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General Abstract 

 
Cancer is the name given to diverse diseases, whose common characteristic is 

uncontrolled cell proliferation. In an effort to rationalise the complexity of cancer 

Hanahan and Weinberg (2000, 2011) proposed the hallmarks that comprise 

biological capabilities that enable tumour development. Dysregulation of molecular 

pathways underlie these hallmarks of tumour progression and their study has been 

central to cancer biology. The PI3K/AKT/mTOR pathway has a central role in 

translation, cell growth and proliferation and it is frequently dysregulated in various 

cancers. In this work we aimed to elucidate the role of the PI3K pathway and 

protein synthesis in cancer.  

Our work focused on various levels of the PI3K pathway and protein 

synthesis, with application of ribosome profiling; a powerful technique, which 

provides genome-wide information on protein synthesis, by capturing actively 

translating ribosomes and sequencing of their associated transcripts. 

Previous work on bioinformatics and ribosome profiling data suggested the 

presence of an N-terminal extension in the well-studied tumour suppressor PTEN. 

Mutational analysis and further investigation of the 5’ leader of this gene 

performed in this study led to the discovery of previously uncharacterized 

proteoforms with N-terminal extensions. Given the physiological importance of 

PTEN this discovery is expected to broaden our understanding of the translational 

regulation of this gene and elucidate its role in molecular pathology. 

Polyamines are ubiquitous small basic molecules with known but not well 

defined roles in a range of physiological processes, including translation. The 

enzymes involved in this pathway are themselves subject to extensive translational 

regulation. In an effort to further characterize regulation of polyamines and their 

effect on translation we applied ribosome profiling in a previously established 

system available in the lab. This work confirmed our previous knowledge on 

regulation of enzymes of the polyamine pathway and identified previously 

uncharacterized translational events.  

Translation has a central role in physiology and its aberrations can cause 

cancer. Merkel Cell Carcinoma is a rare but aggressive tumour with poor prognosis 
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and increasing incident rates. Approximately 80% of these cancers are induced by 

the Merkel Cell Polyomavirus (MCV). The small T (sT) viral antigen had been 

proposed to have a causal role in tumour initiation by affecting cap dependent 

translation. To study this molecular interaction we aimed to develop a model 

system that inducibly expresses MCV sT to imitate the initial steps of 

tumourigenesis and applied ribosome profiling on metastatic cell lines. 
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1. General introduction 

1.1 Biology of cancer  

Cancer is a leading cause of death worldwide with 8.2 million deaths and 14.1 

million new cases in 2012 (Ferlay et al. 2015; Ryerson et al. 2016). Cancer is not a 

single disease, but a series of different diseases that are characterized by 

uncontrolled proliferation. It develops through a process that resembles evolution 

of species (Greaves & Maley 2012), as it is the result of genetic mutations and 

epigenetic alterations (Sharma et al. 2010; Berdasco et al. 2010) that are selected, 

because they promote cellular proliferation and survival  (Stratton et al. 2009). 

In an effort to rationalise this complex and diverse disease Hanahan and 

Weinberg (2011) suggested initially six alterations in cellular physiology typically 

observed in cancer cells. These include the ability of cells to grow without being 

dependent on growth signals (Feldman & Feldman 2001; Davies & Samuels 2010), 

lack of response to anti-growth signals (Burkhart & Sage 2008), apoptosis evasion 

(Adams & Cory 2007; Lowe et al. 2004; Evan & Littlewood 1998), limitless 

replicative potential acquisition (Blasco 2005; Shay & Wright 2000), promotion of 

angiogenesis (Hanahan et al. 1996) and tissues invasion and metastasis (Berx & van 

Roy 2009; Cavallaro & Christofori 2004). Genomic instability (Negrini et al. 2010; 

Salk et al. 2010) and an inflamed tumour microenvironment (Mantovani 2010; 

Egeblad et al. 2010; Joyce & Pollard 2009) are considered enabling characteristics 

for tumour development, while avoidance of immune destruction (Strauss et al. 

2010; Yang et al. 2010; Shields et al. 2010; Nelson 2008) and dysregulation of 

cellular energetics (O Warburg 1956; Otto Warburg 1956) were the most recently 

proposed hallmarks of cancer (Hanahan & Weinberg 2011).  

Some of the molecular pathways that are responsible for causing cancer 

related aberrations in cell physiology have been characterized and the role of their 

components is being studied extensively (Downward 2003; Anastas & Moon 2012; 

Bianco et al. 2006).  

1.2 PI3K/ AKT/ mTOR pathway  

The PI3K/AKT/mTOR signaling pathway has a central role in cell growth and 

proliferation, translation, apoptosis regulation and cell metabolism. It integrates a 
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range of signals that include growth factors such as insulin and insulin-like growth 

factors, amino acid concentrations, energy signals from AMP-activated kinase and 

various stress factors such as hypoxia and DNA damage (Zoncu et al. 2011; 

Ruderman et al. 1990; Rodriguez-Viciana et al. 1994; Parker & Waterfield 1992) 

(Figure. 1.1). The major nodes of this pathway are frequently dysregulated in 

various cancers (Yuan & Cantley 2008).  

The PI3K pathway is activated by cell surface receptors tyrosine kinases 

(RTKs), integrins (Guo & Giancotti 2004), B and T cell receptors (Okkenhaug & 

Vanhaesebroeck 2003), cytokines (Baker et al. 2007) and G-protein-coupled 

receptors (GPCRs) (Zhang et al. 2007). Several growth factors, including the 

fibroblast growth factor (FGF), the human growth factor (HGF), the vascular 

endothelial cell growth factor (VEGF), angiopoietin I (Ang1) and insulin can trigger 

the PI3K pathway, by activating and autophosphorylating RTKs (Yarden & Ullrich 

1988; Blume-Jensen & Hunter 2001). Receptors activate PI3Ks either by directly 

interacting with them or by interactions mediated by the Insulin Receptor Substrate 

proteins (IRS), which act as scaffolds and organize signaling complexes (Mardilovich 

et al. 2009). PI3Ks are subdivided into three classes (I-III) based on their sequence 

homology and substrate specificity. The different classes of PI3K and the various 

isoforms that belong to each class have distinct substrate specificity and roles in 

signal transduction (Engelman et al. 2006).  

Class I PI3Ks is the most well studied class of PI3Ks and includes two 

subclasses (IA and IB), which are coupled to and activated by RTKs and GPCRs 

respectively (Katso et al. 2001). Class IA PI3Ks are heterodimers between a p85 

regulatory and a p110 catalytic subunit. The p85 regulatory subunit is a substrate 

for a range of phosphoproteins including tyrosine kinases (Vivanco & Sawyers 

2002). Class IB PI3Ks are heterodimers between the regulatory subunit p101 and 

the catalytic subunit p110. Class II PI3Ks includes three isoforms encoded by distinct 

genes. Members of this class lack regulatory subunits and only have p110-like 

catalytic subunits (Engelman et al. 2006). They mostly use phosphatidylinositol 

(PtdIns) lipid as a substrate, but can also use PtdIns-4-phosphate (Vanhaesebroeck 

et al. 2010). Class III PI3Ks only have one member, the vacuolar protein-sorting 

defective 34 (Vsp34) (Vanhaesebroeck et al. 2010; Engelman et al. 2006). 
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The growth factor activated phosphoinositide-3 kinase (PI3K) 

phosphorylates and converts the plasma membrane lipid phosphoatidylinositol-4,5-

bisphosphate [PI(4,5)P2] to  phosphatidylinositol-3,4,5-triphosphate [PI(3,4,5)P3] 

(Cantley 2002). PI(3,4,5)P3 is a key second messenger (Insall & Weiner 2001), tightly 

regulated by the antagonistic activity of PTEN, which reduces the cellular levels of 

PIP3 with its lipid phosphatase activity (Cully et al. 2006). Many proteins contain a 

pleckstrin homology (PH) domain, with which they can interact with PI(3,4)P2 and 

PI(3,4,5)P3. The generation of PIP3 triggers the translocation of the PH-domain 

containing phosphoinositide-dependent kinase 1 (PDK1) to the plasma membrane 

(Mclaughlin et al. 2002). 

Interaction of PDK1 with PI(3,4,5)P3, enables phosphorylation and activation of AKT 

(Lawlor & Alessi 2001), as well as interaction with serum/glucocorticoid-regulated 

kinases (SGK), protein kinase C (PKC) and p70S6 kinase (S6K) (Biondi et al. 2001). 

AKT (or Protein kinase B (PKB)) is a serine/threonine kinase expressed as three 

isoforms (AKT1, AKT2, AKT3 or PKBα, PKBβ and PKBγ), with distinct, yet overlapping 

roles, encoded by an equal number of genes (Vivanco & Sawyers 2002; Kiely & Kiely 

2015). AKT proteins belong to the family of AGC kinases and contain an N-terminal 

PH domain, a serine/threonine kinase catalytic domain and a C-terminal regulatory 

domain. AKT activation requires phosphorylation on its activation loop (T308) by 

PDK1 and on its carboxy-terminal hydrophobic motif (S473) by mTORC2 (Hemmings 

& Restuccia 2012). Downstream targets of AKT include the pro-apoptotic FOXO 

proteins (Guertin et al. 2006), BAD, Caspase-9 (Zhou et al. 2000) and GSK3β (Li et al. 

2008), which are inactivated upon AKT phosphorylation and TSC1/2 (tuberous 

sclerorsis 1 and 2), IKKα (Makarov & Romashkova 1999), AS160 (Thong et al. 2007) 

and Mdm2 (Zhou & Hung 2002).  

AKT induced phosphorylation and subsequent inactivation of TSC1/2 

activates, through Rheb, the mTORC1 complex (Huang & Manning 2009). 

Dephosphorylation of AKT at T308 occurs by PP2A (Andjelković et al. 1996) and by 

PHLPP1/2 at S473 (Brognard et al. 2007).  

Activating mutations of proteins of the PI3K-Akt-mTOR pathway are 

frequently observed in a range of cancers, including head and neck, lung, brain, 

colorectal, breast and gynecologic tumours (Qiu et al. 2006) and in Merkel Cell  
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Polyomavirus (MCV)  negative Merkel Cell carcinomas (MCC) (Hafner et al. 2012; 

Nardi et al. 2012). Mutations of the p100α subunit of PI3K (PIK3CA), which result in 

activation of the PI3K-Akt-mTOR pathway have been observed in MCC (Nardi et al. 

2012). This pathway has been shown to be activated in MCC through mutations in 

the pleckstrin homology domain (PHD) of Akt1 (Hafner et al. 2012).  

 

Figure 1.1 The PI3K/Akt/mTOR pathway. The pathway integrates signals from 
growth factors, insulin, nutrients and energy levels and regulates critical cellular 
processes, including translation, cell survival and cell cycle progression (Meric-
Bernstam & Gonzalez-Angulo 2009). 

 

Mammalian target of rapamycin (mTOR) nucleates two distinct multiprotein 

complexes mTORC1 and mTORC2 (Zoncu et al. 2011), with different upstream 

inputs and downstream outputs (Laplante & Sabatini 2012). 

mTORC1 consists of five proteins; mammalian Target of Rapamycin (mTOR), 

which is the catalytic subunit of the complex, the regulatory-associated protein of 

mTOR (Raptor), the proline-rich AKT substrate 40kDa (PRAS40), the DEP-domain-

containing mTOR-interacting protein (Deptor) and the mammalian lethal with Sec13 

protein 8 (mLST8, or GβL) (Peterson et al. 2009). mTORC1 is a major regulator of 

cell growth and metabolism by promoting a range of anabolic processes such as 

synthesis of proteins and lipids, and inhibiting autophagy. mTORC1 is a downstream 

target of AKT, and an upstream regulator of S6K1 and eIF-4E-binding protein 1 (4E-
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BP1), both of which regulate protein synthesis and cell growth (Richter & 

Sonenberg 2005). mTORC1 promotes ribosome biogenesis by activating the 

transcription factor IA (Mayer et al. 2004), and lipid synthesis by positively 

regulating the activity of the transcription factors sterol regulatory element binding 

protein 1 (SREBP1) (Porstmann et al. 2008) and peroxisome proliferator-activated 

receptor-γ (PPARγ) (Kim & Chen 2004). mTORC1 also regulates mitochondrial 

metabolism and biogenesis and sustains mitochondrial membrane potential, 

oxygen consumption and cellular ATP levels (Schieke et al. 2006), and inhibits 

autophagy (Codogno & Meijer 2005). 

mTORC2 consists of mTOR, mLST8 (or GβL), RICTOR (rapamycin-insensitive 

companion of mTOR), PROTOR (protein observed with RICTOR), Deptor and mSIN1 

(Sarbassov et al. 2005; Frias et al. 2006; Jacinto et al. 2006; Yang et al. 2006; Pearce 

et al. 2007). mTORC2 directly binds to and regulates AKT, but it also phosphorylates 

and regulates PKCα through an poorly characterized mechanism (Guertin & Sabatini 

2007). mTORC2 controls the actin cytoskeleton, with a mechanism that is poorly 

characterized, but involves mTORC2 phosphorylation of PKCα and paxillin (Dos D. 

Sarbassov et al. 2004; Jacinto et al. 2004). Phosphorylation of AKT at S473 occurs by 

mTORC2, but only some of the downstream targets of AKT are affected by this 

phosphorylation event (Guertin et al. 2006; Jacinto et al. 2006). The transcription 

factors forkhead box protein O1 (FoxO1) and FoxO3a, which are involved in 

metabolism, cell-cycle arrest and stress resistance, are among the downstream 

targets of AKT that are affected by mTORC2 (Calnan & Brunet 2008). SGK1 is 

regulated by mTORC2 and is a regulator of FoxO1 and FoxO3a (García-Martínez & 

Alessi 2008), suggesting that the effect of mTORC2 on these proteins is mediated 

through its interaction with SGK1, rather than with AKT (Laplante & Sabatini 2009).  

Dysregulation of mTORC1 promotes tumourigenesis in several ways by 

enabling cap-dependent translation initiation (through eIF4E-binding protein 1 (4E-

BP1) inactivation), by inhibiting autophagy, by promoting angiogenesis through 

hypoxia-inducible factor 1α (HIF1α) upregulation and by activation of the 

transcription factor SREBP1c, which has oncogenic activity in glioblastomas (Guo et 

al. 2013), prostate (Huang et al. 2012), endometrial (W. Li et al. 2012), breast 

(Freed-Pastor et al. 2012) and pancreatic (Sun et al. 2015) cancers. Dysregulation of 
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mTORC2 exerts its tumourigenic activity through activation of Akt and other 

proteins of the cAMP-dependent, cGMP-dependent and protein kinase C (AGC) 

protein kinase family, such as SGK (Zoncu et al. 2011).  

Phosphatase and tensin homolog on chromosome 10 (PTEN) is a dual 

protein and lipid phosphatase (Li et al. 1997; Steck et al. 1997) identified as a 

negative regulator of PI3K signalling. It exerts its tumour suppressor activity mostly 

by dephosphorylating PI3K and thus inactivating the PI3K pathway (Stambolic et al. 

1998; Wu et al. 1998). PTEN is frequently deleted in melanomas, gliomas, prostate 

and breast cancer (Hollander et al. 2011) and in MCCs, in which chromosome 10 is 

frequently missing (Paulson et al. 2009).  

The PI3K-Akt-mTOR pathway presents great interest for cancer research 

because it is one of the most commonly mutated pathways in cancer. Several drugs 

exist that target various components of this pathway through distinct mechanisms. 

The main types of drugs that target this pathway are rapamycin, mTOR catalytic 

inhibitors, AKT inhibitors and dual kinase inibitors targeting both PI3K and mTOR. 

Rapamycin targets mostly the mTORC1 complex and more specifically ribosomal 

protein S6K1, but not 4E-BP1 downstream of mTORC1. Ablation of the S6K1-

dependent negative feedback loop results in upregulation of PI3K activity following 

treatment with rapamycin. Depending on the duration of the treatment, rapamycin 

can block mTORC2 too (Shor et al. 2008; Sarbassov et al. 2006). ATP-competitive 

inhibitors block both mTORC1 and mTORC2 and present more potent inhibitors of 

the PI3K pathway, targeting more proteins (Zoncu et al. 2011). 

Dual inhibitors of PI3K and mTOR and combinations of drugs with more than 

one target are more potent in silencing the pathway, but their high toxicity in 

healthy cells impedes their use in the clinic (Holmes 2011; Schenone et al. 2011).  
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1.3 Ribosome profiling  

Ribosome profiling (Ribo-seq) is a newly developed technique, which is based on 

deep sequencing of ribosome-protected mRNA fragments (Ingolia et al. 2009) and 

enables genome-wide information on protein synthesis (GWIPS) (Weiss & Atkins 

2011). During translation each ribosome encloses and protects from nuclease 

degradation, a ~30nt fragment of the translated mRNA (Steitz 1969; Wolin & Walter 

1988; Ingolia et al. 2009). In ribosome profiling, ribosomes are immobilized right 

before cell lysis, either by flash freezing cells or by addition of a translation 

elongation inhibitor such as cycloheximide (Ingolia et al. 2009). After cell lysis, 

RNase I (from E. coli) is used to remove unprotected RNA and leave ribosome 

protected fragments (RPFs). Unlike other nucleases (RNase A, RNAse T1 and 

micrococcal nuclease) Rnase I doesn’t show sequence specificity (Meador & Kennell 

1990).  Total RNA isolation is followed by size selection (~30 nt) of the RPFs, which 

are then converted into a cDNA library for deep sequencing. Library preparation 

involves ligation of a preadenylated linker, followed by reverse transcription, 

circularization and PCR for library amplification (Ingolia et al. 2012) (Figure 1.3).  

Following next generation sequencing the exact location of footprints is 

identified by their alignment to the genome. Sequencing technology (Bentley et al. 

2008) enables characterization of the synthesized mRNA molecule, providing 

information about the amount of protein synthesized and the position of the 

ribosome on the mRNA molecule (Ingolia 2014). The average density of RPFs on an 

mRNA, provides an estimate of the protein synthesis rate. mRNA-seq is usually 

performed in the samples analysed by profiling and used as a control for the 

abundance of mRNAs. Comparison of the rate of protein synthesis, which can be 

estimated by ribosome profiling with mRNA abundance, can provide information 

about translational efficiency (Brar & Weissman 2015).     
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Figure 1.2:  Overview of the ribosome profiling protocol. After cell lysis, translating 
ribosomes are digested with Rnase I. The mRNA fragments, which are protected 
from the ribosomes are recovered and converted into a cDNA library. Library 
preparation starts with a ligation of a linker, followed by reverse transcription and 
subsequent circularisation. The library is amplified by PCR and analysed by deep 
sequencing. RNAseq is performed in parallel and it is used as an internal control for 
RNA levels.  

  

1.4 Advantages of using ribosome profiling 

Ribosome profiling provides quantitative information about protein synthesis, with 

unprecedented sensitivity. The stable isotope labelling methods coupled by mass 

spectrometry, which also enable measurement of protein synthesis and turnover, 

cannot provide the sensitivity available by ribosome profiling (Vogel & Marcotte 

2012). 

Ribosome profiling also provides positional information that enables the 

detection of codon periodicity (Ingolia et al. 2009). Analysis of ribosome footprint 

positions, facilitated the elucidation of many translational events, such as non-AUG 

initiation and upstream open reading frame (uORF) translation (Gerashchenko et al. 

2012; Ingolia et al. 2011; Brar et al. 2012), ribosomal frameshifting (Michel et al. 

2012), pausing (G.-W. Li et al. 2012; Woolstenhulme et al. 2015) and stop codon 

readthrough (Namy et al. 2004; Dunn et al. 2013).  
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At the level of gene expression studies, ribosome profiling enables detection 

of changes in protein synthesis as they occur (Andreev et al. 2015; Ingolia et al. 

2009).  

Until the advent of ribosome profiling, genome wide gene expression studies 

were performed by microarray analysis or RNA-seq (Wang et al. 2009), both of 

which use transcript abundance as a proxy for protein synthesis. Unlike ribosome 

profiling, which captures both transcript abundance and actively translated mRNAs, 

these techniques do not take into account translational regulation. The previously 

used microarray analysis of polysome associated mRNAs (Zong et al. 1999; 

Johannes et al. 1999), cannot provide information about the exact position of the 

ribosome and about translation of low-abundance transcripts. More efficiently 

translated mRNA transcripts have more ribosomes bound to them and can be 

separated from the least efficiently translated ones, through polysome 

fractionation by sucrose density gradient centrifugation and fractions’ isolation 

(Arava et al. 2003; Hendrickson et al. 2009). Subsequent microarray analysis of 

fractions, can give more quantitative results, but requires analysis of many fractions 

per sample.  

Proteomics is useful for monitoring the steady state levels of protein, but it 

does not provide insight into the dynamics of protein regulation (Vogel & Marcotte 

2012).  

Ribosome profiling has provided insight into the sequences that are being 

translated. For example, long interspersed non-coding RNAs (lincRNAs), which were 

considered nontranslatable transcirpts (Bertone et al. 2004; Carninci et al. 2005; 

Guttman et al. 2009), have been reported to be translated in profiling experiments 

(Guttman et al. 2013; Ingolia et al. 2014). Mass spectrometry has confirmed 

translation of some of the newly identified peptides (Stern-Ginossar et al. 2012; 

Schwaid et al. 2013; Slavoff et al. 2013). Although translated products can get 

degraded too quickly to make functional peptides, they are physiologically relevant, 

because degraded peptides in the ER are the source of antigens presented to 

circulating cytotoxic T cells and increased ER stress could potentially affect immune 

responses (Starck et al. 2012). 
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1.5 Limitations of ribosome profiling  

Ribosome profiling has some limitations, which need to be considered in data 

interpretation.  

Ribosomal RNA contamination decreases the amount of informative 

sequencing data and can increase the cost of the experiment. Removal of rRNA 

sequences can be achieved by subtractive hybridisation (Ingolia et al. 2012). 

Alternatively duplex-specific nuclease (DSN) can be used (Zhulidov et al. 2004; 

Chung et al. 2015). DSN is an enzyme isolated from the Kamchatka crab (Parlithodes 

camtschaticus), which can cleave double-stranded DNA and RNA-DNA hybrid 

duplexes (Shagin et al. 2002). rRNA removal involves denaturation of cDNA, 

reannealing and enzymatic degradation of double stranded DNA by DSN (Chung et 

al. 2015; Zhulidov et al. 2004).  

The first step of ribosome profiling is translation inhibition to freeze 

ribosomes in situ. Inhibition has to be fast to avoid artificial accumulation of 

ribosomes and blurred signal. Although flash freezing of samples can be very 

efficient at capturing the exact position of ribosomes (Ingolia et al. 2012), it’s 

application can be technically challenging. Alternatives such as cycloheximide 

treatment, can distort ribosomal distribution especially near translation start sites 

(Guydosh & Green 2014; Ingolia et al. 2012). This issue can be addressed by 

avoiding addition of cycloheximide to the cell medium (Gerashchenko et al. 2012). 

The library preparation process itself includes many steps, each of which has 

the potential to distort the data. The current appoach to library preparation 

involves ligation of preadenylated oligonucleotides at the 3’ end of RPFs, followed 

by cDNA synthesis and first-strand cDNA circularization and subsequent PCR 

amplification (Levin et al. 2010). This approach reduces sequence dependent biases 

in library preparation (Jayaprakash et al., 2011; Hafner et al., 2011).  

Sequence data alignment can be challenging especially for highly repetitive 

areas or areas showing high similarity (Brar & Weissman 2015). The protein 

synthesis rate in profiling is inferred from the average ribosome occupancy along 

the mRNA transcript. Differences in translation elongation rate among mRNA and 

ribosomes that do not finish translation can affect the accuracy of the protein 

synthesis rate (Brar & Weissman 2015).  
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RPFs are inferred on the basis of their size. As a result of this, it is not always 

possible to differentiate between RNAs that are translated and contaminating ones 

(Brar & Weissman 2015). Contaminating RNAs are usually parts of 

ribonucleoprotein (RNP) complexes, such as RNaseP, telomerase and the vault RNP 

and thus get protected by RNase digestion and subsequently sediment with 

ribosomes. A recently developed tool (Ingolia et al. 2014) enables differentiation 

between RPFs and co-precipitating RNAs, by identifying the stereotypical 

distribution of ribosome footprints of each experiment. 

Visualization of published Ribo-seq data is available online in GWIPS-vis 

(http://gwips.ucc.ie/) (Michel et al. 2014). GWIPS-vis is based on the Genome 

Browser of the University of California Santa Cruz (http://genome.ucsc.edu/) 

(Meyer et al. 2013). Figure (1.4) shows a screenshot of the GWIPS-vis (hg19) 

RNAseq for gene PIK3CA. RNAseq alignments are shown as green histograms and 

Riboseq alignments are shown as red columns.  

  

http://gwips.ucc.ie/
http://genome.ucsc.edu/
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Figure 1.3 Screenshot of PIK3CA from GWIPS-vis 

 

  



28 
 

Bibliography 
Adams, J.M. & Cory, S., 2007. The Bcl-2 apoptotic switch in cancer development and 

therapy. Oncogene, 26(9), pp.1324–37. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/17322918 [Accessed July 28, 2016]. 

Aird, D. et al., 2011. Analyzing and minimizing PCR amplification bias in Illumina 

sequencing libraries. Genome biology, 12(2), p.R18. 

Anastas, J.N. & Moon, R.T., 2012. WNT signalling pathways as therapeutic targets in 

cancer. Nature Reviews Cancer, 13(1), pp.11–26. Available at: 

http://www.nature.com/doifinder/10.1038/nrc3419 [Accessed July 26, 2016]. 

Andjelković, M. et al., 1996. Activation and phosphorylation of a pleckstrin 

homology domain containing protein kinase (RAC-PK/PKB) promoted by serum 

and protein phosphatase inhibitors. Proceedings of the National Academy of 

Sciences of the United States of America, 93(12), pp.5699–704. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/8650155 [Accessed August 21, 2016]. 

Andreev, D.E. et al., 2015. Oxygen and glucose deprivation induces widespread 

alterations in mRNA translation within 20 minutes. Genome biology, 16, p.90. 

Arava, Y. et al., 2003. Genome-wide analysis of mRNA translation profiles in 

Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of 

the United States of America, 100(7), pp.3889–3894. 

Baker, S.J., Rane, S.G. & Reddy, E.P., 2007. Hematopoietic cytokine receptor 

signaling. Oncogene, 26(47), pp.6724–6737. Available at: 

http://www.nature.com/doifinder/10.1038/sj.onc.1210757 [Accessed August 

18, 2016]. 

Bentley, D.R. et al., 2008. Accurate whole human genome sequencing using 

reversible terminator chemistry. Nature, 456(7218), pp.53–59. 

Berdasco, M. et al., 2010. Aberrant epigenetic landscape in cancer: how cellular 

identity goes awry. Developmental cell, 19(5), pp.698–711. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/21074720 [Accessed July 25, 2016]. 

Bertone, P. et al., 2004. Global Identification of Human Transcribed Sequences with 

Genome Tiling Arrays. Science , 306(5705), pp.2242–2246. 

Berx, G. & van Roy, F., 2009. Involvement of members of the cadherin superfamily 

in cancer. Cold Spring Harbor perspectives in biology, 1(6), p.a003129. 



29 
 

Available at: http://www.ncbi.nlm.nih.gov/pubmed/20457567 [Accessed July 

27, 2016]. 

Bianco, R. et al., 2006. Key cancer cell signal transduction pathways as therapeutic 

targets. European Journal of Cancer, 42(3), pp.290–294. 

Biondi, R.M. et al., 2001. The PIF-binding pocket in PDK1 is essential for activation 

of S6K and SGK, but not PKB. The EMBO journal, 20(16), pp.4380–90. Available 

at: http://www.ncbi.nlm.nih.gov/pubmed/11500365 [Accessed August 20, 

2016]. 

Blasco, M.A., 2005. Telomeres and human disease: ageing, cancer and beyond. 

Nature reviews. Genetics, 6(8), pp.611–22. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/16136653 [Accessed July 29, 2016]. 

Blume-Jensen, P. & Hunter, T., 2001. Oncogenic kinase signalling. Nature, 

411(6835), pp.355–65. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/11357143 [Accessed August 22, 2016]. 

Brar, G.A. et al., 2012. High-Resolution View of the Yeast Meiotic Program Revealed 

by Ribosome Profiling. Science , 335(6068), pp.552–557. 

Brar, G.A. & Weissman, J.S., 2015. Ribosome profiling reveals the what, when, 

where and how of protein synthesis. Nat Rev Mol Cell Biol, 16(11), pp.651–

664. 

Brognard, J. et al., 2007. PHLPP and a Second Isoform, PHLPP2, Differentially 

Attenuate the Amplitude of Akt Signaling by Regulating Distinct Akt Isoforms. 

Molecular Cell, 25(6), pp.917–931. Available at: 

http://linkinghub.elsevier.com/retrieve/pii/S1097276507001177 [Accessed 

August 21, 2016]. 

Burkhart, D.L. & Sage, J., 2008. Cellular mechanisms of tumour suppression by the 

retinoblastoma gene. Nature Reviews Cancer, 8(9), pp.671–682. Available at: 

http://www.nature.com/doifinder/10.1038/nrc2399 [Accessed July 28, 2016]. 

Calnan, D.R. & Brunet, A., 2008. The FoxO code. Oncogene, 27(16), pp.2276–88. 

Available at: http://www.ncbi.nlm.nih.gov/pubmed/18391970 [Accessed 

August 22, 2016]. 

Cantley, L.C., 2002. The Phosphoinositide 3-Kinase Pathway. Science , 296(5573), 

pp.1655–1657. 



30 
 

Carninci, P. et al., 2005. The transcriptional landscape of the mammalian genome. 

Science (New York, N.Y.), 309(5740), pp.1559–1563. 

Cavallaro, U. & Christofori, G., 2004. Cell adhesion and signalling by cadherins and 

Ig-CAMs in cancer. Nature Reviews Cancer, 4(2), pp.118–132. Available at: 

http://www.nature.com/doifinder/10.1038/nrc1276 [Accessed July 27, 2016]. 

Chung, B.Y. et al., 2015. The use of duplex-specific nuclease in ribosome profiling 

and a user-friendly software package for Ribo-seq data analysis. RNA (New 

York, N.Y.), 21(10), pp.1731–1745. 

Codogno, P. & Meijer, A.J., 2005. Autophagy and signaling: their role in cell survival 

and cell death. Cell death and differentiation, 12 Suppl 2, pp.1509–18. 

Available at: http://www.ncbi.nlm.nih.gov/pubmed/16247498 [Accessed 

August 22, 2016]. 

Cully, M. et al., 2006. Beyond PTEN mutations: the PI3K pathway as an integrator of 

multiple inputs during tumorigenesis. Nature reviews. Cancer, 6(3), pp.184–92. 

Available at: http://www.ncbi.nlm.nih.gov/pubmed/16453012 [Accessed 

August 17, 2016]. 

Dos D. Sarbassov, D.D. et al., 2004. Rictor, a Novel Binding Partner of mTOR, Defines 

a Rapamycin-Insensitive and Raptor-Independent Pathway that Regulates the 

Cytoskeleton. Current Biology, 14(14), pp.1296–1302. Available at: 

http://linkinghub.elsevier.com/retrieve/pii/S0960982204004713 [Accessed 

August 22, 2016]. 

Davies, M.A. & Samuels, Y., 2010. Analysis of the genome to personalize therapy for 

melanoma. Oncogene, 29(41), pp.5545–5555. Available at: 

http://www.nature.com/doifinder/10.1038/onc.2010.323 [Accessed July 29, 

2016]. 

Downward, J., 2003. Targeting RAS signalling pathways in cancer therapy. Nature 

Reviews Cancer, 3(1), pp.11–22. Available at: 

http://www.nature.com/doifinder/10.1038/nrc969 [Accessed July 26, 2016]. 

Dunn, J.G. et al., 2013. Ribosome profiling reveals pervasive and regulated stop 

codon readthrough in Drosophila melanogaster. eLife, 2, p.e01179. Available 

at: 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3840789&tool=p



31 
 

mcentrez&rendertype=abstract [Accessed July 17, 2014]. 

Egeblad, M. et al., 2010. Tumors as organs: complex tissues that interface with the 

entire organism. Developmental cell, 18(6), pp.884–901. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/20627072 [Accessed July 28, 2016]. 

Engelman, J.A., Luo, J. & Cantley, L.C., 2006. The evolution of phosphatidylinositol 

3-kinases as regulators of growth and metabolism. Nature reviews. Genetics, 

7(8), pp.606–19. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/16847462 [Accessed July 29, 2016]. 

Evan, G. & Littlewood, T., 1998. A matter of life and cell death. Science (New York, 

N.Y.), 281(5381), pp.1317–22. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/9721090 [Accessed July 28, 2016]. 

Feldman, B.J. & Feldman, D., 2001. The development of androgen-independent 

prostate cancer. Nature Reviews Cancer, 1(1), pp.34–45. Available at: 

http://www.nature.com/doifinder/10.1038/35094009 [Accessed July 29, 

2016]. 

Ferlay, J. et al., 2015. Cancer incidence and mortality worldwide: sources, methods 

and major patterns in  GLOBOCAN 2012. International journal of cancer. 

Journal international du cancer, 136(5), pp.E359-86. 

Freed-Pastor, W.A. et al., 2012. Mutant p53 Disrupts Mammary Tissue Architecture 

via the Mevalonate Pathway. Cell, 148(1), pp.244–258. 

Frias, M.A. et al., 2006. mSin1 is necessary for Akt/PKB phosphorylation, and its 

isoforms define three distinct mTORC2s. Current biology : CB, 16(18), pp.1865–

70. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16919458 [Accessed 

August 22, 2016]. 

García-Martínez, J.M. & Alessi, D.R., 2008. mTOR complex 2 (mTORC2) controls 

hydrophobic motif phosphorylation and activation of serum- and 

glucocorticoid-induced protein kinase 1 (SGK1). The Biochemical journal, 

416(3), pp.375–85. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/18925875 [Accessed August 22, 2016]. 

