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Figure 7.46 Rossbehy beach elevation change (DOD) between 2013-01-30 and 2013-
02-28.  Accretion occurred across the majority of the surveyed area (varying 
shades of blue).  Area in gray lies below the level of detectable change (±0.41 m).  
Elevation change ranged from +0.18 m to +0.99 m.  Locations A and B correspond 
with those shown in figure 7.47.  The coordinate marked with the circle is at the 
same location as that shown in figures 7.48, 7.50, and 7.52 (the DODs for the 
subsequent survey periods) for reference.  Mean sea level (MSL) is equal to +2.3 
m ODM.   84 

Figure 7.47 Rossbehy foredune distance change between 2013-01-30 and 2013-02-28. 
Dune recession is shown in varying shades of red and advance in varying shades 
of blue.  Distance change below the level of detectable change (±0.41 m) is shown 
in gray.  Distance change across the surveyed area ranged from -2.80 m to +2.34 
m. For reference, locations A and B correspond with those shown in figure 7.46. 
Mean sea level (MSL) is equal to +2.3 m ODM.   85 

Figure 7.48 Rossbehy beach elevation change (DOD) between 2013-02-28 and 2013-
04-19.  Beach erosion occurred across the entire survey area (varying shades of 
red).  Beach elevation change ranged from -1.94 m to -0.62 m. Locations A and B 
correspond with those shown in figure 7.49.  The coordinate marked with the 
circle is at the same location as that shown in figures 7.46, 7.50, and 7.52 (the 
DODs for the previous and subsequent survey periods) for reference.  Mean sea 
level (MSL) is equal to +2.3 m ODM.   86 

Figure 7.49 Rossbehy foredune distance change between 2013-02-28 and 2013-04-19. 
Dune recession, which occurred across the entire length of the surveyed area, is 
shown in varying shades of red.  Distance change ranged from -1.39 m to -6.40 m.  
For reference, locations A and B correspond with those shown in figure 7.48. 
Mean sea level (MSL) is equal to +2.3 m ODM.  87 

Figure 7.50 Rossbehy beach elevation change (DOD) between 2013-04-19 and 2013-
06-05.  Elevation change across the majority of the site lies below the level of 
detectable change (±0.41 m) and ranges from -0.17 m to +0.51 m.  Locations A 
and B correspond with those shown in figure 7.51.  The coordinate marked with 
the circle is at the same location as that shown in figures 7.46, 7.48, and 7.52 (the 
DODs for the previous and subsequent survey periods) for reference.  Mean sea 
level (MSL) is equal to +2.3 m ODM.   88 

Figure 7.51 Rossbehy foredune distance change between 2013-04-19 and 2013-06-05. 
Distance change across the majority of the surveyed area lies below the level of 
detectable change (±0.41 m) and ranges from -2.16 m to +2.34 m. For reference, 
locations A and B correspond with those shown in figure 7.50. Mean sea level 
(MSL) is equal to +2.3 m ODM.  89 

Figure 7.52 Rossbehy beach elevation change (DOD) between 2013-06-05 and 2013-
12-11.  Elevation change across the majority of the site lies below the level of 
detectable change (±0.44 m) and ranges from -0.13 m and +0.88 m.  Locations A 
and B correspond with those shown in figure 7.53.  The coordinate marked with 
the circle is at the same location as that shown in figures 7.46, 7.48, and 7.50 (the 
DODs for the previous survey periods) for reference.  Mean sea level (MSL) is 
equal to +2.3 m ODM.   90 

Figure 7.53 Rossbehy foredune distance change between 2013-06-05 and 2013-12-11. 
Dune recession is shown in varying shades of red and advance in varying shades 
of blue.  Distance change below the level of detectable change (±0.44 m) is shown 
in gray.  Distance change across the surveyed area ranged from -3.62 m to +7.15 
m. For reference, locations A and B correspond with those shown in figure 7.52. 
Mean sea level (MSL) is equal to +2.3 m ODM.  91 

Figure 7.54 Rossbehy foredune distance change between 2013-12-11 and 2014-01-16. 
Dune recession, which occurred across the entire length of the surveyed area, is 
shown in varying shades of red.  Distance change ranged from -54.33 m to -33.06 
m.  For reference, locations A and B correspond (in a general way) with those 
shown in figure 7.40. Mean sea level (MSL) is equal to +2.3 m ODM.  92 

Figure 7.55 Rossbehy beach elevation change (DOD) between 2014-06-16 and 2014-
05-04.  Elevation change across the majority of the site lies below the level of 
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detectable change (±0.44 m) and ranges from -0.42 m to +1.42 m.  Locations A 
and B correspond with those shown in figure 7.56.  The coordinate marked with 
the square is at the same location as that shown in figure 7.57 (the DOD for the 
subsequent survey period) for reference.  Mean sea level (MSL) is equal to +2.3 m 
ODM.   93 

Figure 7.56 Rossbehy foredune distance change between 2014-01-16 and 2014-05-04. 
Dune recession, which occurred across the entire length of the surveyed area, is 
shown in varying shades of red.  Distance change ranged from -6.41 m to -0.29 m.  
For reference, locations A and B correspond with those shown in figure 7.55. 
Mean sea level (MSL) is equal to +2.3 m ODM.  94 

Figure 7.57 Rossbehy beach elevation change (DOD) between 2014-05-04 and 2014-
07-29.  Accretion (varying shades of blue) occurred across the majority of the site.  
Elevation change below the level of detectable change (±0.44 m) is shown in gray.  
Elevation change across the surveyed area ranged from -0.87 m to +1.40 m.  
Locations A and B correspond with those shown in figure 7.58.  The coordinate 
marked with the square is at the same location as that shown in figure 7.55 (the 
DOD for the previous survey period) for reference.  Mean sea level (MSL) is equal 
to +2.3 m ODM.   95 

Figure 7.58 Rossbehy foredune distance change between 2014-05-04 and 2014-07-29. 
Distance change across much of the surveyed area lies below the level of 
detectable change (±0.44 m) and ranges from -2.91 m to +2.47 m. For reference, 
locations A and B correspond with those shown in figure 7.57. Mean sea level 
(MSL) is equal to +2.3 m ODM.  96 

Table 7.4 Summary of elevation and volume changes for beach at Rossbehy field site. 97 
Table 7.5 Summary of distance and volumetric changes for foredune at Rossbehy field 

site.  98 
Figure 7.59 Shoreline positions at Rossbehy during TLS monitoring campaign. The 

shoreline is defined as position of the dune toe, or the line along which there is an 
abrupt change in slope, marking the boundary between the beach and dune. The 
March 2012 shoreline was digitized from an aerial photograph (for reference), 
while the others were digitized from TLS data. 99 

Figure 7.60 Areal photographs of Inch field site indicating location of TLS surveys.  
The area enclosed by the green polygon is the area over which all surveys overlap.  
Source of areal photography:  ESRI 100 

Figure 7.61 Inch beach elevation change (DOD) between 2012-05-24 and 2012-08-06.  
Beach erosion is shown in varying shades of red and accretion in varying shades of 
blue.  Elevation change below the level of detectable change (±0.05 m) is shown in 
gray.  Elevation change ranged from -3.00 m to +2.76 m. The coordinate marked 
with the star is at the same location as that shown in figures 7.62-7.68 (the DODs 
for the subsequent survey periods) for reference.  The area enclosed by the gray 
polygon is the area across which all surveys overlap.  Mean sea level (MSL) is 
equal to +2.3 m ODM.   101 

Figure 7.62 Inch beach elevation change (DOD) between 2012-08-06 and 2012-10-06.  
Beach erosion is shown in varying shades of red and accretion in varying shades of 
blue.  Elevation change below the level of detectable change (±0.05 m) is shown in 
gray.  Elevation change ranged from -5.42 m to +4.43 m. The coordinate marked 
with the star is at the same location as that shown in figures 7.61-7.68 (the DODs 
for the previous and subsequent survey periods) for reference.  The area enclosed 
by the gray polygon is the area across which all surveys overlap.  Mean sea level 
(MSL) is equal to +2.3 m ODM.   102 

Figure 7.63 Inch beach elevation change (DOD) between 2012-10-06 and 2013-01-09.  
Beach erosion is shown in varying shades of red and accretion in varying shades of 
blue.  Elevation change below the level of detectable change (±0.05 m) is shown in 
gray.  Elevation change ranged from -1.78 m to +2.41 m. The coordinate marked 
with the star is at the same location as that shown in figures 7.61-7.68 (the DODs 
for the previous and subsequent survey periods) for reference.  The area enclosed 
by the gray polygon is the area across which all surveys overlap.  Mean sea level 
(MSL) is equal to +2.3 m ODM.   103 

Figure 7.64 Inch beach elevation change (DOD) between 2013-01-09 and 2013-02-27.  
Beach erosion is shown in varying shades of red and accretion in varying shades of 
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blue.  Elevation change below the level of detectable change (±0.05 m) is shown in 
gray.  Elevation change ranged from -2.11 m to +1.96 m. The coordinate marked 
with the star is at the same location as that shown in figures 7.61-7.68 (the DODs 
for the previous and subsequent survey periods) for reference.  The area enclosed 
by the gray polygon is the area across which all surveys overlap.  Mean sea level 
(MSL) is equal to +2.3 m ODM.   104 

Figure 7.65 Inch beach elevation change (DOD) between 2013-02-27 and 2013-05-02.  
Beach erosion is shown in varying shades of red and accretion in varying shades of 
blue.  Elevation change below the level of detectable change (±0.05 m) is shown in 
gray.  Elevation change ranged from -2.00 m to +1.96 m. The coordinate marked 
with the star is at the same location as that shown in figures 7.61-7.68 (the DODs 
for the previous and subsequent survey periods) for reference.  The area enclosed 
by the gray polygon is the area across which all surveys overlap.  Mean sea level 
(MSL) is equal to +2.3 m ODM.   105 

Figure 7.66 Inch beach elevation change (DOD) between 2013-05-02 and 2013-06-20.  
Beach erosion is shown in varying shades of red and accretion in varying shades of 
blue.  Elevation change below the level of detectable change (±0.05 m) is shown in 
gray.  Elevation change ranged from -5.29 m to +3.09 m. The coordinate marked 
with the star is at the same location as that shown in figures 7.61-7.68 (the DODs 
for the previous and subsequent survey periods) for reference.  The area enclosed 
by the gray polygon is the area across which all surveys overlap.  Mean sea level 
(MSL) is equal to +2.3 m ODM.   106 

Figure 7.67 Inch beach elevation change (DOD) between 2013-06-20 and 2014-03-12.  
Beach erosion is shown in varying shades of red and accretion in varying shades of 
blue.  Elevation change below the level of detectable change (±0.05 m) is shown in 
gray.  Elevation change ranged from -3.56 m to +2.84 m. The coordinate marked 
with the star is at the same location as that shown in figures 7.61-7.68 (the DODs 
for the previous and subsequent survey periods) for reference.  The area enclosed 
by the gray polygon is the area across which all surveys overlap.  Mean sea level 
(MSL) is equal to +2.3 m ODM.   107 

Figure 7.68 Inch beach elevation change (DOD) between 2014-03-12 and 2014-08-28.  
Beach erosion is shown in varying shades of red and accretion in varying shades of 
blue.  Elevation change below the level of detectable change (±0.05 m) is shown in 
gray.  Elevation change ranged from -1.26 m to +2.34 m. The coordinate marked 
with the star is at the same location as that shown in figures 7.61-7.67 (the DODs 
for the previous survey periods) for reference.  The area enclosed by the gray 
polygon is the area across which all surveys overlap.  Mean sea level (MSL) is 
equal to +2.3 m ODM.   108 

Figure 7.69 Embryo dune field at Inch on 20 June 2013 (top) and 12 March 2014 
(bottom).  The embryo dune field likely shielded the foredune from extreme waves 
during the winter 2013/2014 storms.  Source: author’s own 109 

Table 7.6 Summary of elevation and volume changes at Inch field site. 110 
Figure 7.70 Rates of volume change for Rossbehy (top) and Inch (bottom) for TLS 

monitoring periods. Note the large difference in scale between rates of volume 
change for Rossbehy beach and scarp and between Rossbehy and Inch generally. 111 

8 Relationships between observed morphological 
change and storms 

Figure 8.1 Model domain and flexible mesh on which WAM was run.  Extracted from 
O’Shea et al. (2011) 112 

Figure 8.2 Five points in WAM model domain for which outputs (significant wave 
height, wave period, and wave direction) were extracted.   112 

Table 8.1 Summary of event information extracted from WAM data.  Events are 
described as times when the significant wave height, Hs, exceeded the critical 
wave height, hcrit (see text for explanation), for a minimum duration of 12 hours.   113 

Figure 8.3 Breakdown of storm events identified using WAM data by event duration.   116 
Figure 8.4 Modelled event frequency by month during morphologic monitoring period.  

 116 
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Figure 8.5 Excel spreadsheet and formulae used to identify storm events and extract 
storm characteristics from simulated WAM data.  Records (rows) extend below the 
window shown.  Formulae examples are for the first entry and were applied to 
each subsequent entry (eg. the cells below).   117 

Figure 8.6 Excel worksheets and formulae used to extract storm characteristics from 
Ventry weather station data.  Records (rows) extend below the windows shown.  
Formulae examples are for the first entry and were applied to each subsequent 
entry (eg. the cells below).   118 

Figure 8.7 Location of weather station set up near Inch field site. 119 
Figure 8.8 Wind roses and wind speeds for Inch and Ventry from 6 August 2012 to 5 

September 2012.  Wind speeds were derived from instantaneous wind speeds 
averaged at half hourly (or approximately half hourly) intervals.   Running means 
(with 48 hour periods) have been superimposed on the wind speed graph for visual 
clarity.   120 

Figure 8.9 Wind roses and wind speeds for Inch and Ventry from 15 October 2012 to 
26 October 2012.  Wind speeds were derived from instantaneous wind speeds 
averaged at half hourly (or approximately half hourly) intervals.   Running means 
(with 48 hour periods) have been superimposed on the wind speed graph for visual 
clarity.   121 

Figure 8.10 Wind roses and wind speeds for Inch and Ventry from 21 August 2013 to 3 
September 2013.  Wind speeds were derived from instantaneous wind speeds 
averaged at half hourly (or approximately half hourly) intervals.   Running means 
(with 48 hour periods) have been superimposed on the wind speed graph for visual 
clarity.   122 

Table 8.2 Summary of event information extracted from Ventry weather station data.  123 
Figure 8.11 Histogram showing frequency of storm events with a range of mean wind 

speeds.    126 
Figure 8.12 Histogram showing frequency of storm events with a range of maximum 

gust speeds. 126 
Figure 8.13 Frequency of events with prevailing wind directions from the north, 

northeast, east, southeast, south, southwest, west, and northwest.     126 
Figure 8.14 (a.) Rates of volume change at Rossbehy beach broken down by 

morphological monitoring period.  (b.) Event frequency for storm events occurring 
during corresponding morphological monitoring periods.  (c.) There was a very 
weak positive relationship between rate of beach volume change and event 
frequency (n=7, r=0.09).  This relationship was not statistically significant 
(p=0.85).  Negative rates of beach volume change are associated with net volume 
losses; positive rates of beach volume change are associated with net volume 
gains.     127 

Figure 8.15 (a.) Rates of foredune volume change at Rossbehy broken down by 
morphological monitoring period.  (b.) Event frequency for storm events occurring 
during corresponding morphological monitoring periods.  (c.) There was a very 
weak positive relationship between rate of foredune volume change and event 
frequency (n=9, r=0.12).  This relationship was not statistically significant 
(p=0.76).  Negative rates of dune volume change are associated with net volume 
losses; positive rates of dune volume change are associated with net volume gains.    
 128 

Figure 8.16 (a.) Rates of volume change at Inch broken down by morphological 
monitoring period.  (b.) Event frequency for storm events occurring during 
corresponding morphological monitoring periods.  (c.) There was a weak positive 
relationship between rate of volume change and event frequency (n=8, r=0.3).  
This relationship was not statistically significant (p=0.47).  Negative rates of 
volume change are associated with net volume losses; positive rates of volume 
change are associated with net volume gains.     129 

Figure 8.17 (a.) Rates of volume change at Rossbehy beach broken down by 
morphological monitoring period.  (b.) Mean duration of storm events that 
occurred during corresponding morphological monitoring periods.  (c.) There was 
a moderate negative relationship between rate of beach volume change and mean 
duration of events (n=7, r=-0.59).  This relationship was not statistically significant 
(p=0.17).  Negative rates of beach volume change are associated with net volume 
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losses; positive rates of beach volume change are associated with net volume 
gains.    130 

Figure 8.18 (a.) Rates of foredune volume change at Rossbehy broken down by 
morphological monitoring period.  (b.) Mean duration of storm events occurring 
during corresponding morphological monitoring periods.  (c.) There was a very 
strong negative relationship between rate of foredune volume change and mean 
duration of events (n=9, r=-0.96).  This relationship was statistically significant 
(p<0.001).  Negative rates of dune volume change are associated with net volume 
losses; positive rates of dune volume change are associated with net volume gains.   
This result indicates longer duration events are associated with higher rates of 
dune volume loss.   131 

Figure 8.19 (a.) Rates of volume change at Rossbehy beach broken down by 
morphological monitoring period.  (b.) Maximum duration of storm events that 
occurred during corresponding morphological monitoring periods.  (c.) There was 
a weak negative relationship between rate of beach volume change and max 
duration of events (n=7, r=-0.39).  This relationship was not statistically significant 
(p=0.40).  Negative rates of beach volume change are associated with net volume 
losses; positive rates of beach volume change are associated with net volume 
gains.     132 

Figure 8.20 (a.) Rates of foredune volume change at Rossbehy broken down by 
morphological monitoring period.  (b.) Maximum durations of storm events 
occurring during corresponding morphological monitoring periods.  (c.) There was 
a very strong negative relationship between rate of foredune volume change and 
maximum duration of events (n=9, r=-0.93).  This relationship was statistically 
significant (p<0.001).  Negative rates of dune volume change are associated with 
net volume losses; positive rates of dune volume change are associated with net 
volume gains.   This result indicates longer duration events are associated with 
higher rates of dune volume loss.   133 

Figure 8.21 (a.) Rates of volume change at Inch broken down by morphological 
monitoring period.  (b.) Mean duration of storm events which occurred during 
corresponding morphological monitoring periods.  (c.) There was a moderate 
positive relationship between rate of beach volume change and mean duration of 
events (n=8, r=0.51).  This relationship was not statistically significant (p=0.20).  
Negative rates of volume change are associated with net volume losses; positive 
rates of volume change are associated with net volume gains.     134 

