becomes the main bottleneck as it has to be re-discovered anew.

In this situation, the benefit of AC-4-like data structures [MH86] in which
supports for each values are remembered could offset its overhead. Although
AC-4 was empirically shown to be inferior than AC-3 — a forgetful algorithm
with non-optimal worst-case time-complexity — as far as we know there is no
report on its effectiveness compared to other AC algorithms when used during
search to solve hard problems. ([SF94b] compared MAC-4 with only forward
checking.)

8Larger domains in transmutated CSP are not uncommon, despite using the best variable
ordering.
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2.7 Related Works

Cross product representation (CPR) of partial solutions generated during search
has been studied in [HF92]. In extending a CPR to complete solutions, a new
value is combined into existing CPR if possible; otherwise a new CPR is
created. Domain transmutation could be seen as a “dynamic programming”
version of the same concept.

Preliminary work on value transformation was reported in [BL03]. Subsequently
and independently [CS03] defined Generalized Neighborhood Substitutability,
which corresponds exactly to the intersection of values. Rather than extracting
identical parts from various values to form new ones, extra constraints are
inserted to prevent the same search space from being explored again. However,
this approach is undemonstrated, and no other benefits such as compact
representation of solutions can be obtained.

2.8 Conclusions

We present a new perspective on domain values in CSP where each value is
viewed as a combination of smaller values. This allows us to freely manipulate
variable domains so as to remove redundant partial assignments. We present an
inexpensive method for merging duplicate local solutions in a constraint
network, which subsumes NI and NS. The benefits are two-fold: reducing time
spent on finding consistent assignments and reducing the complexity of
enumerating the members of the complete solution set. Experimental results
show that the savings are considerable, especially on loose problems with a low
density of constraints. We use the new extended CSP definition, in which values
are composed of labels and structures, to obtain new result on CDI and FI and
to prove some properties of the algorithm presented. We also suggest how it
could be used to find robust solutions, to solve decision problems, and to speed
up the search for a single solution.
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Chapter 3

Extracting Microstructure in
Binary Constraint Networks

3.1 Abstract

We present algorithms that perform the extraction of partial assignments from
binary Constraint Satisfaction Problems without introducing new constraints.
They are based on a new perspective on domain values: we view a value not as
a single, indivisible unit, but as a combination of value fragments. Applications
include removing nogoods while maintaining constraint arity, learning nogoods
in the constraint network, enforcing on neighborhood inverse consistency and
removal of unsolvable sub-problems from the constraint network.

3.2 Introduction

Constraint Satisfaction Problems (CSP) is one of the most important modeling
tools in AI with far-reaching applications. There are many variations on the
standard CSP, such as weighted constraints, partial, or distributed CSP, but
they are all based on the same notion: assigning values to variables in order to
satisfy constraints among them.

Normally, values that can be assigned to a variable are treated as being
inherently different from each other. In [BL04] however, a new viewpoint on
domain values is proposed which takes into account the microstructure (a
low-level graphical representation of a CSP based on compatibility of values).
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Basically, a value is composed of label and support structure and can be broken
into several values as long as they correspond to the original one. Solutions
involving values with the same label are indistinguishable from one another
given the rest of the solutions are the same.

This definition of a domain value has been shown effective in reducing
interchangeability within a variable domain by recombining value fragments to
eliminate identical parts [BL04]. This chapter also uses the microstructure but
differs in that we only break values apart and do not form new values from the
value fragments. Furthermore, it deals with a partition of the microstructure
that spans many connected variables, as opposed to a single variable in [BL04].

We illustrate the main idea and one of its applications in Figure 3.1(a). There
are three variables and eight values, and each line denotes a compatible pair of
values. Suppose we want to designate the tuple (b, d, g) as a nogood (a partial
assignment that cannot be extended to a full solution) the usual approach
would be to add a new 3-ary constraint involving the three variables. It is
unsafe to directly delete one of b, d, or g since solutions involving them may be
inadvertently eliminated in the process.

Figure 3.1(b) depicts an equivalent CSP in which values are split into fragments
as shown. Values having the same label (e.g. the three values with label “b”)
are differentiated by their structures. Solutions of (a) are the same as those of
(b) with respect to their support labels. The tuple (b, d, g) is isolated (by the
process we will later describe) and thus we can simply delete one of the values
involved to mark it as a nogood; the rest would be removed by simple arc
consistency processing. Should this network be part of a larger one, the links to
the external part would need to be modified so that they connect to the
newly-created values instead (e.g a single link to b in (a) corresponds to three
links to the three b in (b)).

Our contribution includes a novel process of extracting partial assignments
without introducing new constraints, along with the following applications:

• Maintaining constraint arity. Because no new constraint is introduced, the
original constraint arity would remain unchanged. Algorithms that work
only for binary CSPs [BCvBW02] for instance would be usable even after
higher-order nogoods are incorporated.

• Learning nogoods by pruning. Nogoods can be extracted and pruned from
the microstructure, as shown in Figure 3.1(b), rather than recorded
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Figure 3.1: Marking (b, d, g) in (a) as a nogood by eliminating one of b, d, or
g, could remove some solutions, while doing so in (b), an equivalent network, is
completely safe.

[FD94]. This gives an alternative approach to deal with the problem of
increasing memory requirements for recording nogoods.

• Enforcing Neighborhood Inverse Consistency in one pass. Like many other
consistency algorithms, NIC [FE96] requires more than a single pass of
propagation to fully achieve consistency. We show how to do it in a single
pass.

• Extracting unsolvable sub-problems. The common approach taken is to
decompose a CSP into several sub-problems [FH95]. Our method is more
efficient since only the target sub-problem is extracted while everything
else remains intact in the original CSP.

The chapter is organized as follows. In Section 3.3 we cover the CSP preliminary
and recall the formalism on domain values. In Section 3.4 we provide two
algorithms, one for extracting simple nogoods and the other for extracting
complex ones, along with their proofs of correctness. In Section 3.5, the process
is generalized so that more complex microstructures can be separated.
Applications are described in Section 3.6. We conclude in Section 3.7.

3.3 Background

Definition 8 (Binary Constraint Network) A binary constraint network P
is a triplet (V ,D, C) where V is a finite set of variables, D = ⋃

V ∈V DV where
DV is a finite set of possible values for V , and C is a finite set of constraints
such that each CXY ∈ C is a subset of DX × DY indicating the possible pairs of
values for X and Y , where X 6= Y . Without loss of generality, we assume that
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two values in different domains are distinct (i.e. if a ∈ DX then a /∈ DY for all
Y 6= X). If a ∈ DX then we use var(a) to denote X. If CXY ∈ C, then
CY X = {(y, x) | (x, y) ∈ CXY } is also in C.

A binary constraint network is k-consistent if given k − 1 variables and k − 1
values that satisfy the constraints on these variables, we are able to find a value
(called a support) for any kth variable such that all the constraints on the k
variables will be satisfied by the k values taken together. When k = 2 and 3 it is
called Arc Consistency (AC) and Path Consistency (PC) respectively.

The neighborhood of variable V (NV ) is the set {W | CVW ∈ C}. We use n, e,
and d to denote the number of variables, the number of constraints, and the
maximum domain size. An assignment is a function π :W ⊆ V → D such that
π(W ) ∈ DW for all W ∈ W; we denote the function domain by dom(π). π is
consistent if and only if for all CXY ∈ C such that X, Y ∈ dom(π),
(π(X), π(Y )) ∈ CXY . π is a solution if and only if dom(π) = V and π is
consistent. We use P |W to denote the binary constraint network induced by
W ⊆ V. A Constraint Satisfaction Problem involves finding one or more
solutions to an associated constraint network or declaring it unsatisfiable.

We extend the usual definition of a value to a 2-tuple in order to clearly
distinguish between the syntax (value of label) and the semantics (the support
corresponding to the label).

Definition 9 (Values) A value a ∈ DV is a 2-tuple (L, σ) where L is a set of
labels, while σ, called support structure, is a function σ : NV → 2D such that
σ(W ) ⊆ DW for any W ∈ NV . We use La to denote the set of labels of a and
use σa to denote the support structure of a. A value a must be valid, that is,
σa(W ) = {b ∈ DW | (a, b) ∈ CVW} for any W ∈ NV . The local solutions of a is
the set {(s1, . . . , s|NV |) ∈ DW1 ×DW2 × . . .×DW|NV |

|si ∈ σa(Wi),Wi ∈ NV }, the
enumeration of a’s supports. The size of a ( size(a)) is ∏

W∈NV
|σa(W )|, which

equals the number of local solutions of a.

Let L = ⋃
a∈D La be the set of all labels. A label-assignment is a function

λ :W ⊆ V → L such that λ(W ) ∈ ⋃
a∈DW

La for all W ∈ W. Given an
assignment π, we denote πlabel to be the set of label-assignments
{λ | λ(V ) ∈ Lπ(V )}.

The new definition allows a domain to contain values having the same label but
different support structures; values having both the same label and the support
structure are not permitted. In some example, we append a suffix to labels.
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This is not actually necessary and is used only to better differentiate between
values with the same label (e.g. c1, c2 and c3 in Figure 3.2(b) all have the same
label c). For simplicity, we use a form of cross-product representation to denote
the support structure of a value. For example, value d in Figure 3.1(a) is
represented by ({d}, {b}×{f,g,h}). The new definition also allows multiple labels
so that we can combine neighborhood interchangeable values [Fre91] without
losing any solution (unlike the standard practice where only one value is kept).
For example ({a}, {x}×{y}) and ({b}, {x}×{y}) can be replaced by a single
value ({a,b}, {x}×{y}). Any solution involving ({a,b}, {x}×{y}) can be
converted back using label-assignment.

We define the following operations on values, analogous to the usual operations
on sets. For these operations to be correct, we require constraint networks to be
AC. Given the same requirement for various algorithms — for instance
Maintaining Arc Consistency — and the efficiency of recent AC algorithms this
property is not taxing to presume.

Definition 10 (Operations on Values) Let a and b be two values in DV .

The intersection of a and b (a� b) is a value c where Lc = La ∪ Lb and
σc(W ) = σa(W ) ∩ σb(W ) for all W ∈ NV . Two values a and b are disjoint
(a� b = ∅) if there exists a variable X ∈ NV such that σa(X) ∩ σb(X) = ∅. A
set of values is disjoint if its members are pairwise disjoint.

The union of a and b (a⊕ b) is a value c where Lc = La = Lb and
σc(W ) = σa(W ) ∪ σb(W ) for all W ∈ NV . Union is undefined1 (a⊕ b = ∅) if
La 6= Lb or there exist X, Y ∈ NV such that σa(X) 6= σb(X) and σa(Y ) 6= σb(Y ).
A subtraction of b from a (a	 b) is a minimal set of disjoint values C such that⊕(C ∪ {a� b}) = a. Value a is subsumed by b (a v b) if σa(W ) ⊆ σb(W ) for
all W ∈ NV .

For example, ({x,y}, {a,b}×{c}) � ({y,z}, {a}×{c,d}) = ({x,y,z}, {a}×{c}),
({x}, {a}×{b}×{c}) ⊕ ({x}, {a}×{b}×{d}) = ({x}, {a}×{b}×{c,d}). For
subtraction, we stress that the result is a set of values. Consider ({a},
{d,e}×{f,g}) 	 ({b}, {d}×{f }): two possible results2 are {({a}, {e}×{f,g}), ({a},
{d}×{g})} and {({a}, {e}×{f }), ({a}, {d}×{e,g})}. These operations preserve

1In other words, supports are only allowed to differ on one variable in the neighborhood.
Union imposes this restriction so that a new value can be formed without introducing
spurious solutions. Union was used in [BL04] but not in the algorithms here.

2Algorithms in this chapter do not require the result of a subtraction to be unique,
although it would lead to different networks. We can enforce uniqueness by imposing some
ordering on the support structure.
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the local solutions of values involved.

3.4 Extracting Assignments

We define the following definitions in order to deal with the extraction process
precisely.

Definition 11 (Unit) A value a ∈ DX is called a unit value if and only if a
has exactly one support in the domain of each variable in NX . A consistent
assignment π = (t1, . . . , tm) is called a unit assignment if and only if each ti is a
unit value in P|dom(π).

Given a consistent assignment π, the goal is to make it a unit assignment.
There are many ways to transform the domains involved so that π becomes
unit. The simplest method is to solve P|dom(π) for all solutions and modify
domains and constraints so that a solution is represented by a single strand in
the microstructure. The target unit assignment would be one of the solutions.
This process is not practical as all solutions are needed and the sub-problems
involved are completely replaced. We propose a dynamic method that gradually
changes the network by subtracting from ti in π the unit value of ti with respect
to π (defined below) until the whole assignment becomes unit.

Definition 12 (Unit Value with Respect to Assignment) Given a
consistent assignment π = (t1, . . . , tm) and a value a = ti for some 1 ≤ i ≤ m,
the unit value of a with respect to π (denoted by unit(a, π)) is a value u such
that Lu = La and for any X in the neighborhood of var(a)

σu(X) =
 {tj} if X = var(tj), i 6= j and 1 ≤ j ≤ m

σa(X) otherwise

We explain the process using Figure 3.2(a)–(h). Figure (a) depicts the initial
microstructure. Suppose we want to mark the assignment π = (b, c, e, f, h) as a
nogood. This can be done by separating it from the rest of the network. The
result is shown in (h); both (a) and (h) are equivalent in term of solution set.

The entire process could be thought of as “untangling” a thread by splitting it
off one segment at a time. In (b) for instance, the value ({c}, {a,b}×{d,e}) in (a)
is split into three values with the same label: ({c}, {b}×{e}), ({c}, {b}×{d}),
and ({c}, {a}×{d,e}), where ({c}, {b}×{e}) is unit(c, π) for both (a) and (b).
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These three values are represented as c1, c2, and c3 in the figures. In this
example DY is chosen first; the complete order is (Y,W,Z, Y,W,U,X) (the
order is chosen at random). Note that a domain value could be transformed
more than once, and a different ordering results in a different network, although
the target unit assignment is always identical.

3.4.1 Basic algorithm

Algorithm 4: extractLine(π)
input: A consistent assignment π = (t1, . . . , tm)

1 repeat
2 Pick tk such that tk 6= unit(tk, π)
3 R ←− tk	 unit(tk, π) /* R is a set */
4 Replace tk in its respective domain with unit(tk, π) and value(s) in R
5 Update constraints involved with variable var(tk)
6 until ti = unit(ti, π) for all 1 ≤ i ≤ m

A basic template of the extraction process is given in Algorithm 4. We will first
consider a restricted version, which requires that π is non-cyclic (defined below).
We call this algorithm extractLine().

Definition 13 (Cyclic Assignment) A consistent assignment π for a binary
constraint network P is cyclic if and only if the constraint network for P |dom(π)

contains a cycle.

From the example in Figure 3.2(a)–(h) it is not clear whether the algorithm
terminates in general, since a variable domain could be repeatedly transformed.
For instance, value e in (a) is unit but loses the property after its neighboring
value c is split. We will prove that extractLine() is correct and terminates.

Definition 14 (Neighborhood Arc Consistency) A value is neighborhood
arc consistent (NAC) if and only if its supports are arc-consistent with one
another.

Lemma 2 Given a constraint network and a value a, an upper-bound on the
number of NAC values having the same label as a in an equivalent constraint
network is dn.

Proof: The maximum number of solutions for the network is dn. The network
can be rearranged so that each solution is a unit assignment. Each value a in
the original network participates in no more than dn of them. Since a unit value
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Figure 3.2: Extracting a non-cyclic assignment. Figures (a)–(h) illustrate the
process of extracting (b, c, e, f, h) using the order (Y,W,Z, Y,W,U,X). In short,
given a 	 b a subtraction algorithm will try to shed part of a by going through
each variable in the neighborhood until b emerges. For instance, consider ({c},
{a,b}×{d,e}) 	 ({c}, {b}×{e}) (from (a) to (b)). Since c ∈ DY , we need to con-
sider NY = {X, Z}. Suppose X is chosen first; the algorithm would divide ({c},
{a,b}×{d,e}) into ({c}, {b}×{d,e}) and ({c}, {a}×{d,e}). ({c}, {b}×{d,e}) is fur-
ther divided into ({c}, {b}×{d}) and ({c}, {b}×{e}). Therefore,({c}, {a,b}×{d,e})
	 ({c}, {b}×{e}) = {({c}, {a}×{d,e}), ({c}, {b}×{d}), ({c}, {b}×{e})} using the
order (X,Z) (this ordering has nothing to do with the selection of tk from line 2
of Algorithm 4). Note that ({c}, {a}×{d,e}) ⊕ (({c}, {b}×{d}) ⊕ ({c}, {b}×{e}))
= ({c}, {a,b}×{d,e}).
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Figure 3.3: Figure (a) – (d) illustrate non-terminating transformation. Figure
(a) depicts the partial microstructure induced by (b, c, e). In Figure (b) – (d),
the processing order is (Y, Z,X). Extraction continues indefinitely for the order
(Y, Z,X, Y, Z,X, . . .).

of a unit assignment is NAC, an equivalent network can contain at most dn

NAC unit values having the same label as a. 2

Theorem 7 extractLine() is correct and terminates on non-cycle input.

Proof: The algorithm changes the constraint network incrementally by splitting
each tk one by one. Since operations on values, including subtraction (	),
preserve the local solutions with respect to their labels, the resulting network
admits the same solutions as the original.

After the subtraction in line 3, unit(tk, π) takes place of tk in the repeat loop,
making tk a unit value in the future passes. When the condition in line 6
becomes true, each component of π must be a unit value and thus π is a unit
assignment according to Definition 11.

To show that the algorithm terminates, we note that there are at most d|dom(π)|

NAC values having the same label as tk according to Lemma 2. Since tk 6=
unit(tk, π) (in fact tk subsumes unit(tk, π)), each subtraction produces at least
one new value r in R with the same label as tk. The acyclic restriction on π
implies there is no constraint among variables in the neighborhood of var(tk),
thus r is automatically NAC. Therefore, each subtraction produces at least one
NAC value. As the upper-bound on the number of NAC values having the same
label as tk and the number of components of π (which is m) are finite, the
algorithm cannot keep on producing new NAC values and it must terminate
within a finite number of steps. 2

Space complexity of extractLine() is O(dg) where g is the maximum degree of
all variables in the network. This is due to the fact that the algorithm works on
two values at a time (a value chosen and its unit value) and modifies only part
of connecting constraint.
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The algorithm may not terminate on input containing a cycle. An example of
non-terminating transformation is shown in Figure 3.3(a)—(d).

3.4.2 Extracting cyclic assignments

In a non-terminating transformation that involves a cyclic assignment, values
that are repeatedly split off are not part of any solution. This stems from the
fact that the definition of unit value does not take into account the constraints
among the neighborhood. Since extractLine() operates on one segment at a
time, intuitively speaking there is a chance that the segments split off will not
be joined properly when the target assignment forms a cycle.

A solution to this problem is to enforce PC [Mon74] on new values created after
each subtraction. PC ensures that the segments that are split off form a
connected path along the cycle. To make the algorithm terminate on cyclic
input, we add the following line in the algorithm between line 5 and 6: Enforce
PC on P |dom(π) only on arcs involving values in R. Figure 3.4 demonstrates the
extraction of a cycle. We call this algorithm extractCycle().

It is worth noting that having a constraint network that is already path
consistent beforehand does not eliminate the need for path consistency
processing in extractCycle(). As an example, consider ({d}, {a, b2}×{e,f }) in
Figures 3.4(b), where both (a) and (b) are path consistent. After subtraction, d
is split into three values, whose edges (b2, d2), (d2, e), and (d1, f) are path
inconsistent. The reason is due to the multiplicative effect of the number of
local solutions involving d (size(d)), while PC among its neighborhood only has
the additive effect on some of those local solutions.

In order to prove that extractCycle() terminates, we need to define the following
notion of neighborhood path consistency.

Definition 15 (Path Consistent with Respect to Cycle) Given a cycle
involving an arc (X, Y ), a tuple (a, b) ∈ CXY is path consistent with respect to
the cycle if and only if (a, b) can be extended to the whole cycle by finding values
that satisfy all the constraints in the cycle.

Definition 16 (Neighborhood Path Consistency) A value a ∈ DX is
neighborhood path consistent (NPC) with respect to a cycle C if and only if
(a, b) is path consistent with respect to C for all b ∈ NX .

The proof of the following lemma is similar to that of of Lemma 2.
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Figure 3.4: Extracting (b, d, f). Figure (a) is the initial microstructure which
contains three entangled solutions. In (b) DX is transformed; enforcing PC has
no effect on the result. Figure (c) depicts the network afterDY is transformed; PC
is later enforced, resulting in (d). Next, DZ is transformed as shown in (e). The
final result after PC processing is shown in (vi). Notice that the three solutions
are now disconnected.

j

b

a

d f

c

h

e g

i

(a)

i

b

a

d f

c

h

e g

b d f h j

(b)

c

a

b

d f

h

e

g

(c)

g
a

b

d f

h

e

g

c
a

(d)

Figure 3.5: More complex extraction. (a) and (c) are the original networks while
(b) and (d) are the results after extracting (b, d, f, h) and (a, b, g, h) respectively.
Note that if (a, d, f, g) were to be extracted in (c) instead the result in (d) would
contain three disconnected solutions.
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Lemma 3 Given a value a ∈ DX and a cycle C involving X, an upper-bound
on the number of NPC values with respect to C having the same label as a in an
equivalent constraint network is dn.

In the rest of the chapter when we say a value a ∈ DX is NPC that means it is
NPC with respect to the all the cycles involving X in the input π.
Non-terminating transformation involves generating non-NPC values, which can
be removed by PC processing. Note that NPC implies NAC but not vice versa.
We will use NPC instead of NAC in the termination proof for extractCycle().

Theorem 8 extractCycle() is correct and terminates.

Proof: The proof is similar to that of extractLine() except for the algorithm
termination. Like the proof of extractLine(), we will show that each subtraction
will bring a certain measure closer to a finite bound. However, with no
restriction on π, not all values in R of the algorithm are NPC and there is no
guarantee that a subtraction will produce at least an NPC value. We will
instead use the bound on the number of NPC values together with a bound on a
new measure involving π.

We define the following measure size(π) := ∑
1≤i≤m

∑
W∈Nvar(ti)

|σti(W )|.
Observe that after the algorithm is finished, size(π) must be less than that of
the original input assignment by a finite amount. We denote ∆L to be the value
of that amount and we will use this bound along with the upper-bound in
Lemma 3 (denoted by U) to prove algorithm termination. Specifically, we will
show that: (1) a subtraction either produces an NPC value having the same
label as tk or decreases size(π) by at least one. (2) a subtraction does not
increase size(π). (3) a subtraction that decreases size(π) by one will decrease the
number of NPC values by at most dn. (In contrast, the number of NAC values
in the proof of extractLine() does not decrease.) As a result, size(π) decreases
no more than ∆L times and the number of NPC values increases no more than
U + dn∆L times. The algorithm terminates since these bounds are finite and
either the decrease or the increase must happen after each subtraction.

We prove the three conditions as follows:

(1) Assume a subtraction does not produce an NPC value having the same label
as tk. Since tk subsumes unit(tk, π), we will focus on the arc (tk, s) where s 6= ti

for any i and s ∈ σtk(W ) for some W . (tk, s) will be removed during the PC
processing that follows the subtraction; otherwise it will form part of an NPC
sub-value, contradicting the assumption. Thus the value of size(π) will be

Domain Value Mutation and other
techniques for Constraint Satisfaction
Problems

42



3.4 Extracting Assignments

decreased by the number of such arcs. (E.g (d, e) and (d, a) in Figure 3.4(b) are
deleted in (d), thereby reducing the measure by 2. We emphasize that these
arcs are not path inconsistent by themselves — indeed, both arcs are PC in (b).
They are removed due to the combination of subtraction and PC processing.)

(2) Since subtraction preserves local solutions of tk, if an arc is removed it
would be replaced by an equivalent arc that leads to the same local solutions.
(E.g. (c, d) in Figure 3.2(a) is deleted in (b), but it is replaced by (b, c2). Both
arcs link b to d via c.) An increase in the number of arcs means an increase in
the number of local solutions, which is not possible.

(3) If an arc is deleted, a number of values could lose the NPC property. We
simply take the maximum dn.

Remark: we cannot rely on the reduction of the measure size(π) (or other
similar measures based on the number of links involving π) alone to prove the
algorithm termination since it does not always decrease after subtraction. For
instance, size((b, c3, e, f, h)) in Figure 3.2(b) is 12, the same as
size((b, c3, e, f3, h)) in (c). 2

Space complexity of extractCycle() is the same as that of extractLine() for the
same reason. Time complexity is exponential in the worst case as a result of the
upper bound used in the proof. The bounds in both proofs are admittedly very
loose but they are in no way an indication of the actual number of passes. Our
concern is to show that the algorithms terminate. Nevertheless, we expect the
algorithm to be used in some specific context as an auxiliary routine to other
algorithms, to be used occasionally, so that even if the time complexity is higher
that would not render it impractical. An algorithm which is more expensive can
still be applied as a preprocessing step for some applications. We will discuss
further applications in Section 3.6.

Another example of the process is given in Figure 3.6. Since the input is
assumed to be consistent, we only need to enforce PC on new arcs. That is,
after subtracting unit(b, π) we need to find a support for (a, b1), (b1, c), (b1, f),
(e, b2), (b2, c), and {(i, j) | i ∈ {b1, b2}, j ∈ {g, d}}. Moreover, since PC is
enforced just to eliminate non-NPC values, we do not need to record a new
constraint. In this example we do not need to add CYW .