Gerashchenko, M. V, Lobanov, A. V & Gladyshev, V.N., 2012. Genome-wide 

ribosome profiling reveals complex translational regulation in response to 

oxidative stress. Proceedings of the National Academy of Sciences of the United 



32 
 

States of America, 109(43), pp.17394–17399. 

Greaves, M. & Maley, C.C., 2012. Clonal evolution in cancer. Nature, 481(7381), 

pp.306–13. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22258609 

[Accessed July 25, 2016]. 

Guertin, D.A. et al., 2006. Ablation in Mice of the mTORC Components raptor, 

rictor, or mLST8 Reveals that mTORC2 Is Required for Signaling to Akt-FOXO 

and PKCα, but Not S6K1. Developmental Cell, 11(6), pp.859–871. Available at: 

http://linkinghub.elsevier.com/retrieve/pii/S153458070600459X [Accessed 

August 21, 2016]. 

Guertin, D.A. & Sabatini, D.M., 2007. Defining the role of mTOR in cancer. Cancer 

cell, 12(1), pp.9–22. 

Guo, D., Bell, E.H. & Chakravarti, A., 2013. Lipid metabolism emerges as a promising 

target for malignant glioma therapy. CNS Oncology, 2(3), pp.289–299. 

Available at: http://www.futuremedicine.com/doi/abs/10.2217/cns.13.20 

[Accessed June 1, 2016]. 

Guo, W. & Giancotti, F.G., 2004. Integrin signalling during tumour progression. 

Nature Reviews Molecular Cell Biology, 5(10), pp.816–826. Available at: 

http://www.nature.com/doifinder/10.1038/nrm1490 [Accessed August 18, 

2016]. 

Guttman, M. et al., 2009. Chromatin signature reveals over a thousand highly 

conserved large non-coding RNAs in mammals. Nature, 458(7235), pp.223–

227. 

Guttman, M. et al., 2013. Ribosome profiling provides evidence that large 

noncoding RNAs do not encode proteins. Cell, 154(1), pp.240–51. Available at: 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3756563&tool=p

mcentrez&rendertype=abstract [Accessed May 27, 2014]. 

Guydosh, N.R. & Green, R., 2014. Dom34 rescues ribosomes in 3’ untranslated 

regions. Cell, 156(5), pp.950–962. 

Hafner, C. et al., 2012. Activation of the PI3K/AKT Pathway in Merkel Cell Carcinoma 

K. Smalley, ed. PLoS ONE, 7(2), p.e31255. Available at: 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281946/. 

Hafner, M. et al., 2011. RNA-ligase-dependent biases in miRNA representation in 



33 
 

deep-sequenced small RNA cDNA libraries. RNA, 17(9), pp.1697–1712. 

Hanahan, D. et al., 1996. Patterns and emerging mechanisms of the angiogenic 

switch during tumorigenesis. Cell, 86(3), pp.353–64. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/8756718 [Accessed July 27, 2016]. 

Hanahan, D. & Weinberg, R.A., 2011. Hallmarks of cancer: the next generation. Cell, 

144(5), pp.646–674. 

Hemmings, B.A. & Restuccia, D.F., 2012. PI3K-PKB/Akt Pathway. Cold Spring Harbor 

Perspectives in Biology, 4(9), pp.a011189–a011189. Available at: 

http://cshperspectives.cshlp.org/lookup/doi/10.1101/cshperspect.a011189 

[Accessed August 21, 2016]. 

Hendrickson, D.G. et al., 2009. Concordant Regulation of Translation and mRNA 

Abundance for Hundreds of Targets of a Human microRNA P. D. Zamore, ed. 

PLoS Biology, 7(11), p.e1000238. 

Hollander, M.C., Blumenthal, G.M. & Dennis, P.A., 2011. PTEN loss in the continuum 

of common cancers, rare syndromes and mouse models. Nature reviews. 

Cancer, 11(4), pp.289–301. 

Holmes, D., 2011. PI3K pathway inhibitors approach junction. Nat Rev Drug Discov, 

10(8), pp.563–564. Available at: http://dx.doi.org/10.1038/nrd3527. 

Huang, J. & Manning, B.D., 2009. A complex interplay between Akt, TSC2 and the 

two mTOR complexes. Biochemical Society transactions, 37(Pt 1), pp.217–222. 

Huang, W.-C. et al., 2012. Activation of Androgen Receptor, Lipogenesis, and 

Oxidative Stress Converged by SREBP-1 Is Responsible for Regulating Growth 

and Progression of Prostate Cancer Cells. Molecular Cancer Research, 10(1), 

pp.133–142. Available at: http://mcr.aacrjournals.org/cgi/doi/10.1158/1541-

7786.MCR-11-0206 [Accessed June 1, 2016]. 

Ingolia, N.T. et al., 2009. Genome-Wide Analysis in Vivo of Translation with 

Nucleotide Resolution Using Ribosome Profiling. , 324(April), pp.218–223. 

Ingolia, N.T., 2014. Ribosome profiling: new views of translation, from single codons 

to genome scale. Nat Rev Genet, 15(3), pp.205–213. 

Ingolia, N.T. et al., 2014. Ribosome profiling reveals pervasive translation outside of 

annotated protein-coding genes. Cell reports, 8(5), pp.1365–1379. 

Ingolia, N.T. et al., 2012. The ribosome profiling strategy for monitoring translation 



34 
 

in vivo by deep sequencing of ribosome-protected mRNA fragments. 

Ingolia, N.T., Lareau, L.F. & Weissman, J.S., 2011. Ribosome profiling of mouse 

embryonic stem cells reveals the complexity and dynamics of mammalian 

proteomes. Cell, 147(4), pp.789–802. 

Insall, R.H. & Weiner, O.D., 2001. PIP3, PIP2, and cell movement--similar messages, 

different meanings? Developmental cell, 1(6), pp.743–7. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/11740936 [Accessed August 17, 2016]. 

Jacinto, E. et al., 2004. Mammalian TOR complex 2 controls the actin cytoskeleton 

and is rapamycin insensitive. Nature cell biology, 6(11), pp.1122–8. Available 

at: http://www.ncbi.nlm.nih.gov/pubmed/15467718 [Accessed August 22, 

2016]. 

Jacinto, E. et al., 2006. SIN1/MIP1 maintains rictor-mTOR complex integrity and 

regulates Akt phosphorylation and substrate specificity. Cell, 127(1), pp.125–

37. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16962653 [Accessed 

August 22, 2016]. 

Jayaprakash, A.D. et al., 2011. Identification and remediation of biases in the 

activity of RNA ligases in small-RNA deep sequencing. Nucleic acids research, 

39(21), p.e141. 

Johannes, G. et al., 1999. Identification of eukaryotic mRNAs that are translated at 

reduced cap binding complex eIF4F concentrations using a cDNA microarray. 

Proceedings of the National Academy of Sciences of the United States of 

America, 96(23), pp.13118–13123. 

Joyce, J.A. & Pollard, J.W., 2009. Microenvironmental regulation of metastasis. 

Nature reviews. Cancer, 9(4), pp.239–52. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/19279573 [Accessed July 28, 2016]. 

Katso, R. et al., 2001. Cellular function of phosphoinositide 3-kinases: implications 

for development, homeostasis, and cancer. Annual review of cell and 

developmental biology, 17, pp.615–75. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/11687500 [Accessed August 18, 2016]. 

Kiely, M. & Kiely, P.A., 2015. PP2A: The Wolf in Sheep’s Clothing? Cancers, 7(2), 

pp.648–69. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25867001 

[Accessed August 17, 2016]. 



35 
 

Kim, J.E. & Chen, J., 2004. regulation of peroxisome proliferator-activated receptor-

gamma activity by mammalian target of rapamycin and amino acids in 

adipogenesis. Diabetes, 53(11), pp.2748–56. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/15504954 [Accessed August 22, 2016]. 

Laplante, M. & Sabatini, D.M., 2009. mTOR signaling at a glance. J Cell Sci, 122(Pt 

20), pp.3589–3594. Available at: 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&

dopt=Citation&list_uids=19812304 [Accessed August 22, 2016]. 

Laplante, M. & Sabatini, D.M., 2012. mTOR signaling in growth control and disease. 

Cell, 149(2), pp.274–293. Available at: 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3331679/. 

Lawlor, M.A. & Alessi, D.R., 2001. PKB/Akt. Journal of Cell Science, 114(16), 

pp.2903–2910. 

Levin, J.Z. et al., 2010. Comprehensive comparative analysis of strand-specific RNA 

sequencing methods. Nature Methods, 7(9), pp.709–715. Available at: 

http://www.nature.com/doifinder/10.1038/nmeth.1491 [Accessed June 2, 

2016]. 

Li, G.-W., Oh, E. & Weissman, J.S., 2012. The anti-Shine-Dalgarno sequence drives 

translational pausing and codon choice in bacteria. Nature, 484(7395), pp.538–

541. 

Li, J. et al., 1997. PTEN, a putative protein tyrosine phosphatase gene mutated in 

human brain, breast, and prostate cancer. Science (New York, N.Y.), 275(5308), 

pp.1943–1947. 

Li, W. et al., 2012. Repression of endometrial tumor growth by targeting SREBP1 

and lipogenesis. Cell Cycle, 11(12), pp.2348–2358. Available at: 

http://www.tandfonline.com/doi/abs/10.4161/cc.20811 [Accessed June 1, 

2016]. 

Li, Y. et al., 2008. Regulation of Akt/FOXO3a/GSK-3beta/AR signaling network by 

isoflavone in prostate cancer cells. The Journal of biological chemistry, 283(41), 

pp.27707–16. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18687691 

[Accessed August 21, 2016]. 

Lowe, S.W., Cepero, E. & Evan, G., 2004. Intrinsic tumour suppression. Nature, 



36 
 

432(7015), pp.307–315. Available at: 

http://www.nature.com/doifinder/10.1038/nature03098 [Accessed July 28, 

2016]. 

Makarov, S.S. & Romashkova, J.A., 1999. NF-|[kappa]|B is a target of AKT in anti-

apoptotic PDGF signalling. Nature, 401(6748), pp.86–90. Available at: 

http://www.nature.com/doifinder/10.1038/43474 [Accessed August 21, 

2016]. 

Mantovani, A., 2010. Molecular pathways linking inflammation and cancer. Current 

molecular medicine, 10(4), pp.369–73. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/20455855 [Accessed July 28, 2016]. 

Mardilovich, K. et al., 2009. Expression and function of the insulin receptor 

substrate proteins in cancer. Cell Communication and Signaling, 7(1), p.14. 

Available at: http://biosignaling.biomedcentral.com/articles/10.1186/1478-

811X-7-14 [Accessed August 16, 2016]. 

Mayer, C. et al., 2004. mTOR-dependent activation of the transcription factor TIF-IA 

links rRNA synthesis to nutrient availability. Genes & development, 18(4), 

pp.423–34. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15004009 

[Accessed August 22, 2016]. 

Mclaughlin, S. et al., 2002. PIP 2 AND PROTEINS: Interactions, Organization, and 

Information Flow. Annu. Rev. Biophys. Biomol. Struct, 31, pp.151–75. 

Meador, J. & Kennell, D., 1990. Cloning and sequencing the gene encoding 

Escherichia coli ribonuclease I: exact physical mapping using the genome 

library. Gene, 95(1), pp.1–7. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/2253883 [Accessed June 1, 2016]. 

Meric-Bernstam, F. & Gonzalez-Angulo, A.M., 2009. Targeting the mTOR signaling 

network for cancer therapy. Journal of clinical oncology : official journal of the 

American Society of Clinical Oncology, 27(13), pp.2278–2287. 

Meyer, L.R. et al., 2013. The UCSC Genome Browser database: extensions and 

updates 2013. Nucleic acids research, 41(Database issue), pp.D64-9. Available 

at: http://www.ncbi.nlm.nih.gov/pubmed/23155063 [Accessed June 3, 2016]. 

Michel, A.M. et al., 2014. GWIPS-viz: development of a ribo-seq genome browser. 

Nucleic Acids Res, 42. Available at: http://dx.doi.org/10.1093/nar/gkt1035. 



37 
 

Michel, A.M. et al., 2012. Observation of dually decoded regions of the human 

genome using ribosome profiling data. Genome Research , 22(11), pp.2219–

2229. Available at: http://genome.cshlp.org/content/22/11/2219.abstract. 

Namy, O. et al., 2004. Reprogrammed genetic decoding in cellular gene expression. 

Molecular cell, 13(2), pp.157–168. 

Nardi, V. et al., 2012. Activation of PI3K signaling in Merkel cell carcinoma. Clinical 

cancer research : an official journal of the American Association for Cancer 

Research, 18(5), pp.1227–1236. 

Negrini, S., Gorgoulis, V.G. & Halazonetis, T.D., 2010. Genomic instability--an 

evolving hallmark of cancer. Nature reviews. Molecular cell biology, 11(3), 

pp.220–8. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20177397 

[Accessed July 27, 2016]. 

Nelson, B.H., 2008. The impact of T-cell immunity on ovarian cancer outcomes. 

Immunological Reviews, 222(1), pp.101–116. Available at: 

http://doi.wiley.com/10.1111/j.1600-065X.2008.00614.x [Accessed July 28, 

2016]. 

Okkenhaug, K. & Vanhaesebroeck, B., 2003. PI3K in lymphocyte development, 

differentiation and activation. Nature Reviews Immunology, 3(4), pp.317–330. 

Available at: http://www.nature.com/doifinder/10.1038/nri1056 [Accessed 

August 18, 2016]. 

Parker, P.J. & Waterfield, M.D., 1992. Phosphatidylinositol 3-kinase: a novel 

effector. Cell growth & differentiation : the molecular biology journal of the 

American Association for Cancer Research, 3(10), pp.747–752. 

Paulson, K.G. et al., 2009. Array-CGH reveals recurrent genomic changes in Merkel 

cell carcinoma including amplification of L-Myc. The Journal of investigative 

dermatology, 129(6), pp.1547–1555. 

Pearce, L.R. et al., 2007. Identification of Protor as a novel Rictor-binding 

component of mTOR complex-2. The Biochemical journal, 405(3), pp.513–22. 

Available at: http://www.ncbi.nlm.nih.gov/pubmed/17461779 [Accessed 

August 22, 2016]. 

Peterson, T.R. et al., 2009. DEPTOR is an mTOR inhibitor frequently overexpressed 

in multiple myeloma cells and required for their survival. Cell, 137(5), pp.873–



38 
 

86. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19446321 [Accessed 

August 22, 2016]. 

Porstmann, T. et al., 2008. SREBP activity is regulated by mTORC1 and contributes 

to Akt-dependent cell growth. Cell metabolism, 8(3), pp.224–36. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/18762023 [Accessed August 22, 2016]. 

Qiu, W. et al., 2006. PIK3CA Mutations in Head and Neck Squamous Cell Carcinoma. 

Clinical Cancer Research , 12(5), pp.1441–1446. Available at: 

http://clincancerres.aacrjournals.org/content/12/5/1441.abstract. 

Richter, J.D. & Sonenberg, N., 2005. Regulation of cap-dependent translation by 

eIF4E inhibitory proteins. , pp.477–480. 

Rodriguez-Viciana, P. et al., 1994. Phosphatidylinositol-3-OH kinase as a direct 

target of Ras. Nature, 370(6490), pp.527–532. 

Ruderman, N.B. et al., 1990. Activation of phosphatidylinositol 3-kinase by insulin. 

Proceedings of the National Academy of Sciences of the United States of 

America, 87(4), pp.1411–1415. 

Ryerson, A.B. et al., 2016. Annual Report to the Nation on the Status of Cancer, 

1975-2012, featuring the increasing incidence of liver cancer. Cancer, 122(9), 

pp.1312–1337. 

Salk, J.J., Fox, E.J. & Loeb, L.A., 2010. Mutational heterogeneity in human cancers: 

origin and consequences. Annual review of pathology, 5, pp.51–75. Available 

at: http://www.ncbi.nlm.nih.gov/pubmed/19743960 [Accessed July 27, 2016]. 

Sarbassov, D.D. et al., 2006. Prolonged rapamycin treatment inhibits mTORC2 

assembly and Akt/PKB. Molecular cell, 22(2), pp.159–168. 

Sarbassov, D.D., Ali, S.M. & Sabatini, D.M., 2005. Growing roles for the mTOR 

pathway. Current opinion in cell biology, 17(6), pp.596–603. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/16226444 [Accessed August 22, 2016]. 

Schenone, S. et al., 2011. ATP-competitive inhibitors of mTOR: an update. Current 

medicinal chemistry, 18(20), pp.2995–3014. 

Schieke, S.M. et al., 2006. The mammalian target of rapamycin (mTOR) pathway 

regulates mitochondrial oxygen consumption and oxidative capacity. The 

Journal of biological chemistry, 281(37), pp.27643–52. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/16847060 [Accessed August 22, 2016]. 



39 
 

Schwaid, A.G. et al., 2013. Chemoproteomic Discovery of Cysteine-Containing 

Human Short Open Reading Frames. Journal of the American Chemical Society, 

135(45), pp.16750–16753. 

Shagin, D.A. et al., 2002. A novel method for SNP detection using a new duplex-

specific nuclease from crab hepatopancreas. Genome research, 12(12), 

pp.1935–1942. 

Sharma, S., Kelly, T.K. & Jones, P.A., 2010. Epigenetics in cancer. Carcinogenesis, 

31(1), pp.27–36. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/19752007 [Accessed July 25, 2016]. 

Shay, J.W. & Wright, W.E., 2000. Hayflick, his limit, and cellular ageing. Nature 

reviews. Molecular cell biology, 1(1), pp.72–6. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/11413492 [Accessed July 29, 2016]. 

Shields, J.D. et al., 2010. Induction of lymphoidlike stroma and immune escape by 

tumors that express the chemokine CCL21. Science (New York, N.Y.), 

328(5979), pp.749–52. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/20339029 [Accessed July 28, 2016]. 

Shor, B. et al., 2008. A new pharmacologic action of CCI-779 involves FKBP12-

independent inhibition of mTOR kinase activity and profound repression of 

global protein synthesis. Cancer research, 68(8), pp.2934–2943. 

Slavoff, S.A. et al., 2013. Peptidomic discovery of short open reading frame-

encoded peptides in human cells. Nature chemical biology, 9(1), pp.59–64. 

Stambolic, V. et al., 1998. Negative regulation of PKB/Akt-dependent cell survival by 

the tumor suppressor PTEN. Cell, 95(1), pp.29–39. 

Starck, S.R. et al., 2012. Leucine-tRNA Initiates at CUG Start Codons for Protein 

Synthesis and Presentation by MHC Class I. Science, 336(6089), pp.1719–1723. 

Steck, P.A. et al., 1997. Identification of a candidate tumour suppressor gene, 

MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced 

cancers. Nature genetics, 15(4), pp.356–362. 

Steitz, J.A., 1969. Polypeptide Chain Initiation: Nucleotide Sequences of the Threee 

Ribosomal Binding Sites in Bacteriophage R17 RNA. Nature, 224(5223), 

pp.957–964. 

Stern-Ginossar, N. et al., 2012. Decoding Human Cytomegalovirus. Science , 



40 
 

338(6110), pp.1088–1093. 

Stratton, M.R., Campbell, P.J. & Futreal, P.A., 2009. The cancer genome. Nature, 

458(7239), pp.719–724. 

Strauss, D.C. et al., 2010. Transmission of donor melanoma by organ 

transplantation. The Lancet. Oncology, 11(8), pp.790–6. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/20451456 [Accessed July 28, 2016]. 

Sun, Y. et al., 2015. SREBP1 regulates tumorigenesis and prognosis of pancreatic 

cancer through targeting lipid metabolism. Tumor Biology, 36(6), pp.4133–

4141. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25589463 [Accessed 

June 1, 2016]. 

Thong, F.S.L., Bilan, P.J. & Klip, A., 2007. The Rab GTPase-activating protein AS160 

integrates Akt, protein kinase C, and AMP-activated protein kinase signals 

regulating GLUT4 traffic. Diabetes, 56(2), pp.414–23. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/17259386 [Accessed August 21, 2016]. 

Vanhaesebroeck, B. et al., 2010. The emerging mechanisms of isoform-specific PI3K 

signalling. Nature Reviews Molecular Cell Biology, 11(5), pp.329–341. Available 

at: http://www.nature.com/doifinder/10.1038/nrm2882 [Accessed August 20, 

2016]. 

Vivanco, I. & Sawyers, C.L., 2002. The phosphatidylinositol 3-Kinase AKT pathway in 

human cancer. Nature reviews. Cancer, 2(7), pp.489–501. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/12094235 [Accessed August 17, 2016]. 

Vogel, C. & Marcotte, E.M., 2012. Insights into the regulation of protein abundance 

from proteomic and transcriptomic analyses. Nature reviews. Genetics, 13(4), 

pp.227–232. 

Wang, Z., Gerstein, M. & Snyder, M., 2009. RNA-Seq: a revolutionary tool for 

transcriptomics. Nature reviews. Genetics, 10(1), pp.57–63. 

Warburg, O., 1956. Injuring of Respiration the Origin of Cancer Cells. Science, 

123(3191), pp.309–14. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/13298683 [Accessed July 27, 2016]. 

Warburg, O., 1956. On Respiratory Impairment in Cancer Cells. Science, 124(3215), 

pp.269–70. Available at: http://www.ncbi.nlm.nih.gov/pubmed/13351639 

[Accessed July 27, 2016]. 



41 
 

Weiss, R.B. & Atkins, J.F., 2011. Translation Goes Global. Science , 334(6062), 

pp.1509–1510. 

Wolin, S.L. & Walter, P., 1988. Ribosome pausing and stacking during translation of 

a eukaryotic mRNA. The EMBO Journal, 7(11), pp.3559–3569. 

Woolstenhulme, C.J. et al., 2015. High-precision analysis of translational pausing by 

ribosome profiling in bacteria lacking EFP. Cell reports, 11(1), pp.13–21. 

Wu, X. et al., 1998. The PTEN/MMAC1 tumor suppressor phosphatase functions as 

a negative regulator of  the phosphoinositide 3-kinase/Akt pathway. 

Proceedings of the National Academy of Sciences of the United States of 

America, 95(26), pp.15587–15591. 

Yang, L. et al., 2010. TGF-beta and immune cells: an important regulatory axis in the 

tumor microenvironment and progression. Trends in immunology, 31(6), 

pp.220–7. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20538542 

[Accessed July 28, 2016]. 

Yang, Q. et al., 2006. Identification of Sin1 as an essential TORC2 component 

required for complex formation and kinase activity. Genes & development, 

20(20), pp.2820–32. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/17043309 [Accessed August 22, 2016]. 

Yarden, Y. & Ullrich, A., 1988. Growth factor receptor tyrosine kinases. Annual 

review of biochemistry, 57, pp.443–78. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/3052279 [Accessed August 22, 2016]. 

Yuan, T.L. & Cantley, L.C., 2008. PI3K pathway alterations in cancer: variations on a 

theme. Oncogene, 27(41), pp.5497–5510. Available at: 

http://www.nature.com/doifinder/10.1038/onc.2008.245 [Accessed July 29, 

2016]. 

Zhang, H. et al., 2007. PDGFRs are critical for PI3K/Akt activation and negatively 

regulated by mTOR. The Journal of clinical investigation, 117(3), pp.730–8. 

Available at: http://www.ncbi.nlm.nih.gov/pubmed/17290308 [Accessed 

August 17, 2016]. 

Zhou, B.P. & Hung, M.-C., 2002. Novel targets of Akt, p21(Cipl/WAF1), and MDM2. 

Seminars in oncology, 29(3 Suppl 11), pp.62–70. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/12138399 [Accessed August 21, 2016]. 



42 
 

Zhou, H. et al., 2000. Akt Regulates Cell Survival and Apoptosis at a 

Postmitochondrial Level. The Journal of Cell Biology, 151(3), pp.483–494. 

Available at: http://www.jcb.org/cgi/content/full/151/3/483 [Accessed August 

21, 2016]. 

Zhulidov, P.A. et al., 2004. Simple cDNA normalization using kamchatka crab 

duplex-specific nuclease. Nucleic acids research, 32(3), p.e37. 

Zoncu, R., Efeyan, A. & Sabatini, D.M., 2011. mTOR: from growth signal integration 

to cancer, diabetes and ageing. Nat Rev Mol Cell Biol, 12(1), pp.21–35. 

Zong, Q. et al., 1999. Messenger RNA translation state: the second dimension of 

high-throughput expression screening. Proceedings of the National Academy of 

Sciences of the United States of America, 96(19), pp.10632–10636. 

 

 

  



43 
 

 

 

 

 

 

 

 

 

 

2 Systematic analysis of the PTEN 5’ leader identifies a major AUU 

initiated proteoform 
 

 

Gary Loughran generated Figure 2.3.1b, 2.3.3b, 2.3.4a, 2.3.5a, 2.3.5c and 
Supplementary Figures 5, 7, 8, 10, 11 
Ivaylo P. Ivanov generated Figure2.3.1a and Supplementary Figure 1 
Pavel V. Baranov generated Supplementary Figure 2 
Ruslan I. Dmitriev and Ioanna Tzani generated Supplementary Figure 4 
 
Ioanna Tzani generated all the other figures of this chapter 

 

This chapter has been published in Open Biology 

http://rsob.royalsocietypublishing.org/content/6/5/150203 

  



44 
 

Abstract 

Abundant evidence for translation within the 5’ leaders of many human genes is 

rapidly emerging, especially, because of the advent of ribosome profiling. In most 

cases, it is believed that the act of translation rather than the encoded peptide is 

important. However, the wealth of available sequencing data in recent years allows 

phylogenetic detection of sequences within 5’ leaders that have emerged under 

coding constraint and therefore allow for the prediction of functional 5’ leader 

translation. Using this approach, we previously predicted a CUG-initiated, 173 

amino acid N-terminal extension to the human tumour suppressor PTEN. Here, a 

systematic experimental analysis of translation events in the PTEN 5’ leader 

identifies at least two additional non-AUG-initiated PTEN proteoforms that are 

expressed in most human cell-lines tested. The most abundant extended PTEN 

proteoform initiates at a conserved AUU codon and extends the canonical AUG-

initiated PTEN by 146 amino acids. All N-terminally extended PTEN proteoforms 

tested retain the ability to downregulate the PI3K pathway. We also provide 

evidence for the translation of two conserved AUG-initiated upstream open reading 

frames within the PTEN 5’ leader that control the ratio of PTEN proteoforms. 
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2.1  Introduction 

The process of translation can be described in four steps: initiation, which is usually 

tightly regulated; elongation; termination and ribosome recycling (Sonenberg & 

Hinnebusch 2009). In eukaryotes, the scanning model for translation initiation 

postulates that the small ribosomal subunit, in complex with initiation factors and 

Met-tRNAi, binds first to the 5’ cap then scans 3’ until a suitable initiation codon is 

found (Kozak 1980). Base-pairing interactions between the anticodon loop of the 

Met-tRNAi bound to the ribosome and an AUG codon in the mRNA cause the 

ribosome to stop scanning and set the reading frame for protein synthesis (Cigan et 

al. 1988). Typically, the ribosome initiates protein synthesis at the AUG codon 

closest to the 5’ end of the mRNA, though the efficiency of initiation is dependent 

on the nucleotide sequence surrounding the initiator codon with the optimal 

sequence known as the Kozak context (Kozak 1999). The Kozak context—

comprising 6 nt before and 1 nt immediately following a potential initiation 

codon—has significant influence on the recognition of an initiation site, through 

partially understood mechanisms requiring the activities of eIF1 (Mitchell & Lorsch 

2008; Richard J Jackson et al. 2010; Llácer et al. 2015; Hussain et al. 2014) and eIF5 

(Nanda et al. 2009; Valásek et al. 2001; Hinnebusch 2014). Using multiple sequence 

alignments, the consensus context in mammals was identified as GCCRCCAUGG 

(Kozak 1987) with the identity of the underlined nucleotides in the -3 and +4 

positions (relative to the ‘A’ of the AUG) being the most important. However, a 

recent high-throughput analysis of all possible initiation contexts revealed 

RYMRMVAUGGC as the optimal context in human and mouse cells and additionally 

revealed synergistic effects of neighbouring nucleotides (Noderer et al. 2014). 

 Initiation can occur at most codons that differ from AUG by a single 

nucleotide (non-cognate or non-AUG). Seven out of the nine possible single-

nucleotide substitutions at the AUG start codon of dihydrofolate reductase were 

functional as translation start sites in mammalian cells (Peabody 1989). In all of the 

cases in which it was examined, the N-terminal residue of these proteins was 

methionine (Peabody 1989), suggesting that translation initiation relied on mis-

pairing between the anticodon of Met-tRNAi and the non-AUG start codon in the 
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mRNA. However, a report exists of CUG initiation by elongator Leu-tRNA 

functioning as initiator tRNA (Starck et al. 2012). 

Initiation is the only step where an incoming aminoacyl tRNA is bound 

directly in the ribosomal P-site (Ramakrishnan 2002; Simonetti et al. 2008). Unlike 

the A-site, where mRNA : tRNA interactions are strictly monitored by the decoding 

centre (Ogle et al. 2001), the P-site can tolerate mismatches in the codon : 

anticodon duplex (Potapov et al. 1995; Baranov et al. 2004; Svidritskiy & Korostelev 

2015; Herr et al. 2004). This allows the incorporation of Met-tRNAi at a wider range 

of codons compared with elongator Met-tRNA whose incorporation is strictly 

limited to AUG codons. The most favourable context for non-AUG initiation is 

believed to be identical to that for AUG starts (Chen et al. 2008; Kozak 1989; Portis 

et al. 1994). In addition, a strong RNA secondary structure starting approximately 

15 nt downstream of the non-AUG codon may significantly increase initiation 

efficiency (Kozak 1990). Another important factor for non-AUG initiation is that it is 

located upstream of the most 5’ AUG codon (Audrey M Michel et al. 2014). 

When initiation codons occur in the 5’ leaders of transcripts they give rise to 

either N-terminal extensions to the main ORF or else upstream open reading 

frames (uORFs). It has been estimated that AUG-initiated uORFs are present in 

approximately half of the human protein coding genes (Calvo et al. 2009). 

Furthermore, ribosome profiling provided evidence for the presence of translating 

ribosomes on more than 200 non-AUG-initiated uORFs in yeast (Ingolia et al. 2009) 

and much more widespread non-AUG initiation in mammals (Ingolia et al. 2011; Lee 

et al. 2012; Fritsch et al. 2012). In general, the translation of uORFs has an inhibitory 

effect on translation of the main protein coding ORF, because ribosomes 

terminating a uORF are often unable to reinitiate owing to the loss of necessary 

initiation factors. However, the 40S subunits of ribosomes translating short ORFs 

(less than 35 codons) may retain some initiation factors after termination (Kozak 

1999; Rajkowitsch et al. 2004)—although efficient re-initiation is precluded until all 

necessary initiation factors have been reloaded onto the 40S subunit. In most 

instances, there is a requirement for a ternary complex of eIF2, GTP and Met-tRNAi 

which is regulated by the phosphorylation status of eIF2α (Hinnebusch 2005). 
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An earlier finding that sequences in the 5’ leaders are highly conserved and 

that the level of conservation globally increases towards the leader/main ORF 

boundaries (Shabalina et al. 2004) suggests that this conservation could be due, in 

part, to the 3’ ends of a portion of 5’ leaders encoding N-terminal extensions to the 

annotated AUG-initiated proteins. In total, more than 60 instances of non-AUG-

initiated N-terminal extensions have been predicted or verified experimentally in 

mammals (Tikole & Sankararamakrishnan 2006; Ivanov et al. 2011; Damme et al. 

2014). In most cases, the non-AUG initiation provides an alternative longer 

proteoform in addition to a proteoform resulting from initiation at a standard AUG 

codon downstream via a process termed ‘leaky scanning’. Where alternative 

proteoforms are produced as a result of leaky scanning, the longer isoform 

frequently contains a signal for subcellular localization that is absent in the shorter 

form (Arnaud et al. 1999; Tee & Jaffe 2001; Packham et al. 1997; Hann et al. 1988; 

Coldwell et al. 2004). 

Previously, we performed a systematic analysis of the 5’ leaders of human 

GenBank RefSeq mRNAs to investigate the extent of non-AUG initiation in humans 

(Ivanov et al. 2011). This involved analysis of codon substitution rates in pairwise 

alignments of human and mice orthologous sequences to identify regions of 5’ 

leaders evolving under the constraints of protein coding evolution. When a region 

within a 5’ leader evolves under such constraints, it is very likely that the encoded 

protein can improve an organism’s fitness and is thus functional. This approach 

predicts a CUG-initiated, 173 amino acid, N-terminal extension within the 5’ leader 

of phosphatase and tensin homologue on chromosome ten (PTEN). PTEN is a 

powerful tumour suppressor gene that encodes a dual-specificity phosphatase (Li et 

al. 1997; Steck et al. 1997) frequently mutated in human cancers (Stambolic et al. 

2000) and autism spectrum disorders (Varga et al. 2009). Its best characterized 

function is its ability to negatively regulate cell survival by dephosphorylating 

phosphatidylinositol 3,4,5 triphosphate (PIP3) and thus inhibiting phosphoinositide 

3-kinase (PI3K) signalling (Maehama & Dixon 1998).  

Independently, two other groups subsequently identified the same PTEN N-

terminal extension (Hopkins et al. 2013; Liang et al. 2014). Here we extended our 
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analysis of the PTEN 5’ leader and identify non-AUG-initiated translation that leads 

to the synthesis of at least two additional N-terminally extended proteoforms.  
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2.2 Material and methods  

2.2.1 Plasmids  

The PTEN 5’ leader was amplified by PCR from HEK-293T genomic DNA using 

appropriate primers (Integrated DNA Technologies) that incorporated a 5’ HindIII 

restriction site and a 30 BamHI restriction site. PTEN 5’ leaders were mutated by 

two-step PCR with appropriately designed primers. Amplicons were cloned 

HindIII/BamHI into the dual luciferase plasmid p2-Luc (Grentzmann et al. 1998) such 

that the PTEN 5’ leader replaced the Renilla-encoding sequences and were fused 

directly to the firefly-encoding sequences. The coding sequence of PTEN was 

obtained as a gblock (Integrated DNA Technologies) with incorporated 5’ HindIII 

and a 3’ XbaI restriction site and cloned into phRL-CMV (Promega). The coding 

sequence of PTEN was also subcloned downstream of the PTEN 5’ leader to replace 

the firefly encoding sequence of the PTEN 5’ leader-FLuc constructs made 

previously.  

