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THESIS ABSTRACT  

 

Blood pressure (BP) is one of the most extensively researched topics. It is well 

established that elevated BP is the most prevalent treatable risk factor for 

cardiovascular disease. Despite our comprehensive knowledge of the importance of 

reducing mean levels of BP, we are less informed about the benefits of reducing 

other parameters of BP, specifically BP variability (BPV), which refers to the amount 

of variation over a period of time. Recent evidence has suggested that BPV may be 

an additional clinical target to mean level. However, its full prognostic significance 

and definition remains in doubt. BP does not remain stationary throughout the day 

but is constantly fluctuating and follows a circadian rhythm. Short-term BPV refers 

to fluctuations over this circadian rhythm. Ambulatory blood pressure monitoring 

(ABPM), which can be used to obtain estimates of BP usually every 30mins over a 

24h period, offers a powerful tool in the analysis of circadian patterns and short-

term BPV. Longitudinal circadian data with such a cyclical structure consisting of 

multiple repeated readings provides an opportunity to analysse BP in many 

different ways and an overview of possible approaches is outlined in this thesis. The 

main aims of this thesis were to explore and identify circadian BP patterns between 

individuals and groups, and extract meaningful measures that describe these 

patterns while appropriately accounting for the inherent cyclical structure of ABPM 

data. Specifically, the thesis includes a systematic review which identifies summary 

measures of BPV, such as standard deviation, that can easily be obtained from the 

observed data without the need for more advanced modelling. A meta-analysis 

exploring the correlation between short-term BPV and subclinical target organ 

damage (TOD), specifically left ventricular mass index, is included. The association 

between the identified summary measures and subclinical TOD is then explored in a 

group of middle aged adults. In an attempt to maximise the power of the repeated 

cyclical readings in ABPM and incorporate the data together in one model, different 

random-effects models were explored which allowed us to obtain estimates of both 
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within and between-individual variation of model parameters. A piece-wise linear 

mixed-effects model was considered as a simple but suitable approach to capture 

BP trajectory throughout the day. We attempt to relate factors such as the morning 

slope and within person variability (allowing this to be group-specific) to TOD 

(microalbuminuria). Finally, a two-component cosinor random-effects model is 

outlined where derivatives of the model fit presents a novel alternative method to 

locate and quantify the magnitude of slopes at critical points along the trajectory. 

This is used to obtain a measure of morning BP surge. We compare the random-

effects from this model to principle component scores obtained through functional 

principle component analysis. Our motivating data comes from the Mitchelstown 

Study, a population based study of Irish adults where a subsample underwent 24h 

ABPM. 
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1.1 Introduction 

Hypertension  

Cardiovascular disease (CVD) is now endemic worldwide. It is the leading cause of 

death, not only in Ireland but globally, accounting for 17.3 million deaths per year 

(30% of global deaths), a number that is expected to grow to greater than 23.6 

million by 2030 [1]. Despite our comprehensive knowledge of prevention and 

treatment for hypertension, it is still the most prevalent treatable risk factor for 

CVD, affecting one billion people globally [2-4]. It has been estimated that 7.6 

million deaths worldwide, 54% of strokes, and 47% of cases of ischaemic heart 

disease can be attributed to high blood pressure (BP) alone [1]. The most recent 

estimates for the Republic of Ireland (ROI) conducted by the Institute of Public 

Health using data from the SLÁN 2007 study estimated that more than 850,000 

(25.1%) adults in ROI have hypertension with the figure set to rise to almost 

1,220,000 adults (28.3%) by 2020 [5]. 

In order to accurately ascertain a “normal BP” level it is not simply enough to 

arbitrarily take one BP measurement and based on this single reading conclude 

whether an individual is above or below the generally accepted value of 140/90 

mmHg. It is well known that BP does not remain stationary and is a haemodynamic 

variable that fluctuates from second to second making the diagnosis of 

hypertension challenging. In addition it has long been known that each individual 

has their own diurnal BP trajectory that varies over a 24h period, known as a 

circadian rhythm. Early evidence illustrated that BP tended to be higher during the 

day and much lower during the night [6]. This led to the term “dippers” being 

coined during the late 1980’s referring to individuals whose BP fell or dipped at 

night [7]. Modelling and extracting features of longitudinal data, specifically BP data 

that is circadian in nature offers a unique challenge for researchers.  

Awareness, treatment and control levels are problematic worldwide [4]. In Ireland, 

The Irish Longitudinal Study on Ageing (TILDA) reported that among those over 50 

with hypertension, only 55% were aware of their hypertension status [8]. In 

addition, only 59% of those were on treatment, of whom only 52% were controlled 
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to suitable levels. Furthermore, there is on-going controversy that what we have 

always considered a normal hypertension cut-off (above 140/90mmHg) may still be 

too high. Results from the internationally acclaimed Systolic Blood Pressure 

Intervention Trial (SPRINT) suggest target levels of 120/70 mmHg are desirable [9]. 

SPRINT randomly assigned 9361 people without diabetes with systolic BP (SBP) 

above 130 mmHg and an increased cardiovascular risk to a target of less than 120 

mmHg (intensive treatment) or a target of less than 140 mmHg (standard 

treatment). After 3 years the trial was stopped early due to a significant difference 

between treatment arms. Those assigned to the intensive group had a 25% lower 

relative risk of major cardiovascular events and 27% lower relative risk of all-cause 

mortality. Potential weaknesses of the study have been highlighted [10, 11]. 

Cushman et al. pointed out that BPs were measured with patients seated in a quiet 

room with an automated device without any observer present and argue this 

method can present BP values up to 20 mmHg lower than clinic readings [10]. The 

SPRINT trial is not alone in suggesting the threshold should be lower however and a 

recent meta-analysis examining the effect of intensive BP reduction found a 14% 

reduction in major cardiovascular events and 13% reduction in myocardial 

infraction when BP was reduced to 133/76 mmHg compared to standard treatment 

(140/90 mmHg) [12].  

Measurement 

Accurately measuring something that is fluctuating so frequently can be 

problematic. However, advancements in technology and wearable devices make 

the task of obtaining accurate BP readings throughout a 24h period much more 

achievable [13]. Ambulatory blood pressure monitoring (ABPM) is recognised as the 

gold standard of BP measurement [13] and involves wearing a small digital BP 

device that is attached to a belt around your body and which is connected to a cuff 

strapped around your upper arm. The devices are usually set to record BP values 

over a 24h period every 30mins, but can be set to 15mins or 20min [13]. After the 

device has been worn it can be removed and connected to a computer where the 

data are extracted, giving a print out of the average BP values and a visual 

representation of the circadian pattern. ABPM offers a unique insight into an 
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individual’s underlying circadian rhythm and has many advantages over a single 

clinic reading; measurements can be obtained as individuals go about their daily 

lives giving a more accurate measure of their real BP values, it allows the detection 

of white-coat and masked hypertension, but also offers estimates of the night BP 

and dip parameters. Detecting white-coat is important as it may prevent the 

unnecessary commencement of antihypertensive medication. We now know that 

the dip at night is associated with more favourable outcomes, and mean night BP is 

established as a stronger predictor of outcomes than mean day values [14-16]. For 

example, in the Dublin Outcome Study, for each 10-mmHg increase in mean night 

SBP, the mortality risk increased 21% while adjusting for clinic BP [14]. 

In primary care according to NICE guidelines [17], ABPM is offered if the clinic BP 

(average of two single readings) is above 140/90 mmHg. Hypertension diagnosis is 

then based on thresholds that vary slightly based on average day/night values [13, 

18]. Recently there have been strong calls advocating for the mandatory use of 

ABPM and even suggesting that failure to provide it amounts to medical ineptitude 

[13, 19, 20]. In Ireland the recent national cardiovascular health policy 

recommended general practises (GP) be encouraged to invest in BP technology 

(ABPM) that will improve BP management [21]. As a result the Health Service 

Executive (HSE) has acknowledged the importance of ABPM having recently 

approved the reimbursement of ABPM in primary care for those with a medical 

card [22]. Kario argues that in order to obtain perfect 24h BP control it is not 

enough to focus on the reduction of mean 24h BP, we must also reduce 

exaggerated blood pressure variability (BPV) and obtain an undisrupted or smooth 

circadian pattern [23]. Thus, one of the potential benefits of ABPM is that it offers 

us an opportunity to obtain measures beyond average day/night/24h BP values. 

More specifically, it allows us to quantify and explore the additional prognostic 

significance of variability in BP.  
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Blood Pressure Variability (BPV) 

It is important to note there are primarily two types of BPV- long-term variability 

which refers to variation in readings often taken over months or years and short-

term variability which refers to variation in readings taken over minutes or hours. 

There has been a recent surge in interest in the prognostic value of long-term BPV 

since the publication of work by Rothwell et al. [24, 25].  In treated hypertensive 

patients enrolled in ASCOT-BPLA (Anglo-Scandinavian Cardiac Outcomes Trial–

Blood Pressure Lowering Arm), higher visit-to-visit variability in SBP was associated 

with stroke and coronary events. Rothwell also found that SBP variation between 

visits was a strong predictor of stroke and coronary events, independent of mean 

clinic BP. To synthesize findings from subsequent studies, Tai et al. recently 

conducted a meta-analysis of 13 studies to evaluate the prognostic value of visit-to-

visit SBP variability by different parameters in 77,299 patients [26]. They found a 

pooled age and mean SBP-adjusted hazard ratio (HR) for all-cause mortality of 1.03 

(95% CI, 1.02-1.04; p<0.001) per 1-mmHg increase in SBP standard deviation (SD) 

and 1.04 (1.02-1.06, p<.001) per one precent increase in SBP coefficient of variation 

(CV), with the corresponding values for cardiovascular mortality being 1.10 (1.02-

1.17, p<.001) and 1.01 (0.99-1.03, p=.32), respectively. In addition, a 1-mm Hg 

increase in SD was significantly associated with an increased stroke risk, with an HR 

of 1.02 (1.01-1.03, P<.001).  

The prognostic value of short-term BPV obtained from ABPM has also been 

examined, but with inconsistent results. Parati et al. were the first to demonstrate 

high BPV was associated with an increased risk of target organ damage (TOD) 

specifically left ventricular hypertrophy (LVH) [27]. There have been a number of 

other studies also reporting associations between short-term BPV and both TOD 

[28-31] and cardiovascular events [25, 32]. However, other studies have shown no 

or only weak associations after adjustment for the mean BP [32-35]. The majority of 

these studies however, have used SD as a measure of BPV. The appropriateness of 

such an index has been disputed because it only reflects the dispersion of 

measurements around a single value (mean) and does not account for the order in 

which BP measurements were obtained and the longitudinal variation in the 
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circadian data [36, 37]. Alternatively, studies have explored other indices of 

variability including:  

 coefficient of variation which attempts to adjust for the tendency of those 

with a higher average BP to also have a higher SD [25, 38, 39]; 

 average real variability (ARV) which is the average absolute difference 

between successive readings, and is thought to give a true reflection of real 

variability [28, 33, 36] and; 

  a weighted 24h SD (wSD) which attempts to remove the influence of the 

day-night BP difference from the estimate of BPV [28, 30, 33, 40].   

Mule et al. demonstrated an association between BPV using ARV, SD and 

microalbuminuria among a group of 328 hypertensives after adjustment including 

mean BP [41]. In a separate study, Mule et al. found that ARV SBP was associated 

with microalbuminuria in 315 untreated essential hypertensives after adjustment 

for covariates including mean SBP [42]. However wSD, and SD of day and night 

periods were not found to be independently associated with microalbuminuria. 

Moreover, there has also been extensive work examining variability during the 

morning period alone where BP rises rapidly to its peak, known as morning surge, 

before falling again throughout the day [23].  There is substantial evidence 

indicating that the morning is the most important period and is when 

cardiovascular events most frequently occur [23, 43, 44]. It has been shown that 

the morning surge (calculated as mean SBP during the 2 hours after awakening 

minus mean SBP during the hour that included the lowest sleep BP) is 

independently related to organ damage and risk of cardiovascular events [45-47]. 

Different indices of short-term BPV and various morning surge parameters can be 

seen in Table 1-1. The short-term summary measures are outlined in more detail in 

Chapter 3.  
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Table 1-1 Short-term BPV Summary Indices 

Measure of BPV Description 

24h SD Standard deviation over 24 hour period  

Day SD Standard deviation over day period usually 9am-9pm 

Night SD Standard deviation over night period usually 1am-6am 

wSD Weighted standard deviation (of day and night standard deviation) 
CV Coefficient of variation 
ARV Average real variability 
Morning Surge 

Parameters* [45] 

 
Sleep-trough surge 2h morning BP minus 1h lowest night BP 

Prewaking surge 2h morning BP minus 2h prewaking BP 

Rising surge BP on rising minus last ABPM in a supine position <30m before rising 

*Kario [45] 

Despite increased interest and research conducted on BPV we are still unclear as to 

what the best method or index is to quantify variability, and its clinical relevance. In 

addition, all the above studies have used direct summary measures of BPV. That is, 

measures that can be directly obtained from the raw data without the need for 

advanced statistical methods. This thesis aims to explore other possible novel 

measures that describe BPV. Considering the clinical importance of BP it is 

surprising to learn of so few studies that fully utilise the benefits of the longitudinal 

nature of ABPM. Lambert et al. [48] who explored the use of cubic splines to model 

the trajectory of ABPM emphasised the lack of research on the longitudinal analysis 

of 24h ABPM while Edwards et al. [49] who utilised orthonormal polynomials 

stressed there is no current “standard” method for analysing ABPM. These and 

other longitudinal models of ABPM variation are described in more detail in 

Chapter 2 (Longitudinal Data Analysis and Application to ABPM).  

Biological Plausibility of BPV  

Although the precise mechanisms responsible for BPV are not entirely understood 

[50], there are a number of acknowledged factors that influence variations in BP. 

Parati et al. [51, 52] argue it is primarily modulated by neural (increased central 

sympathetic drive and reduced arterial and cardiopulmonary reflexes), humoral 

(angiotensin II, insulin, bradykinin, nitric oxide) and vascular effects (elastic 

properties of arteries). The night-time dipping phenomenon that occurs during 

sleep is associated with a marked drop in sympathetic drive, while the morning 
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surge is associated with a remarkable sympatho-activation [53, 54]. In addition, 

behavioural influences such as sleep, physical activity and postural changes can 

induce significant changes to BP [52, 55]. Emotional or psychological stress can also 

sporadically increase BP values [50]. An emotional condition that is often seen in 

clinical practice is that of the “white-coat effect” [50]. This well-known 

phenomenon is characterised by a sharp increase in BP values during the course of 

a doctor’s visit which then disappears once the doctor leaves.  Even high altitude 

[56] and environmental (seasonal effects) [57] factors are known to have an effect 

on BP values.  

BPV and Antihypertensive Medication  

The interest in BPV and the importance of how it is quantified comes to the fore 

when we begin to examine therapeutic approaches to treat hypertension. In 2005, 

the ASCOT trial reported that antihypertensive medications (amlodipine and 

perindopril combination) significantly improved outcome compared to older dated 

alternatives [58]. However, of particular interest was that the difference in mean BP 

between treatments was only 1.6 mmHg at the end of the trial. This small 

difference suggested that the improvement in outcome between arms was unlikely 

to be as a result of reducing mean BP alone. In the subsequent years more analyses 

published from the study showed that the newer medication had significantly 

reduced central BP (pressure exerted on the heart and brain), night-time BP and 

BPV [25, 59, 60], suggesting we should not be solely focusing on mean BP. It 

highlighted the potential benefit of obtaining new indices of BP and the advantage 

of exploring ABPM data. There is growing evidence to suggest that although 

different antihypertensive classes have the same effect in terms of reducing mean 

BP, they have significantly different effects on BPV, particularly calcium channel 

blockers (CCB) or calcium antagonists [61, 62].  The X-CELLENT trial examined the 

efficacy of calcium antagonists in reducing BPV (measured as wSD and ARV) among 

577 patients before and after anti-hypertensive treatment [63].  Larger reductions 

were obtained with amlodipine (CCB) compared to indapamide (diuretic), 

candesartan (angiotensin receptor blocker (ARB)) and placebo where the 

differences even remained significant after adjustment for mean BP. Further 
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evidence was found in a large cohort of 2780 hypertensive patients, where those 

receiving either CCBs or diuretics, alone or in addition to other drugs had 

significantly lower 24h SBP SD compared with angiotensin-converting enzyme 

inhibitors (ACEIs), ARBs or β-blockers alone or in combination [64]. CCB-based 

combinations again performed better than other combinations in post hoc analysis 

of the COPE (Combination Therapy of Hypertension to Prevent Cardiovascular 

Events) trial in reducing visit-to-visit BPV (SD & CV) [65]. The cope trial was the first 

clinical trial to examine the treatment of hypertension with combination therapies. 

This raises the question of whether BPV could be an additional therapeutic target of 

antihypertensive treatment to improve cardiovascular protection. And highlights 

potential benefits of obtaining new BP measures which can provide new 

information and bring about greater insights into the mode of action of new 

antihypertensive medication [52, 66]. 

These variability indices may be particularly useful for the analysis of chronotherapy 

effects which refers to the treatment of an illness or disease by administering a 

drug at a time of day believed to be in harmony with the body’s natural rhythms. 

There are no current recommendations for when BP-lowering medications should 

be ingested but most people are instructed by their physicians and pharmacists to 

take the medication during the morning period. As explained previously, the 

morning period is a crucial time coinciding with a surge in BP and perhaps the 

administration of medication before this period may be more beneficial in reducing 

BP rather than during it. The MAPEC study was the first to examine the benefits of 

bedtime chronotherapy with one or more conventional hypertension medications 

on BP control and CVD risk reduction versus conventional morning therapy [67, 68]. 

They found subjects ingesting antihypertensive medication at bedtime showed 

significantly lower night BP, reduced prevalence of non-dipping and lower relative 

risk of both total CVD and major CVD events after a median follow-up of 5.6 years. 

In a similar study conducted among 448 hypertensive patients with type 2 diabetes, 

comparable results were found [69]. After a median follow up of 5.4 years patients 

with diabetes ingesting at least one hypertension medication at bedtime showed 

significantly lower night BP, higher prevalence of controlled ambulatory BP (ABP) 
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and a significantly lower cardiovascular risk than those taking medication upon 

awaking. Improved BP control was also shown in a separate study of 250 patients 

with resistant hypertension [70]. Indeed a systematic review [71] and a Cochrane 

review [72] have suggested that patients with evening dosing of antihypertensive 

drugs had better 24h BP control than those with a morning dosing regimen. 

Although the clinical significance of night-time administration needs to be explored 

further it does emphasize the need to be able to quantify the immediate effect of 

ingesting an antihypertensive drug so that we have the ability to compare different 

drug classes.  

 

Summary 

The primary focus of the management of hypertension to date has centred on 

lowering mean BP with little consideration for other factors, such as BPV, maximum 

BP reached, episodic hypertension or its circadian pattern. Hypertension guidelines 

have only focused on mean BP, which is clearly important, but fail to mention BPV 

[17]. As ABPM is more widely available and we begin to collect more and more 

data, it begs the question of whether we are maximising the rich data available. 

Recently published ABPM guidelines have highlighted that most ABPM studies have 

reported results derived from investigating mainly one unique ABPM characteristic, 

e.g., either a BP mean value, or a variability measure, or morning surge, without 

comparison or appropriate adjustment for the prognostic value of additional ABPM-

derived characteristics [73]. It is clear that the full potential available from ABPM 

measurements is not currently being explored. This thesis explores current 

approaches and suggests novel alternatives to capture circadian BP patterns. 
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1.2 Study Design – Motivating Dataset 

The motivating ABPM data for this thesis comes from a study examining the 

prevalence of major CVD risk factors in a middle-aged population in Ireland. The 

analysis utilises existing data obtained from the Mitchelstown Cohort Study, a 

population based study of middle-aged men and women, recruited in Ireland in 

2010-2011. A detailed description of the study design is available elsewhere [74] 

but a summary is provided here. 

The primary aim of the study was to provide a profile of cardiovascular health and 

their related factors in an Irish adult general population sample. The study 

comprised of 2047 adults aged 47-73 years (response rate: 67%) recruited from 

patients attending a single large primary care centre, the Livinghealth Clinic (LHC) in 

Mitchelstown, County Cork. The clinic is a GP developed independent advanced 

Primary Care Centre. The clinic serves a catchment area of 20,000 people, with a 

mix of urban and rural residents. At baseline, participants completed a detailed 

health and lifestyle questionnaire and were invited to attend the LHC for a physical 

examination to be carried out by a nurse trained in the study research protocols. 

Clinic measurements included height, weight, BP and in addition, fasting blood 

samples (minimum of 8-h fast) and urine samples were collected. Participants also 

underwent standard 12-lead electrocardiogram (ECG). ABPM was offered to all 

2047 participants, and it was completed by 1207 (response rate: 58%). All 

participants provided written informed consent and ethical approval was obtained 

from the Clinical Research Ethics Committee of the Cork Teaching Hospitals. 

 

BP measurement 

With the participant in a seated position, study BP was measured using an OMRON 

M7. Three readings of BP were obtained and the average of the second and third 

measurements was used. ABP was measured using dabl ABPM system (dabl ltd., 

Ireland) with the Meditech ABOM-05 Monitor (Meditech LTD., Hungary). The 

monitors were programmed to obtain readings every 30mins and remained in place 



27 
 

for 24h. Participants kept diaries of wake and sleep periods, which were used to 

calculate day and night BP respectively. If no diary was kept, the period from 1am 

to 6am was used as the night period and from 9am to 9pm as the day period.  

Subclinical Target Organ Damage (TOD) 

To explore the prognostic value of BPV and for purposes of illustration of some of 

the methods, subclinical TOD is used as a surrogate marker of cardiovascular events 

where the association between BPV and TOD is investigated.  Subclinical TOD, 

which is the development of asymptomatic functional and structural abnormalities 

in the human body, often precedes the occurrence of major cardiovascular events 

[75]. It usually refers to damage that occurs in major organs fed by the circulatory 

system e.g. heart, kidneys, brain and eyes. As they are subclinical, they are nearly or 

completely asymptomatic i.e. showing no signs or symptoms. Two examples of TOD 

are microalbuminuria (kidney) and LVH (heart). 

Microalbuminuria is the persistent elevation of albumin in the urine [76]. It occurs 

when the kidney leaks small amounts of albumin into the urine. Specifically, it 

signals increased permeability (capacity of a blood vessel wall to allow for the flow 

of small molecules or whole cells in and out of the vessel) of the endothelial cells 

and signifies that some level of injury is present and vascular responsiveness is 

comprised [76]. It is a marker of increased risk for cardiovascular morbidity and 

mortality especially, but not exclusively, in high risk populations such as diabetes 

and hypertensives [77].  Microalbuminuria is measured in spot morning urine 

obtained from the patient and sent for measurement of both albumin and 

creatinine. A meta-analysis in 2010 demonstrated increased risk of mortality with 

urine - albumin:creatinine ratio (ACR) ≥ 1.1 mg/mmol and as a result 

microalbuminuria was defined using this cut-point [78].   

LVH is enlargement and thickening (hypertrophy) of the walls of the heart’s main 

pumping chamber (left ventricle). LVH can develop in response to factors such as 

increased BP or a heart condition that causes the left ventricle to work harder. 

Complications of LVH include atrial fibrillation, diastolic heart failure, systolic heart 

failure, and sudden death [79]. Both earlier recognition and improved 
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understanding of cardiac hypertrophy may lead to more effective therapeutic 

strategies for this cardiovascular risk factor [79]. An electrocardiogram (ECG) is 

usually used to detect the presence of LVH. In this study, a 12-lead ECG was 

obtained in the standard manner using a Siemens – Eclipse 850i machine. ECGs 

were reviewed and coded for LVH voltage criteria by a cardiologist. The presence of 

LVH was defined by Cornell Product ECG voltage criteria i.e. SV3 + RaVL (+6 in 

women) X QRS duration ≥ 2440 mm x ms [80]. 

Reproducibility Sub-study (Follow-up Data) 

Based on the initial ABPM results the sample was divided into 4 groups: 

normotension, isolated nocturnal hypertension, isolated daytime hypertension and 

day-night hypertension [81]. Twenty participants were randomly selected from 

each group and invited to attend for follow-up ABPM measurements in 2014 using 

the Spacelabs 90217 monitor. Data was stored using the Spacelabs 92506 

Ambulatory BP Report Management System software. At four years follow-up a 

subsample of fifty (response rate: 63%) of these participants consented to 

participation in this study. The mean period of follow up was 3.9 years. 
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1.3 Aims and Objectives  

The aim of this thesis was to explore and identify circadian BP patterns between 

individuals and groups, and extract meaningful measures that describe these 

patterns. 

Specifically the objectives were:  

1. To conduct an extensive literature review to determine current summary 

measures that is used to quantify BPV and explore their association with the 

presence of TOD, specifically LVH. 

2. To determine the association between short-term BPV extracted from 24h 

ABPM and subclinical TOD in middle aged adults based on the measures 

found in (1). 

3. To implement models that adequately describe patterns of BP and which 

can provide novel measures of short-term BPV taking into account the full 

temporal and circadian nature ABPM.  

4. To outline an approach that can be used to comprehensively interrogate the 

reproducibility of ABPM readings taken at two different occasions 

incorporating some of the approaches outlined in (3). 
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1.4 Thesis Outline 

This thesis is comprised of four papers, Figure 1-1 illustrates each aim and objective 

and the corresponding chapter.  

This thesis focuses on extracting features of longitudinal data, specifically data that 

is circadian. Although the focus is BP, the methods covered could be easily applied 

to other physiological processes that follow this circadian cycle. Chapter 2 first 

outlines approaches suitable for modelling longitudinal data in general but then 

focuses on specific techniques that may be appropriate for BP. 

Chapter 3 is a systematic review that examines the prognostic significance of short-

term BPV on the presence of TOD, specifically LVH. The review identifies variability 

summary measures that are currently used to quantify BPV. A meta-analysis 

exploring the correlation between short-term BPV and left ventricular mass index 

(LVMI) is included.  

Chapter 4 explores the association between short-term BPV over 24h and 

subclinical TOD in middle aged adults using data from the Mitchelstown study. 

Chapter 5 illustrates a method of describing and quantifying circadian BP patterns 

using piecewise linear mixed-effects models while ensuring periodicity. 

Chapter 6 examines the traditional ABPM model (cosinor) using random-effects and 

illustrates how it can be extended and used as a method to determine morning BP 

surge. The model is compared to a functional principle component analysis.  

Chapter 7 explores approaches to determine the reproducibility of ABPM 

trajectories taken at two different occasions. 

Chapter 8 summarises the findings from the analysis, discussed the strengths and 

limitations of the thesis, and makes some suggestions for future research.  
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Figure 1-1 Overview of thesis including aims and objectives. 
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2. LONGITUDINAL DATA ANALYSIS & APPLICATION TO 
ABPM 
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2.1 Chapter Overview 

This chapter introduces hierarchical and specifically longitudinal data structures. 

This is followed by a detailed description of statistical techniques available that are 

suitable for the analysis of ABPM both in terms of accounting for the longitudinal 

nature of the data but also methods that are capable of capturing non-linear 

circadian BP curves. A graphical illustration of each technique is presented using the 

motivating dataset as an example. This is followed by a summary of its application 

in the literature, paying particular attention to the use of the technique to analyse 

BP data. Particular attention is drawn to the techniques used in this thesis; however 

alternative methods are described briefly. A comparison of the different 

approaches is given at the end the chapter. 

2.2 Overview of Longitudinal Data 

Many epidemiological studies have a natural hierarchical data structure associated 

with them where there are different levels of information. For example, data from a 

number of different hospitals would comprise of hospital level information but 

within each hospital (or cluster) we could have patient level information. The term 

hierarchical (or nested/multilevel) data is given to data with this structure. 

Longitudinal data (panel data or repeated measures) can be considered a special 

case of hierarchical data where a sample is followed up over time with information 

collected at several occasions or time points. This type of data can be considered as 

a two level cluster where there are repeated measurements (level 1 units) with a 

natural ordering nested within individuals (level 2 units). It is important to highlight 

the natural ordering of the measurements which are not exchangeable, unlike for 

example patients nested within hospitals. Recognising both the hierarchical 

structure of the data points and the natural ordering in time of the data points is 

critical. Measurements within clusters or subjects will tend to be more similar than 

measurements from different subjects. In addition, the ordering of time points 

means that within-subject readings close together may be more correlated than 

points further away. Both issues of correlation must be accounted for in the 

analysis and renders traditional regression analysis techniques, which assume 
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independence of observations for non-hierarchical data to be inappropriate. ABPM 

is a perfect example of such hierarchical data where there are many repeated BP 

readings on an individual taken over a 24h period with a natural order (in time) to 

the observations. An example of four individual ABPM readings from the 

Mitchelstown ABPM dataset is provided in Figure 2-1. 

 

Figure 2-1 Example of four individual ABPM readings  
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2.3 Statistical Approaches for Modelling Longitudinal Data 

Before the specific analysis of ABPM is introduced, a general description of 

statistical approaches for the modelling of longitudinal data is outlined.  

There have been substantial developments in statistical methodology for the 

analysis of longitudinal data over the last 40 years. One of the key drivers has been 

improvements in technology which means computationally complex problems can 

now be solved in a fraction of the time taken previously. This, coupled with 

increased widespread availability of software programs and packages which are 

becoming more and more accessible to users, means researchers have access to a 

variety of more rigorous approaches for the analysis of longitudinal data [82]. Two 

of the most widely used approaches are generalised estimating equations (GEE) 

models [83-85] and mixed-effects models [86, 87]. As both methods make an 

adjustment for the dependency of the observations within an individual, both are 

suitable for the analysis of longitudinal data. However, there are differences in how 

both methods adjust for this correlated data leading to different model 

assumptions. In addition, the two models can be implemented to answer different 

questions relating to longitudinal data.  

Generalised Estimating Equations  

GEE models (or marginal models) are often referred to as population-average 

models where the target of inference is the population [88]. The term marginal is 

used as the focus is on the mean response, which depends only on the covariates of 

interest and does not specify the joint distribution of the individual’s observations. 

An important point in the analysis of marginal models is that the mean response 

and the within-subject association are modelled separately. The latter is referred to 

as a nuisance characteristic that must be accounted for in the analysis so that 

correct inferences about the changes in the population mean response (primary 

goal) can be made [88, 89]. Separately modelling the mean response and the 

within-subject association has the important implication that the regression 

coefficients derived from GEE models have population-average interpretations, 

where they describe features of the mean response and how these relate to 
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covariates.  GEE uses a partial-likelihood approach to estimate the parameter of 

interest.  

A GEE model can be defined as the following three-part specification [88]: 

The marginal expectation of the response, E(Yij|Xij) = µij, depends on the covariates, 

Xij, through a known link function  

   (   )          
   (1) 

 

The variance of each Yij, given the covariates, depends on the mean  

                        (2) 

where v(µij) is a known “variance function” (known function of the mean, µij) and   

is a scale parameter that needs to be estimated when the response is continuous 

[88].  

The pairwise (or two-way) within-subject association among the vector of repeated 

responses, given the covariates, is assumed to be a function of the means, µij, and 

an additional set of within-subject association parameters, α. Given a model for the 

pairwise correlations, the corresponding covariance matrix can be constructed as 

the product of standard deviations and correlations 

      
   

          
   

  (3) 

where Ai, is a diagonal matrix with                       along the diagonal (and 

Ai
1/2 is a diagonal matrix with standard deviations, √        , along the diagonal), 

and Corr(Yi) is the correlation matrix (here a function of α). To distinguish it from 

the true underlying covariance among the Yi, Vi is known as a working matrix which 

acknowledges the uncertainty about the assumed model for the variances and 

within-subject associations. Unless they have been modelled correctly, our model 

for the covariance matrix may not be correct [88]. 

The GEE estimator of β for marginal models (or generalised linear models for 

longitudinal data) can be obtained by minimizing the following function (where N is 

the sample size): 
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 (4) 

It can be shown that if a minimum of the function given by equation (4) exists then, 

it must solve the following GEE: 

 
∑  

   
            

 

   

 (5) 

where Di =          is the derivative matrix containing the derivative of µij with 

respect to the components of β [88]. 

 

Mixed-Effects Regression Models 

While GEE models are focused on inference for the population, mixed-effects 

(subject-specific) models target inference at the individual level. The full-likelihood 

approach associated with mixed-effects models provides estimates of subject-

specific effects (e.g. subject-specific trajectories) that are useful for understanding 

between individual variability in the longitudinal response [82]. These are known as 

random-effects which are coefficients that are allowed to vary between individuals 

(clusters). The estimation of the random-effects determines the subject-specific 

curves and explains the correlation structure of the longitudinal data [90]. Mixed-

effects models allow us to estimate both the degree of variation within a person 

(within-subject variation) and in the population of individuals (between-subject 

variation) [82].  

The simple linear mixed-effects model [86-88], which is an extension of the simple 

linear regression model, can be written as: 

                            (6) 

where yij is the response value for the jth measurement on the ith subject, at time tij, 

the β’s are the fixed effects coefficients associated with the population (average) 

intercept at β0 (equivalent to linear regression model) and the population slope (β1), 

b’s are the random-effects where b0i and b1i are the intercept and slope deviations 
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respectively for the ith subject, and eij represent the individual-level residuals from 

the model. A comparison between the traditional linear regression and the linear 

mixed-effects model is presented in Figure 2-2 where we have a response (y) 

plotted against time (t). In the fixed-effects linear regression plot all observations 

are considered independent. However, in reality the data may be clustered with 

repeat readings on different subjects, represented as colour coded dots in the 

mixed-effects plot. The black line represents the population average which is 

described by intercept β0 and slope β1 in the model. In addition, each individual 

obtains their own random-effects (b0i and b1i) which can be added to the 

population coefficients to obtain subject-specific curves (Figure 2-2).  

 

Figure 2-2 Illustration of simple linear regression model and simple linear mixed 
effects model where the data are clustered 

The individual level residuals are assumed to be independent and have mean zero 

and variance 2. It is assumed the random-effects have zero mean and follow a 

bivariate normal distribution with a variance-covariance matrix Σb: 
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 ] (7) 

where 2
b0 and 2

b1 represent the between-subject variation of the intercept and 

slope random-effects respectively. The magnitude and direction of the covariance 

term (b0b1) gives information about the interaction between the random slope and 

intercept. In Figure 2-2 subjects with a high intercept have a steeper slope, giving a 

positive correlation between b0i and b1i, resulting in a positive covariance. 

Accounting for this is an important aspect of longitudinal modelling. 

Although the model presented above is quite flexible some of the assumptions may 

be too restrictive when examining certain data structures. It can however, easily be 

extended to accommodate many situations. Like linear regression, the model can 

adequately make adjustment for confounding variables. The model assumes the 

response changes linearly over time but for many biological processes, the mean 

profile is a non-linear function of time [91]. One approach is to model the non-

linearity by including non-linear functions of time such as quadratic or cubic terms. 

It is important to note the model will remain linear in the random-effects. There are 

however, many other alternative approaches for modelling the mean (see section 

2.4).  

One of the defining properties of linear mixed-effects models is that it allows for 

the explicit analysis of between-subject and within-subject sources of variation i.e. 

the random-effects covariance structure can be explicitly defined [88]. This 

essentially involves defining two separate variance-covariance structures, one for 

the random-effects across subjects and one for the within-subject random errors 

[92]. This can be illustrated by rewriting the variance of b’s (random-effects) and eij 

(random errors) in matrix form: 

 
    (

  

  
)  (

  
   

) (8) 

where G is the variance-covariance matrix for the random-effects across subjects. 

This is equivalent to the variance-covariance matrix defined in equation (6).  The 

matrix Ri is the variance-covariance matrix for the within-subject random errors. 

The bi (random-effects) and ei (random errors) are assumed to be independent. As 
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assumed in the mixed-efffects model above, the Ri matrix is often simplified as 2I, 

where I is the identity matrix, assuming within-subject random errors to be 

conditionally independent with homogeneous variance, that is, they are 

independent conditional on the bi random-effects which accounts for the 

intraindividual correlation [90, 92]. In order to get the total variance of yi, we first 

rewrite the simple linear mixed-effects model (equation (6)) in matrix form where 

the response is given as: 

                  (9) 

where Xi and Zi are design matrix of covariates. From this, the total variance (Vi) 

becomes: 

         
      (10) 

By constructing the design matrix Zi and specifying structures for G and Ri matrices, 

the variance of repeated measurements can be adequately specified in linear mixed 

models [92]. The subscript i on the Vi matrix indicates that the total variance-

covariance matrix depends on the subjects covariates. Under matrix notion the 

repeated measurements of the response Yi follows the following multivariate 

normal distribution: 

          
        (11) 

where β is a vector of the population parameters, with the first element 

representing the intercept. 

The structure of G is often left unspecified when more than one between-subjects 

random term is specified in a linear mixed-effects model. When there is no explicit 

structure assumed, it is referred to as an unstructured pattern. This has the 

advantage that no assumptions have to be made about the variances and 

covariances of the random-effects [88, 92].  

Regarding the Ri matrix, Fitzmaurice et al. argue that in their experience of 

longitudinal data, variances are rarely constant over time and emphasize the 

benefits of the absence of restrictions on the variances [88]. Ideally we would like 

to use a unstructured pattern for all models but the number of parameters that 
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have to be estimated grows rapidly with the number of measurement occasions. 