Although we have shown in the proof that PC is enough for extracting cycle of
any length, one might think that extracting an assignment involving k-clique
would require k-consistency. This is not true since PC is used only to eliminate
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Figure 3.6: Extracting (b, e, g, f). (b) shows the result after the first subtraction.
At this point PC is enforced. Since no arc from b2 to any value in DW is PC, b2
is removed ((b2, g) has no support in Z and (b2, d) has no support in X.) The
result is shown in (c). (d) depicts the network after the next subtraction. After
enforcing PC, f2 is removed.

values that will not form proper cycles, not to solve any sub-problem. Because a
k-clique can be decomposed into smaller cycles, the subtraction operation
together with PC suffice in extracting any type of assignment, as long as it is
consistent. Examples of more complex extraction are given in Figure 3.5, which
includes a 4-clique and two overlapping cycles.

3.5 Extracting Microstructure

We can generalize the subtraction process to cover the case when the input is a
microstructure rather than an assignment. We formally define a microstructure
as follows.

Definition 17 (Microstructure) A microstructure of a binary constraint
network P is a graphM = (V,E) in which V ⊆ D, and if an edge (a, b) is in E
then values a and b are compatible in P. We use dom(M) to indicate⋃
a∈V var(a). A microstructureM = (V,E) is arc consistent if and only if given

a ∈ V , X = var(a), and CXY ∈ C, there exists (a, b) ∈ E for some b ∈ DY .

Since we define the set of vertices as a subset of domain values, the support
structure of a value in a microstructure follows that of the whole network.
However, we need to define a value whose support structure conforms with only
edges in the microstructure.

Definition 18 (Unit Value with Respect to Microstructure) Given an
arc consistent microstructureM = (V,E) and a value a ∈ V , the unit value of a
with respect toM (denoted by unit(a,M)) is a value u such that Lu = La, and
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Figure 3.7: Extracting cycle (a, b, c, d, e, f). (a) is the original network; (e) is
the result. Notice that the cycle (a, b, c, d, e, f) is arc consistent but contains no
solution (arcs (a, c) and (d, f) are not part of the cycle). From (d) to (e) we only
enforce PC on values in R of the algorithm so that arcs involving c3 and f1 are
not checked for PC.

for any X in the neighborhood of var(a)

σu(X) =
 {b ∈ V |X = var(b) and (a, b) ∈ E} if X ∈ dom(M)
σa(X) otherwise

The algorithm for extracting microstructure (extractStructure()) is similar to
extractCycle() except the input is an arc consistent microstructureM and we
use the unit value according to Definition 18 rather than Definition 12. Notice
that if a microstructureM contains single value per domain then it is also an
assignment. An arc consistent microstructureM according to Definition 17 is
equivalent to the consistent assignmentM according to Definition 8. This
means an inputM for extractStructure() need not contain a solution for
dom(M).

The correctness and termination proof is similar to that of extractCycle().
extractStructure() is strictly more powerful than extractCycle() since its input
may involve more than one value from the same domain. An example of
microstructure extraction is given in Figure 3.7.

3.6 Applications

Maintaining constraint arity. A common approach taken to characterize a tuple
as a nogood is to update the constraint involved so that the tuple would not be
tried in the future. When constraints are table-based, this can be done by
simple record-keeping. If the constraint does not exist it must be created. When
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the tuple is of size k, the resulting network will have at least one constraint of
arity k. This change in topology is problematic for algorithms that presume the
maximum arity of constraints to be bounded. Algorithms that work only for
binary CSP [BCvBW02] would be rendered useless when the constraint arity
increases, even though the network starts out as binary. This is especially
significant for distributed CSPs in which agents perform two-way
communication. We resolve this problem by first extracting the target tuple and
removing it by deleting one of the values involved from its domain. The
extraction is done along the existing constraints and no new, higher-arity
constraint is required.

Adaptive consistency [DP87] is one example of algorithms that produce
non-binary nogoods. By using the extraction process, an initially binary
constraint network will remain binary after applying adaptive consistency.
Indeed, the arcs in the ordered constraint graph would be identical to the
constraint network itself. Adaptive consistency has been used in the context of
real-time constraint satisfaction [BCFR04], whose authors chose to delete
domain values involved in nogoods. However, some solutions may be lost. In
contrast, the removal of nogoods by extraction would allow complete solution
retention without the need for extra storage space for new constraints.

As our algorithms work only for binary CSP at the moment, an interesting
future research is to extend the process to directly cover non-binary constraints
(though conversion to binary CSP is possible with good performance [SS05]).
This will allow the original arity of the network to be maintained regardless of
its initial value; algorithms that work only on k-ary constraints but produce
nogoods involving g-ary constraint as a side-effect where g > k would continue
to work.

Learning nogoods by pruning. While the common approach used in nogood
learning is to record each nogood as it arises [FD94], we can extract and discard
a nogood instead. Nogoods of higher order can then be avoided without
requiring a large amount of space. Although in the worst case, the resulting
microstructure can be quite large, this is offset by the fact that we “learn” a
nogood by pruning part of the microstructure away — in effect embedding the
knowledge in the network itself — rather than by explicit memorization; the
dynamic would balance the overall size as search progresses. This kind of
learning is independent of variable ordering and is especially useful for
non-systematic search whose completeness relies on nogood store, which
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becomes very large over time, such as weak-commitment search [Yok94].

Enforcing NIC in one pass. NIC is a powerful technique and has shown to be
stronger than many other types of consistency [DB01]. NIC requires that a value
participates in a solution of its neighborhood; otherwise, the value is removed
and the effect is propagated. Solving a sub-problem for a solution is a relatively
expensive task however. The propagation would further increase the total cost,
as every single neighborhood-inverse-inconsistent value must be removed to fully
achieve NIC. In practice, NIC is rarely used and/or limited to a single pass.

We suggest a way to fully enforce NIC in one pass as follows. When a solution
in the neighborhood is found, we extract it out together with the value it
supports. This ensures each NIC value has only a single solution as its support
after the first pass. Afterward, no sub-problem needs to be solved and further
neighborhood-inverse-inconsistent values are deleted by AC propagation alone.

It remains to be seen whether it is possible to apply the idea to other
higher-order consistency techniques that require multiple passes, such as
Singleton Arc Consistency [BD05, LC05].

Extracting unsolvable sub-problems. In contrast to the previous use for NIC, we
can extract sub-problems that are known to be unsolvable and discard them to
reduce the search space. This method (using extractStructure()) is strictly more
powerful than nogood recording since each unsolvable sub-problem may involve
more than one value from the same domain. In [FH95], a constraint network is
decomposed into disconnected sub-problems by recursively splitting variable
domains. The result is a collection of independent constraint networks with
redundant variables. Microstructure extraction is more efficient since only the
target sub-problem is isolated while the rest of the network remains intact;
everything is contained in just one CSP.

We can use this technique to partially enforce k-consistency by preprocessing a
CSP so that any pattern in the microstructure matching known k-inconsistent
subproblems in the portfolio — for instance a pigeonhole problem — is
extracted and eliminated, without the usual time complexity associated with
k-consistency.

Remark It has been shown in [vBD95] that a path consistent row-convex
constraint network is globally consistent. However, this theorem does not imply
that enforcing path consistency on a row-convex constraint network would yield
a solution since the result may not remain row-convex. Given the way the
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subtraction operation on value is used in this chapter, one might hope to fix the
constraints by splitting problematic values in order to transform a row with
non-consecutive 1’s into several rows with consecutive 1’s. Unfortunately, this
method does not preserve the convexity of related columns (if the column in a
constraint CXY is non-convex, so is the corresponding row in CY X).

3.7 Conclusions

We have introduced a novel process based on value-splitting that is able to
extract the target tuple/microstructure while preserving all the solutions. A
number of applications are suggested. As the process involves only the most
basic CSP model and is not restricted to any specialized problem or constraint,
we believe that once this process is recognized more wide-ranging applications
will appear. Since the extraction process increases the size of domains and
constraints, it is most suitable for dynamic algorithms that are able to prune
parts of the microstructure away as they run, so that the increase and the
decrease in size would cancel each other out.

Although the algorithms have yet to be evaluated empirically, in this chapter we
place more emphasis on demonstrating how a different view of domain values
can give new approaches to existing problems. We plan to investigate
implementation issues, such as ordering heuristics (that is, how best to pick a
value in line 2 of Algorithm 4) and how to efficiently implement the subtraction
operator, and carry out experimental studies in future work.
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Chapter 4

A Refutation Approach to
Neighborhood Interchangeability
in CSPs

4.1 Abstract

The concept of Interchangeability was developed to deal with redundancy of
values in the same domain. Conventional algorithms for detecting
Neighborhood Interchangeability work by gradually establishing relationships
between values from scratch. We propose the opposite strategy: start by
assuming everything is interchangeable and disprove certain relations as more
information arises. Our refutation-based algorithms have much better lower
bounds whereas the lower bound and the upper bound of the traditional
algorithms are asymptotically identical.

4.2 Introduction

Interchangeability was introduced in [Fre91] in order to deal with redundancy of
values in the same variable domain. Removing or grouping interchangeable
values together has proved useful in reducing search space and solving time
[BCZ01, LCF05, WF99, Has93].

Neighborhood Interchangeability (NI) can be detected in quadratic time by the
Discrimination Tree algorithm (DT) [Fre91]. DT works by assuming zero
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knowledge and build up relationships between values. The disadvantage is that
determining whether a value is NI with another one requires all values to be
checked.

We propose a different method that is able to detect values that are not NI
early on, without checking all the values. Initially we assume values are
identical. That is, they are NI with each other. For each value in the
neighboring variables, we test its consistency against these values and update
our assumption about their relationships. When enough is known so that a
value is certain not to be NI with any other value, it can be removed from
future consideration.

In this chapter, we will study algorithms that can efficiently identify
neighborhood interchangeability using this approach. The chapter is organized
as follows. Section 4.3 gives the background for CSPs and Interchangeability.
Section 4.4 gives the overall flow of the algorithms, with concrete algorithms for
identifying NI provided in Section 4.6. We show that these algorithms have
much better lower bounds than DT, which is explained in Section 4.5. We
conclude in Section 4.8.

4.3 Preliminaries

A finite constraint network P is a pair (X , C) where X is a finite set of n
variables and C a finite set of e constraints. Each variable X ∈ X has an
associated domain containing the set of values allowed for X. The initial
domain of X is denoted by dominit(X); the current one by dom(X). Each
constraint C ∈ C involves an ordered subset of variables of X called scope
(denoted by scp(C)), and an associated relation (denoted by rel(C)). For each
k-ary constraint C with scp(C) = {X1, . . . , Xk}, rel(C) ⊆ ∏k

i=1 dom
init(Xi).

For any t = (a1, . . . , ak) of rel(C), called a tuple, t[Xi] denotes ai. A
constraint’s relation can be described by a formula (called intensional form) or
by exhaustively listing all the tuples (called extensional form or positive table
constraint). Alternately, a relation may describe tuples not allowed; if the
relation is in extensional form it is also called negative table constraint. The
maximum number of tuples in the network is denoted by s. We denote the
maximum size of a domain by d, the maximum arity of all constraints by r and
the maximum number of constraints involving a single variable with g.
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4.4 Overall Process

Let C be a k-ary constraint and scp(C) = {X1, . . . , Xk}, a k-tuple t of
∏k
i=1

dominit(Xi) is said to be: (1) allowed by C if and only if t ∈ rel(C), (2) valid if
and only if ∀Xi ∈ scp(C), t[Xi] ∈ dom(Xi), (3) a support in C if and only if it is
allowed by C and valid, and (4) a conflict if and only if it is not allowed by C
and valid. A tuple t is a support of (Xi, a) in C when t is a support in C and
t[Xi] = a. A constraint check determines if a tuple is allowed. A validity check
determines if a tuple is valid. A solution to a constraint network is an
assignment of values to all the variables such that all the constraints are
satisfied. A constraint network is satisfiable if it has at least one solution. A
Constraint Satisfaction Problem (CSP) involves determining whether a given
constraint network is satisfiable.

We assume that values in different domains are different, so that a ∈ dom(X)
and a ∈ dom(Y ) are different values. The domain must be mentioned to
distinguish which a is referred to, unless it is clear from the context.

Some of the Interchangeability concepts introduced in [Fre91] are review below.

Definition 19 (FI) A value a ∈ dom(X) is fully interchangeable with a value
b ∈ dom(X) if and only if (1) every solution which contains a remains a
solution when a is replaced with b (2) every solution which contains b remains a
solution when b is replaced with a.

Since identifying FI values amounts to finding all solutions to a constraint
network, the process is intractable because the general CSP itself is
NP-complete. A weaker but sufficient condition for FI is Neighborhood
Interchangeability (NI).

Definition 20 (NI) Two values a, b ∈ dom(X) are neighborhood
interchangeable if and only if for every constraint C such that X ∈ scp(C),

{t ∈ D̄ | (a, t) satisfies C} = {t ∈ D̄ | (b, t) satisfies C}

where D̄ = ∏
Y ∈scp(C) \{X}dom(Y ).

4.4 Overall Process

We give general routines for identifying and eliminating neighborhood
redundant values in Algorithm 5 and 6. A value is redundant if its removal from
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the satisfiable constraint network does not render it unsatisfiable. Algorithm 5
can be instantiated appropriately to get the different specific algorithms.

The routine BuildStruct creates a data structure that allows FilterStruct
to eliminate redundant values efficiently. If FilterStruct has detected and
removed some redundant value, it puts the remaining domain in the data
structure filStruct and propagates the result. BuildDom rebuilds the domain.

CreateTupleList collects the tuples in the neighborhood. In the worst case,
the running time of CreateTupleList as well as the size of tupleList is
O(gdr−1). If constraints are in extensional form, the running time becomes
O(gs), whereas the size of tupleList becomes O(g.min(s, dr−1)). In the rest of
the chapter we will use l to denote the size of tupleList.

Algorithm 5: RedundancyCheck(X , C)
1 Q ← {X | X ∈ X}
2 while Q 6= ∅ do
3 extract X from Q
4 tupleList ← CreateTupleList(X)
5 valStruct ← BuildStruct(X, tupleList)
6 if FilterStruct(valStruct, filStruct) then
7 dom(X) ← BuildDom(X, filStruct)
8 for C ∈ C such that X ∈ scp(C) do
9 Q ← Q ∪ scp(C) \ {X}

Algorithm 6: CreateTupleList(X)
1 tupleList ← ∅
2 for C ∈ C such that X ∈ scp(C) do
3 if rel(C) is in intensional form then
4 tupleList ← tupleList ∪ ∏

Y ∈scp(C)\{X} dom(Y )
5 else
6 for tuple t ∈ rel(C) do
7 t′ ← the resulting tuple after removing t[X] from t
8 tupleList ← tupleList ∪ {t′}
9 return tupleList

4.5 Identifying NI by Discrimination Tree

An efficient algorithm for detecting NI values, called the Discrimination Tree
algorithm, was introduced in [Fre91]. The idea is to focus on a single value
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Figure 4.1: (a) NI example. Positive tables. (b) C1 and C2 when sorted on (Y, Z)
and W .

v ∈ dom(X) and go through values (or tuples for non-binary constraints) in the
neighborhood in some fixed order and build a tree based on their consistency
with v. Subsequent checks for other values in dom(X) would begin from the root
of the existing tree and follow the path in the tree having the same consistency
until reaching the node where consistency differs, at which point a new branch
is created. After the algorithm is finished, values that are NI will be grouped in
the same leaf. The Discrimination Tree algorithm is shown in Algorithm 7. We
remark that the algorithm here is different from the ones in [Fre91, LCF05] but
is still based on a discrimination tree with the same time complexity.

For an example of DT, consider the constraint network in Figure 4.1a. The tree
of this network is shown in Figure 4.2a. The algorithm requires 24 constraint
checks and reports {c, e} as the only set of NI values.

The worst-case running time of DT is O(dl). We emphasize that the lower
bound of DT is Ω(dl), leaving the algorithm with no room for improvement.

Algorithm 7: BuildStruct<DT>(X, tupleList)
1 create a root node
2 for a ∈ dom(X) do
3 move to the root node
4 for t ∈ tupleList do
5 if a is consistent with t then
6 if node corresponding with t existed then
7 move to that node
8 else construct node corresponding with t
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Figure 4.2: Two approaches to establish NI: (a) Discrimination Tree (b) Refuta-
tion Tree.

4.6 Identifying NI by Refutation

We propose an opposite approach to DT in identifying NI values. Instead of
starting with zero knowledge about value interchangeability, we assume in the
beginning that all values are NI and update the assumption as more data
becomes available. We call this algorithm Refutation Tree (RT). Details are
shown in Algorithm 8.

Algorithm 8: BuildStruct<RT>(X, tupleList)
1 thisC ← {{v ∈ dom(X)}}
2 for t ∈ tupleList do
3 nxtC ← ∅
4 for T ∈ thisC do
5 lft ← ∅
6 rgt ← ∅
7 for a ∈ T do
8 if a is consistent with t then
9 lft ← lft ∪ {a}

10 else rgt ← rgt ∪ {a}
11 if |lft| ≥ 2 then nxtC ← nxtC ∪ {lft}
12 if |rgt| ≥ 2 then nxtC ← nxtC ∪ {rgt}
13 if nxtC = ∅ then return ∅
14 else thisC ← nxtC
15 return thisC

We describe the algorithm as follows. The set thisC consists of sets of values,
which correspond to the nodes in the refutation tree. The RT algorithm works
by traversing the refutation tree in a breath-first fashion. For each tuple in
tupleList, the algorithm checks whether it is compatible with the values from

Domain Value Mutation and other
techniques for Constraint Satisfaction
Problems

54



4.6 Identifying NI by Refutation

Algorithm 9: FilterStruct<RT>(V,F)
1 revise ← false
2 result ← ∅
3 for T ∈ V do
4 if |T | > 1 then
5 revise ← true
6 pick v ∈ T
7 result ← result ∪ (T \{v});
8 F← result
9 return revise

Algorithm 10: BuildDom<RT>(X,F)
1 return dom(X) \ F

each set in thisC (line 4, 7, 8). A set is split into lft set (consistent values) and
rgt set (inconsistent values) for each tuple checked. The result represents the
current state of knowledge about NI. A singleton indicates that the value in this
set is different from the rest of the domain. The value is discarded (line 11 and
12) since no further data would conflict with what we have learned so far. That
is, once it is known that v is inconsistent with t, we will not find out later that v
is consistent with t.

For example, consider the tree in Figure 4.2b. In the beginning, all values are
assumed to be NI. We then check whether they in fact are consistent with the
first tuple (i, i) according to C1 (a value x ∈ dom(X) is consistent with (i, i)
according to C1 iff (x, i, i) ∈ rel(C1)). Only b, c, and e are consistent so they are
split off to form a new set. We repeat the process with the next tuple until
tupleList is exhausted. It takes 20 constraint checks for RT on this example,
compared to 24 for DT.

The worst-case complexity for RT is the same as that for DT. However, RT
improves upon DT in lower bound. Because each set in the collection thisC is
partitioned into at most two sets, the trace of this process forms a binary tree.
The lower bound is achieved when the height of the tree is the smallest possible
— that is, when the tree is a complete binary tree. Hence, the lower bound is
Ω(d.min(l, lg d)).

The efficiency of the RT algorithm depends on the number of NI values and the
variable ordering when refutation trees are created. In contrast, the cost of DT
is fixed regardless of the number of NI values in a domain. RT requires equal or
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fewer number of constraint checks than DT in all cases.

4.6.1 Exploiting table constraints

The table constraint, when sorted, is recognized as a simple yet effective way to
reduce the cost of CSP algorithms [GJMN07, LS06]. We will show how to
exploit sorted table constraints in RT.

Consider the example in Figure 4.1a. For tuple (i, i), Algorithm 8 must check
the tuple against each value in {a, b, c, d, e, f} to partition the set. If the
constraints are sorted as shown in Figure 4.1b, this is a simple matter of
traversing the table from the first row that contains (i, i) to the first row that
contains tuple other than (i, i) and collects values in the X columns while
traversing. Once (i, j) is encountered, it is clear that no other values except
{b, c, e} are consistent with (i, i) so there is no need to check the rest of the
table.

The running time for RT with sorted table constraints is O(s). Algorithm 8,
however, only provides a high-level concept of the refutation approach. It does
not suit for exploiting table constraints. Since we do not know in advance which
values would be encountered during the traversal of tables for a given tuple, this
requires searching in the collection of sets (thisC) for the right sets that contain
the same values as in the corresponding section of the table. The cost incurred
for the search makes the running time asymptotically higher than O(s).

It is not a trivial task to revise RT so that it is able to exploit sorted table
constraints while maintaining its lower bound. In the next section we will give a
new algorithm that can process values in any arbitrary order.

Note that DT can also exploit sorted table constraints. In fact, Figure 4.2a can
be created just by traversing the tables in Figure 4.1a. We will show later that
RT can exploit mixed positive and negative table constraints so that the
running time can be decreased to even less than O(s).

4.6.2 Implementation

We provide a detailed algorithm (called RTS) in Algorithm 11. It follows the
idea laid out in Algorithm 8 but differs in that it iterates through values in a
domain rather than through sets of values in a collection. This is done to
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facilitate arbitrary orders of values in sorted table constraints. We will explain
how sorted table constraints are used in the algorithm later in this section.

We use array bin to partition NI values. Partitions are numbered from 0 to
curSize− 1. Initially, all values are assigned to bin[0]. For each tuple in the
tupleList the algorithm checks whether it is consistent with values in valList. If a
value is consistent, it is taken off the current bin and put into a new bin, whose
number is determined by array split. Afterward, the size of the original bin
(denoted by array size) and the size of the new bin is updated. The value of
split is obtained from a linked-list of available bins (nxtOf and next) and is fixed
for a given bin until the next tuple is considered (if-block in line 22).

When all values in the same bin are consistent with the tuple t, they are moved
to the new bin, leaving the original bin empty. To avoid having the number of
bins exceeds the number of values in the domain, we reuse the empty bin and
put it in the linked-list of available bins (if-block in line 26).

If the size of a bin is exactly one, the singleton value will be removed from the
valList. This is done in the if-block in line 16. We reduce the size of valList by
one and swap the singleton value with the value at the end of valList (line 19).
We use array label as another abstract layer of values for this purpose.

We use array rec to keep track of the bin assigned involving a given tuple. It
serves two purposes. First, it prevents incorrect reuse of bin. Because the value
of split[bin[v]] is correct only for a given t (line 8), as soon as a new tuple is
considered, the old value of split[bin[v]] is incorrect, since the bin involving the
previous tuple become a separate and independent bin. We enforce this
condition by comparing the current tuple with the tuple recorded (line 22).
Second, we use rec to prevents premature elimination of a singleton value. To
be certain that a partition with a single value will not increase in size later, the
algorithm must already finish checking all the values against the current tuple.
We enforce this condition by eliminating singleton partitions only after the next
tuple is considered (line 16).

Example Let us reconsider the example in Figure 4.1a and the tree in Figure
4.2b. The first tuple is (i, i). After it is checked against values from 0 to 5
(representing {a, b, c, d, e, f}), we have: split[0]=1, bin[1]=1, bin[2]=1, bin[4]=1
(i.e. bin[1] for b, c, e), bin[0]=0 bin[3]=0 bin[5]=0 (i.e. bin[0] for a, d, f). After
(i, j) is checked we have split[0]=2, split[1]=3, bin[0]=2 (for a), bin[1]=3 (for b),
bin[2]=1 and bin[4]=1 (for c and e), bin[3]=0 and bin[5]=0 (for d and f). The
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Algorithm 11: BuildStruct<RTS>(X, tupleList)
1 for i← 0 to |dom(X)| − 1 do
2 size[i] ← 0 ; bin[i] ← 0
3 rec[i] ← ∅ ; split[i] ← 0
4 label[i] ← i ; nxtOf[i] ← i+ 1 ; del[i] ← false
5 size[0] ← |dom(X)|
6 curSize ← |dom(X)|
7 next ← 1
8 while curSize > 0 and tupleList 6= ∅ do
9 extract t from tupleList

10 if sortedT then valList ← CreateValList(X, t)
11 else valList ← {0, . . . , curSize− 1}
12 while valList 6= ∅ do
13 extract i from valList
14 if sortedT(and) del[i] then continue
15 v ← label[i]
16 if size[bin[v]]=1 ∧ rec[bin[v]]6=t then
17 curSize ← curSize− 1
18 if sortedT then del[v] ← true
19 else label[i] ↔ label[curSize− 1]
20 else
21 if sortedTor v is consistent with t then
22 if split[bin[v]]= ∅ or rec[bin[v]]6=t then
23 split[bin[v]] ← next
24 next ← nxtOf[next]
25 size[bin[v]] ← size[bin[v]] −1
26 if size[bin[v]] = 0 then
27 nxtOf[bin[v]] ← next
28 next ← bin[v]
29 rec[bin[v]] ← t
30 bin[v] ← split[bin[v]]
31 size[bin[v]] ← size[bin[v]] +1
32 rec[bin[v]] ← t

linked list of available bin (indicated by next together with nxtOf) is 4→5→6.
After tuple i is checked, two singletons a and b are removed, and we have
curSize=4 and label[0]=5, label[5]=0, label[1]=4, label[4]=1, while the rest of label
remains unchanged. For values 0 to 3 in valList, bin[label[0]]=bin[5]=0 (for f),
bin[label[1]]=bin[4]=4 (for e), bin[label[2]]=bin[2]=4 (for c), bin[label[3]]=bin[3]=0
(for d). The linked list of available bin is 1→5→6 (bin 1 and 5 were previously
used for a and b, but are available for reuse now that a and b are ignored). 2

Sorted table constraints can be exploited by setting flag sortedT to true. We
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assume the sorted tables are positive. Negative tables can be accommodated
simply by changing “consistent” in line 21 to “inconsistent”. The algorithm for
sorted table constraints differs from the general algorithm in three places. First,
valList is set by routine CreateValList, which traverses the corresponding
sorted table and collects the relevant values. For instance, using example in
Figure 4.1, valList for (i, i) is {b, c, e}. Second, we do not perform constraint
check for values gathered in this way from sorted table constraints because we
already know their consistency just from their existence in the table (line 21).
Third, singleton values are skipped in a different way. The same technique for
general constraints cannot be used because valList changes from one tuple to
another. Instead, we use boolean array del to indicate whether a value should
be ignored (line 14 and 18). Notice that this does not decrease the complexity
of the algorithm because all the values in valList must be iterated anyway. The
lower bound of RTS is Ω(s).