For PTEN 5’ leader GFP fusions, EGFP was digested from pEGFP-N3 

(Clontech) with BamHI and XbaI restriction enzymes and cloned BamHI/XbaI using 

standard cloning techniques into the PTEN 5’ leader firefly-encoding plasmids 

described above, such that the EGFP sequence replaced the firefly-encoding 

sequences and were fused directly to the PTEN 5’ leader. The EGFP AUG to AAA 

mutation was made by two-step PCR with appropriately designed primers. For 

signal peptide –Gaussia luciferase fusions, amplicons generated by two-step PCR 

were cloned BamHI/XbaI into pCMV-GLuc (NEB). All clones were verified by 

sequencing. eIF1 and eIF5 overexpression constructs were described previously 

(Ivanov et al. 2010; Loughran et al. 2012). 

 

2.2.2 Cell culture  

HEK-293T, MDA-MB-231, MCF-7, HeLa, HUH-7, U2OS and A172 cells were 

maintained in DMEM supplemented with 10% FBS, 1 mM L-glutamine and 

antibiotics. PC3 cells were maintained in RPMI supplemented with 10% FBS, 1 mM 

L-glutamine and antibiotics. 
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2.2.3 Luciferase assay  

HEK-293T cells were transfected with Lipofectamine 2000 reagent (Invitrogen), 

using the 1 day protocol (reverse transfection) in which suspended cells are added 

directly to the DNA complexes in full-area 96-well plates. For each transfection, the 

following were added to each well: 100 ng of each firefly luciferase-expressing 

plasmid, 10 ng of each Renilla luciferase-expressing plasmid plus 0.4 μl 

Lipofectamine 2000 (Invitrogen) in 48.4 μl Opti-Mem (Gibco). The transfecting DNA 

complexes in each well were incubated with 4x104 cells suspended in 50 μl DMEM 

(RPMI for PC3 cells) plus 10% FBS. Transfected cells were incubated at 37ᵒC in 5% 

CO2 for 24 h. On the next day, cells were washed once with 1 x PBS and then lysed 

in 25 μl of 1 x passive lysis buffer (PLB; Promega) and firefly and Renilla luciferase 

activities were determined using the Dual Luciferase Stop & Glow Reporter Assay 

System (Promega). Relative light units were measured on a Veritas Microplate 

Luminometer with two injectors (Turner Biosystems).  

Firefly luciferase activity was calculated relative to the activity of the co-

transfected control plasmid expressing Renilla luciferase (pSV40-Renilla). All data 

points were averaged, and the standard deviation calculated. Data represent the 

mean and standard deviation of at least three independent experiments each done 

in quadruplicate.  

For secretion luciferase assays (see figure 2.3.5c), only Gaussia luciferase 

activities were assayed and the percentage activity in both the cell lysate 

(intracellular) and culture media (extracellular) calculated. For sodium arsenite 

treatment, HEK-293T cells were transfected as above, and sodium arsenite (5 mM) 

was added 6 h post-transfection for either 2 or 4 h.  

 

2.2.4 Immunoblotting  

Cells were transfected in six-well plates using Lipofectamine 2000 reagent, again 

using the 1 day protocol described above, with 1 μg of each indicated plasmid. 

Where FLuc- and RLuc-expressing plasmids were cotransfected (see figure 2.3.6b 

and supplementary material, figure S10b) a ratio of 10 : 1 was used. The 

transfecting DNA complexes in each well were incubated with 0.8 x 106 HEK-293T 

cells suspended in 3 ml DMEM plus 10% FBS and incubated overnight at 37ᵒC in 5% 
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CO2. Transfected cells were lysed in 100 μl 1 x PLB and 10 μl removed for dual 

luciferase assay.  

For PC3 transfections, 1.2 x 105 cells were plated in triplicate wells (12-well 

plates) 1 day prior to forward transfection with Lipofectamine 2000 reagent (4 μl) 

and 500 ng of each indicated plasmid in 500 μl of Opti-Mem. Cells were replenished 

with fresh RPMI media 6 h post-transfection, then after 18 h, cells were washed and 

treated with serum free RPMI for a further 24 h. Transfected cells were lysed in 

radioimmunoprecipitation assay (RIPA) buffer plus protease inhibitors (Sigma) and 

NaF (20 mM).  

Proteins were resolved by 4–12% gradient Bis/Tris–SDS/ PAGE (BoltTM: 

Thermo Fisher Scientific) under constant voltage (165 V) for 90 min and transferred 

to nitrocellulose membranes (Protran), which were incubated at 48ᵒC overnight 

with primary antibodies. Immunoreactive bands were detected on membranes 

after incubation with appropriate fluorescently labelled secondary antibody using a 

LI-COR Odyssey® Infrared Imaging Scanner. Densitometry analysis was performed 

using IMAGEJ software (NIH) and GraphPad PRISM used for statistical analysis.  

 

2.2.5 Immunoprecipitation and GFP-trap® 

Cells were lysed in RIPA buffer plus protease inhibitors (Sigma), then lysates were 

incubated with 25 μl of protein G agarose beads (Pierce) plus anti-PTEN (138G6) 

overnight at 48ᵒC with gentle rocking. The beads were washed (three times) with 

ice-cold RIPA buffer and then immunoprecipitated proteins removed from the 

beads by boiling for 5 min. in 20 μl of 2 x SDS–PAGE sample buffer for 

electrophoresis and immunoblotting.  

GFP-trap®_A beads (ChromoTek) were equilibrated according to the 

manufacturer’s protocol. For collection of the extracellular fractions, culture 

medium was centrifuged at 200g for 5 min at 4ᵒC to remove debris. For intracellular 

fractions, cells were lysed in RIPA buffer as above. 10 μl of equilibrated beads were 

added to each fraction and incubated rotating at 48ᵒC for 1 h. The beads were 

washed (three times) with ice-cold dilution buffer (10 mM Tris/Cl pH 7.5; 150 mM 

NaCl; 0.5 mM EDTA) and then immunoprecipitated proteins removed from the 
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beads by boiling for 10 min in 40 μl of 2 x SDS–PAGE sample buffer for 

electrophoresis and immunoblotting. 

 

2.2.6  RT-qPCR  

HEK-293T cells were transfected in triplicate wells (six-well plate) as above with 

either construct 1 (wild-type PTEN leader fused to firefly luciferase) or construct 5 

(PTEN leader with all uAUGs mutated to AGG). 24 h post-transfection cells were 

removed (trypsin), divided into two aliquots of 20% and 80% and then collected by 

centrifugation. 20% of cells were resuspended in 20 μl 1 PLB for dual luciferase 

assay. RNA was isolated using Trizol reagent (Invitrogen) from the remaining 80% of 

cells, and 500 ng of DNAse-treated (RQ1: Promega) RNA was reverse transcribed 

using oligo-dT and random hexamers according to the manufacturer’s instructions 

(Superscritpt III: Invitrogen). Reactions minus reverse transcriptase were included 

to control for contaminating genomic or plasmid DNA. SYBR green (Qiagen) qPCR 

was performed on an Applied Biosystems 7300 real-time PCR system with firefly 

luciferase primers (sense TGGAGAGCAACTGCATAAGG and antisense 

ATTCCGCGTACGTGATGTT) and a set of intron-spanning control primers for GAPDH 

(sense AGCCT CCCGCTTCGCTCTCT and antisense CCAGGCGCCCAA TACGACCA). 

Relative RNA quantitation was analyzed using the Livak method (2-ΔΔCt) and used to 

normalize relative luciferase activities to relative RNA levels.  

 

2.2.7 Antibodies  

An affinity-purified rabbit polyclonal antibody (anti-PTEN-L) directed to a predicted 

antigen (PRHQQLLPSLSSFFFSHR LPD) within all four extended PTEN proteoforms 

was prepared by GenScript. The following commercially available antibodies were 

also used. Mouse anti-PTEN (6H2.1; Millipore), rabbit anti-PTEN (138G6: Cell 

Signalling), rabbit anti-GFP (A6455: Novex), goat anti-firefly luciferase (G7451: 

Promega), rabbit anti-S473-phospho-AKT (D9E: Cell Signalling), mouse anti-pan-AKT 

(40D4: Cell Signalling), mouse anti-Renilla luciferase (1D5.2 Millipore), rabbit anti-

eIF5 (ab85913: Abcam) and mouse anti-β-actin (AC-15: Sigma). Anti-eIF1 was a 

generous gift from Ariel Stanhill (Technion-Israel Institute of Technology). 

 



53 
 

2.2.8 Fluorescence microscopy  

Live cell imaging was performed as described before (Dmitriev et al. 2013) using an 

inverted Axiovert 200 fluorescence microscope (Zeiss), equipped with 100/1.4 Plan 

Apochromat oil-immersion objective (Zeiss), pulsed excitation module (470 nm, 590 

nm LEDs), bandpass filters 510–560 nm and gated CCD camera (LaVision, Biotec). 

Briefly, HeLa cells were seeded onto eight well chambers pre-coated with a mixture 

of collagen IV and poly-D-lysine (Ibidi), allowed to attach (24 h) and forward 

transfected for 24 h with plasmid DNAs encoding PTEN leader –GFP fusions as 

indicated. Images were processed using IMSPECTOR software (LaVision, Biotec) and 

combined in Adobe ILLUSTRATOR CS2. 

  



54 
 

2.3 Results  

Previous searches for evolutionarily conserved non-AUG-initiated N-terminal 

extensions in human coding sequences predicted a CUG-initiated, 173 amino acid 

extension to the tumour suppressor PTEN (Ivanov et al. 2011). Further phylogenetic 

analysis of the PTEN 5’ leader with additional sequence data reveals deep 

nucleotide conservation in mammals (figure 2.3.1a and supplementary material, 

figure S1). Two independent groups (Hopkins et al. 2013; Liang et al. 2014) have 

recently provided experimental evidence for a human PTEN N-terminal extension 

that reportedly initiates at the same CUG predicted by Ivanov et al. (2011). 

Preliminary results in our laboratory indicated the existence of multiple N-

terminally extended PTEN proteoforms. Here we set out to systematically 

investigate these multiple proteoforms and also to determine the effect, if any, of 

two conserved AUG initiated uORFs on translation of these PTEN proteoforms 

(boxed in figure 2.3.1a).  

We noted that the 5’ end of both GenBank RefSeq PTEN mRNA isoforms 

(NM_000314.6, NM_001304718.1), which have identical first exons, do not 

correspond to the transcription start site predicted by the Fantom Projects’ CAGE 

analysis (Kawaji et al. 2011) which finds that the transcription start site is a further 

187 nt 3’ of the Genbank RefSeq annotated PTEN mRNA 5’ end (supplementary 

material, figure S2). A +187 transcription start site is also in agreement with 

mRNAseq data obtained as controls to multiple ribosome profiling experiments, 

available in GWIPS-viz (A M Michel et al. 2014) (see supplementary material, figure 

S2) as well as with the majority of publicly available human PTEN expressed 

sequence tags. Therefore, in this study, all test constructs with the PTEN 5’ leader 

start at +187 relative to the 5’ end of GenBank RefSeq PTEN mRNAs. 

We first transfected HEK-293T cells with plasmid DNA expressing the human 

PTEN 5’ leader fused to sequences encoding firefly luciferase (FLuc; figure 2.3.1b). 

Immunoblots generated from transfected cell lysates and probed with FLuc 

antibodies detected four slower migrating FLuc proteoforms when FLuc is preceded 

by the PTEN 5’ leader (lane 2, top panel, figure 3.2.1c). These four proteoforms are 

absent from cells transfected with FLuc expressing constructs lacking the PTEN 5’ 

leader (lane 1, top panel, figure 2.3.1c) indicating that the multiple proteoforms are 



55 
 

not post-translationally modified variants of FLuc. Furthermore, the same pattern 

of proteoforms was also detected when these same lysates were probed with a 

custom antibody (anti-PTEN-L) directed against a peptide predicted from sequences 

immediately 5’ of, and in-frame with, the PTEN main ORF (lane 2, middle panel, 

figure 2.3.1c).  

These multiple proteoforms are most likely N-terminally extended variants 

generated by initiation at in-frame non-AUG codons within the PTEN 5’ leader. 

Alternatively, some of these proteoforms could be proteolytically cleaved variants 

of the previously reported (Hopkins et al. 2013; Liang et al. 2014) CUG-initiated 173 

amino acid N-terminally extended PTEN proteoform. To investigate this latter 

possibility, we transfected HEK-293T cells with PTEN 5’ leader-FLuc expressing 

constructs in which this CUG was changed to either a non-initiating AGG triplet or 

to a UAA stop codon, that not only prevents initiation but also terminates 

translation from upstream initiation sites. Both anti-FLuc and anti-PTEN-L 

immunoblots from these transfected lysates indicate that mutation of the CUG 

leads to the disappearance of only the most slowly migrating proteoform, thus 

ruling out the possibility that some of the other proteoforms are cleavage products 

(lanes 3 and 4, top and middle panels, figure 2.3.1c). These observations suggest 

that the PTEN 5’ leader has the potential to generate at least four N-terminally 

extended proteoforms (that are within the detection limits of these experiments) 

and that the previously reported proteoform initiated at CUG, while likely the 

longest proteoform may not be the most abundant.  

Because of the recent reporting of an N-terminally extended PTEN 

proteoform (Ivanov et al. 2011; Hopkins et al. 2013; Liang et al. 2014), a unified 

nomenclature for PTEN proteoforms was proposed (Pulido et al. 2014) where newly 

identified PTEN proteins are named alphabetically as PTEN-L, PTEN-M, PTEN-N, etc. 

We have adopted this proposed nomenclature and henceforth refer to these four 

PTEN isoforms as PTEN-L, PTEN-M, PTEN-N and PTEN-O, where PTEN-L is the 

presumed longest variant and is initiated at the previously reported CUG codon 

(Ivanov et al. 2011; Hopkins et al. 2013; Liang et al. 2014), whereas proteoform 

PTEN-M appears to be the most abundant (table 2.1 and figure 2.3.1c).  
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Table 2.1 Details of PTEN N-terminally extended proteoforms. Nucleotide distances 
from aAUG (annotated AUG of canonical PTEN) are indicated where A of the aAUG 
is +1. 

Column1 nt from aAUG N-term ext AA total nt total AA MW (kDa) 

PTEN-L -519 173 1728 576 64.9 

PTEN-M -438 146 1647 549 62.5 

PTEN-N -393 131 1602 534 61.0 

PTEN-O -216 72 1425 475 55.0 
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Figure 2.3.1 

 (a) Sequence logo representation ( produced with WebLogo (Crooks et al. 2004)) of 
a multiple sequence alignment of PTEN 5’ leaders from 52 mammals. The alignment 
was generated with CLUSTALX (Heringa 1999) and corrected manually. Asterisks 
indicate nucleotides conserved in all 52 species. Open black boxes represent two 
conserved uORFs. Open green boxes indicate the main ORF AUG and previously 
predicted CUG initiation codons. (b) Illustration of transfected firefly luciferase 
constructs 1–4 used for immunoblotting. (c) Immunoblot of cell lysates prepared 
from HEK-293T cells transfected with firefly luciferase expressing constructs as 
indicated and probed with antibodies against firefly luciferase (anti-FLuc: top 
panel), the PTEN N-terminal extension (anti-PTEN-L: middle panel) and β-actin 
(bottom panel). The four proteoforms with extended PTEN N-termini are named as 
L, M, N and O. This nomenclature was recently proposed for novel PTEN 
proteoforms by Pulido et al. (2014). Asterisk indicates a non-specific protein that 
co-migrates with the O-proteoform, thus precluding its detection with anti-PTEN-L. 
Lane 5 contains cell lysates from mock-transfected cells. 

  



58 
 

It is conceivable that PTEN-M, PTEN-N and PTEN-O are not non-AUG-

initiated N-terminally extended proteoforms. Instead, PTEN-M and PTEN-N could be 

post-translationally modified variants of PTEN-O, whereas PTEN-N and PTEN-O 

could be cleavage products of PTEN-M. To address these possibilities, and to 

determine whether non-AUG initiation could explain the presence of these 

proteoforms, we made PTEN 5’ leader-FLuc constructs in which potential non-AUG 

initiation codons were systematically mutated in turn to either AGG or UAA. 

Potential in-frame near-cognate initiation codons from the relevant region within 

the PTEN 5’ leader are highlighted in figure 2.3.2a and those in a favourable Kozak 

context (purine at -3 or G at +4) are underlined. Mutation of the most 5’ in-frame 

AUU codon to AGG completely abolishes synthesis of the most prevalent 

proteoform M-FLuc (lanes 4 and 5, figure 2.3.2b). As expected, mutation of this 

AUU to a termination codon causes premature termination of L-FLuc (lane 5, figure 

2.3.2b). It is difficult to be certain about the nature of the initiation codon for N-

FLuc, because a cross-reacting endogenous protein migrates at the same position; 

however, it seems likely that the second-most 5’ in-frame CUG is responsible as 

there is a clear decrease in N-FLuc intensity when this CUG and all 3’ non-AUGs are 

mutated individually to UAA (see lanes 9, 11, 13 and 15, figure 2.3.2b). Mutation of 

the most 3’ in-frame CUG completely abrogates expression of O-FLuc (lanes 14 and 

15, figure 2.3.2b). In summary, the three minor proteoforms (L, N and O) are all 

initiated at CUG, whereas the major proteoform (M) is initiated at AUU.  

We next tested for the existence of endogenous human PTEN N-terminally 

extended proteoforms by immunoprecipitating PTEN from several different cell 

lines using commercially available antibodies directed against antigens within the 

annotated PTEN (CDS). The predicted molecular weight of PTEN is 47.2 kDa, but 

there are many reports indicating that the apparent molecular weight of PTEN is 

approximately 55 kDa. In agreement with this, immunoblots of PTEN 

immunocomplexes reveal the presence of an approximately 55 kDa protein in all 

cell lines tested (figure 2.3.3a). In addition to the canonical AUG-initiated PTEN, 

three slower migrating proteins are observed in all  
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Figure 2.3.2  
(a) Illustration of human PTEN 5’ leader fused to firefly luciferase and sequence of 
5’ leader region in which potential non-AUG codons are highlighted in different 
colours with those in favourable Kozak context (-3 purine and/or +4 G) underlined. 
The previously reported CUG initiation site (Ivanov et al. 2011; Hopkins et al. 2013; 
Liang et al. 2014) is highlighted in green and is the most 5’ potential non-AUG 
initiation site. The PTEN CDS reading frame is indicated with spaces between the 
codons. (b) Anti-FLuc and anti-β-actin immunoblots of cell lysates prepared from 
HEK-293T cells transfected with firefly luciferase encoding sequences fused to the 
wild-type or non-AUG codon mutated (indicated) PTEN 5’ leader. The four FLuc 
proteoforms with extended PTEN N-termini are indicated as L-, M-, N- and O-FLuc. 
In the control (CO, lane 16), the main ORF (firefly) AUG is mutated to UAA. 
 

cell lines tested other than U2OS. The molecular weights of these three proteins 

correlate well with those predicted for PTEN proteoforms PTEN-L, PTEN-M and 

PTEN-N. To determine whether the migration of these putative endogenously 

expressed PTEN N-terminally extended proteoforms correlate with exogenously 

expressed proteoforms PTEN-L, PTEN-M and PTEN-N (we could not detect any 

endogenous proteoform that could correspond in molecular weight to PTEN-O in 

these experiments), we transfected the human PTEN CDS fused to either wild-type 

or mutated PTEN 5’ leaders into A172 cells which do not express endogenous PTEN. 

Immunoprecipitates from transfected A172 cells were compared with 
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immunoprecipitates from HEK-293T cells expressing endogenous PTEN and show 

that exogenously expressed proteoforms PTEN-L, PTEN-M and PTEN-N co-migrate 

with endogenous PTEN proteins from HEK-293T cells (compare the first and fourth 

lanes in figure 2.3.3b). Furthermore, in agreement with the FLuc reporter 

constructs (figure 2.3.2b), mutation of the first and third in-frame CUGs prevents 

initiation of the two minor PTEN proteoforms PTEN-L and PTEN-N, whereas 

mutation of the first in-frame AUU abolishes expression of the major PTEN-M 

proteoform (figure 2.3.3b). Together, these results indicate that three slower 

migrating PTEN proteoforms apparent in immunoprecipitates from several cell lines 

correlate with non-AUG-initiated proteoforms PTEN-L, PTEN-M and PTEN-N. 

Several studies report that PTEN-L is an active phosphatase and retains the 

ability to downregulate the PI3K pathway (Hopkins et al. 2013; Liang et al. 2014; 

Sean B. Johnston & Raines 2015; Wang et al. 2015; Masson et al. 2016). To 

determine whether the PTEN proteoforms described here are active phosphatases, 

we measured the phosphorylation status of the major PI3K substrate, AKT, in PC3 

cells (no endogenous PTEN expression) transfected with either wild-type or N-

terminally extended PTEN proteoforms. Exogenous expression of PTEN reduced the 

levels of AKT phosphorylation almost twofold, and similar levels of reduction were 

observed for all four N-terminally extended proteoforms (figure 2.3.4 and 

supplementary material, figure S3). Therefore, similar to previous observations for 

PTEN-L, the phosphatase activities of PTEN-M, PTEN-N and PTEN-O are not overtly 

affected by their N-terminal extensions.  

N-terminal extensions often harbour signals for subcellular targeting or 

secretion. However, live cell imaging of AUG-initiated PTEN N-terminal extensions 

fused to GFP reveal diffuse cytoplasmic localization for all four PTEN–GFP fusions 

indistinguishable from the localization of GFP alone (supplementary material, figure  
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Figure 2.3.3  
(a) Anti-PTEN CDS (6H2.1) immunoblot of anti-PTEN CDS (138G6) 
immunoprecipitates prepared from several cell lines as indicated showing detection 
of endogenous canonical AUG-initiated PTEN as well as the three non-AUG-initiated 
PTEN proteoforms PTEN-L, PTEN-M and PTEN-N. (b) Anti-PTEN CDS (6H2.1) 
immunoblot of anti-PTEN CDS (138G6) immunoprecipitates prepared from A172 
cells (which lack endogenous PTEN) transfected with constructs expressing either 
wild-type PTEN or mutants of PTEN proteoforms PTEN-L, PTEN-M and PTEN-N (top 
panel illustration) showing that the non-AUG initiation codons of PTEN-L, PTEN-M 
and PTEN-N are CUG, AUU and CUG, respectively. The left-most lane shows control 
immunoprecipitates from HEK-293T cells indicating endogenous canonical AUG-
initiated PTEN and N-terminally extended proteoforms PTEN-L, PTEN-M and PTEN-
N. CO indicates control immunoprecipitates from mock-transfected cells. 
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S4). Hopkins et al. (2013) suggest that the PTEN-L proteoform harbours an N-

terminal signal peptide secretion signal and provide evidence that PTEN-L is 

secreted and can re-enter cells via a cell re-entry motif similar to the HIV TAT 

protein. The predicted amino acid sequences of PTEN-M and PTEN-N lack the 

putative secretion signal yet still retain the putative cell re-entry motif 

(supplementary material, figure S5) reported by Hopkins et al. To rule out the 

possibility that the N-terminal extension of PTEN-M might possess a cryptic signal 

peptide sequence, we overexpressed, in HEK-293T cells, PTEN-L (as a control) and 

PTEN-M N-terminal extensions fused to GFP (same constructs as described in 

supplementary material, figure S4). A fusion of GFP with the signal peptide 

sequence from Gaussia luciferase (GLuc) (Verhaegent & Christopoulos 2002) was 

used as a positive control (figure 2.3.5a). Extracellular and intracellular GFP fusion 

proteins were concentrated by immunoprecipitation using GFP-trap® (immobilized 

camelid anti-GFP antibody) followed by immunoblotting with anti-GFP. Even though 

we immunoblotted 50% of the total extracellular fraction and only 5% of the 

intracellular fraction, we did not detect PTEN-L-GFP or PTEN-M-GFP in the 

extracellular fraction (see lanes 1 and 3, middle panel, figure 2.3.5b). Furthermore, 

when HEK- 293T or U2OS cells were transfected with constructs expressing either 

the PTEN-L or PTEN-M N-terminal extensions, or the putative PTEN-L signal peptide 

alone, fused to GLuc, we failed to detect GLuc activity in the cell media at levels 

above background (figure 2.3.5c). Yet GLuc-fused downstream of the PTEN-L N-

terminal extension in which the putative PTEN-L signal peptide was replaced with 

the signal peptide from either GLuc or interleukin-2 efficiently targeted GLuc from 

cells (figure 2.3.5c).  

We next sought to ascertain whether the non-AUG initiation of the PTEN 

proteoforms is regulated. The selection of poor context initiation codons (including 

non-AUG start codons) is modulated by intracellular levels of initiation factors eIF1 

(increases stringency) and eIF5 (decreases stringency) (Mitchell & Lorsch 2008; 

Richard J. Jackson et al. 2010; Llácer et al. 2015; Hussain et al. 2014; Nanda et al. 

2009; Valásek et al. 2001; Hinnebusch 2014; Ivanov et al. 2010; Loughran et al. 

2012). To determine whether initiation of the N-terminally extended PTEN 

proteoforms are   



63 
 

 

 

Figure 2.3.4  
(a) Illustration shows PTEN expressing constructs transfected into PC3 cells. (b) 
Immunoblots of cell lysates prepared from PTEN-null PC3 cells transfected with 
PTEN expressing constructs as indicated for 48 h (serum starved for last 24 h) and 
probed with antibodies against PTEN (138G6), β-actin, phospho-AKT (S473) and 
pan-AKT. Additional replicates (replicates 2 and 3) are shown in the supplementary 
material, figure S3. (c) Mean and standard deviations of relative protein intensities 
determined by densitometry from three biological replicates. Phospho-AKT 
intensities were calculated relative to pan-AKT intensities. Relative pAKT levels in 
lysates from cells transfected with each N-terminally extended PTEN proteoform 
were compared with the control sample. **p < 0.01, ***p < 0.001 by one-way 
ANOVA followed by Tukey’s test. 
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Figure 2.3.5  
(a) Illustration of mutant PTEN-L and PTEN-M 5’ leader–GFP fusion constructs 
transfected into HEK-293T cells. SP is the secretion peptide from Gaussia luciferase. 
(b) Anti-GFP and anti-b-actin immunoblots from GFP-trap immunoprecipitates 
prepared from either HEK-293T cell lysates (intracellular: top panel) or culture 
media (extracellular: middle panel) transfected with the GFP fusion constructs 
shown in (a). (c) Gaussia luciferase assays show the percentage luciferase activity in 
the cell lysate (blue: intracellular) and culture media (red: extracellular) when either 
HEK-293T or U2OS cells (as indicated) were transfected with the constructs 
indicated for 22 h. The blue signal peptide (SP) is from Gaussia luciferase 
(MGVKVLFALICIAVAEAK), the putative PTEN-L SP (MERGGEAAAAAAAAAAAPGRG) is 
in green and the interleukin-2 (IL2) SP (MYRMQLLSCIALSLALVTNSA) is in red. 
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regulated by altered eIF1 or eIF5 levels, we overexpressed each initiation factor 

separately in HEK-293T cells and then immunoprecipitated endogenous PTEN 

proteoforms (supplementary material, figure S6). Even though eIF1 and eIF5 levels 

are robustly expressed, we note no discernible change in the ratio of PTEN 

proteoforms compared with cells transfected with an empty vector (supplementary 

material, figure S6).  

As shown in figure 2.3.1a, there are two conserved AUG-initiated uORFs 

(uORF1 and uORF2) close to the PTEN 5’ cap (figure 2.3.6a and supplementary 

material, figure S7). The most 5’ uORF (uORF1) is only four codons long and starts 

with tandem AUG codons, both in good Kozak context. uORF2 is much longer (45 

codons) and also starts with a good context AUG. Ribosomal profiling data compiled 

in GWIPS-viz (A M Michel et al. 2014) for PTEN show a large number of ribosome 

protected fragments aligning to uORF1 in comparison with uORF2 (supplementary 

material, figure S7). In general, translation of uORFs has an inhibitory effect on main 

ORF translation although this relationship between uORFs and main ORFs is not so 

simple where multiple uORFs exist. Usually, the translation of short uORFs is less 

inhibitory than the translation of long uORFs, because the ribosomes’ ability to 

reinitiate after translation of ORFs more than 35 codons is normally greatly reduced 

(see Introduction). According to the scanning model of eukaryotic translation 

initiation, we would predict that the majority of scanning 43S complexes would 

initiate uORF1; however, because it is only four codons long, a high level of re-

initiation is expected. Because re-initiation is precluded until all necessary initiation 

factors have reloaded onto the 40S, translation of uORF1 may favour re-initiation at 

ORFs more 3’ than uORF2. We set out to determine the possible role of these two 

uORFs on regulation of the different PTEN proteoforms by transfecting HEK-293T 

cells with PTEN 5’ -leader-FLuc reporter constructs in which the uORFs were 

mutated and testing by dual luciferase assay (figure 2.3.6a) and immunoblotting 

(figure 2.3.6b).  

Even though we expect a high level of uORF1 translation, mutation of the 

uORF1 tandem AUG codons to non-initiating AGG codons has only a minor 

inhibitory effect (less than 10%) on FLuc activity (compare construct 1 (wild-type 

PTEN 5’ leader) with construct 2 in figure 2.3.6a). Mutating uORF1 is inhibitory 
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rather than stimulatory presumably because more ribosomes now have access to 

uORF2 which we predict should be inhibitory. However, the fact that the inhibition 

is only minor suggests that either uORF2 may not be as inhibitory as we expect or 

that normally ribosomes translating uORF1 can efficiently reinitiate uORF2. Another 

explanation could be that in the wild-type context many ribosomes do not initiate 

uORF1. However, mutation of the uORF1 stop codon to a sense codon (extending 

the length of uORF1 to 161 codons) severely diminishes FLuc activity (construct 3, 

figure 2.3.6a) which, in agreement with published ribosome profiling data 

(supplementary material, figure S7), confirms that ribosomes do initiate at uORF1. 

A mutation that disables uORF2 translation, either alone or in combination with 

mutations that prevent uORF1 initiation increased FLuc activity more than twofold 

(compare construct 1 (wild-type) with constructs 4 and 5 in figure 2.3.6a). This 

indicates that uORF2 is inhibitory and thus suggests that the level of re-initiation on 

uORF2 is high. Similar results were observed in several other cell lines tested, 

including breast carcinoma (MCF-7), prostate carcinoma (PC3) and cervical 

carcinoma (HeLa; supplementary material, figure S8). In addition, there is little 

difference in steady-state mRNA levels when both uORFs are disabled 

(supplementary material, figure S9). In these reporter assays, it is assumed that the 

low level of N-terminally extended proteoforms (relative to the main ORF) have 

only a minor contribution to total FLuc activity. This is supported by our own 

unpublished observations showing that an AUG-initiated PTEN-L extension severely 

reduces FLuc activity. To gain further understanding of the effect of the uORFs on 

downstream translation, we performed antiFLuc immunoblots from cells 

transfected with constructs 1–6 (figure 2.3.6b and supplementary material, figure 

S10). Dual luciferase assays from replicate lysates show similar FLuc activity for each 

construct to those shown in figure 2.3.6a and supplementary material, figure S8. 

Densitometry of the main ORF (FLuc) normalized to cotransfected RLuc levels 

indicates that, similar to the luciferase assay results, preventing initiation of the 

uORFs results in an almost twofold  
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Figure 2.3.6   
(a) Relative luciferase activities (FLuc/RLuc) of firefly encoding sequences fused to 
the wild-type or mutant PTEN 5’ leader as indicated and cotransfected (10 : 1 ratio) 
with a Renilla expressing plasmid into HEK-293T cells. Red crosses indicate mutation 
of AUG start codons to non-initiating AGG codons. L, M, N and O depict the 
approximate site of initiation of PTEN extensions. The dashed box represents the 
increase in ORF length when the stop codon of uORF1 is changed to a sense codon. 
(b) Anti-FLuc and anti-RLuc immunoblots of cell lysates prepared from HEK-293T 
cells transfected with Renilla and firefly luciferase expressing constructs indicated in 
(a). The four proteoforms with extended PTEN N-termini are indicated as L, M, N 
and O. CO represents lysates prepared from mock-transfected cells. (c) 
Densitometry analysis from three biological replicates of the proteins detected by 
anti-FLuc and anti-RLuc in (b) and supplementary material, figure S10b. 
Proteoforms M and N could not be resolved sufficiently from each other for 
accurate densitometry analysis, so the intensity of both proteins together is 
determined. FLuc intensities were calculated relative to RLuc. 
 

 

increase in main ORF levels (figure 2.3.6c). Therefore, even though levels of the N-

terminally extended proteoforms increase when uORF2 is mutated (lanes 4 and 5, 

figure 2.3.6b and supplementary material, figure S10), they have only a minor 

contribution to overall FLuc activity. When we estimate the levels of each N-

terminally extended proteoform by densitometry, we observe that mutation of 

uORF2 causes the levels of the L and M/N proteoforms to increase approximately 
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2.5-fold, the O proteoform to increase 2-fold, whereas the main ORF increases 

approximately 1.5-fold. Mutation of both uORFs together increases the L-

proteoform approximately 5.3-fold, M/N-proteoforms approximately 4.1-fold, O-

proteoform approximately 3.1-fold and the main ORF proteoform approximately 

1.6-fold. This densitometry analysis also allows us to estimate the relative 

abundance of each proteoform under normal conditions and when ribosomes do 

not translate either or both uORFs. Interestingly, although all proteoforms increase 

when ribosomes do not translate uORF2, the ratio of N-terminally extended 

proteoforms relative to each other does not change (supplementary material, 

figure S10c). In contrast, mutation of uORF2 increases the ratio of N-terminal 

proteoforms relative to the main ORF proteoform (supplementary material, figure 

S10d) such that proteoforms M/N increase by 50% from 12% to 18% of all 

proteoforms. Similar approximately 50% increases were also observed for the L- 

and O-proteoforms (supplementary material, figure S10d). Furthermore, there is a 

concomitant decrease in the relative abundance of the main ORF proteoform from 

83% down to 75%. Mutation of uORF1 and uORF2 together results in even further 

increases to the relative abundance of N-terminally extended proteoforms and 

further decreases the main ORF proteoform (supplementary material, figure S10d).  