This can affect the computational stability; where a large number of covariance 

parameters need to be estimated, relative to the sample size (both subjects and 

repeat readings), estimation is likely to be unstable [88]. There are alternatives that 

try to simplify the problem such as the compound symmetry or exchangeable 

structure that specifies that observations on the same subject have homogeneous 

covariance and variance. Other structures can be specified for the Ri
 matrix such as 

Toeplitz or autoregressive residual structure where the correlation between 

observations on the same subject are not equal, but decrease towards zero with 

increasing lag.  We are not confined to these structures however. For example, the 

between-subject or within-subject variation could increase or decrease over time in 

which case the variance could be modelled as a function of time [93]. A similar 

situation could arise where we allow variation to vary depending on a grouping 

variable [94]. Selecting the appropriate structure involves finding a compromise 

between over fitting and under-fitting the model which results in a parsimonious 

model. Liu suggests the structure can be selected according to theory or empirically 

[92] while Zuur et al. emphasizes that it is “important to model the correlation 

structure in a reasonable and meaningful way rather than to model the correlation 

structure perfectly” [93].  

The parameters from a mixed-effects model (fixed coefficients, variances, 

covariances) can be estimated by a number of methods. Maximum likelihood (ML) 

is the best known technique of obtaining estimates of unknown parameters. The 

maximum likelihood estimates (MLEs) of the parameters are the values of the 

parameters that maximise the likelihood function (i.e. the values of the parameters 

that make the observed values of the dependent variable most likely, given the 

distributional assumptions) [95]. For the case of the linear mixed-effect model, it 

can be shown by obtaining the likelihood of the multivariate normal probability 

density functions of the model that the log-likelihood function is defined as:  
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The natural log is introduced to simplify the mathematics as it converts the product 

of the individual density functions to a sum of log-density functions. In the case of 

linear regression (independent observations), maximising the likelihood function 

results in estimates that can be solved relatively easily as the equations have closed 

form solutions. In the case of linear mixed models, ML estimation can involve non-

linear equations for which there is no closed form solution for the parameters [93]. 

Instead, the ML estimates can be obtained using an iterative technique. There are a 

number of different algorithms that can be applied to obtain MLEs including 

iterative generalised least squares and iteratively re-weighted least squares which 

are discussed in detail elsewhere [94]. One drawback of the ML approach is that the 

estimates for the parameters of the covariance matrix are biased by a factor of (n-

2)/n. The reason for this is because it ignores the fact that the intercept and slope 

are estimated [93]. Restricted (or residual) maximum likelihood (REML) estimation 

was developed to address this problem based on a slight modification on the 

likelihood above where it is defined only in terms of the covariance matrix Vi, thus 

separating it from β (estimated parameter). It is recommended to use REML over 

ML when possible as it will provide less biased estimates, although it is less of an 

issue with significantly large sample sizes [88].  

The likelihood ratio tests (LRT) can be used for hypothesis testing. The LRT 

compares the maximised log-likelihood of two models, a full model with a nested 

model. A formal test is obtained by taking twice the difference in the maximised 

log-likelihood and comparing the statistic to a chi-squared distribution [88]. Despite 

the recommendation to use REML, in order to be able to compare models using LRT 

we first estimated the models using MLE to obtain ML solution. 
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Comparison of GEE and Mixed-Effects Analysis 

GEE models use partial-likelihood methods to estimate parameters of interest 

whereas mixed-effects models are based on full-likelihood methods. The 

advantages of partial-likelihood is that they are computationally easier than full-

likelihood methods and they do not require distributional assumptions for the 

observations as there is no specification of the joint distribution, only the mean 

response [82, 88]. One of the appealing properties of the GEE approach is that 

when the data is balanced and under the condition that the mean response is 

modelled correctly, it produces consistent and unbiased estimates of regression 

parameters and corresponding standard errors even when the covariance structure 

is misspecified [88, 96]. This robustness can be attributed to the use of the 

empirical or sandwich estimator [97, 98] which produces valid standard errors for 

the parameters of the model even when the assumed covariance among the 

repeated readings is not correct. However, Fitzmaurice et al. argue that correctly 

specifying the covariance structure makes optimal use of the available data for 

estimation of the parameters of interest [88]. One of the main drawbacks of the 

sandwich estimator is that it is best suited to balanced longitudinal designs where 

there are a large number of individuals with a small number of observations. In 

situations where the design is severely unbalanced, with each individual having a 

unique sequence of measurement occasions in addition to having few subjects, 

sandwich based standard errors can be biased downward and result in 

underestimation of the variance of the regression coefficient [88]. For linear models 

with balanced data, GEE coefficients and the fixed-effects coefficients from a 

mixed-effects model will yield the same values. However, they are not equivalent 

for non-linear models [88]. By comparing the GEE function in equation (4) and the 

mixed-effects function in equation (12) similarities between the two can be seen. 

The larger mixed-effects function is essentially the GEE function with an additional 

variance component. 

One of the key advantages of random-effects models over other techniques (e.g. 

GEE models, traditional analysis-of-variance approaches) is that they make full use 

of all available data from each individual and do not require balanced datasets. GEE 
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assumes that missing data are missing completely at random (MCAR). Full-

likelihood estimation random-effects rely on a weaker assumption that missing 

data are missing at random (MAR). Missing data are known to be completely at 

random (MCAR) when their absence is not related to both the observed and 

unobserved data [99]. MAR however refers to missing data that depends on 

observed data but not on unobserved data [99]. In the case of random-effects, 

missing data are ignorable if the missing responses can be explained either by 

covariates in the model or by the available responses from a given subject [82, 88]. 

A mixed-effect analysis does not require a balanced dataset because the covariance 

can be expressed as an explicit function of times of measurement (when times of 

measurement, or functions of time are included in Zi) [88]. In theory each individual 

can have their own unique sequence of time points. Additionally as highlighted 

previously, random-effects can allow the variance and covariance to be modelled as 

a function of time unlike other techniques which force the variance to be constant 

over time. Unbalanced data can however, have implications on specifying the 

autocorrelation residual structure when there are irregular gaps making it 

necessary to parameterise the autocorrelation function (ACF) explicitly [91]. For 

example, applying a continuous autoregressive error (CAR) structure is similar to 

applying a autoregressive structure but uses the actual value of measurement time 

which helps account for the issue of unbalanced data [94, 100].  

It is the ability to estimate both between and within-subject variation that makes 

the use of mixed-effects models so appealing for the analysis of ABPM in general, 

but also specifically to help answer the questions posed in this thesis where the 

focus is on obtaining population and subject-specific measures of BPV and 

quantifying this variation both between and within individuals. For this reason the 

use of mixed-effects models is preferred over the GEE approach in this thesis.  
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2.4 Statistical Approaches for Modelling Individual ABPM Profiles 

This section explores different approaches for modelling ABPM using random-

effects models from which variability measures can be obtained. Previous 

longitudinal modelling approaches to ABPM from the literature are discussed as 

well as suggesting other novel techniques. A comparison of the suggested 

techniques is also included at the end. 

Summary Measures of BPV 

The simplest form of random-effects is in essence subject-specific summary 

parameters, where the parameter is random. The idea is that multiple 

measurements on an individual are collapsed into one (sometimes more than one) 

summary measurement which is an estimate of a subject-specific measure. This can 

then be related to an outcome measure. The advantage of this method is that data 

with a longitudinal structure are converted to a cross-sectional problem where 

traditional regression techniques are valid without worrying about correlation 

between readings. This can lead to straightforward analysis and does not require 

statistical knowledge of multilevel modelling.  

With the focus of the thesis on patterns of BP, summary measures in this context 

relate to short-term summary measures of variability, as opposed to say mean BP 

values. As highlighted in Chapter 1, summary measures have been the focus of 

much of the literature to date in relation to short-term BPV. This simple approach 

can also be considered a simple two-stage model where the summary measures of 

variability such as SD over 24h, are obtained first (first-stage) and then these values 

are entered into a subsequent second model (second-stage), such as a logistic 

regression model, exploring its effect on an outcome such as TOD. The main 

disadvantage of this method is the loss of information as the statistical power 

associated with longitudinal data is removed by collapsing the data into one value. 

The other issue is that quantifying variability is difficult as highlighted in Chapter 1 

and attempting to do this with one measure makes the task significantly more 

challenging. Nevertheless, this does not mean that summary measures should be 

discarded. In fact many ABPM software programs routinely include estimates of 
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variability measures such as SD (dabl ABPM system, dabl LTD, Ireland) in their 

reports and are an important reference point. Because of the ease with which these 

can be obtained and included in an ABPM report, the exploration of suitable 

summary measures that capture variability deserves substantial attention prior to 

exploring more complex methods. For this reason Chapter 3 is a systematic review 

identifying summary variability measures while Chapter 4 applies these measures 

to our dataset and explores their association with TOD.  

 

Polynomials  

As is evident from Figure 2-1, like many biological processes, BP is not linear over 

time. Polynomial regression is a simple, but useful tool in the analysis of 

longitudinal medical data to cope with non-linear or curvilinear relationships [101]. 

The general principle of polynomial regression is to use increasing powers of time 

(t) as separate predictor variables to model the mean of the response variable of 

BP. For an individual, the model can be expressed as: 

                       
           

      (13) 

 

where BPij is the BP value for the jth measurement on the ith person, at time tij, the 

β’s are the polynomial regression coefficients that comprise of the average fixed-

effect and the subject-specific random effect. The ej represents the individual-level 

residuals from the model.  

This model can be problematic however as the powers of t will be correlated, often 

quite highly so, which may not only lead to multicollinearity issues but also 

software convergence difficulties. Some of these issues can be overcome by 

centring the predictor variables, time in our case [102]. However, a better approach 

is to transform the powers into orthogonal polynomials, an equivalent set of 

predictor variables which are uncorrelated. These contain the same information, 

address the issue of collinearity while also helping to reduce the problem of 
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convergence. To illustrate the flexibility that can be obtained from polynomial 

analysis, raw data were plotted for four individuals along with the fitted values 

from a 6th order polynomial model, Figure 2-3. 

 

Figure 2-3 Raw data for four individuals along with predicted 6th order polynomial 
model 

Corrao et al. implemented a 3rd degree polynomial on ABPM and demonstrated 

that the prevalence of TOD (LVH or ischemia) was higher in hypertensives with 

absence or inversion in BP circadian rhythm compared with hypertensives with 

preserved BP circadian rhythm [103]. Zwinderman et al. found that a 4th order 

polynomial fitted ABPM data quite well and could obtain trough-peak values from 

the predicted curves which could be used to compare antihypertensive medication 

but the sample size was a major limitation (n=10) [104]. More recently, Edwards et 

al. utilised a linear mixed model with orthonormal polynomials across time in both 

the fixed and random-effects in a group of hypertensive subjects [49].  Edwards 

demonstrated that a 9th order polynomial was the best fit to the data. Although a 

9th order is unrealistic, Edwards correctly argues that using high order polynomials 
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is a valid method to smooth individual trajectories eliminating excess “noise” and 

providing researchers the ability to construct additional measures of 24h ABPM.  

Splines – Cubic and restricted cubic splines 

Another approach commonly used for modelling non-linear data involves the use of 

regression splines. Polynomials and regression splines are intrinsically related. 

Regression splines involve splitting a continuous covariate (usually time) into 

separate sections. Within each section a polynomial is fitted, and the fitted values 

from each section are then connected to form a smooth curve [93]. The points 

where these meet are known as knots. To ensure that there are smooth 

connections at these knots, certain conditions are imposed. In the instance when 

there are no knots, the function is a special case of regression splines and the 

function reverts to being a simple polynomial model. When a cubic polynomial is 

fitted within each interval it is known as a cubic regression spline with the 

constraint that it is has continuous first and second derivatives at each knot point. 

This is the most common type of spline but there is an array of splines now 

available in different software packages including B-splines, penalised splines, 

natural splines, thin-splines and smoothing splines, all of which have the capacity to 

produce well-fitting curves to non-linear data [105].  

In the context of ABPM, Selwyn et al. used a hierarchical model incorporating a 

cubic spline model with eight knots [106] to model mean BP profiles. Lambert et al. 

expanded on this by incorporating restricted cubic splines to model the mean BP 

profiles [48]. Restricted cubic splines are an extension of regression splines with a 

constraint that the tails are linear. An unrestricted regression spline will have four 

more parameters to estimate than that of a restricted spline with the same number 

of knots. Figure 2-4 illustrates a cubic and restricted cubic curve. The assumption of 

linear tails is suggested as often there are sparse data at tails and suggesting that a 

polynomial fits this data best can be dangerous or unrealistic.  

Both polynomials and cubic splines, by their nature, have the ability to produce 

well-fitting curves to the data. Increasing the degrees of freedom/knots that are 

added to these models inevitably increases the fit but can lead to over fitting of the 
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data. The main disadvantage of polynomials and splines is that the corresponding 

coefficients are challenging to interpret directly.  Moreover, interpretation becomes 

more difficult with increasing complexity in the model when the number of 

parameters increases. Also, when the current sample data is over fitted it can also 

lead to difficulty in extrapolating to other data. However, using these methods to 

obtain smoothed curves from which new ABPM measures can be extracted is one 

practical way of using them. Although this approach was not considered as a 

separate chapter in the thesis, this method was applied to the dataset using a 6th 

order polynomial (see Appendix A for details and results). Briefly, the maximum, 

minimum, number of minutes spent above certain hypertensive guidelines and 

variation about the curve (residual sums of squares) were calculated as measures of 

variability from the subject-specific fits from the polynomial random-effects model. 

The association between the extracted BPV measures and the presence of 

microalbuminuria was assessed using logistic regression with adjustment for age, 

sex, smoking status, BMI, diabetes and antihypertensive treatment. Additional 

models adjusted for mean BP. We found all measures were significantly related to 

microalbuminuria but the association did not persist after additional adjustment for 

mean BP. 
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Figure 2-4 Illustration of cubic and restricted splines 

 

Splines – Piecewise Linear Splines 

In addition to the previous approaches a method that allowed direct meaningful 

interpretation of regression coefficients was a requisite of this thesis. Piecewise 

linear splines in a mixed-effects model were explored as an alternative approach for 

modelling ABPM. This approach can be seen as a simplification of the principle idea 

of smooth regression splines where a BP pattern is broken into different segments 

of time over the 24h period. Rather than fitting polynomials between knot points 

however, linear splines (straight lines) are used to connect knots. These simple 

spline models are known as piecewise linear or “broken-stick” models. The benefit 

of this simple modification is that coefficients represent something meaningful, in 

this case the slope of BP at different periods of the day. Applying piecewise linear 

splines in a mixed-effects model allows us to obtain new measures of short-term 

BPV; the variation about an individual’s trajectory and also the variation in slopes 
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between individuals. This method also allows slopes at a group level to be easily 

compared. Although linear splines have been used extensively in growth models 

[107, 108] and even specifically to model BP change over years and gestational age 

[109], using them to explore daily patterns of BP represents a novel application for 

analysing ABPM data. 

A full analysis using piecewise linear splines on ABPM curves is presented in 

Chapter 5 but a brief illustration is given here. For each individual m linear splines 

can be created, where the kth spline: 

 sk (t) = 0 if t ≤ tki 

sk (t) = ti - tki if tk < t ≤ tki+1     for 

k=1,…,m 

  sk (t) = tki+1 - tki if t > tki+1 

(14) 

 

These can easily be incorporated into the linear mixed effects model outlined 

previously: 

 
               ∑           

 

   

      (15) 

 

Figure 2-5 illustrates an example of piecewise linear splines on individual ABPM 

curves. As Howe et al. explain there are a number of methods to determine the 

number and position of knot points [91]. One option is to place knot points at 

centiles of the distribution of the x-axis (time in this case), or implement a stepwise 

regression to select knots where there is statistical evidence of a difference 

between slopes either side of the knot point [110]. Obtaining a smooth curve for 

the data and extracting derivatives of this curve represents another approach to 

help inform the number and positions of knot points [111].  

Crucially Howe et al. argue that subject knowledge of the underlying physiological 

process being examined can help the choice of knot point positioning [91]. 

Considering the circadian nature of BP, this is especially relevant for the analysis of 
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ABPM where we try to incorporate prior known characteristics of BP, see Chapter 5. 

Alternatively, the data itself can help decide knot positions [91]. There is no perfect 

way to determine the number and position of knots but in order to keep the 

number of parameters that have to be estimated to a minimum it is important to 

try and have as few knots as possible.  Again, similar to picking the correct 

covariance structure, it is about achieving a compromise between over fitting and 

under-fitting the model which results in a parsimonious model.  

One issue with these methods is there is no constraint to force the model to be 

periodic. In Chapter 5, a constraint is introduced and presented for a piecewise 

linear model that ensures periodicity, so that on the average subject-specific BP is 

the same 24h later.  

 

Figure 2-5 Illustration of piecewise linear splines 
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Cosinor Analysis 

Cosinor analysis, which was first developed by Halberg [112, 113], has been the 

most common approach to modelling 24h BP [114-118]. The single-component 

cosinor uses a cosine function as a model for physiological processes that have a 

circadian rhythm:  

            (
   

 
   )       (16) 

 

where M is the MESOR (Midline Estimating Statistic Of Rhythm, the average value 

over the period), A is the amplitude (half the difference between the highest and 

lowest values, or the distance between the MESOR and the highest (lowest) value), 

τ is the period or duration of one cycle, ϕ is the acrophase (a measure of the time of 

the overall high values recurring in each cycle) and e is the error term. Incorporating 

a 24h period and rewriting the equation in a linear form gives: 
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where the amplitude and acrophase can be obtained:  

 
  √  

    
  (18) 

 

         (
  

  
) (19) 

 

A graphical representation of this model fitted to raw data for an individual can be 

seen in Figure 2-6. Cosinor can be incorporated into a mixed-effects model. 

However, the majority of the studies to date exploring the use of sinusoidal 

functions have used fixed-effects models where the inference is on population 
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effects [114-118]. For example, typical inferences are based on estimated 

differences in model parameters between particular groups of patients, such as 

comparing the estimated amplitude or MESOR between-groups (fixed-effects) of 

individuals on different antihypertensive agents [116]. The single component 

cosinor has a number of limitations. It has been suggested that this method 

imposes too many restrictions on the shape of the profile and has been shown to fit 

real profiles poorly [119]. Wang et al. [120] suggest problems with fitting a 

sinusoidal function to a circadian pattern include (i) that the pattern over 24h may 

not be symmetric; that is, the peak and nadir may not be separated by 12 hours 

and/or the amplitude and width of the peak may differ from those of the nadir, (ii) 

sometimes there are local minimum and maximum points. 

 

Figure 2-6 A simple cosinor fit to observed SBP readings of an individual 
(period=24h) 

 

Additionally Wang et al. [121] suggests that the sinusoidal function is too restrictive 

and “rhythms with a shape closely approximating a cosine curve are uncommon” 

[122]. The method has some advantages however; a BP curve can be described with 
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the use of only three parameters that have been shown to be related to clinical 

markers. Also, inherent in the model is the assumption of periodicity – that BP on 

the average is the same 24h later. Extension of the simple cosinor model to include 

multiple sin and cosine terms result in more flexible models and overcome many of 

the disadvantages stated above. Although not as common as the single-component 

cosinor model, attempts to extend the model by including multiple cosine terms 

(Fourier analysis) allow more flexible curves to be obtained which has previously 

been implemented on BP data [123-125]. This is illustrated in Figure 2-7 where a 

complex curve (red curve) can be broken up into a linear combination of sines and 

cosines (blue curves). The main advantage of this method is that many complex 

curves can be obtained by including more terms. However, similar to the single-

component model, the majority of studies to date exploring the use of multiple 

terms have only focused on fixed-effect models [123-125].  A key feature of ABPM 

analysis however is the exploration of subject-specific effects (random-effects) 

where its use in cosinor models has been limited [126]. The fitting of a multiple-

component cosinor random-effects model is outlined in detail in Chapter 6. We 

determine how the rate of change or “morning surge” changes over time by using 

first-order derivatives of the multiple-component cosinor model. To the best of our 

knowledge this is the first use of the cosinor model to determine a measure of 

morning surge. 
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Figure 2-7 Fourier series – a linear combination of sines and cosines can produce a 
complex curve [127].  

 

 

Functional Principle Component Analysis (FPCA) 

Another possible approach to help identify patterns in BP that builds on the idea of 

combining multiple curves outlined in the previous section is a method known as 

functional data analysis (FDA), specifically FPCA [128, 129]. FDA refers to an 

advanced methodology that consists of a set of techniques designed for the analysis 

and smoothing of curves or functions which makes it appealing for analysing 

repeated measures data [129, 130]. In addition one of the major advantages of FDA 

is it does not make any a priori assumption about the curves. Often FDA is applied 

to data with high sampling frequency such as accelerometers, which takes readings 

as regularly as every second of a day. The initial aim is to replace the original 

observations with curves or functions which are then used for further analysis 

[131]. This is achieved by smoothing the data using a set of building blocks ϕk, 

k=1,…,K called basis functions, which are combined linearly [129]. A function x(t) 

can be expressed as a base function expansion: 
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     ∑       

 

   

         (20) 

where c1, c2,…,ck are the coefficients of the expansion, the matrix expression in the 

last term uses c to stand for the vector K coefficients and ϕ to denote a vector of 

length K containing the basis functions. There are two main types of basis systems; 

Fourier series and splines. Spline bases are more flexible and complex than Fourier 

series [129]. There are many types of splines but B-splines are typically used. 

Although Fourier series are generally used for periodic data, splines are flexible 

enough to capture a periodic cycle as long as the order of the spline is large enough 

[129].  

To simplify, FPCA can be considered an extension of traditional principle 

component analysis (PCA) to the case of time series data. For example, rather than 

having separate variables measured on individuals and performing a PCA on these, 

as in the case of standard analysis, we instead have one variable (BP) measured 

multiple times for each individual which creates a time series or “function” over 

time. Each time-point can be essentially considered a variable similar to 

multivariate PCA. As in multivariate statistics, eigenvalues of the bivariate variance-

covariance function are indicators of the importance of the principle components 

and plotting them, known as a scree plot, can help illustrate how many are 

necessary to produce a reasonable summary of the data [129]. Rather than an 

eigenvector, in FPCA there is an eigenfunction associated with each eigenvalue.  

The resulting output is also similar to that of regular PCA with the only difference 

being the focus is on functional data where we can identify the main forms of 

variability in curves [130]. The eigenfunctions describe the major variational 

components. Similarly, FPCA allows for each feature to be expressed in terms of its 

percentage of explained variance. FPCA is the most flexible approach outlined as it 

tries to estimate the “optimal” functions that explain the variability in the data 

without pre-specifying a particular pattern. As opposed to saying the pattern 

follows a certain function e.g. cosine function, it is a data driven process where we 

do not pick the form of the functions. It can be shown that the random function x(t) 

is           ∑        
 
    , where       {    } and    ∫ {     
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    }         are uncorrelated random variables with mean zero and variance λk 

(eigenvalues) [132]. These random variables are the principle component scores or 

loadings. 

As mentioned, FDA has traditionally been implemented on high sampling frequency 

data (e.g. every second) but when there are fewer data points, several FDA 

methods become inefficient [133, 134]. In the case of sparse data, such as ABPM, 

Yao et al. developed a version of FPCA in which functional principle component 

(FPC) scores are framed as conditional expectations which is referred to as principal 

component analysis through conditional expectation (PACE) for longitudinal data 

[134]. In essence this approach is similar to a random-effects model where a mixed 

model framework is used to estimate curve-specific scores and variances. Unlike 

traditional FDA where curves are analysed and smoothed separately first, this 

method first ignores the hierarchical structure of the data and a smooth curve is 

fitted to the pooled data [133]. This estimate of the mean curve is then used to 

obtain the covariance matrix of the deviations from the mean for each pair of time-

points. This covariance matrix is smoothed using a bivariate smoother and the main 

diagonal is removed.  This smoothed covariance matrix is then decomposed 

(summarized) into a linear combination of orthogonal (uncorrelated) eigenfunctions 

and eigenvalues i.e. into its principal components and scores [133]. In the context 

of random-effects models these FPCs can be seen as patterns of within-subject 

variation remaining after the mean fit. The first FPC summarizes the main pattern of 

deviations from the mean trajectory. The second FPC which is uncorrelated to the 

first explains the next main pattern of variation from the mean and so on. 

Therefore, a linear combination of a few efficient functions can account for high 

proportion of the variance. The weights that define the optimal fit to each function 

are the principle component scores. These can be used to obtain individual BP 

curves by multiplying the weights by the functions. Zero scores for an individual 

would result in their trajectory following the mean pattern. The scores would 

usually be estimated through numerical integration but with sparse data, the 

approximation is sometimes deemed inadequate and in this case the scores are 

estimated by the PACE method [133, 134]. Using this method the scores are 
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estimated for each individual using their repeated measures while borrowing 

strength from the cohort with sample estimates of the mean function, covariance, 

eigenvalues and eigenfunctions [133, 134].  

Although similar, this is not the same as a traditional random-effects model. FPCA 

will be inherently more flexible. For example, if we consider a two-component 

cosinor random-effects model as outlined in the previous section – it would assume 

a mean and two cosine terms with two different periods, FPCA however will try to 

estimate the “optimal” functions that explain the variability in the dataset. 

However, if the mean, a one-period cosine and two-period cosine are close to 

optimal then the rest of FPCA and the model fitting will be similar: random-effects 

will be used to estimate the subject-specific coefficients for each of these functions. 

To account for missing data, smoothing (denoising) and interpolation of the ABPM 

data is incorporated in the FPCA instead of a pre-processing step. Missing data can 

be problematic for pre-defined smoothing. To elaborate the process, we first 

estimate the mean and principle component basis functions (common to all ABPM 

profiles) by using all the available data across subjects. Secondly, we estimate 

subject-specific curve loadings by using the data available for that curve, and we 

combine them with the mean and basis functions to estimate the curve over the full 

domain. The issue of missing and sparse data is accounted for in this approach. 

The implementation of FPCA on ABPM as described above is outlined in Chapter 6 

and is compared to the multiple-component cosinor model. The rationale is that by 

using B-spline basis functions it allowed the FPCA to detect the primary patterns in 

the data without exactly specifying a model. In comparing the resulting individual 

FPC scores with the cosinor parameters using the individual random-effects 

estimates it allowed us to determine the adequacy of our proposed simpler 

multiple-component cosinor model. If the FPC scores from the more flexible 

approach correlated well with the cosinor model it would suggest that the model 

was close to the “optimal” model determined by the FPCA and would provide 

support for the use of our model. In addition, the use of FPCA enabled us to 

determine the main patterns of variation in the data and the percentage of the 

total variation that each principle component contributed. This offers a novel 
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method to describe variation within BP that to our knowledge has not been used 

before on ABPM data. 

Other Possible Approaches  

On occasion, there have been other attempts to model ABPM using different 

approaches than those outlined in the previous sections. Degaute et al. attempted 

to quantify the overall 24h variation by building a best-fit curve based on 

periodogram calculations [135, 136]. The method is quite similar to a Fourier 

analysis approach but is optimized for unevenly time-sampled data where trough-

to-peak values can be obtained along with an acrophase parameter. Another 

method that has been purposed is the cumulative sums (cumsums) method [137]. 

This method draws a reference line across an individual’s pattern at their mean 

value, and successive deviations of the data from that line are then summed and 

plotted. It is argued changes in the cusums reveal changes in the trend of data from 

the baseline much more sensitively than do the data themselves [137]. It is argued 

that the values obtained are not restricted to follow a symmetrical pattern or fixed 

period of time e.g. sleep or awake times. The resulting parameters include the crest 

and trough of BP which are similar to the values that can be obtained using the 

amplitude in cosinor analysis. However, multiple-component cosinor is more 

flexible and offers more parameters that describe the curve. 

Another approach proposed to model ABPM trajectories was a method used in 

growth curve analysis literature. Beath introduced a method of data reduction to 

simplify comparisons between individual growth curves by describing a shape 

invariant model of infant weight [138]. Cole et al. extended this to create the SITAR 

model (SuperImposition by Translation and Rotation) [139, 140]. The idea is that 

there is an underlying mean curve which can be applied to all subjects and by 

applying just three subject-specific translations and rotations of the curve, 

individual trajectories can be obtained [140]. In the context of BP and mixed-

effects, the model is: 

 
         (

    

         
) (21) 
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where BPit is BP for subject i at time t, h(t) is a natural cubic spline curve of BP vs 

time, and αi, βi and γi are subject-specific random-effects. Essentially the three 

parameters shift the curve up or down (α), left or right (β), and stretch or squash 

the time-axis (γ) [91]. Although the model has primarily been developed for 

examining data over years (growth curves), it does not mean it is not suitable for 

examining non-linear circadian data. Cole et al. recently applied the model to 

growth curves of insulin-like growth factor 1 (IGF-1) [141]. Unlike height for 

example, IGF-1 follows a curvilinear shape that does not stop when it reaches a 

maximum and is similar in shape to a polynomial (during adolescent years). Despite 

the non-linear pattern of the data Cole et al. found that the model explained 65% of 

the variance in IGF-1 [141].  

A SITAR model was applied to our ABPM dataset. The model summarizes the set of 

BP curves with a mean BP curve as a cubic regression spline, plus the three fixed 

and random-effects (αi, βi and γi) defining how individual BP curves differ from the 

mean curve. Only these three parameters were random, with the spline terms 

fixed. The fitted models used regression splines with seven degrees of freedom. 

Figure 2-8 shows the raw ABPM data plotted against time along with the data re-

plotted after adjustment was made for the subject-specific parameters (αi, βi and 

γi).   

The plot indicates that although it is difficult to see a pattern in the raw data, after 

adjustment a somewhat clearer image can be seen. It suggests that adjusting for 

these three parameters can partially explain some of the variation in BP. These 

random-effects could then potentially be used as pseudo variability measures and 

applied in further models to explore their prognostic significance. One disadvantage 

of the method is that it is not periodic and additional work would need to be done 

to make it so. Furthermore the interpretation and clinical meaning of the three 

parameters that are obtained from the model are not instantly clear. However, if 

we compare the SITAR to the single-component cosinor model and their 

parameters, similarities can be seen between both models.  They both essentially 

have parameters that represent a mean and phase shift (left to right). The SITAR 

also has a stretching parameter which is not directly equivalent but is similar to the 
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period in the cosinor which is fixed. Although not immediately obvious, with a little 

manipulation, the exp(-γi) term could be considered similar to that of the amplitude 

parameter. The main difference between the models is that one uses a cubic spline 

(SITAR) and the other uses a cosine (cosinor) as a function of time. Although the 

parameters from the SITAR model may not seem that interpretable on first glance, 

they do have similarities to the cosinor parameters. However, implementing a 

cosinor analysis over a SITAR model seemed more appropriate for the analysis of BP 

data as the parameters are directly relevant and easier to understand with the 

advantage that the model is naturally periodic.  
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Figure 2-8 Illustration of the SITAR model for SBP over 24h. The black line indicates the mean BP curve.  
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Comparison of Potential ABPM Models 

A number of different approaches to capture circadian BP patterns have been 

outlined and choosing a model amongst them is challenging. The ultimate goal 

remains the development of a physiological model that captures known features of 

the pattern while not over-fitting the data so that we can obtain clinically relevant 

parameters [142]. It is widely acknowledged that achieving this is a difficult task and 

there is no perfect model that captures all the features of the circadian rhythm 

simultaneously [49, 142-144]. To help compare models, Table 2-1 considers the 

main features that are deemed important in deciding on a final ABPM model. It 

reiterates the point that no model is optimal on all of the suggested features and 

choosing one involves making a compromise based on what the researcher deems 

most important for their particular research question.  

We believed the two most important features that should influence our decision on 

model choice were flexibility and ease of parameter interpretability (which included 

clinical relevance). Flexibility referred to the ability of the model to capture the 

circadian pattern in the data. Although, as highlighted previously, summary 

measures such as SD are the crudest form of analysis, their ease of interpretation 

and widespread use (often included in standard ABPM reports) made their inclusion 

in the thesis mandatory (Chapter 3 and 4). By their nature polynomials and splines 

are flexible and can provide good fits to the data that can be particularly useful 

when exploring data. However, they have the problem that their resulting 

coefficients are not directly interpretable (excluding piecewise splines). For this 

reason they were not considered as a separate chapter in the thesis. Piecewise 

linear splines on the other hand are more interpretable and depending on the 

number of knots included can offer a flexible fit to the data. In addition, to the best 

of our knowledge the method has not been applied to ABPM data before thus 

offering novel measures of BPV (Chapter 5).  

Considering the traditional single-component cosinor model has been the most 

commonly used approach for the longitudinal analysis of ABPM, further research in 

an attempt to extend the model seemed warranted for inclusion in this thesis. The 



65 
 

single-component model has the advantage of parameters being easy to 

understand but the disadvantage that the shapes available are very restricted. 

Although a multiple-component model is not as interpretable as a single-

component model, it is still quite intuitive compared to spline models and their 

coefficients. The model also had the benefit of being periodic. For these reasons the 

exploration of a multiple-component cosinor model seemed reasonable (Chapter 

6). 

As outlined, FPCA is the most flexible approach and tries to estimate the “optimal” 

functions that explain the variability in the data without pre-specifying a particular 

pattern. Given a fixed number of functions, it will find the optimal fit. This was used 

in conjunction with the cosinor method to determine how well the model identified 

patterns in the data (Chapter 6).  

Periodogram which has rarely been used is almost identical to Fourier analysis and 

was not considered due to the similarity with the resulting output from a cosinor 

analysis. Similarly, the method of cumulative sums has rarely been used and was 

not considered in the thesis as the resulting output is too similar to that of cosinor 

amplitude values. The SITAR model has never been used on BP data but does have 

similarities to a single-component cosinor model. We felt that the cosinor method 

gave similar output but with easier interpretation and for this reason the SITAR was 

not considered in a full analysis.  
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Table 2-1 Comparison of different modeling approaches for the analysis of ABPM data. 

Modeling Technique  Flexibility Implemented on ABPM  Naturally 
Periodic 

Ease of Parameter 
Interpretability  

Summary Measures 1 Often No Excellent 

Polynomials 2 Sometimes No† Poor 

Splines     

     Cubic 3 Rarely No† Poor 

     Piecewise 2 Never* No† Excellent 

 Cosinor         

     Single-component 1 Sometimes Yes Excellent 

     Multiple-component 3 Rarely Yes Good 
FPCA 3 Never* No Not Implicitly known‡ 

SITAR  2 Never* No Poor 

Periodogram  2 Rarely Yes Good 

Cumulative Sums 2 Rarely No Good 
Flexibility rating: 1,2, 3, where 1 is the least flexible and 3 represents the most flexible; Implemented on ABPM scale: Never, rarely, sometimes, often; 
Interpretability scale: Poor, good, excellent 

*not to the best of our knowledge, †not directly but with manipulation they can be forced to be periodic, ‡Depending on the ease of interpretation of 

the FPCs – this won’t be known until the results are explored 
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3.1  Abstract 

Long term BPV has been associated with cardiovascular events but the prognostic 

significance of short-term BPV remains uncertain, including its influence on the 

presence of TOD, specifically LVH. A meta-analysis exploring the correlation 

between short-term BPV and LVMI was performed. Studies were identified by 

systematic searches in Pubmed and EMBASE. Any summary measure of short-term 

BPV obtained from ABPM was included. Twelve studies were included. SD, ARV, 

wSD and CV across 24h/day/night periods were identified as measures of 

variability. Meta-analysis showed the pooled subgroup correlation coefficients of 

LVMI with 24h SBP SD, day SBP SD, wSD SBP and 24h ARV SBP were 0.22 (95% CI: 

0.12-0.31 ), 0.19 (95% CI: 0.15-0.25), 0.23 (95% CI: 0.13-0.33), 0.37 (95% CI: 0.01-

0.65) respectively. This meta-analysis suggests there is a weak positive correlation, 

between BPV and LVMI. 
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3.2 Introduction 

Hypertension is a well-established risk factor for CVD [3, 145]. To date guidelines on 

the management of hypertension have focused on reducing mean BP, which is 

clearly important, but don’t mention BPV [17], for which there is increasing 

evidence of prognostic value. Evidence from meta-analyses suggest that although 

different antihypertensive-drug classes have similar effects in terms of reducing BP 

levels, pronounced differences in their ability to reduce BPV are observed [61, 62]. 

These differences additionally accounted for effects on stroke risk independent of 

mean BP. Studies have also shown that SBP variation from one visit to the next may 

be associated with a poor cardiovascular prognosis. In treated hypertensive 

patients enrolled in ASCOT-BPLA (Anglo-Scandinavian Cardiac Outcomes Trial–

Blood Pressure Lowering Arm), higher visit-to-visit variability in SBP was associated 

with stroke and coronary events independent of mean BP [25]. In a population 

based observational study higher visit-to-visit variability in SBP was associated with 

increased mortality risk over a 14-year follow-up [38]. Importantly visit-to-visit BPV 

predicted all-cause mortality among those with normal BP, suggesting it may be a 

prognostic marker before hypertension develops. 