It is interesting to note that the algorithm is applicable to mixed constraint of
both consistency types. The lower bound of Ω(s) can be made lower if the
shorter sections in either positive or negative relations are combined. For
instance, suppose we have dom(X)=dom(Y )={1, 2, 3, 4}. rel(C1) = {(1, 1),
(1, 2), (2, 2), (3, 2), (4, 2), (2, 3), (4, 3)} lists compatible tuples for X and Y ,
rel(C2)={(2, 1), (3, 1), (4, 1), (1, 3), (3, 3), (1, 4), (2, 4), (3, 4), (4, 4)} lists
incompatible tuples for X and Y . We can gather shorter parts from both
constraints to create a mixed constraint C3, rel(C3)={P (1, 1), N(1, 3), N(3, 3)},
where P and N denotes positive and negative tuples. The size of the combined
constraint can be much smaller than the size of the original constraints; for this
example, |rel(C1)| = 7, |rel(C2)| = 9, |rel(C3)| = 3. We can use C3 in the
algorithm by switching the consistency in line 21 depending on the tuple. While
it is rare to have both positive and negative tables for the same constraint, the
mixed constraint can be created from only one of them: if the size of the section
is less than half the number of all possible tuples then we retain the tuples. If
the size is more than half, the tuples in the opposite consistency type would be
created by inference.

4.7 Related Works

NI has been shown to improve search in a number of works
[LCF05, BCZ01, CD02, Has93]. Although DT was introduced only in the
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context of binary CSPs, it has been extended to cover non-binary CSPs in
[LCF05]. The authors pointed to a case where DT provides incorrect results for
non-binary CSPs. To avoid this problem, they suggest performing DT on each
neighboring constraint and intersecting the results. Our DT is derived from the
binary version in a slightly different way and it does not cause the incorrect
results.

In [LCF05], it has also been recognized that singleton partitions can be
removed. However, these singletons can be eliminated only after DT is finished
for each constraint. This makes the lower bound higher than that of
refutation-based algorithms, which can ignore singletons much earlier.

4.8 Conclusions

We introduce a refutation method to local interchangeability and study it in
detail for NI. Rather than starting with no prior knowledge, we assume the
opposite — that everything is interchangeable with one another — and update
our assumption as new information comes along. While the algorithms
presented have the same upper bound on their running time as those of the
standard algorithms, the refutation approach allows some values that are not NI
with others to be detected early and removed from further consideration by the
algorithms, thus decreasing their lower bounds. We also show how these
algorithms can take advantage of table constraints while still achieving the
lower bound described.

Note that Algorithm 11 is provided in low-level details because it is not clear
how one can take advantage of sorted constraints while maintaining the same
lower bound of the generic RT. Without proper care the lower bound could
increase, defeating the whole purpose. Otherwise, implementing RT is
straightforward.

Another form of local interchangeability called Neighborhood Substitutability
[Fre91] also benefits from the refutation approach. NS has more pruning power
but received much less attention than NI due to its higher cost. A direct NS
algorithm was given in [BCH+94] but no experimental result was reported.

Our main objective for this chapter is to explore theoretical possibilities that
come with this new approach. While the better lower bound does not imply
actual performance, it gives practitioners considerable room to maneuver. The

Domain Value Mutation and other
techniques for Constraint Satisfaction
Problems

60



4.8 Conclusions

practicality of this approach will largely depend on how the average running
time can be pushed closer to the lower bound. Since the actual performance of
these algorithms are affected by ordering heuristics for the list of tuples in the
neighborhood, this is an interesting aspect to explore further. On the other
hand, direct algorithms such as DT have the same (worst-case) running time on
every input.
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Chapter 5

Eliminating Redundancy in CSPs
Through Merging and
Subsumption of Domain Values1

5.1 Abstract

Onto-substitutability has been shown to be intrinsic to how a domain value is
considered redundant in Constraint Satisfaction Problems (CSPs). A value is
onto-substitutable if any solution involving that value remains a solution when
that value is replaced by some other value. We redefine onto-substitutability to
accommodate binary relationships and study its implication. Joint
interchangeability, an extension of onto-substitutability to its interchangeability
counterpart, emerges as one of the results. We propose a new way of removing
interchangeable values by constructing a new value as an intermediate step, as
well as introduce virtual interchangeability, a local reasoning that leads to joint
interchangeability and allows values to be merged together. Algorithms for
removing onto-substitutable values are also proposed.

1This chapter is a revision of [LY13]. Theorem 4 in [LY13] is incorrect because it alludes
to the conventional concept of network equivalence despite the fact that the paper
expropriates the term “equivalent” to describe something else. The idea of Theorem 4 still
holds and it is restated into what is now Proposition 6. Some definitions and concepts are also
modified to improve legibility. The changes are limited to Section 5.4 and Section 5.5 and do
not affect the contents of subsequent sections.
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5.2 Introduction

An important indicator of the hardness of a constraint satisfaction problem is
the size of the search space. Eliminating interchangeable values was introduced
in [Fre91] as a way of reducing complexity of a problem by removing portions of
the search space that are essentially identical. Recent focus on
interchangeability has been on onto-substitutability [BCM08, Fre11] : a domain
value is onto-substitutable if any solution involving that value remains a
solution when that value is replaced by some other value. Standard
substitutability, by contrast, is a binary relation between two fixed elements.

In this chapter, we redefine onto-substitutability as a binary relation and study
its consequences. We propose joint interchangeability: two sets are
joint-interchangeable iff any solution involving a value in one set remains a
solution when that value is replaced by some value in the other set. Joint
interchangeability is more practical since any one of the two sets can be
eliminated; for onto-substitutability only a single value can be removed. We
then propose virtual interchangeability: values are virtually interchangeable if
they support the same values in every constraint but one. A set S of virtually
interchangeable values can be compactly represented by a value s, in effect
making S joint-interchangeable with s. Hence, virtual interchangeability leads
indirectly to joint interchangeability.

To make sure virtually interchangeable set of values can be merged into a single
value while retaining all the solutions, we expand the definition of domain value
to accommodate the notion of label. A value may have more than one label,
and labels are what actually appear as part of solutions. We introduce several
new ways of comparing networks based on this concept. As a result, we can
solve a CSP by transforming it using virtual interchangeability into a more
compact network, solve the derived network, and convert it back — all without
losing any solution. Moreover, this method works in the context of the hidden
transformation, which is a way of transforming non-binary constraints into
binary equivalents, by treating table constraints as a form of hidden variables.
Preliminary results show that compressing all virtually interchangeable values is
a promising approach to simplify table constraints in structured problems.
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5.3 Joint Interchangeability

Interchangeability and related ideas were first described in Freuder [Fre91].
Bordeaux et al. [BCM08] provided a formal framework that demonstrates
connections among structural properties of CSPs. Removability, to which these
properties reduce, is regarded by the authors to be the basis of how a value can
be removed without affecting satisfiability of the problem. Freuder [Fre11] later
proposed the concept of dispensability: a value is dispensable if removing it will
not remove all solutions to the problem. A value can then be dispensable
without being removable (or onto-substitutable as called in [Fre11]).
Dispensability would therefore appear to be a more fundamental property than
onto-substitutability. A survey of interchangeability concepts is reported in
[KWC+10].

Onto-substitutability underscores the notion that a value’s attributes can be
broken down and subsumed by other values. An onto-substitutable value can be
removed without affecting satisfiability of the problem precisely because it is
semantically redundant. For this reason, onto-substitutability is arguably key to
understand many interchangeability concepts, but not as fundamental as
dispensability when it comes to determine why a value can be removed.

Given the prospects of onto-substitutability, we will focus on this property and
its derivations. First, we give the formal definition of CSP and redefine
substitutability so as to make onto-substitutability a binary relation as follows.
Any set of values mentioned in this section must be nonempty.

Definition 21 (CSP) A finite constraint network P is a triple (X ,D, C) where
X is a finite set of n variables and C a finite set of e constraints. D(X) ∈ D
represents the set of values allowed for variable X ∈ X . Each constraint C ∈ C
involves an ordered subset of variables in X called scope (denoted by scp(C)),
and an associated relation (denoted by rel(C)). For any k-ary constraint C with
scp(C) = {X1, . . . , Xk}, rel(C) ⊆

∏k
i=1 D(Xi). For any k-tuple t = (a1, . . . , ak)

over T = {X1, . . . , Xk} such that Xi ∈ X and ai ∈ D(Xi), t[Xi] denotes ai, and
scp(t) denotes T . If S ⊆ T then t[S] denotes the tuple over S obtained by
restricting t to the variables in S. A solution of P is a member of rel(P) =
{t | scp(t) = X ∧ ∀C ∈ C . t[scp(C)] ∈ rel(C)}. P is satisfiable iff rel(P) 6= ∅.

We present new definitions and re-define substitutability and
onto-substitutability as follows.
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Definition 22 Given value v ∈ D(X), the maximally substitutable set of v is
maxsub(v) = {b ∈ D(X) | there exists a solution involving v which remains a
solution when v is substituted by b}.

Definition 23 A value v ∈ D(X) is substitutable by a set of value S iff S ⊆
maxsub(v) and any solution involving v remains a solution when v is substituted
by some b ∈ S. S is called a substitutable set of v.

We simply say v is substitutable if there exists S such that v is substitutable by
S. When |S| > 1, v is onto-substitutable and that S is an onto-substitutable set
of v. A substitutable set of v is minimal if there is no strictly smaller
substitutable set of v. Distinct minimally substitutable sets may exist for any
given value. We also extend substitutability so that a set of value S is
substitutable by T iff for any value v ∈ S, v is substitutable by T .

Interchangeability can be redefined to cover many-to-many relationship in a
similar fashion.

Definition 24 A set of value S ⊆ D(X) is said to be joint-interchangeable (JI)
with a set of value T ⊆ D(X) iff S is substitutable by T and T is substitutable
by S.

When |S| = 1 = |T |, JI reduces to ordinary interchangeability. JI is symmetric
and transitive. S is minimally joint-interchangeable with T if there exist no
S ′ ⊆ S and T ′ ⊆ T such that S ′ is JI with T ′ and S ′ 6= S ∨ T ′ 6= T .

Example 1 Consider a network involving two variables with solutions {(1, a),
(2, a), (3, b), (4, b), (5, c), (6, c), (1, d), (3, d), (5, d), (2, e), (4, e), (6, e)}.
{a, b, c} is minimally joint-interchangeable with {d, e}.

Take note that the definitions of substitutability and JI allow the same value to
appear on both sides of the relations. This helps us identify JI sets that would
not otherwise be recognized. The following example illustrates.

Example 2 Consider a set of solutions {(1, a), (2, a), (1, b), (2, c), (3, b),
(3, c)}. a is not interchangeable with b, but {a, c} is minimally
joint-interchangeable with {b, c}.

Proposition 2 If S is joint-interchangeable with T , then either S \ T or T \ S
can be eliminated without affecting the network’s satisfiability.

In [BCM08] the authors claim that local reasoning is not sound for
onto-substitutability. Freuder [Fre11] shows that this is not the case if the scope
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b d ea
c c{a,b} {d,e}

ba d e
c c

c c

Figure 5.1: Three synonymous networks. Dots represent domain values, while
lines connect values that are compatible. Dash lines enclose values from the same
domain. a, b, and c are labels. Two values have more than one label: one tagged
with {a, b} and the other {d, e}.

of “local reasoning” is broadened to include closure on sub-problems. The same
rationale can be applied to joint interchangeability.

JI is a stronger than onto-substitutability but proves to be more useful. The
latter lets us eliminate objects only from one side of the relation, whereas JI
allows either side to be removed. Since a CSP with more values generally
translates to longer search, once it is known S is JI with T an easy way to
simplify the problem is to eliminate the larger set. Conversely, we want to
identify two JI sets such that their size difference is as large as possible. We
introduce and study a local reasoning which takes advantage of this fact called
virtual interchangeability in Section 5.5.

Onto-substitutability can be weakened further by considering substitutability in
only some solution.

Definition 25 A value v is nominally substitutable by b iff there exists a
solution involving v and it remains a solution when v is substituted by b. A
value v is simply said to be nominally substitutable when there exists such b,
that is, when maxsub(v) 6= ∅.

Nominal substitutability and dispensability depend on the existence of a
solution. Local reasoning such as closure is thus ineffective, because extending
some solution in a bounded area to the whole problem is just as
computationally difficult as finding a new solution from scratch. Nominal
substitutability is equivalent to “minimal substitutability” in [Fre11] and
“context dependent interchangeability” in [WFC96].

Recombination of values in the smallest closure was studied in [BL04] and it
was shown that two values are nominally substitutable iff their structure in the
closure overlap and a fragment of their intersection involved is in a solution.
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Figure 5.2: Q on the right subsumes P on the left.

5.4 Enhancing Domain Values

Domain values serve two main purposes: structurally and semantically. These
two aspects are intertwined in most CSP models, yet we would have more
flexibility in manipulating a network when they are decoupled. To this end, we
extend the definition of a value in this section. Combined with virtual
interchangeability, this allows us to merge values while preserving all solutions
at the same time.

Definition 26 (Labels) A value v of a constraint network P is a tuple
(uid, lab) where uid is an identifier unique to this value in P (also denoted by
uid(v)) and lab is a set, which we also call the value’s labels. (also denoted by
lab(v)). A value must have at least one label.

This enhanced definition allows a domain value to possess multiple labels while
at the same time the same label can be associated to different domain values —
a many-to-many relationship, in other words. Through labels, a single tuple can
represent multiple tuples of the standard kind.

New definitions based on labels are given as follows.

Definition 27 Given networks P and Q such that X1, . . . , Xk are variables of
both P and Q, and tuple t where scp(t) = {X1, . . . , Xk}, then

• sol(t) denotes ∏k
i=1 lab(t[Xi]).

• A member of sol(t) is called a rendition of t.

• A member of sol(P) := ⋃
t∈rel(P) sol(t) is called a rendition of P.

• A rendition of t agrees with P if it is also a rendition of P.

• A label of value t[Xi], for some Xi, is valid with respect to t and P if it is
involved in some rendition of t that agrees with P. It is invalid otherwise.
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• Q subsumes P if sol(Q) ⊇ sol(P).

• P and Q are synonymous if sol(P) = sol(Q).

An example of synonymous networks is shown in Figure 5.1.

We are interested in the type of network transformation that offers a second
pathway to solve the original network. Subsumption in Definition 27 provides a
necessary condition for any such transformation: a transformed network must,
at the very least, preserve all solutions of the original. That is, suppose we are
given a network P and its transformation Q such that Q subsumes P , then we
can find all solutions of P by solving Q. Still, this method may in fact entail as
much work as solving P itself.

For now, we remark on another issue with subsumption. Although the solutions
of the original are preserved, they are not guaranteed to be properly distributed
in the transformed network Q. For example, given some solution t of Q, it is
possible that sol(t) ∩ sol(P) = ∅, which means t covers no solution of P at all.
The effort spent finding t is therefore wasted. It is more useful to have a
transformation such that any solution of the transformed network can always be
converted to a solution of the original. This condition is what we call
conformity in the following definition.

Definition 28 Given networks P and Q, Q conforms to P if any solution of Q
yields a rendition that agrees with P.

According to this definition, an unsatisfiable network conforms (trivially) to any
network.

Example 3 Consider network P = (X ,D, C), where X = {X1, . . . , Xn},
|D(Xi)| = d and D(Xi) = {ai1, . . . , aid} for 1 ≤ i ≤ n, lab(aij)={lij}, C =
{C1, . . . , Cn−1}, scp(Ci) = {Xi, Xi+1} and rel(Ci) = {(aij, a(i+1)j) | 1 ≤ j ≤ d}
for 1 ≤ i < n, and Q = (X ′,D′, C ′), where X ′ = {X ′1, . . . , X ′n}, D(X ′i) = {a′i},
lab(a′i) = {li1, . . . , lid}, C ′ = {C ′1, . . . , C ′n−1}, scp(C ′i) = {X ′i, X ′i+1} and
rel(C ′i) = {(a′i, a′i+1)}. The networks are illustrated in Figure 5.2.

The following holds: (1) Q subsumes P. (2) Q conforms to P. (3) P
conforms to Q. (4) P is satisfiable iff Q is satisfiable. (5) P is not synonymous
with Q.

Example 3 shows that it is trivial to find the one solution of the transformed
network Q, but obtaining a rendition that agrees with P amounts to solving the
original network itself.
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The process of obtaining a rendition from a given solution that agrees with the
original network will be discussed in more detail in the next section after we
introduce some concrete transformation process.

The following proposition gives some basic properties of conformity.

Proposition 3 Given networks P and Q,

1. if Q subsumes P then P conforms to Q.

2. if P conforms to Q then P is satisfiable implies that Q is satisfiable.

Proof: (1) Because a value must have at least one label, any solution of P must
have at least one rendition. Because Q subsumes P , that rendition agrees with
Q. (2) Suppose P is satisfiable. Let t be a solution of P . Because P conforms
to Q, t yields a rendition r that agrees with Q. That is, r must be a rendition
of some solution t′ of Q, which means Q is satisfiable. 2

The following proposition is a direct consequence of Proposition 3.

Proposition 4 Given networks P and Q,

1. if Q subsumes P then P is satisfiable implies that Q is satisfiable.

2. if P conforms to Q and Q conforms to P then P is satisfiable iff Q is
satisfiable.

3. if P and Q are synonymous then P is satisfiable iff Q is satisfiable.

The converse of (2) and (3) do not hold.

Example 3 also provides a counterexample of Proposition 4(3).

5.5 Virtual Interchangeability

Identification followed by elimination has been an established method for
dealing with redundant values in CSPs. This practice is simple and
straightforward. As a result, much of the attention has been devoted to finding
a new kind of interchangeability and developing more efficient algorithms that
recognize these properties.

We present a proactive strategy with regard to properties that are binary
relations. Given a relation R, rather than the usual passive approach of finding
two objects x and y such that xRy and eliminating one of the two, we need only
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identify x, then create y from x so that xRy, and finally eliminate x. Central to
this approach, however, is whether a “better” object y can be created from x.
Concretely for JI, instead of identifying two sets that are JI with each other, we
focus on finding a set of values that possess a certain property, then by
exploiting that property create an equivalent value that represents that set
more concisely, and only after the new value is added do we remove the original
values.

In this section we introduce the concept of virtual interchangeability, a local
reasoning that can be used as outlined above. We begin by recalling necessary
definitions.

Definition 29 The projection of constraint C to S ⊆ scp(C) is a constraint
πS(C) where scp(πS(C)) = S and rel(πS(C)) = {t[S] | t ∈ rel(C)}. The
projection of a tuple is defined in the same fashion. The concatenation of
t1 ∈ C1 and t2 ∈ C2 ( con(t1, t2)) is the tuple t resulting from the concatenation
of t1 and t2 followed by rearrangement so that scp(t) = scp(t1) ∪ scp(t2).

Definition 30 Given two values a, b ∈ D(X) and constraint C such that
X ∈ scp(C), values a and b are neighborhood interchangeable with respect to C
if and only if

{t ∈ D̄ | con(a, t) ∈ rel(C)} = {t ∈ D̄ | con(b, t) ∈ rel(C)}

where D̄ = πscp(C) \{X}(C).

Definition 31 Two values a, b ∈ D(X) are neighborhood interchangeable (NI)
[Fre91, LY08] if and only if they are neighborhood interchangeable with respect
to C for every constraint C such that X ∈ scp(C),

Given NI values, we can combine them into a single value without losing any
solution simply by merging their labels into those of the representative value
while discarding the remaining values. As a result, the initial network and the
network after the NI values are merged are equivalent.

Definition 32 Two values a, b ∈ D(X) are virtually interchangeable (VI)
(with respect to C) iff there is at most one constraint C such that X ∈ scp(C)
and a and b are not neighborhood interchangeable with respect to C. A set of
values are virtually interchangeable if any two values are virtually
interchangeable with each other.

VI and NI are almost the same except for the difference of supports in a single
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constraint. NI implies VI but VI does not imply NI. Neighborhood
Substitutability (NS) [Fre91] is incomparable to VI. A network that contains no
VI values is called VI-free.

The VI-merging process and its implications will be discussed in this section.
We begin by describing a generic merging process that can be used to combine
any pair of values.

Proposition 5 Given a, b ∈ D(X) in network P, a new network Q can be
derived from P by merging b into a as follows

• updating rel(C) for any C involving X by altering any tuple t ∈ rel(C)
where t[X] = b so that t[X] = a

• setting lab(a) ∪ lab(b) to be the new value of lab(a)

• removing b from D(X)

Consequently,

1. Q subsumes P

2. P is satisfiable ⇒ Q is satisfiable.

Proof: (1) Let S be the sub-network of P whose constraint graph forms a
star-graph with X as the center and neighbors of X the leaves. Let S ′ denotes
S right after b is merged into a. Any solution of S involving a or b can be made
a solution of S ′ by replacing b with a since the new a supports any value that
either a or b in S supports. And because the label set of a in S ′ incorporates
that of a and b in S, it is clear that sol(S ′) ⊇ sol(S) (the set sol(S ′) \ sol(S)
may contain spurious tuples that stem from the cross product of the new a’s
supports). Hence, sol(Q) ⊇ sol(P). (2) comes from (1) and Proposition 4. 2

Observe that although in Proposition 5 the existing designation “a” is chosen to
represent the new value, it can be called anything as long as relations involved
are correctly amended. The naming has no effect on sol(P) and sol(Q) because
both of them concern with values’ labels rather than the values themselves.

Proposition 5 provides a concrete procedure for merging any pair of values, with
no restriction whatsoever. The trade-off comes in the form of spurious
renditions that do not agree with the original network. Nevertheless, with this
kind of value-merging it is possible to solve a constraint network indirectly as
follows. First, transform the original network P by merging values and updating
the network according to the method described by Proposition 5. Second, solve
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the resulting network to obtain a solution t. (If it is unsatisfiable, so is the
original.) We call this stage the solving stage. Third, find a rendition of t that
agrees with the original network. For convenience, we also say t is to be
interpreted (into P) and call this stage the interpretation stage. If the
interpretation fails, we go back to the second stage and find another solution to
interpret, repeating the second and the third stage until either the
interpretation succeeds or no more solution is found.

Because Proposition 5 imposes no restriction on the values to be merged,
nothing prevents us from repeatedly merging every pair of values until all
domains become singletons (e.g. merging everything in P from Example 3
results in Q.) In this instance, the solving stage is instantaneous (because there
is only one solution, provided no domain in the original network is empty) while
interpreting that solution is essentially the same as solving the original network.

We now consider what happens when only VI values are allowed to be merged.

Proposition 6 If network P is transformed into Q by VI-merging then P
subsumes Q and interpreting a solution of Q into P is search-free.

Sketch of Proof: Like the proof of Proposition 5(1), it suffices to focus on the
star-graph S and S ′ in which a, b ∈ D(X) are merged into new value c. Let us
now consider s′ ∈ rel(S ′) such that s′[X] = c. We assume a and b are VI and
not NI (otherwise the proposition is trivial), which means there exists variable
Y where the supports of a and b are different. Let s be the tuple obtained from
s′ by replacing c with either a or b such that the replacement is compatible with
s′[Y ]. The definition of VI promises that such s is a solution of S and that
testing a and b can be done in linear time through conventional constraint
checks. Because s′ is any arbitrary solution of S ′ and the labels of c come
strictly from those of a and b , it follows that sol(S) ⊇ sol(S ′) and thus
sol(P) ⊇ sol(Q). Moreover, lab(s[X]) contains no invalid label. 2

Proposition 4, 5, and 6 together tell us that if P is VI-merged into Q then P is
satisfiable iff P is satisfiable. In addition, we now learn that VI-merging
produces synonymous networks in a way that allows us to efficiently reconstruct
solutions of the original networks from those of the transformed networks. The
following example shows how.

Example 4 Consider D(X) of the network in Figure 5.3 (top). Value labeled 0
is VI with value labeled 1, while value labeled 2 is VI with value labeled 3. The
network at the bottom is derived from the top by merging 0 with 1 and 2 with 3.
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Figure 5.3: An example of VI-merging.