Because we show that translation of uORF2 can alter the ratio of extended 

and main ORF proteoforms and uORF2 translation seems to be dependent on 

efficient re-initiation after translation of uORF1, we predict that conditions which 

can regulate re-initiation events could alter translation of the main ORF. Increasing 

the phosphorylation status of eIF2 can reduce re-initiation by limiting the pool of 

functional (non-phosphorylated) eIF2. To gain some understanding of possible 

regulation of these uORFs, we transfected wild-type and ‘no uAUG’ firefly reporters 

into HEK-293T cells and then treated with sodium arsenite. Sodium arsenite 

activates the integrated stress response by inducing phosphorylation of eIF2. Many 

mRNAs (main ORFs) whose translation is resistant to eIF2 phosphorylation harbour 

translated uORFs (Andreev et al. 2015). If sodium arsenite decreased re-initiation 

on uORF2, then we would expect to see an increase in FLuc activity with the wild-

type reporter; however, we observed little difference in main ORF reporter 

translation upon sodium arsenite treatment (supplementary material, figure S11).  
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2.4 Discussion  

The results presented above provide strong evidence for the existence of three (or 

perhaps four) non-AUG-initiated proteoforms of PTEN that are expressed in human 

cells in addition to, and at lower levels than, the well-studied canonical AUG-

initiated PTEN. The longest PTEN proteoform, PTEN-L, has previously been reported 

(Ivanov et al. 2011; Hopkins et al. 2013; Liang et al. 2014) and its function has been 

investigated in more detail in subsequent studies (Sean B. Johnston & Raines 2015; 

Wang et al. 2015; Malaney et al. 2013; Malaney et al. 2015; Sean B Johnston & 

Raines 2015). However, PTEN-M, PTEN-N and PTEN-O have not been previously 

described and are reported here for the first time. We show that PTEN-M initiates 

at an AUU codon that is completely conserved in 52 eutherian mammalian species 

with available sequences, whereas the other PTEN proteoforms (PTEN-L, PTEN-N 

and PTEN-O) initiate at CUG, the first two also completely conserved while the 

latter only partially conserved. CUG codons are generally better initiators than AUU 

codons (Peabody 1989; Ivanov et al. 2010; Loughran et al. 2012), so it is somewhat 

surprising that AUU-initiated PTEN-M is more abundant than CUG-initiated PTEN-L, 

especially, because the CUG is more 5’ than the AUU. The PTEN-L CUG initiation 

codon Kozak context is slightly less favourable (C at -3 and G at +4) than that of the 

PTEN-M AUU initiation codon (A at -3). It is also possible that an as yet unidentified 

RNA secondary structure 3’ of the AUU codon contributes to its favourable 

utilization for initiation (see Introduction), especially because the PTEN 5’ leader is 

70% GC rich with numerous potential stem-loops. Yet another possibility is that the 

abundance of the PTEN proteoforms is a reflection of differing protein stabilities 

rather than initiation levels, although a similar level of exogenous PTEN-L and PTEN-

M expression when their non-AUGs start codons are mutated to AUGs (figure 

2.3.4b and supplementary material, figure S3) would argue against this. The faint 

band observed in the first three lanes of figure 2.3.4b that migrates at the same 

position as PTEN, could be the PTEN protein whose translation has initiated at AAA. 

As already mentioned, all codons that differ by one nucleotide from AUG, with the 

exception of AAG and AGG can serve as translation start sites (Peabody 1989). This 

fact combined with the potential secondary and tertiary structures GC rich RNA can 

form, could make the position of the canonical PTEN start site, favourable for 
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translation initiation. It is also likely that the above mentioned faint bands are 

cleaved products of the N-terminally extended PTEN proteoforms (PTEN-L, -M, -N).  

The identity of the major non-AUG-initiated PTEN proteoforms identified in 

this study contrasts with the findings of both Hopkins et al. (2013) and Liang et al. 

(2014), who both report only a single CUG-initiated proteoform that corresponds in 

our study to PTEN-L. Most of the anti-PTEN immunoblots presented by Hopkins et 

al. show a single slower migrating approximately 75 kDa PTEN proteoform which 

they term PTEN-Long (PTEN-L in our study). A possible reason for this discrepancy is 

that, in their study, proteins were separated for shorter time intervals while we 

purposely allowed SDS–PAGE gels to run for extended periods (see Material and 

methods) in an attempt to resolve as many PTEN proteoforms as technically 

possible. Perhaps the approximately 75 kDa PTEN-long detected by Hopkins et al. 

corresponds to a mixture of unresolved PTEN-L, PTEN-M and PTEN-N.  

Liang et al. similarly identify a PTEN proteoform (PTEN-α) that initiates with 

the most 5’ in-frame CUG and corresponds to our PTEN-L and Hopkins et al. PTEN-

Long. Their anti-PTEN immunoblots from cells exogenously expressing a PTEN-α 

construct clearly show two higher molecular weight proteins in addition to PTEN. In 

agreement with our study, mutation of the first in-frame CUG prevents translation 

of the longest protein. Furthermore, even when the first and third CUG codons 

(PTEN-L and PTEN-N in our study) are mutated together, an extended PTEN 

proteoform is still apparent which is very likely to correspond to PTEN-M. A recent 

report showing anti-PTEN immunoblots from matched normal and tumour tissue 

samples clearly identifies, in addition to canonical PTEN, at least two slower 

migrating endogenous PTEN proteoforms expressed in a similar ratio to PTEN-L and 

PTEN-M in our study (Wang et al. 2015).  

When multiple proteoforms are translated from a single mRNA, the efficiency 

of initiation at each start codon could set the ratio of proteoform steady-state 

levels assuming each protein has similar stability. However, this ratio may vary 

during conditions in which initiation efficiency is altered. Eukaryotes have 

developed elaborate mechanisms for the recognition of the correct initiation codon 

and the levels of certain initiation factors can regulate the fidelity of initiation, 

especially on suboptimal (non-AUG and AUG in poor context) start codons (Ivanov 
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et al. 2010; Loughran et al. 2012; Martin-Marcos et al. 2011). While elevated levels 

of eIF1 can increase the stringency of start codon selection, elevated levels of eIF5 

have the opposite effect. Here we show that overexpression of either eIF1 or eIF5 

had minimal effect on the steady-state levels of PTEN proteoforms (supplementary 

material, figure S6). This suggests that either the non-AUG initiation events in PTEN 

are refractory to normal stringency controls or the steady-state protein levels of 

these proteoforms are regulated tightly by rapid turnover. An alternative 

explanation is that because the PTEN 5’ leader is long, the many potential out-of-

frame near-cognate codons could create uORFs and thus preclude the expected 

effects of eIF1/5 overexpression on translation of the PTEN N-terminal extensions.  

Several groups have observed that PTEN-L can downregulate the PI3K pathway 

in a similar manner to PTEN (Hopkins et al. 2013; Liang et al. 2014; Wang et al. 

2015). In vitro studies comparing the catalytic activities of purified PTEN and PTEN-L 

reveal that both enzymes can dephosphorylate PIP3, although, interestingly, PTEN 

phosphatase activity can be activated by its reaction product (PIP2), whereas PTEN-

L cannot and is thus constitutively active (Sean B. Johnston & Raines 2015; Sean B 

Johnston & Raines 2015). We tested whether the PTEN proteoforms identified in 

our study still retained the ability to downregulate the PI3K pathway (figure 2.3.4 

and supplementary material, figure S3). All PTEN proteoforms were able to reduce 

AKT phosphorylation to levels similar to those of canonical PTEN and PTEN-L, 

suggesting that the N-terminal extensions do not have major effects on the 

dephosphorylation activity of PTEN proteoforms.  

Hopkins et al. (2013) report that exogenously expressed PTEN-L is targeted for 

secretion from cells by a predicted N-terminal signal peptide and cleavage site. 

Furthermore, they also show that immediately following the predicted cleavage site 

is a functional cell re-entry signal similar to the HIV TAT protein (Hopkins et al. 

2013). Subsequently, Wang et al. (Wang et al. 2015) confirmed that PTEN-L, but not 

PTEN, can enter cells, although whether PTEN-L can be secreted from cells was not 

tested. Intriguingly, both PTEN-M and PTEN-N, while lacking the predicted signal 

peptide, do still retain the putative cell re-entry signal (supplementary material, 

figure S5). We overexpressed GFP fused to both the PTEN-L (with putative secretion 

signal) and PTEN-M N-terminal extensions but could not detect PTEN-L-GFP in the 
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cell culture media after concentrating by immunoprecipitation (figure 2.3.5b). It is 

not so surprising that PTEN-M-GFP is not found extracellularly because it lacks the 

putative signal peptide, but failure to detect PTEN-L was unexpected and suggests 

that most PTEN-L is not secreted. It is possible that this assay was not sensitive 

enough to detect low levels of secreted PTEN-L-GFP, so we further tested whether a 

secretion signal resided in the PTEN-L extension by fusing the PTEN 5’ leader to 

Gaussia luciferase. Gaussia luciferase is approximately 1000 times more sensitive 

than either Renilla or firefly luciferases (Tannous et al. 2005), yet we could not 

detect any extracellular luciferase activity, above background, in constructs 

harbouring the putative PTEN-L signal peptide (figure 2.3.5c). One explanation for 

the discrepancy between our PTEN localization experiments and those of previous 

studies is that, because canonical PTEN has been found in exosomes (Putz et al. 

2012; Gabriel et al. 2013) and can homodimerize (Papa et al. 2014), we decided to 

make reporters that do not contain sequences encoding the canonical PTEN CDS. 

Perhaps the important targeting signals are only ‘visible’ in the context of the full-

length PTEN proteins. Yet another possible explanation for not detecting our PTEN-

L chimeras in the cell culture media could be that the efficiency of cell reentry is 

extremely high. However, detection of extracellular luciferase activity when the 

PTEN-L signal peptide is replaced with either the Gaussia luciferase or interleukin-2 

signal peptide would argue against this possibility (figure 2.3.5c).  

The functional significance of the PTEN-M N-terminal extension has yet to be 

determined but perhaps some insight may be gained from previous studies on 

PTEN-L. There are conflicting reports as to whether the PTEN-L extension has the 

potential to form a three-dimensional structure (Sean B. Johnston & Raines 2015; 

Sean B Johnston & Raines 2015) or whether it is intrinsically disordered (Malaney et 

al. 2013; Malaney et al. 2015). A recent elegant HDX-MS approach by Masson et al. 

(Masson et al. 2016) indicates that while most of the PTEN-L N-terminal extension is 

indeed intrinsically disordered, there is a potential a-helix at position 151–174 

(where residue 174 is the methionine encoded by the canonical PTEN AUG). This 

peptide is protected by liposomes, suggesting an interaction with the membrane. 

Furthermore, this potential membrane-spanning region alters both the interfacial 

kinetics of PTEN-L and the protein/membrane interface, causing PTEN-L to bind 
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more tightly and dissociate less readily from membranes than PTEN. The mode of 

PTEN-L interaction with membranes is called the ‘scooting’ mode as opposed to the 

‘hopping’ mode, which is characteristic of PTEN, and involves prompt association 

and release from the membrane (Masson et al. 2016). All N-terminally extended 

proteoforms described in our study possess this potential α-helix so it will be 

interesting to see whether these new PTEN proteoforms act in a similar manner. It 

is perhaps noteworthy that we could not detect PTEN-O by immunoprecipitation 

with PTEN antibodies, presumably because this N-terminal extension (and not L, M 

and N) alters protein conformation in a manner that prevents antibody access to 

the PTEN antigen under native conditions. This suggests possible structural 

differences between the PTEN-O N-terminal extension and the other PTEN 

proteoforms.  

In our analysis of the conserved PTEN uORFs, we initially hypothesized that 

translation of uORF1 could reduce translation of uORF2, which, because of its size 

(45 codons), we expect to be severely inhibitory for downstream translation. In this 

way, translation of uORF1 could, in theory, have an overall positive effect on main 

ORF translation by reducing the number of ribosomes accessing the predicted 

inhibitory uORF2. However, intriguingly, increasing the number of ribosomes 

accessing uORF2 by mutation of uORF1 appears not to be very inhibitory under the 

conditions tested (figure 2.3.6). Therefore, we conclude that either uORF1 is 

frequently passed by leaky scanning, which seems unlikely given the evidence we 

described previously for uORF1 translation, or ribosomes translating uORF1 can re-

initiate efficiently at uORF2. Alternatively, similar results would be observed if 

uORF2 were not very inhibitory (i.e. permits high level re-initiation). However, when 

ribosomes do not translate uORF2, downstream translation increases 

approximately 2.5-fold at the CUG of the L-proteoform in comparison with when 

uORF2 is available for translation (figure 2.3.6b,c). As one would predict from the 

scanning model of translation initiation, removal of both uORFs further increases 

the level of downstream initiation a further twofold (for L-FLuc). Importantly, the 

presence of uORF2 affects the ratio of N-terminally extended proteoforms relative 

to the main ORF, but has no effect on the ratio of N-terminally extended 

proteoforms to each other (supplementary material, figure S10c,d).  



74 
 

These reporter assay results raise the intriguing possibility that the deeply 

conserved uORFs in the PTEN 5’ leader may become less inhibitory for PTEN 

translation under, as yet unidentified, conditions that could either decrease 

elongation rates, which in theory would result in ribosome accumulation along 

uORFs and hamper scanning, or else downregulate reinitiation. There is evidence 

that the canonical mTOR –S6K pathway regulates re-initiation after uORFs in plants 

(Schepetilnikov et al. 2013). We predict that such regulation could have dramatic 

effects on the abundance of N-terminally extended proteoforms, especially if 

initiation of both uORFs were reduced.  

These findings, together with the findings on PTEN-L from other groups, could 

have profound implications for the interpretation of previous studies on both the 

catalytic activity and localization of endogenous PTEN as well as the analysis of 

polymorphisms within the PTEN 5’ leader. Furthermore, the discovery of these new 

PTEN proteoforms could have implications for the development of PTEN-based 

chemotherapeutic agents. 
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Supplementary Figure 1. 
 Alignment of the PTEN 5’ leader from the 5' most upstream in-frame stop codon (in 
human and mouse) to the main ORF AUG from 52 mammals. The human and 
mouse sequences were obtained from RefSeq. The sequences of Callithrix jacchus 
and Papio hamadryas were obtained using a BLAST search against the 
Transcriptome Shotgun Assembly (TSA) database. The other 48 sequences were 
obtained by a BLAST search against the WholeGenome Shotgun contigs (wgs) 
database. The initial alignment was performed with the help of the ClustalX 
algorithm, which was then followed by a manual re-alignment step. 
Insertions/deletions highlighted in red are the 3' most insertions/deletions that 
represent frameshifts in a given sequence. The upstream in-frame stop codon for 
the human sequence is the equivalent in most other organisms and is highlighted in 
magenta. The previously described CUG and main ORF AUG start codons are 
highlighted in green. Alternating red and black stripes marks codons in the 
previously identified N-terminal extension. Species names are on the left of each 
sequence. Completely conserved nucleotides are indicated by an asterisk at the 
bottom of the alignment. The non-AUG start sites identified in this study are 
underlined. 
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Supplementary Figure 2.  
Screenshot of the 5’ end of the PTEN 5’ leader from GWIP-viz (hg19). RNAseq 
alignments are shown as green histograms and the positions of ribosome A-sites 
inferred from alignments of ribosome protected fragments (Riboseq) are shown as 
red columns. The data are aggregated from 15 ribosome profiling studies carried 
out in several human cultured cells. CAGE analysis from the indicated cells are from 
the Fantom Project (Crooks et al. 2004) and are shown as black histograms. The 
number of reads at each nucleotide position is indicated on the y-axis. The 
nucleotide corresponding to the most abundant transcript site (+187 relative to 
RefSeq entries) is indicated with a green arrow. 
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Supplementary Figure 3 
 Replicate immunoblots of cell lysates prepared from PTEN-null PC3 cells 
transfected with PTEN expressing constructs as indicated for 48 hr (serum starved 
for last 24 hr) and probed with antibodies against PTEN (138G6), β-actin, phospho-
AKT (S473) and pan-AKT. Replicate 1 is shown in Fig. 2.3.4. 
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Supplementary Figure 4 
 Fluorescence microscopy of live HeLa cells imaged 24 hr after transfection with the 
GFP constructs indicated. Scale bar is in µm. 
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Supplementary Figure 5 
 Illustration of the PTEN protein and proteoforms PTEN-L, PTEN-M, PTEN-N and 
PTEN-O. The region corresponding to AUG initiated PTEN is shaded blue whereas 
the dashed box represents the non-AUG initiated extensions. The signal peptide 
and cell re-entry motif predicted by Hopkins et al (2013) are shown as green and 
red boxes respectively. The putative cleavage site is depicted as a blue triangle. 
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Supplementary Figure 6  
Upper panel - Anti-PTEN CDS (6H2.1) immunoblot of anti-PTEN CDS (138G6) 
immunoprecipitates prepared from HEK-293T cells transfected with constructs 
overexpressing either eIF1 or eIF5. CO indicates control immunoprecipitates from 
cells transfected with empty vector. Lower panel – Immunoblot of lysates prepared 
from cells transfected for immunoprecipitation above probed with antibodies 
against eIF1, eIF5 and β-actin. 
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Supplementary Figure 7  
Screenshot of the 5’ end of the PTEN 5’ leader from GWIP-viz (hg38) and illustration 
of the ORF architecture showing the two conserved AUG initiated uORFs and sites 
of non-AUG initiation described in this study. RNAseq alignments are shown as 
green histograms and the positions of ribosome A-sites inferred from alignments of 
ribosome protected fragments (Riboseq) are shown as red columns. The data are 
aggregated from 15 ribosome profiling studies carried out in several human 
cultured cells. The number of reads at each nucleotide position is indicated on the 
y-axis. 
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Supplementary Figure 8 
 Relative luciferase activities (FLuc / RLuc) of firefly encoding sequences fused to the 
wildtype or mutant PTEN 5’ leader as indicated and transfected into either MCF-7, 
HeLa or PC3 cells as indicated. Red crosses indicate mutation of AUG start codons 
to non-initiating AGG codons. L, M, N and O depict the approximate site of initiation 
of PTEN extensions. The dashed box represents the increase in ORF length when 
the stop codon of uORF1 is changed to a sense codon. 
 

 

Supplementary Figure 9  
Relative luciferase activities (FLuc / RLuc) of firefly encoding sequences fused to the 
wildtype or ‘no uAUG’ mutant (constructs 1 and 5 respectively from Fig. 2.3.6) PTEN 
5’ leader as indicated and transfected into HEK-293T cells. Cells were transfected in 
triplicate wells (6- well plate) and transfectants processed for simultaneous RNA 
and protein isolation (see Materials and Methods). RNA levels were determined by 
RT-qPCR and relative luciferase activities were either normalised to RNA levels (red) 
or not (blue). Red crosses indicate mutation of AUG start codons to non-initiating 
AGG codons. L, M, N and O depict the approximate site of initiation of PTEN 
extensions. 
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Supplementary Figure 10  
A. Dual luciferase assay from cell lysates prepared from HEK-293T cells transfected 
(three biological replicates) with the indicated constructs. B. Replicate immunoblots 
of cell lysates prepared from HEK-293T cells transfected with constructs 1-6 and 
probed with antibodies against firefly and Renilla luciferases. Replicate 1 is shown 
in Fig. 2.3.6B. C. Within-lane densitometry analysis from three biological replicates 
of the proteins detected by anti-FLuc in B and Fig. 2.3.6B. Proteoforms M and N 
could not be resolved sufficiently from each other for accurate densitometry 
analysis, so the intensity of both proteins together is determined. The ratio of each 
proteoform is calculated as a fraction of the sum of the L, M/N and O proteoforms. 
D. Within-lane densitometry analysis from three biological replicates of the proteins 
detected by anti-FLuc in B and Fig. 2.3.6B. The ratio of each proteoform is 
calculated as a fraction of the sum of L, M/N, O and main ORF proteoforms. 
  



97 
 

 

Supplementary Figure 11 
 Relative luciferase activities (FLuc / RLuc) of firefly encoding sequences fused to the 
wildtype or ‘no uAUG’ mutant (constructs 1 and 5 respectively from Fig. 2.3.6A) 
PTEN 5’ leader as indicated and transfected into HEK-293T cells for 6 hr before 
treatment with 5 µM arsenite for either 2 hr or 4 hr as indicated. 
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4.1 Abstract 

Polyomavirus research has played a central role in the elucidation of cancer biology 

(Gross 1953). Studies on murine polyomavirus have been central to the discovery of 

tyrosine phosphorylation (Eckhart et al. 1979) and the characterization of the PI3K 

pathway (Kaplan et al. 1987). Research on simian vacuolating virus 40 (SV40) has 

led to the characterization of the role of Rb1 in cell cycle regulation and the 

discovery of p53 (Lane & Crawford 1979; Linzer & Levine 1979; Reich & Levine 

1982; DeCaprio 2009). 

Merkel cell carcinoma (MCC) is an aggressive non melanoma skin cancer 

with increasing incident rates. 80% of MCCs are caused by the Merkel Cell 

Polyomavirus (MCV). MCV expresses a small (sT) and a large antigen through 

alternative splicing of a single transcript. Although both antigens are required for 

maintenance and proliferation of transformed cells, only the sT can transform 

rodent fibroblasts by dysregulating protein synthesis initiation. Ribosome profiling 

enables genome-wide information on protein synthesis, through sequencing of the 

ribosome protected fragments.  

The aim of this project was to study translation regulation in MCC cells 

positive for MCV, at various stages of malignant transformation. To study the initial 

steps of sT induced carcinogenesis we established a Rat-1 cell line, which inducibly 

and reversibly expresses sT. This cell line failed to transform upon sT expression, 

possibly due to low sT levels.  

To investigate the potential role of sT at the later stages of MCV induced 

transformation, ribosome profiling was applied on a MCC cell line positive for MCV 

transduced with shRNA towards sT. Knockdown of sT did not affect translation as 

expected, possibly because sT exerts its role at the first stages of carcinogenesis.  
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4.2  Introduction 

4.2.1 Merkel Cell Carcinoma 

Merkel cell carcinoma (MCC) is an aggressive non melanoma skin cancer originally 

described in 1972 (Toker 1972), which arises from the neuroendocrine 

mechanoreceptors Merkel cells (Moll et al. 2005; Boulais and Misery 2007; Lucarz 

and Brand 2007). Although relatively rare (Agelli & Clegg 2003), it has poor 

prognosis and increasing incident rates over the past twenty years (Fitzgerald et al. 

2015; Hodgson 2005; Lyhne et al. 2011; Reichgelt & Visser 2010).  Frequent 

occurrence of this cancer in elderly and immunosuppressed individuals suggested 

an infectious origin of the disease. Digital transcriptome subtraction is a method 

that involves in silico subtraction of host sequences to detect pathogens’ transcripts 

(Feng et al. 2007). Application of this method to MCC samples identified the 

genome of the Merkel Cell Polyomavirus (MCV or MCPyV) in 8 out of 10 of the 

studied MCC tumours  (Feng et al. 2008). MCV infection in MCC tumours was 

subsequently confirmed by other independent research groups (Kassem et al. 2008; 

Becker et al. 2008). 

MCC is located in the dermis. Its morphological features involve round to 

oval nuclei, small nucleoli and syncytial appearing cytoplasm (Chang & Moore 

2012). Diagnosis of MCC is based on immunohistochemical analysis. This cancer is 

positive for cytokeratin 20 (CK20), low molecular weight cytokeratins (CAM 5.2 or 

AE1/AE3) and neuron-specific enolase (NSE). Positivity for these markers along with 

negativity for the thyroid transcription factor 1 (TTF-1), the leukocyte common 

antigen (LCA) and S100, enable differential diagnosis of MCC from small cell lung 

cancer (SCLC), lymphoma and small cell melanoma (Grekin et al. 2016).  

MCCs express neuroendocrine markers and are therefore thought to derive 

from Merkel cells (MC) of the skin (Grekin et al. 2016). However due to the 

postmitotic character of MCs, it has been suggested that MCCs could possibly 

derive from skin stem cells (Tilling et al. 2012), or from pro-/pre B cells (zur Hausen 

et al. 2013). MCs are touch receptors that have characteristics of presynaptic cells 

(Haeberle et al. 2004; Hitchcock et al. 2004; Nunzi et al. 2004). The origin of Merkel 

cells is not clear with some groups suggesting a neural crest origin (Szeder et al. 

2003) and others derivation from the epidermal lineage (Morrison et al. 2009). 
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4.2.2 Human cancer viruses 

MCV is one of the eight viruses that are known to cause tumours to date and the 

first polyomavirus with an etiologic role in human cancer development (Moore & 

Chang 2010). The viruses that are currently known to cause tumours in humans are 

the following. 

Epstein-Barr (EBV) is a double stranded DNA herpesvirus that can cause 

Burkitt’s lymphomas and nasopharyngeal carcinomas, lymphoproliferative 

disorders, Hodgkin’s disease, non-Hodgkin’s lymphomas and gastrointestinal 

lymphomas (Epstein et al. 1964). Hepatitis B virus (HBV) is a single stranded and 

double stranded DNA hepadenovirus that can cause hepatocellular carcinomas 

(Blumberg et al. 1965). The Human T-lymphotropic virus-I (HTLV-I) is a positive-

strand, single-stranded RNA retrovirus that causes adult T cell leukaemia (Poiesz et 

al. 1980).  HPV16 and HPV18, along with some other α-HPV types, which are also 

carcinogenic, are double stranded DNA papillomaviruses, that can cause cervical, 

penile, anogenital and head and neck cancers (Durst et al. 1983; Boshartb et al. 

1984). The hepatitis C virus (HCV) is a positive-strand, single-stranded RNA 

flavivirus, which causes hepatocellular carcinomas and lymphomas (Choo et al. 

1989). The Kaposi’s sarcoma herpesvirus (KSHV) is a double-stranded DNA 

herpesvirus, which causes Kaposi’s sarcoma, primary effusion lymphoma and 

multicentric Castleman’s disease (Chang et al. 1994).  

 

4.2.3 Polyomaviruses 

The first human polyomaviruses, John Cunningham virus (JCPyV or JC) and the BK 

virus (BKPyV) were discovered in 1971 and they were the only members of the 

Polyomaviridae family to be known for decades. Due to advancements of genomic 

amplification technologies, which enabled the discovery of new members of this 

family over the last decade, there are currently 10 human polyomaviruses (HPyVs) 

known (White et al. 2013).  The polyomavirus BK (BKV) was isolated from a kidney 

transplant recipient with the initials B.K. (Gardner et al. 1971) and  JCV was isolated 

from brain tissue of a patient with progressive multifocal leukoencephalopathy 

(Padgett et al. 1971). The Karolinska Institute polyomavirus (Allander et al. 2007) 

and the Washington University polyomavirus (Gaynor et al. 2007), were both 
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isolated from the respiratory tract. Human polyomaviruses -6 and -7 (HPyV6 and 

HPyV7) were identified in normal skin (Schowalter et al. 2010). The Trichodysplasia 

Spinulosa-associated polyomavirus (TSV or TSPyV) has been associated with 

trichodysplasia spinulosa in immunocompromised patients (van der Meijden et al. 

2010). The Human Polyomavirus-9 (HPyV9) was detected from an 

immunosuppressed kidney transplant patient (Scuda et al. 2011), the Human 

Polyomavirus-10 (HPyV10) was isolated from a patient with warts, 

hypogammaglobulinemia infections and myelokathexis (WHIM) syndrome (Buck et 

al. 2012) and the MW Polyomavirus (named after its discovery in Malawi) (MWPyV) 

was isolated from a healthy stool sample (Siebrasse et al. 2012). Although HPyVs 

subclinically infect the general population, they only seem to cause illnesses in 

immunocompromised people. Consistently with the above, HPyV6, -7, -10 and 

TSPyV were found more frequently on the skin of HIV positive compared to  HIV 

negative men (Wieland et al. 2014), but HPyV6, -7, -9, 10 and MWPyV have not 

been associated with any pathology (Dalianis & Hirsch 2013). Through cell culture 

and animal studies BKPyV, JCPyV and the simian vacuolating virus 40 (SV40) have 

been associated with cancer (Del Valle et al. 2008; Bouvard et al. 2012), but only 

MCV is known to have a causative role in tumourigenesis (Feng et al. 2008). 

Research on polyomaviruses began with the discovery of the murine 

polyomavirus (MPyV), which is able to induce tumours in newborn mice (Gross 

1953) and the discovery of the SV40 (Sweet & Hilleman 1960), which can cause 

tumours in experimental animals. Due to the shared genomic and biochemical 

properties of polyomaviruses, studies on SV40 biology have served as a reference 

model for the understanding of the molecular physiology of the more recently 

discovered polyomaviruses (Gjoerup & Chang 2010).  

 

4.2.4 Genome organization of polyomaviruses 

Polyomaviruses are small, non-enveloped, double-stranded DNA viruses with 4.5-

5.5kb genomes, comprised of early and late coding regions. Viral early and late 

genes are transcribed bidirectionally from a noncoding regulatory region (NCRR) at 
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the origin of DNA replication (ori) and subsequently translated from the different 

transcripts that were generated by alternative splicing.  

The early region contains the T antigen locus, which encodes for the large 

and the small tumour antigens (LT and sT) in all polyomaviruses. These genes are 

expressed immediately after infection and encode for proteins important for the 

viral life cycle, by mediating viral DNA replication and regulating cellular 

mechanisms. A large T-antigen variant, encoded by alternative splicing, has been 

detected in SV40 (17k T antigen) (Zerrahn et al. 1993) and in JCV, BKV and MCV 

(Trowbridge & Frisque 1995; Shuda et al. 2008a; Abend et al. 2009). A middle T 

antigen has largely unknown functions in most polyomaviruses, but is the principal 

transforming protein of murine and hamster polyomaviruses (Cheng et al. 2009). 

The late region encodes for three to four proteins (VP1, VP2, VP3 and VP4), 

through alternative splicing and for Agnoprotein. The late region proteins are 

expressed after viral DNA replication has initiated and are required for capsid 

formation. VP4 has so far only been detected in SV40 and promotes cell lysis 

(Daniels et al. 2007). Agnoprotein,  although not found in MCV, plays a role in viral 

replication (White & Khalili 2004). Several polyomaviruses express miRNAs, which 

regulate the expression of early genes at later stages of infection (Sullivan et al. 

2005). 

 

4.2.5 Natural infection and clinical disease 

Polyomaviruses have a narrow host range. Viral infections usually occur early in life, 

but variability is observed in the age of polyomavirus acquisition and 

seroprevalence for various polyomaviruses (Carter et al. 2009). Specifically for MCV, 

seropositivity is observed in about 50% of children up to 15 years of age and up to 

80% in individuals older than 50 years old (Tolstov et al. 2009). However MCC 

suffering patients who are MCV positive have much higher MCV IgG titer than 

asymptomatic carriers (Pastrana et al. 2009).  

Routes of transmission vary between human polyomaviruses, but involve 

the faecal-oral, oral and respiratory routes (Gjoerup & Chang 2010). Although it is 

not clear how polyomaviruses establish persistent infections in various organs, their 



175 
 

detection in blood and lymphoid tissues at high frequencies (Sharp et al. 2009), 

suggests that hematolyphoid cells carry and distribute the viruses.  

Primary infections with human polyomaviruses are usually asymptomatic. 

During this latency state, there is very low viral replication. Dysfunctional host 

immune responses enable viral reactivation, which is characterised by active viral 

replication and can be detected by the presence of late transcription genes and can 

result in disease (Wiedinger et al. 2014). Tissue tropism, i.e. the affinity of a virus 

for specific tissues, and mechanisms of latency and reactivation vary among 

different polyomaviruses, and this is reflected in the differences observed upon 

reactivation, which can be either asymptomatic or symptomatic.  

 

4.2.6 Polyomavirus life cycle 

The infectious viral life cycle begins with the internalisation of virus through 

recognition of its VP1 protein, by specific cellular receptors, which vary between 

different viruses. Internalisation of BKV is mediated by the gangliosides GD1b and 

GT1b (Low et al. 2006). Internalisation of MCV occurs through GT1b (Erickson et al. 

2009), whereas JCV is internalised through GT1b and the serotonin receptor 

5HT2AR (Elphick et al. 2004). The polyomavirus is then transferred through 

caveolae and the endoplasmic reticulum to the nucleus, where its genome is 

transcribed. Initially the proteins encoded from the early region (LT and sT) are 

translated. LT can subsequently initiate viral DNA replication from NCRR, which 

contains the origin of replication. Transcription of the late region occurs after the 

initiation of DNA replication, through activation of the late promoter. VP1, which is 

the principal component of polyomavirus capsomers, assembles with VP2 and VP3 

to form the viral capsid (Gjoerup & Chang 2010).  

 

4.2.7 Molecular mechanism of polyomavirus induced transformation – SV40 as a 

model system 

The size and complexity of the human genome, the presence of both driver and 

passenger mutations in cancer cells (Stratton et al. 2009), along with intratumour 

heterogeneity (Marusyk & Polyak 2010), render direct comparisons between 
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normal and tumour cells, to identify the changes that drive tumourigensesis, 

challenging. Viruses, with their ability to target key modules of signalling pathways, 

have enabled our understanding of oncogenic transformation. The small size of the 

polyomavirus genome has allowed for the use of genetic manipulation in a number 

of studies that have elucidated cellular physiology. Due to their small genome size, 

they rely on the cellular replication machinery, for their own DNA replication. 

Therefore they force S phase entry to facilitate viral genome replication. The 

pathways involved in DNA replication, are also involved in oncogenesis (Gjoerup & 

Chang 2010). 