Short-term BPV refers to fluctuations of BP across minutes or hours usually taken 

over a 24h period and can be obtained through the use of ABPM [146]. The 

predictive value of short-term BPV is less well established than that of visit-to-visit 

variability. Hansen et al. [33] using a large population cohort (8938 subjects) 

explored the relationship between BPV recorded at base line with cardiovascular 

events over a median period of 11.3 years and determined that although short-

term reading-to-reading BPV was an independent predictor, it did not contribute 

significantly to risk stratification over and beyond 24h BP. Evidence from the 

ASCOT-BPLA trial which included both long and short-term variability suggests that 

although not as strong a predictor as visit-to-visit BPV, short-term BPV measured by 

the CV still predicted risk of vascular events independently of average daytime 

mean SBP [25].  
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The occurrence of major cardiovascular events is usually the result of long-term 

exposure to hypertension and other risk factors and is often preceded by the 

development of asymptomatic functional and structural abnormalities known as 

TOD [75]. Little is known about the influence of short-term BPV on the presence of 

TOD, specifically LVH. LVH can be determined by ECG or quantified more accurately 

by measuring left ventricular mass by echocardiography and indexing this to body 

surface area to give the LVMI [147]. In their seminal paper Parati et al. [27] 

demonstrated that higher diurnal BPV measured as 24h SD was associated with an 

increased risk of LVH (determined by ECG) in 108 mild-to-severe essentially 

hypertensive patients. They also showed that for nearly any level of 24h mean BP, 

subjects in whom the 24h BPV was low had a lower prevalence and severity of TOD 

those in whom BPV was high, indicating an independent association. However as 

highlighted evidence since suggests the predictive value of short-term BPV remains 

unclear and may not contribute much more than mean levels alone [33]. To 

advance our knowledge of short-term variability, this review attempts to assess and 

quantify the correlation between BPV and LVMI. A meta-analysis on the various 

correlation coefficients will be performed.  

 

3.3 Methods 

Types of studies 

Cohort, cross-sectional or case-control studies that explored the relationship 

between 24h BPV and LVMI. 

Study populations 

Participants recruited to observational studies that underwent 24h non-invasive 

ABPM and an assessment of LVMI. Studies of pregnant women and children were 

excluded.  
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Predictor variables  

Any summary measure of short-term BPV, where short-term refers to variations 

across minutes or hours taken over a 24h period obtained by non-invasive ABPM. 

Summary measures refer to those that can be obtained without the need for 

advanced statistical methods. 

 

Outcomes 

LVMI determined with echocardiography. 

Search methods for identification of studies 

Studies were identified by systematic searches in Pubmed and EMBASE (up to June 

2015). The following search terms were used as keywords and/or MESH terms: 

((ambulatory blood pressure) OR (blood pressure) OR (ambulatory blood pressure 

monitoring) OR (short-term blood pressure) OR (24 hour blood pressure)) AND 

(variability) AND ((left ventricular hypertrophy) OR (left ventricular mass index) OR 

((end OR target) organ (damage OR disease))). The full search strategy can be seen 

in the Appendix B which includes different spellings and combinations of words.  

Potentially relevant articles were identified and duplicates were removed. Only 

original research articles were included. We supplemented our electronic search by 

crosschecking the reference lists of all identified studies. There were no date or 

language restrictions. Non-English papers were translated with an online translation 

programme.  The full texts of relevant articles were obtained and an independent 

reviewer reviewed selected papers against the inclusion criteria and assessed their 

quality using the guidelines recommended by Hayden et al. [148] for quality 

appraisal in systematic reviews of prognostic studies. Our systematic review and 

meta-analysis was conducted according to the checklist of Meta-analysis of 

Observational Studies in Epidemiology (MOOSE), and the Preferred Reporting Items 

for Systematic reviews and Meta-Analyses guidelines (PRISMA), see Appendix B. 
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Data Extraction 

The study characteristics extracted included sampling approach, study design, 

sample size, mean age, BPV index and value, mean LVMI, correlation coefficients 

and relative information, such as p-values and if it was indicated that they were 

statistically significant or not. The data was extracted independently by two 

researchers (JMM and AMOF). 

 

 

Statistical Analysis 

For the meta-analysis, correlation coefficients were converted into Fisher’s z-scores 

and standard errors which in turn were used to calculate 95% confidence intervals. 

The overall effect size was the weighted inverse variance of the adjusted individual 

effect sizes (z-scores). The overall effect sizes from the meta-analyses were then 

back transformed which corresponded to the overall correlation coefficients. Data 

from the various studies were pooled using the random-effects model. 

Heterogeneity between studies was assessed using the I2 statistic. The Begg’s test 

and Egger’s test were used to assess the extent of publication bias. All analysis was 

performed using Stata software [149].  

3.4 Results 

Basic characteristics of studies 

After removal of 218 duplicates a total of 440 articles were identified during the 

search, of which 416 were excluded based on their titles and abstracts alone, Figure 

3-1. After reviewing the remaining 24 full-text articles, 12 were eligible for inclusion 

in the review, Table 3-1. Reasons for exclusion included articles didn’t calculate 

LVMI as an outcome, summary measures of variability weren’t calculated and no 

effect size was reported. Of the 12 studies, 11 were cross-sectional and one had a 

case-control design. The population sample sizes ranged from 33 to 1822. The 
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various indexes used in the studies along with their definitions are presented in 

Table 3-2. The SD of either 24h/day/night BP readings were used as indexes of BPV 

in all studies with the exception of two: one which only reported CV [150], and 

another study [151] only reported average real variability (ARV). In addition to SD, 

two studies also included CV [39, 152] and a further two included wSD [28, 40]. 

Leoncini et al. [28] also explored ARV. The average value of 24h SBP SD, day SD, 

night SD had range 13.0-19.7, 10.9-19 and 11.5-13.6 mmHg respectively. As there 

were so few studies exploring the other indices we have not reported their range 

here but can be found in Table 3-3. The correlation between 24h SBP SD, day SD, 

night SD and LVMI had range 0.05-0.52, 0.13-0.21 and 0.04-0.21 respectively. These 

correlations were all statistically significant with the exception of day SD (r=0.19) 

[153], 24h SBP SD (r=0.05) and night SD (r=0.04) [40]. In the three studies in which it 

was explored, wSD had a statistically significant correlation of r= 0.15, 0.26 and 0.31 

[28, 30, 40]. Similarly in the two studies which examined 24h SBP ARV, a statistically 

significant correlation of 0.53 and 0.19 with LVMI was observed [28, 151]. 

Of the studies that adjusted for covariates (including mean BP), findings were 

mixed. Schillaci et al. [34] who considered 1822 untreated subjects with essential 

hypertension, reported a weak univarite statistically significant correlation between 

daytime and night-time SD and LVMI but the association didn’t persist after 

adjustment for various confounders. Similar findings were found by Roman et al. 

[39] who found daytime and night-time SD were univariately associated with LVMI 

but the association did not persist after adjustment for confounders including 

average BP. Pascual et al. [154] also found similar results after adjustment for age, 

sex and mean BP. 

In contrast, Tatasciore et al. [30] in a study examining 180 untreated hypertensive 

patients, found daytime SD and wSD to be statistically significantly associated with 

LVMI even after adjustment for other covariates, including mean BP. Similarly Bilo 

et al. [40] found wSD was statistically significantly related to LVMI in a study which 

investigated 339 hypertensive patients. Zhang et al. [151] also found 24h ARV to be 

significantly related to LVMI after adjustment.  
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Using the guidelines recommended by Hayden et al. [148], the quality appraisal of 

each paper was assessed and is presented in Table 3-4.  

Meta-analysis  

Figure 3-2 presents converted correlation coefficients (z-scores) with subgroup 

meta-analysis reported for each BPV index. An overall z-score for all studies was 

omitted as combining different indexes would not be appropriate. After conversion 

from z-scores the pooled subgroup correlation coefficients of LVMI with 24h SBP 

SD, day SBP SD, wSD SBP and 24h ARV SBP were 0.22 (95% CI: 0.12-0.31 ), 0.19 

(95% CI: 0.15-0.25), 0.23 (95% CI: 0.13-0.33), 0.37 (95% CI: 0.01-0.65) respectively. 

All but one index (wSD) showed heterogeneity (p<0.05) across the studies and as a 

result random-effects models were used to combine coefficients. Begg’s and 

Egger’s tests indicated no evidence of publication bias within each variability index.  

3.5 Discussion  

Overall our review suggests that there is a weak positive correlation, between BPV 

and LVMI. We carried out a separate analysis for each measure of variability, 

resulting in reduced power in the meta-analysis. Our review highlights the lack of 

good epidemiological studies exploring the relationship between BPV and LVMI. As 

eleven of the twelve studies were cross-sectional, we cannot assess cause-effect 

relationships. Although all studies reported univariate coefficients we found just 

over half of the studies did any further analysis or appropriate adjustment for 

covariates. Despite these limitations, the results are still worth exploring and the 

review raised some important issues in relation to BPV in general and also 

specifically to LVMI. 

Veerman et al. [153] reported a non-statistically significant correlation with day SD. 

We cited the small sample size (n=33) as a potential reason for the discrepancy 

between day SD compared to the other studies. Bilo et al. [40] also reported a non-

statistically significant correlation of LVMI with 24h SD but interestingly in the same 

study found both day SD and wSD were significantly correlated with LVMI even 
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after adjustment. This finding highlights that results are sensitive to the index 

chosen and leads to the issue of variability measurement.  

Most studies have used SD as a measure of BPV and the appropriateness of such an 

index has been disputed because it only reflects the dispersion of measurements 

around a single value (mean) not accounting for the order in which BP 

measurements were obtained [36, 37]. The discrepancies between day and 24h SD 

in the study by Bilo et al. [40] may be explained by the fall of BP at night (dip). A 

large dip which is known to be associated with healthier individuals will lead to a 

larger 24h SD. The wSD attempts to remove the effect of the dip and was found to 

be significantly correlated unlike the 24h SD. This suggests that perhaps SD, at least 

over 24h may not be a good measure of BPV. Mena et al. [36] first explored, and 

later Pierdomenico et al. [37], ARV in relation to BP which is the average absolute 

difference between successive readings, and is thought to give a true reflection of 

real variability. In both studies high ARV was found to be an independent predictor 

of cardiovascular risk in hypertension patients while high SD was not. The two 

studies that included ARV in this review both found a statistically significant 

correlation with LVMI [28, 151]. In one study association remained significant after 

adjustment [151] while the other study found it to be an independent predictor of 

multiple TOD where the majority of these had LVH [28]. As ARV is thought to give a 

true reflection of real variability it may be the most appropriate marker of short 

term BPV over other indexes and could potentially be used to predict outcome in 

patients even before BP becomes elevated and ultimately provide a means of 

identifying at risk patients before they develop hypertension.   

Other studies exploring the relationship between BPV and TOD have found varied 

results. As mentioned Parati et al. [27] found an association between 24h BPV and 

severity of TOD (a score based on presence of LVH, chest x-ray abnormalities, 

abnormalities of the fundus plus a clinical event and/or a renal abnormality). The 

same group conducted another follow-up study with a follow-up period of 7 years 

to assess the prognostic relevance of short-term BPV on 73 hypertensive patients 

[155]. They found an independent association between 24h BPV at baseline and 

TOD at follow-up. Similarly, in another study of over 700 hypertensive and 
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normotensive patients, daytime systolic SD was found to be associated with degree 

of TOD. However in the same study, after adjustment for mean BP no strong 

association was found between BPV and LVH [156]. Hansen et al. explored the 

relationship between BPV and cardiovascular events [33]. ARV predicted all fatal 

and nonfatal outcomes even after adjustment for mean BP but found that it added 

only 0.1% to the explained risk of an event occurring. They concluded that the main 

risk factor remained mean BP. 

Another point that must not be overlooked when considering the importance of the 

results from the individual studies is the issue of statistical and clinical significance. 

All the studies have decided on the importance of the correlation coefficient based 

solely on a statistical significance threshold level of 0.05. It is critical to remember 

that the smaller the p-level the more significant the relationship but the larger the 

correlation, the stronger the relationship. It is for this reason that we must be 

careful how we interpret findings from such studies. For example Bilo et al. found a 

statistically significant correlation between wSD and LVMI but the value of the 

coefficient was only 0.15 which would be considered a weak association [40]. In this 

case, with a large sample size (n=339), researchers should not solely focus on 

statistical significance. Here, we should not over emphasise the statistical 

significance finding as the correction coefficient is in fact quite low. Sterne and 

Smith argue that a p-value<0.001 provides much stronger evidence against the null 

hypothesis, in comparison to a p-value <0.05 and suggest that results of medical 

research should generally not be reported as “significant” or “non-significant” 

where appropriate [157]. It is important to take a practical but sensible approach 

where statistical and clinical significance are both given equal thought when 

deciding on the importance of a relationship.  

As the studies are cross-sectional in nature we are not able to determine whether 

higher BPV initiates increases in LVMI or do increases in LVMI represent a risk factor 

for increased BPV rather than being a consequence of it. It is however argued that 

vascular hypertrophy induced by exaggerated and large BPV may lead to an 

impaired arterial distensibility of the large arteries, resulting in increased cardiac 

afterload and as a result increases LVMI [158]. Clinical trials have recently shown 
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that some classes of anti-hypertensive drugs significantly outperform others in 

terms of lowering BPV, and that this reduction in short-term and long-term BPV 

contributes to the prevention of cardiovascular events in hypertensive patients [25, 

159]. Results indicate that CCB and to a lesser extent thiazide diuretics are superior 

to other drugs in reducing BPV and preventing stroke and other vascular events 

compared to the older β-blocker atenolol which increases BPV [61, 160]. Similar 

findings were reported in a more recent observational study assessing the efficacy 

of mono and combination therapy on short-term BPV of 2780 hypertensive patients 

[64]. Again CCB’s, followed by diuretics were correlated with lower short-term BPV 

compared with ARB’s, ACEI’s and β-blockers. In addition combination of CCB’s and 

diuretics resulted in the lowest BPV compared to others. In those with marked BPV, 

the prescribing of these drugs may offer a better alternative and could help reduce 

the risk of LVH especially in individuals where hypertension has not yet developed.  

The major limitation of this review is that we have pooled together studies in a 

meta-analysis in regard to their correlation coefficients which are a very weak 

marker of association. As a result of using correlation coefficients there is an 

implicit assumption that the association between BPV and LVMI is linear which in 

reality may not be the case. The strength of this review is its focus on short-term 

BPV which has recently been receiving growing attention. It is also the first review 

to our knowledge that quantifies the correlation between BPV and LVMI. The 

review identifies a research gap where stronger epidemiological studies are needed 

to explore the relationship further and understand the prognostic value, if any, of 

short-term BPV.  
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Figure 3-1 Flow diagram of study selection 

 

  

658 articles identified through 

database searching  

(388 MEDLINE, 270 EMBASE) 

440 articles screened 

218 duplicate articles removed  

24 full-text articles assessed for 

eligibility screened  

12 articles included in review 

416 articles excluded based on 

title and abstract  

12 articles excluded based on 

full-text inclusion criteria 
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Figure 3-2 Pooled meta-analysis of z-scores by BPV index.  
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Table 3-1 Study characteristics 

Study Population Sampling Approach Design n (women, %) Mean age (SD 
or range), yr 

BPV index Outcome 
measure 

Colivicchi 
(1996) 

Elderly untreated HTN males 
with matched normotensives 

Convenience Case-control 50 (0%) 74 (4) 24h, day, night -
SD 

LVMI  

Veerman 
(1996) 

Referred to hypertension 
clinic due to suspected 
hypertension 

Convenience Cross-sectional 33 (48%) 41 (26-59) Day- SD LVMI 

Schillaci (1998) Hospital based untreated 
HTN  

Convenience Cross-sectional 1822 (47%) 50 (12) 24h, day, night- 
SD 

LVMI  

Pascual (1999) Untreated HTN Convenience Cross-sectional 149 (33%) 38 (7) 24h, day, night –
SD, CV 

LVMI  

Kristensen 
(2001) 

Untreated HTN from general 
practice and subjects drawn 
at random from Danish 
national register 

Convenience  & 
random 

Cross-sectional 566 (52%) 48 (20-79) 24h, day, night – 
SD,CV 

LVMI  

Roman (2001) Subjects from a worksite-
based study and who were 
evaluated at a hospital 

NR Cross-sectional 511 (44%) 50 (12)   
 

Day, night – SD,CV LVMI  

Polonia (2005) Population sample  NR Cross-sectional 743 (56%) 
185 (LVMI 
measured) 

52 (14) Day SD LVMI  

Tatasciore 
(2007) 

Outpatients referred to clinic 
by GP 

Convenience Cross-sectional 180 (40%) 53 (8) 24h, day, night – 
SD 
wSD 

LVMI  

Bilo (2007) Two hypertension centres NR Cross-sectional 3863 (54%) 
339 (50%) 
(Echo taken)  

54 (12) 24h, Day, night – 
SD, wSD 

LVMI  

Zhang (2011) Elderly hospitalised HTN and 
normotensive controls 

Convenience Cross-sectional 197 (35%) 76.5 (7.8) 24h, day, night-
ARV 

LVMI 

Ajayi (2011) 
 

Nigerian HTN  Convenience Cross-sectional 130 (26%) 54 (12) (31-85) 24h – CV LVMI 
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Study Population Sampling Approach Design n (women, %) Mean age (SD 
or range), yr 

BPV index Outcome 
measure 

Continued on following page 
Leoncini 
(2013) 

Untreated HTN attending 
outpatient clinic 

Convenience Cross-sectional 169 (33%) 47 (10) 24h, day, night – 
SD 
ARV, wSD 

LVMI 

Abbreviations: SD: Standard Deviation, CV: coefficient of variation, wSD: weighted standard deviation, LVMI: Left ventricular hypertrophy index, TOD: target organ damage, LVH: 
left ventricular hypertrophy, ARV: average real variability, HTN: Hypertensives, GP: general practitioner , NR: not reported 

 

 

 

Table 3-2 BPV definitions 

Measure of BPV Description 

24h SD Standard deviation over 24h period  
Day SD Standard deviation over day period usually 9am-9pm 
Night SD Standard deviation over night period usually 1am-6am 
wSD Weighted standard deviation which is the mean of day and night standard deviation values corrected for the number of hours included in 

each of the two sub-periods which attempts to eliminate the effect of nocturnal fall.  
wSD=((day standard deviation x day hours) + ((night standard deviation x night hours)))/total number of hours 

CV Coefficient of variation = (Standard deviation over 24h/mean 24h) x 100 
ARV Average real variability which averages the absolute differences between successive readings which is the average absolute difference 

between successive readings.     
 

   
 ∑            

   
   , where k ranges from 1 to N-1 and N is the number of BP measurements 

 

 

  



82 
 

Table 3-3 Extracted Results 

Study SBP Variability SD Mean LVMI (SD) 
g/m

2
 

Multivariate 
analysis adjusted 
for: 

Method of 
adjustment for mean 
BP 

Correlation Coefficient (r) Beta coefficients 
(multivariate analysis) 
β (se) 

Colivicchi 
(1996) 

16.2 (3.5) 24h SD 
19 (5.4) day SD 
12 (2.9) night SD 

134.9 (27.5) 
(LVH=16%) 

- - r=0.52† 24h SD (HTN only) 
r=NS day & night SD 

- 

Veerman 
(1996) 

12.7 (7.5-22) day SD 
 

115 (67-153) 
(LVH=13%) 

Day BP Regression r=0.19 day SBP SD 
r=0.35* day DBP SD 

3.16 (1.18)* Day DBP SD  

Schillaci 
(1998) 

NR NR Age, body height, 24h 
BP, DBP, BMI, 
duration of 
hypertension, 
alcohol, smoking 

Subjects divided into 
similar levels of BP, 
then subdivided if 
below or above median 
BPV & separately a 
regression analysis 

(r=0.13, p<0.01) day SBP SD 
(r=0.1, p<0.01) night SBP SD 
r=NS day & night DBP SD 
 

NS 

Pascual 
(1999) 

14.0 (3.4) 24h SD 
10.3 (2.4) 24h CV 
10.9 (2.8) day SD 
13.8 (3.3) day CV 
11.7 (3.5) night SD 
11.7 (3.7) night CV  

126 (34.6) Age, sex, BP Regression r=0.23† (24h & day SBP SD) 
r=NS (24h, day, night DBP SD & 
CV; 24h, day, night SBP CV & 
night SBP SD) 

0.87 (.83) 24h SBP SD 

Kristensen 
(2001) 

NR 102.7 (28.3) - - r=0.24 (p<0.01) NR 

Roman 
(2001) 

NR NR Age, age
2
, sex, basal 

SBP or DBP, serum 
cholesterol, smoking, 
antihypertensive 
medication 

Regression r=0.29‡both day & night SBP SD 
r=0.19‡ DBP SD day 
r=0.26‡ DBP SD night 
r=0.08 SBP CV day 
r=0.022 SBP CV night 
r=0.00 DBP CV day 
r=0.06 DBP CV night 

NS  

Polonia 
(2005) 

13.2 (3.4) day SBP SD 
14.3 (3.4) 24h SBP SD 
11.5 (3.8) night SBP SD 

100 (40)  - - r=0.162* day SBP SD - 
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Study SBP Variability SD Mean LVMI (SD) 
g/m

2
 

Multivariate 
analysis adjusted 
for: 

Method of 
adjustment for mean 
BP 

Correlation Coefficient (r) Beta coefficients 
(multivariate analysis) 
β (se) 

Tatasciore 
(2007) 

13.0 (4.1) 24h SBP 
10.9 (4.0) 24h DBP 

96.7 (17.8) Age, sex, alcohol, 
triglycerides, SBP, 
DBP, SBP load, DBP 
load 

Regression r=0.312‡ 24h SBP SD 
r=NS – 24h DBP 
r=0.310‡ wSD SBP 
r=NS wSD DBP 

0.633 (p=0.028) 24h SBP 

Bilo (2007) NR for echocardiographic 
group 

109.5 (33.8) 24h BP, sex Regression r=0.05 24h SBP SD  
r=0.15† 24h wSD 
r=0.16† day SBP SD 
r=0.04 night SBP SD 

0.15 (p<0.01) 24h wSD SBP 
0.16 (p<0.01) day SBP SD 
0.04 (p=NS) 24h SD 

Zhang 
(2011) 

11.9 (2.6) 24 ARV SBP 
8.6 (2.6) 24 ARV DBP 
9.3 (2.3) day ARV SBP 
8.2 (2.1) day ARV DBP 
9.2 (3.3) night ARV SBP 
7.8 (2.1) night ARV DBP 

145.1 (43.2) Age, duration of HTN, 
total cholesterol, low-
density lipoprotein 
cholesterol, 24h BP 

Regression r=0.525† 24h ARV SBP 
r=NS NR 24h ARV DBP 
 

0.593† 24h ARV SBP 

Ajayi (2011) NR 109.65 (38.1) - - r=0.379* 24h CV SBP 
r=0.124 24h CV DBP 

- 

Leoncini 
(2013) 

19.7 (5.9) 24h SD 
18.5 (6.3) day SD 
13.6 (5.5) night 
16.8 (5.3) 24h wSD 
15.1 (4.8) 24h ARV 
15.9 (5.7) day ARV 
13.0 (5.3) night ARV 
15.1 (5.0) wARV 
(All SBP, DBP not 
displayed) 

46 (11) (LVM g m 
-2.7

) Office BP, age, BMI, 
sex, smoking, 
triglycerides, 
cholesterol, glucose, 
duration of HTN, AASI 

Logistic regression r=0.24† 24h SD 
r=0.19* 24h ARV 
r=0.26‡ 24h wSD 
r=0.21† day SD 
r=0.21† night SD 
r=0.19* day ARV 
r=0.14 night ARV 
all for LVMI indexed for BSA 

Odds ratio reported but for 
overall TOD presence (2 or 
more) 
1.103 (1.003-1.212)† 24h 
SD 
1.114 (1.012-1.227)† day 
SD 
1.140 (1.004-1.295)† 24h 
ARV 

Abbreviations: SD: Standard Deviation, CV: coefficient of variation, wSD: weighted standard deviation, LVMI: Left ventricular hypertrophy index, TOD: target organ damage, LVH: left 
ventricular hypertrophy, ARV: average real variability, HTN: Hypertensives, NR: not reported, BP: blood pressure, SBP: systolic blood pressure, AASI: Arterial stiffness index based, NS: 
non-significant and no value was reported, *p<0.05; † p<0.01; ‡p<0.001  
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Table 3-4 Quality Assessment 

Study Study Participation 
 

Study Attrition 
 

Prognostic Factor 
Measurement /Outcome 
Measurement 

Confounding Measurement and 
Account 
 

Analysis 
 

Colivicchi (1996) No No Yes No No 
Veerman (1996) Partly No Partly No No 
Schillaci (1998) Yes Partly Yes Yes  Yes 
Pascual (1999) Partly Partly Partly Partly  Partly 
Kristensen (2001) Partly No Yes No No 
Roman (2001) Partly No Partly Partly Yes 
Polonia (2005) Partly No Partly No  No 
Tatasciore (2007) Yes Yes Yes Yes Yes 
Bilo (2007) Partly Partly Partly Partly Partly 
Zhang (2011) Partly No Yes Yes Partly 
Ajayi (2011) Partly No Yes No Yes 
Leoncini (2013) Partly Yes Yes Partly Partly  
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4.1 Abstract  

BPV has been associated with cardiovascular events but the prognostic significance 

of short-term BPV remains uncertain. As uncertainty also remains as to which 

measure of variability most accurately describes short-term BPV, this study explores 

different indices and investigates their relationship with subclinical TOD.  

We used data from the Mitchelstown Study, a population based study of Irish 

adults aged 47-73 years (n=2,047). A subsample (1,207) underwent 24h ABPM. As 

measures of short-term BPV we estimated the SD, wSD, CV and ARV. TOD was 

documented by microalbuminuria and ECG LVH. 

There was no association found between any measure of BPV and LVH in both 

unadjusted and fully adjusted logistic regression models. Similar analysis found ARV 

(24h, day and night), SD (day & night) and wSD were all univariately associated with 

microalbuminuria and remained associated after adjustment for age, gender, 

smoking, BMI, diabetes and anti-hypertensive treatment. However, when the 

models were further adjusted for mean BP the association did not persist for all 

indices. 

Our findings illustrate choosing the appropriate summary measure which accurately 

captures short-term BPV is difficult. Despite discrepancies in values between the 

different measures there was no association between any indexes of variability with 

TOD measures after adjustment for mean BP.   
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4.2 Introduction 

The prognostic value of BPV in addition to mean BP has been receiving growing 

attention [161, 162]. In addition to showing a strong association with increased 

mortality risk, visit-to-visit variability in BP has been shown to predict stroke and 

coronary events independent of mean clinic BP [25, 38]. It has also been linked with 

TOD [38, 163, 164]. However, the predictive value of short-term BPV, i.e. 

fluctuations of BP across minutes or hours usually taken over a 24h period, and 

obtained through the use of ABPM remains contentious. While a number of studies 

have reported associations between short-term BPV and TOD [27-31] and 

cardiovascular events [25, 32], others have shown none or only weak associations 

after adjustment for mean BP [33, 34, 39].  

There have been a number of different indices of variability proposed to describe 

short-term BPV with most studies considering SD [25, 27, 28, 30-34, 38, 39]. The 

appropriateness however, of such an index as an indicator of BPV has been 

disputed because it only reflects the dispersion of measurements around a single 

value (mean) not accounting for the order in which BP measurements were 

obtained [36, 37]. As a consequence, other indices of variability that have been 

used include: CV which attempts to adjust for the tendency of those with a higher 

average BP to also have a higher SD [25, 38, 39], ARV which is the average absolute 

difference between successive readings, and is thought to give a true reflection of 

real variability [28, 33, 36] and wSD which attempts to remove the influence of the 

day-night BP difference from the estimate of BPV [28, 30, 33, 40]. 

As the prognostic significance of short-term BPV remains uncertain with no 

consensus as to which measure of variability most accurately describes BPV, this 

study explores different indices of BPV and investigates their relationship with two 

parameters of subclinical TOD; LVH and microalbuminuria. 
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4.3 Methods 

Study Population 

The analysis utilises data from the Mitchelstown Study, a population based study of 

middle-aged men and women, recruited in Ireland 2010-2011. A detailed 

description of the study design is available from a previous publication [74]. In brief, 

the primary aim of the study was to provide a profile of cardiovascular health and 

their related factors in an Irish adult general population sample. The study recruited 

patients attending a single large primary care centre, the LHC, in Mitchelstown. 

Participants completed a detailed health and lifestyle questionnaire including a 

question on use of anti-hypertensive medication, and were invited to attend their 

primary care provider’s surgery for a physical examination to be carried out by a 

nurse trained in the study research protocols. Study measurements included height, 

weight, BP and in addition, fasting blood samples (minimum of 8-h fast) and urine 

samples. Participants also underwent standard 12-lead electrocardiogram (ECG) 

and ABPM was offered to all participants. All participants provided written 

informed consent and ethical approval was obtained from the Clinical Research 

Ethics Committee Cork.  

 

BP Measurements 

Study BP was measured three times after 5 minutes of rest in a seated position by 

experienced research nurses using an OMRON M7 BP monitor (OMRON Healthcare, 

The Netherlands). The average of the second and third measurements was used. 

ABPM was measured using dabl ABPM system (dabl ltd., Ireland) with the Meditech 

ABOM-05 Monitor (Meditech LTD., Hungary). The monitors were programmed to 

obtain readings every 30mins and remained in place for 24h. Participants kept 

diaries of wake and sleep periods, which were used to calculate day and night BP 

respectively. If no diary was kept, the period from 1am to 6am was used as the 

night period and from 9am to 9pm as the day period. Only participants with a 
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minimum of 14 measurements during the day and a minimum of 7 measurements 

during the night period were included in the analysis [165].  

As indices of short-term reading-to-reading BPV, we estimated the SD over 24h, 

wSD, CV ((SD 24h BP/mean 24h BP)*100) and ARV. The wSD is the mean of day and 

night SD values corrected for the number of hours included in each of these two 

sub-periods [40]. The ARV averages the absolute differences between consecutive 

measurements. To illustrate the subtle differences between each measure we have 

included 24h SBP profiles of four participants from the study along with their 

corresponding 24h variability measures (Figure 4-1.a-d). The two individuals 

illustrated in Figure 4-1.a and Figure 4-1.b have different overall levels of BP with 

the individual in Figure 4-1.b having substantially lower BP. In addition to this, the 

two BP patterns can be seen to fluctuate quite differently throughout the 24h but 

despite this, they have the same 24h SD, emphasizing the disadvantage of using SD 

as it only reflects dispersion around the average. Visually it is hard to justify that the 

two profiles have the same variability when it seems the first participant (Figure 

4-1.a) has larger variation between each consecutive measurements compared to 

the second participant (Figure 4-1.b). In comparison, their 24h ARV differ 

considerably and highlights the benefit of using this measure as it accounts for the 

order of the BP readings. wSD and 24h CV values are also presented in Figure 4-1. 

The bottom two profiles are provided as another illustration where fluctuations and 

overall BP levels are different yet 24h SD values are similar but 24h ARV values vary 

(Figure 4-1.c & Figure 4-1.d). 

Additional indices SD, CV, and ARV were calculated for both day and night periods. 

To investigate if BPV was influenced by nocturnal BP fall, a night to day BP fall 

(nocturnal dip) parameter was calculated as the ratio of mean BP between night-

day periods. Additionally, the time rate of variability was calculated which is similar 

to ARV but is independent of the time intervals between measurements. All indices 

were calculated for both SBP and DBP. 
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Target organ damage 

Each participant had a blood sample taken after a minimum of 8-h fast and in 

addition provided an early morning spot urine sample on the day of their 

appointment. Laboratory analyses included analysis for glycosylated haemoglobin 

(HbA1C) and ACR. A meta-analysis in 2010 demonstrated increased risk of mortality 

with urine ACR ≥ 1.1 mg/mmol and as a result microalbuminuria is defined using 

this cut-point [78]. A 12-lead ECG was obtained in the standard manner using a 

Siemens – Eclipse 850i machine. ECGs were reviewed and coded for LVH voltage 

criteria by a cardiologist. The presence of LVH was defined by Cornell Product ECG 

voltage criteria i.e. SV3 + RaVL (+6 in women) X QRS duration ≥ 2440 mm x ms [80]. 

 

Other Measurements 

The questionaires provided data on participants smoking habits and were 

categorized as never, former and current smoker. Diabetes mellitus was defined as 

HbA1c level greater than or equal to 6.5% [166] or self-reported doctor diagnosis of 

diabetes. The classification of hypertension was based on SBP≥140 mmHg and/or 

DBP≥90 mmHg and/or on anti-hypertensive treatment. Weight was measured using 

a Tanita weighing scales and height measured with the use of a portable Seca 

length measure. Body mass index (BMI) was calculated as body weight in kilograms 

divided by height in meters squared. Participants with a BMI ≥30, 25-30 and <25 

kg/m2 were classified as obese, overweight and normal/underweight respectively.  

 

Statistical Analysis 

All of the data are expressed as arithmetic mean (SD) or as percentages where 

appropriate. Normally distributed continuous variables were compared using 

student’s t-test. Correlations among variables were assessed by Pearson correlation 

coefficient (r). The association between BPV and the presence of TOD was assessed 

using logistic regression with adjustment for age, sex, smoking status, BMI, diabetes 

and anti-hypertensive treatment. Additional models adjusted for mean 24h BP. 

Multicollinearity issues between mean BP and variability measures were assessed 

by checking for inflated standard errors, correlation coefficients and variance 
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inflation factors. Results are presented as odds ratios for a one-SD change with 95% 

confidence intervals (CI). The association between BPV and microalbuminuria was 

further explored by excluding those with diabetes from the analysis. Models were 

also separately run on those classified as hypertensive by ABPM and/or on anti-

hypertensive treatment. In addition we examined just those on anti-hypertensive 

treatment alone. Receiver operating characteristic (ROC) curves were plotted to 

evaluate the predictive value of BPV. Additionally ACR was included in a linear 

regression model as a continuous outcome. To investigate the impact that the 

white-coat effect may have on variability, the analysis was repeated after the first 

hour of readings were excluded. Often, it is recommended to allow for multiple 

testing when examining independent measures and protect against data dredging 

where we might find a significant finding by chance alone when there is no real 

association. Typically an adjustment such as the Bonferonni correction is made but 

when measures are highly correlated as in our case, this method is inappropriate, 

as it will be highly conservative and may miss real differences [167]. Importantly in 

our study however, each variability index is in fact capturing different 

characteristics of variability and as we are interested in each measure separately or 

in isolation as opposed to seeing them as a collective, multiple testing is not 

required. If we were testing an overall hypothesis that BPV was related to our 

outcome then adjusting for multiple testing may have been considered. All of the 

statistical analyses were performed with the use of Stata version 12 (StataCorp., 

College Station, TX, USA). A value of P<0.05 was considered statistically significant. 

Figure 4-1 was plotted with the use of the R programming language. 

 

 

4.4 Results 

Of 3051 individuals invited to participate, 2047 (response rate: 67%) completed the 

questionnaire and physical examination component. ABPM was offered to all 2047 

participants and it was completed by 1207 (response rate: 58%) of which 1134 had 

satisfactory amount of measurements recorded. The average numbers of day and 

night readings were 27 and 16 respectively. The main clinical characteristics of the 
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1134 participants are presented in Table 4-1 separately for those with and without 

LVH and microalbuminuria. Overall, participants had a mean (SD) age of 60.2 (5.5) 

and the majority were female (54%). Over half were classified as hypertensive 

(59%) and almost a tenth had diabetes (9.3%). The overall prevalence of LVH and 

microalbuminuria was 6.6% and 11.4% respectively.  

Table 4-2 and Table 4-3 provides mean (SD) of different indices used to characterise 

BPV including the nocturnal dip, by 24h/day/night for both LVH and 

microalbuminuria respectively. With the exception of the nocturnal dip ratio there 

were no significant differences in BPV indexes between those with and without LVH 

(Table 4-2). However, night ARV, SD and wSD (both SBP & DBP) were significantly 

higher in those with microalbuminuria compared to those without. Additionally 24h 

ARV, day ARV, day SD (all SBP) and 24h ARV (DBP) were also higher in those with 

microalbuminuria (Table 4-3). Although the variability was higher in those with 

microalbuminuria, the nocturnal dip was significantly higher in those without 

microalbuminuria for both SBP and DBP. All four indices taken over the 24h period 

were significantly correlated with one another (correlation coefficient ranged 0.40-

0.91 (p<0.001)).  

Presented in Table 4-4 and Table 4-5 are results from regression analysis for both 

LVH and microalbuminuria respectively. Univariate logistic regression showed that 

none of the variability indices during any period were associated with LVH. In 

contrast, mean 24h ABPM was significantly associated with LVH in both univariate 

and adjusted models (OR=1.37(1.07-1.75)) (Table 4-4). The nocturnal dip was 

associated with a protective effect on LVH but the association did not persist when 

additionally adjusted for mean SBP (Table 4-4). In comparison ARV (24h, day and 

night), SD (day & night) and wSD were all univariately associated with 

microalbuminuria and the association persisted after adjustment for age, gender, 

smoking, BMI, diabetes and antihypertensive treatment (Table 4-5). However, 

when mean SBP was added to the model the association did not persist for all 

indices (Model 2, Table 4-5). Nocturnal dip was significantly associated with a 

protective effect on microalbuminuria in both the unadjusted and the fully adjusted 

models including mean BP (Table 4-5).  
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When analysis focused on only those classified as hypertensive by ABPM and/or 

taking antihypertensive treatment no differences to the findings above were 

observed. When those on antihypertensive treatment were analysed separately, 

models gave similar results to what we had seen already in relation to LVH and 

broadly similar in relation to microalbuminuria with the exception of 24h ARV. 