Figure 8.22 (a.) Rates of volume change at Inch broken down by morphological 
monitoring period.  (b.) Maximum duration of storm events which occurred during 
corresponding morphological monitoring periods.  (c.) There was a weak positive 
relationship between rate of beach volume change and max duration of events 
(n=8, r=0.37).  This relationship was not statistically significant (p=0.37).  
Negative rates of volume change are associated with net volume losses; positive 
rates of volume change are associated with net volume gains.     135 

Figure 8.23 (a.) Rates of volume change at Rossbehy beach broken down by 
morphological monitoring period.  (b.) Max tidal level for events that occurred 
during corresponding morphological monitoring periods.  (c.) There was a 
moderate negative relationship between rate of beach volume change and max 
tidal levels associated with events (n=7, r=-0.45).  This relationship was not 
statistically significant (p=0.31).  Negative rates of beach volume change are 
associated with net volume losses; positive rates of beach volume change are 
associated with net volume gains.     136 

Figure 8.24 (a.) Rates of foredune volume change at Rossbehy broken down by 
morphological monitoring period.  (b.) Maximum tidal levels associated with 
events that occurred during corresponding morphological monitoring periods.  (c.) 
There was a moderate negative relationship between rate of foredune volume 
change and max tidal levels associated with events (n=9, r=-0.48).  This 
relationship was not statistically significant (p=0.19).  Negative rates of dune 
volume change are associated with net volume losses; positive rates of dune 
volume change are associated with net volume gains.  137 

Figure 8.25 (a.) Rates of volume change at Inch broken down by morphological 
monitoring period.  (b.) Max tidal levels associated with storm events that 
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occurred during corresponding morphological monitoring periods.  (c.) There was 
a weak positive relationship between rate of volume change and mean time 
between events (n=8, r=0.33).  This relationship was not statistically significant 
(p=0.42).  Negative rates of volume change are associated with net volume losses; 
positive rates of volume change are associated with net volume gains.     138 

Figure 8.26 (a.) Rates of volume change at Rossbehy beach broken down by 
morphological monitoring period.  (b.) Mean time betwen storm events that 
occurred during corresponding morphological monitoring periods.  (c.) There was 
a weak negative relationship between rate of beach volume change and mean time 
between events (n=7, r=-0.32).  This relationship was not statistically significant 
(p=0.48).  Negative rates of beach volume change are associated with net volume 
losses; positive rates of beach volume change are associated with net volume 
gains.     139 

Figure 8.27 (a.) Rates of foredune volume change at Rossbehy broken down by 
morphological monitoring period.  (b.) Mean time between storm events that 
occurred during corresponding morphological monitoring periods.  (c.) There was 
a moderate positive relationship between rate of foredune volume change and 
mean time between events (n=9, r=0.56).  This relationship was not statistically 
significant (p=0.11).  Negative rates of dune volume change are associated with 
net volume losses; positive rates of dune volume change are associated with net 
volume gains.  140 

Figure 8.28 (a.) Rates of volume change at Inch broken down by morphological 
monitoring period.  (b.) Mean time between storm events that occurred during 
corresponding morphological monitoring periods.  (c.) There was a moderate 
negative relationship between rate of volume change and mean time between 
events (n=8, r=-0.44).  This relationship was not statistically significant (p=0.27).  
Negative rates of volume change are associated with net volume losses; positive 
rates of volume change are associated with net volume gains.     141 

Figure 8.29 (a.) Rates of volume change at Rossbehy beach broken down by 
morphological monitoring period.  (b.) Mean significant wave height associated 
with storm events that occurred during corresponding morphological monitoring 
periods.  (c.) There was a strong negative relationship between rate of beach 
volume change and mean Hs associated with events (n=7, r=-0.67).  This 
relationship was not statistically significant (p=0.10).  Negative rates of beach 
volume change are associated with net volume losses; positive rates of beach 
volume change are associated with net volume gains.     142 

Figure 8.30 (a.) Rates of foredune volume change at Rossbehy broken down by 
morphological monitoring period.  (b.) Mean significant wave height associated 
with storm events that occurred during corresponding morphological monitoring 
periods.  (c.) There was a moderate negative relationship between rate of foredune 
volume change and mean Hs associated with events (n=9, r=-0.5).  This 
relationship was not statistically significant (p=0.17).  Negative rates of dune 
volume change are associated with net volume losses; positive rates of dune 
volume change are associated with net volume gains. 143 

Figure 8.31 (a.) Rates of volume change at Rossbehy beach broken down by 
morphological monitoring period.  (b.) Maximum significant wave height 
associated with storm events that occurred during corresponding morphological 
monitoring periods.  (c.) There was a moderate negative relationship between rate 
of beach volume change and max Hs associated with events (n=7, r=-0.56).  This 
relationship was not statistically significant (p=0.20).  Negative rates of beach 
volume change are associated with net volume losses; positive rates of beach 
volume change are associated with net volume gains.     144 

Figure 8.32 (a.) Rates of foredune volume change at Rossbehy broken down by 
morphological monitoring period.  (b.) Maximum significant wave height 
associated with storm events that occurred during corresponding morphological 
monitoring periods.  (c.) There was a moderate negative relationship between rate 
of foredune volume change and max Hs associated with events (n=9, r=-0.58).  
This relationship was not statistically significant (p=0.10).  Negative rates of dune 
volume change are associated with net volume losses; positive rates of dune 
volume change are associated with net volume gains. 145 
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Figure 8.33 (a.) Rates of volume change at Inch broken down by morphological 
monitoring period.  (b.) Mean significant wave height associated with storm events 
that occurred during corresponding morphological monitoring periods.  (c.) There 
was a strong positive relationship between rate of volume change and mean Hs 
associated with events (n=8, r=0.74).  This relationship was statistically significant 
(p<0.05).  Negative rates of volume change are associated with net volume losses; 
positive rates of volume change are associated with net volume gains.   This result 
indicates higher significant wave heights during storms are associated with higher 
rates of volume gain at the site.   146 

Figure 8.34 (a.) Rates of volume change at Inch broken down by morphological 
monitoring period.  (b.) Maximum significant wave height associated with storm 
events that occurred during corresponding morphological monitoring periods.  (c.) 
There was a strong positive relationship between rate of volume change and max 
Hs associated with events (n=8, r=0.62).  This relationship was not statistically 
significant (p=0.10).  Negative rates of volume change are associated with net 
volume losses; positive rates of volume change are associated with net volume 
gains.  147 

Figure 8.35 (a.) Rates of volume change at Rossbehy beach broken down by 
morphological monitoring period.  (b.) Mean peak wave period associated with 
storm events that occurred during corresponding morphological monitoring 
periods.  (c.) There was a weak negative relationship between rate of beach 
volume change and mean peak period associated with events (n=7, r=-0.34).  This 
relationship was not statistically significant (p=0.46).  Negative rates of beach 
volume change are associated with net volume losses; positive rates of beach 
volume change are associated with net volume gains.     148 

Figure 8.36 (a.) Rates of foredune volume change at Rossbehy broken down by 
morphological monitoring period.  (b.) Mean peak wave period associated with 
storm events that occurred during corresponding morphological monitoring 
periods.  (c.) There was a very weak relationship (neither positive or negative) 
between rate of foredune volume change and mean peak period associated with 
events (n=9, r=0).  This relationship was not statistically significant (p=0.998).  
Negative rates of dune volume change are associated with net volume losses; 
positive rates of dune volume change are associated with net volume gains. 149 

Figure 8.37 (a.) Rates of volume change at Inch broken down by morphological 
monitoring period.  (b.) Mean peak wave period associated with storm events that 
occurred during corresponding morphological monitoring periods.  (c.) There was 
a moderate positive relationship between rate of volume change and mean peak 
period associated with events (n=8, r=0.57).  This relationship was not statistically 
significant (p=0.14).  Negative rates of volume change are associated with net 
volume losses; positive rates of volume change are associated with net volume 
gains.  150 

Figure 8.38 (a.) Rates of volume change at Rossbehy beach broken down by 
morphological monitoring period.  (b.) Mean wind speed associated with storm 
events that occurred during corresponding morphological monitoring periods.  (c.) 
There was a very weak positive relationship between rate of beach volume change 
and mean wind speed associated with events (n=7, r=0.09).  This relationship was 
not statistically significant (p=0.84).  Negative rates of beach volume change are 
associated with net volume losses; positive rates of beach volume change are 
associated with net volume gains.     151 

Figure 8.39 (a.) Rates of foredune volume change at Rossbehy broken down by 
morphological monitoring period.  (b.) Mean wind speeds associated with storm 
events that occurred during corresponding morphological monitoring periods.  (c.) 
There was a very weak positive relationship between rate of foredune volume 
change and mean wind speed associated with events (n=9, r=0.17).  This 
relationship was not statistically significant (p=0.66).  Negative rates of dune 
volume change are associated with net volume losses; positive rates of dune 
volume change are associated with net volume gains. 152 

Figure 8.40 (a.) Rates of volume change at Rossbehy beach broken down by 
morphological monitoring period.  (b.) Max gust speed associated with storm 
events that occurred during corresponding morphological monitoring periods.  (c.) 
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There was a weak negative relationship between rate of beach volume change and 
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11  Discussion 
Figure 11.1 S-SLR conceptual model of evolution of Rossbehy in response to storms 

under a rising sea-level 230 
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Figure 1.1 Study area showing location of Inch and Rossbehy beach-dune barriers within Dingle Bay, Co. 
Kerry.  Data source: OSI 
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Figure 2.1 Sedimentary environments present at study site. Data sources:  OSI; Guilcher et al. (1960) 

	

Figure 2.2 Idealised model of barrier spit development.  LST = longshore sediment transport.  A reduction in 
wave energy at the updrift corner of a headland due to wave refraction results in the deposition of sediment, 
which initiates spit growth.  Source: Davis and FitzGerald (2004). 
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Figure 2.3 Foredune and storm built beach ridge at Inch.  Hesp et al. (2005) defined foredunes as accumulations 
of sand formed by aeolian processes and beach ridges as wave built accumulations of sediment.   Image source:  
author’s own. 

Figure 2.4 Historical recurves (circled) at Rossbehy (left) and Inch (right) may represent eirlier limits of dune 
progression due to a historical breaching event.  Minor drift aligned recurves are present at both sites adjacent 
to the main inlet.  Source: Google Earth (Rossbehy) and OSI (Inch).  
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Figure 2.5 Plan form orientation of drift-aligned vs. swash-aligned barriers.  Drift alignment occurs when the 
down-drift sediment supply is sufficient to fulfil the longshore power for transport, while swash-alignment 
occurs where the downdrift supply is limited or non-existent. Figure modified from Sala (2009) and Stéphan 
(2009). 
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Figure 2.6 Phases of spit restructuring after a decrease in longshore sediment supply.  Refraction induced 
changes in the longshore power gradients result in the development of sediment cells.  As additional cells 
develop, breaching may occur at weaker points (along the up-drift cell boundary).  If the breach enlarges, it 
becomes the focus for a transverse transport corridor.  Source: Orford et al. (1996). 

Figure 2.7 Cross section of a breach channel area against water levels showing types of breach, according to 
Hartley and Pontee (2008). Modified from Sala (2009).   
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Figure 2.8 Cross-sectional inlet stability relationship of Escoffier (1940).  Modified from Escoffier (1940) and 
van de Kreeke (1992). 

Figure 2.9 Incipient or embryo dunes at Inch, Co. Kerry.  Dune hummocks, like those shown here, are also 
termed nebkha or coppice dunes.  Source:  author’s own. 
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Figure 2.10 Established foredune at Inch, Co. Kerry.  The wooden posts on the ridge are approximately 1 m 
high.  High water mark (not shown) is approximately 15-20 m behind the point from which the photograph was 
taken.    Source:  author’s own. 

Figure 2.11 Saucer blowout (width = approximately 15-20 m) at Rossbehy, Co. Kerry.  Source:  author’s own. 
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Figure 2.12 Relict dune ridges at Inch, Co. Kerry. Source:  author’s own. 

Figure 2.13 Parabolic (U-shaped) dunes at Inch, Co. Kerry.  Source: OSI  (2005) 
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Figure 2.14 Conceptual model of the relationship between dune morphology and sediment budget.  See text for 
explanation.  Source: Psuty (2004) 

Figure 2.15 Pre- and post- storm beach profiles.  Source: Van Thiel de Vries (2009) 
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Figure 2.16 Dune erosion mechanisms described by Nishi and Kraus (2001).  Source: Nishi and Kraus 
(2001) 

Figure 2.17 Example of layer separation and collapsing at Rossbehy, Co. Kerry. Source:  author’s own. 
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Figure 2.18 Phases leading up to post-storm dune recovery. Source: Carter et al. (1990). 

Figure 2.19 Evidence of slope failure of a dune scarp (height = approximately 5 m) at Rossbeigh, Co. Kerry.  
Slump blocks held together by vegetation litter the foredune. Source:  author’s own. 
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Figure 2.20 Morphological components of a typical tidal inlet.  Source: Schrader et al. (2000) 

Figure 2.21 Ebb-tidal delta fronting Inch and Rossbehy barriers.  Source of aerial imagery: Google Earth. 



	

	 13	

 

Figure 2.22 Multiple inlet system at the Nauset barrier system, Cape Cod MA.  Dominant longshore transport is 
southerly.  Source: Giese et al. (2009). 
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Figure 2.24 Categorisation of a typical beach-dune profile.  Modified from Schwartz (2006) and 
Beaugrand (2010). 

Figure 2.23 Multiple inlet system at Ria Formosa, Portugal.  Source: Salles (2001). 
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Figure 2.25 Nearshore wave processes.  Source: Svendsen (2006) 
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Figure 2.26 Hjulstrom curve showing critical velocities for erosion, transport, and deposition as a function 
of sediment grain size.  Source:  http://en.wikipedia.org/wiki/Hjulstr%C3%B6m_curve - Original:  
Hjulstrom (1939) later modified by Sundborg (1956) 

Figure 2.27 Forces responsible for sediment entrainment. Modified from MIT OpenCourseWare (available 
from: http://ocw.mit.edu/courses/earth-atmospheric-and-planetary-sciences/12-090-introduction-to-fluid-
motions-sediment-transport-and-current-generated-sedimentary-structures-fall-2006/course-textbook/ch9.pdf) 
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Figure 2.28 Shield’s diagram modified by Miller et al. (1977) showing the boundary Reynold’s number as a 
function of the critical Shield’s stress for experimental data.  Entrainment occurs for conditions above the curve.  
Source:  MIT OpenCourseWare 
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Figure 2.29 Sedimentary cells and sediment budgets near Point Arguello, California, USA. Source: Bowen and 
Inman (1966) 
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Guilcher et al., 1960 Provided initial descriptive geomorphology of Inch & Rossbehy 

Shaw et al., 1986 Provided summary of RSL changes based on pollen analysis 

Taylor et al., 1986 & Carter et al., 
1989a 

Investigated the impact of RSL change & sediment supply on gravel barriers 

Shaw et al., 1994 Performed marine geological surveys of Dingle Bay 

Devoy, 1995 & Cooper et al., 1995 Related meso-scale morphological change during the mid- to late- Holocene to sea-level, sediment supply, & extreme storms 
MacClenahan, 1997 Investigated variations in meso-scale morphological change at Inch in relation to climate, sea-level & human impact 

Sherman et al., 1998 & 2012 Used Inch as a laboratory to study Aeolian transport models 

Wintle et al., 1998 Used IRSL dating to date dune sediments at Inch (oldest = 600 yrs) 

Orford et al., 1999 & Orford, 
Cooper & McKenna, 1999 

Related dune morphodynamics at Inch with extreme storms & associated surge 

Jackson & Cooper, 1999 Documented & described the formation of ephemeral bedform turrets at Inch 

Cooper et al., 2004 Assessed the impacts of storms as drivers to change at Inch/Rossbehy & other sites on the Irish coast 

Vial, 2008 Investigated morphological response of Inch to storms & waves 

Sala, 2010 Used numerical modelling to investigate breach risk & formation 

Gault et al., 2011 Evaluated effectiveness of CONSCIENCE Frame of Reference as an erosion management tool at Inch 

O'Shea et al., 2011 Used numerical modelling to investigate impacts of breaching on estuary 

Delaney et al., 2012 Provided an account of mid- to late- Holocene RSL based on stratigraphical record in Castlemaine Harbour 

Devoy, 2013 Evaluated the potential physical and geomorphological impacts of proposed golf course development at Inch 

O'Shea et al., 2013 Related variations in incident wave directionality along Rossbehy over the tidal cycle with changes to the size, shape, and orientation of ebb-tidal bar 

Devoy, 2015 Provided an account of the micro- to meso-scale development of Inch/Rossbehy and the controls on their development, and speculated on the future of 
the barriers in response to sea-level change 

O’Shea, 2015 Used numerical modelling techniques to speculate on the future morphodynamic behaviour of the barrier 

Williams et al., 2015 Assessed threshold conditions for dune recession, overwashing and breaching at Rossbehy using Xbeach 

Table 3.1 Previous research undertaken at Inch-Rossbehy	
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Figure 3.2 Seabed 
substrate within Dingle 
Bay.  Map layer 
generated from 
Geological Survey of 
Ireland (GSI) multibeam 
echosounder data and 
seabed sampling data 
acquired during the 
INFOMAR and INSS 
national seabed 
mapping programmes. 

Figure 3.3 Dingle Bay 
bathymetry.  Map layer 
generated from 
Geological Survey of 
Ireland (GSI) multibeam 
echosounder data 
acquired during the 
INFOMAR and INSS 
national seabed 
mapping programmes.  
Depth is shown in 
metres below LAT 
(according to data 
obtained from the GSI, 
LAT is 2.85±0.13metres 
below ODM at 
Rossbehy).    