The SV40 LT is considered the major SV40 oncoprotein, because its 

expression is sufficient to transform rodent fibroblasts. LT’s ability to interact and 

inactivate retinoblastoma protein (pRB) and p53, are considered key for the 

transforming capabilities of the virus (Pipas 1992). SV40 LT interacts with pRb, 

through its LXCXE motif, which is also present in MCV LT (Shuda et al. 2008a). 

Interaction with p53 occurs through a C-terminal site of SV40 LT. Viral DNA 

replication initiates when LT forms double hexamers that bind to the SV40 origin of 

replication. With its helicase activity SV40 LT opens the viral DNA and allows the 

assembly of the cellular machinery required for replication (Wright et al. 2009).  

 

4.2.8 Genome organization of Merkel Polyomavirus 

MCV has a 5.3 kb genome, with an organization similar to that of other 

polyomaviruses. Its characterization was guided by previous knowledge about 

SV40. The MCV genome has a late and an early coding region, which are divided by 

a 71bp NCRR, that contains the viral origin of replication (Kwun et al. 2009) (Figure 

4.2.1). The early region encodes for four proteins. The large T (LT), the small T (sT) 

and the 57kT antigens share a common first exon and are produced through 

alternative splicing. The fourth protein is expressed from an alternate frame of the 

Large T open reading frame (ALTO) (Carter et al. 2013) (Figure 4.2.2). The late 

region encodes for the structural proteins VP1, VP2 and VP3, which are expressed 

after viral DNA replication, and assemble to form the viral structure. The late capsid 

proteins are expressed during the natural polyomavirus lytic infection, but not in 

MCV-induced tumourigenesis, during which only sT and LT are known to be 
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expressed. Unlike other polyomaviruses, MCV does not encode for agnoprotein 

(Chang and Moore, 2012; Houben et al., 2010). 

 

Figure 4.2.1 Genome organization of Merkel Cell Polyomavirus 

The MCV genome encodes for the early (LT, sT, 57kT and ALTO) and late region 
proteins (VP1, VP2 and VP3). Transcription starts bidirectionally at the NCRR, which 
contains the viral origin of replication (red). Figure adapted from (Yuan Chang and 
Moore 2012, Annu. Rev. Pathol. Mech. Dis).       
 

 

Figure 4.2.2 : Transcripts encoded by the early coding region of MCV.  
More than one gene product is encoded from the early region of MCV by 
alternative splicing. LT, sT and 57kT are the main T antigens and share the first 
exon. The reading frame of the first exon of ALTO is +1 shifted in comparison to the 
second exon of LT. 
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4.2.8.1 LT MCV 

The LT antigen contains a DnaJ domain at its N-terminus (Figure 4.2.3), with which it 

interacts with Hsc70. Disruption of this interaction by point mutations disrupts MCV 

viral replication in vitro (Kwun et al. 2009). Downstream of the DnaJ domain lays an 

MCV T antigen unique region (MUR), that contains binding motifs for Vamp6 and 

the retinoblastoma (Rb) family of proteins. LT interacts with hVam6p and 

sequesters it to the nucleus and thus modulates lysosomal clustering (Liu et al. 

2011). Loss of the interaction between LT and Vam6p can lead to enhanced viral 

replication (Feng et al. 2011).  SV40 LT is not known to interact with Vam6p.  

 

 

Figure 4.2.3   Protein domains and motifs within the MCV sT and LT antigens  
Schematic representation of the functional domains of LT and sT antigens. The DnaJ 
domain is common between sT and LT. MUR contains an NLS, the binding motifs for 
Vam6p and Rb family members, as well as the site of complementarity for MCV-
miR-M1. The C terminus of LT contains OBD and the core helicase/ATPase domain, 
which contains the zinc finger domain and exon 3 of 57 kT. The sT contains a DnaJ 
domain at its N-terminus, followed by LSD and PP2A and PP4C/NEMO binding sites. 
CR1: conserved region 1; RB: Retinoblastoma-binding; PP2A: Protein Phosphatase 
2A; NLS: Nuclear Localisation signal; OBD: Origin Binding Domain; MUR: MCV-
unique region; LSD: LT Stabilization Domain (from Wendzicki et al 2015, Current 
Opinion in Virology). 
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MCV LT contains the highly conserved (among polyomaviruses) Rb-binding 

motif (LXCXE), in the MUR. Similar to other polyomaviruses, MCV LT binds to Rb and 

this interaction leads to release of active E2F1 transcription factor from the 

E2F1/Rb complex (Arora et al. 2012). During the cell cycle, CDK4 and CDK6 (cyclin-

dependent kinase 4 and 6) phosphorylate Rb, which releases E2F1, which 

subsequently promotes G1 /S phase transition (Weinberg 1995; Weinberg 1996). 

Therefore through its LXCXE domain MCV LT can drive cells into S phase, when DNA 

replication occurs. Cell growth can be rescued by ectopic expression of LT with 

intact Rb-binding sites, in MCV positive MCC cells, inducibly expressing shRNA 

targeting either all T antigens or LT only. Rb-binding MCV LT mutants fail to rescue 

cell growth, which highlights the importance of MCV LT interaction with LXCXE  

(Houben et al. 2012). 

  The LXCXE domain of MCV LT can also interact with survivin, an inhibitor of 

apoptosis (Arora et al. 2012). MCV LT contains a short nuclear localisation signal 

(NLS), which is frequently lost in mutations observed in MCC. Loss of this NLS 

results in a diffused localisation of LT in both the nucleus and the cytoplasm 

(Borchert et al. 2014). 

In the MUR lies the site of complementarity of the MCV encoded miRNA, 

MCV-miR-1-5p. This miRNA is expressed at low levels in MCC tumours and although 

the biological relevance of this miRNA remains to be studied, its sequence suggests 

that it can target both the viral LT and cellular genes (Lee et al. 2012). 

The C-terminus of MCV LT contains elements required for viral DNA 

replication. The Origin Binding Domain (OBD) recognizes and binds to the origin of 

replication (Harrison et al. 2011; Liu et al. 2011). Phosphorylation of two threonines 

upstream of the OBD (T297 and T299) can negatively affect binding to ori and thus 

replication (Diaz et al. 2014). The zinc-finger motif and the helicase/ATPase domain, 

of MCV LT are important for initiation of replication. Most MCC derived LTs studied 

have mutations that prematurely truncate LT and result in elimination of viral 

replication (Shuda et al. 2008a). Exogenous expression of an intact LT C-terminus 

promotes the DNA damage response (DDR) (Li et al. 2013) and can inhibit cell 

growth even in an established MCC cell line and also in SV40-immortalized MCC cell 
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lines (Cheng et al. 2013). Phosphorylation of MCV LT at S816, by ATM kinase, might 

contribute to the anti-proliferative effects of the LT C-terminus (Li et al. 2015) . 

4.2.8.2 sT MCV 

MCV sT shares its first exon with LT. Although the DnaJ domain of LT is required for 

replication, its role in sT is not yet defined. Similar to the DnaJ domain in SV40 sT, 

which does not have a role in tumorigenesis (Srinivasan et al. 1997; Boyapati et al. 

2003), an intact DnaJ domain in MCV sT is not required for viral DNA replication in 

vitro (Kwun et al. 2009) or for the transformative activity of sT in Rat-1 cells  (Shuda 

et al. 2011).  

SV40 and MuPyV sT regulate the Akt-mTOR pathway, by interacting with 

PP2A  (Pallas et al. 1990; Rodriguez-Viciana et al. 2006; Hwang et al. 2013). PP2A is 

a phosphatase that consists of 3 subunits. Subunit A is the scaffolding subunit, 

subunit B is the regulatory and subunit C is the catalytic subunit. The DnaJ domain 

of MCV sT, unlike sTs from other polyomaviruses, is dispensable for transformation 

both in vitro (Shuda et al. 2011) and in vivo (Verhaegen et al. 2015). Although it can 

displace the B subunit of PP2A, this activity is not sufficient for cellular 

transformation, most likely because of the limited number of PP2A B subunits it can 

displace (Kwun et al. 2015).  

MCV sT forms a loop predicted to be in the opposite molecular surface of 

the PP2A-binding domain. Residues 91-95, which are part of this loop, form the LT-

Stabilization Domain (LSD). This domain can inhibit the SCFFbw7 E3 ubiquitin ligase, 

which targets MCV LT, as well as known oncoproteins such as c-myc and cyclin E. 

MCV sT thus participates in tumourigenesis by inhibiting degradation of both intact 

and truncated MCV LT proteins as well as other SCFFbw7 targets (Kwun et al. 2013).  

The MCV sT LSD domain interacts with the eukaryotic initiation factor 4E 

(eIF4E) binding protein (4E-BP1), a key regulator of eukaryotic cap-dependent 

translation. 4E-BP1 has four phosphorylation sites (T37, T46, T70 and S65). When 

4E-BP1 is unphosphorylated or hypophosphorylated (T37 and T46), the protein can 

efficiently sequester eIF4E and thus prevent its interaction with other members of 

the translation initiation machinery and subsequently inhibit cap-dependent 

translation initiation. When T70 and S65 are phosphorylated, interaction of 4E-BP1 
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with eIF4E is abolished and cap-dependent translation can begin (Karim et al. 2001; 

Wang et al. 2003). MCV sT expression has been shown to promote 4E-BP1 S65 

hyperphosphorylation and prevent its loss, independently of mTOR activity (Shuda 

et al. 2011). Interaction of MCV sT with PP2A (Shuda et al. 2011) and Fbw7 (Kwun 

et al. 2013) are not required for 4E-BP1 hyperphosphorylation. Expression of the 

phosphorylation-defective, constitutively active 4E-BP1T37A/T46A, reverses MCV sT 

induced rodent fibroblast transformation, suggesting an effect of 4E-BP1 

phosphorylation on sT induced transformation (Shuda et al. 2011).  

MCV sT, apart from the SCFFbw7 E3 ubiquitin ligase (Kwun et al. 2013), also 

targets and inhibits the E3 ligase activity of the anaphase-promoting 

complex/cyclosome (APC/C). The MCV sT-APC/C interaction results in increased 

CDK1/CYCB1  activity and subsequent 4E-BP1 phosphorylation (Shuda et al. 2015). 

NF-kappaB is a family of transcription factors with a central role in 

regulation of inflammation and immunity. NF-kappaB exerts its role by translocating 

from the cytoplasm, where it is sequestered by the IκB kinase (IKK) complex, to the 

nucleus, upon inflammatory stimulation. NEMO (NF-kappaB essential modulator) is 

the scaffold of the IKK complex. MCV sT interacts with protein phosphatase 4C 

(PP4C) and/or PP2A Aβ and targets NEMO, thus preventing NF-kappaB nuclear 

translocation and transcription initiation (Griffiths et al. 2013). 

A proteomic study (Knight et al. 2015) showed that MCV sT can also promote 

cell motility, migration and invasion.  

 

4.2.9 Causal role of MCV in Merkel Cell Carcinoma development 

Infection with MCV is common, but only rarely induces tumourigenesis. To test 

seropositivity for MCV, an enzyme-linked immunosorbent assay, designed for virus 

like particles (VLP), constituted by MCV VP1 and VP2, was developed. Although 

various control populations, including MCV negative MCC patients tested positive 

for the assay, their antibody titers were significantly lower than those of MCV 

positive MCC patients (Tolstov et al. 2009). 

A range of human cancers, including hematolymphoid malignancies, 

cutaneous melanomas, basal cell carcinomas and neuroendocrine tumours, have 
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been screened for viral genome integration and MCV protein expression. However 

MCV was either undetectable in non-MCC tumours, or its presence could not be 

significantly associated with pathological features (Schmitt et al. 2011; Gheit et al. 

2012; Shuda et al. 2009). Quantitive PCR studies show the presence of more than 

one copy of the viral genome in MCV positive MCC tumours. Non-MCC tumours 

that have tested positive for MCV, have 2-4 logs lower copy numbers than MCV 

positive MCCs (Shuda et al. 2009). MCV is detectable at low quantities even in 

normal samples, from the aerodigestive, the respiratory and the genitourinary 

tract, suggesting that it natively infects these tissues (Loyo et al. 2010).  

The causative role of MCV in MCC is supported by the clonal pattern of MCV 

integration, which suggests viral integration prior to tumour development. In one 

case the same pattern of integration was observed in both the primary and 

metastatic tissue, further supporting the role of the virus in initiation and 

metastasis of the tumour (Feng et al. 2008). Although viral integration occurs at 

various sites of the genome, the potential importance of these sites in regulating 

molecular pathways required for tumourigenesis is unknown. 

Tumour derived MCVs present mutations or deletions that eliminate the 

viral helicase activity and thus its replicative ability. Although the exact sites of 

these mutations differ among various MCC-isolated MCVs, they never affect the N-

terminal domains, including the Rb-interacting LXCXE domain, and the sT protein. 

Mutations affecting the viral replicative ability, would eventually lead to viral loss, if 

they occurred prior to viral genome integration.  Maintenance of its replicative 

ability, while it is integrated, could potentially lead to collisions with cellular 

replication forks and subsequent DNA damage, that would prevent tumour 

formation (Shuda et al. 2008a). The above suggests that MCV is not a virus that 

secondarily infects tumour cells. It is likely that viral integration and subsequent 

mutations that prevent viral replication, but maintain the domains vital for 

interaction with cellular oncoproteins, are the first steps of MCC development. The 

requirement for these events, could explain the rarity of MCC and its occurrence 

mostly in skin exposed to UV.   

Immunohistochemical analysis has shown MCV T antigen expression in MCV 

positive MCC tumour cells (Shuda et al. 2009). MCV T antigen shRNA knockdown, 
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results in growth arrest and cell death, both in MCV positive MCC derived cell lines, 

(Houben et al., 2010) and in vivo (Houben et al. 2012). The above suggest that T 

antigen expression is required for tumourigenesis and that MCV is the infectious 

cause of MCV positive MCC (Houben et al., 2010).  

 

4.2.10 Cap-dependent translation  

As mentioned previously MCV sT can preserve hyperphosphorylation of 4E-BP1, 

which results in dysregulation of cap-dependent translation. In eukaryotic cells, 

translation plays an important role in cell growth and proliferation. Aberrations in 

translation are associated with oncogenesis, apoptosis and dysregulated cell growth 

(Gingras et al. 1999). All nuclear-encoded cellular mRNAs possess a 7-methyl 

guanosine residue, which caps their 5’ ends and facilitates their binding to 

ribosomes and subsequent translation initiation (Richter & Sonenberg 2005). The 

rate limiting event in translational initiation is recruitment of the small ribosomal 

subunit to mRNA, which is mediated by the binding of eIF4E to the 5’ cap. eIF4E is a 

component of the eIF4F complex, which also includes eIF4G and eIF4A (Gingras et 

al. 1999).  

Overexpression of eIF4E has been shown to promote tumourigenesis in NIH-

3T3 cells (Lazaris-Karatzas et al. 1990) and in Chinese hamster ovary (CHO) cells (De 

Benedetti et al. 1994). The myc oncogene is not sufficient to transform rat embryo 

fibroblasts, but can do so with the cooperation of eIF4E (Lazaris-Karatzas & 

Sonenberg 1992; De Benedetti et al. 1994). eIF4E can also stimulate the oncogenic 

activity of the ras oncogene (Lazaris-Karatzas et al. 1992). Knockdown of eIF4E 

inhibits growth of head and neck squamous carcinoma cells (Oridate et al. 2005), 

while its overexpression accelerates lymphomagenesis (Wendel et al. 2004). 

Overexpression of eIF4E in transgenic mice induces B-cell lymphomas, 

angiosarcomas, lung adenocarcinomas and hepatocellular adenomas with the 

collaboration of myc  (Ruggero et al. 2004). eIF4E is overexpressed in a range of 

tumour cell lines (Miyagi et al. 1995) and solid tumours. Increased eIF4E expression 

in non-Hodgkin’s lymphomas is associated with more aggressive phenotypes (Wang 

et al. 1999). eIF4E is overexpressed in the early stages of colon cancer development 
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(Rosenwald et al. 1999; Berkel et al. 2001), in bronchioloalveolar lung carninomas 

(Rosenwald et al. 2001), in some head and neck squamous carcinomas (Sorrells et 

al. 1999; Nathan et al. 1997) and in aggressive thyroid carcinomas (Wang et al. 

2001). However, it appears that the effect of eIF4E overexpression on translation is 

not generic, instead it preferentially increases the translation rates of mRNAs with 

GC-rich and highly structured 5’ UTRs (Koromilas et al. 1992; Graff & Zimmer 2003; 

Hay & Sonenberg 2004). These mRNAs are translated at low rates under normal 

conditions and typically encode for proto-oncoproteins (e.g. c-myc, cyclin D1 and 

ornithine decarboxylase) and proteins that promote angiogenesis (FGF-2, VEGF), 

invasion and metastasis (MMP-9 and heparanase) (Mamane et al. n.d.; De 

Benedetti & Graff 2004; Richter & Sonenberg 2005; Graff & Zimmer 2003). A more 

recent study suggests, that 4E-BP1 inactivation leads to upregulation of transcripts 

with 5’ terminal oligopyrimidine (TOP), or TOP-like motifs. TOP mRNAs are 

characterized by the presence of cytidine immediately after the 5’cap, followed by 

an uninterrupted stretch of 4-14 pyrimidines (Thoreen et al. 2012).  

The eIF4E-binding proteins (4E-BP1, 4E-BP2 and 4E-BP3) also known as PHAS 

(Phosphorylated Heat and Acid-Stable) are small 10-12 kD proteins that can inhibit 

cap-dependent translation by binding to eIF4E and thus interrupting eIF4F complex 

formation (Pause et al. 1994; Poulin et al. 1998). When 4E-BP1 is 

hypophosphorylated it binds to eIF4E and prevents its interaction with eIF4G and 

subsequent translational initiation. Hyperphosphorylation of 4E-BP1 disrupts the 

4E-BP1- eIF4E interaction. A range of extracellular stimuli including growth factors, 

hormones, cytokines and mitogens induce mammalian target of rapamycin (mTOR)-

mediated 4E-BP1 phosphorylation, resulting in increased translation rates. 

Conversely starvation and growth factor deprivation induce 4E-BP1 

dephosphorylation and subsequent reduction in cap-dependent translation 

(Gingras et al. 1999). The phosphorylation of 4E-BP1 occurs at specific serine and 

threonine residues of the protein. Phosphorylation of Thr 37 and Thr 46 precedes 

and is required for the phosphorylation of Ser 65 and Thr 70 (Gingras et al. 2001; 

Gingras et al. 1999; Karim et al. 2001; Wang et al. 2003). In HEK293 cells 

phosphorylation of Thr 37 and Thr 46 is not inhibited by rapamycin or serum 

starvation. However serum addition and rapamycin have a strong effect on the 
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phosphorylation and dephosphorylation respectively of Ser 65 and Thr 70 (Gingras 

et al. 1999). 4E-BP1 has been shown to be highly phosphorylated in a series of 

tumours, including breast (Zhou et al. 2004; Armengol et al. 2007; Rojo et al. 2007), 

ovarian (Castellvi et al. 2006), melanoma (O’Reilly et al. 2009) and prostate cancer 

(Armengol et al. 2007). 

 MCV sT antigen induces hyperphosphorylation of eukaryotic initiation 

factor 4E (eIF4E) binding protein (4E-BP1) on serine 65, thus increasing the activity 

of eIF4E either by reducing turnover of hyperphosphorylated 4E-BP1 or by 

inhibiting 4E-BP1 dephosphorylation (Shuda et al. 2011). In MCV sT antigen-

transformed cells the oncogenic phenotype can be reversed by the introduction of 

a constitutively active unphosphorylated 4E-BP1 protein, which implies that MCV 

might induce carcinogenesis by dysregulating cap-dependent translation through 

4E-BP1 hyperphosphorylation (Shuda et al. 2011). 
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4.2.11 Aim1: Study of the effect of the MCV sT antigen on protein synthesis  

MCV induced MCC tumours express both sT and LT antigens (Feng et al. 2008). 

Although knockdown of both antigens is required to cause cell death, sT is more 

highly expressed than LT and is sufficient to transform rodent fibroblasts (Rat-1) 

and promote serum-free proliferation of human fibroblasts (BJ-TERT) (Shuda et al. 

2011).  MCV sT exerts its transforming effect by inducing hyperphosphorylation of 

S65 4E-BP1, which results in liberation of eIF4E from 4E-BP1 and ultimately 

dysregulation of cap-dependent translation (Shuda et al. 2011).   

The first aim was to investigate the effect of MCV sT on protein expression 

and its potential role in MCC tumourigenesis, by applying ribosome profiling. To 

create an appropriate model system we aimed to establish a tetracycline inducible 

system in the Rat-1 cell line that would inducibly express sT or the sT.91-95A 

mutant. The mutant sT was used as a negative control because of the 

demonstrated inability (Kwun et al. 2013) of this protein to transform Rat-1 cells. 

We opted for an inducible system because it can facilitate the regulated expression 

of MCV sT and enable the study of the initial steps of sT-induced transformation.  

 

4.2.11.1  Tetracycline regulated mammalian expression system 

The tetracycline inducible system was developed in an effort to establish regulated 

transcription in mammalian cells (Gossen & Bujard 1992). In the Tetracycline 

system we have used (tet-on), the gene of interest is cloned downstream of a CMV 

promoter and two tetracycline operators (TetO2). A second plasmid constitutively 

expresses the Tet repressor which binds to the TetO2 thus preventing transcription 

of the gene of interest. Addition of tetracycline or a stable tetracycline analogue 

(such as doxycycline), induces conformational changes to the Tet repressor, which 

can no longer bind to the TetO2 sites, thus enabling transcription of the gene of 

interest (see Figure 4.2.4).   
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Figure 4.2.4 Schematic illustration of the components of the tetracycline 
inducible system. The Tet repressor (tetR) protein is constitutively expressed. 
TetR homodimers bind to the Tet operator (TetO2) sequences, in the inducible 
expression vector, upstream of the gene of interest and repress its expression. 
When doxycycline (or any tetracycline or tetracycline analogue) is added, it binds to 
the Tet repressor and causes its conformational change, which results in release of 
the Tet repressor from the Tet operator sequences and subsequent expression of 
the gene of interest.   
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4.2.12 Aim2: Characterization of the changes in protein synthesis induced by MCV  

Shuda et al (2011) have shown that deregulated cap-dependent translation has a 

causative role in MCV sT induced MCC tumour development. This finding implies 

that alterations in protein synthesis have a significant effect on MCC development 

and potentially progression, exactly as already suggested for non-viral induced 

tumours (Gingras et al. 1999). 

To gain a better understanding of the alterations that occur in protein 

synthesis in human MCV positive MCC and their potential role in disease 

progression, we aimed to apply ribosome profiling on MCC derived cell lines. MKL-1 

is a cell line derived from a nodal metastasis of an MCV positive MCC tumour 

(Rosen et al. 1987; Shuda et al. 2008b). MKL-1 cells stably transduced with sT 

shRNA or scrambled shRNA were analyzed using ribosome profiling. 

Application of ribosome profiling in MCV induced cell lines of various stages 

can provide an insight into the changes of protein synthesis that occur and 

potentially have a causative role in tumour progression. Ribosome profiling cannot 

only provide quantitative information regarding gene expression, but most 

importantly a snapshot of in vivo translation (Ingolia et al. 2009; Ingolia et al. 2011).  

Ribosome profiling data of MCV sT expressing cell lines were expected to 

show increased expression of cancer related proteins already known to be highly 

expressed as an effect of eIF4E overexpression (e.g. c-myc, cyclin D1, ornithine 

decarboxylase, FGF-2, VEGF, MMP-9 and heparanase) (Mamane et al. n.d.; Richter 

& Sonenberg 2005; Graff & Zimmer 2003; De Benedetti & Graff 2004). Detection of 

upregulation of these proteins would be used as an internal control for ribosome 

profiling.  
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4.3 Materials and methods 

All chemicals used were purchased from Sigma Aldrich unless otherwise stated. All 

restriction enzymes were purchased from New England Biolabs (NEB, Ireland). DNA 

purifications, agarose gel electrophoresis, cloning, PCR and bacterial transformation 

were performed using standard molecular biology techniques or according to the 

relevant kit instructions. PCR reactions were amplified using a TProfessional Basic 

Gradient Thermal cycler (Biometra). 

 

4.3.1 MTT assay for cell viability 

Rat1 cells were seeded to 96 well culture plates at 25% confluency. Once they 

attached, the media was aspirated and replaced with Dulbecco’s modified Eagle’s 

medium (DMEM) supplemented with 10% FBS containing various concentrations of 

blasticidin (1, 3, 5, 7.5 or 10μg/ml) (Invivogen, ant-bl-1), or zeocin (50, 125, 250, 

500, 750 or 1000 mg/ml) (Invivogen, ant-zn-1). Each concentration of each 

antibiotic was assayed once every three days over a period of 15 days. Medium was 

replaced and fresh medium was added with the appropriate concentration of 

antibiotic every three days.  

Stocks of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide 

(MTT) (Sigma, M2128-16) were prepared by dissolving MTT powder in phenol-red-

free RPMI-1640 media at a concentration of 5mg/ml and stored at -20°C (protected 

from light). MTT was added to cells at a final concentration of 0.5mg/ml and 

incubated for 3 hours at 37°C, 5% CO2. All media was aspirated carefully and purple 

formazan crystals were dissolved instantly upon addition of 200μl DMSO per well. 

The plates were then incubated at room temperature with gentle shaking for 10 

minutes to solubilize the crystals. The absorbance of each well was measured at 

540nm on an Infinite 2000 spectrophotometric plate reader (Tecan).  

 

4.3.2 Cell culture 

Rat-1 and HEK293T cells were maintained in DMEM supplemented with 10% FBS, 1 

mM L-glutamine and 1% penicillin/streptomycin.  
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4.3.3 Transfections to make Rat-1 cell lines stably expressing pcDNATM6/TR or 

pcDNA4 

Cell transfection was optimised for Rat-1 cells. 370,000 Rat-1 cells were plated in 

the well of a 6-well plate. After 24 hours the cells were transfected by adding 0.9 μg 

of the Tet repressor containing plasmid (pcDNATM6/TR), or pcDNA4 (empty vector, 

sT MCV or sT.91-95A cloned into pcDNA4) and 4 μl or 2 μl lipofectamine 

respectively, in 200 μl Optimem (Gibco).  

 

Cell transfection in 10cm plates. 

1.6x106 Rat-1 cells were plated in a 10 cm dish. After 24 hours the cells were 

transfected by adding 3μg pcDNATM6/TR and 22 μl lipofectamine in 1100 μl 

Optimem (Gibco).  

For simultaneous transfection of pcDNA6 and pcDNA4 plasmids, 3μg of 

pcDNA6 and 0.5μg of pcDNA4 and 20 μl lipofectamine in 500 μl Optimem in 10ml of 

medium (+10% FBS) were transfected into ~90% confluent cells. 

 

4.3.4 Antibiotic selection and cloning disks. 

48 hours after transfection, cells were treated with the appropriate selection 

antibiotic (5 μg/ml blasticidin for plasmid pcDNATM6/TR or 500 μg/ml zeocin for 

plasmid pcDNATM4/TO). After a week of blasticidin treatment, the polyclonal cell 

culture was diluted (1:50, 1:100 and 1:200) in medium with blasticidin in 15 cm 

dishes, to isolate monoclones. After 10 days cells from the 1:200 dilution dish were 

further diluted 1:10, 1:100, 1:400 and 1:1000, to ensure monoclonality. Cells were 

allowed to expand and form discernible colonies for 8 days. Twelve individual 

colonies were trypsinised and transferred to individual wells of a 24-well plate with 

the use of cloning disks for monoclonal expansion. Stable integrants were assayed 

for the highest Firefly luciferase activity levels upon doxycycline addition.  

Rat-1 cells transfected in a 10 cm dish with the pcDNATM6/TR plasmid were 

treated 24 hours after transfection with medium supplemented with 5 μg/ml 

blasticidin.  
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4.3.5 Cell cloning by serial dilution 

Transfected cells were incubated at 37°C in 5% CO2 in medium supplemented with 

the appropriate selection antibiotic (5 μg/ml blasticidin for plasmid pcDNATM6/TR or 

500 μg/ml zeocin for plasmid pcDNATM4/TO) for two weeks after transfection. The 

polyclonal cells from the blasticidin selection step were plated at a density of 5 or 

15 or 25 cells/ml in a 96-well tissue culture plate adding 200 μl per well (i.e. 1, or 3, 

or 5 cells per well). After seven days cells were transferred from the 5 cells/well 96-

well plate to a 24-well plate. 

 

4.3.6 Dual luciferase assay. 

Stable Rat-1 monoclones were transfected using Lipofectamine 2000 reagent 

(Invitrogen). For each transfection the following were added to each well: 2ng of 

pcDNA4_FLuc, 2 ng of a Renilla luciferase expressing construct, 0.2μl lipofectamine 

and 25μl Optimem. The cells were incubated at 37°C in 5% CO2 for 24 hours and 

then treated with doxycycline at a final concentration of 0.5 μg/ml doxycycline or 

DMSO for 24 hours. After the treatment cells were washed once with 1 x PBS and 

then lysed in 25μl of 1 x passive lysis buffer (Promega) and Firefly and Renilla 

luciferase activities were determined using the Dual Luciferase Stop & Glo® 

Reporter Assay System (Promega). Relative light units were measured on a Veritas 

Microplate Luminometer with two injectors (Turner Biosystems). 

HEK-293T cells were transfected with Lipofectamine 2000 reagent 

(Invitrogen), using the 1-day protocol in which suspended cells are added directly to 

the DNA complexes in full-area 96-well plates. For each transfection the following 

were added to each well: 100ng of pcDNA6 and pcDNA4_Luc plasmids at three 

different ratios (1:1, 4:1 or 1:4), 10ng of Renilla luciferase expressing plasmid plus 

0.4μl Lipofectamine 2000 (Invitrogen) in 50μl Optimem (Gibco). The transfecting 

DNA complexes in each well were incubated with 8 x 104 cells suspended in 100μl 

DMEM + 10% FBS. Transfected cells were incubated at 37°C in 5% CO2 for 24 hours. 

On the next day cells were treated for 24 hours with either doxycline at a final 

concentration of 0.5μg/ml or DMSO. After the treatment cells were washed once 

with 1 x PBS and then lysed in 25μl of 1 x passive lysis buffer and Firefly and Renilla 

luciferase activities were determined using the Dual Luciferase Stop & Glo® 
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Reporter Assay System (Promega). Relative light units were measured on a Veritas 

Microplate Luminometer with two injectors (Turner Biosystems).  

Rat-1 cells were plated at 6 x 104 in full area 96-well plates and allowed to attach 

for 4 hours. After 4 hours they were transfected with the same protocol used for 

HEK-293T cells.   

4.3.7 Cloning 

Codon optimized sT and sT.91-95A antigen sequences (provided by Moore and 

Chang’s lab, University of Pittsburgh, Pennsylvania, USA) cloned in pcDNA6 vector, 

were digested with EcoRV and XhoI and directionally subcloned into an EcoRV and 

XhoI digested and antarctic phosphatase treated pcDNA4 vector. The Firefly 

luciferase gene was subcloned into a PstI and NotI digested and antarctic 

phosphatase treated pcDNA4 plasmid (pcDNA4_Luc). All clones were verified by 

sequencing. 

 

4.3.8 Genomic DNA extraction 

Cells were pelleted and washed with PBS. The pellet was either frozen or used 

immediately for genomic DNA extraction. Phase separation was achieved by 

addition of equal volumes of PBS and phenol-chloroform-isoamyl alcohol (25:24:1) 

(pH=7.8-8.2)(Sigma, 77617-500ml) to the pellet, gentle mixing and centrifugation at 

12,000xg for 3 minutes at 4°C. The nucleic acids containing upper aqueous phase 

was transferred to a fresh 1.5 ml centrifuge tube and an equal volume of phenol-

chloroform-isoamyl alcohol (25:24:1) was added to the aqueous phase and the 

sample was processed as above. The aqueous phase was transferred to a fresh tube 

and an equal volume of chloroform was added to the tube to remove traces of 

phenol. The sample was mixed well and centrifuged at 12,000xg for 3 minutes. The 

upper aqueous phase was transferred to a fresh tube and the DNA was precipitated 

with 10% of 3M sodium acetate (pH= 5.2M) and 3 volumes of 100% ethanol. The 

sample was incubated for an hour at -80°C. DNA was harvested by centrifugation at 

12,000xg for 5 minutes at 4°C. The supernatant was carefully removed and the 

pellets were dried for 10 minutes at room temperature before resuspension in 

DNAse-free ddH2O. 



193 
 

 

4.3.9 Soft agar colony formation assay 

Two established double stable Rat1 monoclones were assessed with the soft agar 

colony formation assay. Rat-1 cells were  trypsinised to single cells, counted, 

suspended in complete medium containing 0.3% low melting agarose (Sigma-

Aldrich) and seeded over a 0.6% agar layer in 35 mm dishes (2,000 cells/ dish). 500 

μl of fresh media containing 2 μg/ml of doxycycline or DMSO were added gently to 

the top of each well every 4 days. After 3 weeks, colonies were stained with crystal 

violet (0.01% in ethanol) and plates were photographed for soft agar colony 

formation assay.  

 

4.3.10 SDS-PAGE and Immunoblot analysis  

Cells were resuspended in RIPA buffer (50mM TrisHCl, pH=8, 150mM NaCl, 0.1% 

SDS, 0.5% sodium deoxycholate, 1% Triton X-100), supplemented with protease 

inhibitor cocktail (Sigma, P8340). Samples were lysed on ice for 10 minutes and 

then centrifuge at 16,000xg at 4°C for 10 minutes. The supernatant was mixed in a 

1:1 ratio with 2X Laemmli buffer and heated at 95°C for 5 minutes prior to loading. 

Proteins were separated using the Bio-Rad Mini-ProteanII gel electrophoresis 

system. Samples were run through the stacking (5% acrylamide) and resolving (15% 

acrylamide) gel at 100V. Separated protein samples were transferred to Whatman 

Protran nitrocellulose membrane using wet transfer conditions at 100V for 1 hour. 