Despite adjustment for mean 24h BP in addition to age, gender, smoking, BMI and 

diabetes; 24h ARV was significantly associated with microalbuminuria (OR=1.43 

(1.04-1.99). The prevalence of microalbuminuria in this sub-group was 14.7%. 

The time rate of variability measure gave similar results to ARV (results not shown). 

No significant results were observed when mean BP was included in the models 

including when those on anti-hypertensive treatment were explored separately.  

The stability of the models after the adjustment of mean BP was assessed to 

identify any multicollinearity issues. After adjustment standard errors were not 

inflated and were similar to the values before the inclusion of mean BP indicating 

stable models. Additionally; correlation coefficients were obtained between mean 

BP and all BPV indexes. The values ranged from -0.02-0.47. Finally, variance 

inflation factors were calculated in each model and all values were under 1.5 

indicating that multicollinearity issues did not arise. 

To evaluate the additional predictive value of BPV, ROC curves were plotted. The 

plots compared a model which included mean BP and BPV to a model which just 

included mean BP while adjusting for age, gender, smoking, BMI, diabetes and anti-

hypertensive treatment. There was no significant difference between the areas 

under the curves regardless of which BPV measure or period of time was used 

(24h/day/night) (results not shown, plots in Appendix C).  

All analyses were repeated for DBP. ARV (24h/day/night), night SD and wSD were 

found to be significantly related to microalbuminuria but the association did not 

persist once mean BP was added to the model. No other associations were 

observed with either LVH or microalbuminuria. Omitting the first hour of readings 

to explore the white-coat effect had no impact on our findings (data not shown). 

Results presented include the first hour of readings. The exclusion of participants 
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with diabetes in the analysis of microalbuminuria did not alter our findings. Similar 

findings to that of the logistic regression model were obtained when ACR was 

included in a linear regression model as a continuous outcome.    
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4.5 Discussion 

In this large population based study we have explored the association between 

short-term BPV and subclinical TOD. Much debate remains in the literature as to 

the best measure of BPV and as a result four different indices were calculated and 

each assessed for their prognostic significance. Our work highlights the difficulties 

in accurately describing short-term variability with one summary measure. To 

illustrate this we provided cases of individuals who have distinctly different BP 

profiles and overall mean BP levels throughout the day yet have similar values in 

terms of SD but quite different values based on the other indices calculated. 

Despite the discrepancies between different measures our results indicated that 

there was no association between any index of variability we calculated and LVH 

even in unadjusted models. The associations between ARV (24h, day and night), SD 

(day & night), wSD, with microalbuminuria persisted following adjustment for a 

range of important potential confounders but did not persist after the models were 

additionally adjusted for mean BP. However, in a sub-analysis of those only taking 

anti-hypertensive treatment the association between 24h ARV with 

microalbuminuria persisted following adjustment for all confounders including 

mean BP.  

The relationship between mean BP and TOD is well established and the literature 

does not question the importance of lowering mean levels of BP as is 

recommended in guidelines [18]. As a consequence, to identify BPV as an additional 

independent predictor we adjusted our analysis for mean 24h BP. The intrinsic 

relationship that can exist between mean BP and BPV can lead to invalid measures 

of variability and Hansen et al. [168] also claims the strong association between the 

two may cause problems in building stable regression models (although our analysis 

did not find such problems). Furthermore, SD is widely used as a measure of BPV 

but the appropriateness of such an index has been disputed because it only reflects 

the dispersion of measurements around a single value (mean) not accounting for 

the order in which BP measurements were obtained [36, 37]. This issue was 

highlighted in the different BP profiles presented in Figure 4-1. The CV has also 

been used and adjusts for the tendency of those with a higher average BP to also 
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have a higher SD as was found in this study. However these two measures (SD, CV) 

are still inherently linked to mean BP and this helps to advocate the use of ARV and 

wSD as more suitable measures of BPV.  

Many studies have proposed ARV as an appropriate measure of variation which 

averages the absolute difference between successive readings and accounts for the 

order in which the BP readings are obtained [28, 33, 36], while wSD has also been 

utilised and is a weighted average of both day and night SDs which specifically 

attempts to remove the day-night difference in mean BP from the estimate of BPV 

[28, 30, 33, 40].  As a result 24h ARV and wSD are not strongly influenced by the 

difference between day-night mean BP levels. This is in contrast to SD and CV in 

which a large nocturnal dip will increase both values. The protective effect on the 

presence of microalbuminuria that was observed with nocturnal dip after 

adjustment for mean BP is not surprising. An absence in BP fall at night has been 

cited in many studies as a prognostic marker of cardiovascular events both in 

hypertensive [15, 169, 170] participants and the general population [171, 172]. 

Although the associations between ARV (24h, day and night), SD (day & night), wSD, 

with microalbuminuria did not persist after additionally adjusting for mean BP we 

plotted ROC curves to check if the combination of mean BP and BPV had more 

predictive power over that of just mean BP. Despite discrepancies between the 

different measures and the problems outlined above the plots revealed no 

additional benefit in including BPV over and beyond 24h BP irrespective of the BPV 

index used.  

While there was no association overall between 24h ARV and microalbuminuria 

once adjusted for mean BP, among those on anti-hypertensive treatment the 

association persisted. We do not have data on specific treatment classes so we 

were unable to assess if this effect was mediated by a particular anti-hypertensive 

class. Some individual drug data was collected but sufficient numbers were not 

obtained to explore classes separately. Our finding does suggest however that anti-

hypertensive treatment is having an effect on BPV. Evidence from meta-analyses 

suggest that although different anti-hypertensive-drug classes have similar effects 
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in terms of reducing BP levels, pronounced differences in their ability to reduce BPV 

[61, 62]. 

Considering the strong relationship that exists between mean BP and the presence 

of LVH, which was also evident in this study, it is interesting that no associations 

were identified with any measure of BPV even under unadjusted conditions alone. 

One contributing factor may be that LVH was determined based on the evaluation 

of a 12-lead ECG which is known to have low sensitivity in the detection of LVH [18]. 

Although it has its own technical issues, use of echocardiography would have been 

preferred as it is more sensitive than ECG in diagnosing LVH. Despite this however, 

guidelines promote the use of ECG as part of routine assessment of all hypertensive 

patients [18]. In addition to low sensitivity, we also had a low prevalence of LVH 

(6.6%) in the study. When these two factors are considered in combination, they 

may have had a large confounding effect on the relationship between BPV and TOD. 

When prevalence is low, there are few true positives in the sample, and false 

positives can be large compared to the number of true positives. It is clear that 

these factors may have masked the true underlying association in our data.  

It is important to highlight that other studies have found an association between 

BPV and TOD even after adjustment for mean BP. Among hypertensive patients, 

Tatasciore et al. [30] found an association between awake SBP SD and LVMI in 

multivariate analysis even with the inclusion of awake SBP. Similarly, in multivariate 

analysis including daytime SBP Zakopoulos et al. [31] found an association between 

the daytime rate of SBP variation and left ventricular mass. Perhaps the use of 

echocardiography in the measurement of the outcome in these studies can, in part, 

explain discrepancies between these and our findings. 

Another argument may be that visit-to-visit variability is a better prognostic 

predictor. Many large studies have demonstrated a strong relationship between 

visit-to-visit variability and all-cause mortality [38], cardiovascular events [25, 173] 

and TOD [163, 174]. However there is still no consensus on the matter and as 

highlighted in a recent review there is a need to design studies to prospectively 

determine the causes of visit-to-visit variability and determine if treatments that 
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reduce variability lead to improved clinical outcome [175]. Correctly determining 

the prognostic significance of both short-term and visit-to-visit BPV could have 

important implications for the prescribing of anti-hypertensive medication.  

Limitations 

The study is cross-sectional in nature and as mentioned above we are not able to 

determine whether increases in BPV promotes the development of TOD or if TOD 

represents a risk factor for increased BPV rather than being a consequence of it. 

Hansen et al. [168] argues that as TOD is a forerunner of cardiovascular 

complications, BPV will inevitably increase. This leads to the issue of reverse 

causality with increased BPV being a marker of underlying disease rather than being 

an independent predictor. The low sensitivity of ECG in the detection of LVH was a 

concern as previously highlighted. Although there are few guidelines focusing on 

BPV, O’Brien et al. suggests small intervals (15min) between measurements is best 

when measuring BPV [13]. Our monitors were set to intervals of length 30min and 

this is recognized as a limitation although there is still no strong consensus on the 

optimal interval size to measure BPV. Despite a response rate of only 58% the 

ABPM subsample was found to be representative of the full sample based on sex, 

age and education. In addition the prevalence of TOD in both the full sample and 

ABPM subsample were similar (LVH 6.0% vs 6.6%, ACR 10.6% vs 11.4%). The main 

strengths of the study lie in the robust community based design and large sample of 

ABPM data recorded. 

4.6 Conclusion 

The findings of this study have highlighted that accurately measuring short-term 

BPV over 24h is not straight forward and different indices can be heavily influenced 

by factors such as mean BP or nocturnal BP fall. Without consideration for these 

confounding factors inferences made on the true prognostic value of BPV could be 

misleading. Based on our findings variability indices such as ARV and wSD that are 

not influenced by the difference in mean BP between day-night periods best 

describe short-term BPV but were not associated with LVH or microalbuminuria 

after adjustment for mean BP. Future research should focus on long-term studies 
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where short-term BPV is measured at baseline and participants followed to view 

the development of TOD.  
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Figure 4-1 Four study participants and their 24h BP profiles. Panels (a) & (b) illustrate different patterns yet have similar 24h SD but 
different values based on the other indices. Both (c) & (d) demonstrate a similar issue (values rounded).
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Table 4-1 Baseline Characteristics by LVH and Microalbuminuria  

  LVH  Microalbuminuria 

Characteristic Total 

(n=1134) 

No 

(n=1058) 

Yes 

(n=75) 

No 

(n=996) 

Yes 

(n=128) 

Age, y 60.2 (5.5) 60.5 (5.5) 62.8 (4.7)** 60.1 (5.5) 61.1 (5.8) 

Gender, Male n(%) 527 (46.5) 486 (45.9) 40 (53.3) 457 (45.8) 65 (50.8) 

BMI, n (%) 

  Underweight/normal 

  Overweight 

  Obese 

 

230 (20.3) 

498 (44.0) 

405 (35.7) 

 

216 (20.4) 

468 (44.3) 

373 (35.3) 

 

13 (17.3) 

30 (40.0) 

32 (42.7) 

 

207 (20.8) 

451 (45.3) 

338 (33.9) 

 

22 (17.3)** 

41 (32.3) 

64 (50.4) 

Smoking, n (%) 

   Never 

   Former 

   Current 

 

564 (51.9) 

355 (32.7) 

168 (15.4) 

 

529 (52.2) 

325 (32.1) 

160 (15.8) 

 

35 (48.6) 

30 (41.8) 

7 (9.7) 

 

495 (52.1) 

307 (32.3) 

149 (15.7) 

 

67 (52.8) 

42 (33.1) 

18 (14.2) 

HbA1C 5.9 (0.8) 5.9 (0.7) 6.1 (1.2) 5.8 (0.7) 6.2 (1.2)** 

Diabetes, n (%) 103 (9.3) 94 (9.1) 9 (12.2) 82 (8.4) 21 (16.4)** 

Office SBP, mm Hg 134.2 (17.5) 133.8 (17.3) 140.4 (19.4)** 133.4 (17.1) 140.4 (20.4)** 

Office DBP, mm Hg 82.7 (10.1) 82.5 (10.1) 84.7 (11.8) 82.4 (9.9) 84.8 (12.3)* 

Hypertension, n (%) 665 (58.7) 607 (57.4) 58 (77.3)** 563 (56.6) 96 (75.0)** 

Sleep time, hours 8.6 (1.3) 8.7 (1.3) 8.3 (1.3) 8.6 (1.3) 8.8 (1.3) 

ABPM measurements 

  24h SBP, mm Hg 

  24h DBP, mm Hg 

  Awake SBP, mm Hg 

  Awake DBP, mm Hg 

  Sleep SBP, mm Hg 

  Sleep DBP, mm Hg 

 

124.1 (13.3) 

71.8 (8.3) 

131.4 (14.1) 

77.4 (9.0) 

112.3 (14.0) 

62.8 (8.3) 

 

123.8 (13.1) 

71.8 (8.2) 

131.1 (14.0) 

77.4 (9.0) 

111.9 (13.6) 

62.7 (8.2) 

 

128.9 (15.4)** 

72.0 (9.5) 

135.1 (16.0)* 

77.0 (9.9) 

118.6 (17.1)** 

63.6 (10.2) 

 

123.1 (12.7) 

71.4 (8.0) 

130.5 (13.6) 

77.0 (8.7) 

111.2 (13.3) 

62.3 (8.0) 

 

131.5 (15.4)** 

74.6 (10.0)** 

138.1 (16.1)** 

80.0 (11.0)** 

121.2 (16.2)** 

66.4 (9.4)** 

Data are mean (SD). SBP: Systolic Blood pressure, DBP: Diastolic blood pressure, BMI:Body mass index, LVH: Left ventricular 

hypertrophy, ABPM: Ambulatory blood pressure monitor. Microalbuminuria: albumin:creatinine ratio ≥ 1.1 mg/mmol. * p<0.05, 

**p-value<0.01, p-values comparing those with/without target organ damage 
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Table 4-2  Variability Indices and Nocturnal Dip by LVH  

Variability 
Measure 

24-hour (mm Hg) Day (mm Hg) Night (mm Hg) 

No Yes No Yes No Yes 

ARV SBP 11.3 (2.5) 11.7 (2.4) 11.9 (3.1) 12.0 (3.1) 10.6 (3.3) 11.2 (2.9) 
ARV DBP 7.8 (1.7) 7.5 (2.0) 8.1 (2.4) 7.8 (2.8) 7.3 (2.1) 7.1 (2.2) 
SD SBP 15.8 (4.0) 16.0 (4.1) 12.8 (3.5) 13.4 (3.5) 11.2 (3.6) 11.5 (3.2) 
SD DBP 11.5 (2.8) 11.1 (2.7) 8.9 (2.8) 8.7 (2.7) 8.0 (2.4) 7.7 (1.8) 
CV SBP 12.8 (2.9) 12.4 (2.9) 9.8 (2.4) 10.0 (2.4) 10.0 (3.0) 9.7 (2.7) 
CV DBP 16.1 (3.7) 15.6 (3.9) 11.7 (3.6) 11.5 (3.8) 12.9 (3.8) 12.4 (3.2) 

wSD SBP 12.3 (2.9) 12.8 (2.7) - - - - 
wSD DBP 8.7 (2.1) 8.4 (2.0) - - - - 
Dip SBP 14.5 (6.7) 12.0 (9.0) * - - - - 
Dip DBP 18.7 (7.5) 17.2 (9.8) - - - - 

Data are mean (SD). ARV: Average real variability, SD: Standard deviation, wSD: Weighted standard deviation, CV: coefficient 
of variation, SBP: Systolic Blood pressure, DBP: Diastolic blood pressure, *p<0.05; represents significance between those with 
and without LVH during each period of the day 

 

 

Table 4-3 Variability Indices and Nocturnal Dip by Microalbuminuria  

Variability 
Measure 

24-hour (mm Hg) Day (mm Hg) Night (mm Hg) 
No Yes No Yes No Yes 

ARV SBP 11.2 (2.5) 12.4 (2.9) ** 11.8 (3.1) 12.7 (3.5) ** 10.5 (3.2) 11.9 (3.5) ** 
ARV DBP 7.7 (1.7) 8.2 (2.1) ** 8.1 (2.3) 8.5 (3.0) 7.2 (2.1) 7.9 (2.3) ** 
SD SBP 15.8 (4.0) 16.2 (4.2) 12.8 (3.4) 13.8 (4.1) ** 11.1 (3.5) 12.3 (3.7) ** 
SD DBP 11.4 (2.8) 11.5 (2.9) 8.9 (2.7) 9.2 (3.1) 7.9 (2.3) 8.7 (2.5) ** 
CV SBP 12.8 (2.9) 12.4 (2.9) 9.8 (2.3) 10.0 (2.8) 10.0 (3.0) 10.2 (2.9) 
CV DBP 16.1 (3.7) 15.6 (3.9) 11.7 (3.6) 11.7 (4.2) 12.8 (3.8) 13.3 (4.0) 

wSD SBP 12.2 (2.8) 13.3 (3.3) ** - - - - 
wSD DBP 8.6 (2.0) 9.0 (2.3) * - - - - 
Dip SBP 14.6 (6.9) 12.1 (7.3) ** - - - - 
Dip DBP 18.8 (7.7) 16.7 (7.4) ** - - - - 

Data are mean (SD). ARV: Average real variability, SD: Standard deviation, wSD: Weighted standard deviation, CV: coefficient 
of variation, SBP: Systolic Blood pressure, DBP: Diastolic blood pressure, *p<0.05; ** p<0.01 represents significance between 
those with and without microalbuminuria during each period of the day  
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Table 4-4 Association between SBP BPV and LVH 

Variability (per SD 

change in mm Hg) 

Unadjusted OR 

(95% CI) 

Model 1 OR 

(95% CI) 

Model 2 OR 

(95% CI) 

ARV:  24h ARV 

           Day ARV 

           Night ARV 

1.13 (0.90-1.41) 

1.04 (0.83-1.31) 

1.19 (0.96-1.49) 

1.01 (0.79-1.30) 

0.97 (0.76-1.25) 

1.08 (0.84-1.39) 

0.87 (0.66-1.14) 

0.87 (0.67-1.13) 

0.97 (0.74-1.26) 

SD:    24h SD 

          Day SD 

          Night SD 

1.03 (0.82-1.30) 

1.17 (0.94-1.46) 

1.09 (0.87-1.36) 

1.01 (0.79-1.30) 

1.09 (0.86-1.39) 

1.02 (0.79-1.32) 

0.91 (0.70-1.18) 

0.98 (0.76-1.28) 

0.90 (0.69-1.19) 

CV:    24h CV 

          Day CV 

          Night CV 

0.88 (0.68-1.12)  

1.08 (0.86-1.36) 

0.91 (0.71-1.16) 

0.89 (0.69-1.14) 

1.01 (0.79-1.29) 

0.87 (0.67-1.13) 

0.91 (0.71-1.17) 

1.02 (0.80-1.30) 

0.87 (0.67-1.14) 

wSD 1.18 (0.94-1.46) 1.08 (0.85-1.40) 0.94 (0.71-1.24) 

SBP Nocturnal Dip 0.71 (0.57-0.89)** 0.78 (0.62-0.98)* 0.81 (0.64-1.02) 

24h SBP 1.42 (1.14-1.76)** 1.37 (1.07-1.75)* - 

ARV: Average real variability, SD: Standard deviation, wSD: Weighted standard deviation, CV: coefficient of variation, LVH: 

Left ventricular hypertrophy, SBP: Systolic blood pressure, BP: Blood pressure, BPV: Blood pressure variability, OR: Odds 

ratio, * p<0.05, **p-value<0.01 

Each variability measure entered separately and adjusted as follows: Model 1: Age, gender, smoking, BMI, diabetes, anti-

hypertensive treatment; Model 2: Age, gender, smoking, BMI, diabetes, anti-hypertensive treatment, 24h SBP 
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Table 4-5 Association between SBP BPV and Microalbuminuria   

Variability (per SD 

change in mm Hg) 

Unadjusted OR 

(95% CI) 

Model 1 OR 

(95% CI) 

Model 2 OR 

(95% CI) 

ARV:  24h ARV 

           Day ARV 

           Night ARV 

1.51 (1.27-1.79)** 

1.31 (1.11-1.56)** 

1.46 (1.24-1.74)** 

1.44 (1.19-1.73)** 

1.31 (1.10-1.57)** 

1.35 (1.12-1.63)** 

1.20 (0.97-1.47) 

1.12 (0.93-1.37) 

1.16 (0.95-1.42) 

SD:    24h SD 

          Day SD 

          Night SD 

1.10 (0.92-1.31) 

1.29 (1.09-1.53)** 

1.35 (1.15-1.60)** 

1.09 (0.90-1.31) 

1.29 (1.07-1.54)** 

1.27 (1.06-1.52)** 

0.89 (0.72-1.09) 

1.09 (0.89-1.33) 

1.06 (0.87-1.30) 

CV:    24h CV 

          Day CV 

          Night CV 

0.84 (0.70-1.02) 

1.09 (0.92-1.30) 

1.07 (0.89-1.27) 

0.87 (0.72-1.06) 

1.11 (0.92-1.34) 

1.02 (0.84-1.23) 

0.89 (0.73-1.08) 

1.12 (0.92-1.35) 

1.01 (0.84-1.23) 

wSD 1.39 (1.18-1.64)** 1.35 (1.12-1.62)** 1.10 (0.89-1.35) 

SBP Nocturnal Dip 0.70 (0.59-0.84)** 0.74 (0.62-0.90)** 0.78 (0.65-0.94)* 

24h SBP 1.78 (1.49-2.13)** 1.67 (1.38-2.02)** - 

ARV: Average real variability, SD: Standard deviation, wSD: Weighted standard deviation, CV: coefficient of variation, SBP: 

Systolic blood pressure, BP: Blood pressure, BPV: Blood pressure variability, Microalbuminuria: albumin:creatinine ratio ≥ 1.1 

mg/mmol, OR: Odds ratio *p<0.05; ** p<0.01 

Each variability measure entered separately and adjusted as follows: Model 1: Age, gender, smoking, BMI, diabetes, anti-

hypertensive treatment; Model 2: Age, gender, smoking, BMI, diabetes, anti-hypertensive treatment, 24h SBP 
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5.1 Abstract  

There are many examples of physiological processes that follow a circadian cycle 

and researchers are interested in alternative methods to illustrate and quantify this 

diurnal variation. Circadian BP deserves additional attention given uncertainty 

relating to the prognostic significance of BPV in relation to CVD. However, the 

majority of studies exploring variability in ABPM collapse the data into single 

readings ignoring the temporal nature of the data. Advanced statistical techniques 

are required to explore complete variation over 24h.    

We use piecewise linear splines in a mixed-effects model with a constraint to 

ensure periodicity as a novel application for modelling daily BP. Data from the 

Mitchelstown Study, a population based study of Irish adults aged 47-73 years 

(n=2,047) was utilized. A subsample (1,207) underwent 24h ABPM. We compared 

patterns between those with and without evidence of subclinical TOD 

(microalbuminuria). 

We were able to quantify the steepest rise and fall in SBP, which occurred just after 

waking (2.23 mmHg/30min) and immediately after falling asleep (-1.93 

mmHg/30min) respectively. The variation about an individual’s trajectory over 24h 

was 12.3mmHg (SD). On average those with microalbuminuria were found to have 

significantly higher SBP (7.6 mm Hg, 95%CI: 5.0-10.1) after adjustment for age, sex 

and BMI. Including an interaction term between each linear spline and 

microalbuminuria did not improve model fit. 

We have introduced a practical method for the analysis of ABPM where we can 

determine the rate of increase or decrease for different periods of the day. This 

may be particularly useful in examining chronotherapy effects of antihypertensive 

medication. It offers new measures of short-term BPV as we can quantify the 

variation about an individual’s trajectory but also allows examination of the 

variation in slopes between individuals (random-effects).  
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5.2 Introduction  

There are many examples of physiological processes that follow a circadian cycle 

such as cortisol, intraocular pressure and body temperature where abnormalities in 

these patterns have been shown to be related to depression [176], glaucoma [177] 

and delayed sleep-phase disorder [178]. The ability to analyse and capture features 

of these cycles remains a challenge but is necessary to get a deeper understanding 

of the mechanisms behind them. For example, the cardiovascular system shows 

clear circadian rhythmicity where researchers are interested in alternative methods 

to illustrate and quantify this diurnal variation [179]. Circadian BP represents a 

situation where diurnal variation deserves additional attention given the 

uncertainty relating to the prognostic significance of BPV [25, 32-34]. The benefits 

of using ABPM in addition to clinic measurements in the diagnosis and management 

of hypertension are well established [13, 18].  As well as mean day, night and dip 

values, ABPM provides measures of short-term BPV and individual profile patterns. 

The majority of studies examining short-term BPV have focused on summary 

measures such as the SD of ABPM readings over the day. These summary measures 

are easily obtained without the need for advanced statistical techniques [25, 32-34, 

37, 39] but ignore the temporal nature of the data. To date relatively little work has 

modelled 24h ABPM profiles to exploit the full potential of ABPM data to capture 

short-term BPV [48]. Moreover, there are a lack of studies exploring circadian 

patterns and specifically, studies examining differences in patterns among different 

groups of individuals.  

Cosinor analysis which incorporates a sinusoidal function has been the most 

common approach to modelling 24h BP [114-117], while a similar method, Fourier 

analysis [123, 124], has also been implemented. These approaches have focused on 

between-group effects (fixed-effects) where typically inferences are based on 

estimated differences in model parameters between particular groups of patients, 

such as comparing the estimated amplitude or MESOR between groups of 

individuals on different antihypertensive agents obtained in cosinor analysis [116]. 

The focus of fixed-effects is on population trajectories. However one of the main 
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advantages of ABPM is that we obtain individual BP profiles and modelling subject-

specific trajectories involves incorporating subject-specific effects (random-effects).  

To model mean profiles Selwyn et al. [106] used a hierarchical model incorporating 

a 4th degree polynomial. Lambert et al. extended on this by incorporating restricted 

cubic splines to model the mean BP profiles [48]. More recently, Edwards et al. [49] 

utilised orthonormal polynomials in a linear mixed model in a group of hypertensive 

subjects. Both polynomials and cubic splines, by their nature, have the ability to 

produce well-fitting curves to the data but have the disadvantage that the 

corresponding coefficients are challenging to interpret directly.   

As an alternative we propose using piecewise linear splines in a mixed-effects 

model as a different approach for modelling ABPM data. Although linear splines 

have been used to model BP change over years and gestational age [109], using 

them to explore daily patterns of BP represents a novel method for analysing 

ABPM. This approach has the advantage that coefficients represent something 

meaningful, in this case the slope of BP at different periods of the day. To date it is 

unclear if different underlying circadian BP patterns exist across various groups of 

the population. This method allows slopes at a group level (and individual level) to 

be easily compared. Furthermore, using random-effects we want to predict and 

plot curves at an individual level and to explore BPV within each period of the day. 

Thus the aim of this study is twofold 1) to introduce and describe a mixed-effects 

piecewise linear model in relation to BP; 2) to apply our method to a middle-aged 

population sample and explore their circadian BP patterns. We also introduce and 

present a constraint for our model that ensures periodicity, so that on the average 

BP is the same 24h later. We are particularly interested in identifying distinct 

differences in the shape of mean curves at a group level. For purposes of illustration 

of the models at a group level, we will compare those with and without evidence of 

subclinical TOD, specifically microalbuminuria.  
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5.3 Methods 

Study Population 

The analysis utilises data from the Mitchelstown Study, a population based study of 

middle-aged men and women, recruited in Ireland 2010-2011. A description of the 

study design is available from previous publications [74, 180]. The study recruited 

patients attending a single large primary care centre, the LHC, in Mitchelstown. 

Participants completed a detailed health and lifestyle questionnaire, and attended 

for a physical examination including height, weight, BP, fasting blood samples and 

urine samples. ABPM was offered to all participants. All participants provided 

written informed consent and ethical approval was obtained from the Clinical 

Research Ethics Committee Cork.  

BP Measurements 

Study BP was measured three times after 5 minutes of rest in a seated position by 

experienced research nurses using an OMRON M7 BP monitor (OMRON Healthcare, 

The Netherlands). The average of the second and third measurements was used for 

analyses. ABPM was measured using dabl ABPM system (dabl ltd., Ireland) with the 

Meditech ABOM-05 Monitor (Meditech LTD., Hungary). The monitors were 

programmed to obtain readings every 30mins and remained in place for 24h. 

Participants kept diaries of wake and sleep periods, which were used to calculate 

sleep and waking times. Only participants with a minimum of 20 measurements 

during the day and a minimum of 7 measurements during the night period were 

included in the analysis (see Appendix E) [13, 181]. Additionally, any participants 

with data lacking for more than two consecutive hourly intervals were excluded [13, 

73, 181]. 

Target Organ Damage 

Each participant provided an early-morning spot urine sample on the day of their 

appointment. Laboratory analyses included analysis for ACR. Microalbuminuria is 

defined as ACR⩾1.1 mg mmol-1 [78]. 
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Statistical Analysis 

Linear Mixed Model - Linear Splines 

The linear mixed model [87, 88] is a well-recognised tool in the analysis of 

longitudinal data and its ability to obtain both population (fixed-effects) and 

subject-specific (random-effects) trajectories makes it particularly appealing for the 

analysis of ABPM data. However, its use to-date has focused on BP following a 

smooth curvature trajectory which results in spline and polynomial coefficients that 

are of no direct clinical relevance. Piecewise linear functions or linear splines offer 

an alternative. These involve segregating the data into different segments across 

time initially assuming the segments are the same for everyone. Within each 

partition, a linear spline is fitted and where these are connected are known as knot 

points. The corresponding coefficient of each spline represents the rate of increase 

or decrease of BP during each time period.  

Knot selection 

The position of the knot points were determined based on a number of factors. 

Firstly, to get a general sense of the shape of the data and determine regions of 

interest (how many knots were required), we plotted an average curve of BP 

including all participants to determine common knot points. In addition we 

incorporated prior known characteristics of BP. The period of awakening 

corresponds with an abrupt and steep acceleration of BP and for many the 

maximum value obtained during this morning period corresponds to their 

maximum BP reached throughout the day [182]. We also know that BP gradually 

falls throughout the day and usually dips to its lowest value during the sleeping 

period [18]. Since waking and sleeping times are clearly important in terms of 

changes in BP we decided that the use of these times as two additional subject-

specific knot points was appropriate. We were able to create these subject-specific 

knots using the wake and sleep times reported by the participant. We had 49 

readings for each individual, where the first reading was t1 (12pm) and the final 

reading was t49 (12pm the following day). Individual waking and sleeping times 
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were included within this range (t1- t49). For each individual we created m linear 

splines, where the kth spline: 

 sk (t) = 0 if t ≤ tki 

                                              sk (t) = ti - tki if tk < t ≤ tki+1   for k=1,…,m                                                 

sk (t) = tki+1 - tki if t > tki+1 

(22) 

 

Incorporating these linear splines into a linear mixed effects model for BP we get: 

 
               ∑           

 

   

                     

                             ∑             ∑                          

 

(23) 

where BPij is the BP value for the jth measurement on the ith person, at time tij, the 

β’s are the fixed effects coefficients associated with the average intercept at β0 (BP 

at 12pm) and the average slopes (βk’s) between knot points, b’s are the random-

effects associated with the average intercept (b0i) and average slopes between knot 

points, and ij representing the individual-level residuals from the model. The model 

is extended by incorporating the subject-specific knots in the sk term. It is assumed 

the random-effects (bi) have zero mean and an unstructured variance-covariance 

matrix Σb. The individual level residuals have mean zero and variance-covariance 

matrix Σ.  

To expand equation (23) to include the restriction that on the average BP is the 

same 24h later we define an equation which states average, subject-specific change 

in BP over 24h is zero: 

 
∑      

 

   

   (24) 

 

where wki is the width of the kth interval (and where those involving wake and sleep 

times are subject-specific width intervals). Rewriting this in terms of β1 gives: 
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∑       
 
   

   
 (25) 

which implies: 

 
∑     

 

   

        ∑      

 

   

 ∑      
 

 

   

 (26) 

 

where    
      

   

   
    , which allows us rewrite (23) as 

 
               ∑            

 

 

   

                     (27) 

 

To explore a group effect the model can easily incorporate a variable of interest, in 

this case TOD (microalbuminuria), as a dichotomous covariate. We further 

extended the model allowing the shape of the trajectory to depend on TOD by 

including interactions between TOD and each linear spline slope. Comparing this 

model with one without any interactions allowed us to test if the overall trajectory 

of BP was different between the two groups across the day. Additionally we were 

able to test if slopes between the groups differed at specific locations throughout 

the day. We adjusted for confounders by adding them into the model as fixed 

effects. In additional models we tested the effect of allowing the residual variance 

to differ between those with and without microalbuminuria. Similarly we tested the 

impact of allowing the interaction terms of microalbuminuria with each linear 

spline to be random to determine if there was heterogeneity of variance between 

the groups at any period of the day. Although we used an unstructured covariance 

structure for our models, we assumed these interaction terms to be independent of 

the other random-effects parameters. These interactions represented the 

difference in variation between the microalbuminuria groups within each segment. 

For all models explored we allowed all the linear spline terms to be random.   

As individual ABPM readings taken close in time are likely to be correlated, a model 

with an independent residual correlation structure may not be appropriate. We 
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compared this to a model with a first-order autoregressive AR(1) structure and 

examined a plot of the ACF to detect violations of the assumption of independence. 

Allowing for temporal correlation can potentially result in a large improvement in 

the precision of parameter estimates [93]. 

Models were compared formally by a LRT [88, 183]. The appropriate variance and 

residual function structures were also identified using a LRT in addition with an ACF 

plot. R-squared (R2) statistic is often presented as a summary measure for linear 

models but due to theoretical or practical problems is rarely presented for mixed-

models. Nakagawa and Schielzeth discuss these issues and present a general but 

simple method for calculating an appropriate R2 for random intercept mixed-

models [184]. Johnson extended this to include random slope models which we 

implement in our analysis [185].  

The parameters for our final models were estimated using REML as this method 

produces unbiased estimates unlike ML estimation [93]. Subject-specific 

trajectories were estimated using Empirical Best Linear Unbiased Predictors 

(EBLUPs) of the random-effects [88]. Residual diagnostic plots were examined to 

verify model distribution assumptions. In addition a visual predictive check (VPC) 

was performed in which the estimated mean and the 90% prediction interval from 

our model were plotted together with the observed BP values and the 90% 

interquantile range of the observations. The purpose of the VPC is to assess 

graphically if predictions from the fitted model reproduce the central trend and 

variability of BP in the observed data, when plotted against time. It is an internal 

validation method that assesses the goodness-of-fit. [186] All analysis was 

completed for both SBP and DBP. All analysis were implemented in R [187] and 

parameter estimation for the mixed-effect model was carried out by means of the 

lme command in nlme package [188].   

Validation 

Although difficult to interpret the coefficients, polynomial regression can still be a 

useful tool in the analysis of medical data to plot the trajectory of non-linear or 

curvilinear relationships [101]. As a method of validation for our approach we 
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additionally implemented a linear mixed model with orthogonal polynomials across 

time in both the fixed and random-effects, similar to that of Edwards et al. [49]. We 

wanted to determine if linear splines were capable of capturing the circadian 

rhythm of BP. This was investigated by comparing the trajectories obtained from 

both methods to determine if they followed similar patterns. A similar process to 

that of the piecewise model was followed when fitting the polynomial model. As we 

were only concerned to know if the general shape could be captured by our 

piecewise approach we were not worried about over-fitting the polynomial model. 

We implemented a model up to a 6th order polynomial allowing all the terms to be 

random.   
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5.4 Results 

Of 3051 individuals invited to participate, 2047 (response rate: 67%) completed the 

questionnaire and physical examination component. ABPM was offered to all 2047 

participants and it was completed by 1207 (response rate: 58%) people, of whom 

1008 had a minimum of 20 day and 7 night measurements respectively. Of these 

886 had no data missing for more than two consecutive hourly intervals, and the 

main clinical characteristics of these participants are presented in Table 5-1. 

Overall, participants had a mean age of 59.9 (5.5) and the majority were female 

(55%). Sixty percent were classified as hypertensive. Also presented in Table 5-1 are 

the characteristics of the full sample which shows the ABPM sub-sample follows a 

similar distribution in terms of age, sex, BMI and the presence of microalbuminuria. 

However, the proportion of those with hypertension was higher amongst those in 

ABPM sub group than in overall study population (60% vs 47%).  

The plot of average SBP for the 886 subjects is presented in Figure 5-1. Based on 

this plot we identified two common knot points where the trajectory of SBP 

changed notably at 6pm and 4am. In addition to these two points we were able to 

include two subject-specific knot points for each participant based on the time an 

individual woke and went to sleep (Figure 5-1).  This meant each participant was 

assigned 4 knot points which in turn resulted in their SBP pattern being broken into 

5 linear segments.  

Figure 5-2 represents subject-specific trajectories as a function of time only from a 

linear mixed-effects model using both orthogonal polynomials (6th order) (red line) 

and piecewise linear splines (blue lines). The plots suggest that the individual curves 

can be adequately captured by using piecewise linear splines.  

We initially included the 5 linear splines as fixed-effects. A significant improvement 

in fit was observed when additionally including each term individually as a random-

effect, based on a LRT (all p<0.001). As a consequence we included all the linear 

spline terms as random-effects. To allow for temporal correlation we incorporated 

an AR1 structure which resulted in a significant improvement in fit (p<0.001) 

(rho=0.27). Examining the ACF plot indicated that the inclusion of an AR1 residual 
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structure adequately accounted for the auto-correlation in the data. This 

unadjusted model, which only incorporates linear splines as a function of time was 

our base model, Table 5-2 (Model 1). Presented are the parameter estimates (fixed-

effects, random-effects correlation matrix, the autocorrelation decay ρ along with 

fit criteria values). With the exception of the slope for the period from 12.00 to 

18.00 (0.02(0.04) mmHg/30min), all slopes differed significantly from zero (all 

p<0.001). This suggests that on average this is the period during the day where 

average SBP remains constant. The largest rise and fall in SBP occurred between 

wake and 12.00 (2.23 mmHg/30min) and, between sleep and 04.00 (-1.93 

mmHg/30min) respectively. These segments correspond to the period when an 

individual wakes up and the period immediately after they fall asleep. The variation 

in slopes was lowest from 12.00 to 18.00 where the variance was 0.51. The largest 

variation in slopes was observed between waking and 12.00 where the variance 

was 2.05 which is substantially larger in comparison to the rest of the day. The 

model R2 value which illustrates the proportion of variance explained by both the 

fixed and random factors was quite high (0.67). 

