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Figures and Tables

1 Introduction

Figure 2.1 Study area showing location of Inch and Rossbehy beach-dune barriers
within Dingle Bay, Co. Kerry. Data source: OSI

2 Theoretical Background

Figure 2.1 Sedimentary environments present at study site. Data sources: OSI; Guilcher
et al. (1960)

Figure 2.2 Idealised model of barrier spit development. LST = longshore sediment
transport. A reduction in wave energy at the updrift corner of a headland due to
wave refraction results in the deposition of sediment, which initiates spit growth.
Source: Davis and FitzGerald (2004)

Figure 2.3 Foredune and storm built beach ridge at Inch. Hesp et al. (2005) defined
foredunes as accumulations of sand formed by aeolian processes and beach ridges
as wave built accumulations of sediment. Image source: author’s own.

Figure 2.4 Historical recurves (circled) at Rossbehy (left) and Inch (right) may
represent eirlier limits of dune progression due to a historical breaching event.
Minor drift aligned recurves are present at both sites adjacent to the main inlet.
Source: Google Earth (Rossbehy) and OSI (Inch).

Figure 2.5 Plan form orientation of drift-aligned vs. swash-aligned barriers. Drift
alignment occurs when the down-drift sediment supply is sufficient to fulfil the
longshore power for transport, while swash-alignment occurs where the downdrift
supply is limited or non-existent. Figure modified from Sala (2009) and Stéphan
(2009).

Figure 2.6 Phases of spit restructuring after a decrease in longshore sediment supply.
Refraction induced changes in the longshore power gradients result in the
development of sediment cells. As additional cells develop, breaching may occur
at weaker points (along the up-drift cell boundary). If the breach enlarges, it
becomes the focus for a transverse transport corridor. Source: Orford et al. (1996).

Figure 2.7 Cross section of a breach channel area against water levels showing types of
breach, according to

Hartley and Pontee (2008). Modified from Sala (2009).

Figure 2.8 Cross-sectional inlet stability relationship of Escoffier (1940). Modified
from Escoffier (1940) and van de Kreeke (1992).

Figure 2.9 Incipient or embryo dunes at Inch, Co. Kerry. Dune hummocks, like those
shown here, are also termed nebkha or coppice dunes. Source: author’s own.
Figure 2.10 Established foredune at Inch, Co. Kerry. The wooden posts on the ridge are
approximately 1 m high. High water mark (not shown) is approximately 15-20 m

behind the point from which the photograph was taken. Source: author’s own.

Figure 2.11 Saucer blowout (width = approximately 15-20 m) at Rossbehy, Co. Kerry.
Source: author’s own.

Figure 2.12 Relict dune ridges at Inch, Co. Kerry. Source: author’s own.

Figure 2.13 Parabolic (U-shaped) dunes at Inch, Co. Kerry. Source: OSI (2005)

Figure 2.14 Conceptual model of the relationship between dune morphology and
sediment budget. See text for explanation. Source: Psuty (2004)

Figure 2.15 Pre- and post- storm beach profiles. Source: Van Thiel de Vries (2009)

Figure 2.16 Dune erosion mechanisms described by Nishi and Kraus (2001). Source:
Nishi and Kraus (2001)

Figure 2.17 Example of layer separation and collapsing at Rossbehy, Co. Kerry.
Source: author’s own.

Figure 2.18 Phases leading up to post-storm dune recovery. Source: Carter et al .
(1990).
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Figure 2.19 Evidence of slope failure of a dune scarp (height = approximately 5 m) at
Rossbeigh, Co. Kerry. Slump blocks held together by vegetation litter the
foredune. Source: author’s own.

Figure 2.20 Morphological components of a typical tidal inlet. Source: Schrader et al.
(2000)

Figure 2.21 Ebb-tidal delta fronting Inch and Rossbehy barriers. Source of aerial
imagery: Google Earth.

Figure 2.22 Multiple inlet system at the Nauset barrier system, Cape Cod MA.
Dominant longshore transport is southerly. Source: Giese et al. (2009).

Figure 2.23 Multiple inlet system at Ria Formosa, Portugal. Source: Salles (2001).

Figure 2.24 Categorisation of a typical beach-dune profile. Modified from Schwartz
(2006) and Beaugrand (2010).

Figure 2.25 Nearshore wave processes. Source: Svendsen (2006)

Figure 2.26 Hjulstrom curve showing critical velocities for erosion, transport, and
deposition as a function of sediment grain size. Source:
http://en.wikipedia.org/wiki/Hjulstr%C3%B6m_curve - Original: Hjulstrom
(1939) later modified by Sundborg (1956)

Figure 2.27 Forces responsible for sediment entrainment. Modified from MIT
OpenCourseWare (available from: http://ocw.mit.edu/courses/earth-atmospheric-
and-planetary-sciences/12-090-introduction-to-fluidmotions-sediment-transport-
and-current-generated-sedimentary-structures-fall-2006/course-textbook/ch9.pdf)

Figure 2.28 Shield’s diagram modified by Miller et al. (1977) showing the boundary
Reynold’s number as a function of the critical Shield’s stress for experimental
data. Entrainment occurs for conditions above the curve. Source: MIT
OpenCourseWare

Figure 2.29 Sedimentary cells and sediment budgets near Point Arguello, California,
USA. Source: Bowen and Inman (1966)

3 The Inch-Rossbehy barrier system

Table 3.1 Previous research undertaken at Inch-Rossbehy

Figure 3.1 Ebb shoals fronting Inch and Rossbehy. Imagery obtained 30 August 2010.
Source: Google Earth

Figure 3.2 Seabed substrate within Dingle Bay. Map layer generated from Geological
Survey of Ireland (GSI) multibeam echosounder data and seabed sampling data
acquired during the INFOMAR and INSS national seabed mapping programmes.

Figure 3.3 Dingle Bay bathymetry. Map layer generated from Geological Survey of
Ireland (GSI) multibeam echosounder data acquired during the INFOMAR and
INSS national seabed mapping programmes. Depth is shown in metres below
LAT (according to data obtained from the GSI, LAT is 2.85+0.13metres below
ODM at Rossbehy).

Figure 3.4 Castlemaine Harbour depth contours. Map layer generated from
interpolation of depth soundings published on Navionics free webapp
(http://webapp.navionics.com/?lang=en). The data is crowd sourced from
recreational boaters using mobile technology to ensure it remains up to date. Units
are in metres below LAT.

Table 3.2 Paleoenvironmental chronology of Inch-Rossbehy and surrounding environs.

Figure 3.5 Exposed peat on the beach face (left, 16 January 2014) and beneath the dune
sands (right; 14 April 2015) provides evidence of barrier rollover at Rossbehy.
The truncated upper contact of similar woody, monocot peat from a core in the
back barrier saltmarsh has been dated by Delaney et al. (2012) to 2781-2000 BP.
Source: author’s own

Figure 3.6 Extract of study area from the Down Survey Maps published in 1673. Both
Inch and Rossbehy are depicted. Source: http://downsurvey.tcd.ie/down-survey-
maps.php

Table 3.3 Recent (500 years BP to present) chronology of Inch-Rossbehy. Continued
on next page.

Figure 3.7 Historical shoreline variations at Inch. Source: Cooper ef al. (1995)

Figure 3.8 Historical shoreline variation at Rossbehy. Source: Cooper et al. (1995)
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Figure 3.9 Results of shoreline change analysis undertaken by O’Shea et al. (2011)
superimposed on an aerial photograph from 2010. Yellow = 1842; Red = 1894;
Black = 2000. Source: O’Shea ef al. (2011)

Figure 3.10 Aerial photographs (1995, 2005, and 2010) and Landsat 8 imagery (2015)
of Inch, illustrating the relative stability of its shoreline. Source of imagery: 1995
and 2005 = OSI; 2010 = Google Earth; 2015 = USGS LandsatLook viewer

Figure 3.11 Aerial photographs (1997, 1995, 2005, 2010, and 2012) and Landsat 8
imagery (2015) of Rossbehy, illustrating recent changes along its distal shoreline.
Source of imagery: 1977, 1995, and 2005 = OSI; 2010 = Google Earth; 2012 =
ESRI World Imagery / Microsoft; 2015 = USGS LandsatLook viewer

Figure 3.12 Aerial photographs of Rossbehy prior to (September 2008) and after (July
2009) breaching in December 2008. Source: John Herriott aerial photography

Figure 3.13 Damage to main road providing access to Rossbehy strand following the
winter storms of 2013/2014. Looking north toward the children’s play area.
Source: The Kerryman (2014)

Figure 3.14 Sunbeam shipwreck before 2013/2014 storms (in its original position since
1903; top), after first displacement in December 2013 (middle; lying parallel to
foredune ridge) and after final displacement in February 2014 (bottom; lying
oblique to foredune ridge). For scale, the boat’s maximum width is approximately
5 m and maximum length is approximately 22 m. Source: author’s own

Figure 3.15 Historic maps (1842, 1894), aerial photographs (1977, 1995, 2005, 2010,
2011, and 2014) and Landsat 8 imagery illustrating changes in the shape and
position of ebb shoals off Inch and Rossbehy from 1842 to 2015. Source of maps
and 1977 and 1995 imagery: OSI; source of 2010 and 2011 imagery:
GoogleEarth; source of 2014 imagery: Irish Air Corps; source of 2015 imagery:
USGS LandsatLook viewer.

Figure 3.16 Dune blowout at the entrance to Rossbehy strand. Source: author’s own

Figure 3.17 Annotated DEM illustrating dunescape at Inch, which is characterised by
parabolics and transverse ridges. Data derived from aerial LIDAR data provided
by the Kerry County Council and flown in April 2011. Box indicates area covered
by beach-dune topographic surveys. Adapted from Devoy (2013).

Figure 3.18 Annotated DEM illustrating dunescape at Rossbehy, which, like Inch, is
characterised by parabolics and transverse ridges. Data derived from aerial
LiDAR data provided by the Kerry County Council and flown in April 2011. Box
indicates area covered by beach-dune topographic surveys.

Figure 3.19 Geotagged panorama showing scarping on the southwestern side of Inch.
Map, inset, shows location of photo. Photo source: author’s own; Map source:
Google Maps

Figure 3.20 High foredune ridge in active, southern zone of Inch. Wooden posts on
dune ridge are approx. 1 metre in height. Source: author’s own (6 October 2012).

Figure 3.21 Ephemeral embryonic dunes at southern tip of Inch (looking south towards
Dooks golf course). 20 June 2013 Source: author’s own

Figure 3.22 Transverse ridges in southern and middle interior of Rossbehy. Looking
north towards Inch. Source: John Coveney

Figure 3.23 Dune slack in middle interior of Rossbehy. Looking south. Source:
author’s own

Figure 3.24 Valentia windrose 1940-2010. Source: Met Eireann

Table 3.4 Tidal ranges at Inch Beach based on predictions for a total tidal cycle (20
years). Source: Vial (2008) and Sala (2010)

Figure 3.25 Conceptual model of inferred morphological changes in Inch beach and
dunes proposed by Orford et al. (1999a). Source: Orford ef al. (1999a)

Figure 3.26 Distribution of wave energy dissipation at Inch and Rossbehy under (A)
modal swell (H=0.04 m, T =7 s) and (B) large swell waves (H=6.6 m, T = 13.6 s).
Extracted from Cooper et al. (2004)

Figure 3.27 Wave orbital velocities at Inch and Rossbehy under (A) modal swell
conditions and (B) Hurricane Debbie wind-generated waves, indicating relative
ability of waves to transport sediment under storm conditions. Extracted from
Cooper et al. (2004)
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Figure 3.28 Significant wave heights associated with a 100-year return storm coming
from an angle of 240° for (a) mean high water, (b) mean sea level, and (c) mean
low water. Extracted from Vial (2008)

Figure 3.29 Historical recurves (blue) at Rossbehy represent either earlier northern
limits of dune progression or southern limits to a historical breaching event.
Figure adapted from O’Shea (2015).

Figure 3.30 Sedimentary cells at Rossbehy as defined within the short-term conceptual
model of Sala (2010). Looking south. Source: Sala (2010).

Figure 3.31 Five-step conceptual model of O’Shea (2015) for breach evolution at
Rossbehy. Graphics for stage 1 extracted from O’Shea et al. (2013)

4 Sea-level change: past, present and future

Figure 3.1 Phanerozoic global sea-level curves derived from the stratigraphic record.
Source: http://en.wikipedia.org/wiki/Sea-level curve - after Vail et al. (1977) and
Hallam (1981).

Figure 4.2 Global sea-level change from coastal tide gauge records - 1870 to 2000.
Source: CSIRO (2014)

Figure 4.3 Multi-mission ocean altimeter data showing global mean sea-levels from
1993 to 2014. Data is with respect to the 1993-2002 mean and plotted every 10
days. Source: NASA Goddard Space Flight Center (2014)

Figure 4.4 Modelled and observed GMSL rise from IPCC ARS5. Modelled data was
computed from the Coupled Model Intercomparison Project (CMIP5) and shows
good agreement with observations. Source: Church et al. (2013).

Figure 4.5 Derived projected RSL increases under the [IPCC AR4 medium emissions
scenario for the year 2095. Projections take into account both absolute SLR and
vertical land movement due to glacial isostatic adjustment. Source: Lowe et al.
(2009)

Figure 4.6 Oblique aerial photos of Portballintrae Beach in 1938 (top) and 1999
(bottom) illustrating beach narrowing as a result of the installation of a pier in its
western section. Source: Jackson (2012)

6 Terrestrial laser scanning: a new approach to
monitoring beach morphodynamics

Figure 6.1 Airborne LiDAR systems work by sending out multiple laser pulses and
recording the time it takes for the signal to be reflected off the ground and returned
to the sensor. These systems consist of three main parts: the sensor, the inertial
measurement unit, and a GPS. Source: Heritage and Large (2009)

Figure 6.2 Ground-based LiDAR systems use the same basic technology as airborne
systems, but are deployed on the ground. While they are limited in terms of
coverage area compared to airborne systems, they are capable of capturing higher
resolution data and are easier to deploy at short notice (e.g. in the aftermath of a
storm).

Figure 6.3 Point cloud showing beach and foredunes (centre) at the terminal margin of
the Rossbehy barrier (looking south). The dune scarp (centre right) is the on
seaward side of barrier, with the vegetated lee side shown centre left. The track
marks are from the wheels of the trolley used to transport equipment to the field
site, which are approx. 7 cm in width. This figure illustrates the fine detail that can
be captured using this survey technique.

Figure 6.4 Shadow zones - zones of missing data located behind obstructions to the
laser scanners field of view, resulting in 'gaps' in the point cloud. These can be
minimised by obtaining multiple surveys over the same area from different angles.
Source: author’s own data obtained at Rossbehy field site

Figure 6.5 Survey target, as seen in a point cloud, used for referencing multiple scans to
one common coordinate system. Source: author’s own data obtained at Rossbehy
field site
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Figure 6.6 DEMs generated from TLS data collected at monthly intervals at Rehoboth
Beach, North Carolina, USA from January 2006-April 2007. Areas of maximum
erosion are shown in black and grade to areas of maximum accretion, shown in
white. The data was collected at 0.20 m resolution over an area of approximately
500 m x 70 m and reduced to 1 m x 1 m grid cells. Source: Pietro et al. (2008)

Figure 6.7 Digital elevation model of embryo dunes in North Lincolnshire, UK.
Elevation in metres. Source: Montreuil ez al. (2013)

Figure 6.8 Rendered triangular irregular network (TIN) showing a hard rock cliff face
in North Yorkshire, UK (left) and close up (right) showing triangular faces. TLS
data form the nodes of the TIN. Source: Rosser et al. (2005)

Figure 6.9 Graphic illustrating how natural neighbour interpolation works. See text for
explanation. Image source: ESRI ArcGIS 9.2 Desktop Help
(http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Natural%20Ne

ighbor%?20Interpolation)

Figure 6.10 Graphic illustrating how inverse distance weighting interpolation works.
See text for explanation. Image source: ESRI ArcGIS 9.2 Desktop Help
(http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Implementing

Inverse Distance_ Weighted (IDW))

Figure 6.11 DEMs of difference showing seasonal changes to embryo dunes for three
periods between October 2009 and October 2010. Source: Montreuil et al. (2013)

Figure 6.12 Example of compartments (top) generated in TOPCAT for a case study at
Dog Beach, Del Mar California (Oct 2005—March 2007). Compartments are
overlain on elevation change map. Graphs show cliff face retreat rate (centre) and
volumetric change (bottom) for each compartment along the length of the cliff.
F1, F2, and F3 are major cliff failure events. Source: Olsen et al. (2012)

Figure 6.13 Results of classification using a multi-scale dimensionality criterion for a
steep river bank (left, classes labelled) and a tidal marsh (right, green = vegetation,
white = soil). Source: Brodu (2012)

7 Observations of morphodynamic behaviour
under the influence of storms

Figure 7.1 General locations of field sites at Rossbehy and Inch. Source: Modified
from OSI vector coastline data and 2010 OSI aerial photography.

Figure 7.2 High foredune at Inch field site (looking North). Source: author’s own (6
October 2012)

Figure 7.3 Ephemeral embryo dune field and beach fronting foredune at Inch field site.
Looking southeast. Rossbehy can be seen in the distance. Source: author’s own
(20 June 2013)

Figure 7.4 Oblique aerial view of Inch field site, looking north-northwest. Source:
coastalhelicopterview.ie

Figure 7.5 General location of Rossbehy field site. Looking south. Source: Google
Earth (2012)

Figure 7.6 Main section of Rossbehy field site, consisting of upper beach and foredune
scarp. Barrier terminus is at left. Looking east. Source: author’s own (8 October
2012)

Figure 7.7 Terminus of mainland section of barrier (centre). Looking south. Foredune
scarp is hidden by shadow (right of centre). Some scans covered part of vegetated
dunes (left of centre) and back barrier beach. Source: author’s own (15 April
2012)

Figure 7.8 Leica ScanStation components. NB: Figure was extracted from Leica
ScanStation2 model manual

(Leica Geosystems, 2007), but ScanStation setup is more or less the same.

Figure 7.9 Leica ScanStation setup at Rossbehy field site. Looking north at main dune
barrier terminus. Source: author’s own (15 November 2012)

Figure 7.10 Field equipment being transported via tractor and trolley at Inch. Photo:
Valerie Heffernan

Figure 7.11 Leica HDS registration target — for registration of multiple same-date
scans.
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Figure 7.12 Leica HDS target as seen in section of photo mosaic (inset) and in the point
cloud (main). From the mosaic, targets can be identified (‘fenced’) and the
scanner can then be directed to scan only the fenced areas in high resolution for
scan registration.

Table 7.1 Summary of data obtained during field surveys completed at Rossbehy field
site.

Table 7.2 Summary of data obtained during field surveys completed at Inch field site.

Figure 7.13 Example from Inch field site illustrating same-date scan registration for
two point clouds obtained from two stations (S1 and S2). Following registration
of the S2 cloud to the S1 cloud using the Leica HDS targets, the clouds are in the
coordinate system of the S1 cloud.

Figure 7.14 Distribution of registration errors between same-date scans at Inch

Figure 7.15 Distribution of registration errors between same-date scans at Rossbehy

Figure 7.16 Example of semi-permanent wooden posts set up in the field for registering
multi-temporal scans. The tips of the nails act as control points from which the
successive scans are registered to one common coordinate system.

Figure 7.17 RMS Errors of registration associated with multi-temporal constraints (Post
1, Post 2, and Post 3) for May 2012 and August 2012 at Inch. Left: Post 3 in the
May 2012 cloud; Right: Post 3 in the August 2012 cloud.

Figure 7.18 Distribution of registration errors between scans registered using semi-
permanent targets at Rossbehy. Inset: Population (N), mean, min, and max errors
and standard deviation.

Figure 7.19 Distribution of registration errors between scans registered using semi-
permanent targets at Inch. Inset: Population (N), mean, min, and max errors.

Figure 7.20 Distribution of registration errors between scans registered using dGPS
coordinates at Rossbehy. Inset: Population (N), mean, min, and max errors.

Figure 7.21 Before (top) and after (bottom) vegetation filtering using lowest points
analysis on a subset of the May 2012 point cloud from Inch. Subset shown left,
with cross section through centre shown right.

Figure 7.22 Subset of May 2012 point cloud from Inch on which initial vegetation
classification tests were performed. Colours represent laser scanned intensity
values, which correspond to the distribution shown in figure 7.23.

Figure 7.23 Laser scanned intensity distribution of cloud shown in figure 7.22.
Intensity values (x axis) are based on the capabilities of the scanner and are scaled
to a range of -2048 to +2048. Y axis represents frequency.

Figure 7.24 Result of filtering points with laser scanned intensity values outside -233 to
-156 (light blue peak shown in fig. 7.23) from test patch. Close up of ground
surface with multiple non-ground points shown top right.

Figure 7.25 Histogram showing the distribution of manually sampled ground and
vegetation point intensities.

Figure 7.26 Mean intensity variation (and standard error bars) with distance from the
scanner for 200 manually selected ground points plotted at 5 m intervals up to a
distance of 50 m from the position of the scanner.

Figure 7.27 Mean intensity variation (and standard error bars) with distance from the
scanner for 200 manually selected vegetation points plotted at 5 m intervals up to a
distance of 50 m from the position of the scanner.

Figure 7.28 Workflow for classifier construction using CANPO. See text for
explanation.

Figure 7.29 Foredune scarp and upper beach at Rossbehy in November 2012 and
January 2013. The distance between the two points shown is 44 m.

Figure 7.30 Graphic illustrating the process of coordinate system rotation for foredune
point clouds at Rossbehy. In this example, two point clouds are shown, one
captured at time t; (red) and another captured at a later date, t, (blue). These are
shown in plan view — e.g. looking down from above (top). Using CloudCompare
software, it is possible to rotate the clouds along a rotation axis using the
rotate/translate tool. An oblique view of the clouds captured as they were being
rotated is shown (middle). The clouds were rotated 90 degrees about this axis,
such that their final orientation was as shown (bottom). This was performed for
the foredune because few scans overlapped in plan view due to considerable
foredune recession over the course of study period.
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Figure 7.31 Example of classified (top) and filtered (bottom) cloud from May 2012
Inch dataset.

Figure 7.32 Example of classified (top) and filtered (bottom) cloud from Rossbehy
foredune scarp (June 2012)

Figure 7.33 Schematic diagram showing how elevation (z) values from overlapping
DEMs can be subtracted to produce DEMs of difference (DODs) for beach at Inch
and Rossbehy

Figure 7.34 Schematic diagram showing how elevation (z) values from overlapping
DEMs can be subtracted to produce DEMs of difference (DODs) for foredune at
Rossbehy.

Figure 7.35 Cartographic model illustrating GIS workflow for generating
elevation/distance change maps and volume change maps.

Figure 7.36 Distribution of February 2013 EDM ground truthing points (red) for Inch
(top) and Rossbehy (bottom). Basemaps shown are natural neighbour
interpolations of unfiltered TLS point clouds where green is low (flat beach) and
purple/white is high (foredune crest).

Figure 7.37 Error distribution for unfiltered (top) and filtered (bottom) clouds at Inch.

Figure 7.38 Error distribution for unfiltered (top) and filtered (bottom) clouds at
Rossbehy.

Figure 7.39 Voronoi map for Inch data symbolised by standard deviation. The pattern
shown suggests the data is non-stationary. As a result, kriging was deemed an
inappropriate interpolation method for this data.

Table 7.3 Residual errors for February 2013 Inch DEMs generated using unfiltered and
filtered TLS point clouds and interpolated using NN, IDW, and EBK. Results of
paired t-test demonstrating significant differences between unfiltered and filtered
clouds also shown.

Figure 7.40 Areal photograph of Rossbehy field site indicating general location of TLS
surveys. Locations A and B correspond generally to the maps shown in figures
7.41 to 7.58 and represent the dune barrier terminus (A) and the southern periphery
of the surveyed area (B) at the time of the corresponding survey. Source of areal
photography: ESRI

Figure 7.41 Rossbehy beach elevation change (DOD) between 2012-06-28 and 2012-
08-05. Elevation change across the majority of the surveyed area lies below the
level of detectable change (+0.41 m) and ranged from -0.27 m to +1.08 m.
Locations A and B correspond with those shown in figure 7.42. The coordinate
marked with the triangle is at the same location as that shown in figure 7.43 (the
DOD for the subsequent survey period) for reference. Mean sea level (MSL) is
equal to +2.3 m ODM.

Figure 7.42 Rossbehy foredune distance change between 2012-06-28 and 2012-08-05.
Dune recession is shown in varying shades of red and advance in varying shades
of blue. Distance change below the level of detectable change (+0.41 m) is shown
in gray. Distance change across the surveyed area ranged from -5.74 m to +4.20
m. Locations A and B correspond with those shown in figure 7.41. Mean sea level
(MSL) is equal to +2.3 m ODM.

Figure 7.43 Rossbehy beach elevation change (DOD) between 2012-08-05 and 2012-
10-07. Beach erosion is shown in red, while accretion is shown in blue. Elevation
changes below the level of detectable change (+0.41 m) are shown in gray.
Elevation change ranged from -2.15 m to +5.49 m. The coordinate marked with
the triangle is at the same location as that shown in figure 7.41 (the DOD for the
previous period) for reference. Locations A and B correspond (in a general way)
with those shown in figure 7.40. Mean sea level (MSL) is equal to +2.3 m ODM.

Figure 7.44 Rossbehy foredune distance change between 2012-08-05 and 2012-11-15.
Dune recession is shown in varying shades of red and advance in varying shades
of blue. Distance change below the level of detectable change (+0.41 m) is shown
in gray. Distance change across the surveyed area ranged from -18.28 m to +5.05
m. For reference, locations A and B correspond (in a general way) with those
shown in figure 7.40. Mean sea level (MSL) is equal to +2.3 m ODM.

Figure 7.45 Rossbehy foredune distance change between 2012-11-15 and 2013-01-30.
Dune recession is shown in varying shades of red. Distance change across the
surveyed area ranged from -16.95 m to -44.97 m. For reference, locations A and B
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correspond (in a general way) with those shown in figure 7.40. Mean sea level
(MSL) is equal to +2.3 m ODM.

Figure 7.46 Rossbehy beach elevation change (DOD) between 2013-01-30 and 2013-
02-28. Accretion occurred across the majority of the surveyed area (varying
shades of blue). Area in gray lies below the level of detectable change (+£0.41 m).
Elevation change ranged from +0.18 m to +0.99 m. Locations A and B correspond
with those shown in figure 7.47. The coordinate marked with the circle is at the
same location as that shown in figures 7.48, 7.50, and 7.52 (the DODs for the
subsequent survey periods) for reference. Mean sea level (MSL) is equal to +2.3
m ODM.

Figure 7.47 Rossbehy foredune distance change between 2013-01-30 and 2013-02-28.
Dune recession is shown in varying shades of red and advance in varying shades
of blue. Distance change below the level of detectable change (+0.41 m) is shown
in gray. Distance change across the surveyed area ranged from -2.80 m to +2.34
m. For reference, locations A and B correspond with those shown in figure 7.46.
Mean sea level (MSL) is equal to +2.3 m ODM.

Figure 7.48 Rossbehy beach elevation change (DOD) between 2013-02-28 and 2013-
04-19. Beach erosion occurred across the entire survey area (varying shades of
red). Beach elevation change ranged from -1.94 m to -0.62 m. Locations A and B
correspond with those shown in figure 7.49. The coordinate marked with the
circle is at the same location as that shown in figures 7.46, 7.50, and 7.52 (the
DODs for the previous and subsequent survey periods) for reference. Mean sea
level (MSL) is equal to +2.3 m ODM.