The membrane was blocked in 2.5% non-fat dry milk (Marvel) in PBS containing 

0.1% Tween (PBS-T) for 1 hour at RT. Blocking buffer was removed and membranes 

were probed with the CM8E6 primary antibody (1:250 dilution in 2.5% milk in PBS-

T) overnight with gentle rocking at 4°C. Membranes were washed 3x 5minutes with 

PBS-T. Secondary antibody donkey anti-mouse IRDYE 800 (LI-COR) was diluted 

1:5,000 in 2.5% milk in PBS-T and overlaid onto the membrane for at least 1 hour 

with rocking. The membrane was washed again (3x 5 minutes) with PBS-T and then 

a final wash in PBS. Membranes were imaged using the membrane module on the 

Odyssey infrared scanning system (LI-COR). The CM8E6 antibody was a kind gift 

from the Chang-Moore lab (University of Pittsburgh).  
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4.3.11 Ribosome profiling 

Ribosome profiling technique was carried out according to (Ingolia et al. 2012) with 

some modifications. Frozen pellets of MKL-1 cells transduced with shRNA were 

resuspended in buffer containing 20 mM Tris–HCl (pH 7.5), 250 mM NaCl, 1.5 mM 

MgCl2, 1 mM DTT, 0.5% Triton X-100, 100 μg/ml cycloheximide (Sigma-Aldrich), 20 

U/ml TURBO DNAse (Ambion, Waltham, MA). The buffer we used contains low 

magnesium (1.5 mM), since high magnesium concentrations stabilize secondary 

structures in mRNAs which may hamper digestion by RNAse I (RNAse I does not 

require divalent cations for its activity) and lowering magnesium concentration in 5 

mM to 15 mM range has been shown to improve footprint resolution (Ingolia et al. 

2012). Cell lysates were incubated on ice for 10 min, centrifuged at 16,000×g at 4°C 

for 10 min, and the supernatant was divided into two parts for ribo-seq and RNA-

seq library preparation. The lysate for Riboseq was treated with RNAse I (Ambion) 

with 100 U per 3.1 A260 of lysate at 23°C for 50 min. The digestion was then 

stopped with the appropriate amount of SUPERASE inhibitor (Ambion). The treated 

lysate was loaded on 10–60% (m/v) sucrose density gradient containing 20 mM 

Tris–HCl (pH 7.5), 250 mM NaCl, 15 mM MgCl2, 1 mM DTT, 100 μg/ml 

cycloheximide and centrifuged in SW-41 rotor at 35,000 rpm for 3hr. Sucrose 

density gradients were prepared as described previously (Stone 1974). Briefly, 5.5 

ml of 10% sucrose was slowly layered onto the same volume of 60% sucrose, 

gradient tubes were then sealed with parafilm, slowly placed horizontally for 4 hr to 

allow spontaneous gradient formation and then slowly returned to a vertical 

position. Total RNA from the fractions corresponding to 80S peak was then 

extracted with phenol/chloroform followed by ethanol precipitation. For the RNA-

seq control, the second lysate aliquot was processed with Trizol-LS (Life 

Technologies, Waltham, MA) according to the manufacturer’s protocol. mRNA from 

total RNA was isolated using the Oligotex mRNA kit (Qiagen, Netherlands). Purified 

mRNA was then subjected to alkaline hydrolysis as described by (Ingolia et al. 

2009). Both ribo-seq and mRNA-seq samples were loaded onto a 15% denaturing 

urea PAGE (containing 7 M urea, and acrylamide:bisacrylamide in the ratio 19:1). 
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Bands corresponding to nucleic acid fragments of 28–34 nt were excised for both 

ribo-seq and RNA-seq samples. RNA was extracted using buffer containing 0.3 M 

NaOAc (pH 5.1), 1 mM EDTA, and 0.1% SDS, by overnight shaking at room 

temperature, followed by precipitation with one volume of isopropanol and 2 μl of 

GlycoBlue (Life Technologies). 

The library preparation was carried out as previously described (Ingolia et al. 

2012) with the following modifications. The circularization reaction was performed 

for 2 hr. During PCR library amplification, the temperature ramping speed was set 

as 2.2°C/s to reduce bias associated with GC content (Aird et al. 2011). Libraries 

were sequenced on an Illumina HiSeq 2000 system at the Beijing Genomics Institute 

(BGI). 
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4.4  Results: Aim1: Study of the effect of the MCV sT antigen on protein 

synthesis  

To study the effect of MCV sT on the initial steps of Rat-1 cells transformation, we 

set out to establish an inducible system to express sT or its non-transforming 

mutant sT.91-91A, upon addition with doxycycline, which is a tet mimetic.  

In the system that we used (Figure 4.4.1) the amount of Tet Repressor 

expressed in cells transfected with pcDNA6, determines the level of transcriptional 

repression of the Tet operator sequences.  

 

 

Figure 4.4.1 Schematic representation of the plasmids used in the tetracycline 
inducible system.  
The pcDNATM6/TR plasmid encodes for the Tet repressor under the control of the 
CMV promoter. It contains the blasticidin resistance gene to allow selection of 
stable cell lines. The rabbit β-globin intron II (IVS) sequence enhances expression of 
TetR in mammalian cells (van Ooyen et al. 1979). In the pcDNA4 vector the gene of 
interest (sT or sT.A91-95A) is cloned downstream of the Tet operator. Transcription 
is under the control of the CMV promoter. pcDNA4 also encodes for zeocin, which 
can be used as a selectable marker. Both plasmids contain an ampicillin resistance 
gene, which enables their propagation in E.coli under ampicillin selective pressure.  
 

 

To test the efficiency of the tetracycline inducible system the firefly 

luciferase gene, was cloned downstream of the Tet operator gene (pcDNA4_FLuc) 

and this construct was used as a monitor for Tet repressor expression. To test the 

transfection efficiency of Rat-1 cells and to find the optimal amount of Tet 

Repressor for this cell line, Rat-1 cells were transiently transfected with different 

ratios of the Tet repressor expressing plasmid (pcDNA6), pcDNA4_FLuc as well as an 
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internal control plasmid expressing Renilla luciferase (Rluc) and analysed by dual 

luciferase assays. HEK293T cells were used as positive controls, because of their 

high transfection efficiency. This experiment (Figure 4.4.2) showed that HEK293T 

cells have higher transfection efficiency than Rat-1 cells and that the ratio of 

pcDNA6:pcDNA4 did not have a major imjpact on the transfection efficiency.  

 

 

Figure 4.4.2: Efficiency of the tetracycline regulated expression system in Rat-1 
and HEK-293T cells. 
Rat-1 and HEK-293T cells were transiently cotransfected with both the operator 
containing pcDNA4_FLuc and repressor containing (pcDNATM6/TR) plasmids. The 
cells were cultured in the presence of doxycycline (0.5 μg/ml) or DMSO and after 24 
hours, luciferase expression was measured. Firefly values were normalised for 
transfection using Renilla luciferase. Data represent the mean and standard 
deviation of one experiment done in triplicate. 
 

 

To generate stable cell lines expressing the Tet repressor and sT or sT.91-

95A, the minimum concentration of blasticidin and zeocin required to kill 

untrasfected cells, had to be determined. To ensure use of minimal antibiotic 

concentration, a range of concentrations suggested by the manufacturer were 

tested. The number of viable Rat-1 cells was quantified by a colorimetric assay with 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). As shown in 

figure 4.4.3 the optimal antibiotic concentration was determined at 5µg/ml for 

blasticidin and 500 µg/ml for zeocin.  
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A) 

 

 

B)  

 

Figure 4.4.3 Viability assay to test minimum concentration of blasticidin and 
zeocin in untransfected Rat-1 cells. Cells were plated at 25% confluency in 12x 96 
well plates (1 plate per time point per antibiotic) and treated with various 
concentrations for the indicated amount of time. Readings were taken after 0, 3, 6, 
9, 12, or 15 days of treatment. The medium was changed every three days with 
fresh medium with the appropriate antibiotic concentration to compensate for loss 
of activity over prolonged incubation. A. Cell viability was tested at six different 
concentrations of blasticidin (0, 1, 3, 5, 7.5, 10 μg/ml). With 5 μg/ml of blasticidin 
the cell viability dropped to 44% and 10% after 3 and 6 days of treatment 
respectively. This concentration was used for selection after Rat-1 cells’ 
transfection with pcDNA6/TR©. B. Cell viability was tested at six different 
concentrations of zeocin (1, 50, 125, 250, 500, 750 and 1000 μg/ml). With 500 
μg/ml of zeocin the cell viability dropped to 55% and 7% after 3 and 6 days of 
treatment respectively, therefore this concentration was used for selection after 
Rat-1 cells’ transfection with pcDNA4TM/TO vector.  
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Once the appropriate concentration for selection was determined, Rat-1 

cells were transfected with the plasmid pcDNATM6/TR©, which expresses both the 

Tet repressor and the blasticidin resistance gene. After treatment with 5μg/ml 

blasticidin for 4 weeks resistant clones were isolated, with cloning disks, expanded 

and screened for expression of the tet repressor by transfection of the 

pcDNA4_Fluc. Clones expressing the Τet repressor should only express firefly upon 

addition of doxycycline. Firefly should be expressed constitutively in expanded 

clones which do not express the tet repressor.  Unfortunately firefly luciferase 

activity was not repressed in any of the tested clones (Figure 4.4.4), but was 

repressed in a positive control cell-line (T-Rex U20S) expressing the tetR. 

 

Figure 4.4.4 Activity of Tet repressor in Rat-1 cells stably transfected with 
pcDNA6.  
Rat-1 cells stably transfected with pcDNA6 and selected with blasticidin (5μg/ml) 
were transiently transfected with pcDNA4_FLuc and a plasmid expressing Renilla 
luciferase. Untransfected Rat-1 cells and U2OS cells stably expressing the Tet 
repressor were used as negative and positive controls respectively.  
 

One possible explanation for the lack of repression in the isolated Rat-1 

clones is that the amount of the Tet repressor expressed in them was not sufficient 

to inhibit transcription of firefly luciferase in this cell line. In transient transfections 

high copy numbers of plasmid (in this case pcDNA4_Fluc) are delivered in the cells, 

while in stable transfections only a small number of the transfected plasmids gets 

integrated into the genome and thus low levels of proteins are produced. Another 

possible explanation for the observed lack of firefly repression is the total lack of 

Tet repressor expression due to unsuccessful integration of the Tet repressor 

encoding sequence into the genome. To rule out the possibility that the lack of 

suppression of firefly luciferase observed in  the tested clones (Figure 4.4.4), was 
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attributed to high levels of transfected Firefly luciferase, a range of amounts of 

pcDNA4_FLuc were transfected in some of the clones.Figure 4.4.5 shows that there 

was still no repression.   

 

 
Figure 4.4.5 Efficiency of the tetracycline regulated expression system in Rat-1 cell 
lines stably transfected with the Tet repressor.  
Three Rat-1 clones (clone 1, clone 5 and clone 15) stably transfected with the Tet 
repressor containing plasmid (pcDNATM6/TR), were transiently transfected with 
varying amounts (10ng to 0.01ng) of pcDNA4_FLuc and 2ng of a Renilla luciferase 
expressing plasmid, in 96 well plates.  
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To test if the lack of firefly luciferase suppression observed in the absence of 

doxycycline (Figure 4.4.4 and 4.4.5), was attributed to lack of integration of the Tet 

repressor sequence, we extracted genomic DNA from the clones and screened 

them with PCR (Figure 4.4.6) for presence of the Tet repressor. The clones screened 

with Tet repressor primers were negative (Figure 4.4.6). However, PCR with primers 

for the  blasticidin resistance gene indicated the presence of the blasticidin gene 

thus explaining the resistance of clones to blasticidin. GAPDH was used as a positive 

control.  

 

 

Figure 4.4.6 Detection of the Tet Repressor sequence in Rat-1 cell lines stably 
transfected with the pcDNATM6/TR vector. 
A. Different amounts (200ng, 400ng and 600ng) of genomic DNA extracted from the 
stably transfected clones were used in PCR reactions. The Tet Repressor sequence 
(1434bp) was detected only in the positive control. 
B. Detection of the Blasticidin resistance gene sequence and (C) the GAPDH 
housekeeping gene in Rat-1 cell lines stably transfected with the pcDNATM6/TR 
vector. pcDNA6: plasmid, Rat-1_pcDNA6 (pool)_1 and 2 are Rat-1 cells transfected 
with pcDNATM6/TR vector and selected with blasticidin, expected to contain a pool 
of Rat-1 pcDNATM6/TR vector stable cell lines.  
 

Although the monoclones screened were all resistant to blasticidin, the Tet 

repressor sequence was not integrated to the genome (Figure 4.4.6), which 
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suggested that, unlike the blasticidin resistant gene, the Tet repressor gene had not 

been integrated into the Rat-1 cells genome.  

Development of double stable cell lines is a lengthy process due to the 

amount of time required for selection and screening of clones. In an effort to 

expedite the process of stable cell line generation two different approaches were 

followed in parallel. In the first one (Figures 4.4.7 and 4.4.8), both plasmids were 

cotransfected, while in the second one (Figures 4.4.9 and 4.4.10) the plasmids were 

transfected successively like in the previously described experiments.  

Rat-1 cells were transfected simultaneously with pcDNATM6/TR and either sT 

or sT.91-95A. After selection with blasticidin and zeocin, monoclonal populations 

were seleted by serial dilutions in 96-well plates. The activity of the Tet repressor in 

these clones was tested by measuring their Firefly luciferase activity after transient 

transfections with the pcDNA4_Fluc clone (Figure 4.4.7). This approach resulted in 

the identification of two clones (M_2 and sT_2) transfected with the mutant sT.91-

95A and wt sT respectively, which expressed a functional Tet repressor (Figure 

4.4.7).   
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Figure 4.4.7 Dual luciferase assay for screening of Rat-1 monoclones transfected 
with two plasmids simultaneously (pcDNA4 and pcDNA6).  
Rat-1 cells were cotransfected with the Tet repressor containing plasmid 
(pcDNATM6/TR) and the operator containing vector with sT (monoclones sT_1-5) or 
sT.91-95A (monoclones M_1-7). After simultaneous selection with blasticidin and 
zeocin, monoclones were screened for Tet repressor activity with a luciferase assay, 
as described previously. Rat-1 cells were used as negative controls. Clone 103 after 
a new round of serial dilutions (103_0.1) was used a positive control.  
 

Next PCR was applied to these clones to screen for genomic integration of 

the Tet repressor and MCV sT (wild type or mutant). Consistently with the 

luciferase results of figure 4.4.7, PCR confirmed the presence of the Tet repressor 

(Figure 4.4.8). Although the Tet-O2 and sT sequence was integrated into gDNA of 

the sT_2 clone, sT.91-95A was not integrated into the gDNA of the M_2 clone. 

Although the selection of clones generated by cotransfection of both plasmids gave 

promising results, the screening was not continued as the best fold induction (fold 

induction of M2: 0.5 and of sT_5: 1.5)  was not as good as that of clone 103 (fold 

induction of 103:1.5), which was identified by transfection of pcDNA6TM/TR by the 

approach of successive transfections described below (Figure 4.4.9). Furthermore, 

generating sequential double stable cell lines derived from a single clone would 

more likely result in cell lines that can induce the wild-type and the mutant sT 

antigens at comparable levels, thus eliminating a factor that could potentially result 

in phenotypic changes.  
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Figure 4.4.8 PCR from the genomic DNA of Rat-1 cell lines generated by 
cotransfection of the regulatory and response plasmids. All of the screened 
plasmids were positive for the Tet repressor. The set of primers (CMVF and Bghrev) 
used for detection of the sT antigen would generate products of 888 bp. GAPDH 
was used as a positive control.  

 

Next we tried a different approach for selection. We transfected a new stock 

of Rat-1 cells with pcDNA6TM/TR and after blasticidin selection, monoclonal 

populations were selected by serial dilutions in 96-well plates down to less than 

one cell per well. Only clones from wells that had one colony were screened. 108 

monoclones were transiently transfected with the pcDNA4_Fluc plasmid and 

screened with dual luciferase assays for Tet repressor activity (Figure 4.4.9).  Most 

of the screened clones showed no repression of firefly luciferase in the absence of 

doxycycline, however 19 clones showed varying levels of repression and induced 

expression of firefly luciferase in the absence and upon doxycycline addition 

respectively. Genomic integration of the Tet repressor and the blasticidin resistance 

gene was tested in these clones by PCR (Figure 4.4.10). All of the clones, except for 

one, were positive for genomic DNA integration of the blasticidin resistance gene 

and Tet repressor. Clone numbers 103 and 104 repeatedly showed the tightest 

regulation of firefly luciferase regulation upon doxycycline addition and both tested 

positive for Tet repressor and blasticidin integration (Figure 4.4.10).  
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Figure 4.4.9 Dual luciferase screening of pcDNATM6/TR stably transfected Rat-1 
clones. (A) Rat-1 were transiently cotransfected with both the operator containing 
(luciferase cloned in pcDNA4) and repressor containing (pcDNATM6/TR) plasmids. 
The cells were cultured in the presence of doxycycline or DMSO and after 24 hours, 
luciferase expression was measured. Green boxes indicate the clones that showed 
low background Tet expression levels and high induced expression following a 
24hour treatment with 0.5 μg/ml doxycycline.  (B) Selected clones that showed 
adequate Tet repressor activity were repeatedly assessed with the luciferase assay 
to confirm reproducibility. Clones 98 and 99 did not show repression of Fluc activity 
in absence of doxycycline. Clones 103 and 104 showed consistent induction of 
Firefly luciferase expression upon doxycycline addition. Repression of Firefly 
luciferase was better for clone 103 than for clone 104. (Firefly values were 
normalized for transfection efficiency using Renilla luciferase). 
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Figure 4.4.10 Genomic integration of the blasticidin resistance and the Tet 
repressor gene. Clones screened with the dual luciferase system for doxycycline 
induced Tet repressor expression were screened with PCR for genomic integration 
of the Tet repressor gene (B and D) and the blasticidin resistance gene(A and D).(C 
and D) The GAPDH housekeeping gene was used as a DNA template control.  

 

To find the optimal conditions of doxycycline induction (concentration and duration 

of induction), clones 103 and 104 were transiently transfected with the 

pcDNA4_Fluc plasmid and treated with a range of doxycycline concentrations (0.1-1 

μg/ml) for 12-47 hours. No significant differences in the expression levels of the Tet 

repressor were observed in the various conditions tested. Consistently with the 

conditions used already, treatment with 0.5 μg/ml doxycycline for 24 hours was 

chosen for the next experiments (Figure 4.4.11).  
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Figure 4.4.11 Conditions of doxycycline treatment for the Tet inducible system.  
pcDNATM6/TR stably transfected Rat-1 clones were transiently transfected with 
pcDNA4_Fluc and a Renilla luciferase plasmid and treated for 12, 18, 24 or 47 hours 
with 0.1, 0.25, 0.5, 0.75 or 1 μg/ml doxycycline (or DMSO). Experiment was done in 
triplicate and error bars represent standard deviations. Firefly values were 
normalized for transfection efficiency using Renilla luciferase.  
 

Clone 103 was chosen to serve as a host for inducible expression of the wild 

type and mutant sT, because of its high Tet repressor activity upon doxycycline 

induction and its low background levels. It was transfected with either the empty 

pcDNATM4/TO vector, or wild type MCV sT, or MCV sT.91-95A.  

The transfected cells were treated with zeocin for 15 days and monoclonal 

populations were selected by serial dilutions in 96-well plates down to less than 

one cell per well. To identify clones in which MCV sT or sT.91-95A and the upstream 

Tet-O2 sequence had been successfully integrated into the genome, clones were 

screened by PCR on genomic DNA with sT-spanning primers. Amplicons of the 

expected size were purified and verified by sequencing. Inducible expression of the 

sT or sT.91-95A genes was further confirmed by Western blotting (Figure 4.4.12) 

with anti-panT.  

The double stable cell lines were developed in an effort to create an 

experimental system appropriate for the study of the effect of sT on protein 

synthesis by ribosome profiling. Random integration of sequences into the genome 

can cause insertional mutations or disrupt essential genes at the site of insertion 

(Woods et al. 2003). To account for any differences in gene expression in the 

double stable cell lines caused by random integration, as opposed to sT antigen 

expression, three clones were identified from each sT antigen expressing double 

stable cell line (Figure 4.4.12). All of them were able to express the sT antigen.  
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Figure 4.4.12 SDS-PAGE analysis of inducibly expressed sT and sT.91-95A antigens. 
Following treatment of double stable Rat-1 cell lines with 0.5 μg/ml  doxycycline (or 
DMSO) for 24 hours. Immunoblot analysis was performed with the mouse anti-panT 
antigen detecting monoclonal antibody CM8E6 (1:250). 

 

Assessment of the transformation ability of the double stable Rat-1 cell lines  

To assess the cellular transformation ability of the established double stable Rat-1 

monoclones, soft agar colony formation assay was applied. The parental Rat-1 cell 

line and a double stable Rat-1 monoclone transfected with the pcDNATM6/TR and 

pcDNATM4/TO vectors, were used as negative controls (Figure 4.4.13). The cell line 

(C12_s1) expressing the mutant sT sT.91-95A antigen, had a comparable number of 

colonies as the wild type antigen (C5_m10), but formed bigger colonies than the 

wild type sT expressing cell line.  Rat-1 cells transfected with the empty vector 

(pcDNA4) showed greater transformation efficiency than the MCV sT expressing 

cells.  
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Figure 4.4.13 Induced expression of MCV sT does not transform Rat-1 cells. Soft 
agar assay of Rat-1 cells induced to express MCV (top). Colonies observed in 6-
well triplicates were counted to determine average ± SD colonies per well 
(bottom).  
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Shuda et al (2011) had previously reported that Rat-1 cells transduced to 

express MCV sT were transformed. In our model system expression of wt sT failed 

to transform Rat-1 cells. One possible explanation for the discrepancy observed 

between the two systems, is that the levels of sT protein expression may be 

different. The levels of the induced protein can be regulated in some inducible 

systems, by adjustment of doxycycline levels (Shaikh & Nicholson 2006). Treating sT 

expressing Rat-1 cells with increasing concentrations of doxycycline did not result in 

altered levels of protein expression (Figure 4.4.14), in agreement with the luciferase 

assay in figure 4.4.11. Therefore, since the stable Rat-1 cell lines generated here 

could not be transformed by sT induction they could not be used for further 

analysis by ribosome profiling.  

 

Figure 4.4.14 Induction of MCV sT in inducible Rat1 cells with various levels of 
doxycycline. The Rat-1 cell line stably and inducibly expressing sT (C5_m10) was 
treated with increasing concentrations of doxycycline for 24 hours and the lysates 
were analysed by western blot. No increase was obsereved in MCV sT expression 
with increasing amounts of doxycycline from duplicate experiments.  

 

Ribosome profiling analysis on MKL-1 cells 

MCV sT has been shown to induce and maintain hyperphosphorylation of 4E-BP1, 

which leads to cap-dependent translation dysregulation (Shuda et al. 2011). We 

wanted to study the potential effect of this interaction in tumour development and 

metastatic progression, by applying ribosome profiling in the MCV positive 

metastatic MKL-1 cell line, that was transduced with an sT targeting or control 

scrambled shRNAs.  

First, MKL-1 cells transduced with sT and scrambled shRNAs (Figure 4.4.15 A 

and B) were analysed for sT knockdown by western blotting (Figure 4.4.15C). 

Western analysis showed decrease of the steady state levels of sT, but ribosome 
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profiling reads aligning to the viral genome, confirmed that silencing of MCV sT was 

effective (Figure 4.4.15C and 4.4.16A). A Z-score of 4 was used as an arbitrary 

threshold of statistical significance for differentially regulated genes (Table 2.1 and 

2.2).  

It had previously been reported that the mRNAs that are translationally 

upregulated by mTOR, have long 5’UTRs with secondary structures (Koromilas et al. 

1992), or possess 5’ terminal oligopyrimidine tracts (Hsieh et al. 2012). We did not 

observe translational upregulation in any of these categories, but only in gene SIRT7 

instead (Figure 4.4.16B and Tables 4.1 and 4.2).  
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Figure 4.4.15 Knockdown of MCV sT with shRNA  
(A) MKL-1 cells stably transduced with shRNA against sT or scrambled RNA 
(B) Schematic representation of the sequence targeted by sT shRNA 
(C) Western blot of MKL-1 cells after shRNA transduction with sT or scrambled 
shRNA 
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Figure 4.4.16 Analysis of differential translational regulation upon knockdown of 
MCV sT with shRNA. 
 (A)The plots show the alignments of ribo-seq (in blue) and rna-seq (in pink) reads 
to the positive strand of the viral genome. The MCV sT specific region is highlighted 
in light blue. Unlike the number of RNA-seq reads, the number of Ribo-seq reads is 
reduced upon transduction with sT shRNA.  
(B) Differential gene expression analysis. Scatter plot compare translation efficiency 
(TE) between shRNA against sT or scrambled RNA. The threshold used to denote 
differentially expressed genes (Z-score of 4) is indicated in orange.  
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Table 4.4.1 List of translationally upregulated genes 

Translationally upregulated genes upon MCV sT silencing  Z-score 

SIRT7 4.4 

C19orf10 3.4 

GNMT 3.3 

SMAD9 3.3 

COPS7B 3.2 

LGALS3BP 3.2 

NQO1 3.2 

GPI 3.1 

TRAIP 3.1 

HCFC1R1 3.1 

SARS2 3.0 

PCDHGB6 3.0 

ATP6V0A1 3.0 

 

 

Table 4.4.2 List of translationally downregulated genes. 

Translationally 
downregulated genes upon 

MCV sT silencing  
Z-score 

TUBA1B -3.0 

SIRT1 -3.0 

HIST2H2BE -3.1 

JUND -3.1 

IRX2 -3.1 

SPTBN1 -3.3 

RIC8B -3.4 

TMSB4X -3.5 

SPTAN1 -3.8 
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In ribosome profiling RNAseq is used as a control for internal RNA levels. Therefore 

the technique enables study of the changes that occur at the transcriptional level. 

As described previously (Chapter 3), differentially expressed genes were identified 

upon z-score transformation. Gene Ontology and KEGG (Kyoto Encyclopedia of 

Genes and Genomes) pathway enrichment analysis of transcriptionally upregulated 

and downregulated genes was performed with DAVID (Huang et al. 2009), to 

investigate potential over-representation of biological processes. A total of 279 

transcriptionally upregulated (z ≥2) (Table 4.3) and 240 downregulated (z ≤ -2) 

(Table 4.4) genes, were used in GO term analysis. None of these groups revealed 

enrichment in any functional pathways.  
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4.5 Discussion 

Transformation of primary human cells in tissue culture, requires minimally  two 

oncogenes (SV40 LT and an oncogenic allele of H-ras) along with the hTERT gene 

that has telomerase activity (Hahn et al. 1999). Similarly, transformation of primary 

rodent cells normally requires at least two oncogenes (Land et al. 1983; Ruley 

1983). However, Rat-1 cells are one of the few cell lines that can be transformed by 

a single oncogene and because of this have been extensively used in cancer studies. 

One theory is that inactivation of p21WAF1/CIP1, due to methylation of its 

promoter, might be responsible for the susceptibility of the p53 wild-type Rat-1 

cells to transformation (Allan et al. 2000).  

In a 2011 study from Chang and Moore’s lab, it was shown that MCV sT is 

sufficient to transform Rat-1 fibroblasts and that it can promote 4E-BP1 

hyperphosphorylation and subsequent cap-dependent translation initiation, 

independently of mTOR kinase activity (Shuda et al. 2011). To study the effect of 

MCV sT on protein synthesis at various stages of MCV-induced MCC development 

and progression we aimed to use ribosome profiling, because it provides insight 

into the dynamics of protein synthesis and regulation. To study the effect of MCV sT 

at the initial steps of MCV sT induced transformation we aimed to establish an 

inducible (Tet-on) system stably expressing MCV sT. An MCV sT (sT.91-95A) mutant, 

which could not transform Rat-1 cells (Kwun et al. 2013), was used as a negative 

control.  

Tet-off systems require continuous presence of tetracycline or doxycycline, 

which has a half-life of 48 hours in tissue culture medium, and therefore needs to 

be frequently replenished, thus we opted for a Tet-on system. We used doxycycline 

as an inducing agent for the T-RExTM system, instead of tetracycline, because it has 

longer half-life (48 vs 24 hours). As shown by the repression and increase of firefly 

expression in the absence and addition of doxycycline respectively, transfection 

efficiency is higher for HEK 293T, than Rat-1 cells (Figure 4.4.2), but the Trex system 

is functional for the Rat-1 cells too, so we decided to proceed with this system. 

Cotransfecting the Tet repressor and the inducible expression vector at the same 

time is time saving, but in the Rat-1 cells we found very few monoclones with high 

Tet repressor activity. Although we tried both approaches; cotransfecting and 
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transfecting the Tet repressor and the inducible expression vector successively, we 

decided to proceed with the second one. Although the exact mechanism of naked 

DNA integration into chromosomal DNA has not been fully elucidated, integration 

in mammalian cells usually occurs at random sites with nonhomologous 

recombination (Di Primio et al. 2005). This can result in integration of parts of the 

plasmid, partial deletion of the integrated or the genomic sequence or integration 

into heterochromatic regions. Initial transfection of Rat-1 cells with the Tet 

repressor plasmid and subsequent antibiotic selection resulted in clones that were 

resistant to blasticidn but did not express the Tet repressor (Figures 4.4.4 and 

4.4.6). Failure to detect the Tet repressor by PCR (Figure 4.4.6), suggests that the 

Tet repressor sequence or parts of it were not integrated in the gDNA of the tested 

clones. Following a second round of transfections and isolation of clones through 

serial dilutions the clone 103 was identified. This clone was consistently showing 

the highest Tet repressor activity. Using this clone to make stable cell lines with sT, 

sT.91-95A or the empty vector, eliminates variations observed in the double stable 

clones attributed to differential Tet repressor integration and activity.   

Numerous clones were screened in an effort to find those that would be 

resistant to the selection marker and would have adequately high expression of our 

genes of interest (either sT or sT.91-95A) and retain most of the parental 

phenotype, due to random integration. To eliminate the effect of phenotypes 

attributed to the site of integration rather than the expression of the genes of 

interest, three clones stably expressing either sT (C5_m10, D6_m1 and G9_m10) or 

sT.91-95A (B4_s10, C12_s1 and C12_s10) (Figure 4.4.12), were selected for further 

analysis.   

In contrast to the findings of our collaborators in the Moore and Chang lab, 

the soft agar colony formation assay (Figure 4.4.13) showed that expression of sT 

inhibits cell proliferation, a result supported by the observation of increased cell 

death in stable cell lines inducibly expressing MCV sT upon doxycycline addition. 

This discrepancy could be attributed to different sT levels in the systems used in the 

two labs. High levels of Ras activation induces proliferative arrest in vivo in 

mammary gland, while lower levels of expression result in hyperproliferation 

(Sarkisian et al. 2007). Using various concentrations of doxycycline in our inducibly 
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expressing MCV sT cells did not result in increasing levels of sT (Figure 4.4.14), 

possibly because even the lowest doxycycline concentration was sufficient to 

saturate the tet-on system used. Lack of the transformed phenotype in these cells, 

regardless of the status of phosphorylation in 4E-BP1, made them inappropriate for 

analysis with ribosome profiling.  

Although the lack of a transformed phenotype is most likely attributed to 

inappropriate levels of MCV sT expression, the different origin of Rat-1 cells, or 

different tissue culture practices, could result to Rat-1 cell lines with different 

genetic backgrounds, which thus respond differently to the expression of an 

oncogene.  

To study the potential effect of MCV sT induced protein synthesis on fully 

transformed MCC cells, we applied ribosome profiling on an MCV positive cell line 

derived from a nodal metastasis (MKL-1), which was transduced with sT shRNA or 

scrambled RNA. Profiling results showed the expected knockdown of MCV sT in 

cells transduced with sT targeting shRNA. Ribosome profiling data analysis (Figure 

4.4.16B) did not suggest significant MCV sT induced translational regulation. Data 

analysis did not reveal an overall translation upregulation, which would be 

expected as a result of cap dependent translation initiation. Furthermore neither 

TOP and TOP-like mRNA transcripts (Thoreen et al. 2012), nor GC-rich and highly 

structured mRNAs were upregulated (Hay & Sonenberg 2004). The only gene that 

was statistically significantly translationally upregulated in our data was SIRT7. 

Sirt7 is a member of the sirtuins family, which consists of seven members 

(Sirt1-Sirt7) and is characterised by the presence of an NAD+ binding domain and a 

catalytic domain. Sirt7 is the least studied member of the sirtuins family. It localises 

mainly in the nucleolus (Michishita et al. 2005) and it is involved in lipid metabolism 

(Shin et al. 2013; Ryu et al. 2014; Yoshizawa et al. 2014), chromatin remodelling 

(Tsai et al. 2012), protein synthesis (Tsai et al. 2014) and cellular survival 

(Vakhrusheva et al. 2008; Kiran, Oddi, et al. 2015). Sirt7 is so far known to have a 

NAD-dependent deacetylase activity, but none of its currently known substrates 

can explain its involvement in the above mentioned cellular functions (Kiran, 

Anwar, et al. 2015). Sirt7 is known to be dysregulated in various types of cancers 

(Geng et al. 2015; Kim et al. 2013; Yu et al. 2014; Lai et al. 2013; Frye 2002; Ashraf 
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et al. 2006), which suggests that it could have an effect on MCC too. The 

mechanism causing Sirt7 induced oncogenesis is not known, although some views 

have been proposed (Li & Bhatia 2013). It was originally suggested that Sirt7 can 

promote tumourigenesis by deacetylating the tumour suppressor p53, but p53 was 

eventually found to be a poor substrate for Sirt7 (Vakhrusheva et al. 2008). Sirt7 

induced oncogenic transformation, has been linked to its ability to deacetylate 

H3K18Ac (Barber et al. 2012). In a different study Sirt7 knockdown inhibited liver 

cancer cell growth both in vitro and in mouse models. Sirt7 overexpression has 

been suggested to induce mitotic stimulation through transcriptional inactivation of 

p21WAF/Cip1 and activation of cyclin D1 in hepatocellular carcinoma (Kim et al. 2013).  