Figure 3.4 Castlemaine 
Harbour depth contours.  
Map layer generated from 
interpolation of depth 
soundings published on 
Navionics free webapp 
(http://webapp.navionics.co
m/?lang=en).  The data is 
crowd sourced from 
recreational boaters using 
mobile technology to ensure 
it remains up to date.  Units 
are in metres below LAT.   
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Table 3.2 Paleoenvironmental 
chronology of Inch-Rossbehy and 
surrounding environs. 
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Figure 3.5 Exposed peat on the beach face (left, 16 January 2014) and beneath the dune sands 
(right; 14 April 2015) provides evidence of barrier rollover at Rossbehy.  The truncated upper 
contact of similar woody, monocot peat from a core in the back barrier saltmarsh has been dated 
by Delaney et al. (2012) to 2781-2000 BP.  Source: author’s own 

Figure 3.6 Extract of study area from the Down Survey Maps published in 1673.  Both Inch and 
Rossbehy are depicted.  Source: http://downsurvey.tcd.ie/down-survey-maps.php  



	 24		 	Table 3.3 Recent (500 years BP to present) chronology of Inch-Rossbehy.  Continued on next page. 
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Figure 3.7 Historical shoreline variations at Inch.  Source:  Cooper et al. (1995) 

Figure 3.8 Historical shoreline variation at Rossbehy.  Source: Cooper et al. (1995) 
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Figure 3.9 Results of shoreline change 
analysis undertaken by O’Shea et al. (2011) 
superimposed on an aerial photograph from 
2010.  Yellow = 1842; Red = 1894; Black = 
2000.  Source:  O’Shea et al. (2011) 

Figure 3.10 Aerial photographs (1995, 2005, and 2010) and Landsat 8 imagery (2015) of Inch, 
illustrating the relative stability of its shoreline.  Source of imagery:  1995 and 2005 = OSI; 
2010 = Google Earth; 2015 = USGS LandsatLook viewer   
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Figure 3.11 Aerial photographs (1997, 1995, 2005, 2010, and 2012) and Landsat 8 imagery 
(2015) of Rossbehy, illustrating recent changes along its distal shoreline.  Source of imagery:  
1977, 1995, and 2005 = OSI; 2010 = Google Earth; 2012 = ESRI World Imagery / Microsoft; 
2015 = USGS LandsatLook viewer 

Figure 3.12 Aerial photographs of Rossbehy prior to (September 2008) and after (July 2009) 
breaching in December 2008.  Source:  John Herriott aerial photography 
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Figure 3.14 Sunbeam shipwreck 
before 2013/2014 storms (in its 
original position since 1903; top), 
after first displacement in 
December 2013 (middle; lying 
parallel to foredune ridge) and after 
final displacement in February 
2014 (bottom; lying oblique to 
foredune ridge).   For scale, the 
boat’s maximum width is 
approximately 5 m and maximum 
length is approximately 22 m.  
Source: author’s own 
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Figure 3.17 Annotated DEM illustrating dunescape at Inch, which is characterised by parabolics and 
transverse ridges.  Data derived from aerial LiDAR data provided by the Kerry County Council and 
flown in April 2011.  Box indicates area covered by beach-dune topographic surveys.  Adapted from 
Devoy (2013). 
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Figure 3.18 Annotated 
DEM illustrating dunescape 
at Rossbehy, which, like 
Inch, is characterised by 
parabolics and transverse 
ridges.  Data derived from 
aerial LiDAR data provided 
by the Kerry County Council 
and flown in April 2011.  
Box indicates area covered 
by beach-dune topographic 
surveys.   
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Figure 3.19 Geotagged panorama showing scarping on the southwestern side of Inch.  Map, 
inset, shows location of photo.  Photo source: author’s own; Map source:  Google Maps   

Figure 3.20 High foredune ridge in active, southern zone of Inch.  Wooden posts on dune ridge are 
approx. 1 metre in height.  Source: author’s own (6 October 2012).   
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Figure 3.21 Ephemeral embryonic dunes at southern tip of Inch (looking south towards Dooks 
golf course).  20 June 2013 Source: author’s own 

Figure 3.22 Transverse ridges in southern and middle interior of Rossbehy.  Looking north 
towards Inch.  Source:  John Coveney 
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Figure 3.23 Dune slack in middle interior of Rossbehy.  Looking south.  Source: author’s own 

Figure 3.24 Valentia windrose 1940-2010.  Source: Met Éireann 
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Highest Astronomical Tide +4.36 m 

Mean High Water Spring +3.76 m 

Mean High Water Neap +3.15 m 

Mean Sea Level (0 m at Malin Head) +2.3 m (Ordnance Datum Malin) 

Mean Low Water Neap +1.17 m 

Mean Low Water Spring +0.58 m 

Lowest Astronomical Tide 0 m 

Table 3.4 Tidal ranges at Inch Beach based on predictions for a total tidal cycle 
(20 years). Source: Vial (2008) and Sala (2010)  
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Figure 3.25 Conceptual 
model of inferred 
morphological changes in 
Inch beach and dunes 
proposed by Orford et al. 
(1999a).  Source:  Orford 
et al. (1999a) 

Figure 3.26 
Distribution of 
wave energy 
dissipation at Inch 
and Rossbehy 
under (A) modal 
swell (H=0.04 m, T 
= 7 s) and (B) large 
swell waves (H=6.6 
m, T = 13.6 s).  
Extracted from 
Cooper et al. 
(2004) 

Figure 3.27 Wave 
orbital velocities at 
Inch and Rossbehy 
under (A) modal 
swell conditions and 
(B) Hurricane Debbie 
wind-generated 
waves, indicating 
relative ability of 
waves to transport 
sediment under storm 
conditions.  Extracted 
from Cooper et al. 
(2004) 
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Figure 3.28 Significant wave heights associated with a 100-year return storm coming from 
an angle of 240° for (a) mean high water, (b) mean sea level, and (c) mean low water.  
Extracted from Vial (2008) 



	

	 41	

	

Figure 3.29 Historical recurves (blue) at Rossbehy represent either earlier northern limits of dune 
progression or southern limits to a historical breaching event.  Figure adapted from O’Shea (2015). 

	

Figure 3.30 Sedimentary cells at Rossbehy as defined within the short-term conceptual model of Sala 
(2010).  Looking south.  Source: Sala (2010).  
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Figure 3.31 Five-step conceptual model of O’Shea (2015) for breach evolution at Rossbehy.  
Graphics for stage 1 extracted from O’Shea et al. (2013) 
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Figure 4.1 Phanerozoic global sea-level curves derived from the stratigraphic record. Source: 
http://en.wikipedia.org/wiki/Sea-level_curve - after Vail et al. (1977) and Hallam (1981). 
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Figure 4.2 Global sea-level change from coastal tide gauge records - 1870 to 2000.  Source:  
CSIRO (2014) 

Figure 4.3 Multi-mission ocean altimeter data showing global mean sea-levels from 1993 to 2014.  
Data is with respect to the 1993-2002 mean and plotted every 10 days.  Source:  NASA Goddard 
Space Flight Center (2014) 
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Figure 4.4 Modelled and observed GMSL rise from IPCC AR5.  Modelled data was computed 
from the Coupled Model Intercomparison Project (CMIP5) and shows good agreement with 
observations.  Source: Church et al. (2013). 

Figure 4.5 Derived projected 
RSL increases under the 
IPCC AR4 medium emissions 
scenario for the year 2095.  
Projections take into account 
both absolute SLR and 
vertical land movement due 
to glacial isostatic adjustment.  
Source: Lowe et al. (2009) 
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Figure 4.6 Oblique aerial photos of Portballintrae Beach in 1938 (top) and 1999 
(bottom) illustrating beach narrowing as a result of the installation of a pier in 
its western section.  Source: Jackson (2012) 
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Figure 6.2 Ground-based LiDAR systems use the same basic technology as airborne systems, but 
are deployed on the ground.  While they are limited in terms of coverage area compared to airborne 
systems, they are capable of capturing higher resolution data and are easier to deploy at short notice 
(e.g. in the aftermath of a storm).   

Figure 6.1 Airborne LiDAR systems work by sending out multiple laser pulses and recording the 
time it takes for the signal to be reflected off the ground and returned to the sensor.  These systems 
consist of three main parts: the sensor, the inertial measurement unit, and a GPS.  Source: Heritage 
and Large (2009) 
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Figure 6.3 Point cloud showing beach and foredunes (centre) at the terminal margin of the 
Rossbehy barrier (looking south).  The dune scarp (centre right) is the on seaward side of barrier, 
with the vegetated lee side shown centre left.  The track marks are from the wheels of the trolley 
used to transport equipment to the field site, which are approx. 7 cm in width.  This figure 
illustrates the fine detail that can be captured using this survey technique.   

Figure 6.4 Shadow zones - zones of missing data located behind obstructions to the laser scanners 
field of view, resulting in 'gaps' in the point cloud.  These can be minimised by obtaining multiple 
surveys over the same area from different angles.  Source: author’s own data obtained at Rossbehy 
field site 
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Figure 6.5 Survey target, as seen in a point cloud, used for referencing multiple scans to one 
common coordinate system. Source: author’s own data obtained at Rossbehy field site   

Figure 6.6 DEMs generated from TLS data collected at monthly intervals at Rehoboth Beach, 
North Carolina, USA from January 2006-April 2007.  Areas of maximum erosion are shown 
in black and grade to areas of maximum accretion, shown in white.  The data was collected at 
0.20 m resolution over an area of approximately 500 m x 70 m and reduced to 1 m x 1 m grid 
cells.  Source: Pietro et al. (2008) 
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Figure 6.7 Digital elevation model of embryo dunes in North Lincolnshire, UK. Elevation in 
metres.  Source: Montreuil et al. (2013) 

Figure 6.8 Rendered triangular irregular network (TIN) showing a hard rock cliff face in North 
Yorkshire, UK (left) and close up (right) showing triangular faces.  TLS data form the nodes of 
the TIN. Source: Rosser et al. (2005) 



	 51	

		

	

	
	
	
	 	

Figure 6.9 Graphic illustrating how natural neighbour interpolation works. See text for 
explanation.  Image source:  ESRI ArcGIS 9.2 Desktop Help 
(http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Natural%20Neighbor%20Inter
polation) 

Figure 6.10 Graphic illustrating how inverse distance weighting interpolation works. See text 
for explanation.  Image source:  ESRI ArcGIS 9.2 Desktop Help 
(http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Implementing_Inverse_Dist
ance_Weighted_(IDW) ) 
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Figure 6.11 DEMs of difference showing seasonal changes to embryo dunes for three periods 
between October 2009 and October 2010.  Source: Montreuil et al. (2013) 

Figure 6.12 Example of compartments (top) generated in TOPCAT for a case study at Dog Beach, 
Del Mar California (Oct 2005–March 2007).  Compartments are overlain on elevation change 
map.  Graphs show cliff face retreat rate (centre) and volumetric change (bottom) for each 
compartment along the length of the cliff.  F1, F2, and F3 are major cliff failure events.  Source: 
Olsen et al. (2012) 
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Figure 6.13 Results of classification using a multi-scale dimensionality criterion for a steep 
river bank (left, classes labelled) and a tidal marsh (right, green = vegetation, white = soil).  
Source: Brodu (2012) 
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Figure 7.1 General locations of field sites at Rossbehy and Inch.  Source: Modified from OSI 
vector coastline data and 2010 OSI aerial photography.   

Figure 7.2 High foredune at Inch field site (looking North). Source: author’s own (6 October 
2012) 

INCH	

ROSSBEHY	
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Figure 7.3 Ephemeral embryo dune field and beach fronting foredune at Inch field site. Looking 
southeast. Rossbehy can be seen in the distance.  Source: author’s own (20 June 2013) 

Figure 7.4 Oblique aerial view of Inch field site, looking north-northwest. Source: 
coastalhelicopterview.ie 
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Figure 7.5 General location of Rossbehy field site. Looking south. Source: Google Earth (2012) 

Figure 7.6 Main section of Rossbehy field site, consisting of upper beach and foredune scarp. 
Barrier terminus is at left. Looking east. Source: author’s own (8 October 2012) 

Figure 7.7 Terminus of mainland section of barrier (centre). Looking south. Foredune scarp is 
hidden by shadow (right of centre). Some scans covered part of vegetated dunes (left of centre) 
and back barrier beach.  Source: author’s own (15 April 2012) 
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Figure 7.8 Leica 
ScanStation components. 
NB: Figure was extracted 
from Leica ScanStation2 
model manual 
(Leica Geosystems, 
2007), but ScanStation 
setup is more or less the 
same. 

Figure 7.9 Leica ScanStation setup at Rossbehy field site. Looking north at main dune barrier 
terminus.  Source: author’s own (15 November 2012) 
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Figure 7.10 Field equipment being transported via tractor and trolley at Inch. Photo: Valerie 
Heffernan 

Figure 7.11 Leica HDS registration target – for registration of multiple same-date scans. 
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Figure 7.12 Leica HDS target as seen in section of photo mosaic (inset) and in the point cloud 
(main).  From the mosaic, targets can be identified (‘fenced’) and the scanner can then be 
directed to scan only the fenced areas in high resolution for scan registration.    
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Date Site Resolution 
Total number 

of points in 
cloud 

2012-06-28* Rossbehy 2 cm 67420725 
2012-08-05* Rossbehy 2.5 cm 97274308 
2012-10-07* Rossbehy 2.5 cm 43358639 
2012-11-15 Rossbehy 2.5 cm 4267504 
2013-01-30 Rossbehy 2.5 cm 4699073 
2013-02-28 Rossbehy 2.5 cm 7609265 
2013-04-19 Rossbehy 2 cm 7459604 
2013-06-05 Rossbehy 2.5 cm 6794554 
2013-08-06 Rossbehy 2.5 cm 5023912 
2013-12-11 Rossbehy 10 cm 4104385 
2014-01-16 Rossbehy 15 cm 1573813 
2014-05-04 Rossbehy 2.5 cm 22997536 
2014-07-29 Rossbehy 2.5 cm 16386541 
Table 7.1 Summary of data obtained during field surveys completed at Rossbehy field site.  
*Data obtained using Leica C10 instrument. 
 
 
 

Table 7.2 Summary of data obtained during field surveys completed at Inch field site.  
*Data obtained using Leica C10 instrument. 

	 	

Date Site Resolution 
Total number 

of points in 
cloud 

2012-05-24 Inch 1 cm 8367215 
2012-08-06 Inch 2.5 cm 30972308 
2012-10-06 Inch 2.5 cm 47232935 
2013-01-09 Inch 2.5 cm 10058134 
2013-02-27 Inch 2.5 cm 4843043 
2013-05-02 Inch 2.5 cm 7804177 
2013-06-20 Inch 2.5 cm 24366526 
2014-03-12 Inch 2.5 cm 23432492 
2014-08-28 Inch 2.5 cm 2358641 
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Figure 7.13 Example from Inch field site illustrating same-date scan registration for two point 
clouds obtained from two stations (S1 and S2).  Following registration of the S2 cloud to the S1 
cloud using the Leica HDS targets, the clouds are in the coordinate system of the S1 cloud.    
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Figure 7.14 Distribution of registration errors between same-date scans at Inch. Inset: 
Population (N), mean, min, and max errors and standard deviation. 

Figure 7.15 Distribution of registration errors between same-date scans at Rossbehy. 
Inset: Population (N), mean, min, and max errors and standard deviation. 
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Figure 7.16 Example of semi-permanent wooden posts set up in the field for registering multi-
temporal scans. The tips of the nails act as control points from which the successive scans are 
registered to one common coordinate system. 

Figure 7.17 RMS Errors of registration associated with multi-temporal constraints (Post 1, Post 
2, and Post 3) for May 2012 and August 2012 at Inch. Left: Post 3 in the May 2012 cloud; Right: 
Post 3 in the August 2012 cloud. 
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Figure 7.18 Distribution of registration errors between scans registered using semi-permanent 
targets at Rossbehy. Inset: Population (N), mean, min, and max errors and standard deviation. 
 

Figure 7.19 Distribution of registration errors between scans registered using semi-permanent 
targets at Inch. Inset: Population (N), mean, min, and max errors. 
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Figure 7.21 Before (top) and after (bottom) vegetation filtering using lowest points analysis on a 
subset of the May 2012 point cloud from Inch. Subset shown left, with cross section through 
centre shown right. 

Figure 7.20 Distribution of registration errors between scans registered using dGPS 
coordinates at Rossbehy. Inset: Population (N), mean, min, and max errors. 
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Figure 7.22 Subset of May 2012 point cloud from Inch on which initial vegetation classification 
tests were performed. Colours represent laser scanned intensity values, which correspond to the 
distribution shown in figure 7.23. 

Figure 7.23 
Laser scanned 
intensity 
distribution of 
cloud shown in 
figure 7.22.  
Intensity values 
(x axis) are based 
on the 
capabilities of the 
scanner and are 
scaled to a range 
of -2048 to 
+2048. Y axis 
represents 
frequency. 
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Figure 7.24 Result of filtering points with laser scanned intensity values outside -233 to -156 
(light blue peak shown in fig. 7.23) from test patch. Close up of ground surface with multiple non-
ground points shown top right. 

Figure 7.25 Histogram showing the distribution of manually sampled ground and vegetation 
point intensities. 
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Figure 7.26 Mean intensity variation (and standard error bars) with distance from the scanner for 
200 manually selected ground points plotted at 5 m intervals up to a distance of 50 m from the 
position of the scanner. 

Figure 7.27 Mean intensity variation (and standard error bars) with distance from the scanner for 
200 manually selected vegetation points plotted at 5 m intervals up to a distance of 50 m from the 
position of the scanner. 
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Figure 7.28 
Workflow 
for classifier 
construction 
using 
CANPO. See 
text for 
explanation. 
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Figure 7.29 Foredune scarp and upper beach at Rossbehy in November 2012 and January 2013.   
The distance between the two points shown is 44 m. 
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Figure 7.30 Graphic illustrating 
the process of coordinate system 
rotation for foredune point clouds 
at Rossbehy.  In this example, 
two point clouds are shown, one 
captured at time t1 (red) and 
another captured at a later date, t2 
(blue).  These are shown in plan 
view – e.g. looking down from 
above (top).  Using 
CloudCompare software, it is 
possible to rotate the clouds 
along a rotation axis using the 
rotate/translate tool. An oblique 
view of the clouds captured as 
they were being rotated is shown 
(middle).  The clouds were 
rotated 90 degrees about this 
axis, such that their final 
orientation was as shown 
(bottom).  This was performed 
for the foredune because few 
scans overlapped in plan view 
due to considerable foredune 
recession over the course of 
study period.   
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Figure 7.31 Example of classified (top) and filtered (bottom) cloud from May 2012 Inch dataset. 

Figure 7.32 Example of classified (top) and filtered (bottom) cloud from Rossbehy foredune 
scarp (June 2012) 
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Figure 7.33 Schematic diagram showing 
how elevation (z) values from overlapping 
DEMs can be subtracted to produce DEMs 
of difference (DODs) for beach at Inch and 

Rossbehy. 

Figure 7.34 Schematic diagram showing how 
elevation (z) values from overlapping DEMs can be 
subtracted to produce DEMs of difference (DODs) 

for foredune at Rossbehy. 
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Figure 7.36 Distribution of February 2013 EDM ground truthing points (red) for Inch 
(top) and Rossbehy (bottom). Basemaps shown are natural neighbour interpolations of 
unfiltered TLS point clouds where green is low (flat beach) and purple/white is high 
(foredune crest). 
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Figure 7.37 Error distribution for unfiltered (top) and filtered (bottom) clouds at 
Inch.	
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Figure 7.38 Error distribution for unfiltered (top) and filtered (bottom) clouds at 
Rossbehy.	
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 NN IDW EBK 
Unfiltered 0.537 mm 0.539 m 0.540 m 
Filtered 0.183 m -0.037 m 0.147 m 
 t(76)=15.536, 

p<0.001 
t(76)=14.801, 
p<0.001 

t(76)=13.952, 
p<0.001 

Table 7.3 Residual errors for February 2013 Inch DEMs generated using unfiltered and filtered 
TLS point clouds and interpolated using NN, IDW, and EBK. Results of paired t-test 
demonstrating significant differences between unfiltered and filtered clouds also shown. 