In subsequent models we adjusted for age, sex and BMI. We also included our 

variable of interest, microalbuminuria, to determine if it could help explain the 

larger variation in the period, wake to 12.00 (Model 2, Table 5-2). The residual 

variance, which represents the variation about an individual’s trajectory, was 

12.3mmHg. We additionally allowed the residual variance to vary between 

microalbuminuria groups (ratio of SD of those with to without microalbuminuria 

was 1.09). On average, over the day, those with microalbuminuria were found to 

have significantly higher SBP (7.6 mm Hg, 95% CI: 5.0-10.1, p<0.001). However, 

adjusting for age, sex, BMI and microalbuminuria had almost no effect on the 

model parameter estimates (except the intercept). To determine if slopes were 

different between groups at different times of the day we included an interaction 

between each linear spline and microalbuminuria (Model 3, Table 5-2). Although 

two of the interaction terms were marginally significant, a LRT suggested that 

including interaction terms did not improve the overall fit to the data (p=0.12). 

Based on additional models (results not shown) we found no evidence that the 
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variance of the random-effects varied with microalbuminuria. With the inclusion of 

age, sex, BMI and microalbuminuria we concluded that Model 2 offered the best fit 

to the data (Model 2 vs Model 1, p<0.01). Residual diagnostic plots of the models 

showed no violation of assumptions (results not shown). The VPC plot showed the 

model was adequately predicting central trend and variability of SBP in the 

observed data, when plotted against time (see Appendix C). 

Figure 5-3 represents the average piecewise linear curve along with a 95% 

confidence interval for those with and without the presence of microalbuminuria 

using Model 2. The numbers on the plot correspond to the time periods presented 

in Table 5-2. It is clear that those with microalbuminuria have a higher average SBP 

throughout the day.  For the purposes of this plot we have set the sleep and wake 

time knots at 23.00 and 08.00 respectively. A similar plot using model 3 can be 

found in Appendix C. Similar findings were found for all analysis when repeated 

using DBP (results not shown). 
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5.5 Discussion 

In this large population based study we present an alternative method of modelling 

24h BP that can easily be applied to any physiological process that follows a 

circadian cycle. Our novel but simple approach utilising a piecewise linear random-

effects model, with an adjustment to ensure that the average level is the same at 

the beginning and end of each 24h period, offers a practical alternative to other 

methodological modelling techniques for researchers exploring circadian patterns. 

The flexible model has the ability to capture overall average, group and individual 

trajectories (in addition to being capable of examining slopes at different periods of 

the day).  

Despite the large amounts of literature relating to BP, those specifically modelling 

24h ABPM remain sparse. Our method offers new measures of short-term BPV as 

we can quantify the variation about an individual’s trajectory but it also allows 

examination of the variation in slopes between individuals (random-effects). Our 

results indicated that after adjustment for age, sex and BMI the sharpest fall in BP 

occurred just after an individual went to sleep and the steepest rise occurred just 

after waking. Although there was a significant difference on average between those 

with and without microalbuminuria we found there was no overall improvement in 

fit after including interaction effects with the spline terms. However interestingly 

we found that the variation after awaking, representing what is known as the 

morning surge was considerably larger than the other periods of the day.  

It has been acknowledged there is not a generally accepted “standard” method of 

analysing 24h ABPM [49]. Cosinor analysis has been highlighted as the most 

common approach [114-117] while Fourier analysis [123], has also been 

implemented which are both based on the idea that any time series can be 

described by a series of cosine (and sine) waves of various frequencies [189]. It has 

been suggested that these methods impose too many restrictions on the shape of 

the profile and have been shown to fit real profiles poorly [119]. Wang et al. [120] 

suggest problems with fitting a sinusoidal function to a circadian pattern include (i) 

that the pattern over time may not be symmetric; that is, the peak and nadir may 
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not be separated by 12 hours and/or the amplitude and width of the peak may 

differ from those of the nadir, (ii) sometimes there are local minimum and 

maximum points. Additionally Wang et al. [121] suggests that the sinusoidal 

function is too restrictive and “rhythms with a shape closely approximating a cosine 

curve are uncommon” [122]. Alternative methods have examined restricted cubic 

splines and more recently orthonormal polynomials [48, 49]. As we highlighted 

previously these approaches may model the data quite well and their curvature 

nature may look graphically appealing but it is difficult to understand and compare 

their resulting coefficients.  

Piecewise regression which allows separate slopes to be fitted to observations 

before and after a certain period or event (knot points) has been cited as a useful 

tool that should be implemented more often in the context of epidemiological 

studies [190] but has not, to the best of our knowledge been used with ABPM data 

or other physiological processes that are circadian. The benefit of this method as 

opposed to polynomials is that the regression coefficients represent something 

meaningful directly without the need for further manipulation of the results - in our 

context, the rate of increase or decrease of BP for a certain time of day. The 

position of the knot points can easily be altered depending on the requirements of 

a specific study. For example if we were examining the effect of dialysis on BP in 

haemodialysis patients we could fix knot points at the time their dialysis began and 

at period(s) a number of hours later.  

The morning is recognised as the most important period in relation to CVDs [23] 

and cardiovascular events occur more frequently in this period [23, 45, 46]. In our 

study we found that the steepest rise (slope) occurred during the period just after 

waking which is in line with the literature, thus verifying that our method is 

capturing known features of the data. It is suggested that the abrupt steep rise in 

BP may explain the link between cardiovascular events and the morning period 

[182]. In a review of morning surge with cardiovascular risk, 3 different definitions 

of morning surge were identified, all of which simply use BP differences where they 

subtracted some average night value minus an average of morning BP readings 

[45]. We argue that our method offers a more accurate estimate, as by definition of 
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a slope we can specifically quantify the rate of “surge”. In fact, Parati et al. argue 

that a method that would be capable of capturing a slope similar to one purposed 

by our method would provide an accurate method of estimating the morning surge 

[142].  Considering that morning surge has been cited as a predictor of stroke and 

advanced TOD independent of ambulatory BP and nocturnal BP [23, 46], accurately 

quantifying it remains an important issue, particularly when we are assessing the 

benefits of antihypertensive medication in their ability to reduce this steep rise. 

This may not only have health implications but also financial benefits. A similar 

argument could be put forward for the dipping effect at night which is usually 

quantified just as a ratio of the mean BP between night-day periods. The slope at 

night obtained by our approach may represent a more accurate measure but 

further work would be needed to explore this. 

Kario argues that the perfect 24h BP control is not limited to reducing mean BP but 

includes restoring disrupted circadian BP rhythms and reducing exaggerated BPV 

[23]. As highlighted previously most studies examining BPV have concentrated on 

summary measures of variability such as SD over 24h or separated into day and 

night values [25, 32-34, 37, 39, 180]. With the use of our mixed-effects model we 

were are able to obtain superior measures of BPV that take into account the 

temporal nature of the data. We were able to quantify the variation about an 

individual’s trajectory but also the variation in slopes between individuals. Our work 

highlighted that the largest variation between individuals occurred during the 

morning surge period. Adjusting for age, sex and BMI did not help explain this 

variation. Similarly the presence of microalbuminuria had little impact on the 

variation. Ideally we would have preferred to explore if the variation could in part 

predict cardiovascular events but as data is currently only available for wave one, 

we have been restricted to explore a surrogate marker in microalbuminuria and 

have acknowledged this as a limitation. Further work is warranted to include CVD 

endpoints but perhaps an underlining physiological phenomenon of BP is that it is 

most variable in the morning possibly because this period of the day has an abrupt 

rise. Although some of the knots are subject-specific, others are at common fixed 

locations which may not represent the best position for a specific individual and this 
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assumption is recognised as a limitation. In addition to the average plot, we have 

attempted to incorporate our knowledge of the underlying pattern of BP to help 

inform our knot positions as suggested by Howe et al. [91]. 

As debate remains in relation to how to correctly quantify short-term BPV [180, 

191] our approach offers new alternatives that utilise the full power of ABPM that is 

often lost when using summary measures such as SD because it only reflects the 

dispersion of measurements around a single value (mean) not accounting for the 

order in which BP measurements were obtained [37, 40]. The ability to determine 

variation over specific periods of the day offers a novel measure of variability in the 

analysis of BP which may have benefits when attempting to determine the optimal 

timing of antihypertensive medication administration in future studies. Finally, the 

approach and discussion outlined is not restricted to the use of BP and can easily be 

implemented on any physiological process that demonstrates a circadian cycle. BP 

is not the only biological process where disruptions to circadian rhythms are clinical 

relevant. Wang et al. found that those with Cushing syndrome exhibited no 

circadian rhythm of cortisol, while those with depression showed a dampened 

rhythm compared to the normal group [121]. Liu et al. found that larger short-term 

fluctuations in intraocular pressure are more common in glaucoma [192]. Similar to 

the morning BP surge, it was found that intraocular pressure was higher in the 

morning and more prevalent in those with glaucoma. This suggests that our 

approach may be beneficial to the exploration of other biological rhythms that have 

similar features to that of BP. 

 

5.6 Conclusion 

This study has introduced a novel but practical method for the analysis of ABPM 

data. Based on our work circadian BP patterns can be modelled using a mixed-

effects model with piecewise linear splines. The main advantage of our method 

compared to other approaches is that the resulting regression coefficients have 

direct interpretation. We can determine the rate of increase or decrease at 

different periods of the day. In addition we can determine alternative measures of 
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variability compared to classical BPV indices. Future research in this area should 

focus on the association between the measures obtained from this method to 

stronger clinical outcomes.  
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Figure 5-1 Plot of average SBP over 24h which helped identify 6pm and 4am as common knot points for all participants where there 
was a notable change in trajectory of BP. Also highlighted are the periods where individuals woke and went to sleep. In addition to 
the two common points, we were able to obtain additional (two) subject-specific knot points at wake and sleep times.   
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Table 5-1 Baseline Characteristics 

Characteristic Total (n=2047) 
ABPM (sub-sample) 

Total (n=886) 

Age, y 59.8 (5.5) 59.9 (5.5) 

Gender, Male n(%) 1008 (49.2) 401 (45.3) 

BMI, n (%) 

Underweight/normal (<25kg/m
2
) 

Overweight (25-30 kg/m
2
) 

Obese (≥30 kg/m
2
) 

 

447 (21.9) 

925 (45.3) 

668 (32.8) 

 

195 (22.0) 

380 (42.9) 

310 (35.0) 

Office SBP, mm Hg 129.6 (16.9) 134.7 (17.7) 

Office DBP, mm Hg 80.1 (9.8) 83.1 (10.2) 

Hypertension, n (%) 951 (46.5) 528 (59.7) 

Microalbuminuria 215 (10.6) 62 (7.0) 

Data are mean (SD). BMI:Body mass index, ABPM: Ambulatory blood pressure monitor. Hypertension: ≥140/90 

mmHg and/or on antihypertensive treatment.  

 

  



125 
 

 

Figure 5-2 Individual SBP readings along with predicted subject-specific trajectories from a linear mixed effects model as a function 
of time only using two different approaches; polynomials (red line) and piecewise linear splines (blue lines). 
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Table 5-2 Various models with parameter estimates for slopes at each segment along with corresponding correlations and 
variances 

Parameter Model 1 Model 2 Model 3 

Fixed effects (SBP mmHg/30mins) Estimate (SE) Estimate (SE) Estimate (SE) 

SBP at 12.00 134 (0.54) 119.2 (4.6) 119.3 (4.6) 

Microalbuminuria        - 7.57 (1.30)* 5.79 (1.67)* 

Slope for spline time period:    

1. 12.00 – 18.00 0.02 (0.04) 0.03 (0.04) 0.03 (0.04) 

2. 18.00 - Sleep -1.00 (0.04)* -1.00 (0.04)*       -1.01 (0.04)* 

3. Sleep – 04.00 -1.93 (0.05)* -1.95 (0.06)* -1.99 (0.06)* 

4. 04.00 - Wake 1.69 (0.05)* 1.70 (0.05)* 1.71 (0.05)* 

5. Wake – 12.00 2.23 (0.07)* 2.21 (0.07)* 2.26 (0.07)* 

Microalbuminuria x Spline 

interaction 

   

1. 12.00 – 18.00         -         - -0.06 (0.14)  

2. 18.00 - Sleep         -         - 0.05 (0.13)  

3. Sleep – 04.00         -         - 0.37 (0.18)** 

4. 04.00 - Wake         -         - -0.06 (0.16)  

5. Wake – 12.00         -         - -0.48 (0.22)** 

Continued on following page    
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Parameter Model 1 Model 2 Model 3 

Fixed effects (SBP mmHg/30mins) Estimate (SE) Estimate (SE) Estimate (SE) 

    

    

Random effects    

Σ 

223.6 

-0.23   0.51 

-0.23  -0.10   0.55   

-0.23  -0.45   0.03 1.39  

0.46  - 0.28  -0.74 -0.05  0.66    

0.34   -0.06  -0.21 -0.78  0.19 2.05 

199.5 

-0.23  0.50 

-0.25  -0.10  0.54   

-0.28  -0.46  0.02  1.41 

0.47  -0.31  -0.74  -0.05  0.65   

0.42  -0.03  -0.22  -0.80  0.23 2.00 

200.5 

-0.24  0.51 

-0.25  -0.11   0.55 

-0.28  -0.44   0.02 1.40 

0.49  -0.33  -0.73 -0.04  0.65   

0.42  -0.04  -0.20 -0.81  0.24  1.97     

 12.3 12.3 12.2 

ρ 0.27 0.27 0.27 

    

R
2 

0.67 0.68 0.68 

Log-likelihood -149608 -149505 

Model 2 vs Model 1 (p<0.001) 

-149502 

Model 3 vs Model 2 (p=0.12) 

Microalbuminuria: albumin:creatinine ratio ≥ 1.1 mg/mmol 

*P<0.001,**P<0.05 

Model 1: Fixed effects (5 linear splines), random effects (5 linear splines).  

Model 2: Fixed effects (5 linear splines, microalbuminuria, age, sex, BMI), random effects (5 linear splines).  

Model 3: Fixed effects (5 linear splines and interaction with microalbuminuria, age, sex, BMI), random effects (5 linear splines). 

Random Effects matrix shown has variances on the diagonal and correlation coefficients on off-diagonals. 
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Figure 5-3 Predicted average (95% CI) piecewise linear trajectory of those with/without presence of microalbuminuria adjusted for 
age, sex and BMI using a linear mixed-effects model (Model 2). Each linear spline represents the rate of SBP increase or decrease 
(slope) for that segment and has been given a corresponding number which is referred to in Table 5-2. For the purposes of this plot 
we have set the sleep and wake time knots at 23.00 and 08.00 respectively. 
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6.1 Abstract 

BP fluctuates throughout the day. The pattern it follows represents one of the most 

important circadian rhythms in the human body. For example it is well known that 

the absence of a dip in night-time BP is associated with poor cardiovascular 

outcomes. Similarly the morning BP surge has been suggested as a potential risk 

factor for cardiovascular events occurring in the morning but the accurate 

quantification of this phenomenon remains a challenge. Here, we outline a novel 

method to quantify morning surge that can also be used to obtain other measures 

of BP variability throughout the day. 

We demonstrate how the most commonly used method to model 24h BP, the 

single-cosinor approach, can be extended to a multiple-component cosinor 

random-effects model. We outline how this model can be used to obtain a measure 

of morning BP surge by obtaining derivatives of the model fit. The model is 

compared to a FPCA which determines the main components of variability in the 

data. Data from the Mitchelstown Study, a population based study of Irish adults 

(n=2,047) was utilized where a subsample (1,207) underwent 24h ABPM. 

Our findings demonstrate that the most common approach to model ABPM, the 

single cosinor, does not provide the best fit to the data. Our two-component model 

developed with random-effects analysis provided a significant improvement in fit. 

In addition, it provided a similar fit to the more complex three-component model 

and a model captured by b-splines using functional principle component analysis. 

The estimate of the average maximum slope obtained from the derivatives from 

the model was 2.857 mmHg/30min (bootstrap estimates; 95% CI: 2.855-2.858 

mmHg/30min). Simulation results allowed us to quantify the between-individual SD 

in maximum slopes which was 1.02 mmHg/30min.  

By obtaining model derivatives we have demonstrated a novel approach to quantify 

morning BP surge and its variation between individuals. This is the first 

demonstration of a cosinor approach to obtain a measure of morning surge. 
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6.2 Introduction 

Elevated BP is the most prevalent treatable risk factor for cardiovascular disease 

affecting one billion people globally [2, 3]. It is well known that BP does not remain 

stationary but fluctuates throughout the day and follows a circadian rhythm. 

Morning surge refers to the phenomenon that occurs in individuals during the first 

few hours after waking up in the morning when there is an exaggerated spike or 

surge in BP [23, 45]. It has frequently been suggested that this surge may be a risk 

factor for cardiovascular events occurring in the morning [23, 45, 46]. However, the 

accurate quantification of this phenomenon remains a challenge. A recent meta-

analysis examining the prognostic significance of morning surge in 17 studies, 

identified seven different calculations for the term which highlights the problem 

[193].  All but one of these seven estimates involved simple subtraction of BP values 

where they subtracted some average night value minus an average of morning BP 

readings. While these measures can easily be calculated without the need for 

advanced methodology, they may not accurately quantify a surge or rate of change. 

Rather than focusing on one value (mean BP) as obtained by traditional 

measurement techniques, ABPM which obtains multiple readings over a 24h period 

offers a unique insight into an individual’s underlying circadian rhythm [13]. Parati 

et al. argue that rather than simplifying ABPM data into mean summary measures, 

incorporating all the data in more advanced models can lead to more robust 

estimates of clinically relevant parameters such as dipping status and morning BP 

surge [142]. In order to get a more advanced measure of surge, it is paramount that 

we can first accurately model ABPM.  

To date, the main approaches proposed to model 24h BP that incorporate all the 

data and fully utilise the benefits of the longitudinal nature of ABPM include the 

cosinor method [114-118], cubic splines [48], polynomials [49] and recently a 

double logistic model [194, 195]. Moreover, there is no accepted “standard” 

method for analysing ABPM [49], and research on the longitudinal analysis of 24h 

ABPM is lacking [48]. Cosinor analysis has traditionally been the most common 

approach to modelling 24h BP. This method oversimplifies the data as it attempts 

to describe a 24h circadian pattern with the use of a single sinusoidal function. The 
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assumption of a simple symmetrical pattern for diurnal BP is unable to account for 

large variation in BP over a 24h period [142]. Although not as common as the 

single-component cosinor model, attempts to extend the model by including 

multiple cos terms (Fourier analysis) allow more flexible curves to be obtained 

while remaining periodic [123-125]. The majority of the studies to date exploring 

the use of sinusoidal functions have focused on fixed-effects where the inference is 

on population effects [114-118]. A key feature of ABPM analysis however is the 

exploration of subject-specific effects (random-effects) where its use in cosinor 

models has been limited [126]. 

Thus the purpose of this study is twofold. To first demonstrate that extending the 

traditional single cosinor to a multiple-component cosinor in a random-effects 

model can be achieved while offering a substantial improvement in fit to ABPM 

data compared to the single-component model. Moreover the model is compared 

to a FPCA which determines the main components that account for the majority of 

the variation in the data. The parameters from the cosinor model are compared to 

the functional principle component scores.  

Secondly, by calculating first-order derivatives of the model fit, we present a novel 

alternative method to locate and quantify the magnitude of slopes at critical points 

on the trajectory. This simple application of derivatives allows us to quantify a 

measure of morning BP that specifically represents a surge parameter. This may be 

beneficial in future studies exploring the prognostic significance of morning BP and 

chronotherapy effects of antihypertensive medication. For purposes of illustration 

of the models at a group level, we compare first derivative curves in those with and 

without evidence of subclinical TOD, specifically microalbuminuria.  
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6.3 Methods 

Study Design and ABPM 

The analysis utilises data from the Mitchelstown Study, a population based study of 

middle-aged men and women, recruited in Ireland 2010-2011. A description of the 

study design is available from previous publications [74, 180]. The study recruited 

patients attending a single large primary care centre, the LHC, in Mitchelstown. 

Participants completed a detailed health and lifestyle questionnaire including a 

question on use of anti-hypertensive medication, and attended for a physical 

examination including height, weight, blood pressure and fasting blood samples. 

Each participant provided an early-morning spot urine sample on the day of their 

appointment. Laboratory analyses included analysis for ACR. Microalbuminuria is 

defined as ACR⩾1.1 mg mmol-1 [78]. Study BP was measured three times after 5 

minutes of rest in a seated position by experienced research nurses using an 

OMRON M7 BP monitor (OMRON Healthcare, The Netherlands). The average of the 

second and third measurements was used. The classification of hypertension was 

based on SBP≥140 mmHg and/or DBP≥90 mmHg and/or on anti-hypertensive 

treatment. ABPM was offered to all participants and was measured using dabl 

ABPM system (dabl ltd., Ireland) with the Meditech ABOM-05 Monitor (Meditech 

LTD., Hungary). The monitors were programmed to obtain readings every 30mins 

and remained in place for 24-h. Participants kept diaries of wake and sleep periods, 

which were used to calculate sleep and waking times. Only participants with a 

minimum of 20 measurements during the day and a minimum of 7 measurements 

during the night period were included in the analysis [13, 181]. Additionally, any 

participants with data lacking for more than two consecutive hourly intervals were 

excluded (see Appendix E) [13, 73, 181]. All participants provided written informed 

consent and ethical approval was obtained from the Clinical Research Ethics 

Committee Cork.  
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6.4 Statistical Analysis 

Cosinor Analysis 

The single-component cosinor model, which was first developed by Halberg [112, 

113], uses a single cosine function as a model for physiological processes that have 

a circadian rhythm. This can be extended to a multiple-component model in the 

context of BP:  

         ∑   
 
      (

   

  
    )      , i = 1,2…,n (28) 

where BP(t) is BP as a function of time (t), M is the MESOR, the average value over 

the period, A is the amplitude for each cosine term (half the difference between the 

highest and lowest values, or the distance between the MESOR and the highest 

(lowest) value), τ is the period or duration of one cycle corresponding to each 

cosine term, ϕ is the acrophase (a measure of the time of the overall high values 

recurring in each cycle for each cosine term), e is the error term and n represents 

the number of cosine curves (n=1 represents the case of the single-component 

cosinor model).  

The fixed-effects multiple-component model in equation (28) can be incorporated 

into a random-effects model. The mixed-effects model [87, 88] is a well-recognised 

tool in the analysis of longitudinal data that allows both population (fixed-effects) 

and subject-specific (random-effects) trajectories to be obtained which makes it 

useful for the analysis of ABPM data. It is assumed the random-effects have mean 

zero and an unstructured variance-covariance matrix. The individual level residuals 

(e) have mean zero and variance-covariance matrix Σe. As individual ABPM readings 

taken close in time are likely to be correlated, a model with an independent 

residual correlation structure may not be appropriate. We compared this to a 

model with a first-order autoregressive AR(1) structure and examined a plot of the 

ACF to detect violations of the assumption of independence. We determined the 

appropriate number of cosine terms by graphically comparing subject-specific 

predicted BP fits to the data (while increasing the number of terms) and formally by 

comparing models with different number of cosines using a LRT [88, 183]. Based on 

a LRT we univariately tested the inclusion of each term as a random-effect. If a 
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significant improvement was obtained, the term was included as a random-effect in 

the final model. The appropriate variance and residual function structures were 

also identified using a LRT in addition with the ACF plot.  

The parameters for our final model were estimated using REML as this method 

produces unbiased estimates unlike ML estimation [93]. Subject-specific 

trajectories were based on empirical Bayes estimates of the random-effects [88].  

Cosinor Derivatives and Morning Surge 

To obtain an estimate of the maximum morning surge we first estimate BP(t) for 

each individual from our random-effects model and then obtain its first derivative, 

BP(t)ʹ. This will give the rate of change or slope at each time of the day. Next, by 

limiting our analysis between 02:00 to 12.00 we can obtain the maximum slope and 

corresponding time during this period by numeric estimation for each individual 

which corresponds to their maximum morning slope or surge. As participants kept 

diary entries, we know their waking times. The earliest waking time is 05:00 but we 

broadened our period of interest further back to 02:00 in the unlikely event that an 

individual’s maximum surge occurred just before waking. As the shape of the data is 

not overly complex over this period, assuming only one local maximum for this time 

is a reasonable assumption.  

Cosinor Bootstrap and Simulations 

Bootstrap estimation was performed in order to get an unbiased estimate of the 

standard error for the morning slope. A total of 1000 bootstrap datasets were 

created by randomly resampling from the original dataset with replacement. The 

bootstrap estimates were examined and determined to follow a normal distribution 

from which a standard error could be obtained. Results from the analysis were used 

to obtain bias corrected 95% CI for the slopes.  

Additionally, to obtain an estimate of the between-individual variance in maximum 

slopes we ran 1000 simulations based on our final model. From this we obtained an 

estimate of the distribution of the slopes. This is similar to exploring the distribution 
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of the individual slopes from our final model but should result in a more precise 

estimate of between-person variation.  

Functional Principle Component Analysis 

The aim of FPCA is to find a combination of a few functions which capture the 

largest proportions of variation in the data. As a method of validation we compared 

model fits from the final multiple-component cosinor model to a model arising from 

FPCA. The purpose of this was to determine if the cosinor model was capable of 

capturing fluctuations in BP as well as the FPCA which is less restricted and can 

provide a flexible fit. 

We implemented a FPCA which can be seen as an analogous to multivariate PCA 

where we can identify the main types of variation in patterns as a function of time 

as opposed to discrete measures [129, 130]. Instead of eigenvectors we obtain 

eigenfunctions which are associated with each eigenvalue and represent the FPCs 

which describe the different variations in the data.  

To begin with, the mean curve was obtained through a method developed by Yao et 

al. which first ignores the hierarchical structure of the data and then fits a smooth 

curve to the pooled data [134]. This estimate of the mean curve is then used to 

obtain the covariance matrix of the deviations from the mean for each pair of time-

points. This covariance matrix is smoothed using a bivariate smoother and the main 

diagonal is removed to normalise data. This smoothed covariance matrix is then 

decomposed into a linear combination of orthogonal (uncorrelated) eigenfunctions 

and eigenvalues i.e. into its principal components and scores [133]. The first 

principal component captures the most variation, the 2nd captures the second-

most variation and so forth. Therefore, a linear combination of a few efficient 

functions can account for a high proportion of the variance. In our analysis, 10 B-

spline basis functions were used to estimate the mean function, and for the 

bivariate smoothing of the covariance function. The number of FPCs to include was 

then determined by visual inspection of a scree plot. In the context of random-

effects models these FPCs can be seen as patterns of within-subject variation 

remaining after the mean fit.  
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The weights that define the optimal fit to each function are the principle 

component scores. These can be used to obtain individual curves by multiplying the 

weights by the functions. Zero scores for an individual would result in their 

trajectory following the mean pattern. The scores would usually be estimated 

through numerical integration but with sparse data, as in the case of ABPM 

(compared to high sampling frequency data e.g. every second, that is often 

associated with functional data [131]), the approximation is sometimes deemed 

inadequate and in this case the scores were estimated by the principal component 

analysis through conditional expectation (PACE) method [133, 134]. Using this 

method the scores are estimated for each individual using their repeated measures 

while borrowing strength from the cohort with sample estimates of the mean 

function, covariance, eigenvalues and eigenfunctions [133, 134].  

As a final step the random-effects of the multiple-component cosinor model were 

correlated with the individual FPC scores from the FPCA. This allowed us to 

determine if the cosinor model and their parameters were capturing the main 

components of 24h BP obtained through FPCA which was a more elaborate, flexible 

and data driven approach. If they correlated well it would help advocate the use of 

our model.  

In a separate analysis and final method of validation we compared model fits from 

the final multiple-component cosinor model to a spline model. The purpose of this 

was to determine if the cosinor model was capable of capturing fluctuations in BP 

as well as a cubic spline model which is less restricted and can provide a flexible fit. 

We implemented a random-effects model cubic spline model with four knots at 

18:00, 24:00, 04:00 and 08:00 allowing all terms to be random similar to our cosinor 

model. It was agreed that allowing four knots gave sufficient flexibility in the curve 

to capture BP pattern. Model fits were visually compared to the cosinor model. 

Target Organ Damage  

Finally, after the model has been compared to FPCA and as a method to illustrate 

the approach outlined we run the final model separately on those with and without 

evidence of microalbuminuria. Subject-specific curves are obtained and plotted for 
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each group. In addition, mean curves for both groups, over the 24h period are 

overlaid on the same plot giving a graphical comparison. We also obtain and 

compare first derivative curves in both groups.  

Software 

All analysis including bootstrapping and simulations were implemented in R [187]. 

Although the model can be rewritten in a linear form [196], when n (number of 

cosine terms) is greater than 1 it is easier to obtain estimates of the parameters 

directly from the non-linear model as opposed to calculating them post-hoc using 

trigonometry with the linear model. For this reason the nonlinear mixed-effects 

model was solved using the nlme command in the nlme R-package [188]. Initial 

starting values were obtained from a model incorporating fixed effects only. FPCA 

was utilised using the refund R-package [197]. A shiny app was also built in R using 

the shiny R-package [198] to illustrate different model fits that can be obtained 

from our final random-effects model using simulated data based on the model. 

 

6.5 Results 

The study questionnaire and physical examination was completed by 2047 

participants (response rate: 67%). ABPM was completed by 1207 participants 

(response rate: 58%), of whom 886 had a minimum of 20 day and 7 night 

measurements and no data missing for more than two consecutive hourly intervals. 

Their main clinical characteristics are presented in Table 6-1.  

Figure 6-1 is a graphical representation of ABPM for four individuals. Included are 

subject-specific fits from a random-effects cosinor model with varying number of 

cosine terms; single, two and three-component models (n=1,2,3). It can be seen 

that the single component model offers a very simplistic curve that struggles to 

capture the shape of the data. There is a large improvement observed however 

with both the two and three-component models where large fluctuations are 

accounted for more than in the restricted single model. When visually comparing all 

the two and three-component model fits, there was little difference between them. 



139 
 

For this reason and to obtain the most parsimonious model we identified the two-

component as a satisfactory model to describe ABPM.  

The final two-component SBP cosinor model parameters estimates are presented in 

Table 6-2. Initially all the parameters were included as fixed-effects. A significant 

improvement in fit was observed when additionally including each term individually 

as a random-effect, based on a LRT (all p<0.001). As a consequence we included all 

parameters as random-effects. The MESOR or average BP over 24h was 124 mmHg. 

The values of the parameters for the first and second cosine curves are presented 

separately. As expected, the first cosine with period 24h is the dominant curve with 

amplitude of 13.2 mmHg while the second cosine curve with period 12h has 

amplitude 5.6 mmHg. Similarly, the phase shift of the first cosine is larger than the 

second one which are both measured from 12:00 in units of 30mins, 5.3 (2.6h) 

compared to 1.0 (0.5h), which corresponds to a time of approximately 14:18 and 

12:30 respectively. Exploring the random-effects covariance matrix suggests that 

there is a moderate positive correlation between the two amplitudes (r=0.51) and 

the two phase shifts (r=0.44). However, there is a weak correlation between the 

amplitudes and their corresponding phase shifts (-0.01 and -0.16). As some 

correlations were quite low we considered reducing the size of the covariance 

matrix by removing weak correlation terms but as Harrell et al. suggest removing 

separate terms in this way provides very little gains in terms of precision and power 

[199]. As a result the covariance structure was not altered. The variation between-

individuals in the first cosine amplitude was greater compared to the second (SD, 

6.1 mmHg vs 2.8 mmHg). However in contrast, there was less variation in the phase 

shift of the first cosine compared to the second (9mins vs 18mins). The within-

subject SD () was 11.9 mmHg. Examining the ACF plot indicated that the inclusion 

of an AR1 residual structure adequately accounted for the auto-correlation in the 

data. Incorporating an AR1 structure resulted in a significant improvement in fit 

(ρ=0.22, p<0.001). 

After applying the final two-component cosinor model to the data and obtaining 

the random-effects coefficients, derivatives of the function were calculated. Figure 

6-2 presents ABPM readings for three individuals with their fitted subject-specific 
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trajectories and corresponding first derivative curves. This represents the rate of 

change or slope at each time point during the day. By focusing on the morning 

period we can obtain the magnitude and location (time) of the maximum surge. The 

estimate of the maximum slope obtained from the derivatives from our final model 

was 2.857 mmHg/30min, Table 6-3. Also presented in Table 6-3 is the bias 

corrected bootstrap distribution estimates from which a standard error for the 

estimate of average maximum slope could be obtained (SE=0.0012), resulting in 

95% CI: 2.855-2.858 mmHg/30min. The simulation results allowed us to quantify 

the between-individual SD in maximum slopes which was 1.01. The distribution of 

the maximum slopes from the simulations is presented in Figure 6-3. Further 

histograms of the slopes from the original model and the bootstrap estimates were 

also obtained which provided evidence of a normal distribution (see Appendix F).  

As a separate analysis we compared a two-component model to a spline model as 

outlined previously. Model fits and derivative plots from a random-effects cubic 

spline model indicated a similar pattern giving further justification of the use of 

two-component cosinor model (see Appendix F).  

B-splines were explored in FPCA. From a visual inspection of the scree plot, three 

principle components were retained (see Appendix F). Results indicated that the 

first three FPCs which accounted for 76.3% (FPC1), 9.2% (FPC2) and 6.8% (FPC3) 

accounted for 92.3% of total variation in the data. To help visualise and interpret 

the individual FPCs, Figure 6-4 illustrates the mean curve along with the effects to 

the pattern when a small amount of the component is added and subtracted from 

the mean. It is evident that the first component which accounts for the majority of 

the variance in the data represents a relatively constant shift in the mean. 

Individuals with positive scores on the second component have a slightly higher BP 

during the day and a lower BP at night indicating a large peak-to-tough value, those 

who score negatively have a slightly lower value during the day and higher value at 

night indicating a small peak-to-trough. It can be argued that this component is 

capturing dippers and non-dippers. Individuals with positive scores on the third 

component are associated with an earlier dip at night and a large morning rise, 

those with a low value seem to be shifted to the right and have a slightly less 
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pronounced morning rise. A larger version of Figure 6-4 can be found in the 

appendix with the first six FPCs included (see Appendix F). The correlation matrix 

presented in Figure 6-5 shows strong correlations between the FPC scores and the 

individual random-effects from the two-component cosinor model. It 

demonstrates, as expected that the first principle component score summarizes the 

MESOR (mean curve). The second principle component score has a strong 

correlation with both amplitudes especially the first one (r=0.9). Similarly the third 

principle component score has a strong correlation with both phases especially the 

first one (r=0.9). A similar correlation matrix including all the FPC scores is included 

in Appendix F. 

The model was applied separately to those with and without evidence of 

microalbuminuria. A graphical comparison of the mean curves and their associated 

first-derivatives are presented in Figure 6-6. It can be seen that, on the average 

over 24h, those with microalbuminuria had higher SBP but the patterns were 

similar. As a result, the overall pattern in the rate of change over time is broadly 

similar in both groups. Although significantly lower in those with microalbuminuria, 

the difference in the maximum surge reached in the morning period between both 

groups was small, (2.6 vs 2.3 mm Hg/30mins, p<0.01). The time of the maximum 

surge reached in the morning was 08:24 and 08:39 for those with and without 

microalbuminuria respectively. At the point of their maximum first derivative or 

surge, a difference of 9 mmHg in average SBP was observed between those with 

and without microalbuminuria (129 vs 120 mmHg, p<0.01).  

In addition, we have created a simple shiny app to illustrate different fits our model 

can provide to the data. We have simulated data based on our model and fits and 

derivatives are shown to different simulated individuals. The link to the app is 

https://user632.shinyapps.io/App_Double_Cosinor/  

  

https://user632.shinyapps.io/App_Double_Cosinor/
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6.6 Discussion 

In this study we have demonstrated that extending the traditional single cosinor to 

a two-component cosinor in a random-effects model results in a substantial 

improvement in fit. From our findings, the evidence suggested that the two-

component model offered similar fits to that of a three-component model and a 

spline model. In addition, using FPCA we have demonstrated that the main 

components of variation in the data correlate extremely well with the parameters 

from our model. By obtaining model derivatives we have demonstrated a novel 

approach to quantify rate of change of BP throughout the day. This is the first 

demonstration of the cosinor model to obtain a measure of morning surge. The use 

of FPCA on ABPM data also offers a novel method to quantify BPV.  

Considering the traditional single cosinor model has been the most commonly used 

approach for the longitudinal analysis of ABPM, further research in an attempt to 

extend the model seemed warranted. There has been much criticism of the single 

cosinor method [121, 122, 142] but we have illustrated that the inclusion of just 

one additional cosine term gives the model substantial flexibility which helps 

alleviate many of the concerns raised. The main criticism has focused on the 

unrealistic assumption that diurnal BP follows a simple symmetrical pattern. Unlike 

the single model, multiple-component models, while retaining the periodic 

property, can capture local minimum and maximum points as evident in this study. 