Figure 7.49 Rossbehy foredune distance change between 2013-02-28 and 2013-04-19.
Dune recession, which occurred across the entire length of the surveyed area, is
shown in varying shades of red. Distance change ranged from -1.39 m to -6.40 m.
For reference, locations A and B correspond with those shown in figure 7.48.
Mean sea level (MSL) is equal to +2.3 m ODM.

Figure 7.50 Rossbehy beach elevation change (DOD) between 2013-04-19 and 2013-
06-05. Elevation change across the majority of the site lies below the level of
detectable change (£0.41 m) and ranges from -0.17 m to +0.51 m. Locations A
and B correspond with those shown in figure 7.51. The coordinate marked with
the circle is at the same location as that shown in figures 7.46, 7.48, and 7.52 (the
DODs for the previous and subsequent survey periods) for reference. Mean sea
level (MSL) is equal to +2.3 m ODM.

Figure 7.51 Rossbehy foredune distance change between 2013-04-19 and 2013-06-05.
Distance change across the majority of the surveyed area lies below the level of
detectable change (+0.41 m) and ranges from -2.16 m to +2.34 m. For reference,
locations A and B correspond with those shown in figure 7.50. Mean sea level
(MSL) is equal to +2.3 m ODM.

Figure 7.52 Rossbehy beach elevation change (DOD) between 2013-06-05 and 2013-
12-11. Elevation change across the majority of the site lies below the level of
detectable change (+0.44 m) and ranges from -0.13 m and +0.88 m. Locations A
and B correspond with those shown in figure 7.53. The coordinate marked with
the circle is at the same location as that shown in figures 7.46, 7.48, and 7.50 (the
DODs for the previous survey periods) for reference. Mean sea level (MSL) is
equal to +2.3 m ODM.

Figure 7.53 Rossbehy foredune distance change between 2013-06-05 and 2013-12-11.
Dune recession is shown in varying shades of red and advance in varying shades
of blue. Distance change below the level of detectable change (+0.44 m) is shown
in gray. Distance change across the surveyed area ranged from -3.62 m to +7.15
m. For reference, locations A and B correspond with those shown in figure 7.52.
Mean sea level (MSL) is equal to +2.3 m ODM.

Figure 7.54 Rossbehy foredune distance change between 2013-12-11 and 2014-01-16.
Dune recession, which occurred across the entire length of the surveyed area, is
shown in varying shades of red. Distance change ranged from -54.33 m to -33.06
m. For reference, locations A and B correspond (in a general way) with those
shown in figure 7.40. Mean sea level (MSL) is equal to +2.3 m ODM.

Figure 7.55 Rossbehy beach elevation change (DOD) between 2014-06-16 and 2014-
05-04. Elevation change across the majority of the site lies below the level of
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detectable change (+0.44 m) and ranges from -0.42 m to +1.42 m. Locations A
and B correspond with those shown in figure 7.56. The coordinate marked with
the square is at the same location as that shown in figure 7.57 (the DOD for the
subsequent survey period) for reference. Mean sea level (MSL) is equal to +2.3 m
ODM.

Figure 7.56 Rossbehy foredune distance change between 2014-01-16 and 2014-05-04.
Dune recession, which occurred across the entire length of the surveyed area, is
shown in varying shades of red. Distance change ranged from -6.41 m to -0.29 m.
For reference, locations A and B correspond with those shown in figure 7.55.
Mean sea level (MSL) is equal to +2.3 m ODM.

Figure 7.57 Rossbehy beach elevation change (DOD) between 2014-05-04 and 2014-
07-29. Accretion (varying shades of blue) occurred across the majority of the site.
Elevation change below the level of detectable change (+0.44 m) is shown in gray.
Elevation change across the surveyed area ranged from -0.87 m to +1.40 m.
Locations A and B correspond with those shown in figure 7.58. The coordinate
marked with the square is at the same location as that shown in figure 7.55 (the
DOD for the previous survey period) for reference. Mean sea level (MSL) is equal
to +2.3 m ODM.

Figure 7.58 Rossbehy foredune distance change between 2014-05-04 and 2014-07-29.
Distance change across much of the surveyed area lies below the level of
detectable change (+0.44 m) and ranges from -2.91 m to +2.47 m. For reference,
locations A and B correspond with those shown in figure 7.57. Mean sea level
(MSL) is equal to +2.3 m ODM.

Table 7.4 Summary of elevation and volume changes for beach at Rossbehy field site.

Table 7.5 Summary of distance and volumetric changes for foredune at Rossbehy field
site.

Figure 7.59 Shoreline positions at Rossbehy during TLS monitoring campaign. The
shoreline is defined as position of the dune toe, or the line along which there is an
abrupt change in slope, marking the boundary between the beach and dune. The
March 2012 shoreline was digitized from an aerial photograph (for reference),
while the others were digitized from TLS data.

Figure 7.60 Areal photographs of Inch field site indicating location of TLS surveys.
The area enclosed by the green polygon is the area over which all surveys overlap.
Source of areal photography: ESRI

Figure 7.61 Inch beach elevation change (DOD) between 2012-05-24 and 2012-08-06.
Beach erosion is shown in varying shades of red and accretion in varying shades of
blue. Elevation change below the level of detectable change (+0.05 m) is shown in
gray. Elevation change ranged from -3.00 m to +2.76 m. The coordinate marked
with the star is at the same location as that shown in figures 7.62-7.68 (the DODs
for the subsequent survey periods) for reference. The area enclosed by the gray
polygon is the area across which all surveys overlap. Mean sea level (MSL) is
equal to +2.3 m ODM.

Figure 7.62 Inch beach elevation change (DOD) between 2012-08-06 and 2012-10-06.
Beach erosion is shown in varying shades of red and accretion in varying shades of
blue. Elevation change below the level of detectable change (+0.05 m) is shown in
gray. Elevation change ranged from -5.42 m to +4.43 m. The coordinate marked
with the star is at the same location as that shown in figures 7.61-7.68 (the DODs
for the previous and subsequent survey periods) for reference. The area enclosed
by the gray polygon is the area across which all surveys overlap. Mean sea level
(MSL) is equal to +2.3 m ODM.

Figure 7.63 Inch beach elevation change (DOD) between 2012-10-06 and 2013-01-09.
Beach erosion is shown in varying shades of red and accretion in varying shades of
blue. Elevation change below the level of detectable change (+0.05 m) is shown in
gray. Elevation change ranged from -1.78 m to +2.41 m. The coordinate marked
with the star is at the same location as that shown in figures 7.61-7.68 (the DODs
for the previous and subsequent survey periods) for reference. The area enclosed
by the gray polygon is the area across which all surveys overlap. Mean sea level
(MSL) is equal to +2.3 m ODM.

Figure 7.64 Inch beach elevation change (DOD) between 2013-01-09 and 2013-02-27.
Beach erosion is shown in varying shades of red and accretion in varying shades of
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blue. Elevation change below the level of detectable change (+0.05 m) is shown in
gray. Elevation change ranged from -2.11 m to +1.96 m. The coordinate marked
with the star is at the same location as that shown in figures 7.61-7.68 (the DODs
for the previous and subsequent survey periods) for reference. The area enclosed
by the gray polygon is the area across which all surveys overlap. Mean sea level
(MSL) is equal to +2.3 m ODM.

Figure 7.65 Inch beach elevation change (DOD) between 2013-02-27 and 2013-05-02.
Beach erosion is shown in varying shades of red and accretion in varying shades of
blue. Elevation change below the level of detectable change (+0.05 m) is shown in
gray. Elevation change ranged from -2.00 m to +1.96 m. The coordinate marked
with the star is at the same location as that shown in figures 7.61-7.68 (the DODs
for the previous and subsequent survey periods) for reference. The area enclosed
by the gray polygon is the area across which all surveys overlap. Mean sea level
(MSL) is equal to +2.3 m ODM.

Figure 7.66 Inch beach elevation change (DOD) between 2013-05-02 and 2013-06-20.
Beach erosion is shown in varying shades of red and accretion in varying shades of
blue. Elevation change below the level of detectable change (+0.05 m) is shown in
gray. Elevation change ranged from -5.29 m to +3.09 m. The coordinate marked
with the star is at the same location as that shown in figures 7.61-7.68 (the DODs
for the previous and subsequent survey periods) for reference. The area enclosed
by the gray polygon is the area across which all surveys overlap. Mean sea level
(MSL) is equal to +2.3 m ODM.

Figure 7.67 Inch beach elevation change (DOD) between 2013-06-20 and 2014-03-12.
Beach erosion is shown in varying shades of red and accretion in varying shades of
blue. Elevation change below the level of detectable change (+0.05 m) is shown in
gray. Elevation change ranged from -3.56 m to +2.84 m. The coordinate marked
with the star is at the same location as that shown in figures 7.61-7.68 (the DODs
for the previous and subsequent survey periods) for reference. The area enclosed
by the gray polygon is the area across which all surveys overlap. Mean sea level
(MSL) is equal to +2.3 m ODM.

Figure 7.68 Inch beach elevation change (DOD) between 2014-03-12 and 2014-08-28.
Beach erosion is shown in varying shades of red and accretion in varying shades of
blue. Elevation change below the level of detectable change (+0.05 m) is shown in
gray. Elevation change ranged from -1.26 m to +2.34 m. The coordinate marked
with the star is at the same location as that shown in figures 7.61-7.67 (the DODs
for the previous survey periods) for reference. The area enclosed by the gray
polygon is the area across which all surveys overlap. Mean sea level (MSL) is
equal to +2.3 m ODM.

Figure 7.69 Embryo dune field at Inch on 20 June 2013 (top) and 12 March 2014
(bottom). The embryo dune field likely shielded the foredune from extreme waves
during the winter 2013/2014 storms. Source: author’s own

Table 7.6 Summary of elevation and volume changes at Inch field site.

Figure 7.70 Rates of volume change for Rossbehy (top) and Inch (bottom) for TLS
monitoring periods. Note the large difference in scale between rates of volume
change for Rossbehy beach and scarp and between Rossbehy and Inch generally.

8 Relationships between observed morphological
change and storms

Figure 8.1 Model domain and flexible mesh on which WAM was run. Extracted from
O’Shea et al. (2011)

Figure 8.2 Five points in WAM model domain for which outputs (significant wave
height, wave period, and wave direction) were extracted.

Table 8.1 Summary of event information extracted from WAM data. Events are
described as times when the significant wave height, H, exceeded the critical
wave height, h.; (see text for explanation), for a minimum duration of 12 hours.

Figure 8.3 Breakdown of storm events identified using WAM data by event duration.

Figure 8.4 Modelled event frequency by month during morphologic monitoring period.
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Figure 8.5 Excel spreadsheet and formulae used to identify storm events and extract
storm characteristics from simulated WAM data. Records (rows) extend below the
window shown. Formulae examples are for the first entry and were applied to
each subsequent entry (eg. the cells below).

Figure 8.6 Excel worksheets and formulae used to extract storm characteristics from
Ventry weather station data. Records (rows) extend below the windows shown.
Formulae examples are for the first entry and were applied to each subsequent
entry (eg. the cells below).

Figure 8.7 Location of weather station set up near Inch field site.

Figure 8.8 Wind roses and wind speeds for Inch and Ventry from 6 August 2012 to 5
September 2012. Wind speeds were derived from instantaneous wind speeds
averaged at half hourly (or approximately half hourly) intervals. Running means
(with 48 hour periods) have been superimposed on the wind speed graph for visual
clarity.

Figure 8.9 Wind roses and wind speeds for Inch and Ventry from 15 October 2012 to
26 October 2012. Wind speeds were derived from instantaneous wind speeds
averaged at half hourly (or approximately half hourly) intervals. Running means
(with 48 hour periods) have been superimposed on the wind speed graph for visual
clarity.

Figure 8.10 Wind roses and wind speeds for Inch and Ventry from 21 August 2013 to 3
September 2013. Wind speeds were derived from instantaneous wind speeds
averaged at half hourly (or approximately half hourly) intervals. Running means
(with 48 hour periods) have been superimposed on the wind speed graph for visual
clarity.

Table 8.2 Summary of event information extracted from Ventry weather station data.

Figure 8.11 Histogram showing frequency of storm events with a range of mean wind
speeds.

Figure 8.12 Histogram showing frequency of storm events with a range of maximum
gust speeds.

Figure 8.13 Frequency of events with prevailing wind directions from the north,
northeast, east, southeast, south, southwest, west, and northwest.

Figure 8.14 (a.) Rates of volume change at Rossbehy beach broken down by
morphological monitoring period. (b.) Event frequency for storm events occurring
during corresponding morphological monitoring periods. (c.) There was a very
weak positive relationship between rate of beach volume change and event
frequency (n=7, r=0.09). This relationship was not statistically significant
(p=0.85). Negative rates of beach volume change are associated with net volume
losses; positive rates of beach volume change are associated with net volume
gains.

Figure 8.15 (a.) Rates of foredune volume change at Rossbehy broken down by
morphological monitoring period. (b.) Event frequency for storm events occurring
during corresponding morphological monitoring periods. (c.) There was a very
weak positive relationship between rate of foredune volume change and event
frequency (n=9, r=0.12). This relationship was not statistically significant
(p=0.76). Negative rates of dune volume change are associated with net volume
losses; positive rates of dune volume change are associated with net volume gains.

Figure 8.16 (a.) Rates of volume change at Inch broken down by morphological
monitoring period. (b.) Event frequency for storm events occurring during
corresponding morphological monitoring periods. (c.) There was a weak positive
relationship between rate of volume change and event frequency (n=8, r=0.3).
This relationship was not statistically significant (p=0.47). Negative rates of
volume change are associated with net volume losses; positive rates of volume
change are associated with net volume gains.

Figure 8.17 (a.) Rates of volume change at Rossbehy beach broken down by
morphological monitoring period. (b.) Mean duration of storm events that
occurred during corresponding morphological monitoring periods. (c.) There was
a moderate negative relationship between rate of beach volume change and mean
duration of events (n=7, =-0.59). This relationship was not statistically significant
(p=0.17). Negative rates of beach volume change are associated with net volume
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losses; positive rates of beach volume change are associated with net volume

gains. 130
Figure 8.18 (a.) Rates of foredune volume change at Rossbehy broken down by

morphological monitoring period. (b.) Mean duration of storm events occurring

during corresponding morphological monitoring periods. (c.) There was a very

strong negative relationship between rate of foredune volume change and mean

duration of events (n=9, r=-0.96). This relationship was statistically significant

(p<0.001). Negative rates of dune volume change are associated with net volume

losses; positive rates of dune volume change are associated with net volume gains.

This result indicates longer duration events are associated with higher rates of

dune volume loss. 131
Figure 8.19 (a.) Rates of volume change at Rossbehy beach broken down by

morphological monitoring period. (b.) Maximum duration of storm events that

occurred during corresponding morphological monitoring periods. (c.) There was

a weak negative relationship between rate of beach volume change and max

duration of events (n=7, 1=-0.39). This relationship was not statistically significant

(p=0.40). Negative rates of beach volume change are associated with net volume

losses; positive rates of beach volume change are associated with net volume

gains. 132
Figure 8.20 (a.) Rates of foredune volume change at Rossbehy broken down by

morphological monitoring period. (b.) Maximum durations of storm events

occurring during corresponding morphological monitoring periods. (c.) There was

a very strong negative relationship between rate of foredune volume change and

maximum duration of events (n=9, r=-0.93). This relationship was statistically

significant (p<0.001). Negative rates of dune volume change are associated with

net volume losses; positive rates of dune volume change are associated with net

volume gains. This result indicates longer duration events are associated with

higher rates of dune volume loss. 133
Figure 8.21 (a.) Rates of volume change at Inch broken down by morphological

monitoring period. (b.) Mean duration of storm events which occurred during

corresponding morphological monitoring periods. (c.) There was a moderate

positive relationship between rate of beach volume change and mean duration of

events (n=8, r=0.51). This relationship was not statistically significant (p=0.20).

Negative rates of volume change are associated with net volume losses; positive

rates of volume change are associated with net volume gains. 134
Figure 8.22 (a.) Rates of volume change at Inch broken down by morphological

monitoring period. (b.) Maximum duration of storm events which occurred during

corresponding morphological monitoring periods. (c.) There was a weak positive

relationship between rate of beach volume change and max duration of events

(n=8, r=0.37). This relationship was not statistically significant (p=0.37).

Negative rates of volume change are associated with net volume losses; positive

rates of volume change are associated with net volume gains. 135
Figure 8.23 (a.) Rates of volume change at Rossbehy beach broken down by

morphological monitoring period. (b.) Max tidal level for events that occurred

during corresponding morphological monitoring periods. (c.) There was a

moderate negative relationship between rate of beach volume change and max

tidal levels associated with events (n=7, r=-0.45). This relationship was not

statistically significant (p=0.31). Negative rates of beach volume change are

associated with net volume losses; positive rates of beach volume change are

associated with net volume gains. 136
Figure 8.24 (a.) Rates of foredune volume change at Rossbehy broken down by

morphological monitoring period. (b.) Maximum tidal levels associated with

events that occurred during corresponding morphological monitoring periods. (c.)

There was a moderate negative relationship between rate of foredune volume

change and max tidal levels associated with events (n=9, r=-0.48). This

relationship was not statistically significant (p=0.19). Negative rates of dune

volume change are associated with net volume losses; positive rates of dune

volume change are associated with net volume gains. 137
Figure 8.25 (a.) Rates of volume change at Inch broken down by morphological

monitoring period. (b.) Max tidal levels associated with storm events that
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occurred during corresponding morphological monitoring periods. (c.) There was

a weak positive relationship between rate of volume change and mean time

between events (n=8, r=0.33). This relationship was not statistically significant

(p=0.42). Negative rates of volume change are associated with net volume losses;

positive rates of volume change are associated with net volume gains. 138
Figure 8.26 (a.) Rates of volume change at Rossbehy beach broken down by

morphological monitoring period. (b.) Mean time betwen storm events that

occurred during corresponding morphological monitoring periods. (c.) There was

a weak negative relationship between rate of beach volume change and mean time

between events (n=7, r=-0.32). This relationship was not statistically significant

(p=0.48). Negative rates of beach volume change are associated with net volume

losses; positive rates of beach volume change are associated with net volume

gains. 139
Figure 8.27 (a.) Rates of foredune volume change at Rossbehy broken down by

morphological monitoring period. (b.) Mean time between storm events that

occurred during corresponding morphological monitoring periods. (c.) There was

a moderate positive relationship between rate of foredune volume change and

mean time between events (n=9, r=0.56). This relationship was not statistically

significant (p=0.11). Negative rates of dune volume change are associated with

net volume losses; positive rates of dune volume change are associated with net

volume gains. 140
Figure 8.28 (a.) Rates of volume change at Inch broken down by morphological

monitoring period. (b.) Mean time between storm events that occurred during

corresponding morphological monitoring periods. (c.) There was a moderate

negative relationship between rate of volume change and mean time between

events (n=8, r=-0.44). This relationship was not statistically significant (p=0.27).

Negative rates of volume change are associated with net volume losses; positive

rates of volume change are associated with net volume gains. 141
Figure 8.29 (a.) Rates of volume change at Rossbehy beach broken down by

morphological monitoring period. (b.) Mean significant wave height associated

with storm events that occurred during corresponding morphological monitoring

periods. (c.) There was a strong negative relationship between rate of beach

volume change and mean H;associated with events (n=7, r=-0.67). This

relationship was not statistically significant (p=0.10). Negative rates of beach

volume change are associated with net volume losses; positive rates of beach

volume change are associated with net volume gains. 142
Figure 8.30 (a.) Rates of foredune volume change at Rossbehy broken down by

morphological monitoring period. (b.) Mean significant wave height associated

with storm events that occurred during corresponding morphological monitoring

periods. (c.) There was a moderate negative relationship between rate of foredune

volume change and mean H; associated with events (n=9, r=-0.5). This

relationship was not statistically significant (p=0.17). Negative rates of dune

volume change are associated with net volume losses; positive rates of dune

volume change are associated with net volume gains. 143
Figure 8.31 (a.) Rates of volume change at Rossbehy beach broken down by

morphological monitoring period. (b.) Maximum significant wave height

associated with storm events that occurred during corresponding morphological

monitoring periods. (c.) There was a moderate negative relationship between rate

of beach volume change and max Hassociated with events (n=7, r=-0.56). This

relationship was not statistically significant (p=0.20). Negative rates of beach

volume change are associated with net volume losses; positive rates of beach

volume change are associated with net volume gains. 144
Figure 8.32 (a.) Rates of foredune volume change at Rossbehy broken down by

morphological monitoring period. (b.) Maximum significant wave height

associated with storm events that occurred during corresponding morphological

monitoring periods. (c.) There was a moderate negative relationship between rate

of foredune volume change and max H; associated with events (n=9, r=-0.58).

This relationship was not statistically significant (p=0.10). Negative rates of dune

volume change are associated with net volume losses; positive rates of dune

volume change are associated with net volume gains. 145
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Figure 8.33 (a.) Rates of volume change at Inch broken down by morphological

monitoring period. (b.) Mean significant wave height associated with storm events

that occurred during corresponding morphological monitoring periods. (c.) There

was a strong positive relationship between rate of volume change and mean Hy

associated with events (n=8, r=0.74). This relationship was statistically significant

(p<0.05). Negative rates of volume change are associated with net volume losses;

positive rates of volume change are associated with net volume gains. This result

indicates higher significant wave heights during storms are associated with higher

rates of volume gain at the site. 146
Figure 8.34 (a.) Rates of volume change at Inch broken down by morphological

monitoring period. (b.) Maximum significant wave height associated with storm

events that occurred during corresponding morphological monitoring periods. (c.)

There was a strong positive relationship between rate of volume change and max

H, associated with events (n=8, r=0.62). This relationship was not statistically

significant (p=0.10). Negative rates of volume change are associated with net

volume losses; positive rates of volume change are associated with net volume

gains. 147
Figure 8.35 (a.) Rates of volume change at Rossbehy beach broken down by

morphological monitoring period. (b.) Mean peak wave period associated with

storm events that occurred during corresponding morphological monitoring

periods. (c.) There was a weak negative relationship between rate of beach

volume change and mean peak period associated with events (n=7, r=-0.34). This

relationship was not statistically significant (p=0.46). Negative rates of beach

volume change are associated with net volume losses; positive rates of beach

volume change are associated with net volume gains. 148
Figure 8.36 (a.) Rates of foredune volume change at Rossbehy broken down by

morphological monitoring period. (b.) Mean peak wave period associated with

storm events that occurred during corresponding morphological monitoring

periods. (c.) There was a very weak relationship (neither positive or negative)

between rate of foredune volume change and mean peak period associated with

events (n=9, r=0). This relationship was not statistically significant (p=0.998).

Negative rates of dune volume change are associated with net volume losses;

positive rates of dune volume change are associated with net volume gains. 149
Figure 8.37 (a.) Rates of volume change at Inch broken down by morphological

monitoring period. (b.) Mean peak wave period associated with storm events that

occurred during corresponding morphological monitoring periods. (c.) There was

a moderate positive relationship between rate of volume change and mean peak

period associated with events (n=8, r=0.57). This relationship was not statistically

significant (p=0.14). Negative rates of volume change are associated with net

volume losses; positive rates of volume change are associated with net volume

gains. 150
Figure 8.38 (a.) Rates of volume change at Rossbehy beach broken down by

morphological monitoring period. (b.) Mean wind speed associated with storm

events that occurred during corresponding morphological monitoring periods. (c.)

There was a very weak positive relationship between rate of beach volume change

and mean wind speed associated with events (n=7, r=0.09). This relationship was

not statistically significant (p=0.84). Negative rates of beach volume change are

associated with net volume losses; positive rates of beach volume change are

associated with net volume gains. 151
Figure 8.39 (a.) Rates of foredune volume change at Rossbehy broken down by

morphological monitoring period. (b.) Mean wind speeds associated with storm

events that occurred during corresponding morphological monitoring periods. (c.)

There was a very weak positive relationship between rate of foredune volume

change and mean wind speed associated with events (n=9, r=0.17). This

relationship was not statistically significant (p=0.66). Negative rates of dune

volume change are associated with net volume losses; positive rates of dune

volume change are associated with net volume gains. 152
Figure 8.40 (a.) Rates of volume change at Rossbehy beach broken down by

morphological monitoring period. (b.) Max gust speed associated with storm

events that occurred during corresponding morphological monitoring periods. (c.)
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There was a weak negative relationship between rate of beach volume change and
mean wind speed associated with events (n=7, r=-0.39). This relationship was not
statistically significant (p=0.39). Negative rates of beach volume change are
associated with net volume losses; positive rates of beach volume change are
associated with net volume gains.

Figure 8.41 (a.) Rates of foredune volume change at Rossbehy broken down by
morphological monitoring period. (b.) Maximum gust speeds associated with
storm events that occurred during corresponding morphological monitoring
periods. (c.) There was a weak negative relationship between rate of foredune
volume change and max gust speed associated with events (n=9, r=-0.29). This
relationship was not statistically significant (p=0.45). Negative rates of dune
volume change are associated with net volume losses; positive rates of dune
volume change are associated with net volume gains.

Figure 8.42 (a.) Rates of volume change at Inch broken down by morphological
monitoring period. (b.) Mean wind speed associated with storm events that
occurred during corresponding morphological monitoring periods. (c.) There was
a very weak negative relationship between rate of beach volume change and mean
wind speeds associated with events (n=8, r=-0.04). This relationship was not
statistically significant (p=0.92). Negative rates of volume change are associated
with net volume losses; positive rates of volume change are associated with net
volume gains.

Figure 8.43 (a.) Rates of volume change at Inch broken down by morphological
monitoring period. (b.) Maximum gust speed associated with storm events that
occurred during corresponding morphological monitoring periods. (c.) There was
a moderate positive relationship between rate of beach volume change and max
gust speeds associated with events (n=8, r=0.46). This relationship was not
statistically significant (p=0.24). Negative rates of volume change are associated
with net volume losses; positive rates of volume change are associated with net
volume gains.

Figure 8.44 (a.) Rates of volume change at Rossbehy beach broken down by
morphological monitoring period. (b.) Prevailing wind directions for events
occurring during each corresponding morphological monitoring period.

Figure 8.45 (a.) Rates of foredune volume change at Rossbehy broken down by
morphological monitoring period. (b.) Prevailing wind directions for events
occurring during each corresponding morphological monitoring period.

Figure 8.46 (a.) Rates of volume change at Inch broken down by morphological
monitoring period. (b.) Prevailing wind directions for events occurring during
each corresponding morphological monitoring period.

Table 8.3 Rates of beach volume change for each of the morphological monitoring
periods at Rossbehy and event characteristics used to test for the existence of
simple linear relationships. No statistically significant correlations were observed
between rate of beach volume change and any of these variables.

Table 8.4 Rates of scarp volume change for each of the morphological monitoring
periods at Rossbehy and event characteristics used to test for the existence of
simple linear relationships. Strong negative statistically significant correlations
were observed between mean duration of events and rate of scarp volume change
and maximum duration of events and rate of scarp volume change (p-values
highlighted in blue).

Table 8.5 Rates of volume change for each of the morphological monitoring periods at
Inch and event characteristics used to test for the existence of simple linear
relationships. A strong positive statistically significant correlation was observed
between mean H; associated with events and rate of volume (p-value highlighted
in blue).

Figure 8.47 Residual scatterplot showing predicted scores against errors of prediction
for Rossbehy foredune rate of change multiple regression analysis. The plot
confirms that the homoscedasticity assumption is met.