	

Figure 7.39 Voronoi map for Inch data symbolised by standard deviation.  The pattern shown 
suggests the data is non-stationary.  As a result, kriging was deemed an inappropriate 
interpolation method for this data.     
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Figure 7.40 Areal photograph of Rossbehy field site indicating general location of TLS surveys.  
Locations A and B correspond generally to the maps shown in figures 7.41 to 7.58 and represent the 
dune barrier terminus (A) and the southern periphery of the surveyed area (B) at the time of the 
corresponding survey.  Source of areal photography:  ESRI 
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Figure 7.41 Rossbehy beach elevation change (DOD) between 2012-06-28 and 2012-08-05.  
Elevation change across the majority of the surveyed area lies below the level of detectable 
change (±0.41 m) and ranged from -0.27 m to +1.08 m.  Locations A and B correspond with 
those shown in figure 7.42.  The coordinate marked with the triangle is at the same location as 
that shown in figure 7.43 (the DOD for the subsequent survey period) for reference.  Mean sea 
level (MSL) is equal to +2.3 m ODM.   
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Figure 7.43 Rossbehy beach elevation change (DOD) between 2012-08-05 and 2012-10-07.  
Beach erosion is shown in red, while accretion is shown in blue.  Elevation changes below the 
level of detectable change (±0.41 m) are shown in gray.  Elevation change ranged from -2.15 m 
to +5.49 m.  The coordinate marked with the triangle is at the same location as that shown in 
figure 7.41 (the DOD for the previous period) for reference.   Locations A and B correspond (in a 
general way) with those shown in figure 7.40. Mean sea level (MSL) is equal to +2.3 m ODM.    
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Figure 7.46 Rossbehy beach elevation change (DOD) between 2013-01-30 and 2013-02-28.  
Accretion occurred across the majority of the surveyed area (varying shades of blue).  Area in 
gray lies below the level of detectable change (±0.41 m).  Elevation change ranged from +0.18 m 
to +0.99 m.  Locations A and B correspond with those shown in figure 7.47.  The coordinate 
marked with the circle is at the same location as that shown in figures 7.48, 7.50, and 7.52 (the 
DODs for the subsequent survey periods) for reference.  Mean sea level (MSL) is equal to +2.3 m 
ODM.   
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Figure 7.48 Rossbehy beach elevation change (DOD) between 2013-02-28 and 2013-04-19.  
Beach erosion occurred across the entire survey area (varying shades of red).  Beach elevation 
change ranged from -1.94 m to -0.62 m. Locations A and B correspond with those shown in 
figure 7.49.  The coordinate marked with the circle is at the same location as that shown in 
figures 7.46, 7.50, and 7.52 (the DODs for the previous and subsequent survey periods) for 
reference.  Mean sea level (MSL) is equal to +2.3 m ODM.   
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Figure 7.50 Rossbehy beach elevation change (DOD) between 2013-04-19 and 2013-06-05.  
Elevation change across the majority of the site lies below the level of detectable change (±0.41 
m) and ranges from -0.17 m to +0.51 m.  Locations A and B correspond with those shown in 
figure 7.51.  The coordinate marked with the circle is at the same location as that shown in 
figures 7.46, 7.48, and 7.52 (the DODs for the previous and subsequent survey periods) for 
reference.  Mean sea level (MSL) is equal to +2.3 m ODM.   
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Figure 7.52 Rossbehy beach elevation change (DOD) between 2013-06-05 and 2013-12-11.  
Elevation change across the majority of the site lies below the level of detectable change (±0.44 
m) and ranges from -0.13 m and +0.88 m.  Locations A and B correspond with those shown in 
figure 7.53.  The coordinate marked with the circle is at the same location as that shown in 
figures 7.46, 7.48, and 7.50 (the DODs for the previous survey periods) for reference.  Mean sea 
level (MSL) is equal to +2.3 m ODM.   
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Figure 7.55 Rossbehy beach elevation change (DOD) between 2014-06-16 and 2014-05-04.  
Elevation change across the majority of the site lies below the level of detectable change (±0.44 
m) and ranges from -0.42 m to +1.42 m.  Locations A and B correspond with those shown in 
figure 7.56.  The coordinate marked with the square is at the same location as that shown in 
figure 7.57 (the DOD for the subsequent survey period) for reference.  Mean sea level (MSL) is 
equal to +2.3 m ODM.   
	



	

	 94	

	

Fi
gu

re
 7

.5
6 

R
os

sb
eh

y 
fo

re
du

ne
 d

is
ta

nc
e 

ch
an

ge
 b

et
w

ee
n 

20
14

-0
1-

16
 a

nd
 2

01
4-

05
-0

4.
 D

un
e 

re
ce

ss
io

n,
 w

hi
ch

 o
cc

ur
re

d 
ac

ro
ss

 th
e 

en
tir

e 
le

ng
th

 o
f t

he
 su

rv
ey

ed
 a

re
a,

 is
 

sh
ow

n 
in

 v
ar

yi
ng

 sh
ad

es
 o

f r
ed

.  
D

is
ta

nc
e 

ch
an

ge
 ra

ng
ed

 fr
om

 -6
.4

1 
m

 to
 -0

.2
9 

m
.  

Fo
r r

ef
er

en
ce

, l
oc

at
io

ns
 A

 a
nd

 B
 c

or
re

sp
on

d 
w

ith
 th

os
e 

sh
ow

n 
in

 fi
gu

re
 7

.5
5.

 M
ea

n 
se

a 
le

ve
l (

M
SL

) i
s e

qu
al

 to
 +

2.
3 

m
 O

D
M

.  
 



	

	 95	

	
	
	
	
	

	 	

Figure 7.57 Rossbehy beach elevation change (DOD) between 2014-05-04 and 2014-07-29.  
Accretion (varying shades of blue) occurred across the majority of the site.  Elevation change 
below the level of detectable change (±0.44 m) is shown in gray.  Elevation change across the 
surveyed area ranged from -0.87 m to +1.40 m.  Locations A and B correspond with those shown 
in figure 7.58.  The coordinate marked with the square is at the same location as that shown in 
figure 7.55 (the DOD for the previous survey period) for reference.  Mean sea level (MSL) is 
equal to +2.3 m ODM.   
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Survey 
start/end 
dates 

Mean 
elevation 
change 

between 
DEMs (m) 

Elevation 
change 
error 

margin 
(m) 

Volume 
Gain 
(m3) 

Volume 
Loss 
(m3) 

Net volume 
change (Vs) 

(m3) 

Volumetric 
error 

margin (m3) 

Area of 
Survey 
(A) (m2) 

Time 
between 
surveys 
(days) 

Rate of 
volume 
change (Rvs) 
(m3 m2 day) 

Volumetric 
error margin 
associated 
with rate of 
volume 
change (m3 
m2 day) 

Remark 

2012-06-28 
0.02 ±0.41 320.6 171.4 149.2 ±2983 7275.9 58 0.0004 ±0.007 Inconclusive 

2012-08-05 

2012-08-05 
0.80 ±0.41 3844.1 973.2 2870.9 ±1468 3581.5 43 0.0186 ±0.003 Net gain 

2012-10-07 

2013-01-30 
0.54 ±0.41 544.9 0.0 544.9 ±417 1017.2 29 0.0185 ±0.014 Net gain 

2013-02-28 

2013-02-28 
-1.50 ±0.44 0.0 1369.6 -1369.6 ±412 938.1 50 -0.0292 ±0.009 Net loss 

2013-04-19 

2013-04-19 
0.19 ±0.41 363.7 9.8 353.9 ±764 1865.5 47 0.0040 ±0.009 Inconclusive 

2013-06-05 

2013-06-05 
0.30 ±0.44 219.7 2.5 217.2 ±321 731.6 189 0.0016 ±0.002 Inconclusive 

2013-12-11 

2014-01-16 
0.17 ±0.44 788.0 62.4 725.6 ±1931 4390.7 108 0.0015 ±0.004 Inconclusive 

2014-05-04 

2014-05-04 
0.41 ±0.44 1818.2 4.2 1813.9 ±1936 4402.2 86 0.0048 ±0.005 Inconclusive 

2014-07-29 
Table 7.4 Summary of elevation and volume changes for beach at Rossbehy field site. 
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Survey 
start/end 

dates 

Mean 
change in 
distance 
between 

DEMs (m) 

Distance 
change error 
margin (m) 

Volume 
Gain (m3) 

Volume 
Loss (m3) 

Net volume 
change (Vs) 

(m3) 

Volumetric 
error 

margin (m3) 

Area of 
Survey (A) 

(m2) 

Time 
between 
surveys 
(days) 

Rate of 
volume 

change (Rvs) 
(m3 m2 day) 

Volumetric error 
margin associated 

with rate of volume 
change (m3 m2 day) 

Remark 

2012-06-28 
-1.1 ±0.41 20.3 351.7 -322.5 ±127 310.6 38 -0.0273 ±0.011 Net loss 

2012-08-05 
2012-08-05 

-8.9 ±0.41 26.0 2085.7 -2059.8 ±99 242.6 102 -0.0832 ±0.004 Net loss 
2012-11-15 
2012-11-15 

-28.1 ±0.44 0.0 9469.4 -9469.4 ±153 346.8 76 -0.3593 ±0.006 Net loss 
2013-01-30 
2013-01-30 

-1.1 ±0.41 18.0 382.1 -364.1 ±137 334.1 29 -0.0376 ±0.014 Net loss 
2013-02-28 
2013-02-28 

-3.6 ±0.44 0.0 836.1 -836.1 ±104 236.1 50 -0.0708 ±0.009 Net loss 
2013-04-19 
2013-04-19 

-0.1 ±0.41 24.2 48.9 -24.7 ±152 371.6 47 -0.0014 ±0.009 Inconclusive 
2013-06-05 
2013-06-05 

0.0 ±0.44 333.9 322.6 11.2 ±157 355.8 189 0.0002 ±0.002 Inconclusive 
2013-12-11 
2013-12-11 

-37.8 ±0.44 0.0 15337.3 -15337.3 ±179 406.2 36 -1.0489 ±0.012 Net loss 
2014-01-16 
2014-01-16 

-2.3 ±0.44 0.0 661.9 -661.9 ±126 286.7 108 -0.0214 ±0.004 Net loss 
2014-05-04 
2014-05-04 

0.3 ±0.44 93.0 18.1 74.8 ±111 253.2 86 0.0034 ±0.005 Inconclusive 
2014-07-29 
Table 7.5 Summary of distance and volumetric changes for foredune at Rossbehy field site.		
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Figure 7.59 Shoreline positions at Rossbehy during TLS monitoring campaign. The shoreline is 
defined as position of the dune toe, or the line along which there is an abrupt change in slope, 
marking the boundary between the beach and dune. The March 2012 shoreline was digitized 
from an aerial photograph (for reference), while the others were digitized from TLS data. 
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Figure 7.60 Areal photographs of Inch field site indicating location of TLS surveys.  The area enclosed 
by the green polygon is the area over which all surveys overlap.  Source of areal photography:  ESRI 
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Figure 7.61 Inch beach elevation change (DOD) between 2012-05-24 and 2012-08-06.  Beach erosion is shown in varying shades of red and accretion in varying shades of 
blue.  Elevation change below the level of detectable change (±0.05 m) is shown in gray.  Elevation change ranged from -3.00 m to +2.76 m. The coordinate marked with the 
star is at the same location as that shown in figures 7.62-7.68 (the DODs for the subsequent survey periods) for reference.  The area enclosed by the gray polygon is the area 
across which all surveys overlap.  Mean sea level (MSL) is equal to +2.3 m ODM.   
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Figure 7.62 Inch beach elevation change (DOD) between 2012-08-06 and 2012-10-06.  Beach erosion is shown in varying shades of red and accretion in varying shades of 
blue.  Elevation change below the level of detectable change (±0.05 m) is shown in gray.  Elevation change ranged from -5.42 m to +4.43 m. The coordinate marked with the 
star is at the same location as that shown in figures 7.61-7.68 (the DODs for the previous and subsequent survey periods) for reference.  The area enclosed by the gray 
polygon is the area across which all surveys overlap.  Mean sea level (MSL) is equal to +2.3 m ODM.   
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Figure 7.63 Inch beach elevation change (DOD) between 2012-10-06 and 2013-01-09.  Beach erosion is shown in varying shades of red and accretion in varying shades of 
blue.  Elevation change below the level of detectable change (±0.05 m) is shown in gray.  Elevation change ranged from -1.78 m to +2.41 m. The coordinate marked with the 
star is at the same location as that shown in figures 7.61-7.68 (the DODs for the previous and subsequent survey periods) for reference.  The area enclosed by the gray 
polygon is the area across which all surveys overlap.  Mean sea level (MSL) is equal to +2.3 m ODM.   
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Figure 7.64 Inch beach elevation change (DOD) between 2013-01-09 and 2013-02-27.  Beach erosion is shown in varying shades of red and accretion in varying shades of 
blue.  Elevation change below the level of detectable change (±0.05 m) is shown in gray.  Elevation change ranged from -2.11 m to +1.96 m. The coordinate marked with the 
star is at the same location as that shown in figures 7.61-7.68 (the DODs for the previous and subsequent survey periods) for reference.  The area enclosed by the gray 
polygon is the area across which all surveys overlap.  Mean sea level (MSL) is equal to +2.3 m ODM.   
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Figure 7.65 Inch beach elevation change (DOD) between 2013-02-27 and 2013-05-02.  Beach erosion is shown in varying shades of red and accretion in varying shades of 
blue.  Elevation change below the level of detectable change (±0.05 m) is shown in gray.  Elevation change ranged from -2.00 m to +1.96 m. The coordinate marked with the 
star is at the same location as that shown in figures 7.61-7.68 (the DODs for the previous and subsequent survey periods) for reference.  The area enclosed by the gray 
polygon is the area across which all surveys overlap.  Mean sea level (MSL) is equal to +2.3 m ODM.   
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Figure 7.66 Inch beach elevation change (DOD) between 2013-05-02 and 2013-06-20.  Beach erosion is shown in varying shades of red and accretion in varying shades of 
blue.  Elevation change below the level of detectable change (±0.05 m) is shown in gray.  Elevation change ranged from -5.29 m to +3.09 m. The coordinate marked with the 
star is at the same location as that shown in figures 7.61-7.68 (the DODs for the previous and subsequent survey periods) for reference.  The area enclosed by the gray 
polygon is the area across which all surveys overlap.  Mean sea level (MSL) is equal to +2.3 m ODM.   
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Figure 7.67 Inch beach elevation change (DOD) between 2013-06-20 and 2014-03-12.  Beach erosion is shown in varying shades of red and accretion in varying shades of 
blue.  Elevation change below the level of detectable change (±0.05 m) is shown in gray.  Elevation change ranged from -3.56 m to +2.84 m. The coordinate marked with the 
star is at the same location as that shown in figures 7.61-7.68 (the DODs for the previous and subsequent survey periods) for reference.  The area enclosed by the gray 
polygon is the area across which all surveys overlap.  Mean sea level (MSL) is equal to +2.3 m ODM.   
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Figure 7.68 Inch beach elevation change (DOD) between 2014-03-12 and 2014-08-28.  Beach erosion is shown in varying shades of red and accretion in varying shades of 
blue.  Elevation change below the level of detectable change (±0.05 m) is shown in gray.  Elevation change ranged from -1.26 m to +2.34 m. The coordinate marked with the 
star is at the same location as that shown in figures 7.61-7.67 (the DODs for the previous survey periods) for reference.  The area enclosed by the gray polygon is the area 
across which all surveys overlap.  Mean sea level (MSL) is equal to +2.3 m ODM.   
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Figure 7.69 Embryo dune field at Inch on 20 June 2013 (top) and 12 March 2014 (bottom).  The 
embryo dune field likely shielded the foredune from extreme waves during the winter 2013/2014 
storms.  Source: author’s own 
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Table 7.6 Summary of elevation and volume changes at Inch field site. 
 