To confirm ribosome profiling results and study the potential role of Sirt7 in MCC, 

the observed Sirt7 increase should be confirmed by western analysis, in MKL-1 cells 

transduced with sT targeting shRNA. Experimental confirmation of these results in 

other MCV positive MCC cell lines (BroLi, WaGa, MS-1 and MKL-2) (Houben, Shuda, 

Weinkam, Schrama, et al. 2010), along with absence of the effect in MCV negative 

MCC cell lines (UISO, MCC13 and MaTi) (Houben, Shuda, Weinkam, Feng, et al. 

2010), would suggest Sirt7 upregulation as a virally induced specific transformation 

mechanism in MCC cells. Myb binding protein 1a (Mybbp1a) has been proposed to 

be a negative regulator of Sirt7 (Karim et al. 2013). The mitotic kinase aurora b, 

which is a target of APC/C (Floyd et al. 2008), phosphorylates Mybbp1a at Ser1303, 

which is one of the sites of Mybbp1a that are found to be phosphorylated in mitotic 

cells (Perrera et al. 2010).  

MCV sT was recently shown to inhibit APC/C, thus leading to stabilisation of 

Aurora b (Shuda et al. 2015). It is therefore likely that MCV sT inhibits expression of 

Sirt7, through its effect on APC/C, but further experimental confirmation of these 

interactions is required.  

 These results arise from the analysis of one biological replicate. At least two 

biological replicates with appropriate data correlation would be required, to give us 

sufficient confidence in the accuracy of these results. However, because these 

preliminary results indicate little regulation at the transcriptional or translational 

level upon induction of the shRNA directed toward sT, futher experiments where 

not attempted.   
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One possible explanation for the lack of translational upregulation upon the 

knockdown of sT, is that MKL-1 cells are fully transformed metastatic cells. It is 

likely that sT has different roles at various stages of MCV induced transformation 

and that the sT-4E-BP1 interaction is important for the initial stages of 

transformation, but might not be essential in fully transformed cells (Angermeyer et 

al. 2013; Angermeyer et al. 2014; Shuda et al. 2014).  

It was recently shown (Shuda et al. 2015) that MCV sT targets and inhibits 

APC/C, and thus induces mitosis (Townsley & Ruderman 1998), which leads to 

increased CDK1/CYCB1 activity and results in 4E-BP1 phosphorylation (Shuda et al. 

2015). The sT_shRNA transduced MKL-1 cells, which were analysed by ribosome 

profiling, were not synchronised, therefore only a small part of the total cell 

population was expected to be in mitosis. Lack of a synchronised population, could 

have masked the translational effect of CDK1 induced 4E-BP1 inactivation, which 

might account for the lack of translational upregulation in our ribosome profiling 

results.  

The RNAseq expression analysis did not reveal enrichment of any molecular 

pathway upon downregulation of MCV sT. However sT downregulation resulted in 

transcriptional upregulation of genes either exclusively expressed in the nervous 

system (CNTN2) (fold increase: 2.73, z-score:5.55) (Uhlen et al. 2015) or 

predominantly expressed in neuroendocrine tissues. CHST8 (fold increase: 4.76, z-

score: 5.24) is predominantly expressed in the pituitary gland (Okuda et al. 2000), 

CPLX2 (fold increase: 3.16, z-fold: 4.96) is mainly expressed in the brain and in 

endocrine tissues (Uhlen et al. 2015) and has a well-defined role in synaptic 

exocytosis (Kurokawa et al. 2015). STXBP1 (fold increase: 2.02, z-score: 4.14) is 

involved in the release of neurotransmitters (Patzke et al. 2015).  The enrichment 

observed in genes primarily expressed in neural tissues or associated with the 

release of neurotransmitters, in these MCC cells that have characteristics of 

presynaptic cells (Haeberle et al. 2004; Hitchcock et al. 2004; Nunzi et al. 2004), 

suggests a possible role of MCV sT in reversing cellular differentiation, which is one 

of the hallmarks of cancer (Hanahan & Weinberg 2011).   

In Grundhoff’s lab an in vitro culturing system was established to facilitate the 

study of viral replication. In this model system the neuroectodermal tumour cell 
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line PFSK-1 was transfected with a synthetic MCV genome (Neumann et al. 2011). 

RNaseq analysis has subsequently been performed on this system, but the analysis 

focused primarily on the RNA transcripts of the viral genome rather than the host 

cell line (Theiss et al. 2015). A different group performed RNAseq analysis but 

focused on the mutations rather than on the levels of gene expression. This study 

identified mutations in TP53, RB1, PIK3CA consistently with previously available 

data and discovered activating mutations including HRAS, PRUNE2 and the NOTCH 

family genes in MCV negative tumours. RNAseq analysis of MCV positive tumours 

revealed a low mutation pattern (Harms et al. 2016).     

The aim of this project was to study the effect of MCV sT induced protein 

synthesis on cellular transformation. We were not able to detect a causal role of 

MCV sT on Rat-1 cells’ transformation in our model system. Data published 

following the completion of our ribosome profiling experiments in MKL-1 cells, 

suggested that MCV sT-induced protein synthesis dysregulation is primarily taking 

place in mitotic cells (Shuda et al. 2015). MCV is a newly discovered virus (Feng et 

al. 2008). More experiments are required to elucidate the role of each MCV 

oncogene in tumourigenesis and characterise the molecular mechanism of 

oncogenic transformation in Merkel cells.  
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4.7 Appendix of Chapter 4  

Table 4.7.1 Transcriptionally upregulated genes in cells transduced with shRNA for 
MCV sT  

Gene change in RNA level Z-score 
 

Gene change in RNA level Z-score 

HLA-E 2.92 6.38 
 

RAB26 1.72 3.19 

KIF19 3.05 6.20 
 

ATP8A1 1.60 3.19 

CNTN2 2.73 5.55 
 

CDK6 6.83 3.19 

CHST8 4.76 5.24 
 

VEGFA 2.48 3.14 

CPLX2 3.16 4.96 
 

SHANK3 2.14 3.12 

GNS 2.09 4.93 
 

ID4 1.70 3.12 

KATNAL1 2.96 4.63 
 

HEPACAM2 1.74 3.11 

C1orf95 2.47 4.60 
 

COL22A1 2.43 3.07 

NHLH1 2.23 4.45 
 

DOK4 4.07 3.05 

CCNA1 3.56 4.43 
 

CHGA 1.72 3.05 

SIK1 3.01 4.38 
 

UNC5A 1.82 3.05 

STXBP1 2.02 4.14 
 

SYNPO 6.27 3.04 

LRRC10B 6.21 3.99 
 

RGS16 3.42 3.04 

OPTN 3.28 3.94 
 

NDRG1 3.04 3.02 

SERINC2 2.11 3.90 
 

ZNF750 6.69 3.01 

CNR1 2.40 3.83 
 

SH3BGRL3 1.78 3.00 

DYNLRB1 2.40 3.82 
 

ZNF302 1.96 3.00 

TPPP3 2.98 3.76 
 

MGLL 4.78 2.99 

MRAP2 2.95 3.72 
 

CRAT 2.45 2.99 

KIAA1462 4.94 3.70 
 

DAAM1 1.75 2.98 

DCC 3.05 3.69 
 

FURIN 1.77 2.98 

GNG8 2.12 3.69 
 

WNT4 7.77 2.96 

NID1 3.01 3.67 
 

PTPRU 6.39 2.93 

BTBD17 2.40 3.61 
 

SOWAHA 1.81 2.92 

CADM3 2.95 3.58 
 

B3GNT4 4.60 2.92 

WNT10A 1.99 3.58 
 

KLF13 1.53 2.90 

CYB5R1 1.91 3.49 
 

TOM1L2 1.72 2.89 

RGMB 1.88 3.49 
 

MAFB 1.74 2.89 

GRASP 2.88 3.49 
 

NPTXR 1.74 2.87 

SLC16A3 8.84 3.48 
 

ABHD8 2.30 2.87 

RASD2 1.86 3.46 
 

TNFAIP1 1.75 2.86 

RIMBP2 2.19 3.42 
 

SLC7A5 2.01 2.86 

NELL1 5.87 3.40 
 

CAMK2N1 3.49 2.86 

KRT20 2.36 3.39 
 

EVI5L 2.35 2.81 

CYBA 1.85 3.39 
 

SCN1A 5.47 2.80 

FAT4 3.41 3.34 
 

OSBPL3 1.68 2.79 

RGAG4 1.96 3.30 
 

CDC42EP4 1.92 2.78 

CACNA2D2 1.84 3.29 
 

JUND 1.70 2.78 

KLF4 4.51 3.28 
 

CORO2B 2.24 2.77 

SEZ6L 1.88 3.28 
 

DDIT4 2.02 2.76 

STC1 2.68 3.26 
 

KANK4 8.27 2.74 

IGDCC3 3.29 3.23 
 

NOTCH2 1.88 2.74 

HK2 11.66 3.21 
 

MMP15 20.31 2.73 

FAM105A 2.11 3.20 
 

PSTPIP1 3.51 2.72 
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Gene change in RNA level Z-score 
 

Gene change in RNA level Z-score 

MAP1A 1.70 2.71 
 

SYNGR3 3.64 2.46 

SCG5 1.94 2.71 
 

AHNAK 2.05 2.45 

CPEB2 2.24 2.70 
 

PTPRD 1.65 2.45 

ZFPM1 1.93 2.69 
 

BTG3 1.58 2.45 

SLC12A7 7.90 2.68 
 

PLEKHB1 2.95 2.45 

GPC1 1.66 2.67 
 

NDUFA4L2 2.70 2.45 

SYT11 1.92 2.66 
 

LDHA 1.60 2.44 

GRIN2D 1.86 2.66 
 

GAL3ST1 1.73 2.43 

ADAMTS9 18.80 2.65 
 

DYNC2H1 3.07 2.43 

CCK 6.27 2.65 
 

PCBP4 1.43 2.43 

TLE6 5.42 2.65 
 

CLDN5 2.03 2.42 

FBXL16 1.66 2.64 
 

ZMYND10 4.41 2.42 

TMCC2 2.20 2.63 
 

CLDN4 2.91 2.42 

TXNIP 1.62 2.63 
 

RNF4 1.59 2.42 

IGFBP2 1.66 2.63 
 

SNCAIP 4.38 2.41 

SESN2 2.65 2.62 
 

FBXO42 1.72 2.41 

CHRNA1 1.85 2.62 
 

TMED4 1.78 2.41 

CNGA3 18.05 2.61 
 

RIPPLY3 2.06 2.41 

CD47 1.47 2.61 
 

GPRC5C 4.70 2.41 

PSKH1 1.84 2.61 
 

PTGIR 2.45 2.40 

CITED2 1.82 2.59 
 

TIMP3 2.45 2.40 

FAM134B 3.12 2.59 
 

ALDOC 14.54 2.39 

INPP5D 4.84 2.58 
 

ATP2B4 1.52 2.38 

PRKG2 2.12 2.57 
 

PFKFB3 5.16 2.37 

TSKU 1.87 2.56 
 

KDM4B 1.57 2.37 

B4GALT1 1.78 2.55 
 

TRAF3IP1 2.41 2.36 

WSCD2 3.07 2.54 
 

DMPK 1.62 2.36 

AATK 3.07 2.54 
 

ENTPD8 3.45 2.35 

NUAK1 2.09 2.53 
 

CADPS 1.99 2.35 

BHLHE22 3.76 2.52 
 

KIAA1377 2.04 2.34 

HCN2 1.85 2.52 
 

SMTNL2 4.51 2.34 

SNAP25 1.59 2.52 
 

TMSB4X 1.50 2.33 

AMOTL2 1.81 2.52 
 

SLC36A4 1.56 2.33 

CXCR4 1.60 2.51 
 

PPP1R37 1.71 2.32 

MB 3.72 2.50 
 

M6PR 1.49 2.32 

TRIOBP 2.13 2.49 
 

MDM2 1.57 2.30 

TRIM62 2.07 2.48 
 

C4orf48 2.01 2.30 

FSIP2 3.15 2.48 
 

STMN2 2.53 2.29 

THSD7B 1.77 2.47 
 

SMPDL3A 2.53 2.29 

DDR1 1.55 2.47 
 

TCTN2 1.98 2.28 

ISLR2 1.87 2.47 
 

MAB21L1 2.34 2.27 

PLD3 1.59 2.46 
 

DRGX 1.94 2.26 

PROX1 1.58 2.46 
 

DYRK1B 2.00 2.26 

JHDM1D 2.50 2.46 
 

KCNA2 4.76 2.25 

 

 

Gene change in RNA level Z-score 
 

Gene change in RNA level Z-score 

C11orf71 4.76 2.25 
 

NAV1 1.49 2.13 

ELAVL3 1.73 2.25 
 

PRKAR1A 1.49 2.13 

PCDH9 1.55 2.24 
 

ARHGAP1 1.48 2.13 
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ACTR10 1.58 2.23 
 

PPL 11.28 2.13 

SPTSSB 2.81 2.23 
 

PMM1 1.91 2.12 

PTPRZ1 1.53 2.23 
 

ABR 1.50 2.12 

SCARB2 1.39 2.23 
 

GAREM 2.57 2.12 

CCDC40 2.29 2.22 
 

P4HTM 1.54 2.11 

MAPRE3 2.47 2.22 
 

MYT1 1.54 2.11 

TNF 5.64 2.22 
 

RNF19A 1.68 2.11 

ID3 1.53 2.22 
 

BTG2 1.44 2.10 

KSR1 1.67 2.21 
 

ALK 1.53 2.09 

ULK1 1.52 2.21 
 

TMEM86B 4.26 2.09 

HSPA12A 1.72 2.21 
 

GATA2 4.26 2.09 

ANKRD52 1.53 2.20 
 

SLC5A8 5.11 2.09 

ACPL2 3.87 2.19 
 

PVRL1 2.19 2.09 

SLC25A22 1.57 2.19 
 

IFT57 2.18 2.08 

SUN2 1.38 2.19 
 

CMIP 1.43 2.08 

PCSK2 1.53 2.19 
 

HID1 1.48 2.08 

SRXN1 2.76 2.19 
 

OSCP1 3.01 2.08 

LMO7 1.96 2.19 
 

MAP9 1.70 2.08 

CCNG2 1.50 2.18 
 

RAB3A 1.67 2.08 

AFAP1 1.56 2.18 
 

GRK5 2.17 2.07 

STK17B 1.46 2.18 
 

CCDC104 1.88 2.07 

LIMCH1 1.95 2.17 
 

HSD17B10 1.62 2.07 

KCNH3 4.51 2.17 
 

CAMK4 1.60 2.06 

PHLDA1 2.63 2.17 
 

RHBDL3 1.47 2.06 

SREBF1 1.46 2.17 
 

MAP1B 1.43 2.05 

FAM206A 1.91 2.17 
 

EPHA5 2.60 2.05 

TNFAIP2 1.93 2.17 
 

MAPK8IP1 1.83 2.05 

BAD 1.68 2.17 
 

C1orf173 1.66 2.05 

C9orf116 5.42 2.16 
 

RHOU 2.15 2.05 

IMPA1 1.52 2.16 
 

MGC50722 3.56 2.05 

RNF165 1.89 2.16 
 

ZDHHC1 1.85 2.05 

CELF3 1.69 2.16 
 

APLP1 1.48 2.05 

MAP7D2 1.91 2.15 
 

PPP2R5B 1.66 2.05 

PLCD3 2.24 2.15 
 

RAB39B 2.59 2.04 

FAM219A 1.55 2.15 
 

MXRA7 1.85 2.04 

SMIM14 1.92 2.14 
 

MAP3K14 1.46 2.04 

SEPN1 1.51 2.14 
 

DNAL1 1.83 2.04 

GNAI2 1.49 2.14 
 

ASMTL 1.66 2.04 

CDKN1A 1.46 2.14 
 

ROBO2 1.52 2.04 

TPPP 2.70 2.14 
 

HEY1 2.14 2.03 

FAM161B 2.22 2.13 
 

C17orf97 4.08 2.03 

 

Gene 

change 
in RNA 
level Z-score 

CDHR1 2.57 2.03 

BMP7 1.48 2.03 

CHRNB4 1.84 2.03 

BCL2L1 1.62 2.03 

ZNF665 4.89 2.03 

LRRIQ1 4.89 2.03 

BZRAP1 4.89 2.03 
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ARL4D 4.89 2.03 

SLC2A6 3.76 2.03 

EPHA4 2.92 2.02 

LOC101928120 4.81 2.00 

LAD1 4.01 2.00 

IQCG 4.01 2.00 

IFT81 1.64 2.00 

FCHO1 1.81 2.00 
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Table 4.7.2 Transcriptionally downregulated genes in cells transduced with shRNA 
for MCV sT  

Gene change in RNA level Z-score 
 

Gene change in RNA level Z-score 

NME4 0.23 -6.59 
 

ETS1 0.50 -2.84 

FAM210B 0.33 -5.92 
 

EVL 0.61 -2.84 

PKM 0.37 -5.32 
 

GAREML 0.54 -2.83 

RELN 0.25 -4.71 
 

TMEM74 0.60 -2.82 

PCNA 0.44 -4.39 
 

POU3F2 0.58 -2.82 

TMEM98 0.45 -4.05 
 

HEG1 0.50 -2.82 

NFIB 0.47 -3.94 
 

SKIDA1 0.22 -2.81 

NDUFC1 0.27 -3.87 
 

NFIX 0.59 -2.81 

COLGALT1 0.43 -3.84 
 

SLC2A1 0.54 -2.81 

TYRO3 0.44 -3.77 
 

SLC38A5 0.54 -2.80 

MAPK6 0.43 -3.76 
 

TUBB3 0.60 -2.80 

UBE2Z 0.49 -3.73 
 

HIST1H2BH 0.14 -2.79 

LDLRAP1 0.52 -3.62 
 

GPC3 0.58 -2.76 

PXN 0.34 -3.58 
 

ELF4 0.55 -2.74 

TGIF2 0.36 -3.55 
 

CST3 0.65 -2.70 

DHCR7 0.51 -3.52 
 

EIF4EBP1 0.49 -2.70 

OAS3 0.57 -3.50 
 

GTF3A 0.61 -2.68 

FCGRT 0.32 -3.39 
 

AUTS2 0.60 -2.68 

C19orf10 0.44 -3.38 
 

PTPRJ 0.55 -2.67 

MEST 0.60 -3.35 
 

ATF5 0.61 -2.67 

PAPOLA 0.60 -3.34 
 

EMC6 0.45 -2.67 

GABRB2 0.27 -3.33 
 

PSAP 0.60 -2.66 

FBLN1 0.40 -3.32 
 

CAMKV 0.48 -2.65 

SHROOM3 0.45 -3.27 
 

RAP1B 0.66 -2.63 

CCDC3 0.54 -3.23 
 

PIP4K2A 0.57 -2.63 

PDE7A 0.56 -3.17 
 

NGFRAP1 0.66 -2.62 

WIPF3 0.46 -3.17 
 

PIP5K1A 0.48 -2.61 

SH2D5 0.39 -3.15 
 

ANGPTL2 0.11 -2.61 

TRIP13 0.50 -3.13 
 

SZRD1 0.64 -2.61 

CRTAC1 0.40 -3.13 
 

C18orf54 0.41 -2.60 

MLEC 0.55 -3.13 
 

CCNI 0.64 -2.59 

PROM1 0.40 -3.09 
 

PHB 0.63 -2.59 

TSPYL1 0.57 -3.09 
 

FAM217B 0.60 -2.59 

FTL 0.62 -3.08 
 

FRMD6 0.48 -2.58 

NEO1 0.50 -3.08 
 

ADAM10 0.60 -2.58 

CADM4 0.40 -3.03 
 

RNF38 0.59 -2.57 

NEK6 0.41 -3.01 
 

SLC43A3 0.62 -2.56 

LAPTM4B 0.56 -3.01 
 

CHDH 0.57 -2.56 

HIF1A 0.57 -3.00 
 

PARP12 0.17 -2.56 

B3GAT2 0.08 -2.96 
 

HIPK1 0.49 -2.56 

PPP3R1 0.58 -2.89 
 

NR1D2 0.63 -2.55 

CA9 0.56 -2.86 
 

FAM195A 0.38 -2.54 

ST3GAL1 0.54 -2.85 
 

TIAM1 0.57 -2.54 
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Gene change in RNA level Z-score 
 

Gene change in RNA level Z-score 

SYT13 0.63 -2.53 
 

FAM184B 0.53 -2.32 

TSPAN7 0.54 -2.53 
 

SNX5 0.65 -2.31 

KCTD15 0.60 -2.53 
 

EPB41 0.66 -2.31 

GLCE 0.51 -2.52 
 

PER3 0.61 -2.30 

RASL10B 0.44 -2.52 
 

PHGDH 0.70 -2.30 

NIPA2 0.62 -2.51 
 

TLE3 0.57 -2.30 

C2orf44 0.52 -2.51 
 

EPT1 0.65 -2.30 

HYAL2 0.60 -2.50 
 

LCOR 0.57 -2.29 

KIAA1549 0.58 -2.50 
 

PTDSS1 0.68 -2.29 

NABP2 0.64 -2.48 
 

HPDL 0.53 -2.29 

SLITRK1 0.61 -2.48 
 

PLEKHA2 0.51 -2.29 

LIMD1 0.44 -2.47 
 

NPW 0.51 -2.29 

FOXN2 0.58 -2.47 
 

POLR3A 0.60 -2.28 

TOX3 0.34 -2.47 
 

TBC1D1 0.55 -2.28 

PYCR1 0.63 -2.46 
 

SLITRK5 0.61 -2.27 

LMOD2 0.48 -2.46 
 

VCAN 0.51 -2.27 

CADM2 0.68 -2.45 
 

SLC1A5 0.63 -2.26 

SGTA 0.64 -2.45 
 

TFDP2 0.58 -2.25 

HEMK1 0.38 -2.44 
 

GAS2L3 0.41 -2.25 

SCRT2 0.49 -2.44 
 

SPRY2 0.16 -2.25 

DDN 0.49 -2.43 
 

SH3KBP1 0.16 -2.25 

SMAD9 0.35 -2.43 
 

ST5 0.60 -2.24 

HIPK2 0.59 -2.42 
 

LRTM2 0.60 -2.24 

USH1C 0.44 -2.42 
 

APBB2 0.64 -2.24 

LRRC16A 0.44 -2.42 
 

ICK 0.58 -2.23 

PAK1 0.64 -2.41 
 

ZNF114 0.31 -2.23 

MFSD2A 0.64 -2.40 
 

SSPN 0.31 -2.23 

IFIH1 0.19 -2.39 
 

HDAC9 0.62 -2.22 

ETNK1 0.49 -2.39 
 

SUMO3 0.64 -2.21 

EME1 0.46 -2.39 
 

CABLES2 0.64 -2.21 

PDGFD 0.35 -2.39 
 

RASAL1 0.47 -2.21 

SV2B 0.32 -2.38 
 

GLYR1 0.66 -2.21 

KCTD8 0.32 -2.37 
 

SDC2 0.53 -2.21 

NOLC1 0.65 -2.36 
 

CSRP2 0.61 -2.20 

MKI67IP 0.59 -2.36 
 

PAWR 0.47 -2.20 

LBH 0.51 -2.35 
 

C4orf32 0.62 -2.19 

FAM69B 0.62 -2.35 
 

PEX14 0.53 -2.19 

CDS1 0.36 -2.34 
 

CIB2 0.53 -2.19 

BMF 0.69 -2.34 
 

UNC5C 0.17 -2.19 

RFX7 0.59 -2.33 
 

ACACA 0.71 -2.19 

AEBP1 0.29 -2.32 
 

FAM20B 0.69 -2.19 

PABPC1 0.67 -2.32 
 

PCSK1 0.69 -2.18 

ZBTB46 0.53 -2.32 
 

KIF1C 0.49 -2.18 

 

 

Gene 

change 
in RNA 
level Z-score 

 
Gene 

change 
in RNA 
level Z-score 

CNKSR2 0.49 -2.18 
 

PMF1 0.52 -2.04 

CBS 0.66 -2.18 
 

USP2 0.61 -2.04 
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NME1 0.69 -2.18 
 

LYRM1 0.57 -2.03 

IFI6 0.62 -2.18 
 

MPP5 0.57 -2.03 

SLC25A53 0.32 -2.18 
 

CDH23 0.35 -2.03 

IPO7 0.66 -2.17 
 

TMEM109 0.61 -2.03 

KCNMA1 0.48 -2.17 
 

B2M 0.71 -2.03 

ATP2A2 0.66 -2.16 
 

RHOBTB3 0.68 -2.03 

VDR 0.44 -2.16 
 

MRPL48 0.57 -2.03 

ZCCHC3 0.65 -2.16 
 

GPRC5B 0.57 -2.03 

RNF114 0.67 -2.16 
 

ABRACL 0.59 -2.02 

RNF167 0.68 -2.16 
 

SPTY2D1 0.64 -2.02 

RUNX1T1 0.67 -2.15 
 

CTDSP2 0.68 -2.02 

BRD4 0.63 -2.14 
 

FMNL3 0.57 -2.02 

ADRA2C 0.67 -2.13 
 

SNX30 0.62 -2.02 

KDM8 0.33 -2.12 
 

C3orf80 0.57 -2.02 

FBN3 0.50 -2.12 
 

SLC9A3R1 0.68 -2.02 

XPO4 0.67 -2.11 
 

MAML3 0.65 -2.02 

NCAPH 0.65 -2.11 
 

CCNB1IP1 0.64 -2.01 

WWC1 0.63 -2.11 
 

PUS10 0.25 -2.01 

NME2 0.53 -2.10 
 

PCDH17 0.25 -2.01 

CBLN1 0.64 -2.10 
 

SLC6A8 0.51 -2.01 

TNPO2 0.72 -2.10 
 

DGAT2 0.51 -2.01 

LCMT2 0.60 -2.09 
 

SLMO1 0.51 -2.01 

RDH12 0.33 -2.09 
 

KISS1R 0.64 -2.01 

BEGAIN 0.33 -2.09 
    TUBA1C 0.64 -2.08 
    LDHB 0.67 -2.08 
    SCGB2A1 0.66 -2.08 
    KCNJ2 0.19 -2.07 
    HMGA1 0.67 -2.07 
    ZADH2 0.69 -2.07 
    PCDH7 0.41 -2.06 
    HIVEP2 0.24 -2.06 
    ENO3 0.56 -2.06 
    SRGAP2 0.61 -2.06 
    ZDHHC22 0.61 -2.06 
    ZDHHC20 0.66 -2.05 
    TMEM5 0.61 -2.04 
    RBM14 0.73 -2.04 
    MRGBP 0.55 -2.04 
    FAM53B 0.50 -2.04 
    TSTA3 0.61 -2.04 
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Summary - Conclusions 

Cancer is the name given to diverse diseases, which result in millions of deaths 

worldwide (Ferlay et al. 2015) and whose common characteristic is uncontrolled 

cell proliferation. In an effort to rationalise the complexity of cancer Hanahan and 

Weinberg proposed the hallmarks that comprise biological capabilities that enable 

tumour development (Hanahan & Weinberg 2011; Hanahan & Weinberg 2000). 

Dysregulation of molecular pathways underlie these hallmarks of tumour 

progression and their study has been central to cancer biology. The 

PI3K/AKT/mTOR pathway has a central role in translation, cell growth and 

proliferation and it is frequently dysregulated in various cancers (Qiu et al. 2006; 

Hafner et al. 2012). In this work we aimed to elucidate the role of the PI3K pathway 

and protein synthesis in cancer.  

Our work focused on various levels of the PI3K pathway and protein synthesis. We 

studied translation initiation of PTEN, which lies upstream of the PI3K pathway, and 

inhibits its activation.  

We studied translation initiation of PTEN, which is a negative regulator of 

the PI3K pathway. Mutational analysis revealed at least two previously undescribed 

non-AUG initiated PTEN proteoforms. The most abundant extended PTEN 

proteoform initiates at a conserved AUU codon and extends the canonical PTEN by 

146 amino acids. The studied N-terminally extended PTEN proteoforms retain the 

ability to downregulate the PI3K pathway. The ratio of PTEN proteoforms can be 

regulated by the translation of two conserved upstream open reading frames. Our 

findings could have profound implications for the understanding of PTEN regulation 

and function and could have implications for the development of PTEN-based 

chemotherapeutic agents.  

We next focused on polyamines, which are regulated but can also regulate 

the PI3K pathway through a negative feedback loop. Polyamine levels are increased 

and their metabolism is frequently dysregulated in a range of cancers. We aimed to 

investigate the effect of polyamines on global transcriptional and translational 

regulation, by application of ribosome profiling. This technique enables the detailed 

study of protein synthesis. Our work confirmed what was previously known about 

the transcriptional and translational regulation of SAT1 and AMD1 respectively and 
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revealed translation of a sequence of the CHTF8 gene, previously annotated as a 

3’UTR.  

Gene Ontology analysis of the most translationally upregulated genes in 

polyamine supplemented cells showed enrichment of genes regulating RNA 

processing, translation, macromolecular complex subunit organization and mitosis. 

These results are consistent with the known role of polyamines in promoting cell 

growth and proliferation (Igarashi & Kashiwagi 2010; Pegg 2009). Our results show, 

for the first time, that high polyamine concentration induces increased translation 

of genes involved in DNA repair and protein catabolism. Pathway enrichment 

analysis of the transcriptionally upregulated genes in polyamine enriched cells 

showed overrepresentation of cytoskeleton associated genes. The role of 

polyamines in cell motility (Savarin et al. 2010) and vesicle trafficking (Kanerva et al. 

2010) through direct interaction of polyamines with microtubules has already been 

described. Polyamines can also regulate the dynamics of actin cytoskeleton 

(Kucharzewska et al. 2010) and their depletion can cause disappearance of actin 

stress fibers (Parkkinen et al. 1997). Our study adds a new level of polyamine 

regulation on cytoskeleton through transcriptional upregulation of cytoskeletal 

genes. 

Lastly we focused on translation initiation in virally induced Merkel cell 

carcinoma. Understanding of polyomaviruses’s physiology has been critical in 

understanding of cellular physiology and characterization of the PI3K pathway. 

Merkel cell carcinoma (MCC) is an aggressive non melanoma skin cancer 

with increasing incident rates. 80% of MCCs are caused by the Merkel Cell 

Polyomavirus (MCV). MCV expresses a small (sT) antigen which can transform 

rodent fibroblasts (Rat-1) by dysregulating protein synthesis initiation. 

We aimed to elucidate the role of sT at the initial stages of oncogenesis, by 

establishing a stable Rat-1 cell line that inducibly and reversibly expresses the 

antigen. This cell line failed to transform upon sT expression, possibly due to low sT 

levels.  

To investigate the potential role of sT at the later stages of MCV induced 

transformation, ribosome profiling was applied on a MCC cell line positive for MCV 
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transduced with shRNA towards sT. Knockdown of sT did not affect translation as 

expected, possibly because sT exerts its role at the first stages of carcinogenesis.  
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Abundant evidence for translation within the 50 leaders of many human genes

is rapidly emerging, especially, because of the advent of ribosome profiling.

In most cases, it is believed that the act of translation rather than the encoded

peptide is important. However, the wealth of available sequencing data in

recent years allows phylogenetic detection of sequences within 50 leaders

that have emerged under coding constraint and therefore allow for the predic-

tion of functional 50 leader translation. Using this approach, we previously

predicted a CUG-initiated, 173 amino acid N-terminal extension to the

human tumour suppressor PTEN. Here, a systematic experimental analysis

of translation events in the PTEN 50 leader identifies at least two additional

non-AUG-initiated PTEN proteoforms that are expressed in most human cell

lines tested. The most abundant extended PTEN proteoform initiates at a con-

served AUU codon and extends the canonical AUG-initiated PTEN by 146

amino acids. All N-terminally extended PTEN proteoforms tested retain the

ability to downregulate the PI3K pathway. We also provide evidence for the

translation of two conserved AUG-initiated upstream open reading frames

within the PTEN 50 leader that control the ratio of PTEN proteoforms.

1. Introduction
The process of translation can be described in four steps: initiation, which is usually

tightly regulated; elongation; termination; and ribosome recycling [1]. In eukar-

yotes, the scanning model for translation initiation postulates that the small

ribosomal subunit, in complex with initiation factors and Met-tRNAi, binds first

to the 50 cap then scans 30 until a suitable initiation codon is found [2]. Base-pairing

interactions between the anticodon loop of the Met-tRNAi bound to the ribosome

and an AUG codon in the mRNA cause the ribosome to stop scanning and set the

reading frame for protein synthesis [3]. Typically, the ribosome initiates protein

synthesis at the AUG codon closest to the 50 end of the mRNA, though the effi-

ciency of initiation is dependent on the nucleotide sequence surrounding the

initiator codon with the optimal sequence known as the Kozak context [4]. The

Kozak context—comprising 6 nt before and 1 nt immediately following a potential

initiation codon—has significant influence on the recognition of an initiation site,

through partially understood mechanisms requiring the activities of eIF1 [5–8]

and eIF5 [9–11]. Using multiple sequence alignments, the consensus context

in mammals was identified as GCCRCCAUGG [12] with the identity of the under-

lined nucleotides in the 23 andþ4 positions (relative to the ‘A’ of the AUG) being

the most important. However, a recent high-throughput analysis of all possible

initiation contexts revealed RYMRMVAUGGC as the optimal context in human

and mouse cells and additionally revealed synergistic effects of neighbouring

nucleotides [13].

& 2016 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
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Initiation can occur at most codons that differ from AUG

by a single nucleotide (non-cognate or non-AUG). Seven out

of the nine possible single-nucleotide substitutions at the

AUG start codon of dihydrofolate reductase were functional

as translation start sites in mammalian cells [14]. In all of

the cases in which it was examined, the N-terminal residue

of these proteins was methionine [14], suggesting that trans-

lation initiation relied on mis-pairing between the anticodon

of Met-tRNAi and the non-AUG start codon in the mRNA.

However, a report exists of CUG initiation by elongator

Leu-tRNA functioning as initiator tRNA [15].