It has been stated that shapes closely approximating a single cosine curve are 

uncommon which is not under question [122]. We realise that a two-component 

model does not offer a perfect fit but is much more flexible than a single model and 

in order to compromise for a parsimonious model and interpretable terms, it offers 

a good alternative to other methods with fewer parameters and a similar fit (e.g. 

three-component cosinor).  

The use of FPCA enabled us to obtain the main patterns of variation in the data and 

determine how much each component contributed to the total variation in the 

data. This offers a novel method to describe variation within BP, that to our 

knowledge, has not been used before on ABPM data. The use of functional data 

analysis allows flexible fits to be obtained without the need to pre-specify a model. 
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Although similar, this is not the same as a traditional random-effects model. FPCA 

will be inherently more flexible. For example, if we consider a two-component 

cosinor random-effects model – it would assume a mean and two cosine terms with 

two different periods, FPCA however will try to estimate the “optimal” functions 

that explain the variability in the dataset. However, if the mean, a one-period 

cosine and two-period cosine are close to optimal then the rest of FPCA and the 

model fitting will be similar: random-effects will be used to estimate the subject-

specific coefficients for each of these functions. The fact that the random-effects 

from our model correlated well with the FPC scores help justify the use of our 

model. To elaborate, the two-component model correlates well with the optimal fit 

obtained through FPCA. Our finding that the first FPC correlates exactly with the 

mean value is not surprising where other studies have found in practise, the first 

FPC is essentially a mean shift [132, 200]. Not only do our values correlate, visually 

examining the effects of the scores on the mean pattern illustrate that the main 

components refer to a mean shift, peak-to-tough and a shift left to right which is 

being captured by the parameters of the cosinor model. In fact using FPCA and the 

cosinor model together complement each other well. Sometimes interpreting FPCs 

can be difficult and subjective but when it is used in parallel with a cosinor model 

and results correlate so well it is easier to explain findings. Although not as directly 

interpretable as a single-cosinor model, the two-component model is still more 

intuitive than for example, a spline model. An individual’s amplitude being made up 

of the weighted sum of two cosine amplitudes throughout the day is more intuitive 

than an arbitrary spline coefficient. In addition, the MESOR which is the average 

over 24h represents the most important parameter of BP. 

Of the definitions identified in the recent meta-analysis examining the prognostic 

significance of morning surge, only one used a more advanced technique than 

simply obtaining differences between arbitrary night and day averages [193]. Head 

et al. developed a six parameter double logistic model which is characterised by a 

day and night plateau of variable length, an independent slope for the fall and rise 

over the day and a midpoint for each transition [194, 195].  The double logistic 

model can be used to obtain the rate of rising during the morning period and the 
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power of the morning surge which is the derivative of the curve multiplied by the 

amplitude [201]. However, it has been suggested that the parametric structure of 

the model is very simple and because of the day and night plateaus important BP 

fluctuations may be averaged out [142]. The approach does however offer 

alternative morning BP measures that attempt to incorporate more data in a 

mathematical model than traditional methods and Head et al. have tried to refute 

some of the criticism. They argue that their model is quite flexible and can follow a 

single-component cosinor model, a saw tooth shape in either direction as well as a 

square wave-like shape [143]. There are, however, some limitations. Importantly, 

they stress that the model cannot capture complex fluctuations associated with 

multiple-component cosinor models and can miss short-term peaks. Research 

suggests that more complex patterns such as the ones obtained through our 

approach are not necessarily an advantage as it may be difficult for an investigator 

to obtain a coherent picture from wavy curves [143]. This may be true if the sole 

purpose is to decipher individual model fits. We argue however the main purpose 

of our method is to obtain an estimate of morning slope through derivative 

estimation and this requires capturing the most accurate curve possible while 

simultaneously obtaining interpretable parameters that describe it. Obtaining the 

balance between obtaining complex curves and interpretable parameters is 

difficult. Complex wavy curves will not alter our ability to describe in simple terms 

the rate in change or surge. In addition their analysis has focused on analysing each 

individual ABPM curve one by one which will result in inflated standard errors for 

their estimates unlike our model that incorporates random-effects. 

The use of estimated derivatives in medical research can often offer new, intuitive 

clinical markers [202, 203]. In the context of modelling ABPM, considering the 

emphasis is on exploring curves, the use of derivatives is surprisingly rare. As 

highlighted we have demonstrated that obtaining derivatives from the cosinor 

model offers a novel method of determining morning slope that has not to the best 

of our knowledge been implemented elsewhere. An advantage of this approach is it 

is not restricted to the analysis of morning slope but can be used to obtain critical 

points throughout the day e.g. dip. We have focused our analysis in this study to 
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morning BP due to the substantial literature surrounding its potential prognostic 

significance and the debate surrounding its quantification [23, 45, 46, 193]. 

Morning parameters to date have focused on summary measures, usually the 

difference between a pre-awaking value and post-waking value [193]. The primary 

issue with this approach is that by definition, a morning surge represents a spike or 

rate of increase in BP during this period which is not accurately captured by 

differences between two time points. We propose that our method which 

specifically obtains a rate of change parameter is a better estimate. In fact Parati et 

al. argue that a tangent with the steepest slope to a curve from a model that 

accurately captures morning BP could be the most appropriate estimate of the 

morning rise in BP [142]. Provided the model fits the data well, estimates derived 

from it should be more robust which in turn will lead to more precise inferences 

being made to outcomes. Despite our comprehensive knowledge of BP, obtaining 

new measures and methods to model BP remains a crucial research priority which 

may help advance our understanding of different aspects of BPV including morning 

surge [52, 66]. This may be particularly useful in clinical trials where we may be able 

to provide evidence that a new antihypertensive medication outperforms another 

in a way we would not traditionally be able to detect e.g. their mean values may 

indicate no difference.  In this study, we illustrated how the model can be 

compared in two groups using those with and without evidence of 

microalbuminuria as an example. Although the microalbuminuria group had higher 

SBP, there was little difference in the pattern of the curves. This was similar to 

findings observed in Chapter 5 when we examined the same data using a piecewise 

linear model. Using that approach, we found no evidence to suggest the overall 

shape differed, although the microalbuminuria group had significantly higher SBP. 

In addition, the slope parameter that was obtained for the morning period using 

the piecewise approach (2.21 mmHg/30mins) is similar to the cosinor approach 

(2.86 mmHg/30mins). It must be noted that the cosinor method obtained a 

maximum value while the piecewise approach obtained an average value. A 

comparison of both methods using hard endpoints (cardiovascular events) as 

opposed to a surrogate marker of CVD is recommended in future work.  



146 
 

There are a number of limitations to the study. Primarily, we note the model does 

not give the optimal fit to the data (although the parameters correlated well with 

the more flexible FPCA). In fact, it is acknowledged that it is extremely difficult for 

any model to capture all the features of a 24h BP profile simultaneously. Perhaps 

the chosen model should be dependent on the research question posed. For 

instance as highlighted complex models may not be the most intuitive to 

understand directly but if the purpose is to obtain a BP measure (e.g. morning 

surge, dip) from the model post-hoc through additional analyses (derivatives), an 

initial simple model may not necessarily be the best choice. Another limitation of 

the study was that we were not able to include the effect of antihypertensive 

medication in the analysis. Although we knew if a participant was on treatment, we 

had insufficient data on the specific class of antihypertensive medication the 

individual was prescribed which meant drug-class comparisons were not possible.  

In conclusion, we have demonstrated a simple method to obtain a measure of 

morning BP surge using a random-effects multiple-component cosinor where our 

focus was not only at a group level but also the individual level. In addition to the 

ability of the model to obtain estimates for the morning BP, we derived derivatives 

of the circadian curves which allow us to locate and quantify the magnitude of 

other slopes at critical points on the trajectory. The approach offers novel 

alternative methods of quantifying new BP indices that may be useful in the 

exploration of BPV where there remains debate over its prognostic significance. The 

use of FPCA also offers a new alternative approach to quantify BPV. Considering the 

single-component cosinor has been the most common method of analysis for 

ABPM, a recommendation for future studies from the evidence presented in this 

study is to incorporate a second cosine in the context of a random-effects model. 

The method offers a substantial improvement in fit compared to the traditional 

cosinor that is capable of capturing short-term peaks and can be implemented in 

standard statistical software. Future studies should also investigate the clinical 

prognostic significance of the morning surge parameter obtained through the 

analysis outlined in this study.  
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Table 6-1 Baseline Characteristics 

Characteristic Total (n=2047) 
ABPM (sub-sample) 

Total (n=886) 

Age, y 59.8 (5.5) 59.9 (5.5) 

Gender, Male n(%) 1008 (49.2) 401 (45.3) 

BMI, n (%) 

Underweight/normal (<25kg/m
2
) 

Overweight (25-30 kg/m
2
) 

Obese (≥30 kg/m
2
) 

 

447 (21.9) 

925 (45.3) 

668 (32.8) 

 

195 (22.0) 

380 (42.9) 

310 (35.0) 

Office SBP, mm Hg 129.6 (16.9) 134.7 (17.7) 

Office DBP, mm Hg 80.1 (9.8) 83.1 (10.2) 

Hypertension, n (%) 951 (46.5) 528 (59.7) 

Data are mean (SD). BMI:Body mass index, ABPM: Ambulatory blood pressure monitor. Hypertension: ≥140/90 mmHg and/or 

on antihypertensive treatment.  
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Figure 6-1 ABPM readings (circles, thin black line) of four individuals along with 
predicted subject-specific trajectories from a random-effects model as a function 
of time using (i) single cosinor (thick black line) (ii) two-component cosinor (thick 
red line) and (iii) three-component cosinor (thick blue line) models.  
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Table 6-2 Model parameter estimates (SBP) along with corresponding correlations 
and variances 

Parameter Model  

Fixed effects Estimate (SE) 

24h MESOR (mmHg) 124 (0.44)* 

First Cosine (24h period):  

Amplitude (mmHg) 13.2 (0.23)* 

Phase shift (30mins) 5.3 (0.02)* 

Time of phase shift  14:18 

Second Cosine (12h period):  

Amplitude (mmHg) 5.6 (0.14)* 

Phase shift (30mins) 1.0 (0.03)* 

Time of phase shift 12:30 

  

Random-effects  

Σ 

172.3 

0.18   37.0 

-0.03  -0.01   0.1   

0.30   0.51  -0.14  7.8  

-0.03  0.01   0.44  -0.16  0.4    

 11.9 

ρ 0.22 

*P<0.001, Random-effects matrix shown has variances on the diagonal and correlation coefficients on off-diagonals.  

Phase shift measured from 12:00 noon. Time presented in 24h clock. 
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Figure 6-2 ABPM readings of three individuals with fitted subject-specific 
trajectories from a two-component cosinor random-effects model (left panels). 
Their corresponding rate of change curves (first derivatives) are also plotted on 
right panels (red line indicating reference zero mark).  
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Table 6-3 Maximum Morning Surge (mmHg/30mins) 

 Median Mean Variance/CI 

Original model  2.779 2.857 0.994 

Simulations (1000) 2.840 2.840 1.040 

Bias Corrected Bootstrap 2.857 2.857 CI (2.855 - 2.858) 

 

 

 

 

Figure 6-3 Histograms of maximum morning slope by simulations 
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Figure 6-4 FPCA: Each of the first three FPCs as variations about the mean along with the percentage of total variation explained by the 
component. The solid black line represents the mean SBP over the day and the functions obtained by adding and subtracting ± SD of the 
eigenfunctions to the mean. Plus signs indicate addition and minus signs indicate subtraction. 
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Figure 6-5 Scatter plots and the corresponding correlations between the two-component random-effects cosinor model parameters and the 
first three FPC scores from FPCA.   
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Figure 6-6 A two-component cosinor random-effects model implemented separately on those with and without presence of 
microalbuminuria. Subject-specific curves for those with (black lines) and without (light grey lines) evidence of microalbuminuria are also 
displayed. Red (microalbuminuria) and blue (no microalbuminuria) lines represent average curves for both groups. The corresponding first 
derivative curves indicating the rate of change over the day for both groups are also presented.               
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7.1 Introduction  

The use of ABPM provides the ability to classify individuals into different 

hypertension categories that cannot be achieved with a clinic BP reading. The 

reproducibility of these hypertension categories has been examined with 

inconsistent results [204-207]. Of particular interest is nocturnal hypertension 

which is a predictor of CVD and mortality [15, 16, 208]. However, the limited 

reproducibility of night-time BP patterns is recognised [209] and using absolute BP 

categories rather than dipping status may be more reproducible [210]. Yet, of those 

with isolated nocturnal hypertension (defined as nocturnal hypertension without 

daytime hypertension) at baseline only one third retained this pattern after 2 to 4 

years in one small study [211]. This was again examined more recently in a 

community-based sample of adults (n=282) with similar findings where isolated 

nocturnal hypertension had poor reproducibility four weeks apart [212].  

The majority of studies examining changes in ABPM readings between two time-

points have focused on mean values and hypertension categories. Few longitudinal 

studies explore how variability changes between two ABPM readings. McDonald et 

al. found that while mean BP did not change, BPV, measured by day/night/24h SD 

and coefficient of variation, were significantly higher at 10 year follow-up compared 

to baseline in a community cohort of older people (n=83, median age 70 years) 

[213]. The percentage of patients taking antihypertensive medication increased 

from 46% at baseline to 69% at follow-up which may explain no change in mean BP. 

Conversely, in a community sample of 162 individuals aged 55 to 80 years, 

Goldstein et al. found that mean BP increased while day and night variability 

measured by SD decreased over two time-points 5 years apart [214]. Although 

there were no individuals diagnosed with hypertension at baseline, 14 subjects had 

BP with hypertensive levels. At baseline, no participant was on antihypertensive 

medication while there were 14 at follow-up.   

In addition to exploring changes in hypertension categories and variability, we are 

interested in the reproducibility of the overall shape of the BP trajectories. 

Examining changes to variability measures only allows us to quantify changes in 
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fluctuation about the circadian rhythm but does not inform us if the pattern is 

changing. For example, an individual’s BP trajectory may follow a similar pattern 

when measured at a second time-point but the variability about the pattern could 

increase or decrease. The purpose of this study is to outline an approach that can 

be used to comprehensively interrogate the reproducibility of ABPM readings over 

time. Changes in hypertension categories and variability measures are explored 

between two ABPM readings four years apart. In addition, parameters from a two-

component cosinor model at each time-point are compared as a method of 

comparing changes in the shape of the circadian rhythm.  

 

7.2 Methods 

Baseline ABPM was obtained from the Mitchelstown Study, a population based 

study of middle-aged men and women, recruited in Ireland [74]. ABPM 

measurements were performed using the MEDITECH ABPM-05 in 2010 and data 

was stored using the dabl ABPM system (dabl ltd., Ireland). Based on the initial 

ABPM results the sample was divided into 4 groups: normotension, isolated 

nocturnal hypertension, isolated daytime hypertension and day-night hypertension 

[81]. Twenty participants were randomly selected from each group and invited to 

attend for follow-up ABPM measurements in 2014 using the Spacelabs 90217 

monitor. Data was stored using the Spacelabs 92506 Ambulatory BP Report 

Management System software.  

For both time-points, the monitors were programmed to record the BP every 30min 

throughout the 24h period. Participants kept a diary of the times they went to bed 

and got up. Diary times were used to calculate mean daytime and night-time BP. 

Mean 24h BP was calculated as the mean of all the readings throughout the 24h 

period. Use of antihypertensive medication was also recorded at both time-points. 

Night-time BP was categorised by dipping status as follows: 

(1) Dipping pattern: 10 to 20% fall in night-time SBP  

(2) Non-dipping pattern: <10% fall in night-time SBP  

(3)  Extreme dipping pattern: >20% fall in night-time SBP  
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(4)  Reverse dipping pattern: Rise in night-time SBP 

 

BP was also categorised based on the absolute BP levels into four groups: 

(1) Normotension: Daytime BP <135/85mmHg and night-time BP <120/70mmHg 

(2) Isolated daytime hypertension: Daytime BP ≥135/85mmHg and night-time BP 

<120/70mmHg 

(3) Isolated nocturnal hypertension: Daytime BP <135/85mmHg and night-time BP 

≥120/70mmHg 

(4) Sustained day-night hypertension: Daytime BP≥135/85mmHg and night-time BP 

≥120/70mmHg 

 

As indices of short-term BPV, we estimated the SD over 24h, wSD, coefficient of 

variation ((24h BP SD / 24h BP mean)*100) and ARV. The wSD is the mean of day 

and night standard deviation values corrected for the number of hours included in 

each of these two sub-periods. The ARV averages the absolute differences between 

consecutive measurements.  Additional indices of SD, coefficient of variation, and 

ARV were calculated for both the day and night periods. 

 

7.3 Statistical Analysis 

Data are presented as the arithmetic mean (SD). The difference between the two 

ABPM results was assessed using a paired t-test. The reproducibility of night-time 

dipping status and absolute BP patterns were assessed using Cohen’s kappa 

statistic. Agreement between the measurements was plotted using the Bland-

Altman method. The per cent change in variability measures between the two time-

points was calculated as the difference between the measures divided by the initial 

value. Changes of less than 5% were regarded as reproducible [205]. To quantify 

changes in the shape of BP as opposed to variability, a two-component random-

effects cosinor model (see Chapter 6) was utilised on both time-points separately. 

Comparing model parameters between time-points identified differences in the 

shape of the curve. Empirical Bayes estimates were obtained for both time-points 
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for each individual and overlaid on the same plot giving a graphical comparison of 

the curves.  

In addition, to determine how much of the variation in the difference between 

parameters over the two time-points can be attributed to measurement error, a 

simulation was performed: 

(i) A random-effects cosinor model based on the data from the first time-

point (2010) was used to estimate the mean parameter values, the 

variance covariance matrix of the random-effects, and the variance of 

the error term. 

(ii) Subject-specific average curves were determined based on a random 

sample (n=47, same as the original sample size) from the estimated 

parameter coefficient distribution.  

(iii) Observed values at 30min intervals were generated by adding random 

error to the values generated in (ii)  

(iv) Step (iii) was repeated to generate a second dataset  

The two simulated datasets were then analysed separately representing two 

different time-points. As before, the difference between model parameters was 

obtained. However, using the simulated datasets, any differences observed was 

due to measurement error. Thus, by comparing this variation to the variation 

observed between the actual readings taken at the two time-points, we can 

determine what percentage of the total variation is due to measurement error. This 

was repeated for n=1000 participants to examine if sample size effected the 

differences observed. Using the simulated data, a similar approach was used to 

explore how much of the variation in the differences in BPV summary measures 

over time could be attributed to measurement error. All analysis was implemented 

in R.  

7.4 Results 

At baseline, 1207 participants (response rate: 58%) underwent ABPM. At four years 

follow-up 80 participants were invited to attend for repeat ABPM and fifty 
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(response rate: 63%) of these participants consented to participation in the follow 

up study. We excluded three participants from the current analysis due to 

incomplete follow-up ABPM data giving a sample of 47 for this study. The mean 

period of follow up was 3.9 years. Raw SBP data for four individuals over 24h for 

the two time-points is presented in Figure 7-1, plots for all individuals are included 

in the Appendix G. Overall mean BPs were similar in 2010 and 2014, Table 7-1. The 

correlation between age and mean SBP was the same in 2010 and 2014 (r=0.17). 

Agreement between the two time-points for BP is given by the Bland-Altman plots 

in Figure 7-2. The reproducibility of BP profiles categorised by dipping status was 

low at 24% with a kappa statistic of -0.11 (p = 0. 89) while reproducibility based on 

categorisation by absolute BP was fair at 40% with a kappa statistic of 0.21 (p < 

0.005), Table 7-2 and Table 7-3. 

Overall, compared to baseline, BPV at follow-up had reduced, Table 7-4. However, 

only SBP variability, measured by wSD, SD and ARV, over 24h and the night period 

had fallen significantly. The Bland-Altman plots for both 24h SD and ARV are given 

in Figure 7-3, where a large spread is observed. Reproducibility of 24h SD (17%), 

ARV (10%) and wSD (23%) was poor. Parameters from a two-component cosinor 

model were obtained for both time-points, Table 7-5. With the exception of the 

second phase, all cosinor parameters were similar four years later. The variation in 

the difference in MESOR between time-points that could be attributed to 

measurement error based on simulations was low (3%), Table 7-6. Measurement 

error explained 19% and 32% of the variation in the difference in amplitudes, 

between the two-points, for the first and second cosines respectively. However, 

measurement error explained a larger amount of the total variation in the 

differences in the first (62%) and second phase shifts (88%). Repeating the 

simulations based on 1000 participants made little difference to our findings, Table 

7-6. Bland-Altman agreement plots for the various parameters are presented Figure 

7-4 and Figure 7-5. Reproducibility of MESOR (36%), first amplitude (14%), first 

phase shift (51%), second amplitude (21%) and second phase (4%) was poor. A 

separate boxplot of the differences between the parameters is given in Figure 7-6 

showing a relatively even spread in the data. Using the simulated data, 
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measurement error between time-points accounted for 79%, 22% and 41% of the 

total variation in the differences of 24h ARV, SD and wSD respectively. Cosinor 

model fits for six individuals is provided in Figure 7-7 highlighting how the overall 

shape of the trajectory for two ABPM readings can easily be compared by 

overlaying the curves.  

The use of antihypertensive medications increased between 2010 and 2014 from 

42% (n=21) to 61% (n=30). In analysis limited to those not on medication (n=17) the 

kappa statistics were -0.2 (p = 0.9) for dipping status and 0.43 (p <0.001) for 

absolute BP categories. Mean BPs for those not on medication were similar in 2010 

and 2014. Moreover, there was no change in variability measures for individuals 

not on medication. However, for those on medication, variability measured by wSD, 

SD and ARV, over 24h (all SBP) remained significantly reduced while the mean BP 

was similar.  

 

7.5 Discussion 

We have outlined methods to compare two ABPM readings taken at separate 

occasions. No one method can fully capture the reproducibility of a circadian BP 

trajectory but we have explored approaches that can account for the main features 

including the comparison of mean and variability values, hypertension 

categorization and a comparison of the shape of the curves. Our findings 

demonstrate the limited reproducibility of night-time BP profiles with poor 

reproducibility of dipping status and only fair reproducibility of absolute BP 

categories despite overall similar mean BPs. On average, variability measured by 

wSD, SD and ARV (all SBP only) significantly reduced over 4 years but reproducibility 

within the measures was fair.  Finally, parameters from a two-component cosinor 

model which can be used to describe the shape of BP trajectories demonstrated 

that on the average patterns were similar but reproducibility of the parameters was 

poor.  

 

Long-term changes in ABPM variability have rarely been explored. However, our 

findings are similar to Goldstein et al. who reported a reduction in variability over 
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two time-points 5 years apart in a similarly aged sample [214]. This is in contrast to 

McDonald et al. who reported BPV obtained by ABPM increased over a 10 year 

follow-up in an older sample [213]. Changes in mean SBP variability, despite no 

significant change in mean SBP is an interesting finding. There has been significant 

work over the last decade to control mean BP levels, coupled with advancements in 

antihypertensive therapy and perhaps an absence of an increase reflects these 

efforts. Much of the debate regarding BPV focuses on antihypertensive 

medications. While different classes of antihypertensives have similar BP lowering 

effects; significant differences between classes in their effects of BPV have been 

observed. Some studies suggest that calcium channel blockers and diuretics are 

superior to other drugs in reducing BPV and preventing stroke and other vascular 

events compared to other classes [61, 160]. In our study, the use of 

antihypertensive medications increased over the four years between the BP 

measurements. While the effect over time on mean BP was similar irrespective of 

medication use, BPV differed by medication use. Although numbers were small and 

hence, power was limited, we were still able to detect a significant reduction in BPV 

within the group on medication. In contrast, there was no difference in BPV over 

time for those not on medications. An analysis stratified by type of anti-

hypertensive class was not possible and is recognised as a study limitation. 

 

Overall reproducibility was poor on all features of the circadian pattern. BP is a 

continuous risk factor [215]. Thresholds define the levels where investigation and 

treatment do more good than harm [216], and for this reason are important but 

clinicians and public health professionals need to recognise the limitations of 

thresholds and that significant numbers of events occur in those below definitions 

of normal [217].  

 

Using simulations, we were able to obtain the fraction of the total variation in the 

changes between time-points that was attributable to measurement error alone. If 

there was no change in the true readings between the two time-points, the only 

difference observed would be due to random error. Assuming a two-component 

cosinor model is an adequate fit for ABPM, which has been illustrated in Chapter 6, 
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we can estimate this random error. Comparing changes in summary BPV measures 

and model parameters from the two simulated datasets to the changes using the 

actual measured readings allow us to quantify the influence of measurement error 

between time-points. This highlights a benefit of using a random-effects model 

when examining reproducibility where the variance of differences between time-

points can be separated into measurement error and true changes that have 

occurred during the intervening time-period.   

 

The two-component cosinor model we have outlined provides a method that not 

only quantitatively assesses differences in the overall shape of two ABPM readings, 

but also offers a quick graphical comparison that may be useful in clinical practice 

when a clinician is trying to gauge changes in an individual’s underlying circadian 

rhythm. The inclusion of the predicted curves in ABPM reports, in combination with 

the standard output may improve clinical decisions and ultimately, BP control. 
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Figure 7-1 Data from four individuals 2010 vs 2014 
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Table 7-1 BP levels 2010 v 2014 

N =47 2010 2014 p-value 
Daytime systolic  133 129 0.05 
Daytime diastolic 79 77 0.2 
Night-time systolic 117 114 0.1 
Night-time 

diastolic 

66 66 0.9 
Twenty four 

systolic 

127 123 0.05 
Twenty four 

diastolic 

74 73 0.3  
 

 

Figure 7-2 Bland-Altman scatter-plots of agreement of measurements of 24h SBP 
and 24h DBP four years apart. The x-axis represents the mean of the two 
measurements and the y-axis represents the difference between them. The black 
dashed lines represent the mean and limits of agreement. The dashed red lines 
represent the 95%CI for the differences in mean values. 
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Table 7-2 Dipping status 2010 v 2014 

 2014 

2010 Dippers Non-

dippers 

Extreme 

dippers 

Reverse 

dippers 

Total 

Dippers  5 11 5 1 22 

Non-dippers 8 3 2 2 15 

Extreme 

dippers 

2 3 1 0 6 

Reverse dippers 1 1 0 2 4 

Total 15 18 8 5 47 

kappa statistic = -0.11 (p = 0. 89) 

 

Table 7-3 BP categories 2010 v 2014 

 
 

 

 

 

 

 2014 

2010 Isolated 
nocturnal 
hypertensio
n 

Day/night 
hypertensio
n 

Isolated 
daytime 
hypertensio
n 

Normotensio
n 

Total 

Isolated 
nocturnal 
hypertension 

4 1 0 7 12 

Day/night 
hypertension 

2 3 2 4 11 

Isolated 
daytime 
hypertension 

1 6 3 4 14 

Normotension 1 0 0 9 10 

Total 8 10 5 24 47 

kappa statistic = 0.21 (p < 0.005) 
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Table 7-4 Variability Indices 2010 v 2014  

Variability 
Measure 

24-hour (mm Hg) Day (mm Hg) Night (mm Hg) 

2010 2014 2010 2014 2010 2014 

ARV SBP 11.7 (2.5) 10.4 (2.2)** 12.2 (3.1) 11.2 (2.9) 11.1 (3.5) 9.2 (2.9)** 
ARV DBP 7.8 (2.2) 7.5 (1.6) 8.2 (2.5) 8.0 (2.1) 7.1 (2.5) 6.7 (2.2) 
SD SBP 15.9 (4.0) 14.6 (4.1)* 13.0 (3.0) 12.5 (3.7) 12.2 (4.1) 10.1 (3.7)** 
SD DBP 11.3 (3.5) 10.1 (2.7) 8.9 (3.0) 8.8 (2.1) 8.4 (2.7) 7.2 (2.6) 
CV SBP 12.5 (3.1) 12.0 (3.2) 9.8 (2.1) 9.8 (2.8) 10.4 (3.3) 8.8 (2.8) 
CV DBP 15.3 (4.4) 14.1 (4.1) 11.3 (3.5) 11.6 (3.2) 12.8 (4.0) 11.1 (4.0) 
wSD SBP 12.7 (2.7) 11.7 (3.2)* - - - - 
wSD DBP 8.8 (2.4) 8.3 (1.8) - - - - 
Abbreviations: ARV: Average real variability, SD: Standard deviation, wSD: Weighted standard deviation, CV: coefficient of 
variation, SBP: SBP, DBP: Diastolic BP. Data presented as mean(SD). *p<0.05; **p<0.01 represents significance between 2010 
and 2014 for each period of the day 
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Figure 7-3 Bland-Altman scatter-plots of agreement of measurements of 24h SBP 
SD and 24h SBP ARV four years apart. The x-axis represents the mean of the two 
measurements and the y-axis represents the difference between them. The black 
dashed lines represent the mean and limits of agreement. The dashed red lines 
represent the 95%CI for the differences in mean values. 
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Table 7-5 Comparison of SBP parameters from two separate two-component random-effects cosinor models (2010 vs 2014)  

SBP Parameter Model Estimate (SE) 

Year = 2010 

Model Estimate (SE)  

Year = 2014 

24h MESOR (mmHg) 127.1 (1.6) 123.2 (2.0)* 

First Cosine (24h period):   

Amplitude (mmHg) 11.4 (1.3) 9.7 (1.1) 

Phase shift (30mins) 5.0 (0.8) 5.1 (0.1) 

Time of phase shift  14:30 14.33 

Second Cosine (12h period):   

Amplitude (mmHg) 3.6 (0.6) 3.5 (0.7) 

Phase shift (30mins) 0.6 (0.1) 1.6 (0.1)* 

Time of phase shift 12:18 12.48 

 12.7 11.5 

*p<0.05 represents significance between 2010 and 2014, Phase shift measured from 12:00 noon. Time presented in 24h clock. 
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Table 7-6 Comparison of SBP parameters from two separate two-component random-effects cosinor models (2010 vs 2014) 

SBP Parameter Total Variation in Differences Variance due to Measurement Error (% of Total Variance) 

Based on 47 Simulations            Based on 1000 Simulations 

24h MESOR (mmHg) 168.1 5.6 (3.3%) 6.1 (3.6%) 

First Cosine (24h period):    

Amplitude (mmHg) 42.2 8.1 (19.2%) 8.8 (20.9%) 

Phase shift (30mins) 2.1 1.3 (61.9%) 1.1 (52.4%) 

Second Cosine (12h period):    

Amplitude (mmHg) 6.6 2.1 (31.8%) 1.9 (28.8%) 

Phase shift (30mins) 1.7 1.5 (88%) 0.9 (52.9%) 

*p<0.05 represents significance between 2010 and 2014, Phase shift measured from 12:00 noon. Time presented in 24h clock. 
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Figure 7-4 Bland-Altman scatter-plots of agreement of measurements of the first 
and second amplitudes four years apart. The x-axis represents the mean of the 
two measurements and the y-axis represents the difference between them. The 
black dashed lines represent the mean and limits of agreement. The dashed red 
lines represent the 95%CI for the differences in mean values. 
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Figure 7-5 Bland-Altman scatter-plots of agreement of measurements of the first 
and second phase shifts four years apart. The x-axis represents the mean of the 
two measurements and the y-axis represents the difference between them. The 
black dashed lines represent the mean and limits of agreement. The dashed red 
lines represent the 95%CI for the differences in mean values.  

 

 

Figure 7-6 Boxplots of differences between each of the cosinor parameters 
between the two time-points (2010 minus 2014). 
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Figure 7-7 Comparison of fits, 2010 vs 2014, for six individuals using two separate 
two-component random-effects cosinor models. 
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8. DISCUSSION 
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This thesis aimed to explore circadian BP patterns by reviewing current and 

previous approaches for analysing ABPM data and describes novel methodologies 

that offer new measures of BP and may help us to obtain new insights into BP.  The 

recent debate towards the prognostic significance of BPV and how it is quantified 

was the original motivating reason to undertake the analysis. The thesis first 

explores summary measures used to describe fluctuations in circadian patterns and 

then goes beyond this to obtain other indices through more advanced methods. 

This chapter outlines the main findings, and strengths and limitations of the thesis. 

Recommendations for areas of future research and a brief conclusion are also 

outlined. 

8.1 Summary of Main Findings 

In Chapter 3, the systematic review collated data to identify current summary 

measures that are used to quantify BPV and explored their association with the 

presence of TOD, specifically LVH. Four measures were identified; SD, ARV, wSD and 

CV. The meta-analysis suggested there is a weak positive correlation, between all 

measures of BPV and LVMI. Despite recent interest in the subject of BPV the 

systematic review highlighted the lack of good epidemiological studies exploring 

the relationship between BPV and LVH. The fact that there were so few studies 

(n=12) and only data available to perform a meta-analysis of such a weak marker 

(correlation coefficient) is evidence of this. In addition, a third of studies in the 

systematic review did not make adjustment for mean BP in any of their analysis 

which is a major methodological limitation. This is an important issue in the context 

of BPV: the adjustment for mean BP. The significance of mean BP has been well 

documented and is not under question but in order to determine if BPV is an 

additional clinic target it is paramount that any analysis adjusts for average BP. 

In Chapter 4, following on from the systematic review, the measures identified 

were calculated for the Mitchelstown ABPM dataset and their association with 

subclinical TOD, documented by microalbuminuria and ECG LVH, were examined. 

The study found no association between any measure of BPV and LVH. Conversely, 

we found all but one measure (CV) associated with microalbuminuria and remained 

associated after adjustment for age, gender, smoking, BMI, diabetes and anti-
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hypertensive treatment. However, when the models were further adjusted for 

mean BP the association did not persist for all indices.  

 

Piecewise regression which is a simple but underutilised approach in 

epidemiological studies [190], allows separate slopes to be fitted to observations 

representing different periods throughout the day or more specifically periods 

before or after a “critical point”. In Chapter 5, we implemented this technique to 

our data in the context of a mixed-effects model. This allowed us to obtain new 

measures of BP. In particular, the method allowed quantification of the steepest 

rise and fall in BP (along with measures of variation between-individuals for these 

parameters), which occurred just after waking (2.23 mmHg/30min) and 

immediately after falling asleep (-1.93 mmHg/30min) respectively. By definition of 

the model and in the context of the morning period this represents a novel 

measure of the rate of change of BP or morning surge. The within-subject variation 

about an individual’s curve was also estimated (12.3 mmHg) and represents a 

measure similar to that of a SD summary measure. Despite a significant difference 

in mean BP values, we found no evidence that slopes were different within 

different periods of the day in those with and without TOD, suggesting a similar 

circadian pattern in both groups. 

 

Cosinor analysis which uses a single cosine to model a circadian BP cycle has been 

the most common longitudinal method to analyse ABPM data. The method has 

rarely been extended to include more than one cosine term in the context of a 

random-effects model. In Chapter 6, we fitted a two-component cosinor random-

effects model to our data and found that it provided a better fit than a single model 

and a similar fit to a more complex three-component model. Additionally, FPCA was 

performed on the data and it was determined that the first three principle 

components accounted for over 90% of the variation in the data. Not only did this 

offer an alternative method to quantify BPV, it also allowed us to determine if the 

two-component model was comparable to a more complex data driven approach 
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that obtained the optimal functions from the data. Our findings indicated that the 

parameters from the two-component cosinor model were highly correlated with 

the first three components from the FPCA. By obtaining first-order derivatives of 

the two-component cosinor model, we outlined a novel approach in the context of 

BP which can be used to visualise changes over time and, locate and quantify the 

magnitude of slopes at critical points along the circadian rhythm. 

In Chapter 7, approaches to compare two ABPM readings obtained at different 

occasions were outlined. The purpose was to explore changes in variability over 

time and examine the reproducibility of patterns of circadian BP curves that go 

beyond looking at mean values and hypertension categories. To this end, we 

implemented the two-component model from Chapter 6 and compared parameters 

from the two time-points. Results indicated that mean levels of BP were similar four 

years later but SBP variability, measured by wSD, SD and ARV, over 24h and the 

night period had significantly fallen. When examining the variability measures for 

those on medication, wSD, SD and ARV, over 24h (all SBP) remained significantly 

reduced. Interestingly, there was no change in variability measures for individuals 

not on medication. Overall, the reproducibility of patterns was poor based on mean 

levels, variability measures, hypertension categories and cosinor parameters. Based 

on simulations we were also able to determine how much of the total variation in 

the difference between parameters and summary measures was attributable to 

measurement error alone. 
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8.2 Implications of Findings 

 

What summary measure of BPV to use? 

We have demonstrated that quantifying variability is difficult and attempting to do 

this with one summary measure makes the task significantly more challenging. The 

main disadvantage of using summary measures to quantify BPV is the loss of 

information as the statistical power associated with longitudinal data is lost by 

collapsing the data into one value. However, as previously stated, many ABPM 

software programs routinely include estimates of variability measures such as SD 

(dabl ABPM system, dabl LTD, Ireland) in their reports and are important reference 

points considering the ease with which they can be obtained.  