  

Survey 
start/end 
dates 

Mean 
elevation 
change 

between 
DEMs 

(m) 

Elevation 
change 
error 

margin 
(m) 

Volume 
Gain (m3) 

Volume 
Loss (m3) 

Net 
volume 
change 

(Vs) (m3) 

Volumetric 
error 

margin 
(m3) 

Area of 
Survey 
(A) (m2) 

Time 
between 
surveys 
(days) 

Rate of 
volume 
change (Rvs) 
(m3 m2 day) 

Volumetric 
error 
margin 
associated 
with rate of 
volume 
change (m3 
m2 day) 

Remark 

2012-05-24 
-0.16 ±0.05 86.9 494.1 -407.2 ±124 2472.04 74 -0.0022 ±0.0007 Net loss 

2012-08-06 
2012-08-06 

-0.29 ±0.05 137.5 856.4 -718.9 ±124 2472.04 61 -0.0048 ±0.0008 Net loss 
2012-10-06 
2012-10-06 

-0.02 ±0.05 231.6 278.1 -46.5 ±124 2472.04 95 -0.0002 ±0.0005 Inconclusive 
2013-01-09 
2013-01-09 

-0.03 ±0.05 249.2 178.6 70.7 ±124 2472.04 49 0.0006 ±0.001 Inconclusive 
2013-02-27 
2013-02-27 

-0.05 ±0.05 153.5 283.0 -129.6 ±124 2472.04 64 -0.0008 ±0.0008 Net loss 
2013-05-02 
2013-05-02 

-0.03 ±0.05 118.4 199.4 -81.0 ±124 2472.04 49 -0.0007 ±0.001 Inconclusive 
2013-06-20 
2013-06-20 

0.11 ±0.05 509.9 232.2 277.7 ±124 2472.04 265 0.0004 ±0.0002 Net gain 
2014-03-12 
2014-03-12 

0.33 ±0.05 865.4 62.2 803.2 ±124 2472.04 169 0.0019 ±0.0003 Net gain 
2014-08-28 
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Figure 7.70 Rates of volume change for Rossbehy (top) and Inch (bottom) for TLS monitoring periods. Note the large difference in scale between 
rates of volume change for Rossbehy beach and scarp and between Rossbehy and Inch generally. 
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Figure 8.1 Model domain and flexible mesh on which WAM was run.  Extracted from 
O’Shea et al. (2011) 

Figure 8.2 Five points in WAM 
model domain for which outputs 
(significant wave height, wave 
period, and wave direction) were 
extracted.   
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Event 
ID 

Start date End date Event 
Duration 

Lag time  Mean 
Hs 

Max Hs Peak 
period 

Mean 
dxn 

55 2012-05-22 
14:00:00 

2012-05-23 
08:00:00 

18:00:00 814:00:00 1.11 1.17 7 258 

56 2012-06-15 
06:00:00 

2012-06-16 
06:00:00 

24:00:00 550:00:00 1.29 1.40 7 258 

57 2012-07-16 
01:00:00 

2012-07-16 
18:00:00 

17:00:00 715:00:00 1.17 1.24 6 257 

58 2012-07-31 
13:00:00 

2012-08-02 
08:00:00 

43:00:00 355:00:00 1.26 1.56 7 258 

59 2012-08-02 
11:00:00 

2012-08-03 
21:00:00 

34:00:00 03:00:00 1.39 1.60 7 259 

60 2012-08-15 
20:00:00 

2012-08-16 
19:00:00 

23:00:00 287:00:00 1.40 1.74 6 258 

61 2012-08-27 
08:00:00 

2012-08-28 
04:00:00 

20:00:00 253:00:00 1.09 1.16 6 258 

62 2012-08-28 
10:00:00 

2012-08-29 
20:00:00 

34:00:00 06:00:00 1.44 1.70 7 258 

63 2012-09-09 
12:00:00 

2012-09-10 
01:00:00 

13:00:00 256:00:00 1.08 1.10 7 259 

64 2012-09-30 
03:00:00 

2012-09-30 
17:00:00 

14:00:00 482:00:00 1.12 1.29 7 259 

65 2012-10-02 
01:00:00 

2012-10-03 
07:00:00 

30:00:00 32:00:00 1.22 1.45 8 260 

66 2012-10-17 
01:00:00 

2012-10-17 
20:00:00 

19:00:00 330:00:00 1.54 1.92 8 259 

67 2012-10-20 
18:00:00 

2012-10-22 
11:00:00 

41:00:00 70:00:00 1.37 1.54 11 260 

68 2012-11-12 
12:00:00 

2012-11-14 
19:00:00 

55:00:00 505:00:00 1.35 1.71 10 260 

69 2012-11-18 
13:00:00 

2012-11-23 
18:00:00 

125:00:00 90:00:00 1.55 2.11 9 259 

70 2012-11-25 
02:00:00 

2012-11-25 
19:00:00 

17:00:00 32:00:00 1.25 1.49 7 259 

71 2012-12-02 
15:00:00 

2012-12-03 
09:00:00 

18:00:00 164:00:00 1.13 1.20 9 260 

72 2012-12-03 
17:00:00 

2012-12-04 
12:00:00 

19:00:00 08:00:00 1.09 1.17 9 261 

73 2012-12-13 
05:00:00 

2012-12-13 
19:00:00 

14:00:00 209:00:00 1.25 1.37 9 260 

74 2012-12-14 
02:00:00 

2012-12-18 
05:00:00 

99:00:00 07:00:00 1.69 2.48 9 260 

75 2012-12-19 
10:00:00 

2013-01-01 
06:00:00 

308:00:00 29:00:00 1.60 2.40 9 259 

76 2013-01-03 
03:00:00 

2013-01-09 
05:00:00 

146:00:00 45:00:00 1.32 1.77 9 259 

77 2013-01-09 
21:00:00 

2013-01-12 
18:00:00 

69:00:00 16:00:00 1.48 1.82 9 260 

78 2013-01-17 
21:00:00 

2013-01-18 
21:00:00 

24:00:00 123:00:00 1.22 1.36 8 258 

79 2013-01-20 
17:00:00 

2013-01-23 
06:00:00 

61:00:00 44:00:00 1.41 1.67 9 260 

80 2013-01-24 
22:00:00 

2013-01-25 
19:00:00 

21:00:00 40:00:00 1.22 1.33 9 260 

81 2013-01-26 
01:00:00 

2013-02-01 
11:00:00 

154:00:00 06:00:00 1.84 2.60 9 260 

82 2013-02-04 
13:00:00 

2013-02-06 
03:00:00 

38:00:00 74:00:00 1.37 1.59 9 262 

83 2013-02-10 
12:00:00 

2013-02-11 
08:00:00 

20:00:00 105:00:00 1.30 1.54 8 261 

84 2013-02-13 
05:00:00 

2013-02-14 
12:00:00 

31:00:00 45:00:00 1.30 1.69 8 260 

85 2013-02-18 
22:00:00 

2013-02-19 
16:00:00 

18:00:00 106:00:00 1.24 1.37 9 259 
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Event 
ID 

Start date End date Event 
Duration 

Lag time  Mean 
Hs 

Max Hs Peak 
period 

Mean 
dxn 

86 2013-02-22 
18:00:00 

2013-02-23 
17:00:00 

23:00:00 74:00:00 1.18 1.33 9 260 

87 2013-02-26 
01:00:00 

2013-02-26 
21:00:00 

20:00:00 56:00:00 1.19 1.28 10 260 

88 2013-03-22 
22:00:00 

2013-03-23 
13:00:00 

15:00:00 577:00:00 1.31 1.52 8 259 

89 2013-03-29 
14:00:00 

2013-03-31 
15:00:00 

49:00:00 145:00:00 1.44 1.71 10 260 

90 2013-04-09 
09:00:00 

2013-04-10 
19:00:00 

34:00:00 210:00:00 1.27 1.52 9 260 

91 2013-04-13 
23:00:00 

2013-04-18 
21:00:00 

118:00:00 76:00:00 1.72 2.53 8 259 

92 2013-05-03 
13:00:00 

2013-05-04 
03:00:00 

14:00:00 352:00:00 1.15 1.26 6 258 

93 2013-05-08 
08:00:00 

2013-05-09 
19:00:00 

35:00:00 101:00:00 1.42 1.73 8 260 

94 2013-06-12 
19:00:00 

2013-06-13 
21:00:00 

26:00:00 816:00:00 1.22 1.48 7 258 

95 2013-06-14 
03:00:00 

2013-06-15 
21:00:00 

42:00:00 06:00:00 1.34 1.57 7 258 

96 2013-06-21 
16:00:00 

2013-06-23 
05:00:00 

37:00:00 139:00:00 1.40 1.95 8 260 

97 2013-08-17 
03:00:00 

2013-08-17 
17:00:00 

14:00:00 1318:00:00 1.18 1.31 6 258 

98 2013-10-16 
10:00:00 

2013-10-18 
06:00:00 

44:00:00 1433:00:00 1.31 1.54 7 259 

99 2013-10-19 
23:00:00 

2013-10-20 
21:00:00 

22:00:00 41:00:00 1.29 1.60 7 258 

100 2013-10-22 
20:00:00 

2013-10-23 
20:00:00 

24:00:00 47:00:00 1.17 1.35 8 259 

101 2013-10-26 
05:00:00 

2013-11-01 
06:00:00 

145:00:00 57:00:00 1.41 2.42 10 260 

102 2013-11-02 
01:00:00 

2013-11-03 
07:00:00 

30:00:00 19:00:00 1.53 2.07 8 260 

103 2013-11-03 
13:00:00 

2013-11-05 
22:00:00 

57:00:00 06:00:00 1.40 1.87 8 260 

104 2013-11-06 
01:00:00 

2013-11-08 
10:00:00 

57:00:00 03:00:00 1.22 1.58 10 261 

105 2013-11-09 
16:00:00 

2013-11-12 
03:00:00 

59:00:00 30:00:00 1.34 1.55 8 260 

106 2013-12-09 
18:00:00 

2013-12-10 
15:00:00 

21:00:00 663:00:00 1.10 1.15 7 258 

107 2013-12-11 
20:00:00 

2013-12-12 
17:00:00 

21:00:00 29:00:00 1.25 1.35 8 259 

108 2013-12-13 
06:00:00 

2014-01-08 
15:00:00 

633:00:00 13:00:00 1.85 2.97 9 260 

109 2014-01-10 
01:00:00 

2014-01-10 
15:00:00 

14:00:00 34:00:00 1.20 1.28 6 257 

110 2014-01-12 
13:00:00 

2014-01-17 
08:00:00 

115:00:00 46:00:00 1.61 2.07 9 260 

111 2014-01-17 
14:00:00 

2014-01-18 
09:00:00 

19:00:00 06:00:00 1.18 1.29 9 260 

112 2014-01-21 
15:00:00 

2014-01-22 
21:00:00 

30:00:00 78:00:00 1.32 1.56 9 261 

113 2014-01-23 
22:00:00 

2014-01-28 
11:00:00 

109:00:00 25:00:00 1.59 2.25 9 261 

114 2014-01-31 
04:00:00 

2014-02-04 
17:00:00 

109:00:00 65:00:00 1.74 2.71 9 260 

115 2014-02-04 
19:00:00 

2014-02-06 
14:00:00 

43:00:00 02:00:00 1.77 2.64 9 259 

116 2014-02-07 
04:00:00 

2014-02-10 
10:00:00 

78:00:00 14:00:00 1.86 2.57 8 259 
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Event 
ID 

Start date End date Event 
Duration 

Lag time  Mean 
Hs 

Max Hs Peak 
period 

Mean 
dxn 

117 2014-02-10 
16:00:00 

2014-02-16 
07:00:00 

135:00:00 06:00:00 1.65 2.48 9 260 

118 2014-02-16 
12:00:00 

2014-02-18 
22:00:00 

58:00:00 05:00:00 1.43 1.89 10 259 

119 2014-02-19 
15:00:00 

2014-03-01 
06:00:00 

231:00:00 17:00:00 1.67 2.43 9 260 

120 2014-03-02 
04:00:00 

2014-03-06 
00:00:00 

92:00:00 22:00:00 1.49 2.84 9 260 

121 2014-03-06 
03:00:00 

2014-03-07 
06:00:00 

27:00:00 03:00:00 1.16 1.36 8 260 

122 2014-03-07 
23:00:00 

2014-03-09 
19:00:00 

44:00:00 17:00:00 1.43 1.67 8 260 

123 2014-03-19 
13:00:00 

2014-03-22 
22:00:00 

81:00:00 234:00:00 1.41 2.03 8 260 

124 2014-03-24 
10:00:00 

2014-03-25 
21:00:00 

35:00:00 36:00:00 1.64 2.24 8 260 

125 2014-04-05 
19:00:00 

2014-04-08 
02:00:00 

55:00:00 262:00:00 1.32 1.62 7 259 

126 2014-04-23 
06:00:00 

2014-04-24 
04:00:00 

22:00:00 364:00:00 1.17 1.25 9 260 

127 2014-04-25 
21:00:00 

2014-04-26 
14:00:00 

17:00:00 41:00:00 1.43 1.93 7 259 

Table 8.1 Summary of event information extracted from WAM data.  Events are described as 
times when the significant wave height, Hs, exceeded the critical wave height, hcrit (see text for 
explanation), for a minimum duration of 12 hours.   
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Figure 8.3 
Breakdown of storm 
events identified 
using WAM data by 
event duration.   

Figure 8.4 Modelled event frequency by month during morphologic monitoring period.   
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Figure 8.5 Excel spreadsheet and 
formulae used to identify storm events and 
extract storm characteristics from 
simulated WAM data.  Records (rows) 
extend below the window shown.  
Formulae examples are for the first entry 
and were applied to each subsequent entry 
(eg. the cells below).   
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Figure 8.6 Excel worksheets and formulae used to extract storm characteristics from Ventry 
weather station data.  Records (rows) extend below the windows shown.  Formulae examples are 
for the first entry and were applied to each subsequent entry (eg. the cells below).   
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Figure 8.7 Location of weather station set up near Inch field site. 
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Figure 8.8 Wind roses and wind speeds for Inch and Ventry from 6 August 2012 to 5 September 
2012.  Wind speeds were derived from instantaneous wind speeds averaged at half hourly (or 
approximately half hourly) intervals.   Running means (with 48 hour periods) have been 
superimposed on the wind speed graph for visual clarity.   
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Figure 8.9	Wind roses and wind speeds for Inch and Ventry from 15 October 2012 to 26 October 
2012.  Wind speeds were derived from instantaneous wind speeds averaged at half hourly (or 
approximately half hourly) intervals.   Running means (with 48 hour periods) have been 
superimposed on the wind speed graph for visual clarity.  	



	 122	

	 	

Figure 8.10 Wind roses and wind speeds for Inch and Ventry from 21 August 2013 to 3 
September 2013.  Wind speeds were derived from instantaneous wind speeds averaged at half 
hourly (or approximately half hourly) intervals.   Running means (with 48 hour periods) have 
been superimposed on the wind speed graph for visual clarity.   
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Table 8.2 Summary of event information extracted from Ventry weather station data.  

Event 
ID 

Start date End date Mean wind 
speed (m/s) 

Max Gust 
Speed 
(m/s) 

Wind directions recorded during event Prevailing 
Wind 

Direction N NE E SE S SW W NW 

55 2012-05-22 
14:00:00 

2012-05-23 
08:00:00 

3.82 5.22 0 0 0 0 48 0 0 0 S 

56 2012-06-15 
06:00:00 

2012-06-16 
06:00:00 

3.51 9.07 0 3 13 7 1 2 26 1 W 

57 2012-07-16 
01:00:00 

2012-07-16 
18:00:00 

9.16 11.54 0 0 0 0 0 11 35 0 W 

58 2012-07-31 
13:00:00 

2012-08-02 
08:00:00 

4.75 10.01 0 0 0 0 9 73 29 0 SW 

59 2012-08-02 
11:00:00 

2012-08-03 
21:00:00 

2.71 5.60 0 4 1 0 11 65 0 0 SW 

60 2012-08-15 
20:00:00 

2012-08-16 
19:00:00 

5.18 12.13 0 0 0 0 11 45 2 0 SW 

61 2012-08-27 
08:00:00 

2012-08-28 
04:00:00 

5.82 8.43 0 0 0 0 0 10 41 0 W 

62 2012-08-28 
10:00:00 

2012-08-29 
20:00:00 

5.94 12.12 0 0 0 1 4 66 20 0 SW 

63 2012-09-09 
12:00:00 

2012-09-10 
01:00:00 

4.75 6.84 0 0 0 0 0 12 20 0 W 

64 2012-09-30 
03:00:00 

2012-09-30 
17:00:00 

7.00 10.19 0 0 0 0 0 21 16 0 SW 

65 2012-10-02 
01:00:00 

2012-10-03 
07:00:00 

7.43 10.70 0 0 0 0 0 26 54 0 W 

66 2012-10-17 
01:00:00 

2012-10-17 
20:00:00 

5.41 10.65 0 30 14 1 0 0 0 0 NE 

67 2012-10-20 
18:00:00 

2012-10-22 
11:00:00 

2.06 2.87 0 0 1 7 90 0 0 0 S 

68 2012-11-12 
12:00:00 

2012-11-14 
19:00:00 

3.98 9.29 0 2 1 0 4 90 3 0 SW 

69 2012-11-18 
13:00:00 

2012-11-23 
18:00:00 

0.78 2.20 0 0 0 0 1 0 0 0 S 

70 2012-11-25 
02:00:00 

2012-11-25 
19:00:00 

n/a 

71 2012-12-02 
15:00:00 

2012-12-03 
09:00:00 

5.25 7.61 0 0 0 0 0 10 34 2 W 

72 2012-12-03 
17:00:00 

2012-12-04 
12:00:00 

5.20 6.45 0 0 0 0 3 15 31 2 W 

73 2012-12-13 
05:00:00 

2012-12-13 
19:00:00 

6.66 8.07 0 0 0 0 28 0 0 0 S 

74 2012-12-14 
02:00:00 

2012-12-18 
05:00:00 

5.18 9.30 0 0 0 1 3 90 78 9 SW 

75 2012-12-19 
10:00:00 

2013-01-01 
06:00:00 

4.92 11.43 0 0 0 2 57 232 140 0 SW 

76 2013-01-03 
03:00:00 

2013-01-09 
05:00:00 

3.77 6.45 0 0 2 0 24 43 19 0 SW 

77 2013-01-09 
21:00:00 

2013-01-12 
18:00:00 

4.50 7.81 0 15 2 4 39 8 20 0 S 

78 2013-01-17 
21:00:00 

2013-01-18 
21:00:00 

2.94 4.89 0 2 4 1 4 0 13 0 W 

79 2013-01-20 
17:00:00 

2013-01-23 
06:00:00 

1.92 5.97 0 6 2 5 10 7 18 0 W 

80 2013-01-24 
22:00:00 

2013-01-25 
19:00:00 

4.96 6.71 0 0 1 3 17 12 4 0 S 

81 2013-01-26 
01:00:00 

2013-02-01 
11:00:00 

7.36 18.79 0 0 0 1 3 132 116 1 SW 

82 2013-02-04 
13:00:00 

2013-02-06 
03:00:00 

8.10 11.02 0 1 6 13 24 12 31 0 W 

83 2013-02-10 
12:00:00 

2013-02-11 
08:00:00 

5.35 10.11 0 0 2 12 13 5 9 0 S 

84 2013-02-13 
05:00:00 

2013-02-14 
12:00:00 

6.47 11.23 0 0 0 0 0 20 32 1 W 

85 2013-02-18 
22:00:00 

2013-02-19 
16:00:00 

4.60 6.23 0 0 0 0 30 0 0 0 S 

86 2013-02-22 
18:00:00 

2013-02-23 
17:00:00 

2.16 4.03 0 2 15 6 11 0 0 0 E 

87 2013-02-26 
01:00:00 

2013-02-26 
21:00:00 

1.17 3.14 5 3 4 0 10 1 0 0 S 

88 2013-03-22 
22:00:00 

2013-03-23 
13:00:00 

5.31 6.55 0 0 0 0 34 0 0 0 S 



	 124	

Event 
ID 

Start date End date Mean wind 
speed (m/s) 

Max 
Gust 

Speed 
(m/s) 