As a result, both networks are synonymous. To interpret solutions of the bottom
network efficiently, it is best to make inferences rather than performing
generate-and-test. For instance, consider solution t = (2, {0, 1}, 0) of the bottom
network. To find valid labels of t[X], we consider the common supports of
t[Y ] = 2 and t[Z] = 0 on X in the top network. We take the supports of 2 and 0
in D(X) ({1,2,3} and {0,1,2,3}) and compare them with the labels of t[X] to
filter out invalid labels. As a result, the valid label set of t[X] is {1, 2, 3} ∩
{0, 1, 2, 3} ∩ {0, 1} = {1}.

We can make a constraint network more compact by repeatedly merging VI
values where possible. This involves going through each variable one by one and
merging all VI values in the domain, then propagating the results to adjacent
variables. The process terminates when no more VI values are detected.
Propagation is necessary because values that are not initially VI may become so,
once their neighbors are modified. Consider Example 3 for instance. In Q each
domain has only one value, which is the best compression possible. Initially
however, only the two variables at both ends (X1 and Xn) can be compressed.
No VI values are detected in the middle variables. After X1 and Xn are
compressed, the adjacent variables X2 and Xn−1 have to be re-examined in light
of the change. Values of D(X2) and D(Xn−1) then all become VI and will be
merged as a result. The process continues until the propagation converges.

It is important to note that merging all VI values of a variable domain with
respect to different constraints produces different results. In fact, it was shown
in [CDE15] that finding an optimal sequence of VI-merging operation is
NP-complete. Because a variable may contain different VI values that are VI
with respect to different constraints, to reduce the size of the search space one
heuristic is to pick some ordering so that the domain size becomes as small as

Domain Value Mutation and other
techniques for Constraint Satisfaction
Problems

74



5.6 Algorithms for Merging VI values

Figure 5.4: The network on the left is VI-free but does not satisfy the BTP, while the
one on the right satisfies the BTP but is not VI-free.

possible when no VI values can no longer be found. In this chapter, we consider
only this greedy heuristic. Given a domain, we detect VI values by considering
each involved constraint one by one and calculate the possible reduction in
domain size. The constraint that gives the best reduction is chosen first for the
application of Proposition 5. The reduction for each constraint is re-computed
and the process is repeated until all VI values for this variable are merged.

The broken-triangle property (BTP) [CJS10] has a similar condition to VI in
that it also forbids values having different sets of supports in two adjacent
variables. Figure 5.4 shows that the BTP is not comparable to the VI-free
property.

5.6 Algorithms for Merging VI values

We now present algorithms for finding and merging VI values of a single
variable domain. Given a variable, all involving constraints are initially joined
together into a single table constraint. The result is then compressed by
considering each constraint in turn whether values are VI with regard to this
constraint. We consider only variables involving binary constraints. Later, we
describe how to compress non-binary constraints.

Given variable X, Algorithm 12 collects all supports of values in D(X) and
tabulates the results. Each row represents supports of a single value in D(X)
from various constraints, and each cell contains the supports’ labels, in effect
making the row, a cartesian product representation (CPR). The table can be
viewed as partially compressed from the start.

Optionally, after supports are collected the table can be enumerated first so
that each cell contains only a single label and each row becomes a simple tuple
rather than a CPR. This may yield a better compression later although the
side-effect on involving constraints can be more extensive. More importantly,
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however, Proposition 5 do not apply since both handle only the merging of
domain values, not splitting them. Splitting and recombining domain values are
beyond the scope of this chapter, but it suffices to say that the resulting
network does not necessarily subsume the original and thus some renditions
may be lost, although conformity and satisfiability are unaffected. A case of
missing renditions will be given in Example 5.

Algorithm 12: Collect(X)
1 c ← |C ∈ C such that X ∈ scp(C)|
2 let T be an empty table of c columns
3 foreach Cj such that X ∈ scp(Cj) do
4 foreach t ∈ rel(Cj) s.t. scp(Cj) = {X, Y} for some Y do
5 add lab(t[Y ]) to cell (t[X], j) of T

Algorithm 13 details the greedy compression process. To compress a table, we
hypothetically evaluate whether values are VI with respect to each column. The
actual compression is performed with regard to the column that yields the best
reduction (stopping at this point is denoted as the single-best compression
process). The process is repeated until every column is committed . Constraints
are updated using the finished table as the final step.

Proposition 7 After all VI values are merged with respect to a certain
constraint, any further merging of VI values in this domain with respect to the
same constraint is not possible so long as neighboring domains are not altered.

Proof: At time t1 after all VI values are merged with respect to constraint C, no
two values are NI with respect to all constraints except C. If at some later time
t2, there exist two values that are NI in all but C, these two values must differ
in at least one other constraint C ′ beside C. Consequently, the difference in C ′

must be eliminated at some point between t1 and t2. The change in C ′ affects
the neighboring domains, contradicting the assumption. 2

Theorem 9 The cost of Compress(C) is O(m3n lg n), where C is a table
constraint of m columns and n rows.

Proof: Line 5 takes O(n). It takes O(mn lg n) in line 6 to sort the projection
from line 5. After sorting, counting the duplicate in line 7 is just a matter of
going through each member of A while comparing the current and the previous
member, costing O(mn). The whole process then takes O(∑m

i=1 imn lg n) =
O(m3n lg n). 2

Domain Value Mutation and other
techniques for Constraint Satisfaction
Problems

76



5.6 Algorithms for Merging VI values

Algorithm 13: Compress(C)
1 remainder ← scp(C)
2 repeat
3 (var,max) ← (∅, 0)
4 foreach X ∈ remainder do
5 A← πscp(C)\{X}(C)
6 sort A
7 count ← the number of duplicate elements in A
8 if count > max then (var,max) ← (X, count)
9 if max > 0 then

10 remove var from remainder
11 merge lab of any two rows that differ only at col. var
12 until max = 0 or rem = ∅

Example 5 We consider merging VI values of X in the network in Figure 5.3
(top). After supports are collected, the table is shown in Table 5.1(a). Tentative
reduction size with respect to CXY and CXZ are both 2. The table is then
compressed by merging VI values with respect to CXY . The result is shown in
Table 5.1(b). Next, VI values with respect to CXZ are combined, resulting in
Table 5.1(c). No more VI values exist and this table will be used to update CXY
and CXZ, as depicted in Figure 5.3 (bottom). There are two values in the new
D(X): one with labels {0, 1}, and the other with {2, 3}.

Alternatively, one can choose to expand Table 5.1(a) first so that it would
contain 9 tuples, each component of each tuple having a single label. After
compressing the table with respect to CXY and CXZ the result is shown in Table
5.1(d).

The original network has 9 rendered solutions whereas the compressed network
in Table 5.1(c) has 2 solutions and 12 rendered solutions total, and the one in
Table 5.1(d) has 2 solutions and 11 rendered solutions total. The network in
Table 5.1(c) subsumes and conforms to the original. The network in Table
5.1(d) conforms to but does not subsume the original network. The tuple
t = (2, 2, 0), where scp(t) = (X, Y, Z), exists in the original network but not in
Table 5.1(d).

In addition to merging VI values in binary CSPs as discussed above, we can also
use Algorithm 13 to compress tables in non-binary networks directly since we
can think of a table as a dual variable in the hidden transformation
[BCvBW02], where each tuple in the table stands for a value in the dual
variable’s domain. There is no need to invoke Algorithm 12.
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Table 5.1: Joined tables for constraints involving X.
(a)

X Y Z
0 {0,1} 0
1 {0,1,2} 0
2 2 {0,1}
3 2 {0,2}

(b)

X Y Z
{0,1} {0,1,2} 0
2 2 {0,1}
3 2 {0,2}

(c)

X Y Z
{0,1} {0,1,2} 0
{2,3} 2 {0,1,2}

(d)

X Y Z
{0,1} {0,1,2} 0
{2,3} 2 {1,2}

Proposition 8 Given a non-binary constraint network P where each value has
a single label initially. Assume the network is converted into a binary network
using the hidden transformation. Assume further that we merge all possible VI
values in every variable domain, including dual and ordinary variables, and
propagate as necessary, resulting in network Q. Interpreting a solution of Q
into P is search-free.

Proof: Because dual variables do not exist in the original network, there is no
need to deal with their labels. Instead, instantiation of the dual variables
determines labels of the ordinary ones. Note that this reasoning is not valid for
a mixed binary and non-binary network since there would be no intermediary
dual variable between two original variables if there exists a binary constraint
involving them. 2

Example 6 Consider the constraint in Table 5.2(a). Let us consider merging
VI values of H, the hidden variable for this constraint. Tentative reduction size
with respect to each constraint are: CHX = 3, CHY = 2, CHZ = 1, CHW = 0.
Since the maximum reduction size is 3, we then proceed with merging VI values
with respect to CHX . Table 5.2(b) shows the result. At this point, we recompute
the reduction size for each remaining constraint: CHY = 1, CHZ = 0, CHW = 0.
Table 5.2(c) shows the result after further merging with respect to CHY . No
more compression is possible. Since instantiation of hidden variables has no
effect on actual solution, there is no need to have multiple labels for values in H.
We can re-label aceg, bf and d to 1, 2, and 3, for instance. Table 5.2(c) will be
used to construct the hidden constraints CHX , CHY , CHZ, and CHW .

We note that although one can hypothetically view a table as a dual variable,
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Table 5.2: Merging of a 4-ary constraint. Labels in the H column correspond to
domain values of the hidden variable.

(a)

H X Y Z W
a 0 0 1 1
b 0 1 0 0
c 0 1 1 1
d 1 0 0 1
e 1 0 1 1
f 1 1 0 0
g 1 1 1 1

(b)

H X Y Z W
ae {0,1} 0 1 1
bf {0,1} 1 0 0
cg {0,1} 1 1 1
d 1 0 0 1

(c)

H X Y Z W
aceg {0,1} {0,1} 1 1
bf {0,1} 1 0 0
d 1 0 0 1

but without actual dual variables present, the structural information of the
combined tuples is lost. The CPR thus represents both syntax and semantic of
the constraints at the same time. Consistency algorithms that normally work on
tuples therefore must be modified to handle the CPR. On the other hand, the
network that is explicitly transformed by the hidden transformation and
compressed afterwards does not require any specialized algorithm.

5.6.1 Experimental Results

We now present some preliminary results on domain and table compression. We
first compare results on random CSPs, which we expect to be unstructured,
followed by structured problems. Results for series generated according to
model RB are shown in Table 5.3. The processing time for each instance is
negligible — a small fraction of a second at the most. Enumerating each table
before the compression yields almost no improvement. Despite the fact that
only a few percentage of all values in a single instance are found to be VI, we do
not find even a single pair of NI values in any instance tested. Interestingly, the
number of affected variables is significant though the reduction is small, i.e. up
to 27% of variables but with only 1.63% values merged. Since detecting NI
values dynamically [Has93, LCF05] can improve their numbers, we can expect
even more improvement for VI.
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NS is not considered here because finding all NS values is too expensive and
only two values can be checked at the same time. The number of pairs grows
exponentially along with domain size. By contrast, algorithms for NI and VI
can tackle the whole domain at once in polynomial time.

Table 5.4 displays the results for crossword puzzle ukVG2, which involves
non-binary constraints of non-random structure: a constraint of arity k contains
all the words of length k. In contrast to the randomly generated binary
problems, we see that compressing all VI values yields remarkable reduction
rates, as high as 70% for the arity-4 constraint. At low arity, there is not much
difference between the single-best compression and the greedy compression, but
as the arity increases the reduction rate for the single-best drops sharply while
the greedy compression maintains its rate well. The greedy compression can
merge twice more values than the single-best compression at high arity.

We have also conducted some experiments to measure the running time of
compressed instances from the series rand-3-20-20 and rand-5-30-5 using
Abscon3 as a blackbox solver. Because newer solvers such as Abscon have
implemented advanced GAC algorithms, we expect them to perform well on
table constraints and relatively poorly on the hidden-transformed binary
encoding, which require more variables, more constraints, and much larger
domains. We therefore compare the running time of the original problems
against their hidden transformation problems that are simplified by the
compression. The reduction rate ranges from 60% to 86%. Overall, the running
time of the transformed problems is very competitive with that of the original
— winning over half of all the instances from rand-3-20-20 and losing slightly
on rand-5-30-5 for most instances — despite the obvious disadvantages of the
hidden transformation. These results however are limited by the fact that the
solver is not modified to take advantage of the CPR of the compressed tables or
the topology of the hidden-transformed networks [SS05]. With either of them
taken into account, the VI compression is likely to boost solver’s performance
much further in practice.

2All benchmarks are from http://www.cril.univ-artois.fr/CSC09.
3From http://www.cril.univ-artois.fr/∼lecoutre/software.html.
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Table 5.3: Results for random problems. The results for each series are averaged
over 100 instances. #v is the no. of variables in each instance, #d the domain size,
#c the no. of constraints, #t the tightness of each constraint, #vi the percentage
of values merged via VI, and #va is the percentage of variable affected (≥ 2 VI
values merged.)

Instance #v #d #c #t #vi #va
2-10-5-15-658 10 5 15 0.658 2.58% 10.90%
2-20-3-30-519 20 3 30 0.519 4.38% 12.35%
2-20-20-25-909 20 20 250 0.909 1.58% 18.60%
2-50-3-120-367 50 3 120 0.367 2.54% 6.96%
2-50-5-70-683 50 5 70 0.683 2.59% 11.08%
2-100-4-200-500 100 4 200 0.500 2.05% 7.36%
2-100-10-110-877 100 10 110 0.877 1.95% 14.96%
2-200-100-220-985 200 100 220 0.985 1.63% 27.20%

Table 5.4: Results for crossword puzzles. Column #tuple gives the original no.
of tuples. The third col. shows the no. of tuples left after the single-best com-
pression, while the fourth displays the reduction percentage. maxrate gives the
reduction rate for the greedy compression.

arity #tuples #tuples left reduction rate maxrate
4 4947 1727 65.09% 70.91%
5 10935 6203 43.27% 54.60%
6 18806 13759 26.84% 41.34%
7 27087 22156 18.20% 32.93%
8 32387 29558 8.73% 23.84%
9 32865 30420 7.44% 18.09%
10 29784 27699 7.00% 14.48%
11 23333 21897 6.15% 12.78%
12 16917 15944 5.75% 11.67%
13 11246 10749 4.42% 10.33%
14 6998 6745 3.62% 10.02%
15 3962 3839 3.10% 9.36%
16 2009 1962 2.34% 7.72%

5.7 Identifying Redundant Values

We turn our attention to onto-substitutability in this section. An
onto-substitutable value is redundant in the sense that every solution it
participates in is also covered by some other value. We consider only algorithms
that compute all onto-substitutable values in the smallest closure of a given
variable in a network with extensional constraints.

To remove all onto-substitutable values from the domain of variable X, we do
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Table 5.5: Tables for constraints involving A.
(a)

A B C
4 1 1
0 0 0
0 1 1
1 1 1
2 0 0
3 0 0
5 1 1

(b)

A D E
0 2 2
0 3 3
2 2 2
2 3 3
1 0 1
3 3 3
4 2 2
5 2 2
5 3 3
5 0 1

(c)

A B C D E
{0,2} 0 0 2 2
{0,2,3} 0 0 3 3
{1,5} 1 1 0 1
{0,4,5} 1 1 2 2
{0,5} 1 1 3 3

(d)

A B C
{0,2,3} 0 0
{0,1,4,5} 1 1

(e)

A D E
{1} 0 1

{0,2,4,5} 2 2
{0,2,3,5} 3 3

the following,

1. let D be the table created as a result of joining of all table constraints C
involving X.

2. sort D in lexicographic order while ignoring column X.

3. merge cells of any two rows that differ only at col. X.

4. while there exists a value v ∈ D(X) such that every cell containing v also
contains another value v′, remove v from these cells and from D(X).

An example is demonstrated in Table 5.5. Variable A is involved in two ternary
constraints given as positive tables ((a) and (b)). After the two tables are joined
and rows are merged, the result is shown in (c). Let us first consider value 0. In
column A, 0 is never contained in a singleton set. Therefore 0 is
onto-substitutable and we can remove it from the D(A) and from all the sets in
column A. Value 1 does not appear as a singleton as well; hence 1 is
onto-substitutable. The set containing value 2 in the first row has become a
singleton after the removal of 0, so 2 is not onto-substitutable. So are values 3
and 4 for the same reason. Therefore, values 0, 1, 3, and 4 are
onto-substitutable and they can be removed from D(A).
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Note that the concept of onto-substitutability is tied to the structure of the
network, therefore algorithms may produce different outcomes depending on the
sequence of value removal. For instance, suppose value 5 is considered first,
rather than value 0 as done in the previous example. Value 5 is
onto-substitutable and it is removed. Next, values 2, 3, and 4 are examined and
found to be onto-substitutable and removed as well. As a result, values 5, 2, 3,
and 4 are found to be onto-substitutable in that order.

While this algorithm is simple and straightforward it has serious inefficiency in
the process of joining of the constraints involved, which amounts to joining
every constraint in a complete-graph constraint network for instance. We will
consider an improved algorithm which places more computation on each table
and operates on joined sub-tables only when necessary. Details are given in
Algorithm 14.

We assume tables are initially merged as done in Table 5.5 (d) and (e) (from (a)
and (b)). The algorithm decides whether a ∈ D(X) is onto-substitutable. It
first checks if there exist values that do not appear in all tables (line 2). These
values cannot be joined and are filtered out. This step is equivalent to enforcing
maxRPWC [LPS13]. The next step tests whether it is possible for a to be
subsumed. Values that appear as singletons can never be onto-substitutable
(line 6). This step has been employed in the basic algorithm. The algorithm
may take this step first but it has to do it again after the maxRPWC filtering
because values that are not singleton initially may become so later.

The algorithm then calculates the number of tuples involving value a (goal).
This can be done by simple multiplication without actually joining the tuples
across tables. The upper bound (ub) is the maximum number of tuples that are
shared by other values. Again, this can be easily computed and if the number is
lower then the value a can never be subsumed and the algorithm can terminate
and give a negative answer. Otherwise, the algorithm will try to enumerate all
the tuples that share a’s structure and see whether a can be completely covered
(line 13) via the set store. Alternatively, this stage can be implemented more
compactly using tuple sequence [R1́1] marked by lower and upper bounds,
instead of storing the actual tuples themselves.

Example 7 Consider determining whether 0 ∈ D(A) from Table 5.5 (a) and
(b) is onto-substitutable. The algorithm will check these four sets {0,2,3},
{0,1,4,5}, {0,2,4,5}, and {0,2,3,5} (the tuple involving {1} has nothing to do
with the onto-substitutability of 0). First, value 1 is removed from {0,1,4,5}
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because there would be no tuple involving 1 after joining the two tables. There is
no singleton containing 0 so the algorithm passes through the cutoff test (line 6).
Next, goal is calculated to be 4, while ub is the size of the CPR involving value 2
(2) + value 3’s (1) + value 4’s (1) + value 5’s (2) = 6. The algorithm also
passes through the cutoff test (should the original two tables contain no tuple
involving 2 and 5 the values of ub would be 2, for instance, and false would be
returned in this case). The algorithm then adds the following tuples sequentially
to store: (0,0,2,2), (0,0,3,3), (1,1,2,2), (1,1,3,3). At this point store’s size is
equal to goal so a is proved to be onto-substitutable.

Algorithm 14: is-onto-substitutable(X, a)
1 pick some constraint C ′ such that X ∈ scp(C ′)
2 foreach tuple t ∈ rel(C ′) such that a ∈ t[X] do
3 foreach b ∈ t[X] such that b 6= a do
4 if b /∈ t′[X] in each C ′′ 6= C ′ for some t′ then
5 remove b from t[X]
6 foreach C such that X ∈ scp(C) do
7 if |t[X]| = 1 for some t ∈ rel(C) then
8 return false
9 goal ← ∑

t |t|, a ∈ t[x] and t is joined across all constraints
10 ub ← ∑

t |t|, a /∈ t[x] and t is joined across all constraints
11 if ub < goal then return false
12 store← ∅
13 foreach tuple t ∈ rel(C) such that a ∈ t[X] do
14 foreach b ∈ t[X] such that b 6= a do
15 u← CPR joined across all constraints s.t. b ∈ u[X]
16 foreach t′ enumerated from u do
17 store ← store ∪ πscp(C)\{X}(t)
18 if |store| = goal then
19 return true
20 return false

5.8 Conclusions

Onto-substitutability has been shown as a sufficient condition for a value to be
treated as redundant. We extend its definition from unary to binary relation
and introduce JI as a replacement for interchangeability. As a symmetric binary
relation, JI allows us to remove either one of the interchangeable set of values,
giving us more flexibility as a result. We then present an original strategy for
dealing with redundant values: detection, creation, followed by elimination.
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Since JI is a binary relation, this strategy makes sense: we can identify a group
of values, create a JI-equivalent using fewer number of values, and then delete
the original values.

The definition of values is expanded to include the concept of labels, which
allows us to tease out semantics from the structure of the network. Different
CSPs can be compared solely on their semantics (via their rendered solution).
We then introduce VI, a new local reasoning that leads to JI. While it remains
to be seen whether future work in this area will give us a new local property
that also leads to JI, we have empirically shown the promise of VI as a
compression tool. Table constraints can be compressed using other techniques
such as decision trees [KW07], but they require specialized consistency
algorithms unlike VI. VI may prove useful in different situations as well, for
instance, VI could be used in addition to NS as a simplification operation before
reasoning with CSP patterns [CE12].

In [BCM08], the authors raise “an interesting open issue: do there exist new
(i.e., other than substitutability and inconsistency) properties for which local
reasoning is sound and which imply removability?” We believe VI is one such
property, provided that creation of new values is permitted. Allowing networks
to be augmented in this manner could also lead to a more powerful general
framework.

85 Chavalit Likitvivatanavong



5. Eliminating Redundancy in CSPs Through Merging and Subsumption of
Domain Values

Domain Value Mutation and other
techniques for Constraint Satisfaction
Problems

86



Chapter 6

Improving the Lower Bound of
Simple Tabular Reduction

6.1 Abstract

Simple Tabular Reduction (STR) is a state-of-the-art filtering technique for
enforcing Generalized Arc Consistency (GAC) on positive table constraints.
Despite its good performance in practice, the STR2 algorithm suffers from a
mandatory lower bound equal to the number of domain values in the current
state of the problem, because the presence of each value must be justified every
time STR2 is called. We overcome this fixed cost by redesigning STR2 and
incorporating watched tuples. Experiments show that the revised algorithm is
better at coping with problems that involve a large number of small changes
during search and it can be more than twice as fast on certain structured
problems.

6.2 Multistage Simple Tabular Reduction

For conciseness, the reader is assumed to have familiarity with STR and STR2
(details can be found in [Ull07, Lec11]). Pseudo-code of STR2 is reproduced in
Algorithm 15 (minor details are omitted). For brevity, we use τ(c, i) to denote
the tuple table[c][position[c][i]] (position[c] provides indirect access to the tuples
of table[c]). STR/STR2’s key concepts are summarized as follows. In essence,
operations in STR center around individual tuples in turn. Each tuple is first
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Algorithm 15: STR2(c: constraint)
1 Sval ← ∅
2 for x ∈ scp(c) such that |dom(x)| 6= lastSize[c][x] do // Has dom(x) changed?
3 Sval ← Sval ∪ {x}
4 lastSize[c][x]← |dom(x)|
5 Ssup ← ∅
6 foreach x ∈ scp(c) such that |dom(x)| > 1 do
7 Ssup ← Ssup ∪ {x}
8 gacValues[x]← ∅ // values of x having supports, initially ∅
9 i← 1 // Main loop

10 while i ≤ limit[c] do // table size is dynamically adjusted up to limit[c]
11 if isValidTuple (c, Sval, τ(c, i)) then
12 foreach x ∈ Ssup do
13 if τ(c, i)[x] 6∈ gacValues[x] then
14 gacValues[x]← gacValues[x] ∪ {τ(c, i)[x]}
15 if |gacValues[x]| = |dom(x)| then Ssup ← Ssup \ {x}
16 i← i+ 1
17 else
18 swapTuple (c, i, limit[c]) // shrink table, removing invalid tuple
19 limit[c]← limit[c]− 1
20 if limit[c] = 0 then return Failure
21 if Ssup = ∅ then return DomUnchanged
22 foreach x ∈ Ssup do
23 dom(x)← gacValue[x]
24 lastSize[c][x]← |dom(x)|
25 return DomChanged

scanned to see if it passes the validity check (i.e., if the values of the tuple are
compatible with the current domains). A tuple is removed if it is invalid.
Otherwise, it is scanned through again, this time to collect values and mark
them as being supported. The process repeats until every non-removed tuple is
dealt with. STR2 improves upon STR in two ways. First, during the validity
check, if the domain size of a variable x has not been changed since the last
time the algorithm was called, then the validity of τ [x] (the projection of τ on
x) remains unchanged for any tuple τ , and consequently, the entire column x of
the table can be skipped. This is achieved through the use of a set called Sval.
Similarly, when collecting, if the whole domain of x has already been proved to
have supports then the entire column x of the table can be skipped over using
set Ssup (a variation of this is used in [CY10]).