We demonstrated that most but not all summary indices of BPV were associated 

(before adjustment for mean BP) with microalbuminuria (Chapter 4). This reiterates 

the problem of inconsistences among indices which makes understanding and 

collating of findings from studies particularly problematic. It is these inconsistences 

that illustrate how sensitive BPV measurement is and accentuates that each 

measure is in fact capturing different characteristics of variability. However, 

compared to other summary measures, we believe ARV is the most suitable index 

to quantify BPV. To reiterate, this measure is the mean of the absolute differences 

between successive readings which is independent of the mean value [36]. It has 

been argued that it is a more reliable representation of time series variability than 

24h SD which only captures variability about a mean value [33, 36]. wSD has also 

been suggested as a better measure to use than 24h SD as it attempts to remove 

the influence of the day-night difference [33]. To elaborate, the primary reason that 

a number of studies have suggested SD is a poor measure is because it only reflects 

the dispersion of measurements around a single value (mean) and does not account 

for the order in which BP measurements were obtained and the longitudinal 

variation in the circadian data [36]. However, if we are only considering variability 

during a specific period i.e. awake or night period separately as opposed to the 
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whole 24h, the use of SD may not be as problematic as the day-night fall is not 

present.  

What longitudinal model to use? 

Parati et al. argue that rather than simplifying ABPM data into mean summary 

measures, incorporating all the data in more advanced models can lead to more 

robust estimates of clinically relevant parameters such as dipping status and 

morning BP surge [142]. In Chapter 2, a number of approaches to model ABPM data 

were outlined where we focused on the use of a piecewise linear and a cosinor 

model in subsequent chapters. Both a piecewise linear model and the use of 

derivative estimation is not new in medical research but in the context of BP they 

offer a simple but novel approach to analyse its circadian rhythm that help extract 

features from the pattern. As outlined in the thesis, there have been a number of 

modelling approaches applied to 24h BP but the ultimate goal remains the 

development of a physiological model that captures known features of the pattern 

while not over-fitting the data so that we can obtain clinically relevant parameters 

[142]. It is widely acknowledged that achieving this is a difficult task and there is no 

perfect model that captures all the features of the circadian rhythm simultaneously 

[49, 142-144]. Using a mathematical model over simple summary measures allows 

us to obtain a smooth predicted curve over the whole 24h period which removes 

some of the “noise” in the data. Removing noise in data is usually perceived as an 

advantage where we remove measurement error and the impact of any outliers 

and are left with the underlying pattern. In the case of BPV however where we are 

specifically trying to understand and capture fluctuations in BP, perhaps smoothing 

the data in a model that captures the whole 24h period may not be the optimal 

approach. The sudden jumps or spikes that are seen in ABPM data may be a 

response to emotional or psychological stress which can sporadically increase BP 

values and are therefore important to measure [50]. Although these spikes may be 

perceived as noise they may also represent an underlining feature of an individual’s 

natural circadian rhythm. Some individuals may be more prone to abrupt changes 

due to stress or anxiety. Obtaining lower sampling frequency measurements such 

as beat-to-beat measurements may help in this regard but are not feasible in large 



180 
 

population based studies. We do however have to reach some compromise and 

perhaps modelling the data in separate segments similar to the piecewise model 

represents a suitable approach. However, graphically comparing circadian curves 

obtained at different time-points may be better achieved using the cosinor method 

which gives a smoother fit where differences in the pattern of the shape can easily 

be seen. We reiterate the point made in Chapter 2 that no model is optimal in 

terms of capturing all features of the curve and choosing one involves making a 

compromise based on what the researcher deems most important for their 

particular research question. Using mathematical models does allow us to obtain an 

almost infinite number of BP indices. Comparing these measures between new anti-

hypertensive medications may allow us to determine if a drug outperforms another 

when there is no significant difference in means values.  

 

Policy and Practice  

With the HSE recently acknowledging the importance of ABPM by approving the 

reimbursement of ABPM in primary care for those with a medical card, obtaining 

values of BPV is now more accessible [22]. In practice, summary measures will 

continue to be the most common method of quantifying BPV due to the ease with 

which they can be calculated coupled with their automatic inclusion in some ABPM 

output reports. A recommendation to improve monitors and their output would be 

the inclusion of the ARV index which could be achieved with minimal effort. There 

have been calls in the most recent ABPM position paper to include all measures of 

BPV in ABPM research reports but many just include SD [13]. However, there are no 

current threshold levels for variability in BP guidelines which makes interpretation 

of BPV measures difficult for clinicians. A long-term goal would be to eventually 

have standardised cut-points for which levels of BPV would be controlled to, similar 

to that of mean BP.  For this to happen however we will need stronger evidence of 

the importance of BPV. As highlighted in the position paper, the current threshold 

values for mean BP levels in the NICE guidelines [17], the JNC 7 guideline [218], and 

the ESH/ESC guidelines for 2003, 2007 and 2013 [13, 18, 219], and the results of 
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outcome studies, such as IDACO [220] and Ohasama [221] have contributed to the 

definition of ABPM consensus values currently being used in practice [13]. A similar 

level of research output is required to obtain conclusive evidence on the prognostic 

significance of BPV before we can begin to arrive at suitable variability thresholds.  

More advanced methods to model BP and measure BPV have been suggested as 

particularly useful in research studies rather than directly used in practice [13, 142]. 

This is where we currently suggest the piecewise and cosinor approaches outlined 

in this thesis should be primarily implemented where they may be particularly 

beneficial in clinical trials. However, we suggest that the inclusion of the cosinor 

approach in an ABPM report could be quite useful when comparing two ABPM 

patterns from the same individual. As outlined in Chapter 7, it offers a quick 

graphical comparison that maybe helpful for a clinician when they are trying to 

gauge changes in an individual’s underlying circadian rhythm. We argue the 

inclusion of the predicted curves in ABPM reports, in combination with the 

standard output may improve clinical decisions and ultimately, BP control. 
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8.3 Strengths and Limitations 

The strengths and limitations of each paper have been discussed in previous 

chapters. In this section a summary is provided with a focus on the thesis as a 

whole.   

The thesis inevitably has a number of limitations. Although the use of ABPM is 

considered the gold standard of BP measurement and is recommended by 

guidelines, the monitors will not always provide accurate readings. Undoubtedly, 

there will be some measurement error from the true BP value especially for 

example, during the night when an individual may be lying on the cuff. In the 

Mitchelstown cohort every effort was made by study nurses to emphasise the 

importance of wearing the monitor correctly. In addition, all monitors were 

recalibrated before the study began as recommended [17]. The physical 

inconvenience of wearing the monitor may introduce selection bias where certain 

groups of individuals do not feel comfortable wearing the device. For example, 

perhaps frailer individuals would be more concerned wearing a monitor than 

stronger individuals. Wood et al. explored reasons for ABPM uptake among 770 

participants of different ethnicities in the United Kingdom [222]. In their qualitative 

analysis, reasons suggested for poor uptake included discomfort, sleep disruption, 

stress and embarrassment, and interruption of activities of daily living. In the 

Mitchelstown study, ABPM was offered to all participants but those with high BP 

were encouraged by the study nurses to wear a monitor. No qualitative data was 

recorded for reasons of not availing of ABPM. Despite a response rate of 58%, the 

ABPM subsample was found to be broadly representative of the full sample based 

on age, gender, BMI and diabetes prevalence (see Appendix E for details). However, 

the prevalence of hypertension (≥140/90 mmHg and/or on antihypertensive 

treatment) was higher in the baseline ABPM subsample (46% vs 59%). This 

introduces a selection bias based on hypertension only where there is a systematic 

difference between the subsample and the main sample. This may affect 

interpretation of the results where caution must be exercised when discussing the 

generalizability of the results to the population. It must be stressed that the only 

difference was that based on hypertension and this does not necessarily affect the 
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validity of the comparisons and inferences made within the study or the study’s 

internal validity [223, 224].  

Although a lot of the work in this thesis involved exploring the shape of circadian BP 

curves, Chapter 3 and 4 directly examined the association between BPV and TOD. A 

statistically significant association between an exposure (BPV measure) and an 

outcome (TOD) is not sufficient to imply causality. Hill’s casual considerations offer 

guidance [225]. He listed nine considerations, none of which are essential, that are 

used in epidemiology to build up evidence for a causal relationship: strength, 

consistency, temporality, dose-response, plausibility, reversibility, coherence, 

analogy and specificity [223]. The strength of the association in this study between 

BPV and TOD was weak and did not persist after adjustment for mean BP. The 

systematic review examining the relationship between BPV and LVMI suggested a 

weak association and also provides evidence of poor consistency among studies. 

Temporality in this study is difficult to ascertain. BPV leading to the development of 

TOD and in turn CVD is the hypothesis made in most of the literature but perhaps 

as argued by Hansen et al., as TOD is a forerunner of cardiovascular complications, 

BPV will inevitably increase [168]. This raises the question of reverse causality with 

increased BPV being a marker of underlying disease rather than being an 

independent predictor.  

Although the precise mechanisms responsible for BPV are not entirely understood 

[50], there are a number of acknowledged factors that influence variations in BP 

which have been postulated as to why BPV may cause the development of TOD, 

and ultimately CVD. Parati et al. [51, 52] argue BPV is primarily modulated by neural 

(increased central sympathetic drive and reduced arterial and cardiopulmonary 

reflexes), humoral (angiotensin II, insulin, bradykinin, nitric oxide) and vascular 

effects (elastic properties of arteries). Variability has been shown to be correlated 

with arterial stiffness and peripheral vascular disease which is a blood circulation 

disorder that causes blood vessels outside of your heart and brain to narrow, block 

or spasm which can lead to CVD [25]. Rothwell et al. suggest that BPV could lead to 

cerebral ischaemia (insufficient blood flow to the brain) which could lead to both 

altered central autonomic control of BP and an increased risk of stroke [25].  
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Reversibility refers to whether an intervention to remove or reduce the exposure 

results in the elimination or reduction of the outcome [223]. We cannot assess this 

from our results. A clinical trial comparing the impact of different antihypertensive 

classes on BPV and ultimately TOD would help to address this. Coherence is also 

difficult to assess based on the evidence in this study. However, experimental data 

from animal models lend support to a causal link. It was previously shown that 

experimental sinoaortic denervation in rats, which increases variability in BP 

without changing mean BP, caused LVH and aortic vasoconstriction [24, 226]. 

Analogy refers to the similarity of the effect of interest to other established cause-

effect relationships that would help support the argument for causality [223]. In our 

case, elevated mean BP has long been established as a causal factor for the 

development of TOD and CVD.  As a result, it could be argued that small or large 

fluctuations in BP may also contribute to CVD but this is speculative. In conclusion, 

a causal relationship between BPV and TOD is difficult to prove based on the 

findings in this study and the literature available at present.  

 

Another limitation of the thesis is the use of TOD as surrogate markers of CVD 

rather than the use of hard endpoints. The reason for this was simply the feasibility 

and time constraints of the thesis where only data from wave one is currently 

collected. Although hard endpoints were recorded in the study (MI, stroke), the 

number of events were small which precluded using them. Data collection for wave 

two is currently on-going but we may need to wait for subsequent waves to have 

adequate number of events to detect an association, if one exists.  

Due to the nature of short-term BPV, we are examining a small time frame, only 

24h. Ideally, we would like participants to continue to wear the monitors for a 

number of days or perhaps obtain separate ABPM recordings taken a few days 

apart to be sure of reliable observations. This would also allow the comprehensive 

analysis of the reproducibility of day-to-day circadian patterns. However, the 

practicalities and feasibility of wearing a monitor for a prolonged period of time in 

this cohort study meant we were unable to obtain more readings.  
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As highlighted in the thesis one of the key aspects of BPV has been the suggestion 

that different classes of antihypertensive medications have different effects in 

terms of increasing or reducing variability. Emerging evidence suggests that those 

receiving either CCBs or diuretics, alone or in addition to other drugs have 

significantly lower variability compared with ACEIs, ARBs or β-blockers alone or in 

combination [61-63, 65, 227]. A limitation of the study was that we were not able 

to include the effect of antihypertensive medication in the analysis. Although we 

knew if a participant was on treatment, we had insufficient data on the specific 

class of antihypertensive medication the individual was prescribed which meant 

drug-class comparisons were not possible. As one of the questions in the study 

questionnaire asked if the participant was taking antihypertensive drugs, it allowed 

analysis to be stratified by those taking and not taking medications. Findings were 

broadly similar across both groups (Chapter 4, 5). It could be the case that there are 

differences between classes but by analysing them all together the effect has been 

diluted. When examining changes to short-term variability over time (Chapter 7), 

evidence suggested that BPV in those on medication significantly reduced while 

there was no change in variability measures for individuals not on medication.  

 

Despite the limitations outlined, the thesis has several strengths. Specifically, it 

addresses a relevant and highly topical area in BP research. To date, two of the 

chapters have been published in peer reviewed scientific journals while a third is 

under review. The work is both warranted and appropriate to increase awareness 

and to help develop a deeper understanding of the mechanisms responsible for 

BPV which are not entirely known. Methods to analyse circadian BP patterns that 

account for the longitudinal nature of the data are sparse and this thesis outlines 

new approaches. The thesis includes the first review to our knowledge that 

quantifies the correlation between BPV and LVMI which identifies a research gap 

where stronger epidemiological studies are needed in the area. To the best of our 

knowledge, the thesis is the first to apply a piecewise linear model and FPCA to 
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diurnal BP over 24h. We have demonstrated that incorporating more cosine terms 

into the cosinor model offers a substantial improvement in fit compared to the 

traditional method of ABPM analysis, the single-component model. One of the main 

strengths of the study lie in the robust community based design and large sample of 

ABPM data recorded. Although the inferences that are made may not be applicable 

across all age groups and populations there are no reasons why the methods 

outlined cannot be used on them to obtain valid estimates of BP. This argument can 

be extended where many of the chapters and methods are not limited to the 

exploration of BP but are flexible enough to be applied to other medical data that 

follows a circadian rhythm.   
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8.4 Future Recommendations for Research  

 

As we have alluded to, it is evident that more evidence from large longitudinal 

studies examining the prognostic significance of short-term BPV is needed before 

suitable variability thresholds can be introduced. There is a need for 

standardisation of indices that we use to define BPV. This has been highlighted by a 

recent systematic review of BPV examining its prognostic value for all-cause 

mortality, cardiovascular mortality, all cardiovascular events, stroke and coronary 

heart disease [191]. Taylor et al. argue that the interpretation and use of 24h BPV in 

clinical practice, as a prognostic indicator of cardiovascular events is hampered by 

insufficient evidence and divergent methodologies [191]. Agreement and 

standardisation of indices may not be fully possible for a number of years until 

there is a plateauing effect in the number of methods used to quantify variability. 

We have however, made the recommendation to use the ARV index as the primary 

summary measure of BPV. Rather than using different indices, if all future studies 

included this measure it would make collating results easier. Indeed this thesis has 

developed yet further methods to explore circadian patters but as Dolan et al. 

argue each new measure helps to bring about new insights and is required to 

advance our understanding of BP [66]. We are still however, searching for the 

optimal measure to quantify variability over a short-period; this is as much a 

mathematical problem as it is clinical. This as the thesis has shown, is not easily 

achieved.  

In the context of the single-component cosinor model which has been the most 

common method of analysis for ABPM, a recommendation for future studies from 

the evidence presented in this thesis is to incorporate a second cosine in the 

context of a random-effects model. The method offers a substantial improvement 

in fit compared to the traditional cosinor that is capable of capturing short-term 

peaks and can be implemented in standard statistical software. 

In Chapter 7, we found that short-term BPV measured at two occasions, four years 

apart, decreased in a small sample. Few longitudinal studies explore how variability 
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changes between two ABPM readings. In those that have, inconsistent findings 

were reported [213, 214]. More research into how short-term variability changes 

over time is warranted and further studies exploring the reproducibility of ABPM 

patterns is needed. It must be remembered that the emphasis in this thesis has 

solely been on short-term patterns and not long-term variability which represents 

how much BP fluctuates between visits (months or years).  

The prognostic significance of visit-to-visit BPV seems to be more transparent than 

in the case of short-term BPV. The most recent meta-analysis of 77,299 patients 

suggests that visit-to-visit SD was significantly predictive of all-cause mortality, 

cardiovascular mortality and stroke, after adjustment for mean BP [26]. As there is 

usually less data-points when analysing long-term compared to short-term data 

there is less opportunity to apply more advanced techniques. Studies have primarily 

used SD as a measure of variability. This has helped in collating data from studies, 

although it may not be the best measure of BPV. However, the issues associated 

with measuring short-term BPV may not be as evident for long-term BPV. The 

primary reason is that long-term variability does not have a cyclic component to it 

and there is no dipping effect like ABPM. Long-term variability usually refers to 

fluctuations in clinic BP values which have no night component. In this case, the use 

of SD as a measure of variation may be adequate. Another recommendation would 

be to investigate the association between short-term BPV and the development of 

long-term BPV which there is no data to the best of our knowledge. Perhaps long-

term BPV is the cumulative aggregate of short-term BPV but we will not know the 

answer to this until large longitudinal studies are conducted. Perhaps obtaining 

multiple ABPM readings over the course of a short period e.g. one month, may yield 

the same information and benefits of running a long-term study over a couple of 

years which would save on time and reduce financial costs.  

In context of the work presented in this thesis and following on from the limitation 

of examining surrogate markers, the most obvious recommendation is to explore 

the methods presented in the thesis with long-term follow up data that have hard 

endpoints e.g. cardiovascular events. The second wave of data collection is 

currently on-going for the Mitchelstown cohort. However, in order to have 
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adequate number of events to detect an association, if one exists; data from 

subsequent waves will probably have to be obtained.  

The benefit of our findings may lie in the analysis of clinical trial data, particularly in 

the analysis of chronotherapy effects. The methods offer estimates of BP at 

important times of the day that define a rate of change. This could be applied after 

the ingestion of different antihypertensive drugs to identify which medication 

produced the quickest fall in BP levels. Debate is on-going into the benefits of night-

time administration of antihypertensive medication compared to daytime 

administration but there has been substantial evidence in its favour [67-70]. The 

rationale behind the argument for this seems both plausible and reasonable. That 

is, administering medication at night will help pre-empt the magnitude of the 

morning surge by reducing BP during the night so that on waking, the surge is 

beginning at a lower value and thus not reaching as high a peak. When medication 

is ingested at night there should also be a larger reduction in night-time BP which 

has been highlighted as a stronger predictor of outcome than 24h mean. The latest 

on-going Treatment in Morning versus Evening (TIME) trial with 10,200 patients 

followed for 5 years is anticipated to provide definitive evidence of whether or not 

there is a benefit to administering antihypertensive medications in the evening to 

provide better protection against major adverse cardiovascular events [228, 229]. 

The methods outlined in this thesis are not restricted to the analysis of BP but can 

be applied to the many other physiological processes that follow a circadian rhythm 

such as cortisol, heart rate etc. In this regard it would be interesting to know if the 

methods, especially the more advanced approaches could be of use in analysing 

and answering questions in other medical fields. Indeed, it could be the case that 

the methods outlined could be more suited to important aspects of a particular 

circadian process other than BP. For purposes of dissemination of methods and 

particularly to act as a source for other researchers who are interested in extending 

on the work in the thesis, sample R code has been included in Appendix H. This may 

also be useful for researchers in other fields’ aside from BP. Relevant R packages 

utilised are also included along with the version of R used. The run time for the non-

linear model is also presented 
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8.5 Conclusion 

This thesis has demonstrated different approaches to explore circadian BP patterns 

over a 24h period. Results indicated that most summary measures of BPV were 

associated with microalbuminuria but the association did not persist after 

adjustment for mean BP. There was no association between BPV and LVH. Where 

more advanced models were used incorporating all the data, the rate of increase or 

fall throughout different periods over 24h remained the same between those with 

and without TOD. A novel method to quantify morning surge was also presented 

which may be useful in future studies. FPCA may also be a novel method to 

determine major components of variations in 24h BP. BPV quantification, its 

predictive value and potential as a therapeutic target will remain controversial until 

more studies are conducted and an agreement on how best to accurately quantify 

BPV has been reached. The thesis, which had a large methods and statistical 

component, illustrated novel techniques that can be implemented with standard 

software and whose application may also be useful for analysing other medical 

datasets that follows a circadian process.  
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Appendix A Supplementary material (Chapter 2) 

 

Polynomial Regression 

Briefly, a 6th order polynomial was applied to the dataset and measures of 

variability were obtained from subject-specific predictions. As one measure of 

variability the sum squared of the differences between the observed and subject-

specific profiles was calculated which reflected a participant’s individual BP 

variation across the 24h period. This is a similar measure to that calculated by Sega 

et al. except we used the variation about the individual curve rather than the mean 

[29]. Maximum, minimum and number of minutes spent above certain 

hypertensive guidelines were also calculated as measures of variability. The 

association between the extracted BPV measures and the presence of TOD was 

assessed using logistic regression with adjustment for age, sex, smoking status, 

BMI, diabetes and antihypertensive treatment. Additional models adjusted for 

mean clinic BP. 
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Figure 9-1 Population Level Effects for polynomial regression (Chapter 2) 



211 
 

 

Figure 9-2 Population Level Group Average (95 % CI) Linear Mixed Effects Model (Age, Sex, BMI Adjusted) (Chapter 2) 
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Figure 9-3 Subject-Specific Variation (function of Time only) 



213 
 

Table 9-1 Association between parameters extracted from polynomial regression 
model and microalbuminuria (logistic regression). 

Characteristic (SBP) Value (SD) 

Microalbuminuria (10.6%)  

Model 1 

OR (CI%) per hour or per 

10mmHg 

Model 2 

OR (CI%) per hour or per 

10mmHg 

Max Morning, mm Hg 

Time 

133 (13.0) 

11.54pm 

(18min) 

1.53 (1.30-1.81)* 

0.85 (0.59-1.24) 

0.24 (0.03-1.83) 

0.80 (0.55-1.15) 

Minimum, mm Hg 

Time  

108 (12.7) 

4.51am 

(11min) 

1.60 (1.35-1.90)* 

1.08 (0.59-0.97) 

2.74 (0.90-8.33) 

0.82 (0.45-1.49) 

Hours ≥ 130 mm Hg (24 

h)† 
8.4 h (7.9h) 1.07 (1.04-1.10)* 0.98 (0.91-1.04) 

Hours ≥ 135 mm Hg 

(Day)† 
5.2 h (6.4h) 1.06 (1.02-1.10)* 0.95 (0.89-1.01) 

Hours ≥ 120 mm Hg 

(Night)† 
2.5 h (3.1h) 1.14 (1.07-1.21)* 0.96 (0.85-1.09) 

Variability About Curve 123 (58.1) 1.05 (1.02-1.08)* 1.01 (0.97-1.05) 

†European Society of Hypertension ABPM Guidelines: 24 h ≥130/80 mmHg; Day (awake) ≥135/85 mmHg; Night (sleep) ≥120/70 

mmHg. *p-value <0.01. Model 1 adjusted for age, sex, smoking, BMI, diabetes, anti-hypertensive medication. Model 2 adjusted for 

age, sex, smoking, BMI, diabetes, anti-hypertensive medication, 24h SBP 
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Appendix B Supplementary material (Chapter 3) - search 

terms and search strategy for systematic review 

 

EMBASE search strategy  

#1. exp  abpm variability/  

#2. exp  abp variability/ 

#3. exp  ambulatory bp variability/ 

#4. exp  ambulatory blood pressure variability/ 

#5. exp  ambulatory blood pressure monitor variability/ 

#6. exp  ambulatory blood pressure monitoring variability/ 

#7. exp  24hour BP variability/ 

#8. exp  24-hour blood pressure variability/ 

#9. exp  24h blood pressure variability/ 

#10. exp  24h bp variability/ 

#11. exp  24 hour ambulatory blood pressure variability/ 

#12. exp  24 hour ambulatory bp variability/ 

#13. exp  24 hour ambulatory blood pressure monitor variability/ 

#14. exp  24 hour ambulatory blood pressure monitoring variability/ 

#15. exp  short term bp variability/ 

#16. exp  short term abpm variability/ 

#17. exp  short term blood pressure variability/ 

#18. exp  short term abp variability/ 

#19. exp  24 hour abpm variability/ 

#20. exp  24 hour abp variability/ 

#21. exp  24h abp variability/ 

#22. exp  24-hour abp variability/ 

#23. exp  24-hour abpm variability/ 

#24. exp  24-hour ambulatory blood pressure monitoring variability/ 

#25. exp  24-hour ambulatory blood monitoring variability/ 
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#26. exp  bp variability/ 

#27. exp  blood pressure variability/ 

#28.  (#1 or  #2 or  #3 or  #4 or  #5 or  #6 or  #7 or  #8 or  #9 or  #10 or  #11 or  #12 

or  #13 or  #14 or  #15 or  #16 or  #17 or  #18 or  #19 or  #20 or  #21 or  #22 or  #23 

or  #24 or  #25 or  #26 or  #27 ) 

#29. left ventricular hypertrophy: ab,ti 

#30. left ventricular hyperthrophy: ab,ti 

#31. left ventricular hypertrophy: ab,ti 

#32. left ventricular hypertrophic: ab,ti 

#33. left ventricular mass: ab,ti 

#34. left ventricular mass index: ab,ti 

#35. target organ damage: ab,ti 

#36. organ damage: ab,ti 

#37. target-organ damage: ab,ti 

#38. (#29 or  #30 or  #31 or  #32 or  #33 or  #34 or  #35 or  #36 or  #37 ) 

#39. (#28 and #38) 

#40.#39[Limit: humans & article] 

PubMed search strategy  

#1. abpm variability [all]  

#2. abp variability [all] 

#3. ambulatory bp variability [all] 

#4. ambulatory blood pressure variability [all] 

#5. ambulatory blood pressure monitor variability [all] 

#6. ambulatory blood pressure monitoring variability [all] 

#7. 24hour BP variability [all] 

#8. 24-hour blood pressure variability [all] 

#9. 24h blood pressure variability [all] 

#10. 24h bp variability [all] 

#11. 24 hour ambulatory blood pressure variability [all] 

#12. 24 hour ambulatory bp variability [all] 

#13. 24 hour ambulatory blood pressure monitor variability [all] 
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#14. 24 hour ambulatory blood pressure monitoring variability [all] 

#15. short term bp variability [all] 

#16. short term abpm variability [all] 

#17. short term blood pressure variability [all] 

#18. short term abp variability [all] 

#19. 24 hour abpm variability [all] 

#20. 24 hour abp variability [all] 

#21. 24h abp variability [all] 

#22. 24-hour abp variability [all] 

#23. 24-hour abpm variability [all] 

#24. 24-hour ambulatory blood pressure monitoring variability [all] 

#25. 24-hour ambulatory blood monitoring variability [all] 

#26. bp variability [all] 

#27. blood pressure variability [all] 

#28.  (#1 or  #2 or  #3 or  #4 or  #5 or  #6 or  #7 or  #8 or  #9 or  #10 or  #11 or  #12 

or  #13 or  #14 or  #15 or  #16 or  #17 or  #18 or  #19 or  #20 or  #21 or  #22 or  #23 

or  #24 or  #25 or  #26 or  #27 ) 

#29. left ventricular hypertrophy [all] 

#30. left ventricular hyperthrophy [all] 

#31. left ventricular hypertrophy [all] 

#32. left ventricular hypertrophic [all] 

#33. left ventricular mass [all] 

#34. left ventricular mass index [all] 

#35. target organ damage [all] 

#36. organ damage [all] 

#37. target-organ damage [all] 

#38. (#29 or  #30 or  #31 or  #32 or  #33 or  #34 or  #35 or  #36 or  #37 ) 

#39. (#28 and #38) 

#40. #39[Limit: humans & adults]
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PRISMA checklist (Systematic review checklist for Chapter 3) 

Section/topic  # Checklist item  
Reported on page # (see 
pdf version appendix ) 

TITLE   

Title  1 Identify the report as a systematic review, meta-analysis, or both.  Title page (p1) 

ABSTRACT   

Structured 
summary  

2 Provide a structured summary including, as applicable: background; objectives; data 
sources; study eligibility criteria, participants, and interventions; study appraisal and 
synthesis methods; results; limitations; conclusions and implications of key findings; 
systematic review registration number.  

Abstract (p2) 

INTRODUCTION   

Rationale  3 Describe the rationale for the review in the context of what is already known.  Introduction (p3,4) 

Objectives  4 Provide an explicit statement of questions being addressed with reference to 
participants, interventions, comparisons, outcomes, and study design (PICOS).  

Introduction (p4) 

METHODS   

Protocol and 
registration  

5 Indicate if a review protocol exists, if and where it can be accessed (e.g., Web 
address), and, if available, provide registration information including registration 
number.  

NA 

Eligibility criteria  6 Specify study characteristics (e.g., PICOS, length of follow-up) and report 

characteristics (e.g., years considered, language, publication status) used as criteria 
for eligibility, giving rationale.  

Methods – Types of studies, 
Study populations, predictor 
variables, outcomes (p5) 

Information 
sources  

7 Describe all information sources (e.g., databases with dates of coverage, contact with 
study authors to identify additional studies) in the search and date last searched.  

Methods – search methods for 
identification of studies (p5,6) 

Search  8 Present full electronic search strategy for at least one database, including any limits 
used, such that it could be repeated.  

Methods – search methods for 
identification of studies (p5,6) 
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Study selection  9 State the process for selecting studies (i.e., screening, eligibility, included in 
systematic review, and, if applicable, included in the meta-analysis).  

Methods – search methods for 
identification of studies, data 
extraction (p5,6) 

Data collection 
process  

10 Describe method of data extraction from reports (e.g., piloted forms, independently, in 
duplicate) and any processes for obtaining and confirming data from investigators.  

Methods –data extraction (p6) 

Data items  11 List and define all variables for which data were sought (e.g., PICOS, funding 
sources) and any assumptions and simplifications made.  

Methods –data extraction (p6) 

Risk of bias in 
individual studies  

12 Describe methods used for assessing risk of bias of individual studies (including 
specification of whether this was done at the study or outcome level), and how this 
information is to be used in any data synthesis.  

Methods— search methods for 
identification of studies (p6), 
Quality assessment (Table 4) 

Summary 
measures  

13 State the principal summary measures (e.g., risk ratio, difference in means).  Methods—Statistical analysis 
(p6) Correlation Coefficient 

Synthesis of results  14 Describe the methods of handling data and combining results of studies, if done, 
including measures of consistency (e.g., I

2
) for each meta-analysis.  

Methods—Statistical analysis 
(p6)  

 

Page 1 of 2  

Section/topic  # Checklist item  Reported on page #  

Risk of bias across 
studies  

15 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., 
publication bias, selective reporting within studies).  

Methods—Statistical 
analysis (p6)  

Additional analyses  16 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-
regression), if done, indicating which were pre-specified.  

Methods—Statistical 
analysis (p6)  

RESULTS   

Study selection  17 Give numbers of studies screened, assessed for eligibility, and included in the review, 
with reasons for exclusions at each stage, ideally with a flow diagram.  

Results (p7) & Flowchart 
(Figure 1) 

Study 
characteristics  

18 For each study, present characteristics for which data were extracted (e.g., study size, 
PICOS, follow-up period) and provide the citations.  

Results (p7) & Table 1,3 

Risk of bias within 
studies  

19 Present data on risk of bias of each study and, if available, any outcome level 
assessment (see item 12).  

Results (p8) & Quality 
assessment (Table 4) 
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Results of individual 
studies  

20 For all outcomes considered (benefits or harms), present, for each study: (a) simple 
summary data for each intervention group (b) effect estimates and confidence intervals, 
ideally with a forest plot.  

Results (p7), Table 1,3 & 
Forest Plot (Figure 2) 

Synthesis of results  21 Present results of each meta-analysis done, including confidence intervals and 
measures of consistency.  

Results (p7) & Forest Plot 
(Figure 2) 

Risk of bias across 
studies  

22 Present results of any assessment of risk of bias across studies (see Item 15).  Results- Meta-analysis 
(p8,9) 

Additional analysis  23 Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-
regression [see Item 16]).  

Results- Meta-analysis 
(p8,9) & Forest Plot (Figure 
2) 

DISCUSSION   

Summary of 
evidence  

24 Summarize the main findings including the strength of evidence for each main outcome; 
consider their relevance to key groups (e.g., healthcare providers, users, and policy 
makers).  

Discussion (p9) 

Limitations  25 Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level 
(e.g., incomplete retrieval of identified research, reporting bias).  

Discussion (p9,10, 11, 12) 

Conclusions  26 Provide a general interpretation of the results in the context of other evidence, and 
implications for future research.  

Discussion (p9,10, 11, 12) 

FUNDING   

Funding  27 Describe sources of funding for the systematic review and other support (e.g., supply of 
data); role of funders for the systematic review.  

Title page (p1) & Conflict of 
Interest (p12) 

 
From:  Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS 
Med 6(6): e1000097. doi:10.1371/journal.pmed1000097  

For more information, visit: www.prisma-statement.org.  

Page 2 of 2 
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Appendix C Supplementary material (Chapter 4) 

 

Table 9-2 Baseline Characteristics by anti-hypertensive treatment  

  Untreated (n=757) Treated (n=377) 

Characteristic Total 
(n=1134) 

Men 
(n=362) 

Female 
(n=395) 

Men 
(n=165) 

Female 
(n=212) 

Age, y 60.2 (5.5) 59.5 (5.6) 59.5 (5.5) 61.6 (5.1) 61.9 (5.3) 

BMI, n (%) 
  Underweight/normal 
  Overweight 
  Obese 

 
230 (20.3) 
498 (44.0) 
405 (35.7) 

 
56 (15.5) 

187 (51.8) 
118 (32.7) 

 
130 (32.9) 
171 (43.3) 
94 (23.8) 

 
8 (4.9) 

65 (39.4) 
92 (55.7) 

 
36 (17.0) 
75 (35.4) 

101 (47.6) 
Smoking, n (%) 
   Never 
   Former 
   Current 

 
564 (51.9) 
355 (32.7) 
168 (15.4) 

 
133 (38.8) 
142 (41.4) 
68 (19.8) 

 
241 (63.3) 
86 (22.6) 
54 (14.2) 

 
70 (43.2) 
71 (43.8) 
21 (13.0) 

 
120 (59.7) 
56 (27.9) 
25 (12.4) 

Diabetes, n (%) 103 (9.3) 34 (9.6) 14 (3.6) 31 (19.1) 24 (11.4) 
Hypertension, n (%) 487 (43.0) 140 (38.7) 148 (37.6) 92 (55.8) 107 (50.5) 

LVH, n (%) 75 (6.6) 34 (4.5) 15 (3.8) 21 (12.7) 20 (9.4) 

Microalbuminuria, n 
(%) 

128 (11.4) 73 (9.7) 32 (8.2) 24 (14.6) 31 (14.8) 

ABPM measurements 
  24-h SBP, mm Hg 
  24-h DBP, mm Hg 
  Awake SBP, mm Hg 
  Awake DBP, mm Hg 
  Sleep SBP, mm Hg 
  Sleep DBP, mm Hg 

 
124.1 (13.3) 

71.8 (8.3) 
131.4 (14.1) 

77.4 (9.0) 
112.3 (14.0) 

62.8 (8.3) 

 
126.0 (12.6) 

74.4 (8.4) 
133.5 (13.4) 

80.1 (9.0) 
112.9 (13.4) 

64.6 (8.7) 

 
119.9 (13.7) 

69.6 (7.6) 
127.2 (14.8) 

75.3 (8.5) 
108.5 (13.5) 
60.6 (13.5) 

 
128.0 (12.4) 

74.3 (8.6) 
134.8 (12.6) 

79.3 (9.3) 
117.1 (14.3) 

66.0 (9.2) 

 
125.8 (12.7) 

69.5 (7.4) 
132.9 (13.3) 

74.9 (8.3) 
115.0 (13.9) 

61.3 (7.2) 
Data are mean (SD). ARV: Average real variability, SBP: Systolic Blood pressure, DBP: Diastolic blood pressure, BMI:Body mass 
index, LVH: Left ventricular hypertrophy, ABPM: Ambulatory blood pressure monitor. Microalbuminuria: albumin:creatinine 
ratio ≥ 1.1 mg/mmol 
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Table 9-3 Variability Indices and Dip by White-Coat Hypertension  

Variability 
Measure 

24-hour (mm Hg) Day (mm Hg) Night (mm Hg) 

No (n=986) Yes (n=147) No Yes No Yes 

ARV SBP 11.4 (2.6) 11.1 (2.0) 11.9 (3.2) 11.5 (2.7) 10.6 (3.3) 10.6 (2.6) 
ARV DBP 7.8 (1.8) 7.3 (1.4) ** 8.2 (2.4) 7.6 (2.2) ** 7.3 (2.2) 6.9 (1.8) * 
SD SBP 15.9 (4.0) 15.4 (3.0) 12.9 (3.6) 13.0 (3.0) 11.2 (3.6) 10.7 (2.7) 
SD DBP 11.5 (2.8) 10.9 (2.4) * 9.0 (2.8) 8.6 (2.5) 8.1 (2.4) 7.6 (2.0) * 
CV SBP 12.8 (2.9) 12.8 (2.8) 9.7 (2.4) 10.1 (2.4) 10.0 (3.0) 9.8 (2.5) 
CV DBP 16.1 (3.8) 15.6 (3.4) 11.6 (3.7) 11.5 (3.5) 12.9 (3.8) 12.5 (3.5) 

wSD SBP 12.3 (3.0) 12.2 (2.2) - - - - 
wSD DBP 8.7 (2.1) 8.2 (1.7) - - - - 
Dip SBP 14.4 (7.0) 14.2 (6.8) * - - - - 
Dip DBP 18.7 (7.7) 18.2 (7.2) - - - - 

Data are mean (SD). ARV: Average real variability, SD: Standard deviation, wSD: Weighted standard deviation, CV: coefficient 
of variation, SBP: Systolic Blood pressure, DBP: Diastolic blood pressure, *p<0.05; represents significance between those with 
and without white-coat hypertension during each period of the day 
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ROC curves for microalbuminuria (Chapter 4 supplementary material) 

  

ARV awake ROC curve. M1: Age, Sex, 24-h mean BP, ARV awake, Smoking, Diabetic, 

bmi, anti-hypertensive; M2: Age, Sex, 24-h mean BP, Smoking, Diabetic, bmi, anti-

hypertensive (p-value=0.56) 
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wSD ROC curve. M1: Age, Sex, 24-h mean BP, wSD, Smoking, Diabetic, bmi, anti-

hypertensive; M2: Age, Sex, 24-h mean BP, Smoking, Diabetic, bmi, anti-

hypertensive (p-value=0.73) 
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SD awake ROC curve. M1: Age, Sex, 24-h mean BP, SD awake, Smoking, Diabetic, 

bmi, anti-hypertensive; M2: Age, Sex, 24-h mean BP, Smoking, Diabetic, bmi, anti-

hypertensive (p-value=0.25) 
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24-h mean BP ROC curve. M1: 24-h mean BP, clinic BP; M2: clinic BP (p-value=0.01) 
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24h mean BP ROC curve. M1: Age, Sex, 24-h mean BP, clinic BP, Smoking, Diabetic, 

bmi, anti-hypertensive; M2: Age, Sex, clinic BP, Smoking, Diabetic, bmi, anti-

hypertensive (p-value=0.13) 
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Appendix D Supplementary material (Chapter 5) 

 

Figure 9-4 VPC (visual predictive check) plot. Black lines represent median of observed data with 90% interquantile range of 
observations.  Red line is predicted mean along with 90% prediction interval.  
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Figure 9-5 Predicted average (95% CI) piecewise linear trajectory of those with/without presence of microalbuminuria adjusted for 
age, sex, BMI and including an interaction of the spline terms with microalbuminuria using a linear mixed-effects model (Model 3). 
Each linear spline represents the rate of BP increase or decrease (slope) for that time period which is referred to in Table 5-2. 
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Appendix E Supplementary material (Missing Data) 

(References for this appendix are at the end of the section.) 