Wind directions recorded during event Prevailing 
Wind 

Direction N NE E SE S SW W NW 

90 2013-04-09 
09:00:00 

2013-04-10 
19:00:00 

2.87 5.86 0 0 0 4 56 2 0 0 S 

91 2013-04-13 
23:00:00 

2013-04-18 
21:00:00 

6.65 18.96 0 0 0 0 35 185 66 1 SW 

92 2013-05-03 
13:00:00 

2013-05-04 
03:00:00 

6.58 10.27 0 0 0 0 0 25 11 1 SW 

93 2013-05-08 
08:00:00 

2013-05-09 
19:00:00 

9.09 15.53 0 0 0 0 1 36 48 0 W 

94 2013-06-12 
19:00:00 

2013-06-13 
21:00:00 

3.42 8.09 0 2 4 3 3 18 21 0 W 

95 2013-06-14 
03:00:00 

2013-06-15 
21:00:00 

5.74 8.66 0 0 0 0 5 24 77 0 W 

96 2013-06-21 
16:00:00 

2013-06-23 
05:00:00 

6.44 11.62 0 0 0 0 8 28 57 0 W 

97 2013-08-17 
03:00:00 

2013-08-17 
17:00:00 

7.10 8.22 0 0 0 0 0 3 14 0 W 

98 2013-10-16 
10:00:00 

2013-10-18 
06:00:00 

3.75 7.00 0 0 0 0 7 32 11 0 SW 

99 2013-10-19 
23:00:00 

2013-10-20 
21:00:00 

3.05 4.78 0 0 2 2 2 4 12 0 W 

100 2013-10-22 
20:00:00 

2013-10-23 
20:00:00 

2.06 3.90 0 1 4 1 2 2 8 0 W 

101 2013-10-26 
05:00:00 

2013-11-01 
06:00:00 

4.77 11.68 0 0 0 0 3 71 133 14 W 

102 2013-11-02 
01:00:00 

2013-11-03 
07:00:00 

5.41 11.93 0 0 0 0 5 9 35 3 W 

103 2013-11-03 
13:00:00 

2013-11-05 
22:00:00 

2.78 5.39 0 16 3 2 5 0 41 8 W 

104 2013-11-06 
01:00:00 

2013-11-08 
10:00:00 

3.23 6.77 0 0 0 1 3 5 61 3 W 

105 2013-11-09 
16:00:00 

2013-11-12 
03:00:00 

3.37 7.10 0 12 1 1 7 11 21 1 W 

106 2013-12-09 
18:00:00 

2013-12-10 
15:00:00 

5.11 6.03 0 0 0 0 16 21 0 0 SW 

107 2013-12-11 
20:00:00 

2013-12-12 
17:00:00 

4.97 6.27 0 0 0 0 0 38 0 0 SW 

108 2013-12-13 
06:00:00 

2014-01-08 
15:00:00 

6.14 20.38 0 9 12 8 62 586 319 1 SW 

109 2014-01-10 
01:00:00 

2014-01-10 
15:00:00 

3.84 5.88 0 0 0 0 0 8 14 0 W 

110 2014-01-12 
13:00:00 

2014-01-17 
08:00:00 

5.54 11.03 0 0 1 1 6 113 53 3 SW 

111 2014-01-17 
14:00:00 

2014-01-18 
09:00:00 

1.96 4.26 0 0 2 2 5 3 8 0 W 

112 2014-01-21 
15:00:00 

2014-01-22 
21:00:00 

6.63 10.86 0 0 0 0 0 14 38 0 W 

113 2014-01-23 
22:00:00 

2014-01-28 
11:00:00 

10.68 18.24 0 0 0 1 2 36 152 0 W 

114 2014-01-31 
04:00:00 

2014-02-04 
17:00:00 

9.64 23.46 0 0 0 2 38 59 84 0 W 

115 2014-02-04 
19:00:00 

2014-02-06 
14:00:00 

7.09 16.02 0 0 2 2 13 2 43 1 W 

116 2014-02-07 
04:00:00 

2014-02-10 
10:00:00 

10.30 18.89 0 1 1 4 14 49 63 0 W 

117 2014-02-10 
16:00:00 

2014-02-16 
07:00:00 

8.10 28.35 0 0 0 10 31 34 67 0 W 

118 2014-02-16 
12:00:00 

2014-02-18 
22:00:00 

3.15 7.50 0 4 0 1 25 12 20 3 S 

119 2014-02-19 
15:00:00 

2014-03-01 
06:00:00 

7.65 15.10 0 0 1 5 31 172 189 1 W 

120 2014-03-02 
04:00:00 

2014-03-06 
00:00:00 

5.11 10.56 0 4 3 6 12 65 49 0 SW 

121 2014-03-06 
03:00:00 

2014-03-07 
06:00:00 

5.18 8.13 0 0 0 0 8 24 11 0 SW 

122 2014-03-07 
23:00:00 

2014-03-09 
19:00:00 

5.28 10.90 0 21 2 0 20 19 7 0 NE 

123 2014-03-19 
13:00:00 

2014-03-22 
22:00:00 

7.61 13.77 0 0 0 0 3 58 81 0 W 
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Event 
ID 

Start date End date Mean wind 
speed (m/s) 

Max 
Gust 

Speed 
(m/s) 

Wind directions recorded during event Prevailing 
Wind 

Direction 

 N NE E SE S SW W NW 

90 2013-04-09 
09:00:00 

2013-04-10 
19:00:00 

2.87 5.86 0 0 0 4 56 2 0 0 S 

125 2014-04-05 
19:00:00 

2014-04-08 
02:00:00 

6.41 11.48 0 0 0 0 6 52 24 0 SW 

126 2014-04-23 
06:00:00 

2014-04-24 
04:00:00 

3.36 6.07 0 0 0 0 11 23 0 0 SW 

127 2014-04-25 
21:00:00 

2014-04-26 
14:00:00 

8.24 15.16 0 14 8 7 0 0 0 0 NE 
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Figure 8.11 
Histogram 
showing 
frequency of 
storm events 
with a range of 
mean wind 
speeds.    

Figure 8.12 
Histogram 
showing frequency 
of storm events 
with a range of 
maximum gust 
speeds. 

Figure 8.13 
Frequency of events 
with prevailing 
wind directions 
from the north, 
northeast, east, 
southeast, south, 
southwest, west, and 
northwest.     
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Figure 8.14 (a.) Rates of volume change at Rossbehy beach broken down by morphological monitoring period.  (b.) 
Event frequency for storm events occurring during corresponding morphological monitoring periods.  (c.) There was 
a very weak positive relationship between rate of beach volume change and event frequency (n=7, r=0.09).  This 
relationship was not statistically significant (p=0.85).  Negative rates of beach volume change are associated with 
net volume losses; positive rates of beach volume change are associated with net volume gains.     
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Figure 8.15 (a.) Rates of foredune volume change at Rossbehy broken down by morphological 
monitoring period.  (b.) Event frequency for storm events occurring during corresponding 
morphological monitoring periods.  (c.) There was a very weak positive relationship between rate of 
foredune volume change and event frequency (n=9, r=0.12).  This relationship was not statistically 
significant (p=0.76).  Negative rates of dune volume change are associated with net volume losses; 
positive rates of dune volume change are associated with net volume gains.     
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Figure 8.16 (a.) Rates of volume change at Inch broken down by morphological monitoring period.  
(b.) Event frequency for storm events occurring during corresponding morphological monitoring 
periods.  (c.) There was a weak positive relationship between rate of volume change and event 
frequency (n=8, r=0.3).  This relationship was not statistically significant (p=0.47).  Negative rates of 
volume change are associated with net volume losses; positive rates of volume change are associated 
with net volume gains.     
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Figure 8.17 (a.) Rates of volume change at Rossbehy beach broken down by morphological 
monitoring period.  (b.) Mean duration of storm events that occurred during corresponding 
morphological monitoring periods.  (c.) There was a moderate negative relationship between rate of 
beach volume change and mean duration of events (n=7, r=-0.59).  This relationship was not 
statistically significant (p=0.17).  Negative rates of beach volume change are associated with net 
volume losses; positive rates of beach volume change are associated with net volume gains.     
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Figure 8.18 (a.) Rates of foredune volume change at Rossbehy broken down by morphological 
monitoring period.  (b.) Mean duration of storm events occurring during corresponding morphological 
monitoring periods.  (c.) There was a very strong negative relationship between rate of foredune 
volume change and mean duration of events (n=9, r=-0.96).  This relationship was statistically 
significant (p<0.001).  Negative rates of dune volume change are associated with net volume losses; 
positive rates of dune volume change are associated with net volume gains.   This result indicates 
longer duration events are associated with higher rates of dune volume loss.   
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Figure 8.19 (a.) Rates of volume change at Rossbehy beach broken down by morphological 
monitoring period.  (b.) Maximum duration of storm events that occurred during corresponding 
morphological monitoring periods.  (c.) There was a weak negative relationship between rate of beach 
volume change and max duration of events (n=7, r=-0.39).  This relationship was not statistically 
significant (p=0.40).  Negative rates of beach volume change are associated with net volume losses; 
positive rates of beach volume change are associated with net volume gains.     
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Figure 8.20 (a.) Rates of foredune volume change at Rossbehy broken down by morphological 
monitoring period.  (b.) Maximum durations of storm events occurring during corresponding 
morphological monitoring periods.  (c.) There was a very strong negative relationship between rate of 
foredune volume change and maximum duration of events (n=9, r=-0.93).  This relationship was 
statistically significant (p<0.001).  Negative rates of dune volume change are associated with  
net volume losses; positive rates of dune volume change are associated with net volume gains.    
This result indicates longer duration events are associated with higher rates of dune volume loss.   
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Figure 8.21 (a.) Rates of volume change at Inch broken down by morphological monitoring period.  
(b.) Mean duration of storm events which occurred during corresponding morphological monitoring 
periods.  (c.) There was a moderate positive relationship between rate of beach volume change and 
mean duration of events (n=8, r=0.51).  This relationship was not statistically significant (p=0.20).  
Negative rates of volume change are associated with net volume losses; positive rates of volume 
change are associated with net volume gains.     
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Figure 8.22 (a.) Rates of volume change at Inch broken down by morphological monitoring period.  
(b.) Maximum duration of storm events which occurred during corresponding morphological 
monitoring periods.  (c.) There was a weak positive relationship between rate of beach volume change 
and max duration of events (n=8, r=0.37).  This relationship was not statistically significant (p=0.37).  
Negative rates of volume change are associated with net volume losses; positive rates of volume 
change are associated with net volume gains.     
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Figure 8.23 (a.) Rates of volume change at Rossbehy beach broken down by morphological 
monitoring period.  (b.) Max tidal level for events that occurred during corresponding morphological 
monitoring periods.  (c.) There was a moderate negative relationship between rate of beach volume 
change and max tidal levels associated with events (n=7, r=-0.45).  This relationship was not 
statistically significant (p=0.31).  Negative rates of beach volume change are associated with net 
volume losses; positive rates of beach volume change are associated with net volume gains.     
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Figure 8.24 (a.) Rates of foredune volume change at Rossbehy broken down by morphological 
monitoring period.  (b.) Maximum tidal levels associated with events that occurred during 
corresponding morphological monitoring periods.  (c.) There was a moderate negative relationship 
between rate of foredune volume change and max tidal levels associated with events (n=9, r=-0.48).  
This relationship was not statistically significant (p=0.19).  Negative rates of dune volume change are 
associated with net volume losses; positive rates of dune volume change are associated with net 
volume gains.  
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Figure 8.25 (a.) Rates of volume change at Inch broken down by morphological monitoring period.  
(b.) Max tidal levels associated with storm events that occurred during corresponding morphological 
monitoring periods.  (c.) There was a weak positive relationship between rate of volume change and 
mean time between events (n=8, r=0.33).  This relationship was not statistically significant (p=0.42).  
Negative rates of volume change are associated with net volume losses; positive rates of volume 
change are associated with net volume gains.     
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Figure 8.26 (a.) Rates of volume change at Rossbehy beach broken down by morphological 
monitoring period.  (b.) Mean time betwen storm events that occurred during corresponding 
morphological monitoring periods.  (c.) There was a weak negative relationship between rate of beach 
volume change and mean time between events (n=7, r=-0.32).  This relationship was not statistically 
significant (p=0.48).  Negative rates of beach volume change are associated with net volume losses; 
positive rates of beach volume change are associated with net volume gains.     
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Figure 8.27 (a.) Rates of foredune volume change at Rossbehy broken down by morphological 
monitoring period.  (b.) Mean time between storm events that occurred during corresponding 
morphological monitoring periods.  (c.) There was a moderate positive relationship between rate of 
foredune volume change and mean time between events (n=9, r=0.56).  This relationship was not 
statistically significant (p=0.11).  Negative rates of dune volume change are associated with net  
volume losses; positive rates of dune volume change are associated with net volume gains.  
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Figure 8.28 (a.) Rates of volume change at Inch broken down by morphological monitoring period.  
(b.) Mean time between storm events that occurred during corresponding morphological monitoring 
periods.  (c.) There was a moderate negative relationship between rate of volume change and mean 
time between events (n=8, r=-0.44).  This relationship was not statistically significant (p=0.27).  
Negative rates of volume change are associated with net volume losses; positive rates of volume 
change are associated with net volume gains.     
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Figure 8.29 (a.) Rates of volume change at Rossbehy beach broken down by morphological 
monitoring period.  (b.) Mean significant wave height associated with storm events that occurred 
during corresponding morphological monitoring periods.  (c.) There was a strong negative relationship 
between rate of beach volume change and mean Hs associated with events (n=7, r=-0.67).  This 
relationship was not statistically significant (p=0.10).  Negative rates of beach volume change are 
associated with net volume losses; positive rates of beach volume change are associated with net 
volume gains.     
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Figure 8.30 (a.) Rates of foredune volume change at Rossbehy broken down by morphological 
monitoring period.  (b.) Mean significant wave height associated with storm events that occurred 
during corresponding morphological monitoring periods.  (c.) There was a moderate negative 
relationship between rate of foredune volume change and mean Hs associated with events (n=9, r=-
0.5).  This relationship was not statistically significant (p=0.17).  Negative rates of dune volume 
change are associated with net volume losses; positive rates of dune volume change are  
associated with net volume gains. 
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Figure 8.31 (a.) Rates of volume change at Rossbehy beach broken down by morphological 
monitoring period.  (b.) Maximum significant wave height associated with storm events that occurred 
during corresponding morphological monitoring periods.  (c.) There was a moderate negative 
relationship between rate of beach volume change and max Hs associated with events (n=7, r=-0.56).  
This relationship was not statistically significant (p=0.20).  Negative rates of beach volume  
change are associated with net volume losses; positive rates of beach volume change are  
associated with net volume gains.     
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Figure 8.32 (a.) Rates of foredune volume change at Rossbehy broken down by morphological monitoring 
period.  (b.) Maximum significant wave height associated with storm events that occurred during 
corresponding morphological monitoring periods.  (c.) There was a moderate negative relationship between 
rate of foredune volume change and max Hs associated with events (n=9, r=-0.58).  This relationship was 
not statistically significant (p=0.10).  Negative rates of dune volume change are associated  
with net volume losses; positive rates of dune volume change are associated with net  
volume gains. 
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Figure 8.33 (a.) Rates of volume change at Inch broken down by morphological monitoring period.  
(b.) Mean significant wave height associated with storm events that occurred during corresponding 
morphological monitoring periods.  (c.) There was a strong positive relationship between rate of 
volume change and mean Hs associated with events (n=8, r=0.74).  This relationship was statistically 
significant (p<0.05).  Negative rates of volume change are associated with net volume losses; positive 
rates of volume change are associated with net volume gains.   This result indicates higher significant 
wave heights during storms are associated with higher rates of volume gain at the site.   
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Figure 8.34 (a.) Rates of volume change at Inch broken down by morphological monitoring period.  
(b.) Maximum significant wave height associated with storm events that occurred during 
corresponding morphological monitoring periods.  (c.) There was a strong positive relationship 
between rate of volume change and max Hs associated with events (n=8, r=0.62).  This relationship 
was not statistically significant (p=0.10).  Negative rates of volume change are associated with net 
volume losses; positive rates of volume change are associated with net volume gains.  
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Figure 8.35 (a.) Rates of volume change at Rossbehy beach broken down by morphological 
monitoring period.  (b.) Mean peak wave period associated with storm events that occurred during 
corresponding morphological monitoring periods.  (c.) There was a weak negative relationship between 
rate of beach volume change and mean peak period associated with events (n=7, r=-0.34).  This 
relationship was not statistically significant (p=0.46).  Negative rates of beach volume change are 
associated with net volume losses; positive rates of beach volume change are associated with net 
volume gains.     



	 149		 	

Figure 8.36 (a.) Rates of foredune volume change at Rossbehy broken down by morphological 
monitoring period.  (b.) Mean peak wave period associated with storm events that occurred during 
corresponding morphological monitoring periods.  (c.) There was a very weak relationship (neither 
positive or negative) between rate of foredune volume change and mean peak period associated with 
events (n=9, r=0).  This relationship was not statistically significant (p=0.998).  Negative rates of dune 
volume change are associated with net volume losses; positive rates of dune volume change are 
associated with net volume gains. 
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Figure 8.37 (a.) Rates of volume change at Inch broken down by morphological monitoring period.  
(b.) Mean peak wave period associated with storm events that occurred during corresponding 
morphological monitoring periods.  (c.) There was a moderate positive relationship between rate of 
volume change and mean peak period associated with events (n=8, r=0.57).  This relationship was not 
statistically significant (p=0.14).  Negative rates of volume change are associated with net volume 
losses; positive rates of volume change are associated with net volume gains.  
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Figure 8.38 (a.) Rates of volume change at Rossbehy beach broken down by morphological 
monitoring period.  (b.) Mean wind speed associated with storm events that occurred during 
corresponding morphological monitoring periods.  (c.) There was a very weak positive relationship 
between rate of beach volume change and mean wind speed associated with events (n=7, r=0.09).  This 
relationship was not statistically significant (p=0.84).  Negative rates of beach volume change are 
associated with net volume losses; positive rates of beach volume change are associated with net 
volume gains.     
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Figure 8.39 (a.) Rates of foredune volume change at Rossbehy broken down by morphological 
monitoring period.  (b.) Mean wind speeds associated with storm events that occurred during 
corresponding morphological monitoring periods.  (c.) There was a very weak positive relationship 
between rate of foredune volume change and mean wind speed associated with events (n=9, r=0.17).  
This relationship was not statistically significant (p=0.66).  Negative rates of dune volume change are 
associated with net volume losses; positive rates of dune volume change are associated with net 
volume gains. 
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Figure 8.40 (a.) Rates of volume change at Rossbehy beach broken down by morphological 
monitoring period.  (b.) Max gust speed associated with storm events that occurred during 
corresponding morphological monitoring periods.  (c.) There was a weak negative relationship between 
rate of beach volume change and mean wind speed associated with events (n=7, r=-0.39).  This 
relationship was not statistically significant (p=0.39).  Negative rates of beach volume change are 
associated with net volume losses; positive rates of beach volume change are associated with net 
volume gains.     
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Figure 8.41 (a.) Rates of foredune volume change at Rossbehy broken down by morphological 
monitoring period.  (b.) Maximum gust speeds associated with storm events that occurred during 
corresponding morphological monitoring periods.  (c.) There was a weak negative relationship between 
rate of foredune volume change and max gust speed associated with events (n=9, r=-0.29).  This 
relationship was not statistically significant (p=0.45).  Negative rates of dune volume change are 
associated with net volume losses; positive rates of dune volume change are associated with net 
volume gains. 
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Figure 8.42 (a.) Rates of volume change at Inch broken down by morphological monitoring period.  
(b.) Mean wind speed associated with storm events that occurred during corresponding morphological 
monitoring periods.  (c.) There was a very weak negative relationship between rate of beach volume 
change and mean wind speeds associated with events (n=8, r=-0.04).  This relationship was not 
statistically significant (p=0.92).  Negative rates of volume change are associated with net volume 
losses; positive rates of volume change are associated with net volume gains.  
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Figure 8.43 (a.) Rates of volume change at Inch broken down by morphological monitoring period.  
(b.) Maximum gust speed associated with storm events that occurred during corresponding 
morphological monitoring periods.  (c.) There was a moderate positive relationship between rate of 
beach volume change and max gust speeds associated with events (n=8, r=0.46).  This relationship was 
not statistically significant (p=0.24).  Negative rates of volume change are associated with net volume 
losses; positive rates of volume change are associated with net volume gains.  
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Figure 8.44 (a.) Rates of volume change at Rossbehy beach broken down by morphological 
monitoring period.  (b.) Prevailing wind directions for events occurring during each corresponding 
morphological monitoring period.     	
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Figure 8.45 (a.) Rates of foredune volume change at Rossbehy broken down by morphological 
monitoring period.  (b.) Prevailing wind directions for events occurring during each corresponding 
morphological monitoring period.      
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Figure 8.46 (a.) Rates of volume change at Inch broken down by morphological monitoring period.  
(b.) Prevailing wind directions for events occurring during each corresponding morphological 
monitoring period.      
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Table 8.3 Rates of beach volume change for each of the morphological monitoring periods at Rossbehy and event characteristics used to test for the existence of simple linear relationships.  No 
statistically significant correlations were observed between rate of beach volume change and any of these variables.   