Figure 8.48 Distribution of residuals for Rossbehy scarp rate of change multiple
regression analysis. The distribution is close to normal, satisfying a principal
assumption for multiple regression analysis.
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9 Investigation of sediment transport pathways at
Rossbehy using a sediment tracer method

Figure 9.1 Methods of tracer injection

Figure 9.2 Dry tracer particles used in this experiment.

Figure 9.3 Tracer/sand mix under UV light at injection site.

Figure 9.4 Sites of sediment tracer injection and locations of core samples for
December 2013 tracer experiment. The shoreline at distal end of the barrier has
been updated to reflect the dune toe position on 11 December 2013, at which time
a TLS survey was also carried out. The 2 kg injection site was at an elevation of
2.91 m ODM and the 0.5 kg injection site was at an elevation of 2.50 m.

Figure 9.5 Sampling with half pipes and trowel.

Figure 9.6 December sediment tracer experiment timeline in relation to tidal cycle.
Source of tide data: Marine Institute

Figure 9.7 Wind speeds and directions during December 2012 tracer experiment.
Winds were predominantly southwesterly, with average speeds of 5.5 m/s. Hourly
data obtained from Ventry weather station.

Figure 9.8 Samples from the December tracer experiment were analysed in 1.5 cm
layers, whereby each layer was carefully removed, broken, and sifted through.
The presence and number of individual tracer particles was noted for each layer.

Figure 9.9 Individual tracer particles in a core sample.

Figure 9.10 Tracer distribution after first tidal cycle following first injection.

Table 9.1 Tracer distribution with depth for each sample collected on 11 Dec.

Figure 9.11 Tracer distribution after third tidal cycle following first injection and
second tidal cycle following second injection.

Table 9.2 Tracer distribution with depth for each sample collected on 12 Dec.

Figure 9.12 Sites of sediment tracer injection and locations of core samples for June
2014 tracer experiment. The shoreline at distal end of the barrier has been updated
to reflect the dune toe position on 4 May 2014 (the last TLS survey before the
experiment). It should be noted that the dune toe here had receded by
approximately 50 m since the last experiment in December 2013.

Figure 9.13 June sediment tracer experiment timeline in relation to tidal cycle. Source
of tide data: Marine Institute

Figure 9.14 Wind speeds and directions during June 2014 tracer experiment. Winds
were predominantly southeasterly, with average speeds of 8.6 m/s. Hourly data
obtained from Ventry weather station.

Figure 9.15 Tracer particles in a June 2013 core under ordinary and UV light.

Figure 9.16 Tracer distribution after first tidal cycle following injection. Small (top)
and large (bottom) scale views of the site are shown to better illustrate sample
distribution.

Table 9.3 Tracer distribution with depth for each sample collected after the first tidal
cycle. Maps showing the locations of samples (labeled with corresponding sample
IDs) are shown in figure 9.17.

Figure 9.17 Locations of samples labeled with sample IDs, which correspond to those
in table 9.3. Small (top) and large (bottom) scale views of the site are shown to
better illustrate sample distribution.

Figure 9.18 Tracer distribution in top 0-4 cm layer for samples collected after first tidal
cycle following injection. Only area where samples containing positively
identified tracer are shown.

Figure 9.19 Tracer distribution in 4-8 cm depth layer for samples collected after first
tidal cycle following injection.

Figure 9.20 Tracer distribution in 8-12 cm depth layer for samples collected after first
tidal cycle following injection.

Table 9.4 Longshore position of tracer cloud centroids and velocities of transport for
sample layers 0-4 cm, 4-8 cm, and 8-12 cm. (Samples collected after 1% tidal
cycle)

Figure 9.21 Tracer distribution after second tidal cycle following injection.

Table 9.4 Tracer distribution with depth for each sample collected after the second tidal
cycle. A map showing the locations of samples (labeled with corresponding
sample IDs) is shown in figure 9.22.
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Figure 9.22 Locations of samples labeled with sample IDs, which correspond to those
in table 9.4.

Figure 9.23 Tracer distribution in top 0-4 cm layer in samples collected after second
tidal cycle following injection.

Figure 9.24 Tracer distribution in 4-8 cm layer in samples collected after second tidal
cycle following injection.

Figure 9.25 Tracer distribution in 8-12 c¢cm layer in samples collected after second tidal
cycle following injection.

Table 9.5 Longshore position of tracer cloud centroids and velocities of transport for
sample layers 0-4 cm, 4-8 cm, and 8-12 cm. (Samples collected after 2™ tidal
cycle)

Figure 9.26 Tracer distribution after third tidal cycle following injection.

Table 9.6 Tracer distribution with depth for each sample collected after the third tidal
cycle. A map showing the locations of samples (labeled with corresponding
sample IDs) is shown in figure 9.27.

Figure 9.27 Locations of samples labeled with sample IDs, which correspond to those
in table 9.6.

Figure 9.28 Tracer distribution in top 0-4 cm layer in samples collected after third tidal
cycle following injection.

Figure 9.29 Tracer distribution in 4-6 cm layer in samples collected after third tidal
cycle following injection.

Figure 9.30 Tracer distribution in 8-12 c¢m layer in samples collected after third tidal
cycle following injection.

Table 9.7 Longshore position of tracer cloud centroids and velocities of transport for
sample layers 0-4 cm, 4-8 cm, and 8-12 cm. (Samples collected after 3™ tidal
cycle)

Table 9.8 Longshore position of tracer cloud centroids and velocities of transport for
subsample layers 0-4 cm, 4-8 cm, and 8-12 cm from samples collected after each
of the three tidal cycles.

10 Process-based modelling of the impacts of
storms under SLR

Figure 10.1 MIKE21 nearshore mesh

Figure 10.2 INFOMAR Bathymetry Data for Dingle Bay used in model set-up.
Extracted from INFOMAR (2015b)

Figure 10.3 Aerial LiDAR data used in model set-up. The survey took place in April
2011. Data was provided by Kerry County Council.

Table 10.1 Measured versus calculated rates of dune recession using the cross-shore
formula of van Rijn (2009) from a study by O’Shea and Murphy (2013). In that
study, an evaluation of the effectiveness of various transport formulae was carried
out in an effort to choose the most appropriate one for the Dingle Bay model set-
up used in this PhD research. There was good agreement between modeled dune
recession using the cross-shore formula of van Rijn (2009) and measurements for
the swash-aligned zone. Data source: O’Shea and Murphy (2013).

Table 10.2 Measured versus calculated rates of dune recession using the alongshore
formula of van Rijn (1998) from a study by O’Shea and Murphy (2013). In that
study, an evaluation of the effectiveness of various transport formulae was carried
out in an effort to choose the most appropriate one for the Dingle Bay model set-
up used in this PhD research. There was some agreement between modeled dune
recession using the alongshore formula of van Rijn (1998) and measurements for
the drift-aligned zone. Data source: O’Shea and Murphy (2013).

Table 10.3 Characteristics associated with all storm events that occurred during the
period 2011-2014 that were characterized by modal wave conditions. Data
extracted from nearshore wave hindcast data.

Table 10.4 Characteristics of event chosen to represent “typical” storm conditions.
Data extracted from nearshore wave hindcast data.

Figure 10.4 Wind speeds used to drive typical event scenario.

Figure 10.5 Wind directions used to drive typical event scenario.
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Figure 10.6 Surge heights used to drive typical event scenario.

Table 10.5 Characteristics of most extreme event to have occurred during period over
which data was available (2011-2014). Data extracted from nearshore wave
hindcast data.

Figure 10.7 Storm power (in terms of minimum pressure and wind speed) for extreme
events that have affected Ireland compared to the 26/27 December and 23/24
December 2013 events. Data for historic events compiled by Orford et al. (1999).

Figure 10.8 Wind speeds used to drive extreme event scenario.

Figure 10.9 Wind directions used to drive extreme event scenario.

Figure 10.10 Surge heights used to drive extreme event scenario.

Figure 10.11 Wind speeds used to drive fair-weather scenario.

Figure 10.12 Wind directions used to drive fair-weather scenario.

Table 10.6 Model inputs for extreme event scenario, typical event scenario, and fair-
weather event scenario. Inputs were derived from simulated nearshore wave data
and local weather station data. Each scenario was run under sea-levels of 0 cm, 10
cm, and 50 cm.

Figure 10.13 Coordinate at which time series of sediment transport magnitude and
direction and water levels were extracted for each scenario. Injection of sediment
tracer took place at this same coordinate during the June 2014 sediment tracer
experiment. Bed levels are shown relative to LAT. UTM coordinate 433532.807,
5770466.742

Figure 10.14 Second coordinate at which time series of water levels were extracted to
give full picture of tidal state during simulations. Bed levels are shown relative to
LAT.

Figure 10.15 Aerial view of the area covered by the maps presented in section 10.3.1
relative to the 0 m and -5 m depth contours and the site of the sediment tracer
experiment.

Figure 10.16 Bed level change for the fair-weather, 0 m SLR scenario. Contours are
relative to LAT.

Figure 10.17 Volume gains and losses for the fair-weather, 0 m SLR scenario.
Contours are relative to LAT.

Figure 10.18 Bed level change for the fair-weather, 0.1 m SLR scenario. Contours are
relative to LAT.

Figure 10.19 Volume gains and losses for the no event, 0.1 m SLR scenario. Contours
are relative to LAT.

Figure 10.20 Bed level change for the no event, 0.5 m SLR scenario. Contours are
relative to LAT.

Figure 10.21 Volume gains and losses for the no event, 0.5 m SLR scenario. Contours
are relative to LAT.

Figure 10.22 Volume change above the 0 m bathymetric contour (top) and between the
-5 to 0 m bathymetric contours (bottom) for the 3 SLR scenarios run over the
course of the fair-weather scenario at Rossbehy. 0 m contour is equal to LAT.

Figure 10.23 Bed level change for the typical event, 0 m SLR scenario. The polygons
representing the 0 m and -5 m contours were extracted from the initial
bathymmetry. Net volume change was calculated within the bounds of these
polygons. Contours are relative to LAT.

Figure 10.24 Volume gains and losses for the typical event, 0 m SLR scenario.
Contours are relative to LAT.

Figure 10.25 Bed level change for the typical event, 0.1 m SLR scenario. Contours are
relative to LAT.

Figure 10.26 Volume gains and losses for the typical event, 0.1 m SLR scenario.
Contours are relative to LAT.

Figure 10.27 Bed level change for the typical event, 0.5 m SLR scenario. Contours are
relative to LAT.

Figure 10.28 Volume gains and losses for the typical event, 0.5 m SLR scenario.
Contours are relative to LAT.

Figure 10.29 Volume change above the 0 m bathymetric contour (top) and between the
-5 to 0 m bathymetric contours (bottom) for the 3 SLR scenarios run over the
course of the “typical event” scenario at Rossbehy. 0 m contour is equal to LAT.
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Figure 10.30 Bed level change for the extreme event, 0 m SLR scenario. Contours are
relative to LAT.

Figure 10.31 Volume gains and losses for the extreme event, 0 m SLR scenario.
Contours are relative to LAT.

Figure 10.32 Bed level change for the extreme event, 0.1 m SLR scenario. Contours
are relative to LAT.

Figure 10.33 Volume gains and losses for the extreme event, 0.1 m SLR scenario.
Contours are relative to LAT.

Figure 10.34 Bed level change for the extreme event, 0.5 m SLR scenario. Contours
are relative to LAT.

Figure 10.35 Volume gains and losses for the extreme event, 0.5 m SLR scenario.
Contours are relative to LAT.

Figure 10.36 Volume change above the 0 m bathymetric contour (top) and between the
-5 to 0 m bathymetric contours (bottom) for the 3 SLR scenarios run over the
course of the extreme event scenario at Rossbehy. 0 m contour is equal to LAT.

Figure 10.37 Graphic summary of net volume change above the -5 m depth contour for
each model scenario. 0 m contour is equal to LAT.

Figure 10.38 Nearshore water levels for UTM coordinate 431732.69, 5770864.57 —
shown in fig. 10.14 - during the three fair-weather simulations (0 m SLR, 0.1 m
SLR, and 0.5 m SLR). NB: While the simulation began on 1 Feb 2012 at 00:00, a
24 hour spin-up meant water levels did not reach statistical equilibrium until 2 Feb
2012 at 01:00. Water levels are relative to MSL.

Figure 10.39 Water levels for nearshore coordinate (UTM coordinate 431732.69,
5770864.57 — shown in fig. 10.14) and sediment tracer injection point coordinate
(UTM coordinate 433532.807, 5770466.742 — shown in fig. 10.13) during the
three typical event simulations (0 m SLR, 0.1 m SLR, and 0.5 m SLR). NB: While
the simulation began on 24 Jan 2012 at 18:00, a 24 hour spin-up meant water
levels did not reach statistical equilibrium until 25 Jan 2012 at 18:15. Water levels
are relative to MSL.

Figure 10.40 Time series showing transport magnitude at the sediment tracer injection
point during the typical event simulation for all three SLR scenarios.

Figure 10.41 Mean and max bed load transport for typical event simulations for 0 m,
0.1 m, and 0.5 m SLR scenarios.

Figure 10.42 Compass rose plot illustrating direction of sediment transport at the
sediment tracer injection point during the typical event simulation for all three
SLR scenarios. NB: While in many cases, wind and wave directions are defined
positive clockwise from true North (coming from), in MIKE 21 load directions are
defined positive clockwise from true North (going against). For clarity, the output
was adjusted to reflect load directions coming from, as opposed to going against.
This means that, for example, for the 0 m SLR scenario, for 20% of the time,
transport was from southeast to northwest and for 80% of the time, transport was
from west to east (onshore).

Figure 10.43 Time series showing water levels at the sediment tracer injection point
during the extreme event simulation for all three SLR scenarios. Water levels are
relative to MSL.

Figure 10.44 Maximum water levels reached at sediment tracer injection point
coordinate for all nine scenarios. Water levels are relative to MSL.

Figure 10.45 Duration of inundation at sediment tracer injection point coordinate for all
nine scenarios. Water levels are relative to MSL.

Figure 10.46 Time series showing transport magnitude at the sediment tracer injection
point during the extreme event simulation for all three SLR scenarios.

Figure 10.47 Mean and max bed load transport for extreme event simulations for 0 m,
0.1 m, and 0.5 m SLR scenarios.

Figure 10.48 Compass rose plot illustrating direction of sediment transport at the
sediment tracer injection point during the extreme event simulation for all three
SLR scenarios.
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11 Discussion

Figure 11.1 S-SLR conceptual model of evolution of Rossbehy in response to storms
under a rising sea-level 230
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Kerry. Data source: OSI
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which initiates spit growth. Source: Davis and FitzGerald (2004).




Foredune

Figure 2.3 Foredune and storm built beach ridge at Inch. Hesp et al. (2005) defined foredunes as accumulations
of sand formed by aeolian processes and beach ridges as wave built accumulations of sediment. Image source:
author’s own.

Figure 2.4 Historical recurves (circled) at Rossbehy (left) and Inch (right) may represent eirlier limits of dune
progression due to a historical breaching event. Minor drift aligned recurves are present at both sites adjacent
to the main inlet. Source: Google Earth (Rossbehy) and OSI (Inch).
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Figure 2.5 Plan form orientation of drift-aligned vs. swash-aligned barriers. Drift alignment occurs when the
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(2009).
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Figure 2.6 Phases of spit restructuring after a decrease in longshore sediment supply. Refraction induced
changes in the longshore power gradients result in the development of sediment cells. As additional cells
develop, breaching may occur at weaker points (along the up-drift cell boundary). If the breach enlarges, it
becomes the focus for a transverse transport corridor. Source: Orford et al. (1996).
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Figure 2.7 Cross section of a breach channel area against water levels showing types of breach, according to
Hartley and Pontee (2008). Modified from Sala (2009).
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Figure 2.8 Cross-sectional inlet stability relationship of Escoffier (1940). Modified from Escoffier (1940) and
van de Kreeke (1992).

Figure 2.9 Incipient or embryo dunes at Inch, Co. Kerry. Dune hummocks, like those shown here, are also
termed nebkha or coppice dunes. Source: author’s own.



Figure 2.10 Established foredune at Inch, Co. Kerry. The wooden posts on the ridge are approximately 1 m
high. High water mark (not shown) is approximately 15-20 m behind the point from which the photograph was
taken. Source: author’s own.

Figure 2.11 Saucer blowout (width = approximately 15-20 m) at Rossbehy, Co. Kerry. Source: author’s own.



Figure 2.12 Relict dune ridges at Inch, Co. Kerry. Source: author’s own.

Figure 2.13 Parabolic (U-shaped) dunes at Inch, Co. Kerry. Source: OSI (2005)
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Figure 2.14 Conceptual model of the relationship between dune morphology and sediment budget. See text for
explanation. Source: Psuty (2004)
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Figure 2.15 Pre- and post- storm beach profiles. Source: Van Thiel de Vries (2009)



(a) Layer separation and collapsing (b) Layer separation and Overturning

(c) Notching and slumping (d) Sliding and flowing

Figure 2.16 Dune erosion mechanisms described by Nishi and Kraus (2001). Source: Nishi and Kraus
(2001)

Figure 2.17 Example of layer separation and collapsing at Rossbehy, Co. Kerry. Source: author’s own.
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Figure 2.18 Phases leading up to post-storm dune recovery.

Source: Carter et al. (1990).

Figure 2.19 Evidence of slope failure of a dune scarp (height = approximately 5 m) at Rossbeigh, Co. Kerry.

Slump blocks held together by vegetation litter the foredune

. Source: author’s own.
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Figure 2.21 Ebb-tidal delta fronting Inch and Rossbehy barriers. Source of aerial imagery: Google Earth.
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Figure 2.22 Multiple inlet system at the Nauset barrier system, Cape Cod MA. Dominant longshore transport is
southerly. Source: Giese ef al. (2009).
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Figure 2.23 Multiple inlet system at Ria Formosa, Portugal. Source: Salles (2001).
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Figure 2.24 Categorisation of a typical beach-dune profile. Modified from Schwartz (2006) and
Beaugrand (2010).
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Figure 2.25 Nearshore wave processes. Source: Svendsen (2006)
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Figure 2.26 Hjulstrom curve showing critical velocities for erosion, transport, and deposition as a function
of sediment grain size. Source: http://en.wikipedia.org/wiki/Hjulstr%C3%B6m_curve - Original:
Hjulstrom (1939) later modified by Sundborg (1956)
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Figure 2.27 Forces responsible for sediment entrainment. Modified from MIT OpenCourseWare (available
from: http://ocw.mit.edu/courses/earth-atmospheric-and-planetary-sciences/12-090-introduction-to-fluid-
motions-sediment-transport-and-current-generated-sedimentary-structures-fall-2006/course-textbook/ch9.pdf)
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Figure 2.28 Shield’s diagram modified by Miller et al. (1977) showing the boundary Reynold’s number as a
function of the critical Shield’s stress for experimental data. Entrainment occurs for conditions above the curve.
Source: MIT OpenCourseWare
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Guilcher et al., 1960

Provided initial descriptive geomorphology of Inch & Rossbehy

Shaw et al., 1986

Provided summary of RSL changes based on pollen analysis

Taylor et al., 1986 & Carter et al.,
1989a

Investigated the impact of RSL change & sediment supply on gravel barriers

Shaw et al., 1994

Performed marine geological surveys of Dingle Bay

Devoy, 1995 & Cooper et al., 1995

Related meso-scale morphological change during the mid- to late- Holocene to sea-level, sediment supply, & extreme storms

MacClenahan, 1997

Investigated variations in meso-scale morphological change at Inch in relation to climate, sea-level & human impact

Sherman et al., 1998 & 2012

Used Inch as a laboratory to study Aeolian transport models

Wintle et al., 1998

Used IRSL dating to date dune sediments at Inch (oldest = 600 yrs)

Orford et al., 1999 & Orford,
Cooper & McKenna, 1999

Related dune morphodynamics at Inch with extreme storms & associated surge

Jackson & Cooper, 1999

Documented & described the formation of ephemeral bedform turrets at Inch

Cooper et al., 2004 Assessed the impacts of storms as drivers to change at Inch/Rossbehy & other sites on the Irish coast

Vial, 2008 Investigated morphological response of Inch to storms & waves

Sala, 2010 Used numerical modelling to investigate breach risk & formation

Gault et al., 2011 Evaluated effectiveness of CONSCIENCE Frame of Reference as an erosion management tool at Inch
O'Shea et al., 2011 Used numerical modelling to investigate impacts of breaching on estuary

Delaney et al., 2012 Provided an account of mid- to late- Holocene RSL based on stratigraphical record in Castlemaine Harbour

Devoy, 2013

Evaluated the potential physical and geomorphological impacts of proposed golf course development at Inch

O'Shea et al., 2013

Related variations in incident wave directionality along Rossbehy over the tidal cycle with changes to the size, shape, and orientation of ebb-tidal bar

Devoy, 2015

Provided an account of the micro- to meso-scale development of Inch/Rossbehy and the controls on their development, and speculated on the future of
the barriers in response to sea-level change

O’Shea, 2015

Used numerical modelling techniques to speculate on the future morphodynamic behaviour of the barrier

Williams et al., 2015

Assessed threshold conditions for dune recession, overwashing and breaching at Rossbehy using Xbeach

Table 3.1 Previous research undertaken at Inch-Rossbehy
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Figure 3.2 Seabed
substrate within Dingle
Bay. Map layer
generated from
Geological Survey of
Ireland (GSI) multibeam
echosounder data and
seabed sampling data
acquired during the
INFOMAR and INSS
national seabed
mapping programmes.

52°5'0"N

52°0'0'N

Seabed Substrate

[0 Coarse sediment

Sand
I Muddy sand & sandy mud
I Rock

Mixed sediment

51°55'0"N

10°30'0"W 10°20'0"W 10°10'0"W 10°0'0"W 9°50'0"W

Figure 3.3 Dingle Bay
bathymetry. Map layer
generated from
Geological Survey of
Ireland (GSI) multibeam
echosounder data
acquired during the
INFOMAR and INSS
national seabed

52°5'0"N

52°0'0"N

mapping programmes.
Depth Depth is shown in
g metres below LAT
(according to data
obtained from the GSI,
LAT is 2.85+0.13metres
below ODM at
Rossbehy).

Low : -170

51°55'0"N

10°30'0"W 10°20'0"W 10°10'0"W 10°0'0"W 9°50'0"

2

7 Figure 3.4 Castlemaine
] w Harbour depth contours.
= r— Map layer generated from
{ interpolation of depth
soundings published on

el e > Navionics free webapp

{ 4 (http://webapp.navionics.co
m/?lang=en). The data is
crowd sourced from
recreational boaters using
mobile technology to ensure
it remains up to date. Units
are in metres below LAT.

>
52°5'0"'N

9°500"W
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Dingle Bay Chronology - 5,000 to 500 years BP Table 3.2 Paleoenvironmental

Ll Ll < el | chronology of Inch-Rossbehy and
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South shore |Extensive glacigenic deposits, including a series of arcuate moraines, formed along

19,000 BP of Bay south shore of Dingle Bay (Delaney et al., 2012)

Date of freshwater organics beneath modern beach at Rossbeigh; indicates proto-

6100 BP Rossbeigh
0ssoelg barrier was probably seaward of its present position (Delaney et al., 2012)

6000-5000 reland Deceleration phase of Atlantic RSL; Initiation of Primary dune emplacement in Ireland
BP (Shaw & Carter, 1994)

Knockaunnagl . . . .
e Palynological results from (inner harbour) cores show a mid-Holocene progressive

6000-3000 ashy, Lo : ) . ) .
marine inundation of earlier freshwater environments; palynological evidence for the
BP Garrane, and .
development of locally extensive shrub-woodlands (Delaney et al., 2012)
elsewhere
Palynological results from core at Knockaunnaglashy (southern shore of Castlemaine
Knockaunnagl .
5500 BP ashy Harbour) suggest gradual flooding of estuary from a sea level about 5m below that of

present (Shaw et al., 1986)

5000 BP - Southwest

Present \reland RSL rising showly (0.6-1.1 mm/yr) (Delaney et al., 2012)

4700 BP |Outer harbour|Strong marine influence detectable in biogenic sediments (Delaney et al., 2012)

Radiocarbon age of oldest gravel/sand ridge (underlying dune sediments)

2749 BC Inch (MacClenahan, 1997)
2749 BC - inch Inch Peninsula retreats landwards and develops as a longshore, prograding spit
AD 916 (MacClenahan, 1997)
2978-3362 | Knockaunnagl | Radiocarbon date of core indicates average accretion rate for peat between 0.43 -
BP ashy 0.55 mm/yr (Delaney et al., 2012)
Probable barrier breaching led to abrupt and permanent switch to intercalated and
heterogeneous biogenic/minerogenic sedimentation in inner harbour;
Rossbeigh / Lithostratigraphic evidence suggests repeated episodes of marine flooding of shrub-
3000BP woodlands and marshes beginning pre-3000 BP; species of diatoms found indicative

inner harbour
of tidal and storm-driven inundation; shrub-woodlands replaced by grass and sedge

dominated reedswamp type wetlands, together with open salt marsh and high marsh
environments (Delaney et al., 2012)

3000-1200 Cromane Core indicates gradual change from terrestrial to marine conditions was punctuated
BP by three clear marine inundations (possibly storm surges) (Shaw et al., 1986)
2781-2000 Rossbeigh Age of truncated upper contact of woody, monocot peat from core in saltmarsh
BP (Delaney et al., 2012)

Marine conditions established here; after 2800 BP, re-establishment of barrier occurs

2800 8P Rossbeigh (Delaney etal., 2012)

2500-500 Cromane Pollen analysis of core at Cromane point suggests waning of terrestrial dominated
BP environment, giving way to marine (Shaw et al., 1986)
2352-2162 . Age of sediments overlying truncated woody peat horizon in core from saltmarsh
Rossbeigh
BP (Delaney et al., 2012)
After 2300
eI;P Rossbeigh [Salt marsh appears to be well developed (Delaney et al., 2012)
1500 BP Inch Establishment of a hydraulically efficient inlet (Cooper et al., 1995)
Development of ebb-tidal delta depletes spit of sediment; increased rate of
cannibalisation of proximal end forces formation of spit, eventual rotation to the east,
1000-1500 . . :
Bp Inch and switching of dominant longshore transport to an offshore & cross barrier

transport, resulting in large dune development (Cooper et al., 1995; MacClenahan,

1997) 2 2

800 BP Rossbeigh  |Possible breaching event (O'Shea et al., 2011)

600 BP Inch Radiocarbon age of oldest dune sediments (Wintle et al., 1998)

Beach barrier sediments overwhelm site (Shaw et al., 1986); swash-aligned

500 BP Inch
ne equilibrium attained (Cooper et al., 1995)




Figure 3.5 Exposed peat on the beach face (left, 16 January 2014) and beneath the dune sands
(right; 14 April 2015) provides evidence of barrier rollover at Rossbehy. The truncated upper
contact of similar woody, monocot peat from a core in the back barrier saltmarsh has been dated
by Delaney et al. (2012) to 2781-2000 BP. Source: author’s own

Figure 3.6 Extract of study area from the Down Survey Maps published in 1673. Both Inch and
Rossbehy are depicted. Source: http://downsurvey.tcd.ie/down-survey-maps.php
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Dingle Bay Chronology 500 years BP to Present
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@ - - i ~— — i i i i i i N NN N
500-450 BP inch Period of sand influx into dunes (MacClenahan,
1997)
300 BP inch Period of sand influx into dunes (Cooper etal.,
1995)
1673 ireland In(.:h' and Rossbehy depicted on historic map by Sir
William Petty
18th inch Documentary evidence of major barrier breaching
Century (Delaney et al., 2012, p. 36)
200 BP Inch Period of sand influx into dunes (Cooper et al. 1995)
1750 - Castlemaine Documentary evidenc.e of direct agricultural activity
Present Harbour from before 1750 until recently on coastal wetlands
around Castlemaine Harbour (Delaney et al., 2012)
According to Cooper et al. (1995), Smith (1756)
provided an account of the morphology of the area:
1756 Inch Inch was an elongated spit topped by vegetated
dunes 30-40 ft high and an ebb-tidal delta and tidal
inlet were present in a configuration similar to the
present.
19th

Castlemaine |Abstraction of beach and dune sands for agriculture

century
until 1950s harbour common (Delaney et al., 2012)
150 BP inch Period of sand influx into dunes (MacClenahan,
1997)
Inner harbour
19th (Tullig to Piecemeal embanking and subsequent
century Cromane |abandonment of marshes (Delaney et al., 2012)
Point)
1800- Cutting of marram and lyme grasses for thatching
h
1960s Rossbehy | quinn, 1977)

162 ha embanked and drained behind Rossbehy by
1819-1822 Rossbehy [local landowner Lord Headley; Behy river
permanently rerouted (Delaney et al., 2012)

Barrier breaching almost occurred at distal neck

1842 Rossbehy (Delaney et al., 2012)
1842 - Caragh River Wetlands on left bank of river cut for fuel (Delaney
1894 e etal., 2012)
Seaward progradation of dunes and shoreline
1842-1894 Inch (O'Shea et al., 2011)
1822 k h d {
1844 Rossbehy 822 embankment breached and was subsequently

abandoned (Delaney et al., 2012)

Table 3.3 Recent (500 years BP to present) chronology of Inch-Rossbehy. Continued on next page. 24



Abstraction of beach and dune sands for agriculture

Inch
pre-1845 Rogscbe/h likeley reached peak here in pre-famine years
v (Delaney et al., 2012)
1894-1977 inch Recession of shoreline further leeward than 1842

position (O'Shea et al., 2011)

1894 and 1977 shorelines similar in position; slight
1894-1977 Rossbehy [erosion in area that is presently breached (O'Shea et
al., 2011)

Storms and high tides increase rate of erosion

1895-1897 Rossbehy (Allanson-Winn, 1899)

R.G. Allanson-Will called in by the trustees of Lord
Headley's estate to devise a scheme to prevent
1897 Rossbehy [further coastal erosion at the neck of Rossbehy,
which was threatening the road and some local
properties (Allanson-Winn, 1899)

Allanson-Winn installs three groynes at proximal end

1903 Rossbehy of Rossbehy beach (Allanson-Winn, 1899)
Account of sand removal from Rossbehy for use on

1949 Rossbehy golf greens in Killarney (Anonymous, 1949)
Embanking by OPW limits tidal inundation to a

1958 Inner harbour [narrow strip of salt marsh <500 m wide (Delaney et
al., 2012)

1977 Rossbehy Quinn (1977) notes: Rossbehy is "now known as the

'island' because the sea breached its narrow neck."