Although some studies have monitors set to collect data less frequently at night 

compared to daytime, sometimes every 30mins during the day and every hour at 

night, our study had the advantage that data was collected at the same sampling 

frequency, 30mins throughout 24h. Earlier ESH guidelines recommended a 

minimum of 14 measurements during the day and a minimum of 7 measurements 

during the night as the satisfactory number of data points for analysis [1-3]. 

However the more recent guidelines from the current position paper on ABPM say 

that stricter criteria should be used especially for research purposes [3, 4]. 

Specifically they recommend only participants with a minimum of 20 

measurements during the day and a minimum of 7 measurements during the night 

period should be retained. Additionally, any participants with data lacking for more 

than two consecutive hourly intervals should be excluded [3, 4]. Additionally, when 

examining day and night values they recommended fixed time periods to identify 

these periods but we had the advantage of having diary entries of actual bed and 

rising times.  

Unfortunately we had no available data that was collected on the reasons why 

there may be missing data in our study. However, common reasons for missing 

ABPM values include the patient disconnecting the device, suspension of a reading 

by use of the cancelation button, turning the monitor off, dead batteries, 

movement artefact, or kinks in the tubing [5]. Many of these reasons may lead to 

an occasional or sporadic missed reading but multiple missing data may suggest 

there is something else at fault such as a monitor malfunctioning and ignoring data 

from such a monitor seems appropriate. Another issue perhaps is that a certain 

group of individuals may have increased level of missing data. One study examining 

the influence of patient characteristics on the success of ABPM recording found 

that those with diabetes and elevated BMI were associated with less complete 

ABPM session results [6]. In relation to our study we explored differences between 
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those with and without the minimum measurements criteria, see Table 9-4. Similar 

to the Fravel et al. study we found that those with higher BMI were more likely to 

have missing data. However there was no significant difference in the prevalence of 

diabetes. BP was slightly lower in those with missing data but importantly there was 

no significant difference between groups based on hypertension classification 

(≥140/90 mmHg and/or on antihypertensive treatment). There was no difference in 

gender but the missing group were marginally older (59.9 vs 60.7 years, p=0.01). 

The difference in BMI may be explained by the practicality of wearing the monitor. 

Perhaps those with a higher BMI were given a standard size cuff resulting in the 

device either being too restricted and returning an error or it was too painful to 

wear and the participant had to remove it. Without any evidence however we are 

only speculating and the difference between groups was not that large (1.3 kg/m2). 

Importantly from Table 9-4, the ABPM subsample was broadly representative of the 

full sample as prevalence rates were similar. However, those on ABPM had a higher 

prevalence of hypertension. ABPM was offered to all patients but those with high 

BP were encouraged to wear a monitor. This may affect the generalizability of the 

results but will not affect the estimates from our models for this study sample. It 

must be noted that even in the ABPM sample that met the criteria, there was still 

some missing data points. In terms of mixed-effects models, the approach is only 

valid when the incomplete dataset is MAR or MCAR [7-8]. In any real-life dataset 

missing data will never be completely MCAR, MAR or missing not at random 

(MNAR) but rather a combination of each. An assumption has to be made and in 

the case of our work we believe MAR is a reasonable assumption. As we have 

adhered to the most recent ABPM guidelines and feel our remaining ABPM sample 

is representative of the full sample it is reasonable to analysis those with the 

appropriate number of readings as set out by the guidelines. In addition there have 

been studies illustrating that methods that deal with missing data such as multiple 

imputation in mixed-effects models are not necessary and can result in unstable 

estimates and misleading inferences [7,9-10].  
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Table 9-4 Table of demographics comparing full sample to ABPM sample 

  ABPM Subsample (n=1207) 

Characteristic Full Sample 

(n=2047) 

ABPM ‡ 

 (n=886) 

ABPM Missing  

 (n=321) 

Age, y 59.8 (5.5) 59.9 (5.5) 60.7 (5.6)* 

Gender, Male n(%) 1008 (49.2) 401 (45.3) 163 (50.8) 

BMI (kg/m
2
) 28.6 (4.7) 28.6 (4.6) 29.9 (5.3)* 

Office SBP, mm Hg 129.6 (16.9) 134.7 (17.7) 131.7 (17.1)* 

Office DBP, mm Hg 80.1 (9.8) 83.1 (10.2) 80.7 (10.2)* 

Hypertension, n (%) 951 (46.5) 528 (59.7) 182 (56.7) 

Diabetes n (%) 174 (8.7) 81 (9.3) 34 (10.9) 

Data are mean (SD) unless otherwise stated. BMI: Body mass index, ABPM: Ambulatory blood pressure monitor. 

Hypertension: ≥140/90 mmHg and/or on antihypertensive treatment. Diabetes: based on hbA1c greter than 6.5% and doctor 

diagnosed. ‡ABPM group based on minimum 20 valid awake and minimum 7 valid asleep and ≥2 valid daytime and 1 valid 

night-time measurement per h. *p-value<0.05, where p-value is comparing two ABPM groups.  

 

References for Appendix E: 

[1] O’Brien E, Coats A, Owens P, et al. Use and interpretation of ambulatory blood 

pressure monitoring: recommendations of the British Hypertension Society. BMJ 

2000; 320: 1128.  

[2] Fagard RH, Staessen JA, Thijs L. Optimal definition of daytime and night-time 

blood pressure. Blood Pressure Monitoring. 1997;2(6):315-21. 

[3] O'Brien E, Parati G, Stergiou G. Ambulatory blood pressure measurements: 

What is the International Consensus? Hypertension. 2013;62:988–94. 

[4] O'Brien E, Parati G, Stergiou G, Asmar R, Beilin L, Bilo G, et al. European Society 

of Hypertension position paper on ambulatory blood pressure monitoring. Journal 

of Hypertension. 2013;31(9):1731-68. 
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Appendix F Supplementary material (Chapter 6) 

 

Figure 9-6 ABPM readings of three individuals with fitted subject-specific 
trajectories from a two-component cosinor mixed-effects model (five parameters) 
and spline model (six parameters - cubic spline with four knots at 18:00, 24:00, 
04:00 and 08:00) (left panels). Their corresponding rate of change curves (first 
derivatives) are also plotted (right panels). The plots indicated an extremely 
similar pattern thus giving further justification of the two-component cosinor 
model. 
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Figure 9-7 Histograms of maximum morning slope by different methods.  
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Figure 9-8 Scree plot with eigenvalues and the eight principle components which 
make up 99% of the variation.  
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Figure 9-9 FPCA: Each of the six three FPC as variations about the mean along with the percentage of total variation explained by the 
component. The solid black line represents the mean SBP over the day. The “+” curves illustrate what happens when a small amount of the 
component is added to the mean and the “-” curves illustrate the effect of subtracting the component. 
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Figure 9-10 Scatter plots and the corresponding correlations between all the two-component cosinor random-effects model parameters and 
the principle component scores from FPCA. Eight FPCs contribute to 99% of the total variance in the data. 
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ARV Sampling Frequency  

(References at the end of the section) 

Using the simulated data based on the two-component randon-effects cosinor 

model in Chapter 6, ARV values were explored with respect to their sampling 

frequency. ARV was calculated from the simulated data (1) every 10mins and (2) 

every 30mins. Results indicated a substantial difference between the values taken 

at 10min and 30min intervals (p=0.02), see Figure 9-11 and Figure 9-12. The results 

are not surprising but the sampling frequency is not always referred to when ARV is 

mentioned in the literature, even those who developed ARV [1] failed to highlight it 

with only some attempting to adjust for the time interval [2,3]. We believe 

highlighting the findings is worthwhile. Zakopoulos et al. have however, suggested 

and advocated the use of the time rate of BP varation measure which is similar to 

ARV but is independent of the time intervals between measurements [4]. The 

measure was additionally obtained and included in Chapter 3 when summary 

measures were examined. We found the results were similar to the ARV value. 

Future studies using ARV should consider accounting for time between readings 

and determine the time rate of variation index. It must also be noted that although 

possible, in practise however, measurements taken every 10mins are unrealistic. 

The inconvience casued to the participant may result in them becoming iritated 

with the device and in turn lead to misleading values.  
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Figure 9-11 Simulated ARV values taken every 10mins and every 30mins. 
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Figure 9-12 Simulated data for one individual with readings taken 1) every 30min 
and 2) every 10mins. 
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Appendix G Supplementary Material (Chapter 7) 
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Appendix H Sample R Code 

 

 

######################################################################## 
####Sample R code ################ 
######################################################################## 

R>version 

               _                            

platform       x86_64-w64-mingw32           

arch           x86_64                       

os             mingw32                      

system         x86_64, mingw32              

status                                      

major          3                            

minor          3.1                          

year           2016                         

month          06                           

day            21                           

svn rev        70800                        

language       R                            

version.string R version 3.3.1 (2016-06-21) 

nickname       Bug in Your Hair   
############################################################# 
 
######################################################################## 
####Sample code: Chapter 5: Exploring diurnal variation using piecewise linear################ 
####splines: an example using blood pressure################################## 
######################################################################## 
 
rm(list = ls()) #clear 
 
library(foreign)   #imports stata file 
library(nlme) 
library(multcomp) 
 
getwd() 
setwd("C:/Users/JM") 
w1 <- read.dta("w1.dta") 
w1<-w1[order(w1$id, w1$newtime),] 
 
####newtime 0-47 represents 24h clock 
####newsleep represents subject-specific sleep time 
####newwawke represents subject-specific wake time 
 
####create individual splines with restriction BP on the average is cyclical #### 
####create 5 splines - t12pm,t6pm,tsleep,t4am,twake 
w1$t12pm<-ifelse(w1$newtime<=12, w1$newtime, 12) 
w1$t6pm <- ifelse(w1$newtime<=12, 0, ifelse((w1$newtime>12) & (w1$newtime<=w1$newsleep), 
(w1$newtime-12), (w1$newsleep-12)))   
w1$tsleep<-ifelse(w1$newtime<=w1$newsleep, 0, ifelse((w1$newtime>w1$newsleep) & (w1$newtime<=32), 
(w1$newtime-w1$newsleep), (32-(w1$newsleep))))    
w1$t4am<- ifelse(w1$newtime<=32 ,0, ifelse((w1$newtime>32) & (w1$newtime<=w1$newwake), 
(w1$newtime-32), (w1$newwake-32)))    
w1$twake<-ifelse(w1$newtime<=w1$newwake, 0, ifelse((w1$newtime>w1$newwake) & (w1$newtime<=47), 
(w1$newtime-w1$newwake), (47-(w1$newwake))))    
 
####code introducing restriction ensuring pattern is periodic 
w1$s2time<-w1$newsleep-12 
w1$s3time<-32-w1$newsleep 
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w1$s4time<-w1$newwake-32 
w1$s5time<-47-w1$newwake 
 
#final splines - s2,s3,s4,s5 
w1$s2<-w1$t6pm-((w1$s2time/12)*w1$t12pm) 
w1$s3<-w1$tsleep-((w1$s3time/12)*w1$t12pm) 
w1$s4<-w1$t4am-((w1$s4time/12)*w1$t12pm) 
w1$s5<-w1$twake-((w1$s5time/12)*w1$t12pm) 
######################################################### 
 
 
####Unadjusted Model 1 #### 
m1r<- lme(sbp~ s2 + s3 + s4 + s5 ,  
          random = ~ s2 + s3 + s4 + s5 | id ,method="REML", 
          data=w1,control = lmeControl(msMaxIter=1000,opt = "optim",msVerbose=T), 
          na.action="na.omit",correlation = corAR1(form=~1|id))    
summary(mr1) 
####variance-covariance matrix - random effects  
getVarCov(m1r) 
####need to go back to work out s1 estimate using linear combinations using glht command 
####s1 refers to first spline rewritten 
summary(glht(m1r, linfct = c("(s2*10+s3*10+s4*8+s5*7)/-12=0")))   #0.0158 se=0.037 
 
 
######################################################################## 
######################################################################## 
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############################################################################ 
####Sample code: Chapter 6: Morning surge in blood pressure using a random-effects ###### 
####multiple-component cosinor model ########################################### 
############################################################################ 
rm(list = ls()) #clear 
 
library(foreign)   #creates stata file 
library(lme4) 
library(nlme) 
library(survey)  
library(gmodels) 
library(dplyr) 
library(ggplot2) 
library(multcomp) 
library(mgcv) 
library(lmerTest) 
library(splines) 
library(ares)   #only works with R2.13.2, lspline i.e. mkspline 
library(car) 
library(lme4) 
library(RLRsim) 
#library(MASS)      #ldahist, multiple histograms 
library(Hmisc) 
library(corrplot) 
library(reshape) 
library(reshape2) 
library(zoo) 
library(broom) 
library(lmtest) 
library(doBy)   #tabstat stata 
 
getwd() 
a1 <- read.dta("dataset.dta") 
 
 
###2-component cosinor nonlinear method### 
##system.time=2530 =42minutes run time 
cos1qq<-nlme(sbp~m + am1*cos((2*pi*newtime/48)+ph1) + am2*cos((4*pi*newtime/48)+ph2),             
             data=a1, 
             fixed=m+am1+ph1+am2+ph2~1, 
             random =m+am1+ph1+am2+ph2~1| Study_ID, 
             start=c(m=124,am1=13.3,ph1=5.29,am2=4.2,ph2=0.87), 
             control=nlmeControl(pnlsMaxIter=1000,pnlsTol=0.008,maxIter = 1000,msVerbose = TRUE), 
             na.action="na.omit",correlation = corAR1(form=~1|Study_ID))   
#saveRDS(cos1qq, "cos1qq.rds")     
cos1qq <- readRDS("cos1qq.rds 
summary(cos1qq) 
 
 
 
 
####2 component cosinor#### 
#cos cos2 sin sin2 
fm2 <- lme(sbp ~ cos(2*pi*newtime/48) + sin(2*pi*newtime/48) + cos(4*pi*newtime/48) + 
sin(4*pi*newtime/48),  
           random = ~ cos(2*pi*newtime/48) + sin(2*pi*newtime/48)+cos(4*pi*newtime/48) + 
sin(4*pi*newtime/48) | Study_ID,method="ML", 
           data=a1,control = lmeControl(msMaxIter=1000,opt = "optim",msVerbose=T), 
           na.action="na.omit",correlation = corAR1(form=~1|Study_ID)) 
#saveRDS(fm2, "fm2.rds")     
fm2 <- readRDS("fm2.rds")   
summary(fm2) 
anova(fm1,fm2)   #same models 
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####plot different fits- single,2 & 3 component - comparison#### 
somePDFPath = "some.pdf" 
pdf(file=somePDFPath)   
par(mar=c(5,4,1.5,1.5)+0.1)  #remove title space 
par(las=1)    #y axis labels horizontal 
par(mfrow = c(2,2))   #change depending how many per page 
#par(mar = c(4,4.5,1.5,1.5) + 0.1) 
 
for (i in unique(a1$Study_ID)) {   
   
  plot(a1[a1$Study_ID==i, "newtime"], a1[a1$Study_ID==i, "sbp"],bty="l", 
       #col=a1[a1$Study_ID==i, "visitno"], 
       xaxt = "n", 
       #xlim = range(a$bphour2), ylim = range(a$sbp), # base the axes on full data range 
       ylim=c(80,180), 
       # main = paste("Plot of", i), 
       xlab="Time (24-h clock)", ylab="SBP (mmHg)",font.main = 1,cex.lab=1.5,cex.axis = 1.5)   
  lines(a1[a1$Study_ID==i , "sbp"]~a1[a1$Study_ID==i , "newtime"], lwd=1)   
  lines(a1[a1$Study_ID==i , "fitted_sub1"]~a1[a1$Study_ID==i , "newtime"], lwd=3) 
  lines(a1[a1$Study_ID==i , "fitted_sub2"]~a1[a1$Study_ID==i , "newtime"], lwd=3,col="red") 
  lines(a1[a1$Study_ID==i , "fitted_sub3"]~a1[a1$Study_ID==i , "newtime"], lwd=3,col="blue") 
 axis(1, at=c(0,12,23,35,47), labels=c("12.00", "18.00", "00.00", "06.00", "12.00"),cex.axis = 1.5) 
} 
dev.off() 
 
####derivatives, simulation & obtain max slope#### 
a1<-a1 %>% group_by(Study_ID) %>% mutate(derivative2 = c(NA,diff(fitted_sub2) / diff(newtime))) %>% 
  ungroup()  %>% 
  as.data.frame() 
 
####prediction every minute#### 
z<-expand.grid(newtime=seq(0,47,by=1),Study_ID=unique(a1$Study_ID))   #prediction of lme for every minute 
of day 
z<-expand.grid(newtime=seq(0,47,by=1/30),Study_ID=unique(a1$Study_ID))   #prediction of lme for every 
minute of day 
z$pred <- predict(fm2, newdata=z,level=1) 
z$pred <- predict(cos1qq, newdata=z,level=1) 
z<-z %>% group_by(Study_ID) %>% mutate(derivative = c(NA,diff(pred) / diff(newtime))) %>% 
  ungroup()  %>% 
  as.data.frame() 
detach(package:plyr) 
z<-z %>% group_by(Study_ID) %>% mutate(derivative = c(NA,diff(pred) )) %>% 
  ungroup()  %>% 
  as.data.frame() 
 
#manually getting derivative 
library(mosaic) 
D(124.32941 + 6.58314*cos(2*pi*t/P) + 10.35877*sin(2*pi*t/P) ~ t, P=48) # default values for parameters. 
 
 
##################################################################### 
####correct identification of max slope derivative #### 
#coefficients 
bc<-coef(fm2) 
bc<-cbind(Study_ID = rownames(bc), bc)  
colnames(bc)[2] <- "b0" 
colnames(bc)[3] <- "b1" 
colnames(bc)[4] <- "b2" 
colnames(bc)[5] <- "b3" 
colnames(bc)[6] <- "b4" 
 
###one person 
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t<-rep(28:47) 
n<-function(t,p=48){ 
  bc$b0[bc$Study_ID=="LHC0005"]  + bc$b1[bc$Study_ID=="LHC0005"]*cos(2*pi*t/p) + 
bc$b2[bc$Study_ID=="LHC0005"]*sin(2*pi*t/p) + 
    + bc$b3[bc$Study_ID=="LHC0005"]*cos(4*pi*t/p) + bc$b4[bc$Study_ID=="LHC0005"]*sin(4*pi*t/p) 
} 
max(grad(n, t)) 
 
 
##loop works 
t<-seq(28,47,by=1/30) 
for(row in 1:nrow(bc)){ 
  n<-function(t,p=48){ 
    bc$b0[row]  + bc$b1[row]*cos(2*pi*t/p) + bc$b2[row]*sin(2*pi*t/p) + bc$b3[row]*cos(4*pi*t/p) + 
bc$b4[row]*sin(4*pi*t/p) 
  } 
  bc$newvar[row] <-max(grad(n, t)) 
} 
summary(bc$newvar) 
 
################################## 
################################## 
 
 
 
###########################################################################################
#########Chapter 6: FPCA Work###################### 
################################################################################## 
 
library(refund) 
library(refund.shiny) 
 
load("BPM.Rdata") 
 
## Expand grid for all observations from 0 to 47 time points  
res <- merge( 
  expand.grid(newtime=unique(BPM$newtime), Study_ID=unique(BPM$Study_ID)), 
  BPM, all=TRUE) 
BPM=res[order(res$Study_ID),] 
BPM$Study_ID<-as.character(BPM$Study_ID) 
 
y=NULL 
for(i in 1:length(unique(BPM$Study_ID))){ 
  y[[i]]=t(BPM$sbp[which(BPM$Study_ID==unique(BPM$Study_ID)[i])])} 
names(y)<-sprintf(unique(BPM$Study_ID),1:length(y)) 
y=t(sapply(y, '[', 1:max(sapply(y, length)))) 
 
 
n = dim(y)[1] 
s = seq(1, 48, length = dim(y)[2]) 
 
## do FPCA on the observed functions 
fpca.sys = fpca.sc(y) 
fpca.sys 
 
par(las=1)    #y axis labels horizontal 
par(mfrow = c(1,3))  
par(mfrow = c(1,4))  
par(mfrow = c(2,3))  
par(mar=c(5,5,1.5,1.5)+0.1)  #remove title space 
 
 
## plot FPCA effects for the first basis function 
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plot(s, fpca.sys$mu, type = 'l', ylim = c(90, 160), ylab = "", bty="l", 
     pch = 19, lwd = 2, xaxt = "n",cex.lab=1.5,xlab="Time (24-h clock)",  
     main = paste("1st PC for SBP (", 100*round(fpca.sys$evalues[1]/sum(fpca.sys$evalues),3), "%)", sep = "" ), 
     cex.axis = 1.5) 
axis(1, at=c(0,12,23,35,47), labels=c("12.00", "18.00", "00.00", "06.00", "12.00"),cex.axis = 1.5) 
title(ylab = "SBP (mmHg)", cex.lab = 1.5, line = 3) 
points(s, fpca.sys$mu - sqrt(fpca.sys$evalues[1]) * fpca.sys$efunctions[,1], pch = "+") 
points(s, fpca.sys$mu + sqrt(fpca.sys$evalues[1]) * fpca.sys$efunctions[,1], pch = "-") 
 
## plot FPCA effects for the second basis function 
plot(s, fpca.sys$mu, type = 'l', ylim = c(90, 160), ylab = "",  
     xaxt = "n",cex.lab=1.5,xlab="Time (24-h clock)", bty="l", pch = 19, lwd = 2, cex.axis = 1.5, 
     main = paste("2nd PC for SBP (", 100*round(fpca.sys$evalues[2]/sum(fpca.sys$evalues),3), "%)", sep = "" )) 
axis(1, at=c(0,12,23,35,47), labels=c("12.00", "18.00", "00.00", "06.00", "12.00"),cex.axis = 1.5) 
title(ylab = "SBP (mmHg)", cex.lab = 1.5, line = 3) 
points(s, fpca.sys$mu - sqrt(fpca.sys$evalues[2]) * fpca.sys$efunctions[,2], pch = "+") 
points(s, fpca.sys$mu + sqrt(fpca.sys$evalues[2]) * fpca.sys$efunctions[,2], pch = "-") 
 
 
## plot FPCA effects for the 3rd basis function 
plot(s, fpca.sys$mu, type = 'l', ylim = c(90, 160), ylab = "",  
     xaxt = "n",cex.lab=1.5,xlab="Time (24-h clock)", bty="l", pch = 19, lwd = 2, cex.axis = 1.5, 
     main = paste("3rd PC for SBP (", 100*round(fpca.sys$evalues[3]/sum(fpca.sys$evalues),3), "%)", sep = "" )) 
axis(1, at=c(0,12,23,35,47), labels=c("12.00", "18.00", "00.00", "06.00", "12.00"),cex.axis = 1.5) 
title(ylab = "SBP (mmHg)", cex.lab = 1.5, line = 3) 
points(s, fpca.sys$mu - sqrt(fpca.sys$evalues[3]) * fpca.sys$efunctions[,3], pch = "+") 
points(s, fpca.sys$mu + sqrt(fpca.sys$evalues[3]) * fpca.sys$efunctions[,3], pch = "-") 
 
 
## plot FPCA effects for the 4th basis function 
plot(s, fpca.sys$mu, type = 'l', ylim = c(90, 160), ylab = "",  
     xaxt = "n",cex.lab=1.5,xlab="Time (24-h clock)", bty="l", pch = 19, lwd = 2, cex.axis = 1.5, 
     main = paste("4th PC for SBP (", 100*round(fpca.sys$evalues[4]/sum(fpca.sys$evalues),3), "%)", sep = "" )) 
axis(1, at=c(0,12,23,35,47), labels=c("12.00", "18.00", "00.00", "06.00", "12.00"),cex.axis = 1.5) 
title(ylab = "SBP (mmHg)", cex.lab = 1.5, line = 3) 
points(s, fpca.sys$mu - sqrt(fpca.sys$evalues[4]) * fpca.sys$efunctions[,4], pch = "+") 
points(s, fpca.sys$mu + sqrt(fpca.sys$evalues[4]) * fpca.sys$efunctions[,4], pch = "-") 
 
 
## plot FPCA effects for the 5th basis function 
plot(s, fpca.sys$mu, type = 'l', ylim = c(90, 160), ylab = "",  
     xaxt = "n",cex.lab=1.5,xlab="Time (24-h clock)", bty="l", pch = 19, lwd = 2, cex.axis = 1.5, 
     main = paste("5th PC for SBP (", 100*round(fpca.sys$evalues[5]/sum(fpca.sys$evalues),3), "%)", sep = "" )) 
axis(1, at=c(0,12,23,35,47), labels=c("12.00", "18.00", "00.00", "06.00", "12.00"),cex.axis = 1.5) 
title(ylab = "SBP (mmHg)", cex.lab = 1.5, line = 3) 
points(s, fpca.sys$mu - sqrt(fpca.sys$evalues[5]) * fpca.sys$efunctions[,5], pch = "+") 
points(s, fpca.sys$mu + sqrt(fpca.sys$evalues[5]) * fpca.sys$efunctions[,5], pch = "-") 
 
 
## plot FPCA effects for the 6th basis function 
plot(s, fpca.sys$mu, type = 'l', ylim = c(90, 160), ylab = "",  
     xaxt = "n",cex.lab=1.5,xlab="Time (24-h clock)", bty="l", pch = 19, lwd = 2, cex.axis = 1.5, 
     main = paste("6th PC for SBP (", 100*round(fpca.sys$evalues[6]/sum(fpca.sys$evalues),3), "%)", sep = "" )) 
axis(1, at=c(0,12,23,35,47), labels=c("12.00", "18.00", "00.00", "06.00", "12.00"),cex.axis = 1.5) 
title(ylab = "SBP (mmHg)", cex.lab = 1.5, line = 3) 
points(s, fpca.sys$mu - sqrt(fpca.sys$evalues[6]) * fpca.sys$efunctions[,6], pch = "+") 
points(s, fpca.sys$mu + sqrt(fpca.sys$evalues[6]) * fpca.sys$efunctions[,6], pch = "-") 
 
 
#scree plot 
par(mar=c(5,5,1.5,1.5)+0.1)  #remove title space 
par(mfrow = c(1,1))  
dd<-data.frame(y=fpca.sys$evalues,x=1:8) 
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plot(dd$x, dd$y, type = 'l',   ylab = "", 
     cex.lab=1.5,xlab="Principle Component", bty="l", pch = 21,cex=2,lwd = 2, cex.axis = 1.5) 
title(ylab = "Eigenvalue", cex.lab = 1.5, line = 3) 
points(dd$x, dd$y, pch = 21,cex=2,bg="white",lwd = 2) 
 
 
## Curve reconstruction for different values of k 
plot(y[800,], pch=19, ylab = "mmHg", xlab="Timepoint", main= "Curve reconstruction for subject 800 with K 
expansions") 
lines(fpca.sys$mu+(fpca.sys$scores[800,1]*fpca.sys$efunctions[,1]+fpca.sys$scores[800,2]), col="blue") 
lines(fpca.sys$mu+(fpca.sys$scores[800,1]*fpca.sys$efunctions[,1]+fpca.sys$scores[800,2]*fpca.sys$efunctions
[,2] 
                   +fpca.sys$scores[800,3]*fpca.sys$efunctions[,3]+fpca.sys$scores[800,4]),col="green") 
lines(fpca.sys$mu+(fpca.sys$scores[800,1]*fpca.sys$efunctions[,1]+fpca.sys$scores[800,2]*fpca.sys$efunctions
[,2] 
+fpca.sys$scores[800,3]*fpca.sys$efunctions[,3]+fpca.sys$scores[800,4]*fpca.sys$efunctions[,4]+fpca.sys$scor
es[800,5]*fpca.sys$efunctions[,5]+fpca.sys$scores[800,6]*fpca.sys$efunctions[,6]+fpca.sys$scores[800,7]*fpca.
sys$efunctions[,7]+fpca.sys$scores[800,8]*fpca.sys$efunctions[,8]), col="red") 
legend("topright",legend=(c("k=2","K=4","k=8")),col=c("blue","green","red"),lty=1,bty="n",xpd=NA, seg.len = 2) 
 
plot_shiny(fpca.sys) 
 
 
####COMPARE FPCA to COSINOR#### 
uy<-data.frame(fpca.sys$scores)   #extract individuals scores 
uy$Study_ID<-unique(BPM$Study_ID) 
colnames(uy) = c("PC Score 1","PC Score 2","PC Score 3", "PC Score 4", "PC Score 5", 
                 "PC Score 6", "PC Score 7", "PC Score 8" ,"Study_ID")  
uy 
 
#bring in cosinor 2-component values 
a<-ranef(cos1qq) 
colnames(a) = c("MESOR","Amplitude 1","Phase 1", "Amplitude 2", "Phase 2")  
a<-cbind(Study_ID = rownames(a), a)  
a 
names(a) 
aw<-merge(a,uy,by= "Study_ID") 
names(aw) 
aw<-select(aw,-Study_ID) 
 
 
 
 
#correlation plot 
pairs(aw) 
panel.cor <- function(x, y, digits=1, prefix="", cex.cor, ...) 
{ 
  usr <- par("usr"); on.exit(par(usr)) 
  par(usr = c(0, 1, 0, 1)) 
  r <- abs(cor(x, y)) 
  txt <- format(c(r, 0.123456789), digits=digits)[1] 
  txt <- paste(prefix, txt, sep="") 
  if(missing(cex.cor)) cex.cor <- 0.8/strwidth(txt) 
  text(0.5, 0.5, txt, cex = 2) 
       #, cex = cex.cor * r)   #remove size proportional to correlation 
} 
pairs(aw, upper.panel=panel.cor, pch=20,cex.labels=2) 
 

 
 
 
 



257 
 

 

Appendix I Research output, dissemination and training 

Table 9-5 Peer reviewed publication from PhD  

Year Peer reviewed journal 

2016 
(Under 
Review) 

Madden JM, Li X, Tilling K, Kearney PM, Fitzgerald AP. Exploring Diurnal 
Variation Using Piecewise Linear Splines: An Example Using Blood 
Pressure. (Under review - Emerging Themes in Epidemiology) 

2015 Madden JM, O'Flynn AM, Fitzgerald AP, Kearney PM. Correlation 
between short-term blood pressure variability and left-ventricular 
mass index: a meta-analysis. Hypertens Res. 2015 39, 171–177; 
doi:10.1038/hr.126 

2015 Madden JM, O'Flynn AM, Dolan E, Fitzgerald AP, Kearney PM. Short-
term blood pressure variability over 24h and target organ damage in 
middle-aged men and women. J Hum Hypertens 2015 doi: 
10.1038/jhh.2015.18 

 

Table 9-6 Other research output during PhD 

Year Peer reviewed journal 

2015 O'Flynn AM, Madden JM, Russell AJ, Curtin RJ, Kearney PM. Isolated 
nocturnal hypertension and subclinical target organ damage: a 
systematic review of the literature. Hypertens Res. 2015 Apr 2. doi: 
10.1038/hr.2015.43.   

2015 O'Flynn AM, McHugh SM, Madden JM, Harrington JM, Perry IJ, Kearney 
PM. 'Applying the Ideal Cardiovascular Health Metrics to Couples: A 
Cross-Sectional Study in Primary Care'. Clinical Cardiology, 2015 

2013 Harrington, J., Fitzgerald, A. P., Kearney, P. M., McCarthy, V. J., 
Madden, J., Browne, G., Dolan, E. & Perry, I. J. DASH Diet Score and 
Distribution of Blood Pressure in Middle-Aged Men and Women. Am J 
Hypertens 2013 Aug 6. 

2013 Buckley, C. M., Madden, J., Balanda, K., Barron, S., Fahy, L., Harrington, 
J., Perry, I. J. & Kearney, P. M. Pre-diabetes in adults 45 years and over 
in Ireland: the Survey of Lifestyle, Attitudes and Nutrition in Ireland 
2007. Diabet Med. 2013 May 10. doi: 10.1111/dme.12226 

2013 Curtin, M., Madden, J., Staines, A. & Perry, I. J. Determinants of 
vulnerability in early childhood development in Ireland: a cross-
sectional study BMJ Open 2013;3:e002387 

2013 Balanda KP, Buckley CM, Barron SJ, Fahy LE, Madden JM, et al. (2013) 
Prevalence of Diabetes in the Republic of Ireland: Results from the 
National Health Survey (SLAN) 2007. PLoS ONE 8(10): e78406. 
doi:10.1371/journal.pone.0078406 
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2013 McKenna, G., Madden, J., Manton, S. & Cronin, M. Survey of Oral 
Health Behaviors of Patients Receiving Methadone Therapy at a Drug 
Rehabilitation Centre. Journal of Theory and Practice of Dental Public 
Health, 2013; Vol 1 No. 3. Pg 6-13 

2013 Hayes, M., Burke, F. M., McKenna, G., Madden, J. & Cronin, M. An 
analysis of the attitudes of dental patients attending general dental 
practice in Galway. Journal of The Irish Dental Association, 2013; 59 
(4): 179-182. 

 

 

Table 9-7 Conference Presentations during PhD 

Year Title Conference 

2016 Blood Pressure Variability over 24 
hours using Mixed-effects Models 

SPHeRE Network 2nd Annual 
Conference, RCSI, Dublin, Ireland, 
February 29th, 2016 

2015 Short-Term Blood Pressure 
Variability over 24-h Using Mixed-
effects Models 

International Biometric Society, Eastern 
North America Region, Miami, USA 
March 15-18, 2015 

2015 Short-term Blood Pressure 
Variability over 24 hours and 
Target Organ Damage in Middle-
Aged Men and Women 

Conference on Applied Statistics in 
Ireland, UCC, Cork, Ireland, May 11-
13th, 2015 

2015 Short-term Blood Pressure 
Variability over 24 hours and 
Target Organ Damage in Middle-
Aged Men and Women 

SPHeRE Network 1st Annual 
Conference, RCSI, Dublin, Ireland, 
January 9th, 2015 

2013 Intensity of Physical Activity and 
Obesity in an Irish Cohort Using 
GENEActiv Accelerometers.  

3rd International Conference on 
Ambulatory Monitoring of Physical 
Activity and Movement Amherst, 
Massachusetts, USA June 17-19, 2013 
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Table 9-8 Training & workshops attend during PhD 

Year Course 

2016 HRB-Trials Methodology Research Network: Statistical Considerations 
in Clinical Trial Design, UCC 

2015 European Society of Hypertension Summer School, Vienna 

2014 Newcastle R Course (1 week), Colin Gillespie 

2014 Advanced programming in R: Royal Statistics Society RSS Colin Gillespie  

2014 Multilevel Modeling using Stata, SPHeRE PhD programme, George 
Leckie 

2014 An Introduction to Cochrane Systematic Reviews, Cochrane 
Collaboration, UCC 

2013 Introduction to Propensity Score Methods with R, Predictive Modeling 
with R and the caret Package, User R Conference, Albacete, Spain 

2012 Analysis of Repeated Measures, Centre for Multilevel Modeling, Bristol 

2012 PG7016 Systematic reviews for the health sciences, UCC 

 

Table 9-9 Placements Completed 

Year Supervisor Award 

Summer 
2013 

Dr. John Newell Biostatistics Unit in the HRB Clinical Research Facility, 
NUI Galway 

Summer 
2015 

Prof Kate Tilling School of Social and Community Medicine, University 
of Bristol 

 

Table 9-10 Awards 

Year Award 

2014 Travel Bursary: College of Medicine and Health, UCC 
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