STR2 is forgetful and must rebuild a list of supported values from scratch every
time. For this reason, STR2 suffers when the impact of propagation on the
table is too small to warrant the buildup cost. We introduce STR2w (Alg. 16),
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Algorithm 16: STR2w(c: constraint)
1 Sval ← ∅
2 foreach x ∈ scp(c) such that |dom(x)| 6= lastSize[c][x] do
3 Sval ← Sval ∪ {x}
4 lastSize[c][x]← |dom(x)|
5 prevLimit← limit[c]
6 tuple-elimination(c) // Phase 1
7 if limit[c] = 0 then return Failure
8 support-deduction(c, prevLimit) // Phase 2
9 if Ssup = ∅ then return DomUnchanged

10 value-accumulation(c) // Phase 3
11 if Ssup = ∅ then return DomUnchanged
12 foreach x ∈ Ssup do
13 foreach a ∈ unsupported[x] do
14 watch(prevWatch(x, a))← watch(prevWatch(x, a)) ∪ {(x, a)}
15 dom(x)← dom(x) \ unsupported[x]
16 lastSize[c][x]← |dom(x)|
17 return DomChanged

Algorithm 17: tuple-elimination(c: constraint)
1 i← 1
2 while i ≤ limit[c] do
3 if ¬isValidTuple (c, Sval, τ(c, i)) then
4 while i < limit[c] and ¬isValidTuple (c, Sval, τ(c, limit[c])) do
5 limit[c]← limit[c]− 1
6 if i < limit[c] then
7 swapTuple (c, i, limit[c])
8 limit[c]← limit[c]− 1
9 i← i+ 1

a redesign of STR2 that avoids the complexity bound on this step by
rearranging STR2 into three inter-dependent phases.

The first phase eliminates invalid tuples from the table (tuple-elimination in
Algorithm 17). The second phase deals with the actions from removing these
tuples (support-deduction in Algorithm 18). Finally, the remaining tuples are
traversed in the third phase (value-accumulation in Algorithm 19) and the
encountered values are collected indirectly by discarding them from sets called
unsupported. The values that remain in these sets are recognized to have no
supports and can be removed from their respective domains.
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Algorithm 18: support-deduction(c: constraint, prevLimit : integer)
1 Ssup ← ∅
2 foreach x ∈ scp(c) such that |dom(x)| > 1 do
3 unsupported[x]← ∅
4 i← limit[c] + 1
5 while i ≤ prevLimit do
6 if watch(τ(c, i)) 6= ∅ then
7 foreach (x, a) ∈ watch(τ(c, i)) such that |dom(x)| > 1 and a ∈ dom(x) do
8 Ssup ← Ssup ∪ {x}
9 unsupported[x]← unsupported[x] ∪ {a}

10 watch(τ(c, i))← watch(τ(c, i)) \ {(x, a)}
11 prevWatch(x, a)← τ(c, i)
12 i← i+ 1

Algorithm 19: value-accumulation(c: constraint)
1 i← 1
2 while i ≤ limit[c] and Ssup 6= ∅ do
3 foreach x ∈ Ssup do
4 if τ(c, i)[x] ∈ unsupported[x] then
5 unsupported[x]← unsupported[x] \ {τ(c, i)[x]}
6 watch(τ(c, i))← watch(τ(c, i)) ∪ {(x, τ(c, i)[x])}
7 if unsupported[x] = ∅ then
8 Ssup ← Ssup \ {x}
9 i← i+ 1

STR2w recasts STR2 as a repair-based algorithm. Each tuple is associated with
a list of values that depend on this tuple as a proof of support. In other words,
each tuple can be “watched” by several values (its “watchers”). Should a tuple
be removed, its watchers must be reattached, if possible, to another valid tuple.
During the second phase, the list of detached watchers is thereby collected and
delivered to the third phase, whereupon new watched tuples must be found.

Pseudo-code of STR2w is given in Algorithms 16–20 where Algorithm 16 is the
main function, to be called whenever GAC must be reinforced. The monolithic
structure of STR2 (the while loop in line 10 of Algorithm 15) is broken down
into three rounds of table traversals: tuple-elimination (line 6),
support-deduction (line 8) and value-accumulation (line 10). These three
sub-routines are explained in more detail below.

The elimination of tuples in Algorithm 17 is like STR2’s with an improvement.
The algorithm tries to enlarge the valid partition from top-to-bottom as well as
to enlarge the invalid partition from bottom-to-top. To achieve that, we handle
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two pointers i and limit[c]. When both pointers can no longer be moved and i is
still smaller than limit[c], we know that swapping them enlarges both partitions
at the same time (lines 7–8). By contrast, the swap in STR2 is half as efficient
since only the invalid partition on the bottom is guaranteed to expand while
nothing can be said about the tuple from the bottom just swapped in. In the
worst case, where enforcing GAC causes wipeout, STR2 has to do the swapping
for every (invalid) tuple whereas STR2w only moves the pointer limit[c].

The support-deduction routine in Algorithm 18 determines which current
supports do not remain valid. Two data structures are involved. The first one
associates with each tuple τ of the table a list watch(τ) that contains all values
(x, τ [x]) such that τ [x] depends on tuple τ as a support. Therefore
0 ≤ |watch(τ)| ≤ r for any τ where r is the arity of the constraint. The second
associates with each variable x a list unsupported[x] that contains all values in
the domain of x that are currently not supported. Domain values are presumed
to be supported at the beginning (line 3), and for any τ just removed, its
watchers are marked as currently unsupported (line 9). Note that
prevWatch(x, a) records the last watched tuple of (x, a) so it can be reinstated
later when a is found to have no other supports.

Value accumulation in Algorithm 19 differs from STR2 in that it deals with a
list of unsupported rather than supported values, and reattaching values to new
watched tuples (line 6). In STR2, the list of supported values is built up from
scratch, so the complexity cost is fixed at O(rd), where d is the greatest domain
size. Conversely, the number of unsupported values at the beginning of this
phase of STR2w ranges from zero to rd. In the best case, where the previous
phase reports no unsupported value (i.e., Ssup is empty), STR2w can terminate
early (line 9 of Algorithm 16). In the worst case, where the list of unsupported
values is full, STR2w reduces to STR2. After this phase is finished, any value
remained in unsupported can be removed (line 15 of Algorithm 16) and its
previous watch restored (line 14 of Algorithm 16).

Algorithm 20 initializes STR2w’s data structures and is executed only once,
right after GAC preprocessing. Because STR2w requires tables to be free of
invalid tuples before the search starts, it cannot be used as a standalone GAC
algorithm and must be used exclusively during search [LZS+07, LLY12]. During
the initialization, unsupported[x] is set to be the whole domain of x (line 2),
while watch is set to empty (line 3). Algorithm 19 is reused at the end.

Correctness of STR2w comes from the following two invariants. We take an
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Algorithm 20: STR2w-initialization(c: constraint)
1 Ssup ← scp(c)
2 foreach x ∈ scp(c) do unsupported[x]← dom(x)
3 foreach tuple τ in table constraint c do watch(τ)← ∅
4 value-accumulation (c)

invariant to be a property that remains true throughout the search at the points
after STR2w is enforced, not during STR2w’s execution where the filtering may
not yet converge.

Invariant 1 The collection W := {watch(τ) : τ ∈ rel(c)} represents a partition
of D := ⋃

x∈scp(c) dom(x) such that every element (x, a) of D is in one and only
one set of W.

Invariant 2 If (x, a) ∈ watch(τ), then τ is valid iff a is present in the domain
of x (τ is invalid iff a is absent from the domain of x).

It is important to remember that the network must be made GAC before the
search begins. The two invariants trivially hold after watch is properly
initialized in STR2w-initialization. During the execution of STR2w, one of the
following three scenarios must occur to any individual watcher. First, a watcher
may be unaffected throughout the search. The reason is that its watched tuple
remains valid at all times. Second, a watcher is detached because its watched
tuple becomes invalid. Another valid tuple is later found and the watcher is
shifted to this tuple. Third, a watcher is detached from its watched tuple but no
valid tuple is found, in which case the watcher is re-attached to the original
tuple (line 14 of Algorithm 16). STR2w maintains the two invariants for any of
these three cases and thus both invariants continue to hold when STR2w
terminates.

Theorem 10 The worst-case complexity of STR2w is the same as that of
STR2.

Central to the analysis of STR2w are the operations on unsupported, Ssup, and
watch. Both unsupported and Ssup involve insertion, deletion, and membership
tests. They cost O(1) time using the sparse sets data structure [BT93, CY10].
The structure watch requires no membership test; its elements are accessed and
deleted sequentially as well as being backtrack-stable. As a result, the
complexity cost of STR2w is no more than that of STR2.

On the other hand, a table can be constructed so that STR2 has to go through
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Table 6.1: Results from selected instances.
instance STR2 STR2w STR3

bt w1 w2 w1/w2 time w2 cutoff time time
crossword-m1c-uk-vg7-7 25492 1533 604 2.54 13.44 253 7.04 12.88 41.45
crossword-m1c-uk-vg6-8 194006 574 227 2.53 43.50 107 7.84 39.29 246.48
crossword-m1c-uk-vg14-14 2657 13922 6222 2.24 14.57 1934 11.87 13.93 6.99
crossword-m1c-ogd-vg11-14 21513 76554 24969 3.07 1949.92 6206 18.08 1996.00 502.02
crossword-m1c-ogd-vg14-14 1004 54887 22154 2.48 29.14 5510 17.11 25.39 6.86
dubois-22 12.6m 6.03 2.77 2.17 46.97 1.58 4.55 39.76 172.03
dubois-23 25.2m 6.03 2.78 2.17 95.14 1.57 4.41 83.10 361.18
rand-3-20-20-60-632-1 28484 215 39 5.42 6.96 13 34.03 6.40 8.80
rand-3-20-20-60-632-2 60803 486 65 7.38 26.04 22 31.15 27.32 25.56
bdd-21-2713-15-79-1 986 4645 130 35.66 31.57 85 11.36 39.72 38.21
bdd-21-2713-15-79-2 970 4682 120 38.84 29.59 79 10.69 39.70 40.05
rand-10-60-20-30-p51200-0 6402 147234 3225 45.65 187.48 538 15.51 180.73 21.41
langford-3-11-ext.xml 14511 24 8.14 3.02 15.36 2.25 57.22 16.42 15.82
rand-8-20-5-18-800-1 298462 886 60 14.66 158.15 28 8.07 177.58 1022.16
rand-8-20-5-18-800-3 230790 583.54 41.1 14.19 25.70 20.6 8.76 25.93 768.9
inst-n21-k2713-a15-p79-i1 986 4645 130 35.66 23.07 86 11.36 29.37 37.36
inst-n21-k2713-a15-p79-i2 970 4682 121 38.84 24.64 80 10.69 32.47 39.49
ramsey-16-3 738081 35.46 8.67 4.09 40.77 1.78 46.80 27.16 131.50
renault-mod-4 860159 202.65 45.80 4.42 16.20 7.34 29.04 10.81 72.37

O(rd) cells of the table before the algorithm concludes that every domain value
has a support whereas in STR2w no watcher is detached during the
support-deduction phase. Thus it follows that,

Property 1 STR2w can save O(rd) operations with respect to STR2 on some
tables, where r is the arity of the table and d is the greatest domain size.

6.3 Experimental Results

We tested STR [Ull07], STR2, STR2w, and STR3 [LLY12] with a solver written
in C++. Experiments were conducted on a 2.6GHz quad-core Intel Core i7 on
OS X 10.8. All algorithms use the dom/ddeg variable ordering heuristic [Lec11].
Selected results1 are reported in Table 6.1, where bt is the number of
backtracks, w1 is the average number per call of cells traversed during the
tuple-elimination phase (this is the same for both algorithms), w2 is the average
number of cells traversed during the value-accumulation phase, time is the
running time in seconds, and cutoff is the percentage of calls to STR2w that
results in Ssup being empty so that STR2w exits in line 9. STR2 is applied as a
preprocessing step for STR2w and its running time is included in the results for
STR2w. STR is slower than STR2 and STR2w on every instance tested (STR is
at least 30% slower than STR2) so for succinctness results for STR are not
shown in the table.

1Benchmarks in Table 6.1 are available at http://www.cril.univ-artois.fr/CSC09.
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STR2w is competitive with STR2 according to Table 6.1. While STR2w has a
much better lower bound (See Property 1), this theoretical advantage does not
give substantial gains in Table 6.1. A closer inspection at the statistics reveals
some interesting details. First, from the w1/w2 column, STR2 spends a high
proportion of its effort on tuples-elimination, at least twice as much and often
an order-of-magnitude more. It means that, the higher the ratio w1/w2 is, the
lesser influence on the running time STR2w has, since STR2w basically
attempts to reduce w2. Second, the absolute w1 and w2 counts are generally
low. It turns out that the tabular reduction wipes out large number of invalid
tuples early on, so that the search is left to deal with only small remnants of the
original tables. This partly happens due to the fact that each variable
instantiation eliminates all but a single value from the domain of a variable,
which in turn may cause as large a reduction in the connected tables. Even
though the theoretical lower bound of STR2w is better, STR2w is a slightly
more complex algorithm that has a higher overhead associated with its specific
operations. When w1 and w2 are low, which signifies that the average table size
during search is small, this overhead may come to dominate the running time.
The reason why optimizations in STR2w do not consistently pay off is due to
many factors, such as small domain size, low STR2’s w2 count, and high
STR2’s w1/w2 ratio. They are all present in the bdd series for example, where
STR2w is noticeably slower; many instances in Table 6.1 share at least one of
these factors. STR2w is designed to cope with frequent but small table
reductions (i.e., “hard” problems for STR/STR2) so the fact that STR2w is
competitive despite its overhead is good news. In this respect, STR2w is closer
to STR3, which is path-optimal and has similar mechanism for dealing with
values that lost supports. From the table, STR3 appears to be complementary
to STR2w. The next experiment focuses on differentiating the three algorithms.

A pigeonhole problem ph-k consists of k variables, each with {0, . . . , k−1}
domain, and any two variables are connected by a binary inequality constraint.
Unlike most benchmarks, it allows a table to be reduced gradually, until a
variable directly involved is instantiated. An augmented pigeonhole ph-k-j adds
j new variables for each of the k variables, and chains them together with a
j-ary table. The extra variables have larger domains to prevent the ordering
heuristic from picking them prematurely. Results are shown in Table 6.2 where
sp is the speedup factor (the running time of STR2 divided by that of STR2w).
For pigeonhole (ph-k), STR2w is about 30% faster than STR2 while STR3 is
twice as slow. The values of w1, w2, and w1/w2 are low, but uniform. On the
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Table 6.2: Results from pigeonhole instances.
instance STR2 STR2w sp STR3

bt w1 w2 w1/w2 time w2 cutoff time
ph-9 40319 6.49 2.11 3.08 0.38 0.70 69.43 0.27 1.41 0.78
ph-10 362879 6.35 2.04 3.11 3.89 0.61 72.49 2.75 1.41 8.35
ph-11 3628799 6.23 1.99 3.14 42.92 0.55 74.93 31.64 1.36 99.66
ph-12 39916799 6.15 1.94 3.16 608.62 0.50 76.93 389.05 1.56 1349.79
ph-7-7 719 70999 66227 1.07 12.69 3541 52.63 5.56 2.28 2.05
ph-7-8 719 482728 454111 1.06 62.64 22124 52.63 30.37 2.06 13.80
ph-8-7 5039 152770 142487 1.07 164.30 5789 58.41 79.90 2.06 37.28
ph-8-8 5039 1211836 1139880 1.06 1259.44 40938 58.41 586.52 2.15 322.04
ph-9-5 40319 3404 3089 1.10 36.69 164 62.31 19.77 1.86 9.97
ph-9-6 40319 32133 29635 1.08 326.28 1315 62.31 161.88 2.02 82.27
ph-10-4 362879 444 391 1.14 55.18 26 65.79 30.37 1.82 26.75
ph-10-5 362879 4827 4381 1.10 529.77 231 65.79 276.18 1.92 148.35
ph-11-2 3628799 9.04 4.69 1.93 62.86 1.04 69.05 43.33 1.45 137.02
ph-11-3 3628799 48 38 1.26 121.57 3.91 69.05 80.36 1.51 164.40
ph-12-2 39916799 8.97 4.61 1.94 779.64 0.98 71.39 505.36 1.54 1764.72
ph-12-3 39916799 52 42 1.25 1670.17 4.15 71.39 970.75 1.72 2191.79

other hand, cutoff is high – in more than 70% of the calls, STR2w completely
sidesteps the value-accumulation phase altogether. For augmented pigeonhole
ph-k-j, the speedup factor is often over 2. The w1/w2 count is low, close to 1 in
most cases, and STR2w reduces STR2’s w2 count by more than one
order-of-magnitude for almost every instance. Increasing j increases w1 without
much change to w1/w2 thus increasing the speedup. STR3 is faster when the
augmented tables are large.

6.4 Conclusions

GAC algorithms such as STR and mddc [CY10] are considered to be in the
same class, in the sense that the whole of the constraint store must be traversed
— be it table or mdd — whenever a perturbation occurs. The mddc algorithm
was made incremental in [GSS11] to deal with this issue. Here, we show that
STR2’s value-accumulation phase can be made incremental as well, although
this does not make STR2w optimal in the worst case (see [LLY12, MHD12] for
optimal algorithms). Our experiments show that STR2w outperforms STR2
when solving problems in which a large number of small changes occur during
search, whereas STR2 is better at problems where changes are big, while it is
also complementary to STR3 at the same time. STR2 has now gained
widespread acceptance as a de facto filtering algorithm for positive table
constraints and it has been incorporated into other consistency algorithms
[JN13, LPS13, XY13]. The techniques such as watched tuples and multistage
STR may prove more effective in that context and should be considered as
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serious alternatives especially for problems where small changes are the norm.
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Chapter 7

STR3: A Path-Optimal Filtering
Algorithm for Table Constraints

7.1 Abstract

Constraint propagation is a key to the success of Constraint Programming
(CP). The principle is that filtering algorithms associated with constraints are
executed in sequence until quiescence is reached. Many such algorithms have
been proposed over the years to enforce the property called Generalized Arc
Consistency (GAC) on many types of constraints, including table constraints
that are defined extensionally. Recent advances in GAC algorithms for
extensional constraints rely on directly manipulating tables during search. This
is the case with a simple approach called Simple Tabular Reduction (STR),
which systematically maintains tables of constraints to their relevant lists of
tuples. In particular, STR2, a refined STR variant is among the most efficient
GAC algorithms for positive table constraints. In this chapter, we revisit this
approach by proposing a new GAC algorithm called STR3 that is specifically
designed to enforce GAC during backtrack search. By indexing tables and
reasoning from deleted values, we show that STR3 can avoid systematically
iterating over the full set of current tuples, contrary to STR2. An important
property of STR3 is that it can completely avoid unnecessary traversal of
tables, making it optimal along any path of the search tree. We also study a
variant of STR3, based on an optimal circular way for traversing tables, and
discuss the relationship of STR3 with two other optimal GAC algorithms
introduced in the literature, namely, GAC4 and AC5TC-Tr. Finally, we
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demonstrate experimentally how STR3 is competitive with the state-of-the-art.
In particular, our extensive experiments show that STR3 is generally faster
than STR2 when the average size of tables is not reduced too drastically during
search, making STR3 complementary to STR2.

7.2 Introduction

Algorithms that establish Generalized Arc Consistency (GAC) on constraint
problems (networks) filter out inconsistent values from variable domains in
order to reduce the combinatorial search spaces of such problems. They have
been a staple of Constraint Programming (CP) since its origin in the field of
Artificial Intelligence (AI) in the seventies, with for example the introduction of
algorithms (G)AC3 [Mac77] and (G)AC4 [MH86, MM88]. Typically, GAC is
enforced at each step of a complete backtrack search, leading to the so-called
MAC, Maintaining (generalized) Arc Consistency, algorithm [SF94a]. This
chapter introduces a new GAC algorithm, called STR3, that works with
positive table constraints. Furthermore, unlike most GAC algorithms, STR3 is
specifically conceived to be used within MAC rather than being standalone.

A table is just a relation, as in classical relational database, and a positive table
constraint contains (in a table) all permitted combinations of values for a subset
of variables (whereas a negative table constraint contains all forbidden
combinations of values). Table constraints have been well studied in the
artificial intelligence literature and arise naturally in many application areas.
For example, in configuration and databases, they are introduced to model the
problem whatever the domain is. Besides, table constraints can be viewed as
the universal mechanism for representing constraints, provided that space
requirements can be controlled. The importance of table constraints makes
them commonly implemented in all major constraint solvers that we are aware
of (e.g., Choco, GeCode, JaCoP, OR-Tools).

For table constraints, many classical filtering algorithms that reduce search
through inference (such as [BR97, LR05, LS06, BRYZ05]) work with constraints
that stay unaltered while running. However, recent developments suggested
that reducing the amount of traversal by discarding irrelevant tuples from tables
can lead to faster algorithms. Simple Tabular Reduction (STR) and its
improvements [Ull07, Lec11] fall into this category and have been shown to be
among the best GAC algorithms for positive table constraints.
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The main idea behind simple tabular reduction is to remove invalid tuples from
tables as soon as possible in a systematic fashion. STR3 is based on the same
principle as STR1 [Ull07] and STR2 [Lec11] but employs a different
representation of table constraints. Similarly to a few other algorithms (e.g.,
GAC-allowed [BR97] and GAC-va [LS06]), STR3 provides an index for each
constraint table, enabling a tuple sought with respect to a domain value to be
found without visiting irrelevant tuples, thus reducing time complexity. Figure
7.1 shows an example for a ternary constraint. Importantly, for each constraint
relation, STR3 maintains some specific data structures designed so that no
constraint tuple is processed more than once along any path, through the search
tree, going from the root to a leaf.

X Y Z

1 a f l

2 b f m

3 e g m

4 a f m

5 b g o

6 a h o

7 d h o

8 b i n

9 c j k

(a) Standard table

X Y Z

a {1,4,6} f {1,2,4} k {9}
b {2,5,8} g {3,5} l {1}
c {9} h {6,7} m {2,3,4}
d {7} i {8} n {8}
e {3} j {9} o {5,6,7}

(b) Dual table

Figure 7.1: Standard and dual representations of the relation of a ternary con-
straint C with scope {X, Y, Z}.

Most of the GAC algorithms for table constraints previously introduced in the
literature suffer from repeatedly traversing the same tables or related data
structures during search [Lec11, CY10]. In contrast, STR3 avoids such
repetition and is path-optimal: each element of a table is examined at most once
along any path of the search tree. An important feature of STR3 is that it is
designed specifically to be interleaved with backtracking search, where the main
goal is to maintain the consistency while minimizing the cost of backtracking.
As such, unlike most other GAC algorithms, STR3 is only applicable within the
context of search: STR3 maintains GAC, but before commencement of search,
GAC must be enforced by some other algorithm, such as STR2 for example.

We also investigated a promising circular manner for traversing tables in STR3.
Although this seemed attractive at first because the circular approach described
in [Gen13] has an optimal run time per branch when amortized across a search
tree, our experiments found that it was not really effective for STR3 in practice.
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To conclude our theoretical analysis, we discuss the relationships between STR3
and two other optimal GAC algorithms for table constraints, namely, GAC4
[MM88] and AC5TC-Tr [MHD12].

We present an extensive experimental study that demonstrates that STR3 is
competitive with state-of-the-art algorithms. In particular, our experiments
show that STR3 is rather complementary to STR2. STR2 is faster than STR3
where simple tabular reduction can eliminate so many tuples from the tables
that they become largely empty. STR3, by contrast, outperforms STR2 when
constraint relations do not shrink very much during search (this is when STR2
is the more costly). Hence, STR3 is complementary to STR2.

This chapter is organized as follows. Technical background is provided in
Section 7.3. In Section 7.4, the concept of STR3 is explained together with its
algorithm. A detailed example of STR3’s step-by-step execution is given in
Section 7.5. Section 7.6 analyzes the relationships among STR’s data structures
in greater detail. Theoretical analysis of STR3 is carried out in Sections 7.7 and
7.8. A variant of STR3 is studied in Section 7.9. Previous works related to
STR3 are discussed in Section 7.10. Experimental results are reported in
Section 7.11. The chapter concludes in Section 7.12.

7.3 Preliminaries

In this section, we introduce some technical background concerning the
constraint satisfaction problem, and we recall the operation of a data structure
called sparse set, which is key to STR3’s optimality.

7.3.1 Constraint Satisfaction Problem

A finite constraint network P is a pair (X , C) where X is a finite set of n
variables and C is a finite set of e constraints. Each variable X ∈ X has an
initial domain, denoted by D(X), which is the set of values that can be assigned
to X. Each constraint C ∈ C involves an ordered subset of variables of X ,
denoted by scp(C), that is called the scope of C. The arity of a constraint C is
the number of variables involved in C, i.e., |scp(C)|. A binary constraint
involves two variables whereas a non-binary constraint involves strictly more
than two variables. The semantics of a constraint C is given by a relation,
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denoted by rel(C); if scp(C)) = {X1, . . . , Xr}, then rel(C) ⊆ ∏r
i=1 D(Xi)

represents the set of satisfying combinations of values, called allowed tuples, for
the variables in scp(C).