1977-2000 Inch Growth in dune line (O'Shea et al., 2011)

Increase in erosion of area that is presently

1977-2000 Rossbehy breached; little change in dune line

approx. . .
. |Increase in current regional SLR rate to 2-3 mm/yr
1980s- [North Atlantic
'“|(Delaney et al., 2012; NOAA)
Present
15-17 Oct Rossbeh Rate of erosion reported by the department of the
1982 Y Marine to be 0.45 to 1.23 ft per year (0.14 to 0.37 m)
1993 Rossbehy Nati9na| Coastal Eros?on F:ommittee (1993) reports
erosion on seaward side is 0.1 to 0.5 m per year
2000-2006 inch Slight erosion of distal end of barrier (O'Shea et al.,
2011)
2008 AD Rossbehy [Barrier breach occurs; initiation of new tidal inlet
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Figure 3.8 Historical shoreline variation at Rossbehy. Source: Cooper et al. (1995)
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Figure 3.9 Results of shoreline change
analysis undertaken by O’Shea et al. (2011)
superimposed on an aerial photograph from
2010. Yellow = 1842; Red = 1894; Black =
2000. Source: O’Shea et al. (2011)

Figure 3.10 Aerial photographs (1995, 2005, and 2010) and Landsat 8 imagery (2015) of Inch,
illustrating the relative stability of its shoreline. Source of imagery: 1995 and 2005 = OSI;
2010 = Google Earth; 2015 = USGS LandsatLook viewer
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Figure 3.11 Aerial photographs (1997, 1995, 2005, 2010, and 2012) and Landsat 8 imagery
(2015) of Rossbehy, illustrating recent changes along its distal shoreline. Source of imagery:
1977, 1995, and 2005 = OSI; 2010 = Google Earth; 2012 = ESRI World Imagery / Microsoft;
2015 = USGS LandsatLook viewer

© john herriott 2008 www.irelanda photography.com

© john herriott 2009 www.irelandacrialphotography.com

Figure 3.12 Aerial photographs of Rossbehy prior to (September 2008) and after (July 2009)
breaching in December 2008. Source: John Herriott aerial photography
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Figure 3.14 Sunbeam shipwreck
before 2013/2014 storms (in its
original position since 1903; top),

~ after first displacement in

December 2013 (middle; lying
parallel to foredune ridge) and after
final displacement in February
2014 (bottom; lying oblique to
foredune ridge). For scale, the
boat’s maximum width is
approximately 5 m and maximum
length is approximately 22 m.
Source: author’s own
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author’s own

Figure 3.16 Dune blowout at the entrance to Rossbehy strand. Source
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Figure 3.17 Annotated DEM illustrating dunescape at Inch, which is characterised by parabolics and
transverse ridges. Data derived from aerial LIDAR data provided by the Kerry County Council and
flown in April 2011. Box indicates area covered by beach-dune topographic surveys. Adapted from
Devoy (2013).
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Figure 3.18 Annotated

DEM illustrating dunescape

at Rossbehy, which, like

Inch, is characterised by
parabolics and transverse
ridges. Data derived from
aerial LiDAR data provided
by the Kerry County Council
and flown in April 2011.
Box indicates area covered
by beach-dune topographic
surveys.
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Figure 3.19 Geotagged panorama showing scarping on the southwestern side of Inch. Map,
inset, shows location of photo. Photo source: author’s own; Map source: Google Maps

Figure 3.20 High foredune ridge in active, southern zone of Inch. Wooden posts on dune ridge are
approx. 1 metre in height. Source: author’s own (6 October 2012).
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Figure 3.21 Ephemeral embryonic dunes at southern tip of Inch (looking south towards Dooks
golf course). 20 June 2013 Source: author’s own

Figure 3.22 Transverse ridges in southern and middle interior of Rossbehy. Looking north
towards Inch. Source: John Coveney
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Figure 3.23 Dune slack in middle interior of Rossbehy. Looking south. Source: author’s own

Windrose Valentia 1940 - 2010

o <5 kt O <4%
o 5-10 kt 0 4-8%
o 10-20 kt N O 8-12%
o 20-35 kt O 12-16%
B 35kt

w E

0% 4% 8% 12% 16%

Figure 3.24 Valentia windrose 1940-2010. Source: Met Eireann
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Highest Astronomical Tide +4.36 m

Mean High Water Spring +3.76 m

Mean High Water Neap +3.15m

Mean Sea Level (0 m at Malin Head) +2.3 m (Ordnance Datum Malin)
Mean Low Water Neap +1.17m

Mean Low Water Spring +0.58 m

Lowest Astronomical Tide 0m

Table 3.4 Tidal ranges at Inch Beach based on predictions for a total tidal cycle
(20 years). Source: Vial (2008) and Sala (2010)
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Figure 3.25 Conceptual
model of inferred

morphological changes in g parsolc una mm

Inch beach and dunes 3

proposed by Orford et al.

(1999a). Source: Orford / L I\ W & s
et al. (1999a) e

j \ N

x
w storage
o ) Beach
2 [ Beech
o / \ \ storage storage
Map Map AlrPhoto AP AP P Surveys
I —r — + ——
1800 1850 1900 1950

oI e | L e i s Rl e o v 5w il e et
Possible beach and
accretion trigger dune accretion

A B Figure 3.26

53 Distribution of
wave energy
dissipation at Inch
and Rossbehy
under (A) modal
swell (H=0.04 m, T
=7s) and (B) large
swell waves (H=6.6
m, T=13.65s).
Extracted from
Cooper et al.
(2004)

Figure 3.27 Wave
orbital velocities at
Inch and Rossbehy
under (A) modal
swell conditions and
(B) Hurricane Debbie
wind-generated
waves, indicating
relative ability of
waves to transport
sediment under storm
conditions. Extracted
from Cooper et al.
(2004)
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Figure 3.28 Significant wave heights associated with a 100-year return storm coming from
an angle of 240° for (a) mean high water, (b) mean sea level, and (c) mean low water.
Extracted from Vial (2008)



Figure 3.29 Historical recurves (blue) at Rossbehy represent either earlier northern limits of dune
progression or southern limits to a historical breaching event. Figure adapted from O’Shea (2015).

..... " Pre-breach shoreline
.~ Incoming wave
«~~ Sedimenttransportdirection
Accretive zone
v ;
“ Erosion
® Fulcrum
k Swash Aligned Barrier

" Drift Aligned Barrier

Transitional phase
Barrierreorganisation
Micro-scale cannibalisation: 4 distinct sub-cells

Figure 3.30 Sedimentary cells at Rossbehy as defined within the short-term conceptual model of Sala
(2010). Looking south. Source: Sala (2010).
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Stage 1
Removal of swash platform between 2004-2008 (likely as a result of channel straightening) leaves drift aligned
zone of Rossbehy vulnerable to wave attack

Positive feedback in operation whereby widening of breach facilitates growth of ebb-tidal bar and expansion of
drift aligned zone; channel between ebb tidal bar and drift aligned zone is established

Erosion of drift
aligned zone

7

Growth of ebb bar
and establishment
of channel

—

™~
Y

Eroded material feeds growth
of ebb bar and hinge point of
DA zone continues to shift
landward

=Y

During storms and at high tide,
waves pass over ebb bar,
change direction, and attack
dunes

)

Stage 3

Further breach widening; migration of ebb bar toward drift aligned zone

%

Stage 4

Bar welds onto barrier (channel infilling) and slowdown in dune retreat; establishment of embryo dunes in

breach

Stage 5

Dune repair

Figure 3.31 Five-step conceptual model of O’Shea (2015) for breach evolution at Rossbehy.
Graphics for stage 1 extracted from O’Shea et al. (2013)
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Global Sea Level Fluctuations

Hallam et al.

0

| Level Curve |

f/w' Exxon Sea

Glacial
Episode

N[Pg] K I.J Tr | P C.I DIISI'OI'Cm
0O 50 100 150 200 250 300 350 400 450 500 542
Millions of Years Ago

Exxon Sea Level Change (m)

-100+

Figure 4.1 Phanerozoic global sea-level curves derived from the stratigraphic record. Source:

http://en.wikipedia.org/wiki/Sea-level curve - after Vail et al. (1977) and Hallam (1981).
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Figure 4.2 Global sea-level change from coastal tide gauge records - 1870 to 2000. Source:
CSIRO (2014)

2(5) Global Mean Sea Level Variations Jason-2
50 - 1993.0 - 2014.54 linear rate = 3.17 +/- 0.4 mm/yr
45 - Glacial Isostatic Adjustment applied

40 -~ Annual and semi-annual signal removed

Jason-1

TOPEX Alt A

Sea Height Variation (mm)
[ 3%
S

it B

NASA/GSFC 10/03/2014
205 E|
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Figure 4.3 Multi-mission ocean altimeter data showing global mean sea-levels from 1993 to 2014.
Data is with respect to the 1993-2002 mean and plotted every 10 days. Source: NASA Goddard
Space Flight Center (2014)
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Source 1901-1990 1971-2010 1993-2010

Observed contributions to global mean sea level (GMSL) rise
Thermal expansion - 08[05t01.1) 1.1[08101.4]
Glaciers except in Greenland and Antarctica® 0.54 [0.47 10 0.61] 0.62 [0.25 10 0.99] 0.76[0.39101.13]
Gladiers in Greenland® 0.15[0.10t0 0.19] 0.06 [0.03 t0 0.09] 0.10 [0.07 to 0.13P
Greenland ice sheet - - 03302510 0.41]
Antarctic ice sheet - - 0.27[0.16 10 0.38]
Land water storage =0.11 [-0.16 tc ~0.06] 0.12[0.03100.22] 0.38 0.26 o0 0.49]
Total of contributions - - 2.8[2.31t0 3.4]
Observed GMSL rise 15M1.3t01.7] 20[1.7t02.3] 3.2[2.8 0 3.6)
Modelled contributions to GMSL rise
Thermal expansion 0.37 [0.06 to 0.67] 0.96 [0.51 10 1.41] 1.49[0.97 10 2.02]
Gladiers except in Greenland and Antarctica 0.63[0.37 10 0.89] 0.62 [0.41 10 0.84] 0.78 [0.43 10 1.13]
Gladiers in Greenland 0.07 [~0.02 10 0.16] 0.10 [0.05 10 0.15] 0.14 [0.06 to 0.23]
Total including land water storage 1.0[0.5t0 1.4 1.8[1.3t02.3] 2.8[2.11035]
Residual® 0.5[0.1t0 1.0] 0.2 [-0.4 t0 0.8) 04[-0.4101.2)

Notes:

2 Data for all glaciers extend to 2009, not 2010.

> This contribution is not included in the total because glaciers in Greenland are indluded in the ob ional of the land ice sheet.

¢ Observed GMSL rise - lled thermal ~ modelled glaciers - observed land water storage.

Figure 4.4 Modelled and observed GMSL rise from IPCC ARS5. Modelled data was computed
from the Coupled Model Intercomparison Project (CMIPS) and shows good agreement with
observations. Source: Church et al. (2013).

Figure 4.5 Derived projected
RSL increases under the
IPCC AR4 medium emissions
scenario for the year 2095.
Projections take into account
both absolute SLR and
vertical land movement due
to glacial isostatic adjustment.
Source: Lowe et al. (2009)

Relative sea level (cm)
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Figure 4.6 Oblique aerial photos of Portballintrae Beach in 1938 (top) and 1999
(bottom) illustrating beach narrowing as a result of the installation of a pier in
its western section. Source: Jackson (2012)
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Figure 6.1 Airborne LiDAR systems work by sending out multiple laser pulses and recording the
time it takes for the signal to be reflected off the ground and returned to the sensor. These systems
consist of three main parts: the sensor, the inertial measurement unit, and a GPS. Source: Heritage
and Large (2009)

Figure 6.2 Ground-based LiDAR systems use the same basic technology as airborne systems, but
are deployed on the ground. While they are limited in terms of coverage area compared to airborne
systems, they are capable of capturing higher resolution data and are easier to deploy at short notice
(e.g. in the aftermath of a storm).
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Figure 6.3 Point cloud showing beach and foredunes (centre) at the terminal margin of the
Rossbehy barrier (looking south). The dune scarp (centre right) is the on seaward side of barrier,
with the vegetated lee side shown centre left. The track marks are from the wheels of the trolley
used to transport equipment to the field site, which are approx. 7 cm in width. This figure
illustrates the fine detail that can be captured using this survey technique.

Figure 6.4 Shadow zones - zones of missing data located behind obstructions to the laser scanners
field of view, resulting in 'gaps' in the point cloud. These can be minimised by obtaining multiple
surveys over the same area from different angles. Source: author’s own data obtained at Rossbehy
field site
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Figure 6.5 Survey target, as seen in a point cloud, used for referencing multiple scans to one
common coordinate system. Source: author’s own data obtained at Rossbehy field site
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Figure 6.6 DEMs generated from TLS data collected at monthly intervals at Rehoboth Beach,

North Carolina, USA from January 2006-April 2007. Areas of maximum erosion are shown

in black and grade to areas of maximum accretion, shown in white. The data was collected at
0.20 m resolution over an area of approximately 500 m x 70 m and reduced to 1 m x 1 m grid
cells. Source: Pietro et al. (2008)
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Figure 6.7 Digital elevation model of embryo dunes in North Lincolnshire, UK. Elevation in
metres. Source: Montreuil et al. (2013)

Figure 6.8 Rendered triangular irregular network (TIN) showing a hard rock cliff face in North
Yorkshire, UK (left) and close up (right) showing triangular faces. TLS data form the nodes of
the TIN. Source: Rosser et al. (2005)
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Figure 6.9 Graphic illustrating how natural neighbour interpolation works. See text for
explanation. Image source: ESRI ArcGIS 9.2 Desktop Help
(http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Natural%20Neighbor%?20Inter
polation)

Figure 6.10 Graphic illustrating how inverse distance weighting interpolation works. See text
for explanation. Image source: ESRI ArcGIS 9.2 Desktop Help
(http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Implementing Inverse Dist
ance_Weighted (IDW))
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Figure 6.11 DEMs of difference showing seasonal changes to embryo dunes for three periods
between October 2009 and October 2010. Source: Montreuil ez al. (2013)
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Figure 6.12 Example of compartments (top) generated in TOPCAT for a case study at Dog Beach,
Del Mar California (Oct 2005-March 2007). Compartments are overlain on elevation change
map. Graphs show cliff face retreat rate (centre) and volumetric change (bottom) for each
compartment along the length of the cliff. F1, F2, and F3 are major cliff failure events. Source:
Olsen et al. (2012)
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Figure 6.13 Results of classification using a multi-scale dimensionality criterion for a steep
river bank (left, classes labelled) and a tidal marsh (right, green = vegetation, white = soil).
Source: Brodu (2012)
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Figure 7.1 General locations of field sites at Rossbehy and Inch. Source: Modified from OSI
vector coastline data and 2010 OSI aerial photography.

Figure 7.2 High foredune at Inch field site (looking North). Source: author’s own (6 October
2012)
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Figure 7.3 Ephemeral embryo dune field and beach fronting foredune at Inch field site. Looking
southeast. Rossbehy can be seen in the distance. Source: author’s own (20 June 2013)
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Figure 7.4 Oblique aerial view of Inch field site, looking north-northwest. Source:
coastalhelicopterview.ie
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Figure 7.5 General location of Rossbehy field site. Looking south. Source: Google Earth (2012)

Figure 7.6 Main section of Rossbehy field site, consisting of upper beach and foredune scarp.
Barrier terminus is at left. Looking east. Source: author’s own (8 October 2012)

Figure 7.7 Terminus of mainland section of barrier (centre). Looking south. Foredune scarp is
hidden by shadow (right of centre). Some scans covered part of vegetated dunes (left of centre)
and back barrier beach. Source: author’s own (15 April 2012)
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Scanstation 2.002 1)

ScanStation 2 Laser
Scanner

Laptop - optional
Ethernet cable

Power supply cable
A/C power supply with
power cable - optional
GEV226 ScanStation
power cable

GEV225 AC power
supply for GKL271
charging station
GKL271 charging
station and GEB271
pattery pack
Tribrach, with optical
plummet

Tripod

Transport case for
ScanStation 2
Transport case for
ScanStation 2 battery

Figure 7.8 Leica
ScanStation components.
NB: Figure was extracted
from Leica ScanStation2
model manual

(Leica Geosystems,
2007), but ScanStation
setup is more or less the
same.

Figure 7.9 Leica ScanStation setup at Rossbehy field site. Looking north at main dune barrier
terminus. Source: author’s own (15 November 2012)
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Figure 7.10 Field equipment being transported via tractor and trolley at Inch. Photo: Valerie
Heffernan

Figure 7.11 Leica HDS registration target — for registration of multiple same-date scans.
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Figure 7.12 Leica HDS target as seen in section of photo mosaic (inset) and in the point cloud
(main). From the mosaic, targets can be identified (‘fenced’) and the scanner can then be
directed to scan only the fenced areas in high resolution for scan registration.
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Total number

Resolution of points in
cloud
2012-06-28* Rossbehy 2 cm 67420725
2012-08-05* Rossbehy 2.5cm 97274308
2012-10-07* Rossbehy 2.5cm 43358639
2012-11-15 Rossbehy 2.5cm 4267504
2013-01-30 Rossbehy 2.5cm 4699073
2013-02-28 Rossbehy 2.5cm 7609265
2013-04-19 Rossbehy 2 cm 7459604
2013-06-05 Rossbehy 2.5cm 6794554
2013-08-06 Rossbehy 2.5cm 5023912
2013-12-11 Rossbehy 10 cm 4104385
2014-01-16 Rossbehy 15 cm 1573813
2014-05-04 Rossbehy 2.5cm 22997536
2014-07-29 Rossbehy 2.5cm 16386541

Table 7.1 Summary of data obtained during field surveys completed at Rossbehy field site.
*Data obtained using Leica C10 instrument.

Total number

Resolution of points in
cloud
2012-05-24 Inch I cm 8367215
2012-08-06 Inch 2.5cm 30972308
2012-10-06 Inch 2.5cm 47232935
2013-01-09 Inch 2.5cm 10058134
2013-02-27 Inch 2.5cm 4843043
2013-05-02 Inch 2.5cm 7804177
2013-06-20 Inch 2.5cm 24366526
2014-03-12 Inch 2.5cm 23432492
2014-08-28 Inch 2.5cm 2358641

Table 7.2 Summary of data obtained during field surveys completed at Inch field site.
*Data obtained using Leica C10 instrument.
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Same-date scan registration

Station 1 Cloud
Cloud obtained from S1
with coordinate system
relative to position of
scanner at S1

Station 2 Cloud
Cloud obtained from S2
with coordinate system
relative to position of
scanner at S2

R Position of scanner

@® HDSTargets

Registered Cloud

Registered cloud now in
coordinate system of S1

Figure 7.13 Example from Inch field site illustrating same-date scan registration for two point
clouds obtained from two stations (S1 and S2). Following registration of the S2 cloud to the S1
cloud using the Leica HDS targets, the clouds are in the coordinate system of the S1 cloud.
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Distribution of registration errors between same-date scans at
Inch

N=19

Mean=0.004m —

Frequency
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Error (m)

Figure 7.14 Distribution of registration errors between same-date scans at Inch. Inset:
Population (N), mean, min, and max errors and standard deviation.

Distribution of registration errors between same-date scans at
Rossbehy
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Figure 7.15 Distribution of registration errors between same-date scans at Rossbehy.
Inset: Population (N), mean, min, and max errors and standard deviation.
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Figure 7.16 Example of semi-permanent wooden posts set up in the field for registering multi-
temporal scans. The tips of the nails act as control points from which the successive scans are
registered to one common coordinate system.

May 2012 RMSE August 2012
Post 1: 0.001 m s
Post 2: 0.002 m Post 3

Post 3: 0.003 m

Figure 7.17 RMS Errors of registration associated with multi-temporal constraints (Post 1, Post
2, and Post 3) for May 2012 and August 2012 at Inch. Left: Post 3 in the May 2012 cloud; Right:
Post 3 in the August 2012 cloud.
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Distribution of registration errors between scans registered using semi-
permanent targets at Inch

10

N =25 —
Mean = 0.003 m

Min = <0.001

Max = 0.007 -

"] SD =0.002
:

:

:

Al

, A A A I BN

UpTo 0.001To 0.002To 0.003To 0.004To 0.005To 0.006 To 0.007 To 0.008 To 0.009 to
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Error (m)

Frequency

Figure 7.18 Distribution of registration errors between scans registered using semi-permanent
targets at Rossbehy. Inset: Population (N), mean, min, and max errors and standard deviation.

Distribution of registration errors between scans registered
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Figure 7.19 Distribution of registration errors between scans registered using semi-permanent
targets at Inch. Inset: Population (N), mean, min, and max errors.
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Distribution of registration errors between scans registered
using dGPS coordinates at Rossbehy
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Figure 7.20 Distribution of registration errors between scans registered using dGPS
coordinates at Rossbehy. Inset: Population (N), mean, min, and max errors.

Figure 7.21 Before (top) and after (bottom) vegetation filtering using lowest points analysis on a
subset of the May 2012 point cloud from Inch. Subset shown left, with cross section through
centre shown right.
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Figure 7.22 Subset of May 2012 point cloud from Inch on which initial vegetation classification
tests were performed. Colours represent laser scanned intensity values, which correspond to the
distribution shown in figure 7.23.

Figure 7.23
Laser scanned
intensity
distribution of
cloud shown in
figure 7.22.
Intensity values
(x axis) are based
on the
capabilities of the
scanner and are
scaled to a range
of -2048 to
+2048. Y axis
represents
frequency.

768.000000
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Figure 7.24 Result of filtering points with laser scanned intensity values outside -233 to -156
(light blue peak shown in fig. 7.23) from test patch. Close up of ground surface with multiple non-

ground points shown top right.
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Figure 7.25 Histogram showing the distribution of manually sampled ground and vegetation
point intensities.
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Intensity Variation with Distance from Scanner - Ground

Distance from Scanner
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Figure 7.26 Mean intensity variation (and standard error bars) with distance from the scanner for
200 manually selected ground points plotted at 5 m intervals up to a distance of 50 m from the
position of the scanner.
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Figure 7.27 Mean intensity variation (and standard error bars) with distance from the scanner for

200 manually selected vegetation points plotted at 5 m intervals up to a distance of 50 m from the
position of the scanner.

68



Workflow for Classifier Construction
with CANUPO Figure 7.28

Workflow
for classifier
construction
using
CANPO. See
text for
explanation.

Step 1:
Raw TLS data (.xyz) Preparation of
— A training sets

Vegetation

Step 2: Choose set of scales
20cm 30cm 40 cm 50cm
3D 3D 3D 3D

Look at density plots at
various scales to refine

: S R choice of scales and

1D 2D 1D 2D 1D 2D 1D 2D generate multiscale
(.msc) files for each class
in the scene.

Ground

Vegetation

1D 2D 1D 2D 1D 2D 1D 2D

Step 3: Build the classifier

Classifier proposal using Linear
Discriminant Analysis (LDA). SVG
graphic (left) shows position of
proposed classifier. Can be
manually edited.

Step 4: Validate the classifier
PRM parameters file

Step 5: Classification of the whole scene
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Figure 7.29 Foredune scarp and upper beach at Rossbehy in November 2012 and January 2013.

The distance between the two points shown is 44 m.

Plan view

Rotation

axis

Rotation
axis

Rotated (90
degrees) view

Rotation
axis

Foredune att,
(looking down)

Foredune at t,
(looking down)

Figure 7.30 Graphic illustrating
the process of coordinate system
rotation for foredune point clouds
at Rossbehy. In this example,
two point clouds are shown, one
captured at time t; (red) and
another captured at a later date, t,
(blue). These are shown in plan
view — e.g. looking down from
above (top). Using
CloudCompare software, it is
possible to rotate the clouds
along a rotation axis using the
rotate/translate tool. An oblique
view of the clouds captured as
they were being rotated is shown
(middle). The clouds were
rotated 90 degrees about this
axis, such that their final
orientation was as shown
(bottom). This was performed
for the foredune because few
scans overlapped in plan view
due to considerable foredune
recession over the course of
study period.
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Figure 7.31 Example of classified (top) and filtered (bottom) cloud from May 2012 Inch dataset.

Figure 7.32 Example of classified (top) and filtered (bottom) cloud from Rossbehy foredune
scarp (June 2012)
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Figure 7.33 Schematic diagram showing

how elevation (z) values from overlapping

DEMs can be subtracted to produce DEMs

zZ of difference (DODs) for beach at Inch and
Rossbehy.