	 	

Rossbehy Beach 

Start End 

Rate of 
beach 

volume 
change (Rvs) 
(m3/m2/day) 

Frequency 
of Events 

Mean 
Duration of 

Events 
(hours) 

Maximum 
Duration 
of Events 

(hours) 

Max tidal 
level 

associated 
with 

Events (m 
ODM) 

Mean lag 
time 

between 
events 

(hours) 

Mean Hs 
associated 

with 
events (m) 

Maximum 
Hs 

associated 
with 

events (m) 

Mean 
peak 

period 
associated 

with 
events 

(sec) 

Mean 
wind 

speed 
associated 

with 
events 

(m/s) 

Maximum 
gust speed 
associated 

with 
events 

(m/s) 

2012-06-28 2012-08-05 0.0005 3 31 43 2.38 357 1.27 1.60 7 5.54 11.54 
2012-08-05 2012-10-07 0.019 6 22 34 2.13 219 1.23 1.74 7 6.02 12.13 
2013-01-30 2013-02-28 0.019 6 25 38 2.20 76 1.26 1.69 9 4.64 11.23 
2013-02-28 2013-04-19 -0.029 4 54 118 2.60 252 1.44 2.53 9 5.13 18.96 
2013-04-19 2013-06-05 0.004 2 24 35 2.01 226 1.29 1.73 7 7.83 15.53 
2013-06-05 2013-12-11 0.001 13 44 145 2.82 352 1.30 2.42 8 4.33 11.93 
2014-01-16 2014-05-04 0.002 17 69 231 2.94 70 1.49 2.84 9 6.68 28.35 

  
r 0.09 -0.59 -0.39 -0.45 -0.32 -0.67 -0.56 -0.34 0.09 -0.39 

  
N 7 7 7 7 7 7 7 7 7 7 

  
t (abs. value) 0.199 1.623 0.934 1.129 0.768 1.992 1.494 0.804 0.201 0.940 

  
p 0.85029 0.16561 0.39338 0.31032 0.47698 0.10300 0.19551 0.45790 0.84886 0.39029 
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Rossbehy Foredune 

Start End 

Rate of scarp 
volume 

change (Rvs) 
(m3/m2/day) 

Frequency of 
Events 

Mean 
Duration of 

Events 
(hours) 

Maximum 
Duration of 

Events 
(hours) 

Max tidal level 
associated 

with Events 
(m ODM) 

Mean lag 
time 

between 
events 

(hours) 

Mean Hs 
associated 

with events 
(m) 

Maximum 
Hs 

associated 
with events 

(m) 

Mean peak 
period 

associated 
with events 

(sec) 

Mean wind 
speed 

associated 
with events 

(m/s) 

Maximum 
gust speed 
associated 

with events 
(m/s) 

2012-06-28 2012-08-05 -0.027 3 31 43 2.38 357 1.27 1.60 7 5.54 11.54 

2012-10-07 2012-11-15 -0.083 3 38 55 2.13 301 1.42 1.92 10 3.82 10.65 
2012-11-15 2013-01-30 -0.359 13 82 308 2.80 62 1.39 2.60 9 4.45 18.79 

2013-01-30 2013-02-28 -0.038 6 25 38 2.20 76 1.26 1.69 9 4.64 11.23 

2013-02-28 2013-04-19 -0.071 4 54 118 2.60 252 1.44 2.53 9 5.13 18.96 
2013-04-19 2013-06-05 -0.001 2 24 35 2.01 226 1.29 1.73 7 7.83 15.53 

2013-06-05 2013-12-11 0.000 13 44 145 2.49 352 1.30 2.42 8 4.33 11.93 

2013-12-11 2014-01-16 -1.049 4 195 633 2.82 30 1.48 2.97 8 5.12 20.38 

2014-01-16 2014-05-04 -0.021 17 69 231 2.94 70 1.49 2.84 9 6.68 28.35 

  
r 0.12 -0.96 -0.93 -0.48 0.56 -0.50 -0.58 0.00 0.17 -0.29 

  
N 9 9 9 9 9 9 9 9 9 9 

  
t (abs. value) 0.322 9.351 6.954 1.455 1.807 1.521 1.886 0.003 0.453 0.809 

  
p 0.75663 0.00003 0.00022 0.18887 0.11378 0.17211 0.10127 0.99787 0.66419 0.44523 

 

Table 8.4 Rates of scarp volume change for each of the morphological monitoring periods at Rossbehy and event characteristics used to test for the existence of simple linear relationships.  Strong 
negative statistically significant correlations were observed between mean duration of events and rate of scarp volume change and maximum duration of events and rate of scarp volume change (p-
values highlighted in blue).   
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Inch 

Start End 

Rate of  
volume 

change (Rvs) 
(m3/m2/day) 

Frequency 
of Events 

Mean 
Duration of 

Events 
(hours) 

Maximum 
Duration 
of Events 

(hours) 

Max tidal 
level 

associated 
with events 

(m ODM) 

Mean lag 
time 

between 
events 

(hours) 

Mean Hs 
associated 

with 
events (m) 

Maximum 
Hs 

associated 
with 

events (m) 

Mean peak 
period 

associated 
with events 

(sec) 

Mean 
wind 

speed 
associated 

with 
events 

(m/s) 

Maximum 
gust speed 
associated 

with 
events 

(m/s) 

2012-05-24 2012-08-06 -0.0022 4 29 43 2.38 405 1.28 1.60 7 5.03 11.54 
2012-08-06 2012-10-06 -0.0048 6 22 34 2.13 219 1.23 1.74 7 6.02 12.13 
2012-10-06 2013-01-09 -0.0002 11 78 308 2.88 135 1.38 2.48 9 4.32 11.43 
2013-01-09 2013-02-27 0.0006 11 43 154 2.41 62 1.34 2.60 9 4.50 18.79 
2013-02-27 2013-05-02 -0.0008 4 54 118 2.60 252 1.44 2.53 9 5.13 18.96 
2013-05-02 2013-06-20 -0.0007 4 29 42 2.01 318 1.28 1.73 7 6.21 15.53 
2013-06-20 2014-03-12 0.0004 27 84 633 2.94 153 1.43 2.97 8 5.49 28.35 
2014-03-12 2014-08-28 0.0019 5 42 81 2.25 187 1.39 2.24 8 6.57 15.93 

  
r 0.30 0.51 0.37 0.33 -0.44 0.74 0.62 0.57 -0.04 0.46 

  
N 8 8 8 8 8 8 8 8 8 8 

  
t (abs. value) 0.764 1.449 0.975 0.859 1.213 2.697 1.943 1.710 0.110 1.295 

  
p 0.47401 0.19759 0.36741 0.42310 0.27072 0.03572 0.10000 0.13816 0.91632 0.24284 

 

Table 8.5 Rates of volume change for each of the morphological monitoring periods at Inch and event characteristics used to test for the existence of simple linear relationships.  A strong positive 
statistically significant correlation was observed between mean Hs associated with events and rate of volume (p-value highlighted in blue).   
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Figure 8.47 Residual scatterplot showing predicted scores against errors of prediction for Rossbehy 
foredune rate of change multiple regression analysis.  The plot confirms that the homoscedasticity 
assumption is met. 

Figure 8.48 Distribution of residuals for Rossbehy scarp rate of change multiple regression analysis.  
The distribution is close to normal, satisfying a principal assumption for multiple regression analysis.   



	 164	

	 	Figure 9.1 Methods of tracer injection.   
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Figure 9.2 Dry tracer particles used in this experiment. 

Figure 9.3 Tracer/sand mix under UV light at injection site. 
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Figure 9.4 Sites of sediment tracer injection and locations of core samples for December 2013 
tracer experiment.  The shoreline at distal end of the barrier has been updated to reflect the dune 
toe position on 11 December 2013, at which time a TLS survey was also carried out.   The 2 kg 
injection site was at an elevation of 2.91 m ODM and the 0.5 kg injection site was at an elevation 
of 2.50 m.   

Figure 9.5 Sampling with half pipes and trowel. 
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Figure 9.6 December sediment tracer experiment timeline in relation to tidal cycle.   Source of tide data:  Marine Institute 
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Figure 9.7 Wind speeds and directions during December 2012 tracer experiment.  Winds were 
predominantly southwesterly, with average speeds of 5.5 m/s. Hourly data obtained from Ventry 
weather station.    
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Figure 9.8 Samples from the December tracer experiment were analysed in 1.5 cm layers, 
whereby each layer was carefully removed, broken, and sifted through.  The presence and 
number of individual tracer particles was noted for each layer.   



	 170	

	 	

Figure 9.9 Individual tracer particles in a core sample.   
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Figure 9.10 Tracer distribution after first tidal cycle following first injection.   
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11 December PM 

Depth (cm) 11
-1

 

11
-2

 

11
-3

 

11
-4

 

11
-5

 

11
-6

 

11
-7

 

11
-8

 

11
-9

 

11
-1

0 

11
-1

1 

11
-1

2 

11
-1

3 

11
-1

4 

11
-1

5 

0-1.5 3 0 9 0 9 1 7 0 0 2 0 0 0 0 0 

1.5-3 0 0 1 2 4 1 0 0 0 0 0 0 0 0 0 

3-4.5 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 

4-4.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4.5-6 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 

6-7.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7.5-9 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 

9-10.5 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

10.5-12 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

12-13.5 0 0 0 0 0 0 0 0 0 0 0 0 0 
 

0 

13.5-15 0 0 0 0 0 0 0 0 0 0 0 0 0 
 

0 

15-16.5 0 0 0 0 0 0 0 0 0 
 

0 0 0 
  16.5-18 0 0 0 0 

 
0 0 0 0 

 
0 0 

   18-19.5 4 0 0 0 
 

0 0 
    

0 
   19.5-21 

 
0 6 

  
0 

     
0 

   21-22.5 
 

0 
             22.5-24 

               24-25.5 
               	Table 9.1 Tracer distribution with depth for each sample collected on 11 Dec.  
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Figure 9.11 Tracer distribution after third tidal cycle following first injection and second tidal 
cycle following second injection.     
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12 December AM 

Depth 12
-1

 

12
-2

 

12
-3

 

12
-4

 

12
-5

 

12
-6

 

12
-7

 

12
-8
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-9

 

12
-1

0 
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1 
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-1

3 
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4 
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5 

12
-1

6 
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-1

7 
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8 
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9 
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0 
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1 
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2 

0-1.5 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 

1.5-3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3-4.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4-4.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4.5-6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6-7.5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7.5-9 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9-10.5 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

10.5-12 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

12-13.5 0 0 0 0 0 0 0 0 0 0 
 

0 0 0 0 0 0 0 0 
 

0 

13.5-15 0 
 

0 0 0 0 0 0 0 0 
 

1 0 0 
 

0 
 

0 0 
 

0 

15-16.5 
  

0 0 0 0 0 0 0 
  

0 
        

0 

16.5-18 
  

0 0 0 0 
     

0 
        

0 

18-19.5 
    

0 0 
     

0 
         19.5-21 

     
0 

               21-22.5 
     

0 
               22.5-24 

     
0 

               24-25.5 
     

0 
               Table 9.2 Tracer distribution with depth for each sample collected on 12 Dec. 
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Figure 9.12 Sites of sediment tracer injection and locations of core samples for June 2014 tracer 
experiment.  The shoreline at distal end of the barrier has been updated to reflect the dune toe 
position on 4 May 2014 (the last TLS survey before the experiment).  It should be noted that the 
dune toe here had receded by approximately 50 m since the last experiment in December 2013.     
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Figure 9.13 June sediment tracer experiment timeline in relation to tidal cycle.  Source of tide data:  Marine Institute  
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Figure 9.14 Wind speeds and directions during June 2014 tracer experiment.  Winds were 
predominantly southeasterly, with average speeds of 8.6 m/s. Hourly data obtained from Ventry 
weather station.    
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Figure 9.15 Tracer particles in a June 2013 core under ordinary and UV light. 
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Figure 9.16 Tracer distribution after first tidal cycle following injection.  Small (top) and large 
(bottom) scale views of the site are shown to better illustrate sample distribution.   
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17 June - Midday 

Depth T
1-

1 

T
1-

2 

T
1-

3 

T
1-

4 

T
1-

5 

T
1-

6 

T
1-

7 

T
1-

13
 

T
1-

14
 

T
1-

15
 

T
1-

16
 

T
1-

17
 

T
1-

18
 

T
1-

19
 

T
1-

20
 

T
1-

21
 

T
1-

22
 

0-2 cm 4 0 0 0 0 0 0 0 0 0 0 15 1200 33 9 451 32 

2-4 cm 0 0 0 0 0 0 1 0 0 0 0 0 1100 7 0 61 9 

4-6 cm 1 0 0 0 0 0 0 0 0 0 0 0 1000 0 0 1 0 

6-8 cm 0 0 0 0 0 0 0 0 0 0 0 0 900 2 0 3 0 

8-10 cm 0 0 0 0 0 0 0 0 0 0 0 0 737 0 0 0 0 

10-12 cm 0 0 0 0 
 

0 
 

0 0 0 0 0 361 0 0 0 0 

12-14 cm 0 0 0 0 
 

0 
 

0 0 0 0 0 
 

0 
 

0 
 

14-16 cm 0 0 0 0 
   

0 0 0 
   

0 
   

16-18 cm 0 0 0 0 
   

0 0 0 
       

18-20 cm 0 0 
 

0 
   

0 
         

Table 9.3 Tracer distribution with depth for each sample collected after the first tidal cycle.  
Maps showing the locations of samples (labeled with corresponding sample IDs) are shown in 
figure 9.17.   
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Figure 9.17 Locations of samples labeled with sample IDs, which correspond to those in table 
9.3. Small (top) and large (bottom) scale views of the site are shown to better illustrate sample 
distribution.   
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Figure 9.18 Tracer distribution in top 0-4 cm layer for samples collected after first tidal cycle 
following injection.  Only area where samples containing positively identified tracer are shown. 

Figure 9.19 Tracer distribution in 4-8 cm depth layer for samples collected after first tidal cycle 
following injection.  
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    After 1st tidal cycle (t1) 

0-
4 

cm
 Longshore position of tracer cloud centroid (Y) - 

metres from injection point 4.6 

Velocity of transport (mm/s) 0.1072 

4-
8 

cm
 Longshore position of tracer cloud centroid (Y) - 

metres from injection point 4.0 

Velocity of transport (mm/s) 0.0924 

8-
12

 c
m

 Longshore position of tracer cloud centroid (Y) - 
metres from injection point 4.0 

Velocity of transport (mm/s) 0.0922 

Table 9.4 Longshore position of tracer cloud centroids and velocities of transport for sample 
layers 0-4 cm, 4-8 cm, and 8-12 cm.  (Samples collected after 1st tidal cycle) 

	 	

Figure 9.20 Tracer distribution in 8-12 cm depth layer for samples collected after first tidal cycle 
following injection.  
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Figure 9.21 Tracer distribution after second tidal cycle following injection.  	
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17/18 June - Midnight  

Depth (cm) T
2-

1 

T
2-

2 

T
2-

3 

T
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4 

T
2-

5 

T
2-

6 

T
2-
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2-
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T
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T
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T
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16
 

T
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T
2-
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T
2-
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T
2-

21
 

0-2 

14
 

15
2 13

 2 0 0 

39
8 

33
44

 

53
 

23
 8 45
 

71
0 

16
4 43

 

13
 1 

16
6 

25
1 87

 

42
 

2-4 
18

 

32
0 5 0 1 2 

21
0 39

 

17
 7 4 0 9 28
 0 0 0 51
 1 1 0 

4-6 

34
 

45
0 8 0 2 0 33

 2 25
 0 0 0 4 0 0 1 0 0 0 0 0 

6-8  

18
 

16
0 12

 0 0 0 1 0 13
 0 0 0 1 0 0 0 0 0 0 0 1 

8-10  

6 99
 4 0 0 0 4 4 23
 0 0 0 1 1 0 0 0 0 0   

10-12  1 7 0 0 0 0 0  0 0 0 0 2 1  0 0  0   

12-14   0 0 0 0 0   0 0 0 0 0 0  0      

14-16   9 0  0 0   0  0     0      

16-18  0   0 0     0           

18-20  0   0                 

Table 9.4 Tracer distribution with depth for each sample collected after the second tidal cycle. A 
map showing the locations of samples (labeled with corresponding sample IDs) is shown in 
figure 9.22.   
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Figure 9.22 Locations of samples labeled with sample IDs, which 
correspond to those in table 9.4.	

Figure 9.23 Tracer distribution in top 0-4 cm layer in samples collected after second 
tidal cycle following injection.   
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Figure 9.24 Tracer distribution in 4-8 cm layer in samples collected after 
second tidal cycle following injection.   