A solution to a constraint network is an assignment of a value to every variable
such that every constraint is satisfied. A constraint network is satisfiable iff at
least a solution exists. The Constraint Satisfaction Problem (CSP) is the
NP-complete task of determining whether a given constraint network is
satisfiable or not. Thus, a CSP instance is defined by a constraint network,
which is solved either by finding a solution or by proving that no solution exists.
Solving a CSP instance usually involves a complete backtrack search that is
interleaved with some inference processes to reduce the search space. In this
chapter, we shall focus on MAC (Maintaining Arc Consistency) [SF94b], which
is considered to be among the most efficient generic search algorithms for CSP.
MAC explores the search space depth-first, backtracks when dead-ends occur,
and enforces a property called (generalized) arc consistency after each decision
(variable assignment or value refutation) taken during search.

Below, we introduce some notations and definitions that will be useful in the
rest of the chapter.

During search, Dc(X) denotes the current domain of a variable X ∈ X ; we
always have Dc(X) ⊆ D(X). If a value a ∈ Dc(X), we say that a is (currently)
present; otherwise we say that a is absent. We use (X, a) to denote the value
a ∈ D(X) (or simply a when the context is clear), and we use τ [Xi] to denote
the value ai in any r-tuple τ = (a1, . . . , ar) associated with a r-ary constraint C
such that scp(C) = {X1, . . . , Xr}. A tuple τ ∈ rel(C) is valid iff τ [X] ∈ Dc(X)
for each X ∈ scp(C); otherwise τ is invalid. A tuple τ ∈ rel(C) is a support of
(X, a) on C iff τ is valid and τ [X] = a. We can now define Generalized Arc
Consistency (GAC) as follows. A value (X, a) is generalized arc-consistent
(GAC) on a constraint C involving X iff there exists a support of (X, a) on C.
A constraint C is GAC iff for each X ∈ scp(C) and for each a ∈ Dc(X), (X, a)
is GAC on C. A constraint network is GAC iff each of its constraints is GAC.

When rel(C) is specified by enumerating its elements in a list, C is called a
positive table constraint. Alternatively, rel(C) may denote the set of forbidden
combinations of values for the variables in scp(C), in which case its extensional
form is called a negative table constraint. A positive table constraint can be
converted into a negative table constraint and vice versa. In this chapter we
deal only with positive table constraints. For any such constraint C, we assume
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Figure 7.2: A sparse set S with 4 elements: S = {2, 4, 6, 8}.

a total ordering on rel(C) and define pos(C, τ) to be the position of the tuple τ
in that ordering (also called “tuple identifier” in the database literature, or tid
for short [SHWK76, ABC+76]) whereas tup(C, k) denotes the k-th tuple of
rel(C). Thus, τ = tup(C, pos(C, τ)) for any tuple τ ∈ rel(C), and
k = pos(C, tup(C, k)) for any k ∈ {1, . . . , t} where t = |rel(C)|.

7.3.2 Sparse Sets

The sparse set data structure was first proposed in [BT93], with the motivation
to provide fast operations on sets of objects. These operations are clear-set,
insertion, deletion, membership test, and iteration. Sparse sets have played a
crucial role in many recent CP algorithms [CY10, cdsmSSL13, GSL10]. In the
context of backtracking search, we are concerned with the speed of only three
basic operations, which are insertion, membership test, and deletion.

A sparse set S is an abstract structure composed of two arrays, traditionally
called dense and sparse, together with an integer variable called members.
Both arrays are of equal size n, with an index ranging from 1 to n, because
possible elements are drawn from the universe {1, . . . , n}. The array dense acts
like a normal array container, with all elements packed at the left, while the
array sparse carries each element present in the set to its location in dense.
The value of members indicates the number of elements in S. Arrays dense and
sparse adhere to the following property:

v ∈ S ⇔ S.sparse[v] ≤ S.members ∧ S.dense[S.sparse[v]] = v. (7.1)
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An illustration is given by Figure 7.2a, where the sparse set representation of a
set currently containing 4 values (out of 8 possible ones) is shown. Note that
the arrays dense and sparse require no initialization1. Pseudo-code for
insertion and membership test is given in Algorithm 21. Deletion in LIFO (Last
In, First Out) order is achieved by decreasing the value of members.

In practice, membership tests may occur more frequently than insertions. In
this case, a trade-off can be made so that the cost of testing the membership of
a value v in a sparse set S is reduced to simply checking whether
S.sparse[v] ≤ S.members, at the expense of a more expensive insertion [GSL10].
The idea is to have the array dense containing a permutation of the n values.
Operations on the set maintain such a permutation by swapping elements in
and out of S. Because both arrays dense and sparse are initially filled with
values from 1 to n, there must be only a single copy of each value in dense at
any time. The condition S.dense[S.sparse[v]] = v is thus unnecessary. The
pseudo-code of the modified addMember and isMember is given in Algorithm 22.
In addition, note that the enumeration of the elements that are not present in S
is as simple as iterating from members + 1 to n in dense. An illustration is
given by Figure 7.2b.

Algorithm 21: Original sparse set operations
1 addMember(S, v)
2 S.members + +
3 S.dense[S.members]← v
4 S.sparse[v]← S.members

5 isMember(S, v)
6 i← S.sparse[v]
7 return i ≤ S.members and S.dense[i] = v

7.4 STR3

This section introduces STR3, an algorithm based on simple tabular reduction
for enforcing GAC on positive table constraints. GAC algorithms normally
follow the same pattern: a domain value is proved to be consistent by producing
a valid tuple containing that value (in the case of positive table constraints) or

1Actually, this is true provided that sparse only contains strictly positive values. In
[BT93], it is assumed that indexing starts at 0 and sparse is an array of unsigned integers.
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Algorithm 22: Sparse set operations optimized for membership testing.
1 addMember(S, v)
2 S.members + +
3 w ← S.dense[S.members]
4 i← S.sparse[v]
5 S.dense[S.members]← v
6 S.sparse[v]← S.members

7 S.dense[i]← w
8 S.sparse[w]← i

9 isMember(S, v)
10 return S.sparse[v] ≤ S.members

by producing some evidence from auxiliary structures, e.g., a path in case of
BDDs (Boolean Decision Diagrams), MDDs (Multi-valued Decision Diagrams),
or tries [CY10, GJMN07, CY06]. This is usually done by traversing these
structures and running tests on each sub-structure. Reducing the amount of
traversal has long been the focus of many works. For table constraints,
optimization techniques include skipping over irrelevant rows or columns
[LR05, LS06], or by compressing the tables themselves [CY10, GJMN07, CY06].

Simple Tabular Reduction (STR) [Ull07], called STR1 in this chapter, is a GAC
algorithm that dynamically revises tables during search. While other GAC
algorithms treat tables like fixed structures or resort to tackling comparable
structures created from those tables, STR1 shows that handling tables directly
during backtracking search is not as expensive as once thought. STR1 works by
scanning each tuple one by one. If a tuple is invalid, it is removed and the table
is contracted by one row as a result. Otherwise, the tuple is valid and its
components are therefore domain values that have been proved to have a
support. STR1 then considers the tuple again to collect these values into
designated sets, (called gacValues(X) and defined for every variable X in the
scope of the constraint). When STR1 has finished going through the whole
table, any value not present in those sets has no support and will be removed
from its domain.

STR2 [Lec11] provides two improvements to STR1. When a tuple τ is being
inspected for validity, there is no need to check whether τ [X] ∈ Dc(X) if there
has been no change to the domain of X since the last time STR2 was called on
this constraint. In addition, in case τ is valid, when the algorithm goes through
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each component of τ , τ [X] is skipped over if it is known that gacValues(X) =
Dc(X) (i.e., every single value of Dc(X) is already supported). The first
improvement however involves additional data structures which must be
maintained in order to deliver full optimization benefit. STR2 with these data
structures maintained is called STR2+ [Lec11]. Throughout this chapter and
especially in the experiments section, when we refer to STR2 we mean STR2+.

Like STR1 and STR2, STR3 no longer examines a tuple once it has been
recognized as invalid. Unlike STR1 and STR2, STR3 does not immediately
discard invalid tuples from tables. Indeed, STR3 does not process tables
directly, but instead employs indexes allowing rapid identification of all tuples
containing a given value of a given variable. STR3 keeps a separate data
structure that enables validity checks to be done in constant time, rather than
revising indexes dynamically during search.

7.4.1 Structures and Features

The main data structures used in STR3 are the following:

• For any C ∈ C, X ∈ scp(C), and a ∈ D(X), we introduce table(C,X, a),
called sub-table of C for (X, a), as the set of tids for allowed tuples of C
involving (X, a), i.e., {pos(C, τ) | τ ∈ rel(C) ∧ τ [X] = a}. We implement
table(C,X, a) as a simple array, with indexing starting at 1; the i-th
element of table(C,X, a) is then denoted by table(C,X, a)[i]. We use an
integer table(C,X, a).sep, whose value lies between 1 and
|table(C,X, a)|, which we call the separator of table(C,X, a). The
separator is such that table(C,X, a)[table(C,X, a).sep] is the position of
the last known support of (X, a) on C. For the sake of brevity, we
sometimes use table(C,X, a)[↑] instead of
table(C,X, a)[table(C,X, a).sep]. The value of sep is maintained during
search, that is to say, subject to save and restore operations.

• For any C ∈ C, we introduce inv(C) as the set of tids for allowed invalid
tuples of C, i.e., {pos(C, τ) | τ ∈ rel(C) ∧ τ is invalid}. We implement
inv(C) as a sparse set. The value of inv(C).members is subject to
save/restore operations during search.

• For any C ∈ C and k ∈ {1, . . . , |rel(C)|}, we introduce dep(C, k) as the
dependency list associated with the k-th tuple of rel(C). If (X, a) ∈
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dep(C, k), this means that the tuple τ = tup(C, k) provides the
justification for a to be present in Dc(X), i.e., (X, a) depends on τ . We
implement dep(C, k) as a simple array (with indexing starting at 1) since
only sequential iterations and basic transfers are required. The
dependency lists may be altered during search but they are not
maintained (i.e., subject to save/restore operations.)

• We introduce two stacks, denoted by stackS (S stands for Separator) and
stackI (I stands for Invalid), that allow us to store values of the form
table(C,X, a).sep and inv(C).members at different levels of search.
Whenever a node in the search tree is visited for the first time, it is
assumed that an empty container is placed on top of stackS and stackI.

STR3 is a fine-grained filtering algorithm, meaning that the filtering process,
called propagation, is guided by events corresponding to deleted values that are
put in a so-called propagation queue. Here are some important attributes of
STR3:

• When a value (X, a) is deleted, it is put in the propagation queue. This
value is then picked from the queue later by the main constraint
propagation procedure (not detailed in this chapter), and STR3 is invoked
for every constraint C such that X ∈ scp(C). This invocation merges
table(C,X, a) into inv(C), because table(C,X, a) contains the tids of all
tuples that involve the deleted value (X, a).

• Subsequently, STR3 recognizes that a value (Y, b) is GAC on C if
table(C, Y, b) \ inv(C) is not empty.

• The separator table(C,X, a).sep is useful to distinguish between two
regions: the explored region which contains tids of tuples (of rel(C)
involving (X, a)) known to be invalid, and the unexplored region which
contain tids of tuples not yet examined. Each separator moves sequentially
from one end of table(C,X, a) to the other in a fixed direction. As search
progresses, the explored region expands until it encompasses the whole
set, at which point (X, a) has been proved not to be GAC on C.

• To check whether k is the tid of a tuple that has been found to be invalid,
STR3 tests whether k ∈ inv(C), through a call of the form
isMember(inv(C), k).

• Whenever a tuple of tid k becomes invalid, STR3 must look for a new
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support for every value in the dependency list dep(C, k).

7.4.2 Algorithm

Algorithm 23: Algorithm STR3
1 GACinit(C: Constraint)
2 remove invalid tuples from rel(C) and build every table(C,X, a)
3 inv(C).members← 0
4 foreach k ∈ {1, . . . , |rel(C)|} do
5 dep(C, k)← ∅
6 foreach X ∈ scp(C) and a ∈ Dc(X) do
7 table(C,X, a).sep← |table(C,X, a)|
8 k ← table(C,X, a)[↑]
9 dep(C, k)← dep(C, k) ∪ {(X, a)}

10 STR3(C: Constraint, X: Variable, a: Value)
11 membersBefore← inv(C).members
12 for p← 1 to table(C,X, a).sep do
13 k ← table(C,X, a)[p]
14 if ¬isMember(inv(C), k) then
15 addMember(inv(C), k)
16 if membersBefore = inv(C).members then
17 return true
18 save(C, membersBefore, stackI)
19 foreach i ∈ {membersBefore + 1, . . . , inv(C).members} do
20 k ← inv(C).dense[i]
21 foreach (Y, b) ∈ dep(C, k) such that b ∈ Dc(Y ) do
22 p← table(C, Y, b).sep
23 while p > 0 and isMember(inv(C), table(C, Y, b)[p]) do
24 p← p− 1
25 if p = 0 then
26 removeValue(C, Y, b)
27 if Dc(Y ) = ∅ then return false
28 else
29 if p 6= table(C, Y, b).sep then
30 save((C, Y, b), table(C, Y, b).sep, stackS)
31 table(C, Y, b).sep← p

32 move (Y, b) from dep(C, k) to dep(C, table(C, Y, b)[p])
33 return true

We emphasize that STR3’s sole purpose is to maintain GAC during search
[LZS+07, LZBF04]. It is not designed to establish GAC stand-alone. For that
role, a separate GAC algorithm that is able to enforce GAC from scratch is
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Algorithm 24: Auxiliary functions of Algorithm STR3
1 save(key, newData, store)
2 if (key, oldData) ∈ top(store) for some oldData then
3 replace (key, oldData) with (key, newData)
4 else
5 insert (key, newData) to top(store)

6 restoreS()
7 list← pop(stackS)
8 foreach ((C,X, a), p) ∈ list do table(C,X, a).sep← p

9 restoreI()
10 list← pop(stackI)
11 foreach (C,m) ∈ list do inv(C).members← m

12 removeValue(C: Constraint, X: Variable, a: Value)
13 remove a from Dc(X)
14 add (C ′, X, a) to the propagation queue where C ′ 6= C and X ∈ scp(C ′)

required, and it must be invoked before the search commences, usually in the
preprocessing stage.

Pseudo-code of STR3 is given in Algorithms 23 and 24. GACInit (lines 1–9) is
called first to remove all invalid tuples (by calling another GAC algorithm at
line 2) and to initialize all data structures. In the beginning, inv(C).members is
set to zero as the remaining tuples are all valid (line 3), while the separator of
each table(C,X, a) is set to its last possible index (recall that we start indexing
at 1). We also put each value (X, a) into an arbitrary dependency list.

During search, STR3 (lines 10–33) is called for a constraint C every time a value
a is removed from the domain of a variable X involved in C. Note that the
instantiation of a variable X effectively invokes STR3(C,X, a) for every value a
that is present in the domain of X at the time of the assignment but which is
not the value assigned to X. For each removed value (X, a), every tuple whose
tid is in table(C,X, a) becomes invalid. STR3 then merges these tids into
inv(C) if they are not already present (lines 12–15). Values that need new
supports are later processed (lines 19–32); we shall discuss this part of the
algorithm in more details in Section 7.6. Upon backtracking, functions
restoreS and restoreI are called so as to restore elements table(C,X, a).sep
and inv(C).members, through the use of the stacks stackS and stackI. Values
are stored in these stacks at lines 18 and 30 by calling function save.

Domain Value Mutation and other
techniques for Constraint Satisfaction
Problems

108



7.5 Illustration

table(C)

X Y Z
a b c d e f g h i j k l m n o
1 2 9/1 7/1 3/1 1 3 6 8/1 9/1 9/1 1/1 2 8/1 5
4 5 2 5/1 7/1 3 6
6/1 8/1 4/1 4/1 7/1

k 0 1 2 3 4 5 6 7 8 9
inv(C).sparse
inv(C).dense
inv(C).members ↑1
dep(C, k) l e f g a d b c

m h i j
o n k

Figure 7.3: Status right after GAC preprocessing at node η1. Sub-tables and
dependency lists are displayed vertically (at the top and the bottom of the figure,
respectively).

table(C)

X Y Z

a b c d e f g h i j k l m n o
1 2/2 9/1 7/1 3/1 1 3/2 6 8/1 9/1 9/1 1/1 2 8/1 5
4/2 5 2 5/1 7/1 3 6
6/1 8/1 4/1 4/1 7/1

k 0 1 2 3 4 5 6 7 8 9
inv(C).sparse 4 1 2 3
inv(C).dense 6 7 8 5
inv(C).members ↑1 ↑2
dep(C, k) l b e f d i c

g m h n j
a o k

Figure 7.4: Status at η2

7.5 Illustration

In this section, we trace the execution of STR3 on the ternary positive table
constraint C, with scope {X, Y, Z}, depicted in Figure 7.1a. For each value in
the table, its index or sub-table is given in Figure 7.1b. After GAC
preprocessing, separators and dependency lists are initialized as shown in Figure
7.3. The symbol /p, where p is a number, points to the value whose position is
assigned to sep at node ηp. We also denote the fact that inv(C).members is
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table(C)

X Y Z
a b c d e f g h i j k l m n o
1 2 9/1 7/1 3/1 1 3 6 8/1 9/1 9/1 1/1 2 8/1 5
4 5 2 5/1 7/1 3 6
6/1 8/1 4/1 4/1 7/1

k 0 1 2 3 4 5 6 7 8 9
inv(C).sparse 4 1 2 3
inv(C).dense 6 7 8 5
inv(C).members ↑1
dep(C, k) l b e f d i c

g m h n j
a o k

Figure 7.5: After backtracking to η1

table(C)

X Y Z

a b c d e f g h i j k l m n o
1 2 9/1 7/1 3/1 1 3 6 8/1 9/1 9/1 1/1 2 8/1 5
4 5 2 5/1 7/1 3 6
6/1 8/1 4/1 4/1 7/1

k 0 1 2 3 4 5 6 7 8 9
inv(C).sparse 1 4 1 2 2
inv(C).dense 3 8 8 5
inv(C).members ↑1 ↑3
dep(C, k) l b e f g d i c

m h n j
a o k

Figure 7.6: Status at η3

assigned the value k at node ηp by placing ↑p at column k on the row titled
inv(C).members. For instance at node η1, we have inv(C).members = 0 and
table(C,X, a).sep = 3 (because |table(C,X, a)| = 3 the value of the separator
ranges from 1 to 3, from top to bottom). We can also observe for example that
table(C,X, a) = {1, 4, 6} and table(C,X, a)[3] = 6 (this will be always true
since sub-tables are never directly modified; only the separators can change).

Assume values h, i, and o are eliminated. The result after STR3’s propagation
converges is shown in Figure 7.4. In all figures hereafter, we mark a domain
value that has been deleted by putting it inside a box. STR3 eventually merges
the tids of tuples that involve these values (table(C, Y, h), table(C, Y, i),
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table(C,Z, o)) into inv(C), making inv(C).dense = {6, 7, 8, 5}. Values that
depend on the tuples with those tids are in need of new supports. They are⋃

5≤k≤8 dep(C, k) \ {h, i, o} = {g, a, d, b, n} (values h, i, and o are already absent
so they stay at their positions according to the condition in line 21 of STR3).
Let us look first at what happens to g. STR3 locates a new valid support for g
which is tup(C, 3). The value of table(C, Y, g).sep is then changed from 1 to 0
and g is transferred from dep(C, 5) to dep(C, 3). Similar operations are
performed with respect to a and b. Now, concerning values d and n, it is clear
that no other support exists. Consequently, these values can be deleted from
their respective domains while continuing to exist in dep(C, 7) and dep(C, 8).

Now suppose that the search backtracks to η1. The result is shown in Figure 7.5.
The dependency lists dep(C, k) are unaffected: they remain as in η2, but note
that they are different from those initially in η1 (see Figure 7.3 for comparison).
This is an example of unsynchronized supports, which will be discussed in the
next section. On the other hand, separators and inv(C).members have been
rolled back to their previous values, as initially in η1.

From this point, we suppose that e and n are eliminated. Figure 7.6 shows the
results after STR3 is called. The tids from both values’ indexes (3 and 8) are
first added to inv(C). Values for which STR3 needs to produce new supports
are ⋃

k∈{3,8} dep(C, k) \ {e, n} = {g, i}. Value i is removed because it has no
further support. Value g stays present because tup(C, table(C, Y, g)[↑])2 =
tup(C, 5) is a support of g. STR3 then moves g from dep(C, 3) to dep(C, 5).
Notice that the value of table(C, Y, g).sep remains unchanged from Figure 7.5.
Finally, while it is true that the invalidation of table(C,X, b)[↑] = 8 deprives b
of a support, since b is not part of dep(C, 8) STR3 will not try to find a new
support for b. As a matter of fact, b ∈ dep(C, 2). As a result, STR3 will start
seeking a new support for b only after tup(C, 2) becomes invalid.

7.6 Synchronized vs. Unsynchronized Supports

Central to STR3 is the relationship between the separators and the dependency
lists. A present value (X, a) is GAC on C because (1) (X, a) ∈ dep(C, k) for
some k /∈ inv(C), or (2) table(C,X, a)[↑] = k′ with k′ /∈ inv(C). Only one of
the two conditions is sufficient for (X, a) to be proved to be GAC, and when

2Again, table(C,X, a)[↑] referes to table(C,X, a)[table(C,X, a).sep].
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both conditions are true, STR3 does not necessarily force the tid k to be equal
to the tid k′ as might be expected. This flexibility allows STR3 to keep a
maximum of two different supports for each value with virtually no effort, thus
almost doubling the chance that STR3 can avoid seeking a new support later.
This section studies when and how this happens.

When k = k′, we say that the dependency lists and the separators are
synchronized at (X, a) (or that the supports of (X, a) are synchronized).
GACInit initializes separators and dependency lists so that they are
synchronized from the beginning (see lines 6–9). In this case, the role of the
dependency lists is straightforward: it just mirrors what happens to the
separators. As soon as a tuple tup(C, k) becomes invalid, STR3 looks for a new
support for each value in the dependency list indexed at k, i.e., dep(C, k) (line
21). Potential supports for a value (Y, b) are in the sub-table table(C, Y, b), so,
they are tested one by one against inv(C), starting from the separator of the
sub-table (lines 22–24). If no support is found the value is removed (line 26),
and STR3 immediately fails when that value is the last one left in the domain
(line 27). If a new support is found, the value of the current separator is
recorded for backtrack purposes (line 30) before being replaced by the position
of the new support (line 31). Dependency lists are always updated accordingly
(line 32).

The separators and the dependency lists remain synchronized until backtracking
occurs. Given (X, a) ∈ dep(C, k) for some tid k, when the search backtracks
dep(C, k) remains unperturbed whereas table(C,X, a).sep must revert back to
its previous state if possible. For this reason, the separators and the dependency
lists may no longer be synchronized at (X, a). In such cases, the tuples
tup(C, table(C,X, a)[↑]) and tup(C, k) diverge and become two distinct
supports of (X, a) on C.

We now consider in details different circumstances during STR3’s execution
when the validity of these two tuples later change (not including the cases
where STR3 reports inconsistency). These relationships are portrayed in Figure
7.7. We assume |table(C,X, a)| > 1 for all (X, a) so that the claim of two
distinct supports is not trivially unfeasible. The diagram is explained in details
as follows. We consider (X, a) ∈ dep(C, k) for some tid k /∈ inv(C) and
table(C,X, a)[↑] = k′ for some tid k′ /∈ inv(C). In Figure 7.7, dep and sep
failing means that k and k′ are in inv(C), respectively.

Supports are synchronized at the beginning, which means k = k′. There are two
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possible transitions:

(1) tup(C, k) becomes invalid. STR3 must seek a new support in this case.
Consequently, both supports remain synchronized (albeit with a tid
different from k).

(2) table(C,X, a).sep is restored to some previous value. This is caused by
backtracking. The two supports of (X, a) become unsynchronized.

Suppose there are two distinct supports for (X, a) at this point. There are three
possible transitions, namely (3), (6), and (7).

(3) tup(C, k′) becomes invalid while tup(C, k) remains valid. Because STR3
seeks a new valid support for (X, a) only when tup(C, k) is invalid (line
21), nothing needs to be done. This is what happens to value b in Figure
7.6. There are two possible choices after this state:

(4) tup(C, k) becomes invalid as well. The search for a new valid support
proceeds as usual. The dependency lists and the separators are
synchronized at (X, a) on a newly acquired support if it exists.

(5) table(C,X, a).sep is restored to some previous value. Again, this is
caused by backtracking and (X, a) would end up with two distinct
supports as in case (2).

(6) tup(C, k′) remains valid while tup(C, k) becomes invalid. (X, a) is simply
shifted to another dependency list (i.e., from dep(C, k) to dep(C, k′) by
line 32). Because tup(C, k′) is valid, the second condition in line 23 will
fail and the separator pointing at k′ will never move. The dependency lists
and the separators are synchronized at (X, a) as a result. In effect, the
remaining support is copied over when the other fails. This is what
happens to value g in Figure 7.6.

(7) table(C,X, a).sep is restored to some previous value. Same as (2) and
(5).

Even though the trigger for STR3 to seek a new support is set up only on
dependency lists, from the diagram it is clear that both tup(C, k) and
tup(C, k′) in fact provide two different sources of supports for (X, a); when one
fails STR3 will draw on the other for support equally, and only after both fail
does STR3 start seeking a new support. In an interesting scenario, a support in
a dependency list may fail and get replaced by another support successively
without STR3 having to explicitly seek a new support. The reason is that STR3
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Synchronized Unsynchronized

Two distinct supportsTwo identical supports

Only one support
start

(1) dep fails (= sep fails, seek new support)

(3) sep fails(copy from sep)
(6) dep fails

(2) sep restored (backtrack)
(7) sep restored (backtrack)

(5) sep restored (backtrack)

(seek new support)
(4) dep fails

Figure 7.7: Transition diagram depicting the relationship between the two sup-
ports of a value (X, a). STR3 is triggered only when dep fails. Both supports of
(X, a) are synchronized as a result.

may cycle from synchronized to unsynchronized state and back repeatedly
through cases (2) and (6), where the limit is the depth of the search tree.