-

Figure 7.34 Schematic diagram showing how

elevation (z) values from overlapping DEMs can be

z subtracted to produce DEMs of difference (DODs)
for foredune at Rossbehy.
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Figure 7.36 Distribution of February 2013 EDM ground truthing points (red) for Inch
(top) and Rossbehy (bottom). Basemaps shown are natural neighbour interpolations of
unfiltered TLS point clouds where green is low (flat beach) and purple/white is high
(foredune crest).
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Error Distribution - Inch - Unfiltered Cloud
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Figure 7.37 Error distribution for unfiltered (top) and filtered (bottom) clouds at

Inch.
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Error Distribution - Rossbehy - Unfiltered Cloud
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Figure 7.38 Error distribution for unfiltered (top) and filtered (bottom) clouds at

Rossbehy.
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Inch Voronoi Map
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Figure 7.39 Voronoi map for Inch data symbolised by standard deviation. The pattern shown

suggests the data is non-stationary. As a result, kriging was deemed an inappropriate
interpolation method for this data.

NN IDW EBK
Unfiltered 0.537 mm 0.539m 0.540 m
Filtered 0.183 m -0.037 m 0.147 m

t(76)=15.536, t(76)=14.801, t(76)=13.952,

p<0.001 p<0.001 p<0.001

Table 7.3 Residual errors for February 2013 Inch DEMs generated using unfiltered and filtered
TLS point clouds and interpolated using NN, IDW, and EBK. Results of paired t-test
demonstrating significant differences between unfiltered and filtered clouds also shown.

77




Figure 7.40 Areal photograph of Rossbehy field site indicating general location of TLS surveys.
Locations A and B correspond generally to the maps shown in figures 7.41 to 7.58 and represent the
dune barrier terminus (A) and the southern periphery of the surveyed area (B) at the time of the
corresponding survey. Source of areal photography: ESRI

78



Rossbehy Beach Elevation Change between 2012-06-28 and 2012-08-05

N Registered using Common

Coordinate System 1
Elevation change (m)
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Figure 7.41 Rossbehy beach elevation change (DOD) between 2012-06-28 and 2012-08-05.
Elevation change across the majority of the surveyed area lies below the level of detectable
change (£0.41 m) and ranged from -0.27 m to +1.08 m. Locations A and B correspond with
those shown in figure 7.42. The coordinate marked with the triangle is at the same location as
that shown in figure 7.43 (the DOD for the subsequent survey period) for reference. Mean sea
level (MSL) is equal to +2.3 m ODM.
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Rossbehy Beach Elevation Change between 2012-08-05 and 2012-10-07

Elevation change (m)
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Figure 7.43 Rossbehy beach elevation change (DOD) between 2012-08-05 and 2012-10-07.
Beach erosion is shown in red, while accretion is shown in blue. Elevation changes below the
level of detectable change (+0.41 m) are shown in gray. Elevation change ranged from -2.15 m
to +5.49 m. The coordinate marked with the triangle is at the same location as that shown in
figure 7.41 (the DOD for the previous period) for reference. Locations A and B correspond (in a
general way) with those shown in figure 7.40. Mean sea level (MSL) is equal to +2.3 m ODM.
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Rossbehy Beach Elevation Change between 2013-01-30 and 2013-02-28

N Registered using Common

t Coordinate System 2

-70" -50 " -30" -10"
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50

30

10

Elevation change (m)
-8 --6
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-1--09
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-0.8--0.7
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0.6-0.7
0.7-0.8
Em0.8-09
ENO09-1
-2
m2-4
mm4-6

Elevation at t1
® (2013-01-30) =
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Approximate
area enclosed by
DOD for previous
period of analysis
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out of the frame

Figure 7.46 Rossbehy beach elevation change (DOD) between 2013-01-30 and 2013-02-28.

Accretion occurred across the majority of the surveyed area (varying shades of blue). Area in

gray lies below the level of detectable change (+0.41 m). Elevation change ranged from +0.18 m
to +0.99 m. Locations A and B correspond with those shown in figure 7.47. The coordinate

marked with the circle is at the same location as that shown in figures 7.48, 7.50, and 7.52 (the

DODs for the subsequent survey periods) for reference. Mean sea level (MSL) is equal to +2.3 m

ODM.
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Rossbehy Beach Elevation Change between 2013-02-28 and 2013-04-19

Elevation change (m)
N Registered using GPS -8 --6

coordinates N 6--4
-4 -2

-2
o109
9-09--08
9-08--07
[1-0.7--06
©1-0.6--0.44
-0.44 - 0.44
0.44-06
[106-07
[90.7-08
m08-09
-O09-1
-2
.24
.46

93910

93890

Elevation at t1
® (2013-02-28) =
2.68 m above MSL

Approximate
area enclosed by
DOD for previous
period of analysis
(2013-01-30 to
2013-02-28)

93870

3850

64970 64990 65010 65030

Figure 7.48 Rossbehy beach elevation change (DOD) between 2013-02-28 and 2013-04-19.
Beach erosion occurred across the entire survey area (varying shades of red). Beach elevation
change ranged from -1.94 m to -0.62 m. Locations A and B correspond with those shown in
figure 7.49. The coordinate marked with the circle is at the same location as that shown in
figures 7.46, 7.50, and 7.52 (the DODs for the previous and subsequent survey periods) for
reference. Mean sea level (MSL) is equal to +2.3 m ODM.
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Rossbehy Beach Elevation Change between 2013-04-19 and 2013-06-05

Elevation Change (m)
N Registered using Common
8] 3 -6 A

Coordinate System 3
-2
m-2-41

-1--09
-0.9--08
-0.8--0.7
-0.7--06
A‘ 0.6 - -0.41
ay -0.41-0.41
L4 f 0.41-06
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-2
.24
46

50
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Elevation at t1
® (2013-04-19) =
0.94 m above MSL

-10'

Approximate

1 area enclosed by
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o period of analysis
(2013-02-28
to 2013-04-19)

-30 "

-30 -10 10 30 50

Figure 7.50 Rossbehy beach elevation change (DOD) between 2013-04-19 and 2013-06-05.
Elevation change across the majority of the site lies below the level of detectable change (£0.41
m) and ranges from -0.17 m to +0.51 m. Locations A and B correspond with those shown in
figure 7.51. The coordinate marked with the circle is at the same location as that shown in
figures 7.46, 7.48, and 7.52 (the DODs for the previous and subsequent survey periods) for
reference. Mean sea level (MSL) is equal to +2.3 m ODM.
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Rossbehy Beach Elevation Change between 2013-06-05 and 2013-12-11

Elevation change (m)
N Registered using GPS -8 --6
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46
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Elevation at t1
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o\

93850

64970 64990 65010 65030

Figure 7.52 Rossbehy beach elevation change (DOD) between 2013-06-05 and 2013-12-11.
Elevation change across the majority of the site lies below the level of detectable change (+0.44
m) and ranges from -0.13 m and +0.88 m. Locations A and B correspond with those shown in
figure 7.53. The coordinate marked with the circle is at the same location as that shown in
figures 7.46, 7.48, and 7.50 (the DODs for the previous survey periods) for reference. Mean sea
level (MSL) is equal to +2.3 m ODM.
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Rossbehy Beach Elevation Change between 2014-01-16 and 2014-05-04

Elevation change (m)
-8 --6
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N Registered using GPS
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Elevation at t1
m (2014-01-16) =
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Approximate
area enclosed by
DOD for previous
period of analysis
(2013-06-05

to 2013-12-11)
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Figure 7.55 Rossbehy beach elevation change (DOD) between 2014-06-16 and 2014-05-04.
Elevation change across the majority of the site lies below the level of detectable change (+0.44
m) and ranges from -0.42 m to +1.42 m. Locations A and B correspond with those shown in
figure 7.56. The coordinate marked with the square is at the same location as that shown in
figure 7.57 (the DOD for the subsequent survey period) for reference. Mean sea level (MSL) is
equal to +2.3 m ODM.
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Rossbehy Beach Elevation Change between 2014-05-04 and 2014-07-29

Registered using GPS
coordinates

64950 64970 64990 65010 65030 65050 65070 65090 65110 65130

93750 93770 93790 93810 93830 93850 93870 93890 93910 93930

Elevation change (m)
-8 --6
-6--4
-4 --2
m-2-41

-1--0.9
0.9--08
0.8--0.7
0.7--06
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-0.44 - 0.44
0.44-06
0.6-0.7
0.7-0.8
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Elevation at t1
(2014-05-04) =

3.41 m above MSL

Area enclosed by
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Figure 7.57 Rossbehy beach elevation change (DOD) between 2014-05-04 and 2014-07-29.
Accretion (varying shades of blue) occurred across the majority of the site. Elevation change
below the level of detectable change (+0.44 m) is shown in gray. Elevation change across the
surveyed area ranged from -0.87 m to +1.40 m. Locations A and B correspond with those shown
in figure 7.58. The coordinate marked with the square is at the same location as that shown in
figure 7.55 (the DOD for the previous survey period) for reference. Mean sea level (MSL) is

equal to +2.3 m ODM.
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Volumetric

Mean Elevation Time Rate of error margin

Survey elevation change Volume | Volume | Netvolume | Volumetric Area of associated
. between | volume .
start/end change error Gain Loss change (Vy) error Survey with rate of Remark
. 3 3 3 . 3 2 surveys change (Rys)
dates between margin (m”) (m°) (m”) margin (m”) (A) (m”) (days) (m* m’ day) volume
DEM:s (m) (m) y Y) | change (m’
m’ day)

2012-06-28

0.02 +0.41 320.6 171.4 149.2 +2983 7275.9 58 0.0004 +0.007 Inconclusive
2012-08-05
2012-08-05 .

0.80 +0.41 3844.1 973.2 2870.9 +1468 3581.5 43 0.0186 +0.003 Net gain
2012-10-07
2013-01-30 .

0.54 +0.41 544.9 0.0 544.9 +417 1017.2 29 0.0185 +0.014 Net gain
2013-02-28
2013-02-28

-1.50 +0.44 0.0 1369.6 -1369.6 +412 938.1 50 -0.0292 +0.009 Net loss
2013-04-19
2013-04-19

0.19 +0.41 363.7 9.8 353.9 +764 1865.5 47 0.0040 +0.009 Inconclusive
2013-06-05
2013-06-05 .

0.30 +0.44 219.7 2.5 217.2 +321 731.6 189 0.0016 +0.002 Inconclusive
2013-12-11
2014-01-16 ]

0.17 +0.44 788.0 62.4 725.6 +1931 4390.7 108 0.0015 +0.004 Inconclusive
2014-05-04
2014-05-04 ]

0.41 +0.44 1818.2 4.2 1813.9 +1936 4402.2 86 0.0048 +0.005 Inconclusive
2014-07-29

Table 7.4 Summary of elevation and volume changes for beach at Rossbehy field site.
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Mean

. . . Time Rate of Volumetric error
Survey change in Distance Net volume | Volumetric | Area of . .
. Volume | Volume between volume margin associated
start/end distance |change error . 3 3, | change (Vy) error Survey (A) . Remark
. Gain (m”)| Loss (m”) 3 . 3 2 surveys |change (R,) |with rate of volume
dates between margin (m) (m”) margin (m”) (m”°) (days) (m3 m? da ) |change (m3 m? da )
DEMs (m) y y g y
2012-06-28
-1.1 +0.41 20.3 351.7 -322.5 +127 310.6 38 -0.0273 +0.011 Net loss
2012-08-05
2012-08-05
-8.9 +0.41 26.0 2085.7 -2059.8 +99 242.6 102 -0.0832 +0.004 Net loss
2012-11-15
2012-11-15
-28.1 +0.44 0.0 9469.4 -9469.4 +153 346.8 76 -0.3593 +0.006 Net loss
2013-01-30
2013-01-30
-1.1 +0.41 18.0 382.1 -364.1 +137 334.1 29 -0.0376 +0.014 Net loss
2013-02-28
2013-02-28
-3.6 +0.44 0.0 836.1 -836.1 +104 236.1 50 -0.0708 +0.009 Net loss
2013-04-19
2013-04-19 )
-0.1 +0.41 24.2 48.9 -24.7 +152 371.6 47 -0.0014 +0.009 Inconclusive
2013-06-05
2013-06-05 .
0.0 +0.44 333.9 322.6 11.2 +157 355.8 189 0.0002 +0.002 Inconclusive
2013-12-11
2013-12-11
-37.8 +0.44 0.0 15337.3 -15337.3 +179 406.2 36 -1.0489 +0.012 Net loss
2014-01-16
2014-01-16
-2.3 +0.44 0.0 661.9 -661.9 +126 286.7 108 -0.0214 +0.004 Net loss
2014-05-04
2014-05-04 ]
0.3 +0.44 93.0 18.1 74.8 +111 253.2 86 0.0034 +0.005 Inconclusive
2014-07-29

Table 7.5 Summary of distance and volumetric changes for foredune at Rossbehy field site.
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Figure 7.59 Shoreline positions at Rossbehy during TLS monitoring campaign. The shoreline is
defined as position of the dune toe, or the line along which there is an abrupt change in slope,
marking the boundary between the beach and dune. The March 2012 shoreline was digitized
from an aerial photograph (for reference), while the others were digitized from TLS data.
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Figure 7.60 Areal photographs of Inch field site indicating location of TLS surveys. The area enclosed
by the green polygon is the area over which all surveys overlap. Source of areal photography: ESRI
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Figure 7.61 Inch beach elevation change (DOD) between 2012-05-24 and 2012-08-06. Beach erosion is shown in varying shades of red and accretion in varying shades of
blue. Elevation change below the level of detectable change (£0.05 m) is shown in gray. Elevation change ranged from -3.00 m to +2.76 m. The coordinate marked with the
star is at the same location as that shown in figures 7.62-7.68 (the DODs for the subsequent survey periods) for reference. The area enclosed by the gray polygon is the area

across which all surveys overlap. Mean sea level (MSL) is equal to +2.3 m ODM.
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Figure 7.62 Inch beach elevation change (DOD) between 2012-08-06 and 2012-10-06. Beach erosion is shown in varying shades of red and accretion in varying shades of
blue. Elevation change below the level of detectable change (+0.05 m) is shown in gray. Elevation change ranged from -5.42 m to +4.43 m. The coordinate marked with the
star is at the same location as that shown in figures 7.61-7.68 (the DODs for the previous and subsequent survey periods) for reference. The area enclosed by the gray

polygon is the area across which all surveys overlap. Mean sea level (MSL) is equal to +2.3 m ODM.
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Figure 7.63 Inch beach elevation change (DOD) between 2012-10-06 and 2013-01-09. Beach erosion is shown in varying shades of red and accretion in varying shades of
blue. Elevation change below the level of detectable change (+0.05 m) is shown in gray. Elevation change ranged from -1.78 m to +2.41 m. The coordinate marked with the
star is at the same location as that shown in figures 7.61-7.68 (the DODs for the previous and subsequent survey periods) for reference. The area enclosed by the gray
polygon is the area across which all surveys overlap. Mean sea level (MSL) is equal to +2.3 m ODM.
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Figure 7.64 Inch beach elevation change (DOD) between 2013-01-09 and 2013-02-27. Beach erosion is shown in varying shades of red and accretion in varying shades of
blue. Elevation change below the level of detectable change (+0.05 m) is shown in gray. Elevation change ranged from -2.11 m to +1.96 m. The coordinate marked with the
star is at the same location as that shown in figures 7.61-7.68 (the DODs for the previous and subsequent survey periods) for reference. The area enclosed by the gray
polygon is the area across which all surveys overlap. Mean sea level (MSL) is equal to +2.3 m ODM.
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Figure 7.65 Inch beach elevation change (DOD) between 2013-02-27 and 2013-05-02. Beach erosion is shown in varying shades of red and accretion in varying shades of
blue. Elevation change below the level of detectable change (+0.05 m) is shown in gray. Elevation change ranged from -2.00 m to +1.96 m. The coordinate marked with the
star is at the same location as that shown in figures 7.61-7.68 (the DODs for the previous and subsequent survey periods) for reference. The area enclosed by the gray
polygon is the area across which all surveys overlap. Mean sea level (MSL) is equal to +2.3 m ODM.
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Figure 7.66 Inch beach elevation change (DOD) between 2013-05-02 and 2013-06-20. Beach erosion is shown in varying shades of red and accretion in varying shades of
blue. Elevation change below the level of detectable change (+0.05 m) is shown in gray. Elevation change ranged from -5.29 m to +3.09 m. The coordinate marked with the
star is at the same location as that shown in figures 7.61-7.68 (the DODs for the previous and subsequent survey periods) for reference. The area enclosed by the gray
polygon is the area across which all surveys overlap. Mean sea level (MSL) is equal to +2.3 m ODM.
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Figure 7.67 Inch beach elevation change (DOD) between 2013-06-20 and 2014-03-12. Beach erosion is shown in varying shades of red and accretion in varying shades of
blue. Elevation change below the level of detectable change (£0.05 m) is shown in gray. Elevation change ranged from -3.56 m to +2.84 m. The coordinate marked with the
star is at the same location as that shown in figures 7.61-7.68 (the DODs for the previous and subsequent survey periods) for reference. The area enclosed by the gray
polygon is the area across which all surveys overlap. Mean sea level (MSL) is equal to +2.3 m ODM.
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Figure 7.68 Inch beach elevation change (DOD) between 2014-03-12 and 2014-08-28. Beach erosion is shown in varying shades of red and accretion in varying shades of
blue. Elevation change below the level of detectable change (+0.05 m) is shown in gray. Elevation change ranged from -1.26 m to +2.34 m. The coordinate marked with the
star is at the same location as that shown in figures 7.61-7.67 (the DODs for the previous survey periods) for reference. The area enclosed by the gray polygon is the area
across which all surveys overlap. Mean sea level (MSL) is equal to +2.3 m ODM.
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Figure 7.69 Embryo dune field at Inch on 20 June 2013 (top) and 12 March 2014 (bottom). The
embryo dune field likely shielded the foredune from extreme waves during the winter 2013/2014
storms. Source: author’s own
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Table 7.6 Summary of elevation and volume changes at Inch field site.

Volumetric
Mean Elevation error
elevation v Net Volumetric Time Rate of margin
Survey change Area of .
change Volume Volume volume error between | volume associated
start/end error . 3 3 . Survey . Remark
dates between marsin Gain (m”) | Loss (m°) change margin (A) (mz) surveys | change (R,;) | with rate of
DEMs g (V) (m®) (m*) (days) | (m’m’day) | volume
(m) 3
(m) change (m
m’ day)
2012-05-24
-0.16 +0.05 86.9 494.1 -407.2 +124 2472.04 74 -0.0022 +0.0007 Net loss
2012-08-06
2012-08-06
-0.29 +0.05 137.5 856.4 -718.9 +124 2472.04 61 -0.0048 +0.0008 Net loss
2012-10-06
2012-10-06
-0.02 +0.05 231.6 278.1 -46.5 +124 2472.04 95 -0.0002 +0.0005 Inconclusive
2013-01-09
2013-01-09
-0.03 +0.05 249.2 178.6 70.7 +124 2472.04 49 0.0006 +0.001 Inconclusive
2013-02-27
2013-02-27
-0.05 +0.05 153.5 283.0 -129.6 +124 2472.04 64 -0.0008 +0.0008 Net loss
2013-05-02
2013-05-02 .
-0.03 +0.05 118.4 199.4 -81.0 +124 2472.04 49 -0.0007 +0.001 Inconclusive
2013-06-20
2013-06-20 .
0.11 +0.05 509.9 232.2 277.7 +124 2472.04 265 0.0004 +0.0002 Net gain
2014-03-12
2014-03-12
0.33 +0.05 865.4 62.2 803.2 +124 2472.04 169 0.0019 +0.0003 Net gain

2014-08-28
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Figure 7.70 Rates of volume change for Rossbehy (top) and Inch (bottom) for TLS monitoring periods. Note the large difference in scale between
rates of volume change for Rossbehy beach and scarp and between Rossbehy and Inch generally.
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Event Start date End date Event Lag time Mean Max H; | Peak Mean
ID Duration H, period dxn

55 2012-05-22 2012-05-23 18:00:00 814:00:00 1.11 1.17 7 258
14:00:00 08:00:00

56 2012-06-15 2012-06-16 24:00:00 550:00:00 1.29 1.40 7 258
06:00:00 06:00:00

57 2012-07-16 2012-07-16 17:00:00 715:00:00 1.17 1.24 6 257
01:00:00 18:00:00

58 2012-07-31 2012-08-02 43:00:00 355:00:00 1.26 1.56 7 258
13:00:00 08:00:00

59 2012-08-02 2012-08-03 34:00:00 03:00:00 1.39 1.60 7 259
11:00:00 21:00:00

60 2012-08-15 2012-08-16 23:00:00 287:00:00 1.40 1.74 6 258
20:00:00 19:00:00

61 2012-08-27 2012-08-28 20:00:00 253:00:00 1.09 1.16 6 258
08:00:00 04:00:00

62 2012-08-28 2012-08-29 34:00:00 06:00:00 1.44 1.70 7 258
10:00:00 20:00:00

63 2012-09-09 2012-09-10 13:00:00 256:00:00 1.08 1.10 7 259
12:00:00 01:00:00

64 2012-09-30 2012-09-30 14:00:00 482:00:00 1.12 1.29 7 259
03:00:00 17:00:00

65 2012-10-02 2012-10-03 30:00:00 32:00:00 1.22 1.45 8 260
01:00:00 07:00:00

66 2012-10-17 2012-10-17 19:00:00 330:00:00 1.54 1.92 8 259
01:00:00 20:00:00

67 2012-10-20 2012-10-22 41:00:00 70:00:00 1.37 1.54 11 260
18:00:00 11:00:00

68 2012-11-12 2012-11-14 55:00:00 505:00:00 1.35 1.71 10 260
12:00:00 19:00:00

69 2012-11-18 2012-11-23 | 125:00:00 90:00:00 1.55 2.11 9 259
13:00:00 18:00:00

70 2012-11-25 2012-11-25 17:00:00 32:00:00 1.25 1.49 7 259
02:00:00 19:00:00

71 2012-12-02 2012-12-03 18:00:00 164:00:00 1.13 1.20 9 260
15:00:00 09:00:00

72 2012-12-03 2012-12-04 19:00:00 08:00:00 1.09 1.17 9 261
17:00:00 12:00:00

73 2012-12-13 2012-12-13 14:00:00 209:00:00 1.25 1.37 9 260
05:00:00 19:00:00

74 2012-12-14 2012-12-18 99:00:00 07:00:00 1.69 2.48 9 260
02:00:00 05:00:00

75 2012-12-19 2013-01-01 | 308:00:00 29:00:00 1.60 2.40 9 259
10:00:00 06:00:00

76 2013-01-03 2013-01-09 | 146:00:00 45:00:00 1.32 1.77 9 259
03:00:00 05:00:00

77 2013-01-09 2013-01-12 69:00:00 16:00:00 1.48 1.82 9 260
21:00:00 18:00:00

78 2013-01-17 2013-01-18 24:00:00 123:00:00 1.22 1.36 8 258
21:00:00 21:00:00

79 2013-01-20 2013-01-23 61:00:00 44:00:00 1.41 1.67 9 260
17:00:00 06:00:00

80 2013-01-24 2013-01-25 21:00:00 40:00:00 1.22 1.33 9 260
22:00:00 19:00:00

81 2013-01-26 2013-02-01 | 154:00:00 06:00:00 1.84 2.60 9 260
01:00:00 11:00:00

82 2013-02-04 2013-02-06 38:00:00 74:00:00 1.37 1.59 9 262
13:00:00 03:00:00

83 2013-02-10 2013-02-11 20:00:00 105:00:00 1.30 1.54 8 261
12:00:00 08:00:00

84 2013-02-13 2013-02-14 31:00:00 45:00:00 1.30 1.69 8 260
05:00:00 12:00:00

85 2013-02-18 2013-02-19 18:00:00 106:00:00 1.24 1.37 9 259
22:00:00 16:00:00
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Event Start date End date Event Lag time Mean | Max Hg Peak Mean
1D Duration H; period dxn
86 2013-02-22 2013-02-23 23:00:00 74:00:00 1.18 1.33 9 260
18:00:00 17:00:00

87 2013-02-26 2013-02-26 20:00:00 56:00:00 1.19 1.28 10 260
01:00:00 21:00:00

88 2013-03-22 2013-03-23 15:00:00 577:00:00 1.31 1.52 8 259
22:00:00 13:00:00

89 2013-03-29 2013-03-31 49:00:00 145:00:00 1.44 1.71 10 260
14:00:00 15:00:00

90 2013-04-09 2013-04-10 34:00:00 210:00:00 1.27 1.52 9 260
09:00:00 19:00:00

91 2013-04-13 2013-04-18 | 118:00:00 76:00:00 1.72 2.53 8 259
23:00:00 21:00:00

92 2013-05-03 2013-05-04 14:00:00 352:00:00 1.15 1.26 6 258
13:00:00 03:00:00

93 2013-05-08 2013-05-09 35:00:00 101:00:00 1.42 1.73 8 260
08:00:00 19:00:00

94 2013-06-12 2013-06-13 26:00:00 816:00:00 1.22 1.48 7 258
19:00:00 21:00:00

95 2013-06-14 2013-06-15 42:00:00 06:00:00 1.34 1.57 7 258
03:00:00 21:00:00

96 2013-06-21 2013-06-23 37:00:00 139:00:00 1.40 1.95 8 260
16:00:00 05:00:00

97 2013-08-17 2013-08-17 14:00:00 | 1318:00:00 1.18 1.31 6 258
03:00:00 17:00:00

98 2013-10-16 2013-10-18 44:00:00  1433:00:00 1.31 1.54 7 259
10:00:00 06:00:00

99 2013-10-19 2013-10-20 22:00:00 41:00:00 1.29 1.60 7 258
23:00:00 21:00:00

100 2013-10-22 2013-10-23 24:00:00 47:00:00 1.17 1.35 8 259
20:00:00 20:00:00

101 2013-10-26 2013-11-01 | 145:00:00 57:00:00 1.41 2.42 10 260
05:00:00 06:00:00

102 2013-11-02 2013-11-03 30:00:00 19:00:00 1.53 2.07 8 260
01:00:00 07:00:00

103 2013-11-03 2013-11-05 57:00:00 06:00:00 1.40 1.87 8 260
13:00:00 22:00:00

104 2013-11-06 2013-11-08 57:00:00 03:00:00 1.22 1.58 10 261
01:00:00 10:00:00

105 2013-11-09 2013-11-12 59:00:00 30:00:00 1.34 1.55 8 260
16:00:00 03:00:00

106 2013-12-09 2013-12-10 21:00:00 663:00:00 1.10 1.15 7 258
18:00:00 15:00:00

107 2013-12-11 2013-12-12 21:00:00 29:00:00 1.25 1.35 8 259
20:00:00 17:00:00

108 2013-12-13 2014-01-08  633:00:00 13:00:00 1.85 2.97 9 260
06:00:00 15:00:00

109 2014-01-10 2014-01-10 14:00:00 34:00:00 1.20 1.28 6 257
01:00:00 15:00:00

110 2014-01-12 2014-01-17  115:00:00 46:00:00 1.61 2.07 9 260
13:00:00 08:00:00

111 2014-01-17 2014-01-18 19:00:00 06:00:00 1.18 1.29 9 260
14:00:00 09:00:00

112 2014-01-21 2014-01-22 30:00:00 78:00:00 1.32 1.56 9 261
15:00:00 21:00:00

113 2014-01-23 2014-01-28 | 109:00:00 25:00:00 1.59 2.25 9 261
22:00:00 11:00:00

114 2014-01-31 2014-02-04  109:00:00 65:00:00 1.74 2.71 9 260
04:00:00 17:00:00

115 2014-02-04 2014-02-06 43:00:00 02:00:00 1.77 2.64 9 259
19:00:00 14:00:00

116 2014-02-07 2014-02-10 78:00:00 14:00:00 1.86 2.57 8 259
04:00:00 10:00:00
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Event Start date End date Event Lag time Mean | Max Hg Peak Mean