Figure 9.25 Tracer distribution in 8-12 cm layer in samples collected after 
second tidal cycle following injection.   
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After 2nd tidal 
cycle (t2) 

0-
4 

cm
 

Longshore position of tracer cloud centroid (Y) - metres from 
injection point 6.1 

Distance from centroid at t1 (m) 1.5 

Velocity of transport (mm/s) 0.0337 

4-
8 

cm
 

Longshore position of tracer cloud (Y) relative to previous 
position of centroid (m) 4.9 

Distance from centroid at t1 (m) 0.9 

Velocity of transport (mm/s) 0.0205 

8-
12

 c
m

 

Longshore position of tracer cloud centroid (Y) - metres from 
injection point 5.4 

Distance from centroid at t1 (m) 1.4 

Velocity of transport (mm/s) 0.0320 

Table 9.5 Longshore position of tracer cloud centroids and velocities of transport for sample 
layers 0-4 cm, 4-8 cm, and 8-12 cm.  (Samples collected after 2nd tidal cycle) 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure 9.26 Tracer distribution after third tidal cycle following injection.  	
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T
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T
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 1 3 3 0 6 10
 3 0 0 43
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2 0 5 9 55
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 1 

2-4 56
 0 2 2 2 8 2 3 1 0 6 56
 1 0 16
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 9 0 

4-6 46
 0 0 0 4 6 1 0 0 0 0 0 0 0 19
 

27
 

11
 5 0 

6-8 

0 0 

 
3 0 0 0 0 0 0 0 0 0 0 44
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11
 1 0 

8-10 

0 0 

 
0 0 0 0 0 

  
0 0 0 

 12
 

25
 0 2 2 

10-
12  

0 

 
0 0 

 
0 

   
0 0 0 

 
5 

 
2 1 0 

12-
14    

0 0 

     
0 1 0 

   
0 1 

 

14-
16     

0 

       
0 

   
0 0 

 

16-
18                 

0 0 

 

18-
20                    

Table 9.6 Tracer distribution with depth for each sample collected after the third tidal cycle.  A 
map showing the locations of samples (labeled with corresponding sample IDs) is shown in 
figure 9.27.   

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 Figure 9.27 Locations of samples labeled with sample IDs, which 

correspond to those in table 9.6.	
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Figure 9.28 Tracer distribution in top 0-4 cm layer in samples 
collected after third tidal cycle following injection.   

Figure 9.29 Tracer distribution in 4-6 cm layer in samples collected 
after third tidal cycle following injection.   
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    After 3rd tidal cycle (t3) 

0-
4 

cm
 

Longshore position of tracer cloud centroid (Y) - 
metres from injection point 19.1 

Distance from centroid at t2 (m) 13.1 

Velocity of transport (mm/s) 0.3022 

4-
8 

cm
 

Longshore position of tracer cloud centroid (Y) - 
metres from injection point 31.3 

Distance from centroid at t2 (m) 26.4 

Velocity of transport (mm/s) 0.6110 

8-
12

 c
m

 

Longshore position of tracer cloud centroid (Y) - 
metres from injection point 36.8 

Distance from centroid at t2 (m) 31.4 

Velocity of transport (mm/s) 0.7268 

Table 9.7 Longshore position of tracer cloud centroids and velocities of transport for sample 
layers 0-4 cm, 4-8 cm, and 8-12 cm.  (Samples collected after 3rd tidal cycle) 

Figure 9.30 Tracer distribution in 8-12 cm layer in samples collected 
after third tidal cycle following injection.   
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After 1st 
tidal cycle 

After 2nd 
tidal cycle 

After 3rd 
tidal cycle 

0-
4 

cm
 

Longshore position of tracer cloud 
centroid (Y) - metres from injection 
point 

4.6 6.1 19.1 

Distance between tracer cloud 
centroids - 1.5 13.1 

Velocity of transport (mm/s) 0.1072 0.0337 0.3022 

4-
8 

cm
 

Longshore position of tracer cloud 
centroid (Y) - metres from injection 
point 

4.0 4.9 31.3 

Distance between tracer cloud 
centroids - 0.9 26.4 

Velocity of transport (mm/s) 0.0924 0.0205 0.6110 

8-
12

 c
m

 

Longshore position of tracer cloud 
centroid (Y) - metres from injection 
point 

4.0 5.4 36.8 

Distance between tracer cloud 
centroids - 1.4 31.4 

Velocity of transport (mm/s) 0.0922 0.0320 0.7268 

Table 9.8 Longshore position of tracer cloud centroids and velocities of transport for subsample 
layers 0-4 cm, 4-8 cm, and 8-12 cm from samples collected after each of the three tidal cycles.   
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Figure 10.1 Nearshore mesh, across which equations are solved in MIKE21, at Rossbehy.  
Bathymetric data has been interpolated to the mesh.  

Figure 10.2 INFOMAR Bathymetry Data for Dingle Bay used in model set-up.  Extracted from 
INFOMAR (2015b) 
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Figure 10.3 Aerial LiDAR data used in model set-up.  The survey took place in April 2011.  Data was 
provided by Kerry County Council.   
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Cross-shore dune recession analysis (van Rijn, 2009) 

Period Location 
Calculated Dune 

Recession (m) 
Measured Dune 
Recession (m) 

July 2009-Feb 2010 Swash 2.2–3.3 0–4 
July 2009-Feb 2010 Drift 12.5–18.77 37–70 
July 2009-Feb 2010 Island low 16.1–24.2 26–30 
July 2009-Feb 2010 Island high 2.5–3.9 0–22 
Feb 2010-June 2010 Swash 0.65–1.0 N/A 
Feb 2010-June 2010 Drift 3.6–5.5 0–11 
Feb 2010-June 2010 Island low 4.7-7.1 10–22 
Feb 2010-June 2010 Island high 0.7–1.1 0–7 
June 2010-Nov 2010 Swash 1-1.5 N/A 
June 2010-Nov 2010 Drift 5.8–8.7 19–35 
June 2010-Nov 2010 Island low 7.5–11.3 21–22 
June 2010-Nov 2010 Island high 1.2–1.8 10–21 
Nov 2010-Feb 2011 Swash 0.9-1.44 0–0.5 
Nov 2010-Feb 2011 Drift 5.6–8.4 26–29 
Nov 2010-Feb 2011 Island low 7.3–11 12–16 
Nov 2010-Feb 2011 Island high 1.1-1.66 7–8 
Feb 2011-June 2011 Swash 0.7–1.1 0 
Feb 2011-June 2011 Drift 4.25–6.30 0–8 
Feb 2011-June 2011 Island low 5.4–8.14 0 
Feb 2011-June 2011 Island high 0.8–1.29 0–7 
June 2011-Oct 2011 Swash 0.5–1.06 0–0.5 
June 2011-Oct 2011 Drift 3.9–5.9 10–33 
June 2011-Oct 2011 Island low 5–7.6 0.5–7.5 
June 2011-Oct 2011 Island high 0.8–1.2 10–16 

 
Table 10.1 Measured versus calculated rates of dune recession using the cross-shore formula of 
van Rijn (2009) from a study by O’Shea and Murphy (2013).  In that study, an evaluation of the 
effectiveness of various transport formulae was carried out in an effort to choose the most 
appropriate one for the Dingle Bay model set-up used in this PhD research.  There was good 
agreement between modeled dune recession using the cross-shore formula of van Rijn (2009) and 
measurements for the swash-aligned zone.   Data source:  O’Shea and Murphy (2013).   
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Alongshore dune recession analysis (van Rijn, 1998) 

Year Location 

Effective Recession Rates 
from Alongshore Transport 
(Load/Length X Avg Dune 
Height) - calculated using 

formula of van Rijn (1998) (m) 
Measured Dune Recession 

Approx. (m) 
2009-10 Swash 0.02 0–4 
2010–11 Swash 0.2 0–1 
2009–10 Drift 73 45–80 
2010–11 Drift 82 30–70 
2009–10 Island high 31 10–44 

 
Island low 138 36–100 

2010–11 Island high 44 17–36 

 
Island low 196 20–50 

 
Table 10.2 Measured versus calculated rates of dune recession using the alongshore formula of 
van Rijn (1998) from a study by O’Shea and Murphy (2013).  In that study, an evaluation of the 
effectiveness of various transport formulae was carried out in an effort to choose the most 
appropriate one for the Dingle Bay model set-up used in this PhD research.  There was some 
agreement between modeled dune recession using the alongshore formula of van Rijn (1998) and 
measurements for the drift-aligned zone.   Data source:  O’Shea and Murphy (2013).   
 
 

Modal 
wave 
direction 
associated 
with events 
(°) 

Mean duration of 
events 
characterised by 
modal wave 
conditions 
(HH:MM :SS) 

Mean wave 
direction associated 
with modal wave 
conditions (°) 

Mean Hsig 
associated 
with modal 
wave 
conditions 
(m) 

Peak period 
associated 
with modal 
wave 
conditions 
(seconds) 

255-260 52:47:13 259 1.34 8 

 
Table 10.3 Characteristics associated with all storm events that occurred during the period 2011-
2014 that were characterized by modal wave conditions.  Data extracted from nearshore wave 
hindcast data.   
 
 
 
 

Start date End date 

Event 
Duration 

(HH:MM:
SS) 

Mean 
Hsig (m) 

Max Hsig 
(m) 

Peak 
period 

(seconds) 

Mean 
wave 

direction 
(°) 

2012-01-24 
18:00:00 

2012-01-26 
23:00:00 53:00:00 1.49 1.90 9 259 

  
Table 10.4 Characteristics of event chosen to represent “typical” storm conditions.  Data 
extracted from nearshore wave hindcast data.  	
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Figure 10.4 
Wind speeds 
used to drive 
typical event 
scenario. 

Figure 10.5 
Wind 
directions used 
to drive typical 
event scenario. 

Figure 10.6 
Surge heights 
used to drive 
typical event 
scenario. 
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Start date End date 

Event 
Duration 
(HH:MM:
SS) 

Mean 
Hsig 
(m) 

Max 
Hsig 
(m) 

Peak 
period 
(seconds) 

Mean wave 
direction (°) 

2013-12-13 
06:00:00 

2014-01-08 
15:00:00 

633:00:00 1.85 2.97 9 260 

Table 10.5 Characteristics of most extreme event to have occurred during period over which data 
was available (2011-2014).  Data extracted from nearshore wave hindcast data.   

	
	
	
	
	
	
	

	
	 	

Figure 10.7 Storm power (in terms of minimum pressure and wind speed) for extreme events that 
have affected Ireland compared to the 26/27 December and 23/24 December 2013 events.  Data 
for historic events compiled by Orford et al. (1999). 
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Figure 10.8 Wind 
speeds used to drive 
extreme event scenario. 

Figure 10.9 Wind 
directions used to 
drive extreme event 
scenario. 

Figure 10.10 Surge 
heights used to drive 
extreme event scenario. 
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 Extreme Event Typical Event Fair-weather Event 
Start Date 26/12/2013 11:30 24/01/2012 18:00 01/02/2012 00:00 
End Date 28/12/2013 16:30 26/01/2012 23:00 03/02/2012 05:00 
Event Duration 53 hours 53 hours 53 hours 
Mean Wind Speed 7.7 m/s 6.4 m/s 4.6 m/s 
Max Wind Speed 20.3 m/s 12.2 m/s 7.6 m/s 
Dominant wind direction SW SW S 
Max surge height 50 cm 18 cm none 

 

Table 10.6 Model inputs for extreme event scenario, typical event scenario, and fair-weather 
event scenario.  Inputs were derived from simulated nearshore wave data and local weather 
station data.  Each scenario was run under sea-levels of 0 cm, 10 cm, and 50 cm.   

	 	

Figure 10.11 Wind 
speeds used to drive 
fair-weather scenario. 

Figure 10.12 Wind 
directions used to drive 
fair-weather scenario. 
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Figure 10.13 Coordinate 
at which time series of 
sediment transport 
magnitude and direction 
and water levels were 
extracted for each 
scenario.  Injection of 
sediment tracer took place 
at this same coordinate 
during the June 2014 
sediment tracer 
experiment.  Bed levels 
are shown relative to 
LAT.  UTM coordinate 
433532.807, 5770466.742 

Figure 10.14 Second coordinate at which time series of water levels were extracted to give full 
picture of tidal state during simulations.  Bed levels are shown relative to LAT.   
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Figure 10.15 Aerial view of the area covered by the maps presented in section 10.3.1 relative to 
the 0 m and -5 m depth contours and the site of the sediment tracer experiment.    
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Figure 10.16 Bed level change for the fair-weather, 0 m SLR scenario.  Contours are relative to LAT.  

Bed level change – fair-weather conditions – 0 m SLR 
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Figure 10.17 Volume gains and losses for the fair-weather, 0 m SLR scenario.  Contours are relative to 
LAT.     

Volume gains and losses - fair-weather conditions – 0 m 
SLR 
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Figure 10.18 Bed level change for the fair-weather, 0.1 m SLR scenario.  Contours are relative to 
LAT.     

Bed level change - fair-weather conditions – 0.1 m SLR 
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Figure 10.19 Volume gains and losses for the no event, 0.1 m SLR scenario.  Contours are relative to 
LAT.     

Volume gains and losses - fair-weather conditions – 0.1 m 
SLR 
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Figure 10.20 Bed level change for the no event, 0.5 m SLR scenario.  Contours are relative to LAT.     

Bed level change – fair-weather conditions – 0.5 m SLR 
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Figure 10.21 Volume gains and losses for the no event, 0.5 m SLR scenario.  Contours are relative to 
LAT.     

Volume gains and losses - fair-weather conditions – 0.5 m 
SLR 
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Figure 10.22 Volume change above the 0 m bathymetric contour (top) and between the -5 to 0 m 
bathymetric contours (bottom) for the 3 SLR scenarios run over the course of the fair-weather 
scenario at Rossbehy.  0 m contour is equal to LAT.   

Volume	change	above	0	m	bathymetric	contour	near	Rossbehy	–	fair-weather	conditions	

Volume	change	between	-5	to	0	m	bathymetric	contours	near	Rossbehy	–	fair-
weather	conditions	
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Figure 10.23 Bed level change for the typical event, 0 m SLR scenario.  The polygons representing the 
0 m and -5 m contours were extracted from the initial bathymmetry.  Net volume change was 
calculated within the bounds of these polygons.  Contours are relative to LAT.     



	 211	

	 	

Figure 10.24 Volume gains and losses for the typical event, 0 m SLR scenario.  Contours are relative 
to LAT.     
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Figure 10.25 Bed level change for the typical event, 0.1 m SLR scenario.  Contours are relative to 
LAT.     
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Figure 10.26 Volume gains and losses for the typical event, 0.1 m SLR scenario.  Contours are relative 
to LAT.     
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Figure 10.27 Bed level change for the typical event, 0.5 m SLR scenario.  Contours are relative to 
LAT.     
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Figure 10.28 Volume gains and losses for the typical event, 0.5 m SLR scenario.  Contours are relative 
to LAT.     
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Figure 10.29 Volume change above the 0 m bathymetric contour (top) and between the -5 to 0 m 
bathymetric contours (bottom) for the 3 SLR scenarios run over the course of the “typical event” 
scenario at Rossbehy.  0 m contour is equal to LAT.   
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Figure 10.30 Bed level change for the extreme event, 0 m SLR scenario.  Contours are relative to 
LAT.     
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Figure 10.31 Volume gains and losses for the extreme event, 0 m SLR scenario.  Contours are relative 
to LAT.     



	 219	

	 	

Figure 10.32 Bed level change for the extreme event, 0.1 m SLR scenario.  Contours are relative to 
LAT.     
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Figure 10.33 Volume gains and losses for the extreme event, 0.1 m SLR scenario.  Contours are 
relative to LAT.     
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Figure 10.34 Bed level change for the extreme event, 0.5 m SLR scenario.  Contours are relative to 
LAT.     
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Figure 10.35 Volume gains and losses for the extreme event, 0.5 m SLR scenario.  Contours are 
relative to LAT.     
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Figure 10.36 Volume change above the 0 m bathymetric contour (top) and between the -5 to 0 m 
bathymetric contours (bottom) for the 3 SLR scenarios run over the course of the extreme event 
scenario at Rossbehy.  0 m contour is equal to LAT.   

Figure 10.37 Graphic summary of net volume change above the -5 m depth contour for each 
model scenario.  0 m contour is equal to LAT.   
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Figure 10.39 Water levels for nearshore coordinate (UTM coordinate 431732.69, 5770864.57 – shown 
in fig. 10.14) and sediment tracer injection point coordinate (UTM coordinate 433532.807, 
5770466.742 – shown in fig. 10.13) during the three typical event simulations (0 m SLR, 0.1 m SLR, 
and 0.5 m SLR).  NB: While the simulation began on 24 Jan 2012 at 18:00, a 24 hour spin-up meant 
water levels did not reach statistical equilibrium until 25 Jan 2012 at 18:15.  Water levels are relative to 
MSL.   

Figure 10.38 Nearshore water levels for UTM coordinate 431732.69, 5770864.57 – shown in fig. 
10.14 - during the three fair-weather simulations (0 m SLR, 0.1 m SLR, and 0.5 m SLR).  NB: While 
the simulation began on 1 Feb 2012 at 00:00, a 24 hour spin-up meant water levels did not reach 
statistical equilibrium until 2 Feb 2012 at 01:00.  Water levels are relative to MSL.   

Nearshore	water	levels	during	fair-weather	simulation	
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Figure 10.40 Time series showing transport magnitude at the sediment tracer injection point 
during the typical event simulation for all three SLR scenarios.   

Figure 10.41 Mean and max bed load transport for typical event simulations for 0 m, 0.1 m, 
and 0.5 m SLR scenarios.   
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Figure 10.42 Compass rose plot illustrating direction of sediment transport at the sediment tracer 
injection point during the typical event simulation for all three SLR scenarios.  NB: While in many 
cases, wind and wave directions are defined positive clockwise from true North (coming from), in 
MIKE 21 load directions are defined positive clockwise from true North (going against). For clarity, 
the output was adjusted to reflect load directions coming from, as opposed to going against.  This 
means that, for example, for the 0 m SLR scenario, for 20% of the time, transport was from southeast 
to northwest and for 80% of the time, transport was from west to east (onshore).   

Figure 10.43 Time series showing water levels at the sediment tracer injection point during the 
extreme event simulation for all three SLR scenarios.  Water levels are relative to MSL.   
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Figure 10.44 Maximum water levels reached at sediment tracer injection point coordinate for all 
nine scenarios.  Water levels are relative to MSL.   

	

Figure 10.45 Duration of inundation at sediment tracer injection point coordinate for all nine 
scenarios.  Water levels are relative to MSL.   
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Figure 10.46 Time series showing transport magnitude at the sediment tracer injection point 
during the extreme event simulation for all three SLR scenarios.   

Figure 10.47 Mean and max bed load transport for extreme event simulations for 0 m, 0.1 m, and 0.5 
m SLR scenarios.   
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Figure 10.48 Compass rose plot illustrating direction of sediment transport at the sediment tracer 
injection point during the extreme event simulation for all three SLR scenarios.  	
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Figure 11.1 S-SLR conceptual model of evolution of Rossbehy in response to storms under a rising sea-
level.   