While STR3 starts off with synchronized supports, unsynchronized supports are
possible too. Indeed, because STR3 requires a form of preprocessing in order to
remove invalid tuples, the ones that remain are all supports. Consider Figure
7.1 for instance. After GAC preprocessing the tuples tup(C, 2), tup(C, 3), and
tup(C, 4) are all recognized as supports for (Z,m). In line 7,
table(C,Z,m).sep is assigned the value 3, therefore the ordinary STR3 that
starts with synchronized supports would add (Z,m) to
dep(C, table(C,Z,m)[3]) = dep(C, 4). However, because the tuples tup(C, 2),
tup(C, 3), and tup(C, 4) are all supports of (Z,m), we could choose adding
(Z,m) to dep(C, table(C,Z,m)[1]) = dep(C, 2), or to
dep(C, table(C,Z,m)[2]) = dep(C, 3) as well. Since the separator moves down
from the last cell to 1, choosing 1, the furthest cell away at the opposite end,
would be the most natural choice. Line 8 would then be changed to:

k ← table(C,X, a)[1]

In our experiments, we use a variant of STR3 that starts with unsynchronized
supports (thus benefiting initially from two supports for each value).

Observe that the separators and the dependency lists are somewhat comparable
to watched literals [MMZ+01] introduced for SAT. However, there are
significant differences as follows. To begin with, for a given value, the relevant
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dependency list is the only activation point, working as a primary support while
the separator serves as a possible backup; the separator points to a tuple that
may or may not be valid. In contrast, there are always two watched literals for
SAT, both equivalent in every way. For STR3, the separators are rigid and must
maintain their values at all times while the dependency lists are not maintained,
just like the two watched literals for SAT. Separators and dependency lists can
be synchronized or unsynchronized depending on circumstances, in effect
providing either a single support or two distinct supports whereas for SAT the
two watched literals are always distinct where possible.

7.7 Correctness

This section proves properties that are crucial to STR3’s correctness. An
invariant is taken to be a property that remains true throughout the search, at
the points before and after STR3 is enforced, but not necessarily while STR3 is
running. For simplicity, arrays are sometimes perceived as mathematical sets in
what follows.

The first invariant states that the dependency lists associated with a constraint
C represent a disjoint collection of all domain values for the variables in the
scope of C.

Invariant 3 For any constraint C ∈ C, the collection of sets
S := {dep(C, i) : i ∈ 1 . . . |rel(C)|} represents a partition of D := ⋃

X∈scp(C) D(X)
such that every element of D is in one and only one set of S.

Proof: The invariant holds initially after GACInit is called. Line 32 contains the
only statement that affects dependency lists and it moves one element from one
list to another, thus preserving the invariant. 2

The second invariant states that inv(C) contains all tids of invalid tuples from
rel(C) and nothing else.

Invariant 4 For any constraint C ∈ C,
inv(C) = ⋃

X∈scp(C), a/∈Dc(X) table(C,X, a).

Proof: This is obvious from the fact that STR3 merges table(C,X, a) into
inv(C) as soon as (X, a) becomes invalid, but it is worth emphasizing that
there are exactly |scp(C)| copies for each tid and they are distributed among
different subtables (see Figure 7.1b for example). Line 14 ensures that inv(C)
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does not include duplicates and therefore conforms to the prerequisite of sparse
sets. The invariant holds after backtracking because the right-hand side of the
equation, ⋃

X∈scp(C), a/∈Dc(X) table(C,X, a), is conditioned upon domain values
while the left-hand side, inv(C), is controlled through inv(C).members, both of
which are maintained by STR3. 2

The third invariant guarantees that no support resides in the explored regions,
i.e., after separators. We use table(C,X, a).explored to denote
table(C,X, a)[sep + 1 . . . size] where sep = table(C,X, a).sep and
size = |table(C,X, a)|.

Invariant 5 For any C ∈ C, X ∈ scp(C), and a ∈ Dc(X), no tid of any
support of (X, a) on C exists in table(C,X, a).explored.

Proof: This invariant holds when the search starts since GACInit initially
eliminates all invalid tuples and assigns the separators to their maximum values.
Afterwards, when the tuple tup(C, table(C,X, a)[↑]) becomes invalid, STR3
scans down table(C,X, a) until a new valid support is found, in which case the
separator is set to the new value; the invariant holds. If no valid support is
found, a is removed and the separator remains unchanged. The invariant still
holds because it is conditioned on a being present in the domain. When a
backtrack occurs, a becomes present again and the invariant still holds because
the separator is maintained. 2

Finally, the fourth invariant states that values stored in dependency lists do
correspond to supports (for present values).

Invariant 6 For any C ∈ C, X ∈ scp(C), and a ∈ Dc(X), if
(X, a) ∈ dep(C, k), then tup(C, k) is a support of (X, a) on C.

Proof: The invariant holds right after GACInit. From the code, we see that
whenever tup(C, k) becomes invalid, any (X, a) in dep(C, k) will be moved to
another dep(C, k′) when a different valid tid k′ is found (line 32). The invariants
associated with dep(C, k) and dep(C, k′) are preserved. If no valid tid is found,
(X, a) becomes invalid. The invariant remains true because it deals only with
present values.

We now look at the relationship between table(C,X, a).sep and dependency
lists when a backtrack is involved. If (X, a) switches from being absent to
present after a backtrack, the invariant remains true, because either (1) (X, a)
was removed as a consequence of the instantiation of X to some other value
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b 6= a, in which case the invariant is unaffected, or (2) chronological
backtracking ensures that the tuple that (X, a) depended on most recently is
restored as well (through rolling back of separators and inv(C).members). An
interesting situation happens when (X, a) is present before and after
backtracking. In this case, table(C,X, a).sep may be reverted. Assume the
value of table(C,X, a)[↑] is k before the backtrack, and k′ after the backtrack
(with k < k′). This means of course that (X, a) is in dep(C, k) before the
backtrack. Now, consider dep(C, k) and dep(C, k′) after backtrack. Because
backtracking never invalidates tuples, the tuple tup(C, k) must still be valid
after backtrack, and because dependency lists are not maintained, (X, a)
remains in dep(C, k). For this reason, the invariant for dep(C, k) is still true,
although table(C,X, a)[↑] is no longer k. The invariants involving values in
dep(C, k′) are unaffected.

Next, consider what happens if the search moves forward when there are two
distinct supports. That is, (X, a) ∈ dep(C, k) while table(C,X, a)[↑] = k′ 6= k.
If tup(C, k) becomes invalid, we need to find a new support for (X, a). If there
exists 1 ≤ k′′ ≤ k′ such that tup(C, k′′) is valid, STR3 merely moves (X, a) from
dep(C, k) to dep(C, k′′). The invariants for dep(C, k) and dep(C, k′′) hold
afterward. If no valid support is found, (X, a) remains in dep(C, k) and a
becomes absent, making the invariant trivially true. 2

We can now prove that STR3 does maintain GAC during backtrack search.

Theorem 11 STR3 maintains GAC.

Sketch of Proof: We assume the standard value-based propagation framework
and that the network is already GAC before STR3 is called for the first time.
Two key observations for the completion of a proof are as follows. First, a value
is deleted and put in the propagation queue as soon as STR3 exhausts all
possibilities for supports (Invariant 5 where table(C,X, a).explored =
table(C,X, a) and line 26). Second, every present value has at least one valid
support. This is due to Invariants 3 and 6 and the fact that a present value
depends on exactly one tuple of a table constraint. 2

7.8 Complexity

Many algorithms repeatedly compute a new value from an old one after a small
modification to the computation context. An algorithm is incremental if it does
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not compute the new value from scratch but exploits both the old value and the
modifications made to the environment. STR3 is designed to be incremental by
avoiding repeated domain checks along the same path, going from the root to a
leaf, in the search tree. In the following analysis, we consider the worst-case
accumulated cost along a single path of length m in the search tree. It is
assumed that (1) each variable domain is of size d, (2) each positive table
constraint is of arity r and contains t tuples, (3) the tables do not contain
invalid tuples before STR3 starts. Also, we consider that d ≤ t (a value
a ∈ D(X) must initially appear in all tables involving the variable X.)

Theorem 12 The worst-case space complexity of STR3 is O(rt+mrd) per
constraint.

Proof: There are three main data structures in STR3: table, inv and dep.
According to Invariant 3, the space complexity for dep is O(rd). For inv, it is
O(t) whereas it is O(rt) for table. For managing the restoration of data
structures, we have stackI, which is O(m), and stackS, which is O(mrd),
assuming that we may need to record information up to m levels. The total cost
is O(rd+ t+ t+ rt+m+mrd), which is O(rt+mrd). 2

Theorem 13 The worst-case time complexity of STR3 along a single path of
length m in the search tree is O(rt+m) per constraint.

Proof: STR3’s operations can be seen from the point of view of the three main
data structures: table, inv, and dep. We consider them in this order:

• For a value a that stays present along a path, the cost of STR3 on
table(C,X, a) is O(|table(C,X, a).explored|). If a is absent, there is an
extra cost for merging the rest of table(C,X, a) into inv(C) (line 12),
which is O(|table(C,X, a)[1 . . . sep]|). In both cases, the cost is
O(|table(C,X, a)|). The total cost is
O(∑

X∈scp(C), a∈D(X) |table(C,X, a)|) = O(rt).

• The maximum size of inv(C) is t. Because inv(C) is implemented as a
sparse set, adding a member takes O(1) time. The size of inv(C) can only
grow along the path so the cost of STR3 in dealing with inv(C) is O(t).

• Lastly, we consider the cost associated with dependency lists. When the
tuple tup(C, k) becomes invalid, each element in dep(C, k) is processed
and shifted if necessary. For each value (X, a), it can be shifted around at
most |table(C,X, a)| times. Because each dependency list dep(C, k) is

Domain Value Mutation and other
techniques for Constraint Satisfaction
Problems

118



7.9 STR3 with Circular Seek

processed sequentially once along the path, the total cost is
O(∑

X∈scp(C), a∈D(X) |table(C,X, a)|) = O(rt).

The worst-case time complexity of STR3 along a single path is thus
O(rt+ t+ rt+m) = O(rt+m), as all other statements have fixed costs (O(1))
at each node. 2

As in the case of disjoint set union operations [CLRS09], a cascading series of
transfers in dependency lists, where the number of elements to be moved keeps
growing, is conceivable. This has no bearing on the complexity cost associated
with dependency lists since we already show it to be O(rt) through another
argument, but it should be noted that the cascading cost is small due to the
limited size of each list dep(C, k), which holds no more than r elements. It
follows that the worst-case cost in a monotonically increasing series of transfers
is O(∑r−1

k=1 k) = O(r2). Incidentally, the practical upper bound on operations
involving dependency lists should be much closer to O(rd) (the lower bound)
than O(rt) since absent values in dependency lists are never touched (line 21).

Property 1 The worst-case time complexity along a single path of length m in
the search tree can be as much as O(rtm) for STR2 per constraint.

Reasoning: Recall that STR2 improves over standard STR1 in two major ways.
First, any (X, a) can be disregarded if Dc(X) is fully supported. Second, no
validity check is necessary for (X, a) if it is known that there is no change to the
domain of X since the last time STR2 was called. Because STR2 is sensitive to
ordering, we can build a table constraint and a search path such that (1) each
call to STR2 involves a domain reduction of exactly one value on every domain,
so that the second improvement is useless, (2) each call to STR2 eliminates
exactly one tuple, which is found at the end of the table. As a result, the cost is
O(∑m

i=1 r(t− i)), which is O(rtm) when m << t. 2

It can be shown in a similar fashion that MDDc [CY10] or tries [GJMN07] are
not path-optimal. On the other hand, each backtrack costs O(rd) in the
worst-case for STR3, whereas it is O(r) for STR2.

7.9 STR3 with Circular Seek

Gent [Gen13] reported that seeking an element in an array in a circular fashion
during backtracking search can be proved optimal when the cost is amortized.
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In other words, there is no theoretical difference with the traditional optimal
procedure where a cursor’s position is saved and restored upon backtrack. The
circular approach is a factor two slower in the worst case, but experiments with
SAT solvers show that it can be faster in practice [Gen13].

Because STR3 is based on incremental scans of the sub-tables, its cursors
(separators) can be made to move circularly as well. The question is whether
STR3 with circular seek remains optimal. This section addresses this variation
of STR3 with respect to correctness, optimality, and performance.

Pseudo-code of STR3 with circular seek (STR3circ) is given in Algorithm 25.
Differences from ordinary STR3 are:

d1 The search of supports performed from line 22 to 24 in Figure 23 is
modified to accommodate circular seek (line 13 to 21 in Algorithm 25).
The routine restoreS as well as the trailing of the separators at line 30 of
Algorithm STR3 in Figure 23 are no longer needed.

d2 The condition of the for-loop in line 12 of Algorithm STR3 in Figure 23 is
changed. The result is shown in line 3 in Algorithm 25.

Theorem 14 STR3circ maintains GAC.

Sketch of Proof: STR3circ’s correctness can be derived from STR3’s when their
differences are accounted for as follows:

Case d1: The circular move guarantees that, unless a variable X is assigned to a
value b 6= a, the only condition for the value a to be removed is the absence of
support in the sub-table involving (X, a). Because separators are not
maintained, it is always true that (X, a) ∈ dep(C, k)⇔ table(C,X, a).sep = k.
That is, separators and dependency lists are always synchronized. Invariant 6
holds as a result.

Case d2: In STR3, the subarray table(C,X, a).explored always contains only
tids of invalid tuples because the separators are not maintained. In STR3circ,
this is no longer true. Every tid in table has to be checked against inv(C), but
the effect on inv(C) is the same as STR3’s. 2

Theorem 15 The worst case time complexity of STR3circ along a single path of
length m in the search tree is O(rt+m) per constraint.

Proof: We need to look only at the operations involving table as the ones
involving dep and inv are unchanged from STR3. For any value (X, a) that
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Algorithm 25: STR3 with circular seek. Only the main procedure STR3circ is
shown.

1 STR3circ(C: Constraint, X: Variable, a: Value)
2 membersBefore← inv(C).members
3 for p← 1 to |table(C,X, a)| do
4 k ← table(C,X, a)[p]
5 if ¬isMember(inv(C), k) then
6 addMember(inv(C), k)
7 if membersBefore = inv(C).members then
8 return true
9 save(C, membersBefore, stackI)

10 foreach i ∈ {membersBefore + 1, . . . , inv(C).members} do
11 k ← inv(C).dense[i]
12 foreach (Y, b) ∈ dep(C, k) such that b ∈ Dc(Y ) do
13 p← table(C, Y, b).sep
14 while p > 0 and isMember(inv(C), table(C, Y, b)[p]) do
15 p← p− 1
16 if p = 0 then
17 p← |table(C, Y, b)|
18 while p > table(C, Y, b).sep and

isMember(inv(C), table(C, Y, b)[p]) do
19 p← p− 1
20 if p = table(C, Y, b).sep then
21 p← 0
22 if p = 0 then
23 removeValue(C, Y, b)
24 if Dc(Y ) = ∅ then return false
25 else
26 if p 6= table(C, Y, b).sep then
27 table(C, Y, b).sep← p
28 move (Y, b) from dep(C, k) to dep(C, table(C, Y, b)[p])
29 return true

stays present along a single path, the cost of circular scan on table(C,X, a) is
O(|table(C,X, a)|) according to Theorem 13 in [Gen13]. If a is absent, there is
an extra cost for merging table(C,X, a) into inv(C) (line 3 of Algorithm 25).
The cost is O(|table(C,X, a)|+ |table(C,X, a)|) = O(|table(C,X, a)|) for
either case. Summing on X and a makes the final complexity O(rt+m), where
the factor m includes other O(1) costs at each node. 2

Proposition 14 in [Gen13] indicates that overheads of the circular move can be a
constant factor of two larger than the trailing of separators. For STR3circ, there
is a further cost of merging table(C,X, a) for an absent value as mentioned in
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the proof above, which is another O(rt) in total. Thus, the time complexity of
STR3circ hides a constant factor of three larger than STR3’s. Our experiments
show that STR3circ is slower than both STR2 and STR3 on every problem
instance tested.

7.10 Related Works

A number of fine-grained (G)AC algorithms have been proposed in the
literature, for example, AC5 [HDmT92], AC6 [BC93], AC7 [BFR99], GAC4
[MM88], and AC5TC-Tr [MHD12]. In this section, we discuss about the
connections existing between GAC4, AC5TC-Tr, and STR3 since they are all
optimal and closely related algorithms.

7.10.1 GAC4

GAC4 [MM88] is a generalized version of AC4 [MH86] for non-binary
constraints. The pseudocode for the propagation portion of GAC4 is given by
Algorithm 26.

Algorithm 26: Algorithm GAC4
1 queue-processing(Q: Queue)
2 while Q 6= ∅ do
3 pick and delete (X, a) from Q
4 foreach constraint C such that X ∈ scp(C) do
5 foreach tuple τ ∈ sup(C,X, a) do
6 foreach Y ∈ scp(C) | Y 6= X do
7 b← τ [Y ]
8 remove τ from sup(C, Y, b)
9 if sup(C, Y, b) = ∅ and b ∈ Dc(Y ) then

10 Q← Q ∪ {(Y, b)}
11 Dc(Y )← Dc(Y ) \ {b}

GAC4’s approach to propagation is based on an incremental reduction of the
support lists; the list of supports of a value (X, a) on a constraint C is denoted
by sup(C,X, a). When a value (X, a) becomes absent, every tuple τ involving
that value becomes invalid. Because it may be a support for other values,
sup(C, Y, τ [Y ]) for every Y 6= X must be updated as well. A value (X, a) has no
longer a support on a constraint C when sup(C,X, a) = ∅. It is then removed
from Dc(X) and put on the queue Q for further processing.
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Figure 7.8: Data structures of GAC4 for a constraint C such that scp(C) =
{X, Y, Z}.

In order to keep the time complexity optimal, it is proposed in [MM88] that the
list of supports be implemented as a doubly linked list. Removing an element of
a support list therefore takes O(1) time. The use of an additional data structure
containing pointers to elements of support lists is suggested so that these
elements can also be accessed in O(1) time — specifically, a two-dimensional
array ptr(C) of size |rel(C)| × |scp(C)|. For every tuple tup(C, k),
1 ≤ k ≤ |rel(C)|, ptr(C)[k] is a one-dimensional array of size r, where
scp(C) = {X1, . . . , Xr}, such that for all 1 ≤ i ≤ r, if tup(C, k)[Xi] = a then
ptr(C)[k][i] points to a node in sup(C,Xi, a) whose value is k. Figure 7.8
illustrates this with a ternary constraint C such that scp(C) = {X, Y, Z}.

Although attractive because admitting an optimal time complexity, GAC4
remains basically a standalone GAC algorithm. Indeed, no provision has been
made for it to be used as a filtering step during backtracking search, although
one can always make a simple adaptation by trailing all the relevant data
structures, which are sup and ptr in this case. This incurs overheads, and it is
unclear how costly the maintenance would be in practice since MGAC4 has
never been reported in any experiment as far as we are aware. However, note
that GAC4 remains useful when pre-caching of all supports is considered
worthwhile. For instance, an extension of GAC4 is employed to find a form of
interchangeable values in interactive configuration problems [BF13].
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7.10.2 AC5TC-Tr

Several optimal GAC algorithms for table constraints are described in
[MHD12, MHD14]. As a representative example, we focus our attention here on
AC5TC-Tr [MHD12] (see [MHD14] for a comprehensive treatment of GAC
algorithms for table constraints based on the AC5 structure [HDmT92].) We
provide pseudocode of a key procedure of AC5TC-Tr in Algorithm 27 and
explain its function as follows.

In AC5TC-Tr, a support list on C for a value (X, a) is dynamically maintained
as a doubly linked list headed by FS(C,X, a) (“first support”) while its elements
are connected via pointers nextTr and predTr. Both pointers satisfy the
following invariants for every variable X ∈ scp(C) and every tuple tup(C, i)
where 1 ≤ i ≤ t = |rel(C)|:

nextTr(C,X, i) = min{j | i < j ∧ tup(C, j)[X] = tup(C, i)[X] ∧
(tup(C, i) ∈ D(X,Q,C))⇒ tup(C, j) ∈ D(X,Q,C)}

i = predTr(C,X, nextTr(C,X, i))

D(X,Q,C) denotes the “local view” of the domain D(X) with respect to the
propagation queue Q, defined as D(X,Q,C) = D(X) ∪ {a | (C,X, a) ∈ Q}. For
any V ⊆ X , D(V , Q, C) = ∏

V ∈X D(V,Q,C).

Furthermore, FS(C,X, a), must satisfy the following invariant (a top value > is
the largest value while a bottom ⊥ is the smallest.)

FS(C,X, a) = i ⇐⇒ i 6= > ∧
tup(C, i)[X] = a ∧

tup(C, i) ∈ D(scp(C), Q, C) ∧
∀j < i, tup(C, j)[X] = a⇒ tup(C, j) /∈ D(scp(C), Q, C)

valRemoveTC-Tr is a primary function of AC5TC-Tr that deals with the
consequences of the removal of a value (X, a) with respect to a constraint C.
When (X, a) becomes absent, the function goes through each tuple τ in the
support list of (X, a) and updates the support list of each value (Y, b) that
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contains τ . The idea is fundamentally the same as MGAC4, but with the
operations on doubly linked lists spelled out. One important difference is that
the data structure ptr is not used. Indeed, although the use of ptr was put
forward in [MM88] it is actually not necessary because tuples are already
grouped along domain values of a given variable. That is, assuming a total
order on rel(C), both nextTr(C,X, i) and predTr(C,X, i) return unique tuples
(row positions). Thus next and previous tuples can be referred to directly
through two pieces of information, namely, i (row) and X (column), as done in
valRemoveTC-Tr.

Algorithm 27: Algorithm AC5TC-Tr
1 ValRemoveTc-Tr(C: Constraint, X: Variable, a: Value)
2 4← ∅
3 i← FS(C,X, a)
4 while i 6= > do
5 foreach Y ∈ scp(C) such that Y 6= X do
6 b← tup(C, i)[Y ]
7 if FS(C, Y, b) = i then
8 FS(C, Y, b)← nextTr(C, Y, i)
9 if FS(C, Y, b) = > and b ∈ D(Y ) then 4← 4∪ (Y, b)

10 else
11 if predTr(C, Y, i) 6= ⊥ then
12 nextTr(C, Y, predTr(C, Y, i))← nextTr(C, Y, i)
13 if nextTr(C, Y, i) 6= > then
14 predTr(C, Y, predTr(C, Y, i))← predTr(C, Y, i)
15 i← nextTr(C, Y, i)

STR3 and AC5TC-Tr achieve path-optimality through different routes. Both
algorithms are based on the same concept of support lists, although STR3
works exclusively on row indexes. Traversals on the lists are analogous, whether
through the doubly linked lists in AC5TC-Tr or through table in STR3. We
discuss their differences in the rest of this section.

• Indicators for the first valid supports. The data structure FS plays the
same role in AC5TC-Tr as sep does in STR3. Both mark the earliest valid
support found according to the ordering in rel(C). Due to its
representation, STR3 needs dep as a reverse pointer in addition to sep.
Because dep does not need trailing, STR3 is able to sidestep some of
AC5TC-Tr’s efforts. However this notion can be replicated in AC5TC-Tr
by adding a similar data structure, which in this case serves purely as
residues [LLS+08].
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• Overheads of doubly linked lists. Besides the obvious extra traversal cost
of doubly linked lists, the more important concern is its maintenance
overheads during backtracks. AC5TC-Tr must keep track of the positions
of all removed elements as well as the depth of the search when such
removals happen. Should backtracks occur, AC5TC-Tr would use this
information in order to restore these elements to their original positions.
These removals may not be consecutive, and hence their restorations can
be more expensive than the simple STR3’s trailing mechanism.

• Centralization of invalid tuples. STR3 takes a lazy approach by
partitioning a support list into two contiguous parts: an explored region
known not to have any valid support, and an unexplored region. The two
regions are separated by a cursor. As a result, when a tuple is proved
invalid it must be remembered as such so that this fact can be recalled
later when an unknown region is examined. To this end, STR3 channels
all handling of invalid tuples through a centralized facility (inv). By
contrast, AC5TC-Tr actively maintains support lists: when a tuple
becomes invalid it is immediately removed from all involving support lists
so it will not be encountered again in the future.

• Local views and granularity of invariants. AC5TC-Tr is derived from the
AC5 framework, whose correctness stems in turn from invariants on its
data structures. These invariants differ from STR3’s in two respects.
First, in AC5 they deal with local views instead of the current domains.
Invariants must therefore hold even for values that are absent but still
remain in the local views; for instance the invariant on FS must be
maintained even for some absent values. By contrast, STR3 suspends all
operations on a value once it becomes absent. Second, AC5’s invariants
hold at the point before and after each value (X, a) is dequeued and
processed. STR3’s invariants, on the other hand, are coarser. During
search they hold at the point before and after STR3 is completely
executed, not during its execution where the filtering may not have yet
converged to a fixed point.