1D Duration H; period dxn

117 2014-02-10 2014-02-16 | 135:00:00 06:00:00 1.65 2.48 9 260
16:00:00 07:00:00

118 2014-02-16 2014-02-18 58:00:00 05:00:00 1.43 1.89 10 259
12:00:00 22:00:00

119 2014-02-19 2014-03-01 | 231:00:00 17:00:00 1.67 243 9 260
15:00:00 06:00:00

120 2014-03-02 2014-03-06 92:00:00 22:00:00 1.49 2.84 9 260
04:00:00 00:00:00

121 2014-03-06 2014-03-07 27:00:00 03:00:00 1.16 1.36 8 260
03:00:00 06:00:00

122 2014-03-07 2014-03-09 44:00:00 17:00:00 1.43 1.67 8 260
23:00:00 19:00:00

123 2014-03-19 2014-03-22 81:00:00 234:00:00 1.41 2.03 8 260
13:00:00 22:00:00

124 2014-03-24 2014-03-25 35:00:00 36:00:00 1.64 2.24 8 260
10:00:00 21:00:00

125 2014-04-05 2014-04-08 55:00:00 262:00:00 1.32 1.62 7 259
19:00:00 02:00:00

126 2014-04-23 2014-04-24 22:00:00 364:00:00 1.17 1.25 9 260
06:00:00 04:00:00

127 2014-04-25 2014-04-26 17:00:00 41:00:00 1.43 1.93 7 259
21:00:00 14:00:00

Table 8.1 Summary of event information extracted from WAM data. Events are described as
times when the significant wave height, H;, exceeded the critical wave height, h.;; (see text for
explanation), for a minimum duration of 12 hours.
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Distribution of Event Duration for the period May 2012-April Figure 8.3
2014 Breakdown of storm
30 events identified
using WAM data by
25 event duration.
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Figure 8.4 Modelled event frequency by month during morphologic monitoring period.
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WAM output (columns A-D) contains hourly significant wave heights, peak periods, and wave directions from March 2011 to April 2014

H= 100% Q- ' search in Sheet
Calibri (Body) . NOB % o ] B-2-A
A Home  layout [Tables | Chamts  SmartArt | Formulas | Data | Review | Developer ~
it Font Agnment Namer Format Cals Themes
= g v [can JJu e (A A == B aber | FownpTear [Date B : Normal ™ Good Neutra Fim ;E:. fEe [y, 28°
»|: B8
, = = == [ 00 =~ . N > 5
v () Claar~ - & A EEE S E [l S %) (% 3 Condtonal Note Gutput warningText  Heading1  Heading 2 Heading 3 Heading 4 il Dice Rt e ¥AGY
— A Is S| Modelledoutout B - = . e e N
A 4 ) E £ G H 1 1 K L N o 3 | = i B W ) T I U v W X X z M A
Modelled output Possible events
frime
mime [between |Possible [Possivie
2 ) oir(3) wE) T Oir(3)  [between fiseris [EventiD Jevent 0. start date date event Duration | [Event D start date Event DuratidLag tme (YmiMean Ms  MaxMs  Peakperiod  Mean dxn
3 0110301000000 0446262 76021 260891  [2011031917:0000 103638 66A62  256.006 1 20110319 170000 2011.040307:0000|  35000:00 1 2011.03.1917:0000 20110403 07:90:00 _ 350:00:00| om 1587 107 2wl
4 20110301 010000  0.468456 763967 260,401 2011-03-30 02:00:00 10629 754348 257879| 2490000 10373 3 2 2011.04-04 01:00:00 2011-04-06 22:00:00 | 69:00:00| 2 2011.040401:0000 2011-04.0622:00:00  69:00:00|  18:00:00 146 Y 4 [d 259
5 20110301 020000 0450048 763104 260213 2011.033003:00:00 108813 735444 258154|  01:00:00| 0.04166667) 1 3 20110407 02:00:00 20110407 06:00:00 04:00:00| 3 2011.041223:00:00 2011-04-14 0200:00  27:00:00|  145:00:00 134 159" 9" 260
6 2011030103:0000 0509679 755315 260303|  [20110330040000 110503 713513 258756| 01:00:00| 0.04166667 p 4 2011.0412 230000 2011.04-14 02:00.0| 27:00:00 4 2011.05.04 050000 20110504 20000 15:00:00|  £83:00:00 ety 1197 8”7 259
7 2010301040000 0551148 851277  260877|  [2011.0330050000 110587 688015 259505| 01:0000| 0.04166667 3 5 2011.05.04 05:00.00 2011.05.04 20:00.00 15:00:00 5 2011.05.0806:0000 0110511000000  66:00:00|  82:0000 140 i’ 77 |
8 2011.03-01 05:00:00 77 93ses2  a61689|  [0110330060000 109487 62839 260235|  01:00:00| 0.04166667) p 6 2011.05.08 06:90.00 2011.05-11 00:00.00 6690:00 6 2011052108000 011052214030 3000:00|  248:00:00 133 ftid 87
9| 20110301060000 0675953 100851  262596|  [0110330070000 107653 Gasdss  260702|  01:00:00| 004166667 B 7 2011.05:210800.00 2011.05-22 14:00.00 3000:00 7 2011.05:2216:0000 2010523220000  3020:00|  02:0000 133 m” 87 25
10|  2011030107.0000 0636057 96301  263253|  [20110330080000 10735 643264  260738| 01.0000| 0.04166667 3 8 2011.05:22 160000 2011.05-2322:00.00 3000.00 8 2011052501000 2010526020000  25:00.00|  27:00:00 153 1857 87 259
1 20110301 08:0000 071467 942501 263511 2011-03.3009:00:00  1.08607 653568 260349  01:00:00| 0.04166667) 3 9 2011-05-2501:00:00 2011-05-26 02:00:00 | 25:00:00] 9 2011-06-1523:0000 2011-06-1708:00:00  33:00:00| 501:00:00 125 147" 8" 259
32|  20110301090000 075266 935609  263257|  [:011.0330100000 109582 672422 259711  01:00:00| 0.04166667) p 10 2011.06-15 030000 2011.06-15 05:00.00| 0200:00 10 20110617 14:0000 0110618090000 190000  06:00:00 119 1287 77 259
13| 2010301100000 0757271 9a1st  262628|  [20110330110000 110423 632408 259.015|  01:0000| 0.04166667 3 11 2011.06-15 120000 2011.06-15 21:0000| 09.00:00 11 2011062107:0000 0110622050000 220000  70:00:00 12 1387 77 s
14|  20110300110000 0777158 952477 261844|  [011:0330120000 110728 709067 258.418| 010000 004166667 p 12 2011.0615 230000 2011.06-17 08:00.00| 3300:00 1220110624 18:0000 2011062602000 320000  61:00:00 123 1377 77 s
15 2011030120000 0796511 960865 261106 [2011.03.30 13:00:00 11206 718466 257581  01:0000| 0.04166667| p 13 2011.0617 1400:00 2011.06-18 09:00.00 19:00:00 13 2011.07-0506:0000 2011-07.0623:00:00  41:00:00| 22000:00 129 n’” 77 ass)
16| 20110300130000 08011 970236  260559|  [0110330140000 112563 720193 257.839|  01:00:00 0.0#4166667| p 14 0110621070000 2011.06-22 05:00.00| 2200:00] 14 2011080707:0000 20110807 199000  1200:00| 75200:00 103 13" 67 25
37|  20110301140000 081069 970735 26025|  [:0110330150000 112178 74764  257.584|  01:00:00| 0.04166667) F 15 2011.0624 180000 2011.06-26 02:00.00| 3200:00 15 2011081010:0000 0110811150000 290000 630000 1 1307 77 s
18|  20110301350000 0813405 961179  260243|  [20110330160000 13831 697867 258341 F 16 2011.07.05 060000 2011.07.06 23:0000| 41.00:00 16 2011082421:0000 20110825 190000 220000 3180000 1% 1527 77 s
19| 2010301360000 0806913 946352 260557|  [011033017:0000 114561 674331 258.549 3 07 07 20 .
E‘ B Ty T T ] T 7

Records where H <H_, removed to
identify potential events

Time between records calculated

eg:

" 100 Sx| =F4-F3

Discrete events defined as those in
which >1 hour exists between records
and given unique IDs from 1 to n

eg:
CX)

s B fx| =IF(K5<0.05,L4,L4+1)

Start and end dates of possible events identified
manually from columns F and L

Possible event duration calculated

fx| =p3-03

Events with duration < 12 hours filtered
out and new event IDs generated from
1 to n for the remaining records

wa 210 0

Event characteristics (time between events, mean H, max H,, peak
period, and mean wave direction) associated with remaining
events calculated as follows:

Sx| =T4-u3
’53. ls _QV,Q,A,/:,A [=AVERAGE(IF(T. 351§A§3:SA§2},ZS 1)"(U3>=$A$3:5A527751),58§3:5852775 1))}
V3 i 0 O fx| (=MAX(F(T3<=5AS3:5A527751)*(U3> =SA$ 3:5A527751),5B53:5B52775 1))}
z $ O © (- fx| [=MAX(F(T3<=5AS3:5A527751)*(U3> =SAS3:5A$27751),5C53:5C527751))}
A3 i @ © [ Jx (=AVERAGE(F(T3<=SAS$3:5A527751)"(U3>=SAS3:5AS27751),5D3:5D52775 1)}

Figure 8.5 Excel spreadsheet and
formulae used to identify storm events and
extract storm characteristics from
simulated WAM data. Records (rows)
extend below the window shown.
Formulae examples are for the first entry
and were applied to each subsequent entry
(eg. the cells below).
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Worksheet contains information about wind direction, wind speed, and gust speed from Ventry at approximately 40 minute intervals from January
2011 to June 2014

806 [™ 2015-11 Weather Station Events.xlsx

EGEH® 36 5] Ei ©- @ B8 B .ﬂ & [0+ @ Qy (‘search in Sheet )

L (&0~ [calibri @ody) 12 []|As|A- (=

A==t e

e (Poar [BII U werge ~ (G|r| %)  ||%3) 43| Condtional  ed Insert  Delete Format  Themes Aa~
A tleoC s - B - I )
————— B T & I ) I 3 I F e e T e e e T [ O T =
. |Date/Time ____ N NE E SE s w w NW
P [ 000 [) 000 000 [) 1 0 [) [) [) [) [)
7:3; 0 000 0 000 000 [) 1 0 0 [) ) [) )
£ 000 0 000 000 ) 1 0 0 [ [ [) )
40 000 0 000 000 [) 1 0 [) [ [ [ [
6 |2011-010103:38:16 % 0.00 0 000 000 ) 1 0 0 ° 0 [) )
7 | 2011-01:01 04:20:46 40 000 0 000 000 [) 1 0 [) [ [ [ [
8 | 2011-01:01 05:05:06 4 000 0 000 000 [) 1 0 0 [ [ [) [)
9 | 2011-01:01 05:50:48 40 000 0 000 000 [) 1 0 0 [ [ [ [
10| 40 0.00 0 000 000 [) 1 0 0 [ [ [) [)
a1 3 100 0 028 000 [ 1 0 0 [ [ [ [
12 7 500 4 139 11 [) 0 1 0 [ [ [) [)
13 2011.0101 09:28:32 123 200 2 056 056 [) 0 0 1 [) [) [) [)
14 | 20110101 10:10:34 %2 000 0 000 000 [) 0 1 0 [ [ [) [)
115 | 2011-01-01 10:55:47 82 0.00 0 000 000 [ 0 1 0 [ [ [ [
16 | 2011-01:01 11:38:02 52 000 0 000 000 ) 0 1 0 [ [ [) [)
17 | 20110101 12:21:24 51 000 0 000 000 ) 0 1 0 [) ) [) )
18 | 2011-01-01 13:05:58 82 000 0 000 000 [) 0 1 0 [) [ [) [)
19 2010101 13508 22 000 0 000 000 [) 0 1 0 [ [ [) [
I

© © - fx| =IFOR(B2<=22.582>=337.5),1,0)
3 | C I D

| E F (P EUS P RS P [ Uy R S S o ) O P |
Mean wind speed (m/s) N NE E SE s sw w N
r) 0.00 [) 000 [) 1 [) [) [) [) [) [
4 0.00 [) 000 000 [ 1 [) [) [) [ [) [)
4| 2011-01-0102:10:46 3 000 ) 000 000 [ 1 0 ) [) () ) )

In a second worksheet, information associated with events (whose start and end dates were defined previously based on simulated wave data) was
extracted based on the information contained in the above worksheet. Columns B and C show the event start and end dates.

[-NoN] 2015-11 Weather Station Events.xlsx
DEGEH® XG0 @0 L LT Eﬁa Qo >
Calibri Body) |~ 10 | - abcr FoWrpTextv [Number  |v| ol . @v AaDe BE”
I Sases
E=| 2 Merge - | (5l v % > Condional g agions  Themes Aa~
Formatng ¥V C e ~

D I E [FIGIHI T TJTKTLTIM]T N [0 [=
1 5 speed ind ngevent  Prevailing Wind
B e Start date End date (m/s) (m/s) N NE E SE S SW W NW
3 55 20120522 14:00:00 2012.05-23 08:00:00 382 522 0 0 0 0 48 0 0 0 s
a 56 201206-15 06:00:00 2012.06-16 06:00:00 351 907 0 3 13 7 1 2 26 1 w
5 57 2012-07-1601:00:00 2012.07-16 18:00:00 916 154 0 0 0 0 0 11 35 0 w
6 58 2012-07-31 13:00:00 2012-08-02 08:00:00 475 10.01 ) 0 0 0 9 713 29 0 sw
7 59 2012.08-02 11:00:00 2012.08-03 21:00:00 an 560 0 4 1 0 11 6 0 0 w
8 0 2012.08-16 15:00:00 518 123 0 0 0 0 11 4 2 0 w
9 61 2012.08-28 04:00:00 5.82 843 0 0 0 0 0 10 41 0 w
10 & . 554 22 0 0 0 1 4 6 20 0 W
1 ) 475 684 0 0 0 0 0 12 20 0 w
12 6 20120830 17:0000 7.00 019 0 0 0 0 0 2 16 0 sw
13 65 2012.1003 07:00:00 7.43 070 0 0 0 0 0 26 54 0 w
14 66 2012.101701:00:00 sa1 065 0 3 14 1 0 0 0 0 NE
15 67 2012-10.20 18:00:00 2.06 287 0 0 1 7 % 0 0 0 s
16 68 338 929 0 2 1 0 4 % 3 0 w
17 6 078 242 0 0 0 0 1 0 0 o s \

i

(LN T Sum=0 v

Examples of the formulae used to derive the information shown above are given below for row 3, columns D to N. These were applied to all
subsequent rows in the worksheet.

|

D3 i @ ©  fx (=AVERAGE(F((Ventry ALLISAS2:SAS52936>=Events!B3)*(Ventry ALLISAS2:SAS52936<=Events!C3),Ventry ALLISFS2:SF$52936))}

5] 21 @ @ [ fx| (=MAX(F(Ventry_ALLISAS2:5AS52936 (Ventry_ALLISAS2:SAS52936 <=Events!C3),Ventry_ALLISES2:SES52936)
3 i @ ©  fx| (=SUM(F((Ventry_ALLISAS2:SAS52936>=Events!SB3)"(Ventry_ALLISAS2:SAS52936<=Events!SC3),Ventry ALLIGS2:GS52936))}
a3 21D © (- fx| (=SUMF(Ventry_ALLISAS2:SAS52936>=Events!SB3)*(Ventry_ALLISAS2:SAS52936<=Events!SC3),Ventry ALLIHS2:HS52936)}
H3 i @ © - fx| (=SUM(F((Ventry_ALLISAS2:5AS52936 (Ventry_ALLISAS2:SAS52936< 3),Ventry_ALLIS2:I552936))}

3 i D @ (- fx|{=SUM(F(Ventry_ A$52936> =Events!SB3)* (Ventry_ALLISAS ). Ventry_ALLUS2J552936))
3 1@ © [ fx| (=SUMF(Ventry ALLISAS2:SAS52936> =Events!SB3)" (Ventry_ALLISAS2:SAS52936 <=Events!SC3),Ventry_ALLIKS2:KS52936)}
3 1 0 © [ fxl (=SUMAF(Ventry ALLISAS2:SAS52936> =Events!SB3)" (Ventry_ALLISAS2: SAS52936 <=Events!SC3)Ventry ALLILS2.L552936))
3 [+ © © | Jx| (=SUMUF(Ventry_ALLISAS2:5AS52936>=Events!SB3)"(Ventry_ALLISAS2:5AS 52936 <=Events!SC3),Ventry ALLIMS2:M$52936)}
M3 4 @ © - fx| (=SUM(F((Ventry_ALLISAS2:SAS52936>=Events!SB3)"(Ventry_ALLISAS2:SAS52936<=Events!SC3),Ventry_ALLINS2:NS52936))}
N3 4 @ © (- fx| =INDEX(SF$2:3MS2,MATCH(MAX(SF3:5M3),SF3:5M3,0))

Figure 8.6 Excel worksheets and formulae used to extract storm characteristics from Ventry
weather station data. Records (rows) extend below the windows shown. Formulae examples are
for the first entry and were applied to each subsequent entry (eg. the cells below).
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Figure 8.7 Location of weather station set up near Inch field site.

119



10.00

8.00

6.00

Wind speed (m/s)

Inch Wind Rose - 6 August 2012 to 5 September 2012
N

2012-08-04 00:00:00

Wind Speeds Recorded at Inch and Ventry from 6 August 2012 to 5 September 2012

Inch
Ventry

~——48 per. Mov. Avg. (Inch)
48 per. Mov. Avg. (Ventry)

g
g
8
§
g

2012-08-14 00:00:00

2012-08-19 00:00:00

2012-08-24 00:00:00

2012-08-29 00:00:00

2012-09-03 00:00:00

2012-09-08 00:00:00

Ventry Wind Rose - 6 August 2012 to 5 September 2012
N

Figure 8.8 Wind roses and wind speeds for Inch and Ventry from 6 August 2012 to 5 September
2012. Wind speeds were derived from instantaneous wind speeds averaged at half hourly (or

approximately half hourly) intervals. Running means (with 48 hour periods) have been
superimposed on the wind speed graph for visual clarity.
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Inch Wind Rose - 15 October 2012 to 26 October 2012
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Figure 8.9 Wind roses and wind speeds for Inch and Ventry from 15 October 2012 to 26 October
2012. Wind speeds were derived from instantaneous wind speeds averaged at half hourly (or

approximately half hourly) intervals. Running means (with 48 hour periods) have been

superimposed on the wind speed graph for visual clarity.
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Inch Wind Rose - 21 August 2013 to 3 September 2013

N

90%
80%

70%
NW :

NE

sw

SE

Ventry Wind Rose - 21 Aug
2013

nber

t 2013 to 3 Sep

NE

Wind Speeds Recorded at Inch and Ventry from 21 August 2013 to 3 September 2013

Inch

Ventry

8 48 per. Mov. Avg. (Inch)

7 48 per. Mov. Avg. (Ventry)

Wind speed (m/s)
w

2013-08-20 00:00:00
2013-08-22 00:00:00

2013-08-24 00:00:00

2013-08-26 00:00:00 =1

2013-08-28 00:00:00

2013-08-30 00:00:00

2013-09-01 00:00:00

2013-09-03 00:00:00

Figure 8.10 Wind roses and wind speeds for Inch and Ventry from 21 August 2013 to 3
September 2013. Wind speeds were derived from instantaneous wind speeds averaged at half
hourly (or approximately half hourly) intervals. Running means (with 48 hour periods) have

been superimposed on the wind speed graph for visual clarity.
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Table 8.2 Summary of event information extracted from Ventry weather station data.

’ Event Start date End date Mean wind | Max Gust Wind directions recorded during event Prevailing
1D speed (m/s) Speed Wind
(m/s) NE E SE S SW. W W Direction

55 | 2012-05-22 | 2012-05-23 3.82 5.22 0| 0 0| 48 0 0 0 S
14:00:00 08:00:00

56  2012-06-15  2012-06-16 3.51 9.07 3 13 7 1 2 26 1 W
06:00:00 06:00:00

57 | 2012-07-16 | 2012-07-16 9.16 11.54 0f 0 0 0 11 35 0 W
01:00:00 18:00:00

58 2012-07-31  2012-08-02 4.75 10.01 0 0 0 9 73 29 0 SW
13:00:00 08:00:00

59 | 2012-08-02 | 2012-08-03 2.71 5.60 4 1 0 11 65 0 0 SW
11:00:00 21:00:00

60 2012-08-15  2012-08-16 5.18 12.13 0 0 0 11 45 2 0 SW
20:00:00 19:00:00

61 | 2012-08-27 | 2012-08-28 5.82 8.43 0f 0 0 0 10 | 41 0 W
08:00:00 04:00:00

62  2012-08-28  2012-08-29 5.94 12.12 0 0 1 4 66 20 0 SW
10:00:00 20:00:00

63 | 2012-09-09 | 2012-09-10 4.75 6.84 0f 0 0 0 12 | 20 0 W
12:00:00 01:00:00

64  2012-09-30  2012-09-30 7.00 10.19 0 0 0 0 21 16 0 SW
03:00:00 17:00:00

65 | 2012-10-02 | 2012-10-03 7.43 10.70 0| 0 0 0 26 54 0 W
01:00:00 07:00:00

66  2012-10-17  2012-10-17 5.41 10.65 30 14 1 0 0 0 0 NE
01:00:00 20:00:00

67 | 2012-10-20 | 2012-10-22 2.06 2.87 0 1 71 90 0 0 0 S
18:00:00 11:00:00

68 2012-11-12  2012-11-14 3.98 9.29 2 1 0 4 90 3 0 SW
12:00:00 19:00:00

69 | 2012-11-18 | 2012-11-23 0.78 2.20 0| 0 0 1 0 0 0 S
13:00:00 18:00:00

70 | 2012-11-25 | 2012-11-25 n/a
02:00:00 19:00:00

71 | 2012-12-02 | 2012-12-03 5.25 7.61 0f 0 0 0 10 34 2 W
15:00:00 09:00:00

72 2012-12-03  2012-12-04 5.20 6.45 0 0 0 3 15 31 2 W
17:00:00 12:00:00

73 | 2012-12-13 | 2012-12-13 6.66 8.07 0| 0 0| 28 0 0 0 S
05:00:00 19:00:00

74 2012-12-14  2012-12-18 5.18 9.30 0 0 1 3 90 78 9 SW
02:00:00 05:00:00

75 | 2012-12-19 | 2013-01-01 4.92 11.43 0f 0 2 57 | 232 | 140 0 SW
10:00:00 06:00:00

76  2013-01-03  2013-01-09 3.77 6.45 0o 2 0 24 43 19 0 SW
03:00:00 05:00:00

77 | 2013-01-09 | 2013-01-12 4.50 7.81 15 2 4 39 8 20 0 S
21:00:00 18:00:00

78  2013-01-17  2013-01-18 2.94 4.89 2 4 1 4 0 13 0 W
21:00:00 21:00:00

79 | 2013-01-20 | 2013-01-23 1.92 597 6| 2 5 10 7 18 0 W
17:00:00 06:00:00

80 2013-01-24  2013-01-25 4.96 6.71 0 1 3 17 12 4 0 S
22:00:00 19:00:00

81 | 2013-01-26 | 2013-02-01 7.36 18.79 0f 0 1 31 132 | 116 1 SW
01:00:00 11:00:00

82  2013-02-04  2013-02-06 8.10 11.02 1 6 13 24 12 31 0 W
13:00:00 03:00:00

83 | 2013-02-10 | 2013-02-11 5.35 10.11 0f 2| 12 13 5 9 0 S
12:00:00 08:00:00

84  2013-02-13  2013-02-14 6.47 11.23 0 0 0 0 20 32 1 W
05:00:00 12:00:00

85 | 2013-02-18 | 2013-02-19 4.60 6.23 0| 0 0 30 0 0 0 S
22:00:00 16:00:00

86  2013-02-22  2013-02-23 2.16 4.03 2 15 6 11 0 0 0 g
18:00:00 17:00:00

87 | 2013-02-26 | 2013-02-26 1.17 3.14 3 4 0 10 1 0 0 S
01:00:00 21:00:00

88 2013-03-22  2013-03-23 5.31 6.55 0 0 0 34 0 0 0 S
22:00:00 13:00:00
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Event Start date End date Mean wind Max Wind directions recorded during event Prevailing
1D speed (m/s) Gust Wind
Speed NE | E | SE S| SwW W NW Direction
(m/s)
90 | 2013-04-09 | 2013-04-10 2.87 5.86 0| 0 4 56 2 0 0 S
09:00:00 19:00:00
91 2013-04-13  2013-04-18 6.65 18.96 0 0 0 35 185 66 1 SW
23:00:00 21:00:00
92 | 2013-05-03 | 2013-05-04 6.58 10.27 0f 0 0 0 25 11 1 SW
13:00:00 03:00:00
93  2013-05-08  2013-05-09 9.09 15.53 0 0 0 1 36 48 0 W
08:00:00 19:00:00
94 | 2013-06-12 | 2013-06-13 3.42 8.09 21 4 3 3 18 21 0 w
19:00:00 21:00:00
95  2013-06-14  2013-06-15 5.74 8.66 0 0 0 5 24 77 0 W
03:00:00 21:00:00
96 | 2013-06-21 | 2013-06-23 6.44 11.62 0| 0 0 8 28 57 0 W
16:00:00 05:00:00
97 2013-08-17  2013-08-17 7.10 8.22 0 0 0 0 3 14 0 W
03:00:00 17:00:00
98 | 2013-10-16 | 2013-10-18 3.75 7.00 0| 0 0 7 32 11 0 SW
10:00:00 06:00:00
99  2013-10-19  2013-10-20 3.05 4.78 0o 2 2 2 4 12 0 W
23:00:00 21:00:00
100 | 2013-10-22 | 2013-10-23 2.06 3.90 1 4 1 2 2 8 0 w
20:00:00 20:00:00
101 2013-10-26  2013-11-01 4.71 11.68 0 0 0 3 71 133 14 W
05:00:00 06:00:00
102 | 2013-11-02 | 2013-11-03 5.41 11.93 0| 0 0 5 9 35 3 w
01:00:00 07:00:00
103 2013-11-03  2013-11-05 2.78 5.39 16 3 2 5 0 41 8 W
13:00:00 22:00:00
104 | 2013-11-06 | 2013-11-08 3.23 6.77 0| 0 1 3 5 61 3 W
01:00:00 10:00:00
105 2013-11-09  2013-11-12 3.37 7.10 12 1 1 7 11 21 1 W
16:00:00 03:00:00
106 | 2013-12-09 | 2013-12-10 5.11 6.03 0f 0 0 16 21 0 0 SW
18:00:00 15:00:00
107 2013-12-11  2013-12-12 497 6.27 0 0 0 0 38 0 0 SW
20:00:00 17:00:00
108 | 2013-12-13 | 2014-01-08 6.14 20.38 91 12 8 62 | 586 | 319 1 SW
06:00:00 15:00:00
109  2014-01-10  2014-01-10 3.84 5.88 0 0 0 0 8 14 0 W
01:00:00 15:00:00
110 | 2014-01-12 | 2014-01-17 5.54 11.03 0 1 1 6| 113 53 3 SW
13:00:00 08:00:00
111 2014-01-17  2014-01-18 1.96 4.26 0o 2 2 5 3 8 0 W
14:00:00 09:00:00
112 | 2014-01-21 | 2014-01-22 6.63 10.86 0| 0 0 0 14 38 0 w
15:00:00 21:00:00
113 2014-01-23  2014-01-28 10.68 18.24 0 0 1 2 36 152 0 W
22:00:00 11:00:00
114 | 2014-01-31 | 2014-02-04 9.64 23.46 0f 0 2 38 59 84 0 W
04:00:00 17:00:00
115 2014-02-04  2014-02-06 7.09 16.02 0o 2 2 13 2 43 1 W
19:00:00 14:00:00
116 | 2014-02-07 | 2014-02-10 10.30 18.89 1 1 4 14 49 | 63 0 w
04:00:00 10:00:00
117 2014-02-10  2014-02-16 8.10 28.35 0 0 10 31 34 67 0 W
16:00:00 07:00:00
118 | 2014-02-16 | 2014-02-18 3.15 7.50 41 0 1 25 12 | 20 3 S
12:00:00 22:00:00
119 2014-02-19  2014-03-01 7.65 15.10 0 1 5 31 172 189 1 W
15:00:00 06:00:00
120 | 2014-03-02 | 2014-03-06 5.11 10.56 41 3 6 12 65 49 0 SW
04:00:00 00:00:00
121 2014-03-06  2014-03-07 5.18 8.13 0 0 0 8 24 11 0 SW
03:00:00 06:00:00
122 | 2014-03-07 | 2014-03-09 5.28 10.90 21 2 0| 20 19 7 0 NE
23:00:00 19:00:00
123 2014-03-19  2014-03-22 7.61 13.77 0 0 0 3 58 81 0 W
13:00:00 22:00:00
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Figure 8.11
Histogram
showing
frequency of
storm events
with a range of
mean wind
speeds.

Figure 8.12
Histogram
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Figure 8.13
Frequency of events
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wind directions
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a Rates of Volume Change - Rossbehy Beach
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Figure 8.14 (a.) Rates of volume change at Rossbehy beach broken down by morphological monitoring period. (b.)
Event frequency for storm events occurring during corresponding morphological monitoring periods. (c.) There was
a very weak positive relationship between rate of beach volume change and event frequency (n=7, r=0.09). This
relationship was not statistically significant (p=0.85). Negative rates of beach volume change are associated with
net volume losses; positive rates of beach volume change are associated with net volume gains.
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a. Rates of Volume Change - Rossbehy Foredune
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Figure 8.15 (a.) Rates of foredune volume change at Rossbehy broken down by morphological
monitoring period. (b.) Event frequency for storm events occurring during corresponding
morphological monitoring periods. (c.) There was a very weak positive relationship between rate of
foredune volume change and event frequency (n=9, r=0.12). This relationship was not statistically
significant (p=0.76). Negative rates of dune volume change are associated with net volume losses;
positive rates of dune volume change are associated with net volume gains.
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da. Rates of Volume Change - Inch
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Figure 8.16 (a.) Rates of volume change at Inch broken down by morphological monitoring period.
(b.) Event frequency for storm events occurring during corresponding morphological monitoring
periods. (c.) There was a weak positive relationship between rate of volume change and event
frequency (n=8, r=0.3). This relationship was not statistically significant (p=0.47). Negative rates of
volume change are associated with net volume losses; positive rates of volume change are associated
with net volume gains.
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Figure 8.17 (a.) Rates of volume change at Rossbehy beach broken down by morphological
monitoring period. (b.) Mean duration of storm events that occurred during corresponding
morphological monitoring periods. (c.) There was a moderate negative relationship between rate of
beach volume change and mean duration of events (n=7, r=-0.59). This relationship was not
statistically significant (p=0.17). Negative rates of beach volume change are associated with net
volume losses; positive rates of beach volume change are associated with net volume gains.
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Figure 8.18 (a.) Rates of foredune volume change at Rossbehy broken down by morphological
monitoring period. (b.) Mean duration of storm events occurring during corresponding morphological
monitoring periods. (c.) There was a very strong negative relationship between rate of foredune
volume change and mean duration of events (n=9, r=-0.96). This relationship was statistically
significant (p<0.001). Negative rates of dune volume change are associated with net volume losses;
positive rates of dune volume change are associated with net volume gains. This result indicates
longer duration events are associated with higher rates of dune volume loss. 131



a Rates of Volume Change - Rossbehy Beach

0.04
0.03
0.02 I

0.01 T

o
1
—_—
—
e

-0.01 28 June 2012 25 August 30January 28 February 19 April 2013 5June 2013 to 16 January 4 May 2014 to

to 5 August 2012t0 7 2013to0 28 20131019 to 5June 2013 11 December 2014 to 4 May 29 July 2014
.0.02 2012 October 2012 February 2013 ApriTOlB 2013 2014

Rate of volume change (m? m? day)
b

-0.03 i

4

-0.04

-0.05

N
0
%
=)
o
=
o

240:00:00

192:00:00

144:00:00

96:00:00

48:00:00

Max duration of events (hours)

00:00:00
28 June 2012 25 August 30January 28 February 19 April 2013 5June 2013 to 16 January
to 5 August 2012t0 7 2013to0 28 2013to 19 to5June 2013 11 December 2014 to 4 May
2012 October 2012 February 2013  April 2013 2013 2014

c. 288:00:00

240:00:00

15

192:00:00

144:00:00 ¢
i r=-0.39

96:00:00 p=0.40

48:00:00 & ®

©

00:00:00
-0.040 -0.030 -0.020 -0.010 0.000 0.010 0.020 0.030

Max duration of events (hours)

Rate of beach volume change (m3 m2 day)

Figure 8.19 (a.) Rates of volume change at Rossbehy beach broken down by morphological
monitoring period. (b.) Maximum duration of storm events that occurred during corresponding
morphological monitoring periods. (c.) There was a weak negative relationship between rate of beach
volume change and max duration of events (n=7, r=-0.39). This relationship was not statistically
significant (p=0.40). Negative rates of beach volume change are associated with net volume losses;
positive rates of beach volume change are associated with net volume gains.
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Figure 8.20 (a.) Rates of foredune volume change at Rossbehy broken down by morphological
monitoring period. (b.) Maximum durations of storm events occurring during corresponding
morphological monitoring periods. (c.) There was a very strong negative relationship between rate of
foredune volume change and maximum duration of events (n=9, r=-0.93). This relationship was
statistically significant (p<0.001). Negative rates of dune volume change are associated with

net volume losses; positive rates of dune volume change are associated with net volume g:;ug’sg

This result indicates longer duration events are associated with higher rates of dune volume loss.
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Figure 8.21 (a.) Rates of volume change at Inch broken down by morphological monitoring period.

(b.) Mean duration of storm events which occurred during corresponding morphological monitoring
periods. (c.) There was a moderate positive relationship between rate of beach volume change and
mean duration of events (n=8, r=0.51). This relationship was not statistically significant (p=0.20).
Negative rates of volume change are associated with net volume losses; positive rates of volume
change are associated with net volume gains.
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Figure 8.22 (a.) Rates of volume change at Inch broken down by morphological monitoring period.
(b.) Maximum duration of storm events which occurred during corresponding morphological
monitoring periods. (c.) There was a weak positive relationship between rate of beach volume change
and max duration of events (n=8, r=0.37). This relationship was not statistically significant (p=0.37).
Negative rates of volume change are associated with net volume losses; positive rates of volume
change are associated with net volume gains.
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Figure 8.23 (a.) Rates of volume change at Rossbehy beach broken down by morphological
monitoring period. (b.) Max tidal level for events that occurred during corresponding morphological
monitoring periods. (c.) There was a moderate negative relationship between rate of beach volume
change and max tidal levels associated with events (n=7, r=-0.45). This relationship was not
statistically significant (p=0.31). Negative rates of beach volume change are associated with net
volume losses; positive rates of beach volume change are associated with net volume gains.

136



a. Rates of Volume Change - Rossbehy Foredune

0.200
0.000 T 1 = - = =
3 - z
o
~
£ -0.200 28 June 5 August 15 30 January 28 19 April 5 lune 11 16 January 4 May 2014
L) 2012to 5 2012to 15 November 2013 to 28 February 2013to5 2013 to 11 December 2014to4 to 29 July
_E_ August  November 2012 to 30 February 2013 to 19 June 2013 December 2013 to 16 May 2014 2014
g‘o 2012 2012 Jangary 2013 April 2013 2013 January
g -0.400 2013 2014
£
o
£
3 -0.600
o
>
-
(=]
3 -0.800
©
o
-1.000
I
-1.200
3.50
E
2 3.00
c
g 250
]
£ 2.00
H
-] 1.50
s
2 g 1.00
20
) 0.50
o
s 0.00
9 28 June 5 August 15 30 January 28 February 19 April 5June 2013 11 16 January
" 2012toS 2012to 15 November 2013to 28 2013to19 2013to S to 11 December 2014to 4
E August  November 2012to30 February April 2013 June 2013 December 2013 to 16 May 2014
,’§ 2012 2012 January 2013 2013 January
2 2013 2014
3.50
£ 300 — 3
© _ 250 ————
2 <
83
838 200 -
n O
© E =9
T a 0 —-048
> £ r=-u.
-_— j—
z 3 1.00 p=0.19
P
& 050
m
2 000

-1.200 -1.000 -0.800 -0.600 -0.400 -0.200 0.000 0.200
Rate of dune volume change (m* m?day)

Figure 8.24 (a.) Rates of foredune volume change at Rossbehy broken down by morphological
monitoring period. (b.) Maximum tidal levels associated with events that occurred during
corresponding morphological monitoring periods. (c.) There was a moderate negative relationship
between rate of foredune volume change and max tidal levels associated with events (n=9, r=-0.48).
This relationship was not statistically significant (p=0.19). Negative rates of dune volume change are
associated with net volume losses; positive rates of dune volume change are associated with net
volume gains. 137
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Figure 8.25 (a.) Rates of volume change at Inch broken down by morphological monitoring period.
(b.) Max tidal levels associated with storm events that occurred during corresponding morphological
monitoring periods. (c.) There was a weak positive relationship between rate of volume change and
mean time between events (n=8, r=0.33). This relationship was not statistically significant (p=0.42).
Negative rates of volume change are associated with net volume losses; positive rates of volume
change are associated with net volume gains.
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Figure 8.26 (a.) Rates of volume change at Rossbehy beach broken down by morphological
monitoring period. (b.) Mean time betwen storm events that occurred during corresponding
morphological monitoring periods. (c.) There was a weak negative relationship between rate of beach
volume change and mean time between events (n=7, 1=-0.32). This relationship was not statistically
significant (p=0.48). Negative rates of beach volume change are associated with net volume losses;
positive rates of beach volume change are associated with net volume gains.
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Figure 8.27 (a.) Rates of foredune volume change at Rossbehy broken down by morphological
monitoring period. (b.) Mean time between storm events that occurred during corresponding
morphological monitoring periods. (c.) There was a moderate positive relationship between rate of
foredune volume change and mean time between events (n=9, r=0.56). This relationship was not
statistically significant (p=0.11). Negative rates of dune volume change are associated with net
volume losses; positive rates of dune volume change are associated with net volume gains.
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Figure 8.28 (a.) Rates of volume change at Inch broken down by morphological monitoring period.
(b.) Mean time between storm events that occurred during corresponding morphological monitoring
periods. (c.) There was a moderate negative relationship between rate of volume change and mean

time between events (n=8, r=-0.44). This relationship was not statistically significant (p=0.27).
Negative rates of volume change are associated with net volume losses; positive rates of volume
change are associated with net volume gains.
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Figure 8.29 (a.) Rates of volume change at Rossbehy beach broken down by morphological
monitoring period. (b.) Mean significant wave height associated with storm events that occurred
during corresponding morphological monitoring periods. (c.) There was a strong negative relationship
between rate of beach volume change and mean H;associated with events (n=7, r=-0.67). This
relationship was not statistically significant (p=0.10). Negative rates of beach volume change are
associated with net volume losses; positive rates of beach volume change are associated with net
volume gains. 14
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Figure 8.30 (a.) Rates of foredune volume change at Rossbehy broken down by morphological
monitoring period. (b.) Mean significant wave height associated with storm events that occurred
during corresponding morphological monitoring periods. (c.) There was a moderate negative
relationship between rate of foredune volume change and mean H; associated with events (n=9, r=-
0.5). This relationship was not statistically significant (p=0.17). Negative rates of dune volume
change are associated with net volume losses; positive rates of dune volume change are 143
associated with net volume gains.
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Figure 8.31 (a.) Rates of volume change at Rossbehy beach broken down by morphological
monitoring period. (b.) Maximum significant wave height associated with storm events that occurred
during corresponding morphological monitoring periods. (c.) There was a moderate negative
relationship between rate of beach volume change and max H; associated with events (n=7, r=-0.56).
This relationship was not statistically significant (p=0.20). Negative rates of beach volume

change are associated with net volume losses; positive rates of beach volume change are 144
associated with net volume gains.
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Figure 8.32 (a.) Rates of foredune volume change at Rossbehy broken down by morphological monitoring
period. (b.) Maximum significant wave height associated with storm events that occurred during
corresponding morphological monitoring periods. (c.) There was a moderate negative relationship between
rate of foredune volume change and max H; associated with events (n=9, r=-0.58). This relationship was
not statistically significant (p=0.10). Negative rates of dune volume change are associatetls

with net volume losses; positive rates of dune volume change are associated with net

volume gains.
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Figure 8.33 (a.) Rates of volume change at Inch broken down by morphological monitoring period.
(b.) Mean significant wave height associated with storm events that occurred during corresponding
morphological monitoring periods. (c.) There was a strong positive relationship between rate of
volume change and mean H; associated with events (n=8, r=0.74). This relationship was statistically
significant (p<0.05). Negative rates of volume change are associated with net volume losses; positive
rates of volume change are associated with net volume gains. This result indicates higher significant
wave heights during storms are associated with higher rates of volume gain at the site.
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Figure 8.34 (a.) Rates of volume change at Inch broken down by morphological monitoring period.
(b.) Maximum significant wave height associated with storm events that occurred during
corresponding morphological monitoring periods. (c.) There was a strong positive relationship
between rate of volume change and max H; associated with events (n=8, r=0.62). This relationship
was not statistically significant (p=0.10). Negative rates of volume change are associated with net
volume losses; positive rates of volume change are associated with net volume gains.
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Figure 8.35 (a.) Rates of volume change at Rossbehy beach broken down by morphological
monitoring period. (b.) Mean peak wave period associated with storm events that occurred during
corresponding morphological monitoring periods. (c.) There was a weak negative relationship between
rate of beach volume change and mean peak period associated with events (n=7, r=-0.34). This
relationship was not statistically significant (p=0.46). Negative rates of beach volume change are
associated with net volume losses; positive rates of beach volume change are associated with net
volume gains.
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Figure 8.36 (a.) Rates of foredune volume change at Rossbehy broken down by morphological
monitoring period. (b.) Mean peak wave period associated with storm events that occurred during
corresponding morphological monitoring periods. (c.) There was a very weak relationship (neither
positive or negative) between rate of foredune volume change and mean peak period associated with
events (n=9, r=0). This relationship was not statistically significant (p=0.998). Negative rates of dune
volume change are associated with net volume losses; positive rates of dune volume change are
associated with net volume gains. 149
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Figure 8.37 (a.) Rates of volume change at Inch broken down by morphological monitoring period.
(b.) Mean peak wave period associated with storm events that occurred during corresponding
morphological monitoring periods. (c.) There was a moderate positive relationship between rate of
volume change and mean peak period associated with events (n=8, r=0.57). This relationship was not
statistically significant (p=0.14). Negative rates of volume change are associated with net volume
losses; positive rates of volume change are associated with net volume gains.
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Figure 8.38 (a.) Rates of volume change at Rossbehy beach broken down by morphological
monitoring period. (b.) Mean wind speed associated with storm events that occurred during
corresponding morphological monitoring periods. (c.) There was a very weak positive relationship
between rate of beach volume change and mean wind speed associated with events (n=7, r=0.09). This
relationship was not statistically significant (p=0.84). Negative rates of beach volume change are
associated with net volume losses; positive rates of beach volume change are associated with net
volume gains.
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Figure 8.39 (a.

) Rates of foredune volume change at Rossbehy broken down by morphological

monitoring period. (b.) Mean wind speeds associated with storm events that occurred during
corresponding morphological monitoring periods. (c.) There was a very weak positive relationship
between rate of foredune volume change and mean wind speed associated with events (n=9, r=0.17).
This relationship was not statistically significant (p=0.66). Negative rates of dune volume change are
associated with net volume losses; positive rates of dune volume change are associated with net

volume gains.

152



Rates of Volume Change - Rossbehy Beach

0.04

0.03

0.02

L1

-0.01

[—

28 June 2012 25 August 30 January 28'February 19 April 2013 5June 2013 to 16 January 4 May 2014 to
to 5 August 2012t07 2013t028  2013to 19 to 5June 2013 11 December 2014 to 4 May 29 July 2014
-0.02 42012 October 2012 February2013 April2023 2013 2014

Rate of volume change (m? m? day)

-0.03

-0.04

a. -0.05
30.00
25.00

20.00

15.00
10.00
5.0

T Max gust speed associated with events
(m/s)

0
0.00
28 June 2012 25 August 30January 28 February 19 April 2013 5 June 2013 to 16 January
to 5 August 2012to 7 20131028 2013t0 19 to 5June 2013 11 December 2014 to 4 May
2012 October 2012 February 2013 April 2013 2013 2014
30.00
*

25.00

]
o
=]
o

L

Max gust speed associated with
events (m/s)

15.00 n=7
_— * 4 r=-0.39
' p=0.39
5.00
0.00

-0.040 -0.030 -0.020 -0.010 0.000 0.010 0.020 0.030

Rate of beach volume change (m3 m2 day)

Figure 8.40 (a.) Rates of volume change at Rossbehy beach broken down by morphological
monitoring period. (b.) Max gust speed associated with storm events that occurred during
corresponding morphological monitoring periods. (c.) There was a weak negative relationship between
rate of beach volume change and mean wind speed associated with events (n=7, r=-0.39). This
relationship was not statistically significant (p=0.39). Negative rates of beach volume change are
associated with net volume losses; positive rates of beach volume change are associated with net
volume gains. 153
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Figure 8.41 (a.) Rates of foredune volume change at Rossbehy broken down by morphological
monitoring period. (b.) Maximum gust speeds associated with storm events that occurred during
corresponding morphological monitoring periods. (c.) There was a weak negative relationship between
rate of foredune volume change and max gust speed associated with events (n=9, r=-0.29). This
relationship was not statistically significant (p=0.45). Negative rates of dune volume change are
associated with net volume losses; positive rates of dune volume change are associated with net
volume gains. 154
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Figure 8.42 (a.) Rates of volume change at Inch broken down by morphological monitoring period.
(b.) Mean wind speed associated with storm events that occurred during corresponding morphological
monitoring periods. (c.) There was a very weak negative relationship between rate of beach volume
change and mean wind speeds associated with events (n=8, r=-0.04). This relationship was not
statistically significant (p=0.92). Negative rates of volume change are associated with net volume
losses; positive rates of volume change are associated with net volume gains.
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Figure 8.43 (a.) Rates of volume change at Inch broken down by morphological monitoring period.
(b.) Maximum gust speed associated with storm events that occurred during corresponding
morphological monitoring periods. (c.) There was a moderate positive relationship between rate of
beach volume change and max gust speeds associated with events (n=8, r=0.46). This relationship was
not statistically significant (p=0.24). Negative rates of volume change are associated with net volume
losses; positive rates of volume change are associated with net volume gains.
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a. Rates of Volume Change - Rossbehy Beach
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Figure 8.44 (a.) Rates of volume change at Rossbehy beach broken down by morphological

monitoring period. (b.) Prevailing wind directions for events occurring during each corresponding
morphological monitoring period.
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Figure 8.45 (a.) Rates of foredune volume change at Rossbehy broken down by morphological
monitoring period. (b.) Prevailing wind directions for events occurring during each corresponding
morphological monitoring period.
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Figure 8.46 (a.) Rates of volume change at Inch broken down by morphological monitoring period.
(b.) Prevailing wind directions for events occurring during each corresponding morphological
monitoring period.
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Rossbehy Beach

Max tidal . Mean M?an Maximum

Rate of . Mean lag Maximum peak wind
Mean | Maximum level . Mean H; . gust speed

beach . . . time . H, period speed .
Frequency | Duration of | Duration | associated associated . . . associated
Start End volume . between . associated | associated | associated .

of Events Events of Events with with . . . with

change (Ry) events with with with
3,02 (hours) (hours) | Events (m events (m) events

(m”/m*/day) (hours) events (m) events events
ODM) (m/s)

(sec) (m/s)
2012-06-28 2012-08-05 0.0005 3 31 43 2.38 357 1.27 1.60 7 5.54 11.54
2012-08-05 2012-10-07 0.019 6 22 34 2.13 219 1.23 1.74 7 6.02 12.13
2013-01-30 2013-02-28 0.019 6 25 38 2.20 76 1.26 1.69 9 4.64 11.23
2013-02-28 2013-04-19 -0.029 4 54 118 2.60 252 1.44 2.53 9 5.13 18.96
2013-04-19 2013-06-05 0.004 2 24 35 2.01 226 1.29 1.73 7 7.83 15.53
2013-06-05 2013-12-11 0.001 13 44 145 2.82 352 1.30 2.42 8 4.33 11.93
2014-01-16 2014-05-04 0.002 17 69 231 2.94 70 1.49 2.84 9 6.68 28.35
r 0.09 -0.59 -0.39 -0.45 -0.32 -0.67 -0.56 -0.34 0.09 -0.39
N 7 7 7 7 7 7 7 7 7 7
t (abs. value) 0.199 1.623 0.934 1.129 0.768 1.992 1.494 0.804 0.201 0.940
p 0.85029 0.16561 0.39338 0.31032 0.47698 0.10300 0.19551 0.45790 0.84886 0.39029

Table 8.3 Rates of beach volume change for each of the morphological monitoring periods at Rossbehy and event characteristics used to test for the existence of simple linear relationships. No
statistically significant correlations were observed between rate of beach volume change and any of these variables.
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Rossbehy Foredune

Rate of scarp Mean MaximumMax tidal level Mean.lag Mean H; Maximum — Mean p e.ak Mean wind  Maximum
. . . time . H; period speed| gust speed

volume| Frequency off Duration off Duration of| associated associated . . . .
Start End . between| . associated associated| associated| associated

change (Ry) Events Events Events| with Events with events| . . . .

(m3 m/da ) (hours) (hours) (m ODM) events (m) with events| with events| with events| with events
y (hours) (m) (sec) (m/s) (m/s)
2012-06-28 2012-08-05 -0.027 3 31 43 2.38 357 1.27 1.60 7 5.54 11.54
2012-10-07 2012-11-15 -0.083 3 38 55 2.13 301 1.42 1.92 10 3.82 10.65
2012-11-15 2013-01-30 -0.359 13 82 308 2.80 62 1.39 2.60 9 4.45 18.79
2013-01-30 2013-02-28 -0.038 6 25 38 2.20 76 1.26 1.69 9 4.64 11.23
2013-02-28 2013-04-19 -0.071 4 54 118 2.60 252 1.44 2.53 9 5.13 18.96
2013-04-19 2013-06-05 -0.001 2 24 35 2.01 226 1.29 1.73 7 7.83 15.53
2013-06-05 2013-12-11 0.000 13 44 145 2.49 352 1.30 2.42 8 4.33 11.93
2013-12-11 2014-01-16 -1.049 4 195 633 2.82 30 1.48 2.97 8 5.12 20.38
2014-01-16 2014-05-04 -0.021 17 69 231 2.94 70 1.49 2.84 9 6.68 28.35
0.12 -0.96 -0.93 -0.48 0.56 -0.50 -0.58 0.00 0.17 -0.29
N 9 9 9 9 9 9 9 9 9 9
t (abs. value) 0.322 9.351 6.954 1.455 1.807 1.521 1.886 0.003 0.453 0.809
0.75663 0.00003 0.00022 0.18887 0.11378 0.17211 0.10127 0.99787 0.66419 0.44523

Table 8.4 Rates of scarp volume change for each of the morphological monitoring periods at Rossbehy and event characteristics used to test for the existence of simple linear relationships. Strong
negative statistically significant correlations were observed between mean duration of events and rate of scarp volume change and maximum duration of events and rate of scarp volume change (p-
values highlighted in blue).
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Inch

Mean Maximum
Rate of Mean | Maximum Max tidal Mean.lag Mean H, Maximum | Mean p(?ak wind gust speed
. . level time . H; period speed .

volume | Frequency | Duration of Duration . associated . . . associated

Start End associated between . associated associated | associated .
change (Ry) of Events Events of Events . with . . . with
(m3 'mY/da ) (hours) (hours) with events events events (m) with with events with events

y (m ODM) (hours) events (m) (sec) events
(m/s)
(m/s)

2012-05-24 2012-08-06 -0.0022 4 29 43 2.38 405 1.28 1.60 7 5.03 11.54
2012-08-06 2012-10-06 -0.0048 6 22 34 2.13 219 1.23 1.74 7 6.02 12.13
2012-10-06 2013-01-09 -0.0002 11 78 308 2.88 135 1.38 2.48 9 4.32 11.43
2013-01-09 2013-02-27 0.0006 11 43 154 2.41 62 1.34 2.60 9 4.50 18.79
2013-02-27 2013-05-02 -0.0008 4 54 118 2.60 252 1.44 2.53 9 5.13 18.96
2013-05-02 2013-06-20 -0.0007 4 29 42 2.01 318 1.28 1.73 7 6.21 15.53
2013-06-20 2014-03-12 0.0004 27 84 633 2.94 153 1.43 2.97 8 5.49 28.35
2014-03-12 2014-08-28 0.0019 5 42 81 2.25 187 1.39 2.24 8 6.57 15.93
r 0.30 0.51 0.37 0.33 -0.44 0.74 0.62 0.57 -0.04 0.46
N 8 8 8 8 8 8 8 8 8 8
t (abs. value) 0.764 1.449 0.975 0.859 1.213 2.697 1.943 1.710 0.110 1.295
P 0.47401 0.19759 0.36741 0.42310 0.27072 0.03572 0.10000 0.13816 0.91632 0.24284

Table 8.5 Rates of volume change for each of the morphological monitoring periods at Inch and event characteristics used to test for the existence of simple linear relationships. A strong positive
statistically significant correlation was observed between mean H; associated with events and rate of volume (p-value highlighted in blue).
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Figure 8.47 Residual scatterplot showing predicted scores against errors of prediction for Rossbehy
foredune rate of change multiple regression analysis. The plot confirms that the homoscedasticity
assumption is met.
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Figure 8.48 Distribution of residuals for Rossbehy scarp rate of change multiple regression analysis.
The distribution is close to normal, satisfying a principal assumption for multiple regression analysis
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Time Integrated Method (TIM)
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Figure 9.1 Methods of tracer injection.
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Figure 9.2 Dry tracer particles used in this experiment.