Finally, STR3 can be regarded as an improved version of AC5TC-Sparse
(previously called AC5TC-Cutoff in [MHD12]) where an additional data
structure is introduced for recording supports, which avoids restoring and
checking operations to some extent.
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7.11 Experimental Results

In order to show the practical interest of STR3, we have conducted an
experimentation (with our solver AbsCon) using a cluster of bi-quad cores Xeon
processors at 2.66 GHz with 16GiB of RAM under Linux. We have compared
STR3, first with other classical STR variants, and then with other related GAC
algorithms developed for table constraints. For all our experiments, we have
used the backtrack search algorithm called MAC, which maintains (G)AC
during search, equipped with the variable ordering heuristic dom/ddeg [SF94a]
and the value ordering heuristic lexico. For each tested problem instance, we
have searched to find a solution or prove that no solution exists, within 1, 200
seconds. It is important to note that the two chosen heuristics guarantee that
we explore the very same search tree regardless of the filtering algorithm used
(contrary to, for example, dom/wdeg [BHLS04]).

7.11.1 STR3 versus STR2: Comparison on Problem
Series

Because it has been shown that STR2 is state-of-the-art on many series of
instances [Lec11], we have compared the respective behavior of STR3 and
STR2. Also included as a baseline are the results obtained with the original
STR algorithm, as proposed by Ullmann [Ull07] and referred to as STR1 here.

First, we have considered some classical series of instances3 involving positive
table constraints with arity greater than 2. We give a brief description of these
series:

• The Crossword puzzle involves filling a blank grid using words from a
specified dictionary. We have used four series of instances, called
crosswords-lex, crosswords-uk, crosswords-words and crosswords-ogd, which
have been generated from a set of grids without any black square, called
Vg, and four dictionaries, called lex, uk, words and ogd. Dictionaries lex
and words are small whereas uk and ogd are large. The arity of the
constraints is given by the size of the grids: for example,
crosswords-ogd-5-6 involves table constraints of arity 5 and 6 (the grid
being 5 by 6).

3Available at http://www.cril.univ-artois.fr/CSC09 or
http://www.cril.fr/∼lecoutre/benchmarks.html
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• A Renault Megane configuration problem, converted from symbolic
domains to numeric ones, has been introduced in [AFM02]. The series
renault-mod contains instances generated from the original one, after
introducing a form of perturbation. Such instances involve domains
containing up to 42 values and some constraints of large arity (8 to 10);
the largest table contains about 50,000 6-tuples.

• A Nonogram is built on a rectangular grid and requires filling in some of
the squares in the unique feasible way according to some clues given on
each row and column. Such clues can be modeled with table constraints.
Constraint have typically large arities as for a grid of size r × c, we get r
constraints of arity c and c constraints of arity r. The size of the tables
vary accordingly the size of the grids and the specified clues: some tables
only contain a few tuples whereas the largest ones may usually contain
tens or hundreds of thousands of tuples. The series nonogram here
corresponds to the instances introduced in [PQZ12].

• Table constraints can be naturally derived from BDDs and MDDs. Series
bdd-15-21 and bdd-18-21 were introduced in [CY06]: the former contains
instances with table constraints of arity 15 and size 2, 713 whereas the
latter contain instances with table constraints of arity 18 and size 133.
Series mdd-7-25-05 and mdd-7-25-09 contain instances with constraints of
arity 7 derived from MDDs built in a post-order manner with a specified
probability p that controls how likely a previously created sub-MDD will
be reused [CY10]. For the first series (also called mdd-half ), the
probability p is 0.5 whereas it is 0.9 for the second one.

• Series denoted by rand-r-n stand for random instances where each
instance involves n variables and some constraints of arity r. The series
rand-3-20, rand-5-12, rand-8-20 and rand-10-60 will permit us to
experiment on random instances with various arity (from arity 3 to 10).

The results that we shall present include the following metrics:

• CPU time (in seconds); note that the CPU time for STR3 includes the
preprocessing step (in which STR2 is employed).

• memory (mem) usage in MiB.

• avgP (average proportion), which is the ratio “size of the current table” to
“size of the initial table” averaged over all table constraints and over all
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nodes of the search tree; this is a relative value.

• avgS (average size), which is the size of the current table averaged over all
table constraints and over all nodes of the search tree; this is an absolute
value.

In order to avoid some “noise” generated by very easy instances, we have
decided to discard from our results all instances that were systematically solved
within 3 seconds (when embedding any filtering algorithm).

Table 7.1 shows mean results per series. Following the name of each series is the
number of tested instances, which corresponds to the number of instances that
are not too easy (as mentioned above) and not too difficult (solved by MAC
within 1, 200 seconds when using any of the three algorithms). A first
observation is that STR3 requires on average up to two times more memory
than STR2; more memory was expected, but this is much better than what
worst-case complexity suggests. A second observation is that the results seem to
vary widely. STR2 and STR3 are respectively the best approaches on different
series: nonogram, bdd-15-21, bdd-18-21, mdd-7-25-05 and rand-8-20 for STR2;
crosswords-ogd, rand-3-20, rand-5-12, and rand-10-60 for STR3. On other
series, the gap between STR2 and STR3 is less significant. Table 7.2 gives
details on some representative instances.

What is interesting to note, when looking at Tables 7.1 and 7.2, is that there
appears to be a correlation between the values of avgP and avgS and the
ranking of STR2 and STR3: the higher the values of avgP and avgS are, the
more competitive STR3 becomes. Note that instances in Table 7.2 are ranked
according to the values of avgP (from 0.5% to 51, 2% for structured instances,
and from 0.2% to 25, 6% for random instances) in order to make the transition
more apparent. Intuitively, higher values of avgP and avgS also imply that
there are fewer chances that the solver can reach deeper levels of the search
tree, which in turn suggests a connection to unsatisfiability. To confirm this
hypothesis, Table 7.3 divides crossword instances (all series taken together)
according to satisfiability, an avgP threshold (pragmatically set to 10%) and
avgS threshold (pragmatically set to 1, 000). Clearly, it appears that STR3 is
the best approach when tables are not reduced too much in proportion and/or
size (on average), contrary to STR2. For example, on the 46 Crossword
instances for which avgS < 1, 000, STR2 is about 20% speedier than STR3
whereas on the 39 Crossword instances for which avgS ≥ 1, 000, STR3 is about
40% speedier than STR2.
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Table 7.1: Mean CPU time (in seconds) to solve instances from different series
(a time-out of 1, 200 seconds was set per instance) with MAC.

Series # STR1 STR2 STR3
crosswords-lex 18 CPU 19.9 12.8 12.6

(avgP=10.2% / avgS=328) mem 137M 137M 144M
crosswords-ogd 18 CPU 97.4 40.0 25.0

(avgP=23.2% / avgS=6, 070) mem 123M 145M 236M
crosswords-uk 25 CPU 98.5 45.3 43.1

(avgP=18.9% / avgS=1, 500) mem 126M 141M 183M
crosswords-words 23 CPU 62.8 37.4 36.5

(avgP=11.9% / avgS=637) mem 138M 138M 150M
renault-mod 27 CPU 31.1 23.4 20.6

(avgP=27.8% / avgS=139) mem 153M 153M 179M
nonogram 44 CPU 18.7 9.4 18.2

(avgP=9.7% / avgS=767) mem 361M 386M 734M
bdd-15-21 35 CPU 64.0 19.8 60.7

(avgP=6.7% / avgS=466) mem 219M 224M 2,049M
bdd-18-21 35 CPU 23.9 7.2 142

(avgP=6.1% / avgS=3, 547) mem 181M 182M 1,043M
mdd-7-25-05 5 CPU 222 130 621

(avgP=0.8% / avgS=348) mem 264M 265M 500M
mdd-7-25-09 9 CPU 154.0 100 105

(avgP=5.9% / avgS=2, 351) mem 266M 267M 508M
rand-3-20 50 CPU 122 93 79

(avgP=7.6% / avgS=221) mem 143M 143M 159M
rand-5-12 50 CPU 59.8 38.9 15.1

(avgP=24.4% / avgS=3, 048) mem 259M 259M 485M
rand-8-20 18 CPU 25.2 14.7 24.8

(avgP=0.2% / avgS=191) mem 221M 221M 379M
rand-10-60 19 CPU 352 191 91.7

(avgP=23.0% / avgS=11, 750) mem 248M 248M 457M

Next, we tried to push the limit of the Crossword benchmarks by using a new
dictionary crosswords-ogd08, which is twice larger than ogd (itself the largest
one among the four dictionaries mentioned previously). There are 807, 624
words in ogd08 versus 435, 705 in ogd. Most instances are of extreme cases: 45
instances are timed-out in all three algorithms tested and 12 are trivially solved
(finished by both STR2 and STR3 within 3 seconds). The remaining instances
are shown in Table 7.4 in order of the grid size (i.e. arity). Here we can see
clearly the transition from satisfiable instances with low avgP and avgS values
to unsatisfiable instances with high avgP and avgS values. STR2 is faster on the
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Table 7.2: Detailed results on selected instances, sorted by avgP. The symbol “-”
indicates a timeout.

STR1 STR2 STR3
Structured instances

crosswords-ogd-6-9 CPU 13.2 7.9 25.7
(sat - avgP=0.5% - avgS=227) mem 148M 148M 202M

mdd-7-25-05-2 CPU 228 123 532
(sat - avgP=1.2% - avgS=467) mem 264M 264M 500M

bdd-15-21-7 CPU 82.1 24.5 114
(unsat - avgP=3.6% - avgS=254) mem 220M 225M 2,063M

nonogram-143 CPU 11.7 7.6 18.5
(sat - avgP=5.4% - avgS=320) mem 413M 422M 875M

crosswords-ogd-11-13 CPU - 1,086 762
(unsat - avgP=10.7% - avgS=5,144) mem - 157M 294M

nonogram-65 CPU 64.6 17.3 10.9
(sat - avgP=19.4% - avgS=453) mem 159M 163M 205M

crosswords-ogd-14-14 CPU 53.7 21.0 12
(unsat - avgP=31.8% - avgS=7,491) mem 144M 145M 236M

renault-27 CPU 21.4 15.6 11.3
(unsat - avgP=51.2% - avgS=223) mem 151M 151M 178M

Random instances
rand-8-20-8 CPU 86.2 46.8 565

(sat - avgP=0.2% - avgS=175) mem 222M 222M 380M
rand-3-20-1 CPU 22.7 17.3 17.1

(sat - avgP=4.6% - avgS=136) mem 144M 144M 161M
rand-3-20-26 CPU 243 178 135

(sat - avgP=7.1% - avgS=205) mem 144M 144M 159M
rand-3-20-18 CPU 63.5 51.1 38.2

(unsat - avgP=12.5% - avgS=349) mem 143M 143M 158M
rand-5-12-26 CPU 55.2 31.7 13.3

(unsat - avgP=25.4% - avgS=3,167) mem 259M 259M 486M
rand-10-60-5 CPU 319 114 57.6

(unsat - avgP=25.6% - avgS=13,141) mem 248M 248M 457M
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Table 7.3: Mean CPU time (in seconds) to solve Crossword instances (a time-out
of 1, 200 seconds was set per instance) with MAC.

# STR1 STR2 STR3
sat 14 18.9 11.5 31.0

unsat 71 152 68.9 52.8

avgP < 10% 34 93.9 50.8 56.7
avgP ≥ 10% 51 154 65.2 44.3

avgS < 1, 000 46 44.3 26.7 32.1
avgP ≥ 1, 000 39 231 98.0 69.5

Table 7.4: Results on the crossword puzzles for the ogd08 dictionary. The symbol
“-” indicates a timing out.

STR1 STR2 STR3
crosswords-ogd08-6-8 CPU 2.14 1.78 5.59

(sat - avgP=0.2% - avgS=143) mem 349M 349M 409M
crosswords-ogd08-6-9 CPU 12.8 8.51 51.8

(sat - avgP=0.2% - avgS=157) mem 341M 341M 477M
crosswords-ogd08-7-7 CPU 2.41 1.87 4.94

(sat - avgP=0.4% - avgS=238) mem 273M 273M 341M
crosswords-ogd08-7-8 CPU - 888 -

(sat - avgP=0.3% - avgS=187) mem - 409M -
crosswords-ogd08-15-17 CPU - 1174 735

(unsat - avgP=20.0% - avgS=3,657) mem - 341M 477M
crosswords-ogd08-15-19 CPU 414 152 103

(unsat - avgP=24.9% - avgS=3,908) mem 273M 273M 417M
crosswords-ogd08-16-19 CPU 778 346 287

(unsat - avgP=14.4% - avgS=1,361) mem 273M 273M 409M
crosswords-ogd08-16-20 CPU 226 96.4 90.2

(unsat - avgP=19.2% - avgS=1,712) mem 273M 273M 409M

4 first instances while STR3 is faster on the 4 last instances.

While it is not immediately clear what factors are involved concerning table
reduction, one thing is certain: we know that every time a variable X is
assigned a value a, all but tuples involving a are removed from the table of any
constraint involving X, making avgP for this constraint low as a result. We
have seen a surprising number of benchmarks with tables that are virtually
wiped out by simple tabular reduction (no more than a few percent of the initial
tuples remained on average) and variable instantiation may play an outsized
role in this regard. We introduce now a benchmark where the instantiation is
localized and has minimal effect on overall table reduction. A pigeonhole

Domain Value Mutation and other
techniques for Constraint Satisfaction
Problems

132



7.11 Experimental Results

Table 7.5: Results on the augmented pigeonhole problems.

STR1 STR2 STR3
ph-6-9 CPU 20.3 10.6 8.4

(unsat - avgP=65.2% -avgS=1,273K) mem 551M 547M 1751M
ph-7-7 CPU 11.7 6.2 4.8

(unsat - avgP=54.7% -avgS=153K) mem 65M 62M 290M
ph-7-8 CPU 73.9 37.6 26.8

(unsat - avgP=54.7% - avgS=919K) mem 422 422M 1146M
ph-8-6 CPU 25.1 12.6 5.1

(unsat - avgP=47.0% - avgS=55,293) mem 33M 33M 126M
ph-8-7 CPU 195.6 99.3 71.1

(unsat - avgP=47.0% - avgS=387K) mem 207M 207M 631M
ph-9-5 CPU 44.3 23.4 7.9

(unsat - avgP=41.1% - avgS=13,479) mem 18M 18M 40M
ph-9-6 CPU 389 201 149

(unsat- avgP=41.1% - avgS=108K) mem 32M 32M 227M
ph-10-4 CPU 62.8 33.9 17.3

(unsat - avgP=36.6% - avgS=2,399) mem 15M 15M 21M
ph-11-3 CPU 86.4 63.8 39.5

(unsat - avgP=32.9% - avgS=329) mem 10M 10M 21M

problem of size k is composed of k variables, each with {0, . . . , k − 1} domain,
and any two variables are connected by a binary inequality constraint, making
the problem unsatisfiable. Unlike most benchmarks, the pigeonhole problem
allows its tables to be reduced gradually during search until a variable directly
involved is instantiated. An augmented pigeonhole ph-k-j adds an extra j-ary
table and j new variables for each of the k variables and chain them together.
The extra variables have larger domains to prevent the variable ordering
heuristic from picking them prematurely (i.e., heuristics involving domain size)
and the extra tables are very loose. Variable heuristics would be steered toward
picking variables from the unsatisfiable core as a first priority. Results are
shown in Table 7.5, where, once again, it is clear that STR3 is efficient with
high values of avgP and avgS.

7.11.2 STR3 versus STR2: Overall Comparison

We present now a few scatter plots to provide an overall insight of the
respective behaviors of STR2 and STR3. We use a large set of 2, 005 instances
including the series introduced earlier, and also:
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• the series of instances introduced in [MHD14] that can be found at
http://becool.info.ucl.ac.be/resources/,

• the series of instances introduced in [XY13],

• the series of instances introduced in [PQZ12] for problem kakuro.

In each plot, a dot represents an instance whose coordinates are defined by, on
the horizontal axis, the CPU time required to solve the instance with STR2,
and on the vertical axis, the CPU time required to solve the instance with
STR3. Thus, every dot below the line x = y corresponds to an instance solved
more efficiently by STR3, and every dot above the line x = y corresponds to an
instance solved more efficiently by STR2.

Figure 7.9 depicts with a first scatter plot the results obtained with STR2 and
STR3 (within MAC) on the full set of 2, 005 instances. This scatter plot
confirms that STR2 and STR3 are complementary: evidently, there are
series/instances where STR2 is faster than STR3 and other ones where STR3 is
faster than STR2. Figures 7.10, 7.11 and 7.12 compare the performance of
STR2 vs. STR3 with respect to satisfiability, value of avgP, and value of avgS.
Finally, Figure 7.13 plots the relative efficiency of STR2 against STR3 with
respect to the value of avgS, when considering the 2, 005 instances of our
experimental study. On some cases, where tables remain large (> 1, 000), STR3
can be up to 3.6x faster than STR2.

7.11.3 STR3 versus STR2: Comparison on Classes of
Random Problems

In the following set of experiments, we focus on classes of random problems,
starting with those that can be found at the phase transition. We have
generated different classes of instances from Model RD [XBHL07]. Each
generated class (r, 60, 2, 20, t) contains instances involving 60 Boolean variables
and 20 r-ary constraints of tightness t. Provided that the arity r of the
constraints is greater than or equal to 8, Theorem 2 [XBHL07] holds: an
asymptotic phase transition is guaranteed at the threshold point tcr = 0.875. It
means that the hardest instances are generated when the tightness t is close to
tcr. Figure 7.14a shows the mean CPU time required by MAC to solve 20
instances of each class (13, 60, 2, 20, t) where t ranges from 0.8 to 0.96. On these
instances of intermediate difficulty, we observe that STR3 is worse off than even
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Figure 7.9: Pairwise comparison (CPU time) on 2,005 instances from many series
involving table constraints. The time-out to solve an instance is 1,200 seconds.

STR1. Results on different classes of r follow the same pattern. Closer
inspection reveals that avgP for this class is very low, especially at the phase
transition where avgP is less than 4%.

For random problems, the metric avgP can be made higher when the instances
that are generated do not lie in the phase transition area (therefore, there is no
theoretical guarantee about their hardness). So, we have generated several
classes of under-constrained instances. Each generated class (5, 12, 12, 200, t)
contains instances involving 12 variables with 12 possible values, and 200
constraints of arity 5 and tightness t. Figure 7.14b shows the mean CPU time
required by MAC to solve 10 instances of each class (5, 12, 12, 200, t) where t
ranges from 0.51 to 0.99; the size of the tables ranges from 121, 928 (when
t = 0.51) to 2, 488 (when t = 0.99). On these instances whose difficulty
decreases with the tightness, we observe that STR3 is far better than STR2.
Indeed, the values of both avgS and avgP are large: avgS ranges from 1, 093 to
8, 170 whereas avgP may reach up to 43%.
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(b) Comparison on unsatisfiable instances

Figure 7.10: Comparison (CPU time) of STR2 and STR3 on instances that are
respectively satisfiable and unsatisfiable.
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(a) Comparison on instances where avgP < 10%
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(b) Comparison on instances where avgP ≥ 10%

Figure 7.11: Comparison (CPU time) of STR2 and STR3 on instances where
avgP is respectively less than and greater than 10%.
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(a) Comparison on instances where avgS < 1000
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Figure 7.12: Comparison (CPU time) of STR2 and STR3 on instances where
avgS is respectively less than and greater than 1000.
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Figure 7.13: The ratio “cpu STR2” to “cpu STR3” is plotted against avgS (av-
erage size of tables during search). Dots correspond to instances solved by both
algorithms within MAC (from the set of 2,005 instances used as our benchmark).

7.11.4 Comparison with Other GAC Algorithms

As mentioned in Section 7.10, STR3 and GAC4 are both optimal filtering
algorithms. However, the overhead of maintaining the data structures of GAC4
during search can be significant. To confirm this, we have implemented GAC4
for it to be used within MAC by simply trailing its relevant data structures.
Figure 7.15 depicts with a scatter plot the results obtained with STR3 and
GAC4 (within MAC) on the full set of 2, 005 instances involving table
constraints. This scatter plot clearly shows that GAC4 is largely outperformed
by STR3. Note that many crosses appear on the right of the figure, at
x = 1, 200. They correspond to instances timed out by GAC4.

AC5TC, which has been proposed recently [MHD14] is also an optimal
algorithm. However, the solver AbsCon that we use does not permit, in its
current shape, to implement easily this type of algorithms. This is the reason
why we present in Table 7.6 an excerpt (with the kind permission of the
authors) of the results obtained by Mairy, Van Hentenryck and Deville with the
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Figure 7.14: Mean search cost of solving instances in random classes with MAC.
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7.11 Experimental Results
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Figure 7.15: Pairwise comparison (CPU time) on 2, 005 instances from many
series involving table constraints. The time-out to solve an instance is 1,200
seconds.

Table 7.6: Results obtained with AC5TC (version OptSparse) and MDDc on
classical series of instances involving table constraints of large arity. Values cor-
respond to CPU times given as percentage to the best. This table is an excerpt
from Table 10 in [MHD14].

AC5TC MDDc STR2 STR3
crosswords-lex 116 293 121 100
crosswords-ogd 249 704 162 100
crosswords-uk 247 713 135 100

crosswords-words 155 328 138 100
renault-mod 141 332 100 193

solver Comet. As mentioned in their chapter (and can be observed from Table
7.6), STR2, STR3 and MDDc outperform AC5TC when table constraints have
large arity (i.e., greater than 4). However, on constraints of arity 3 and 4,
AC5TC is shown to be very fast (see details in [MHD14]).

The reader must be aware that compression-based filtering algorithms remain
appropriate when compression is highly effective. This has been shown in
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Table 7.7: Mean CPU time (in seconds) to solve selected binary problems.

# AC3bit+rm AC3rm MDDc STR2 STR3
blackhole-4-4 10 0.91 1.10 1.24 1.42 1.81
bqwh-18-141 100 17.9 20.6 33.5 45.8 71.1
composed 14 47.0 62.3 105 119 164
driver 7 7.0 8.5 22.7 56.5 211
ehi-85 90 47.7 63.7 72 127 340

frb-45-21r 10 91 168 290 300 317
geom-50-20 100 3.63 6.7 12.3 12.6 14.1
qcp-10 10 13.1 15.8 29.3 43 72.5
qwh-15 10 2.06 2.52 3.94 5.49 14.1

rand-2-40 698 5.42 7.4 21.9 18.9 18.8

[KW07, CY06, CY08, CY10, XY13]. Typically, when the compression ratio is
high, an algorithm such as MDDc outperforms STR algorithms.

There are also three well-known binary encodings of non-binary constraint
networks, called dual encoding [DP89], hidden variable encoding [RPD90] and
double encoding [SW99]. One could wonder whether or not a classical generic
AC algorithm applied on such encodings could be competitive with simple
tabular reduction. Actually, this has already been studied in [Lec11], with
respect to STR2: it is shown in that chapter that the dual and the double
encodings can rapidly run out of memory, and that STR2 is usually two or three
times faster than AC3bit+rm [LV08] and HAC [SW99] on the hidden variable
encoding.

Finally, we would like to finish this presentation of experimental results with
binary problems. Most of the recent works about filtering table constraints
concentrate solely on non-binary constraints even though binary constraints in
extensional form are tables too. Only after [MHD14] was published that it was
made clear the compression-based and the STR methods are not competitive
with generic binary AC algorithms such as AC3rm [LH07] and AC3bit+rm [LV08].
We confirm their findings with the results in Table 7.7.

7.12 Conclusions

We have introduced STR3, a new GAC algorithm for positive table constraints
that is competitive and complementary to STR2, a state-of-the-art algorithm.
STR3 is able to completely avoid unnecessary traversal of tables. Along with
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7.12 Conclusions

AC5TC [MHD14], STR3 is one of the only two path-optimal GAC algorithms
that have been reported so far. Unlike AC5TC’s performance, which declines as
arity increases, STR3’s is consistent across a wide range of arity. Indeed, we
have shown that it correlates to the average proportion (avgP) and number
(avgS) of tuples remaining in tables during search. Compared to STR2, STR3 is
faster on problems in which avgP and avgS are not low. Interestingly, the
advantage of STR2 appears to depend largely on excessively high rates of table
reduction (very low avgP). As soon as the reduction rate drops below 90%,
STR2 becomes much less effective. Another dividing line is satisfiability: STR3
is stronger on unsatisfiable problems but weaker on satisfiable problems whereas
STR2 is the opposite.

STR3 is an instance of fine-grained algorithms as its propagation is guided by
deleted values. Both STR2 and STR3 are extended to handle compressed tuples
(c-tuples) in [XY13]. While STR3 is more complex than STR2, once
implemented the algorithm is easier to extend because it is based on just one
notion: checking a tuple’s validity; as a result, only the routine involving
validity test needs modification. By contrast, STR2 may process a tuple twice
in different manners — testing its validity and then collecting values from its
components. Extending STR2 to cope with c-tuples is therefore twice more
complicated conceptually. This is true for fine-grained vs. coarse-grained
propagation in general. In recent years, STR2 has been incorporated into many
other algorithms [LPS13, JN13, BFL13, GHLR14], and it remains to be seen
whether STR3 can be adopted in a similar fashion. The work which extends
STR2 and STR3 to c-tuples [XY13] is a start in this direction.
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