Figure 9.3 Tracer/sand mix under UV light at injection site.
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Figure 9.4 Sites of sediment tracer injection and locations of core samples for December 2013
tracer experiment. The shoreline at distal end of the barrier has been updated to reflect the dune
toe position on 11 December 2013, at which time a TLS survey was also carried out. The 2 kg
injection site was at an elevation of 2.91 m ODM and the 0.5 kg injection site was at an elevation
of 2.50 m.
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Figure 9.5 Sampling with half pipes and trowel.
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Rossbehy Tidal Cycle - 9th to 20th Dec 2013
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Figure 9.6 December sediment tracer experiment timeline in relation to tidal cycle. Source of tide data: Marine Institute
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Wind Speed and Direction during December 2013 Sediment Tracer Experiment

290 .
VR PR S
270 s - % PO SRaS SN
. . >~ L Y . . *
» . P LN AR
7 250 P =’ v g .
b4} i 2t o, - », Iy .
e -, ¥ 4 * / \ ”N
¥ 230 AN Vo oy S
k- * & (‘ * . “ - S
§ 210 4 0:. ; ’“ . .0 . ~ .
] “.*0 v, i (72 % =
£ 190 P > .
] <0
2 10
H
150
12.00
10.00
- 8.00
Ry~
E
b
8. 6.00
w A
z A
E 4.00 A
2.00
0.00
£ g g g g g g g g g
5 8 8 8 8 8 8 8 8 8
A o o g 3 " = 5 E 2
~ ~ ] N & ~ ~ ] ~
- - - i} - - - - -
) ) ) ) ) ) 0 ) )
= = = = = = - = -
o o [=] o (=] o o o i=3
~N ~N ~ ~N ~ ~ ~N ~ ~N
Wednesday, 11 December ~ Wednesday, 11 December Thursday, 12 December Tuesday, 17 December
05:50-06:20 16:00-18:00 17:00-19:00 10:00-12:00
First tracer injection Sampling Sampling Sampling

Second tracer injection

Figure 9.7 Wind speeds and directions during December 2012 tracer experiment. Winds were
predominantly southwesterly, with average speeds of 5.5 m/s. Hourly data obtained from Ventry
weather station.
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Figure 9.8 Samples from the December tracer experiment were analysed in 1.5 cm layers,
whereby each layer was carefully removed, broken, and sifted through. The presence and
number of individual tracer particles was noted for each layer.
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Figure 9.9 Individual tracer particles in a core sample.
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Figure 9.10 Tracer distribution after first tidal cycle following first injection.
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11 December PM
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Table 9.1 Tracer distribution with depth for each sample collected on 11 Dec.
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Figure 9.11 Tracer distribution after third tidal cycle following first injection and second tidal
cycle following second injection.
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Table 9.2 Tracer distribution with depth for each sample collected on 12 Dec.

174



[
Location of core samples
Tues 17 June
®  12:00 PM to 2:30 PM
Tues/Wed 17/18 June
o ®  11:45 PM to 1:30 AM
Wed 18 June
® 12:15PMto 1:10 PM
()
Site of deployment
o e ° % Tues, 17 Jun 2014
° 1:18 AM
[}
0 7/ 150 300
| L
Meters

Figure 9.12 Sites of sediment tracer injection and locations of core samples for June 2014 tracer
experiment. The shoreline at distal end of the barrier has been updated to reflect the dune toe
position on 4 May 2014 (the last TLS survey before the experiment). It should be noted that the
dune toe here had receded by approximately 50 m since the last experiment in December 2013.
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Rossbehy Tidal Cycle - 16 to 19 June 2014
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Figure 9.13 June sediment tracer experiment timeline in relation to tidal cycle. Source of tide data: Marine Institute
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Wind Speed and Direction during June 2014 Sediment Tracer Experiment
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Figure 9.14 Wind speeds and directions during June 2014 tracer experiment. Winds were
predominantly southeasterly, with average speeds of 8.6 m/s. Hourly data obtained from Ventry
weather station.
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Figure 9.15 Tracer particles in a June 2013 core under ordinary and UV light.
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Figure 9.16 Tracer distribution after first tidal cycle following injection. Small (top) and large

(bottom) scale views of the site are shown to better illustrate sample distribution.
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17 June - Midday
e < w o ~ -] (=) > — o
— (] o < wn [\& o~ — — — — — — e (o] (]
- - - - —- = - - - o= =] = - - |- - -
= = = = == = = = = | = = == = =
Depth
0-2 cm 4 0 0 0 00 0 0 0 0] 0] 15 3319 451 32
2-4 cm 0 0 0 0 00 1 0 0 0] 0 0 710 61 9
4-6 cm 1 0 0 0 00 0 0 0 0] 0 0 00 1 0
6-8 cm 0 0 0 0 00 0 0 0 0] 0 0 210 3 0
8-10 cm 0 0 0 0 00 0 0 0 0] 0 0 737 010 0 0
10-12 cm 0 0 0 0 0 0 0 0] 0 0 361 010 0 0
12-14 cm 0 0 0 0 0 0 0 0] 0 0 0 0
14-16 cm 0 0 0 0 0 0 0 0
16-18 cm 0 0 0 0 0 0 0
18-20 cm 0 0 0 0

Table 9.3 Tracer distribution with depth for each sample collected after the first tidal cycle.
Maps showing the locations of samples (labeled with corresponding sample IDs) are shown in

figure 9.17.
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Figure 9.17 Locations of samples labeled with sample IDs, which correspond to those in table
9.3. Small (top) and large (bottom) scale views of the site are shown to better illustrate sample

distribution.
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No. of tracer particles found

in layer 0-4 cm of samples collected
after first tidal cycle

Tues, 17 Jun 2014

12-2 pm
0-4 cm layer
°o 0 )
e 1
® 2-10
® 11-100
@ 101-1000 °
@ 1001-2300

Site of deployment
% Tues, 17 Jun 2014
1:18 AM
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[ | | L | L

Meters

Figure 9.18 Tracer distribution in top 0-4 cm layer for samples collected after first tidal cycle
following injection. Only area where samples containing positively identified tracer are shown.
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in layer 4-8 cm of samples collected

after first tidal cycle
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Figure 9.19 Tracer distribution in 4-8 cm depth layer for samples collected after first tidal cycle

following injection.
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No. of tracer particles found
in layer 8-12 cm of samples collected
after first tidal cycle
Tues, 17 Jun 2014
12-2 pm
8-12 cm layer
° 0
® 1-1098 O

Site of deployment
x Tues, 17 Jun 2014
1:18 AM

0 5 10 20

[ ] l I | ] | J
Meters

Figure 9.20 Tracer distribution in 8-12 ¢cm depth layer for samples collected after first tidal cycle

following injection.

After 1st tidal cycle (t;)

Longshore position of tracer cloud centroid (Y) -

=

S | metres from injection point 4.6
S Velocity of transport (mm/s) 0.1072
= Longshore position of tracer cloud centroid (Y) - 40
o | metres from injection point )

< | Velocity of transport (mm/s) 0.0924
g | Longshore position of tracer cloud centroid (Y) - 40
f\,) metres from injection point )

; Velocity of transport (mm/s) 0.0922

Table 9.4 Longshore position of tracer cloud centroids and velocities of transport for sample
layers 0-4 cm, 4-8 cm, and 8-12 cm. (Samples collected after 1% tidal cycle)
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No. of tracer particles found

in samples after second tidal cycle
Tues/Wed, 17/18 Jun 2014

11:45 PM to 1:30 AM

No tracer found
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Figure 9.21 Tracer distribution after second tidal cycle following injection.
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Table 9.4 Tracer distribution with depth for each sample collected after the second tidal cycle. A

map showing the locations of samples (labeled with corresponding sample IDs) is shown in

figure 9.22.
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Figure 9.22 Locations of samples labeled with sample IDs, which
correspond to those in table 9.4.
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in layer 0-4 cm of samples collected
after second tidal cycle

Tues/Wed, 17/18 Jun 2014

11:45 PM to 1:30 AM

0-4 cm layer
°o 0
o 1
@ 2-10
@ 11-100

@ 101-3383

Site of deployment . @
X Tues, 17 Jun 2014 o

1:18 AM [
= s Hlece®
) @

0 5 10 20
[ ®

Meters

o ©
[
HWM

Figure 9.23 Tracer distribution in top 0-4 cm layer in samples collected after second

tidal cycle following injection.
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No. of tracer particles found

in layer 4-8 cm of samples collected
after second tidal cycle
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Figure 9.24 Tracer distribution in 4-8 cm layer in samples collected after
second tidal cycle following injection.
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after second tidal cycle
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Figure 9.25 Tracer distribution in 8-12 cm layer in samples collected after
second tidal cycle following injection.
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After 2" tidal
cycle (t,)
Longshore position of tracer cloud centroid (Y) - metres from 6.1
injection point '
£
: Distance from centroid at t; (m) 1.5
S
Velocity of transport (mm/s) 0.0337
Longshore position of tracer cloud (Y) relative to previous 49
position of centroid (m) '
g
®© Distance from centroid at t; (m) 0.9
<
Velocity of transport (mm/s) 0.0205
Longshore position of tracer cloud centroid (Y) - metres from 54
injection point ’
=
(]
a Distance from centroid at t; (m) 1.4
%
Velocity of transport (mm/s) 0.0320

Table 9.5 Longshore position of tracer cloud centroids and velocities of transport for sample
layers 0-4 cm, 4-8 cm, and 8-12 cm. (Samples collected after 2™ tidal cycle)

No. of tracer particles found

in samples after third tidal cycle

Wed, 18 Jun 2014 2 @ o) 5
12:15 PM to 1:10 PM

No tracer found 0 °

1-10 ® -
11-100

101 - 1000 O

>1000

@oo -

Site of deployment
Tues, 17 Jun 2014
1:18 AM °

X

HWM

0 5 10 20

Meters

Figure 9.26 Tracer distribution after third tidal cycle following injection.
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Table 9.6 Tracer distribution with depth for each sample collected after the third tidal cycle. A
map showing the locations of samples (labeled with corresponding sample IDs) is shown in
figure 9.27.
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Figure 9.27 Locations of samples labeled with sample IDs, which
correspond to those in table 9.6.
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Figure 9.28 Tracer distribution in top 0-4 cm layer in samples

collected after third tidal cycle following injection.
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Figure 9.29 Tracer distribution in 4-6 cm layer in samples collected

after third tidal cycle following injection.
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No. of tracer particles found
in layer 8-12 cm of samples collected
after third tidal cycle 5
Wed, 18 Jun 2014 Q)
12:15PM to 1:10 PM
8-12 cm layer
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e 1-2 o °
@ 3
@ 4-17 o o o
@ -2 &
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X Tues, 17 Jun 2014
1:18 AM
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Figure 9.30 Tracer distribution in 8-12 c¢cm layer in samples collected
after third tidal cycle following injection.

After 3rd tidal cycle (t3)
Longshore position of tracer cloud centroid (Y) - 19.1
= metres from injection point ’
5]
< | Distance from centroid at t; (m) 13.1
<
Velocity of transport (mm/s) 0.3022
Longshore position of tracer cloud centroid (Y) - 313
= metres from injection point ’
9
% | Distance from centroid at t; (m) 26.4
<
Velocity of transport (mm/s) 0.6110
Longshore position of tracer cloud centroid (Y) - 36.8
. metres from injection point ’
(5]
,';'I Distance from centroid at t; (m) 314
o
Velocity of transport (mm/s) 0.7268

Table 9.7 Longshore position of tracer cloud centroids and velocities of transport for sample
layers 0-4 cm, 4-8 cm, and 8-12 cm. (Samples collected after 3™ tidal cycle)
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After 1st After 2nd | After 3rd
tidal cycle | tidal cycle | tidal cycle

Longshore position of tracer cloud
centroid (Y) - metres from injection 4.6 6.1 19.1
point

cE) Distance between tracer cloud

- . - 1.5 13.1

i centroids

=
Velocity of transport (mm/s) 0.1072 0.0337 0.3022
Longshore position of tracer cloud
centroid (Y) - metres from injection 4.0 4.9 31.3
point

cE) Distance between tracer cloud

® . - 0.9 26.4

i centroids

<
Velocity of transport (mm/s) 0.0924 0.0205 0.6110
Longshore position of tracer cloud
centroid (Y) - metres from injection 4.0 54 36.8
point

= .

© | Distance between tracer cloud

N . - 1.4 31.4

— | centroids

)
Velocity of transport (mm/s) 0.0922 0.0320 0.7268

Table 9.8 Longshore position of tracer cloud centroids and velocities of transport for subsample
layers 0-4 cm, 4-8 cm, and 8-12 cm from samples collected after each of the three tidal cycles.
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Figure 10.1 Nearshore mesh, across which equations are solved in MIKE21, at Rossbehy.
Bathymetric data has been interpolated to the mesh.

INFOMAR PROGRAMME
DINGLE BAY
BATHYMETRIC CONTOUR CHART 1:100,080

NOT TO BE USED FOR NAVIGATION

ﬁ INFOHAR,;§Iv = w

Figure 10.2 INFOMAR Bathymetry Data for Dingle Bay used in model set-up. Extracted from
INFOMAR (2015b)
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Leveloen]
0 1 2Kilometers

Figure 10.3 Aerial LiDAR data used in model set-up. The survey took place in April 2011. Data was
provided by Kerry County Council.
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Cross-shore dune recession analysis (van Rijn, 2009)

Calculated Dune Measured Dune
Period Location Recession (m) Recession (m)
July 2009-Feb 2010 Swash 2.2-33 04
July 2009-Feb 2010 Drift 12.5-18.77 37-70
July 2009-Feb 2010 Island low 16.1-24.2 26-30
July 2009-Feb 2010 Island high 2.5-3.9 0-22
Feb 2010-June 2010 Swash 0.65-1.0 N/A
Feb 2010-June 2010 Drift 3.6-5.5 0-11
Feb 2010-June 2010 Island low 4.7-7.1 10-22
Feb 2010-June 2010 Island high 0.7-1.1 0-7
June 2010-Nov 2010 | Swash 1-1.5 N/A
June 2010-Nov 2010 | Drift 5.8-8.7 19-35
June 2010-Nov 2010 | Island low 7.5-11.3 21-22
June 2010-Nov 2010 | Island high 1.2-1.8 10-21
Nov 2010-Feb 2011 Swash 0.9-1.44 0-0.5
Nov 2010-Feb 2011 Drift 5.6-8.4 2629
Nov 2010-Feb 2011 Island low 7.3-11 12-16
Nov 2010-Feb 2011 Island high 1.1-1.66 7-8
Feb 2011-June 2011 Swash 0.7-1.1 0
Feb 2011-June 2011 Drift 4.25-6.30 0-8
Feb 2011-June 2011 Island low 5.4-8.14 0
Feb 2011-June 2011 Island high 0.8-1.29 0-7
June 2011-Oct 2011 Swash 0.5-1.06 0-0.5
June 2011-Oct 2011 Drift 3.9-5.9 10-33
June 2011-Oct 2011 Island low 5-7.6 0.5-7.5
June 2011-Oct 2011 Island high 0.8-1.2 10-16

Table 10.1 Measured versus calculated rates of dune recession using the cross-shore formula of
van Rijn (2009) from a study by O’Shea and Murphy (2013). In that study, an evaluation of the
effectiveness of various transport formulae was carried out in an effort to choose the most
appropriate one for the Dingle Bay model set-up used in this PhD research. There was good
agreement between modeled dune recession using the cross-shore formula of van Rijn (2009) and
measurements for the swash-aligned zone. Data source: O’Shea and Murphy (2013).
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Alongshore dune recession analysis (van Rijn, 1998)

Effective Recession Rates
from Alongshore Transport
(Load/Length X Avg Dune
Height) - calculated using

Measured Dune Recession

Year Location formula of van Rijn (1998) (m) Approx. (m)
2009-10 Swash 0.02 04
2010-11 Swash 0.2 0-1
2009-10 Drift 73 45-80
201011 Drift 82 30-70
2009-10 Island high 31 1044
Island low 138 36-100
2010-11 Island high 44 17-36
Island low 196 20-50

Table 10.2 Measured versus calculated rates of dune recession using the alongshore formula of
van Rijn (1998) from a study by O’Shea and Murphy (2013). In that study, an evaluation of the
effectiveness of various transport formulae was carried out in an effort to choose the most
appropriate one for the Dingle Bay model set-up used in this PhD research. There was some
agreement between modeled dune recession using the alongshore formula of van Rijn (1998) and
measurements for the drift-aligned zone. Data source: O’Shea and Murphy (2013).

Modal Mean duration of | Mean wave Mean Hg, Peak period
wave events direction associated | associated associated
direction characterised by with modal wave with modal with modal
associated modal wave conditions (°) wave wave

with events | conditions conditions conditions
© (HH:MM :SS) (m) (seconds)
255-260 52:47:13 259 1.34 8

Table 10.3 Characteristics associated with all storm events that occurred during the period 2011-
2014 that were characterized by modal wave conditions. Data extracted from nearshore wave

hindcast data.
Event Peak Mean
Duration Mean Max Hig . wave
Startdate | Enddate | gpovin: | Hg, (m) (m) (SIZ‘C’;‘I‘I’SS) direction
SS) )
2012-01-24 2012-01-26
18:00-00 23:00:00 53:00:00 1.49 1.90 259

Table 10.4 Characteristics of event chosen to represent “typical” storm conditions. Data
extracted from nearshore wave hindcast data.
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Figure 10.4
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gvint. n Mean | Max Peak N.[ean. w: ve
Start date End date uratio Hyig Hyig period direction (°)
(HH:MM: (m) (m) (seconds)
SS)
2013-12-13 2014-01-08 633:00:00 1.85 2.97 9 260
06:00:00 15:00:00

Table 10.5 Characteristics of most extreme event to have occurred during period over which data
was available (2011-2014). Data extracted from nearshore wave hindcast data.
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Figure 10.7 Storm power (in terms of minimum pressure and wind speed) for extreme events that
have affected Ireland compared to the 26/27 December and 23/24 December 2013 events. Data
for historic events compiled by Orford et al. (1999).
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Figure 10.8 Wind
speeds used to drive

Extreme event - Wind speed

extreme event scenario.
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Fair-weather event - wind speed

Figure 10.11 Wind
speeds used to drive
fair-weather scenario.
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Extreme Event Typical Event Fair-weather Event
Start Date 26/12/2013 11:30 24/01/2012 18:00 01/02/2012 00:00
End Date 28/12/2013 16:30 26/01/2012 23:00 03/02/2012 05:00
Event Duration 53 hours 53 hours 53 hours
Mean Wind Speed 7.7 m/s 6.4 m/s 4.6 m/s
Max Wind Speed 20.3 m/s 12.2 m/s 7.6 m/s
Dominant wind direction Sw SwW S
Max surge height 50 cm 18 cm none

Table 10.6 Model inputs for extreme event scenario, typical event scenario, and fair-weather
event scenario. Inputs were derived from simulated nearshore wave data and local weather

station data. Each scenario was run under sea-levels of 0 cm, 10 cm, and 50 cm.
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Figure 10.13 Coordinate
at which time series of
sediment transport
magnitude and direction
and water levels were
extracted for each
scenario. Injection of
sediment tracer took place
at this same coordinate
during the June 2014
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Figure 10.14 Second coordinate at which time series of water levels were extracted to give full
picture of tidal state during simulations. Bed levels are shown relative to LAT.
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Figure 10.15 Aerial view of the area covered by the maps presented in section 10.3.1 relative to
the 0 m and -5 m depth contours and the site of the sediment tracer experiment.
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Bed level change — fair-weather conditions — O m SLR

(@
iCH
()
i
I~
I~
LO
Bed level change (m) _8
High : 0.191017 =
O
Low : -0.141641 I~
Lo
[ ]0m contour
-5 m contour
(@
LO
O
=
1 0 1 g
N | o
Kilometers
430000 432000 434000 436000

Figure 10.16 Bed level change for the fair-weather, 0 m SLR scenario. Contours are relative to LAT.
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Volume gains and losses - fair-weather conditions — 0 m
SLLR
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Figure 10.17 Volume gains and losses for the fair-weather, 0 m SLR scenario. Contours are relative to
LAT.

204



Bed level change - fair-weather conditions — 0.1 m SLR
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Figure 10.18 Bed level change for the fair-weather, 0.1 m SLR scenario. Contours are relative to

LAT.
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Volume gains and losses - fair-weather conditions — 0.1 m
SLR
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Figure 10.19 Volume gains and losses for the no event, 0.1 m SLR scenario. Contours are relative to
LAT.
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Bed level change — fair-weather conditions — 0.5 m SLR
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Figure 10.20 Bed level change for the no event, 0.5 m SLR scenario. Contours are relative to LAT.
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Volume gains and losses - fair-weather conditions — 0.5 m
SLR
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Figure 10.21 Volume gains and losses for the no event, 0.5 m SLR scenario. Contours are relative to
LAT.
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Volume change above 0 m bathymetric contour near Rossbehy — fair-weather conditions
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Figure 10.22 Volume change above the 0 m bathymetric contour (top) and between the -5 to 0 m
bathymetric contours (bottom) for the 3 SLR scenarios run over the course of the fair-weather
scenario at Rossbehy. 0 m contour is equal to LAT.
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Bed level change - typical event — O m SLR
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Figure 10.23 Bed level change for the typical event, 0 m SLR scenario. The polygons representing the
0 m and -5 m contours were extracted from the initial bathymmetry. Net volume change was
calculated within the bounds of these polygons. Contours are relative to LAT.
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Volume Gains and Losses — Typical Event — O m SLR
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Figure 10.24 Volume gains and losses for the typical event, 0 m SLR scenario. Contours are relative
to LAT.
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Bed level change - typical event — 0.1 m SLR
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Figure 10.25 Bed level change for the typical event, 0.1 m SLR scenario. Contours are relative to

LAT.
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Volume Gains and Losses — Typical Event — 0.1 m SLR
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Figure 10.26 Volume gains and losses for the typical event, 0.1 m SLR scenario. Contours are relative
to LAT.
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Bed level change - typical event — 0.5 m SLR
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Figure 10.27 Bed level change for the typical event, 0.5 m SLR scenario. Contours are relative to

LAT.
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Volume Gains and Losses — Typical Event — 0.5 m SLR

5771000

5769000

B \ct volume gain

I No Change

- Net volume loss

0 m contour 1 0 1

-5 m contour | || J
Kilometers

430000 " 432000 " 434000 " 436000

5767000

Figure 10.28 Volume gains and losses for the typical event, 0.5 m SLR scenario. Contours are relative
to LAT.
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Figure 10.29 Volume change above the 0 m bathymetric contour (top) and between the -5 to 0 m
bathymetric contours (bottom) for the 3 SLR scenarios run over the course of the “typical event”
scenario at Rossbehy. 0 m contour is equal to LAT.
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Bed level change - extreme event — O m SLR
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Figure 10.30 Bed level change for the extreme event, 0 m SLR scenario. Contours are relative to

LAT.
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Volume Gains and Losses — Extreme Event — O m SLR
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Figure 10.31 Volume gains and losses for the extreme event, 0 m SLR scenario. Contours are relative
to LAT.
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Bed level change — extreme event — 0.1 m SLR
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Figure 10.32 Bed level change for the extreme event, 0.1 m SLR scenario. Contours are relative to
LAT.
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Volume Gains and Losses — Extreme Event — 0.1 m SLR
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Figure 10.33 Volume gains and losses for the extreme event, 0.1 m SLR scenario. Contours are
relative to LAT.
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Bed level change - extreme event — 0.5 m SLR

)
)
(B
—
O~
O~
Lo
Bed level change (m) 8
High : 0.821212 =
O
Low : =0.625839 =
Lo
[ 10 m contour
-5 m contour
)
L €D
@)
=
1 0 1 Lg
N N | o
Kilometers
430000 432000 434000 436000

Figure 10.34 Bed level change for the extreme event, 0.5 m SLR scenario. Contours are relative to
LAT.
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Volume Gains and Losses — Extreme Event — 0.5 m SLR
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Figure 10.35 Volume gains and losses for the extreme event, 0.5 m SLR scenario. Contours are
relative to LAT.
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Volume change above 0 m bathymmetric contour near Rossbehy - Extreme

Event
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Figure 10.36 Volume change above the 0 m bathymetric contour (top) and between the -5 to 0 m
bathymetric contours (bottom) for the 3 SLR scenarios run over the course of the extreme event
scenario at Rossbehy. 0 m contour is equal to LAT.
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Figure 10.37 Graphic summary of net volume change above the -5 m depth contour for each
model scenario. 0 m contour is equal to LAT.
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Nearshore water levels during fair-weather simulation
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Figure 10.38 Nearshore water levels for UTM coordinate 431732.69, 5770864.57 — shown in fig.
10.14 - during the three fair-weather simulations (0 m SLR, 0.1 m SLR, and 0.5 m SLR). NB: While
the simulation began on 1 Feb 2012 at 00:00, a 24 hour spin-up meant water levels did not reach
statistical equilibrium until 2 Feb 2012 at 01:00. Water levels are relative to MSL.

Intertidal and nearshore water levels during typical event simulation
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Figure 10.39 Water levels for nearshore coordinate (UTM coordinate 431732.69, 5770864.57 — shown
in fig. 10.14) and sediment tracer injection point coordinate (UTM coordinate 433532.807,
5770466.742 — shown in fig. 10.13) during the three typical event simulations (0 m SLR, 0.1 m SLR,
and 0.5 m SLR). NB: While the simulation began on 24 Jan 2012 at 18:00, a 24 hour spin-up meant
water levels did not reach statistical equilibrium until 25 Jan 2012 at 18:15. Water levels are relative to
MSL.
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Bed load transport (at UTM coordinate 433532.807, 5770466.742) during typical event

simulation
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Figure 10.40 Time series showing transport magnitude at the sediment tracer injection point
during the typical event simulation for all three SLR scenarios.
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Figure 10.41 Mean and max bed load transport for typical event simulations for 0 m, 0.1 m,
and 0.5 m SLR scenarios.
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Direction of sediment transport - Typical event scenario
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Figure 10.42 Compass rose plot illustrating direction of sediment transport at the sediment tracer
injection point during the typical event simulation for all three SLR scenarios. NB: While in many
cases, wind and wave directions are defined positive clockwise from true North (coming from), in
MIKE 21 load directions are defined positive clockwise from true North (going against). For clarity,
the output was adjusted to reflect load directions coming from, as opposed to going against. This
means that, for example, for the 0 m SLR scenario, for 20% of the time, transport was from southeast
to northwest and for 80% of the time, transport was from west to east (onshore).

Intertidal and nearshore water levels during extreme event simulation
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Figure 10.43 Time series showing water levels at the sediment tracer injection point during the
extreme event simulation for all three SLR scenarios. Water levels are relative to MSL.
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Maximum water levels at the sediment tracer injection point coordinate for all
scenarios
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Figure 10.44 Maximum water levels reached at sediment tracer injection point coordinate for all
nine scenarios. Water levels are relative to MSL.
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Figure 10.45 Duration of inundation at sediment tracer injection point coordinate for all nine
scenarios. Water levels are relative to MSL.
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Bed load transport (at UTM coordinate 433532.807, 5770466.742) during extreme event

simulation
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Figure 10.46 Time series showing transport magnitude at the sediment tracer injection point
during the extreme event simulation for all three SLR scenarios.
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Figure 10.47 Mean and max bed load transport for extreme event simulations for 0 m, 0.1 m, and 0.!
m SLR scenarios.
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Direction of sediment transport - Extreme event scenario
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Figure 10.48 Compass rose plot illustrating direction of sediment transport at the sediment tracer
injection point during the extreme event simulation for all three SLR scenarios.
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fluence of storms under higher sea-level

ORIGINAL MODEL
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Removal of swash platform between 2004-2008 (likely as a result of channel straightening) leaves drift aligned
zone of Rossbehy vulnerable to wave attack; barrier breaching occurs in 2009

& Storms aid in removal of swash
““ platform

& Event frequency, lag time, etc. govern
potential duration of this stage

Stage 2
Positive feedback in operation whereby widening of breach facilitates growth of ebb-tidal bar and expansion of
drift aligned zone; channel between ebb tidal bar and drift aligned zone is established

& Removal of material from dunes
““during storms feeds growth of ebb
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Figure 11.1 S-SLR conceptual model of evolution of Rossbehy in response to storms under a rising sea-

level.
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