Initiation is the only step where an incoming aminoacyl

tRNA is bound directly in the ribosomal P-site [16,17]. Unlike

the A-site, where mRNA : tRNA interactions are strictly moni-

tored by the decoding centre [18], the P-site can tolerate

mismatches in the codon : anticodon duplex [19–22]. This

allows the incorporation of Met-tRNAi at a wider range of

codons compared with elongator Met-tRNA whose incorpor-

ation is strictly limited to AUG codons. The most favourable

context for non-AUG initiation is believed to be identical to

that for AUG starts [23–25]. In addition, a strong RNA second-

ary structure starting approximately 15 nt downstream of the

non-AUG codon may significantly increase initiation efficiency

[26]. Another important factor for non-AUG initiation is that it

is located upstream of the most 50 AUG codon [27].

When initiation codons occur in the 50 leaders of tran-

scripts they give rise to either N-terminal extensions to the

main ORF or else upstream open reading frames (uORFs).

It has been estimated that AUG-initiated uORFs are present

in approximately half of the human protein coding genes

[28]. Furthermore, ribosome profiling provided evidence for

the presence of translating ribosomes on more than 200

non-AUG-initiated uORFs in yeast [29] and much more

widespread non-AUG initiation in mammals [30–32]. In gen-

eral, the translation of uORFs has an inhibitory effect on

translation of the main protein coding ORF, because ribo-

somes terminating a uORF are often unable to reinitiate

owing to the loss of necessary initiation factors. However,

the 40S subunits of ribosomes translating short ORFs (less

than 35 codons) may retain some initiation factors after ter-

mination [4,33]—although efficient re-initiation is precluded

until all necessary initiation factors have been reloaded onto

the 40S subunit. In most instances, there is a requirement

for a ternary complex of eIF2, GTP and Met-tRNAi which is

regulated by the phosphorylation status of eIF2a [34].

An earlier finding that sequences in the 50 leaders are

highly conserved and that the level of conservation globally

increases towards the leader/main ORF boundaries [35]

suggests that this conservation could be due, in part, to the 30

ends of a portion of 50 leaders encoding N-terminal extensions

to the annotated AUG-initiated proteins. In total, more than

60 instances of non-AUG-initiated N-terminal extensions

have been predicted or verified experimentally in mammals

[36–38]. In most cases, the non-AUG initiation provides an

alternative longer proteoform in addition to a proteoform

resulting from initiation at a standard AUG codon downstream

via a process termed ‘leaky scanning’. Where alternative pro-

teoforms are produced as a result of leaky scanning, the

longer isoform frequently contains a signal for subcellular

localization that is absent in the shorter form [39–43].

Previously, we performed a systematic analysis of the 50 lea-

ders of human GenBank RefSeq mRNAs to investigate the

extent of non-AUG initiation in humans [37]. This involved

analysis of codon substitution rates in pairwise alignments of

human and mice orthologous sequences to identify regions

of 50 leaders evolving under the constraints of protein coding

evolution. When a region within a 50 leader evolves under

such constraints, it is very likely that the encoded protein can

improve an organism’s fitness and is thus functional. This

approach predicts a CUG-initiated, 173 amino acid, N-terminal

extension within the 50 leader of phosphatase and tensin homologue
on chromosome ten (PTEN). PTEN is a powerful tumour suppres-

sor gene that encodes a dual-specificity phosphatase [44,45]

frequently mutated in human cancers [46] and autism spectrum

disorders [47]. Its best characterized function is its ability to

negatively regulate cell survival by dephosphorylating phos-

phatidylinositol 3,4,5 triphosphate (PIP3) and thus inhibiting

phosphoinositide 3-kinase (PI3K) signalling [48].

Independently, two other groups subsequently identi-

fied the same PTEN N-terminal extension [49,50]. Here we

extended our analysis of the PTEN 50 leader and identify non-

AUG-initiated translation that leads to the synthesis of at least

two additional N-terminally extended proteoforms.

2. Material and methods
2.1. Plasmids
The PTEN 50 leader was amplified by PCR from HEK-293T

genomic DNA using appropriate primers (Integrated DNA

Technologies) that incorporated a 50 HindIII restriction site

and a 30 BamHI restriction site. PTEN 50 leaders were mutated

by two-step PCR with appropriately designed primers.

Amplicons were cloned HindIII/BamHI into the dual lucifer-

ase plasmid p2-Luc [51] such that the PTEN 50 leader replaced

the Renilla-encoding sequences and were fused directly to the

firefly-encoding sequences.

The coding sequence of PTEN was obtained as a gblock

(Integrated DNA Technologies) with incorporated 50 HindIII
and a 30 XbaI restriction site and cloned into phRL-CMV (Pro-

mega). The coding sequence of PTEN was also subcloned

downstream of the PTEN 50 leader to replace the firefly

encoding sequence of the PTEN 50 leader-FLuc constructs

made previously.

For PTEN 50 leader GFP fusions, EGFP was digested from

pEGFP-N3 (Clontech) with BamHI and XbaI restriction

enzymes and cloned BamHI/XbaI using standard cloning

techniques into the PTEN 50 leader firefly-encoding plasmids

described above, such that the EGFP sequence replaced the

firefly-encoding sequences and were fused directly to the

PTEN 50 leader. The EGFP AUG to AAA mutation was

made by two-step PCR with appropriately designed primers.

For signal peptide–Gaussia luciferase fusions, amplicons

generated by two-step PCR were cloned BamHI/XbaI into

pCMV-GLuc (NEB). All clones were verified by sequencing.

eIF1 and eIF5 overexpression constructs were described

previously [52,53].

2.2. Cell culture
HEK-293T, MDA-MB-231, MCF-7, HeLa, HUH-7, U2OS and

A172 cells were maintained in DMEM supplemented with

10% FBS, 1 mM L-glutamine and antibiotics. PC3 cells were

maintained in RPMI supplemented with 10% FBS, 1 mM

L-glutamine and antibiotics.
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2.3. Luciferase assay
HEK-293T cells were transfected with Lipofectamine 2000

reagent (Invitrogen), using the 1 day protocol in which sus-

pended cells are added directly to the DNA complexes in

full-area 96-well plates. For each transfection, the following

were added to each well: 100 ng of each firefly luciferase-

expressing plasmid, 10 ng of each Renilla luciferase-expressing

plasmid plus 0.4 ml Lipofectamine 2000 (Invitrogen) in 48.4 ml

Opti-Mem (Gibco). The transfecting DNA complexes in each

well were incubated with 4 � 104 cells suspended in 50 ml

DMEM (RPMI for PC3 cells) plus 10% FBS. Transfected cells

were incubated at 378C in 5% CO2 for 24 h. On the next day,

cells were washed once with 1 � PBS and then lysed in 25 ml

of 1 � passive lysis buffer (PLB; Promega) and firefly and

Renilla luciferase activities were determined using the Dual

Luciferase Stop & Glow Reporter Assay System (Promega).

Relative light units were measured on a Veritas Microplate

Luminometer with two injectors (Turner Biosystems).

Firefly luciferase activity was calculated relative to the

activity of the co-transfected control plasmid expressing Renilla
luciferase (pSV40-Renilla). All data points were averaged, and

the standard deviation calculated. Data represent the mean and

standard deviation of at least three independent experiments

each done in quadruplicate.

For secretion luciferase assays (see figure 5c), only Gaussia
luciferase activities were assayed and the percentage activity

in both the cell lysate (intracellular) and culture media

(extracellular) calculated. For sodium arsenite treatment,

HEK-293T cells were transfected as above, and sodium arsenite

(5 mM) was added 6 h post-transfection for either 2 or 4 h.

2.4. Immunoblotting
Cells were transfected in six-well plates using Lipofectamine

2000 reagent, again using the 1 day protocol described above,

with 1 mg of each indicated plasmid. Where FLuc- and

RLuc-expressing plasmids were cotransfected (see figure 6b
and electronic supplementary material, figure S10b) a ratio of

10 : 1 was used. The transfecting DNA complexes in each well

were incubated with 0.8 � 106 HEK-293T cells suspended in

3 ml DMEM plus 10% FBS and incubated overnight at 378C
in 5% CO2. Transfected cells were lysed in 100 ml 1 � PLB and

10 ml removed for dual luciferase assay.

For PC3 transfections, 1.2 � 105 cells were plated in tripli-

cate wells (12-well plates) 1 day prior to forward transfection

with Lipofectamine 2000 reagent (4 ml) and 500 ng of each

indicated plasmid in 500 ml of Opti-Mem. Cells were replen-

ished with fresh RPMI media 6 h post-transfection, then after

18 h, cells were washed and treated with serum free RPMI for

a further 24 h. Transfected cells were lysed in radioimmuno-

precipitation assay (RIPA) buffer plus protease inhibitors

(Sigma) and NaF (20 mM).

Proteins were resolved by 4–12% gradient Bis/Tris–SDS/

PAGE (Bolt
TM

: Thermo Fisher Scientific) under constant voltage

(165 V) for 90 min and transferred to nitrocellulose membra-

nes (Protran), which were incubated at 48C overnight with

primary antibodies. Immunoreactive bands were detected on

membranes after incubation with appropriate fluorescen-

tly labelled secondary antibody using a LI-COR Odysseyw

Infrared Imaging Scanner. Densitometry analysis was per-

formed using IMAGEJ software (NIH) and GraphPad PRISM

used for statistical analysis.

2.5. Immunoprecipitation and GFP-trapw

Cells were lysed in RIPA buffer plus protease inhibitors

(Sigma), then lysates were incubated with 25 ml of protein

G agarose beads (Pierce) plus anti-PTEN (138G6) overnight

at 48C with gentle rocking. The beads were washed (three

times) with ice-cold RIPA buffer and then immunoprecipi-

tated proteins removed from the beads by boiling for 5 min.

in 20 ml of 2 � SDS–PAGE sample buffer for electrophoresis

and immunoblotting.

GFP-trapw_A beads (ChromoTek) were equilibrated accord-

ing to the manufacturer’s protocol. For collection of the

extracellular fractions, culture medium was centrifuged at 200g
for 5 min at 48C to remove debris. For intracellular fractions,

cells were lysed in RIPA buffer as above. 10 ml of equilibrated

beads were added to each fraction and incubated rotating at

48C for 1 h. The beads were washed (three times) with ice-cold

dilution buffer (10 mM Tris/Cl pH 7.5; 150 mM NaCl; 0.5 mM

EDTA) and then immunoprecipitated proteins removed from

the beads by boiling for 10 min in 40 ml of 2 � SDS–PAGE

sample buffer for electrophoresis and immunoblotting.

2.6. RT-qPCR
HEK-293T cells were transfected in triplicate wells (six-well

plate) as above with either construct 1 (wild-type PTEN
leader fused to firefly luciferase) or construct 5 (PTEN leader

with all uAUGs mutated to AGG). 24 h post-transfection cells

were removed (trypsin), divided into two aliquots of 20%

and 80% and then collected by centrifugation. 20% of cells

were resuspended in 20 ml 1 � PLB for dual luciferase assay.

RNA was isolated using Trizol reagent (Invitrogen) from the

remaining 80% of cells, and 500 ng of DNAse-treated (RQ1:

Promega) RNA was reverse transcribed using oligo-dT and

random hexamers according to the manufacturer’s instructions

(Superscritpt III: Invitrogen). Reactions minus reverse tran-

scriptase were included to control for contaminating genomic

or plasmid DNA. SYBR green (Qiagen) qPCR was performed

on an Applied Biosystems 7300 real-time PCR system with fire-

fly luciferase primers (sense TGGAGAGCAACTGCATAAGG

and antisense ATTCCGCGTACGTGATGTT) and a set of

intron-spanning control primers for GAPDH (sense AGCCT

CCCGCTTCGCTCTCT and antisense CCAGGCGCCCAA

TACGACCA). Relative RNA quantitation was analysed using

the Livak method (22DDC
T ) and used to normalize relative

luciferase activities to relative RNA levels.

2.7. Antibodies
An affinity-purified rabbit polyclonal antibody (anti-PTEN-L)

directed to a predicted antigen (PRHQQLLPSLSSFFFSHR

LPD) within all four extended PTEN proteoforms was pre-

pared by GenScript. The following commercially available

antibodies were also used. Mouse anti-PTEN (6H2.1;

Millipore), rabbit anti-PTEN (138G6: Cell Signalling), rabbit

anti-GFP (A6455: Novex), goat anti-firefly luciferase (G7451:

Promega), rabbit anti-S473-phospho-AKT (D9E: Cell Signal-

ling), mouse anti-pan-AKT (40D4: Cell Signalling), mouse

anti-Renilla luciferase (1D5.2 Millipore), rabbit anti-eIF5

(ab85913: Abcam) and mouse anti-b-actin (AC-15: Sigma).

Anti-eIF1 was a generous gift from Ariel Stanhill

(Technion-Israel Institute of Technology).
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2.8. Fluorescence microscopy
Live cell imaging was performed as described before [54] using

an inverted Axiovert 200 fluorescence microscope (Zeiss),

equipped with 100�/1.4 Plan Apochromat oil-immersion

objective (Zeiss), pulsed excitation module (470 nm, 590 nm

LEDs), bandpass filters 510–560 nm and gated CCD camera

(LaVision, Biotec). Briefly, HeLa cells were seeded onto eight-

well chambers pre-coated with a mixture of collagen IV

and poly-D-lysine (Ibidi), allowed to attach (24 h) and forward

transfected for 24 h with plasmid DNAs encoding PTEN-

leader–GFP fusions as indicated. Images were processed

using IMSPECTOR software (LaVision, Biotec) and combined in

Adobe ILLUSTRATOR CS2.

3. Results
Previous searches for evolutionarily conserved non-AUG-

initiated N-terminal extensions in human coding sequences

predicted a CUG-initiated, 173 amino acid extension to the

tumour suppressor PTEN [37]. Further phylogenetic analysis

of the PTEN 50 leader with additional sequence data reveals

deep nucleotide conservation in mammals (figure 1a and elec-

tronic supplementary material, figure S1). Two independent

groups [49,50] have recently provided experimental evidence

for a human PTEN N-terminal extension that reportedly

initiates at the same CUG predicted by Ivanov et al. [37]. Pre-

liminary results in our laboratory indicated the existence of

multiple N-terminally extended PTEN proteoforms. Here we

set out to systematically investigate these multiple proteoforms

and also to determine the effect, if any, of two conserved AUG-

initiated uORFs on translation of these PTEN proteoforms

(boxed in figure 1a).

We noted that the 50 end of both GenBank RefSeq PTEN
mRNA isoforms (NM_000314.6, NM_001304718.1), which

have identical first exons, do not correspond to the transcrip-

tion start site predicted by the Fantom Projects’ CAGE

analysis [58] which finds that the transcription start site is a

further 187 nt 30 of the Genbank RefSeq annotated PTEN
mRNA 50 end (electronic supplementary material, figure S2).

A þ187 transcription start site is also in agreement with

mRNAseq data obtained as controls to multiple ribosome pro-

filing experiments, available in GWIPS-viz [59] (see electronic

supplementary material, figure S2) as well as with the majority

of publicly available human PTEN expressed sequence tags.

Therefore, in this study, all test constructs with the PTEN 50

leader start at þ187 relative to the 50 end of GenBank RefSeq

PTEN mRNAs.

We first transfected HEK-293T cells with plasmid DNA

expressing the human PTEN 50 leader fused to sequences

encoding firefly luciferase (FLuc; figure 1b). Immunoblots gen-

erated from transfected cell lysates and probed with FLuc

antibodies detected four slower migrating FLuc proteoforms

when FLuc is preceded by the PTEN 50 leader (lane 2, top

panel, figure 1c). These four proteoforms are absent from

cells transfected with FLuc expressing constructs lacking the

PTEN 50 leader (lane 1, top panel, figure 1c) indicating that

the multiple proteoforms are not post-translationally modified

variants of FLuc. Furthermore, the same pattern of proteoforms
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Figure 1. (a) Sequence logo representation ( produced with WebLogo [55]) of a multiple sequence alignment of PTEN 50 leaders from 52 mammals. The alignment
was generated with CLUSTALX [56] and corrected manually. Asterisks indicate nucleotides conserved in all 52 species. Open black boxes represent two conserved
uORFs. Open green boxes indicate the main ORF AUG and previously predicted CUG initiation codons. (b) Illustration of transfected firefly luciferase constructs
1 – 4 used for immunoblotting. (c) Immunoblot of cell lysates prepared from HEK-293T cells transfected with firefly luciferase expressing constructs as indicated
and probed with antibodies against firefly luciferase (anti-FLuc: top panel), the PTEN N-terminal extension (anti-PTEN-L: middle panel) and b-actin (bottom panel).
The four proteoforms with extended PTEN N-termini are named as L, M, N and O. This nomenclature was recently proposed for novel PTEN proteoforms by Pulido
et al. [57]. Asterisk indicates a non-specific protein that co-migrates with the O-proteoform, thus precluding its detection with anti-PTEN-L. Lane 5 contains cell
lysates from mock-transfected cells.
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was also detected when these same lysates were probed with a

custom antibody (anti-PTEN-L) directed against a peptide pre-

dicted from sequences immediately 50 of, and in-frame with,

the PTEN main ORF (lane 2, middle panel, figure 1c).

These multiple proteoforms are most likely N-terminally

extended variants generated by initiation at in-frame non-

AUG codons within the PTEN 50 leader. Alternatively, some

of these proteoforms could be proteolytically cleaved variants

of the previously reported [49,50] CUG-initiated 173 amino

acid N-terminally extended PTEN proteoform. To investigate

this latter possibility, we transfected HEK-293T cells with

PTEN 50 leader-FLuc expressing constructs in which this CUG

was changed to either a non-initiating AGG triplet or to a

UAA stop codon, that not only prevents initiation but also

terminates translation from upstream initiation sites. Both

anti-FLuc and anti-PTEN-L immunoblots from these trans-

fected lysates indicate that mutation of the CUG leads to the

disappearance of only the most slowly migrating proteoform,

thus ruling out the possibility that some of the other proteo-

forms are cleavage products (lanes 3 and 4, top and middle

panels, figure 1c). These observations suggest that the PTEN 50

leader has the potential to generate at least four N-terminally

extended proteoforms (that are within the detection limits of

these experiments) and that the previously reported proteoform

initiated at CUG, while likely the longest proteoform may not be

the most abundant.

Because of the recent reporting of an N-terminally exten-

ded PTEN proteoform [37,49,50], a unified nomenclature

for PTEN proteoforms was proposed [57] where newly ident-

ified PTEN proteins are named alphabetically as PTEN-L,

PTEN-M, PTEN-N, etc. We have adopted this proposed

nomenclature and henceforth refer to these four PTEN iso-

forms as PTEN-L, PTEN-M, PTEN-N and PTEN-O, where

PTEN-L is the presumed longest variant and is initiated at

the previously reported CUG codon [37,49,50], whereas pro-

teoform PTEN-M appears to be the most abundant (table 1

and figure 1c).

It is conceivable that PTEN-M, PTEN-N and PTEN-O are

not non-AUG-initiated N-terminally extended proteoforms.

Instead, PTEN-M and PTEN-N could be post-translationally

modified variants of PTEN-O, whereas PTEN-N and PTEN-

O could be cleavage products of PTEN-M. To address these

possibilities, and to determine whether non-AUG initiation

could explain the presence of these proteoforms, we made

PTEN 50 leader-FLuc constructs in which potential non-

AUG initiation codons were systematically mutated in turn

to either AGG or UAA. Potential in-frame near-cognate

initiation codons from the relevant region within the PTEN

PTEN 5¢ leader

L-FLuc 75 kDa

anti-FLuc

anti-b-actin

50 kDa

M-FLuc
N-FLuc
O-FLuc

FLuc

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

firefly

(b)

(a)

Figure 2. (a) Illustration of human PTEN 50 leader fused to firefly luciferase and sequence of 50 leader region in which potential non-AUG codons are highlighted in
different colours with those in favourable Kozak context (23 purine and/or þ4 G) underlined. The previously reported CUG initiation site [37,49,50] is highlighted
in green and is the most 50 potential non-AUG initiation site. The PTEN CDS reading frame is indicated with spaces between the codons. (b) Anti-FLuc and anti-b-
actin immunoblots of cell lysates prepared from HEK-293T cells transfected with firefly luciferase encoding sequences fused to the wild-type or non-AUG codon
mutated (indicated) PTEN 50 leader. The four FLuc proteoforms with extended PTEN N-termini are indicated as L-, M-, N- and O-FLuc. In the control (CO, lane 16),
the main ORF (firefly) AUG is mutated to UAA.

Table 1. Details of PTEN N-terminally extended proteoforms. Nucleotide
distances from aAUG (annotated AUG of canonical PTEN) are indicated
where A of the aAUG is þ1.

nt from
aAUG

N-term
ext AA

total
nt

total
AA

MW
(kDa)

PTEN-L 2519 173 1728 576 64.9

PTEN-M 2438 146 1647 549 62.5

PTEN-N 2393 131 1602 534 61.0

PTEN-O 2216 72 1425 475 55.0
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50 leader are highlighted in figure 2a and those in a favourable

Kozak context (purine at 23 or G at þ4) are underlined.

Mutation of the most 50 in-frame AUU codon to AGG com-

pletely abolishes synthesis of the most prevalent proteoform

M-FLuc (lanes 4 and 5, figure 2b). As expected, mutation of

this AUU to a termination codon causes premature termin-

ation of L-FLuc (lane 5, figure 2b). It is difficult to be

certain about the nature of the initiation codon for N-FLuc,

because a cross-reacting endogenous protein migrates at the

same position; however, it seems likely that the second-

most 50 in-frame CUG is responsible as there is a clear

decrease in N-FLuc intensity when this CUG and all 30

non-AUGs are mutated individually to UAA (see lanes 9,

11, 13 and 15, figure 2b). Mutation of the most 30 in-frame

CUG completely abrogates expression of O-FLuc (lanes 14

and 15, figure 2b). In summary, the three minor proteoforms

(L, N and O) are all initiated at CUG, whereas the major

proteoform (M) is initiated at AUU.

We next tested for the existence of endogenous human

PTEN N-terminally extended proteoforms by immuno-

precipitating PTEN from several different cell lines using

commercially available antibodies directed against antigens

within the annotated PTEN (CDS). The predicted molecular

weight of PTEN is 47.2 kDa, but there are many reports indi-

cating that the apparent molecular weight of PTEN is

approximately 55 kDa. In agreement with this, immunoblots

of PTEN immunocomplexes reveal the presence of an approxi-

mately 55 kDa protein in all cell lines tested (figure 3a).

In addition to the canonical AUG-initiated PTEN, three

slower migrating proteins are observed in all cell lines

tested other than U2OS. The molecular weights of these three

proteins correlate well with those predicted for PTEN
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Figure 3. (a) Anti-PTEN CDS (6H2.1) immunoblot of anti-PTEN CDS (138G6) immunoprecipitates prepared from several cell lines as indicated showing detection of
endogenous canonical AUG-initiated PTEN as well as the three non-AUG-initiated PTEN proteoforms PTEN-L, PTEN-M and PTEN-N. (b) Anti-PTEN CDS (6H2.1) immu-
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proteoforms PTEN-L, PTEN-M and PTEN-N. To determine

whether the migration of these putative endogenously

expressed PTEN N-terminally extended proteoforms correlate

with exogenously expressed proteoforms PTEN-L, PTEN-M

and PTEN-N (we could not detect any endogenous proteoform

that could correspond in molecular weight to PTEN-O in these

experiments), we transfected the human PTEN CDS fused to

either wild-type or mutated PTEN 50 leaders into A172 cells

which do not express endogenous PTEN. Immunoprecipitates

from transfected A172 cells were compared with immunopre-

cipitates from HEK-293T cells expressing endogenous PTEN
and show that exogenously expressed proteoforms PTEN-L,

PTEN-M and PTEN-N co-migrate with endogenous PTEN pro-

teins from HEK-293T cells (compare the first and fourth lanes

in figure 3b). Furthermore, in agreement with the FLuc reporter

constructs (figure 2b), mutation of the first and third in-frame

CUGs prevents initiation of the two minor PTEN proteoforms

PTEN-L and PTEN-N, whereas mutation of the first in-frame

AUU abolishes expression of the major PTEN-M proteoform

(figure 3b). Together, these results indicate that three slower

migrating PTEN proteoforms apparent in immunoprecipitates

from several cell lines correlate with non-AUG-initiated

proteoforms PTEN-L, PTEN-M and PTEN-N.

Several studies report that PTEN-L is an active phosphatase

and retains the ability to downregulate the PI3K pathway

[49,50,60–62]. To determine whether the PTEN proteoforms

described here are active phosphatases, we measured the phos-

phorylation status of the major PI3K substrate, AKT, in PC3

cells (no endogenous PTEN expression) transfected with

either wild-type or N-terminally extended PTEN proteoforms.

Exogenous expression of PTEN reduced the levels of AKT phos-

phorylation almost twofold, and similar levels of reduction

were observed for all four N-terminally extended proteoforms

(figure 4 and electronic supplementary material, figure S3).

Therefore, similar to previous observations for PTEN-L, the

phosphatase activities of PTEN-M, PTEN-N and PTEN-O are

not overtly affected by their N-terminal extensions.

N-terminal extensions often harbour signals for subcellu-

lar targeting or secretion. However, live cell imaging of AUG-

initiated PTEN N-terminal extensions fused to GFP reveal

diffuse cytoplasmic localization for all four PTEN–GFP

fusions indistinguishable from the localization of GFP alone

(electronic supplementary material, figure S4).

Hopkins et al. [49] suggest that the PTEN-L proteoform har-

bours an N-terminal signal peptide secretion signal and provide

evidence that PTEN-L is secreted and can re-enter cells via a cell

re-entry motif similar to the HIV TAT protein. The predicted

amino acid sequences of PTEN-M and PTEN-N lack the puta-

tive secretion signal yet still retain the putative cell re-entry

motif (electronic supplementary material, figure S5) reported

by Hopkins et al. To rule out the possibility that the N-terminal

extension of PTEN-M might possess a cryptic signal peptide

sequence, we overexpressed, in HEK-293T cells, PTEN-L (as a

control) and PTEN-M N-terminal extensions fused to GFP

(same constructs as described in electronic supplementary

material, figure S4). A fusion of GFP with the signal peptide

sequence from Gaussia luciferase (GLuc) [63] was used as a posi-

tive control (figure 5a). Extracellular and intracellular GFP

fusion proteins were concentrated by immunoprecipitation

using GFP-trapw (immobilized camelid anti-GFP antibody) fol-

lowed by immunoblotting with anti-GFP. Even though we

immunoblotted 50% of the total extracellular fraction and

only 5% of the intracellular fraction, we did not detect PTEN-

L-GFP or PTEN-M-GFP in the extracellular fraction (see lanes

1 and 3, middle panel, figure 5b). Furthermore, when HEK-

293T or U2OS cells were transfected with constructs expressing

either the PTEN-L or PTEN-M N-terminal extensions, or the

putative PTEN-L signal peptide alone, fused to GLuc, we

failed to detect GLuc activity in the cell media at levels above

background (figure 5c). Yet GLuc-fused downstream of the

PTEN-L N-terminal extension in which the putative PTEN-L

signal peptide was replaced with the signal peptide from

either GLuc or interleukin-2 efficiently targeted GLuc from

cells (figure 5c).

We next sought to ascertain whether the non-AUG initiation

of the PTEN proteoforms is regulated. The selection of poor con-

text initiation codons (including non-AUG start codons) is

modulated by intracellular levels of initiation factors eIF1
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Figure 4. (a) Illustration shows PTEN expressing constructs transfected into
PC3 cells. (b) Immunoblots of cell lysates prepared from PTEN-null PC3 cells
transfected with PTEN expressing constructs as indicated for 48 h (serum
starved for last 24 h) and probed with antibodies against PTEN (138G6),
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were calculated relative to pan-AKT intensities. Relative pAKT levels in lysates
from cells transfected with each N-terminally extended PTEN proteoform were
compared with the control sample. **p , 0.01, ***p , 0.001 by one-way
ANOVA followed by Tukey’s test.
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(increases stringency) and eIF5 (decreases stringency) [5–11,

52,53]. To determine whether initiation of the N-terminally

extended PTEN proteoforms are regulated by altered eIF1 or

eIF5 levels, we overexpressed each initiation factor separately

in HEK-293T cells and then immunoprecipitated endoge-

nous PTEN proteoforms (electronic supplementary material,

figure S6). Even though eIF1 and eIF5 levels are robustly

expressed, we note no discernible change in the ratio of PTEN

proteoforms compared with cells transfected with an empty

vector (electronic supplementary material, figure S6).

As shown in figure 1a, there are two conserved

AUG-initiated uORFs (uORF1 and uORF2) close to the

PTEN 50 cap (figure 6a and electronic supplementary material,

figure S7). The most 50 uORF (uORF1) is only four codons long

and starts with tandem AUG codons, both in good Kozak con-

text. uORF2 is much longer (45 codons) and also starts with a

good context AUG. Ribosomal profiling data compiled in

GWIPS-viz [59] for PTEN show a large number of ribosome

protected fragments aligning to uORF1 in comparison with

uORF2 (electronic supplementary material, figure S7). In gen-

eral, translation of uORFs has an inhibitory effect on main

ORF translation although this relationship between uORFs

and main ORFs is not so simple where multiple uORFs exist.

Usually, the translation of short uORFs is less inhibitory than

the translation of long uORFs, because the ribosomes’ ability

to reinitiate after translation of ORFs more than 35 codons is

normally greatly reduced (see Introduction). According to

the scanning model of eukaryotic translation initiation, we

would predict that the majority of scanning 43S complexes

would initiate uORF1; however, because it is only four

codons long, a high level of re-initiation is expected. Because

re-initiation is precluded until all necessary initiation factors

have reloaded onto the 40S, translation of uORF1 may favour

re-initiation at ORFs more 30 than uORF2. We set out to deter-

mine the possible role of these two uORFs on regulation of the

different PTEN proteoforms by transfecting HEK-293T cells

with PTEN 50-leader-FLuc reporter constructs in which the

uORFs were mutated and testing by dual luciferase assay

(figure 6a) and immunoblotting (figure 6b).

Even though we expect a high level of uORF1 translation,

mutation of the uORF1 tandem AUG codons to non-initiating

AGG codons has only a minor inhibitory effect (less than 10%)

on FLuc activity (compare construct 1 (wild-type PTEN 50

leader) with construct 2 in figure 6a). Mutating uORF1 is inhibi-

tory rather than stimulatory presumably because more

ribosomes now have access to uORF2 which we predict
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Figure 5. (a) Illustration of mutant PTEN-L and PTEN-M 50 leader – GFP fusion constructs transfected into HEK-293T cells. SP is the secretion peptide from Gaussia
luciferase. (b) Anti-GFP and anti-b-actin immunoblots from GFP-trap immunoprecipitates prepared from either HEK-293T cell lysates (intracellular: top panel) or
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should be inhibitory. However, the fact that the inhibition

is only minor suggests that either uORF2 may not be as

inhibitory as we expect or that normally ribosomes translating

uORF1 can efficiently reinitiate uORF2. Another explanation

could be that in the wild-type context many ribosomes do not

initiate uORF1. However, mutation of the uORF1 stop codon

to a sense codon (extending the length of uORF1 to 161

codons) severely diminishes FLuc activity (construct 3,

figure 6a) which, in agreement with published ribosome profil-

ing data (electronic supplementary material, figure S7),

confirms that ribosomes do initiate at uORF1. A mutation that

disables uORF2 translation, either alone or in combination

with mutations that prevent uORF1 initiation, increased FLuc

activity more than twofold (compare construct 1 (wild-type)

with constructs 4 and 5 in figure 6a). This indicates that uORF2

is inhibitory and thus suggests that the level of re-initiation on

uORF2 is high. Similar results were observed in several other

cell lines tested, including breast carcinoma (MCF-7), prostate

carcinoma (PC3) and cervical carcinoma (HeLa; electronic sup-

plementary material, figure S8). In addition, there is little

difference in steady-state mRNA levels when both uORFs are

disabled (electronic supplementary material, figure S9).

In these reporter assays, it is assumed that the low level of

N-terminally extended proteoforms (relative to the main ORF)

have only a minor contribution to total FLuc activity. This is

supported by our own unpublished observations showing

that an AUG-initiated PTEN-L extension severely reduces

FLuc activity. To gain further understanding of the effect of

the uORFs on downstream translation, we performed anti-

FLuc immunoblots from cells transfected with constructs 1–6

(figure 6b and electronic supplementary material, figure S10).

Dual luciferase assays from replicate lysates show similar

FLuc activity for each construct to those shown in figure 6a
and electronic supplementary material, figure S8. Densitome-

try of the main ORF (FLuc) normalized to cotransfected RLuc

levels indicates that, similar to the luciferase assay results, pre-

venting initiation of the uORFs results in an almost twofold

increase in main ORF levels (figure 6c). Therefore, even

though levels of the N-terminally extended proteoforms

increase when uORF2 is mutated (lanes 4 and 5, figure 6b
and electronic supplementary material, figure S10), they have

only a minor contribution to overall FLuc activity. When

we estimate the levels of each N-terminally extended proteo-

form by densitometry, we observe that mutation of uORF2

causes the levels of the L and M/N proteoforms to increase

approximately 2.5-fold, the O proteoform to increase 2-fold,

whereas the main ORF increases approximately 1.5-fold.

Mutation of both uORFs together increases the L-proteoform

approximately 5.3-fold, M/N-proteoforms approximately

4.1-fold, O-proteoform approximately 3.1-fold and the main

ORF proteoform approximately 1.6-fold. This densitometry

analysis also allows us to estimate the relative abundance of

each proteoform under normal conditions and when ribo-

somes do not translate either or both uORFs. Interestingly,
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Figure 6. (a) Relative luciferase activities (FLuc/RLuc) of firefly encoding sequences fused to the wild-type or mutant PTEN 50 leader as indicated and cotransfected
(10 : 1 ratio) with a Renilla expressing plasmid into HEK-293T cells. Red crosses indicate mutation of AUG start codons to non-initiating AGG codons. L, M, N and O
depict the approximate site of initiation of PTEN extensions. The dashed box represents the increase in ORF length when the stop codon of uORF1 is changed to a
sense codon. (b) Anti-FLuc and anti-RLuc immunoblots of cell lysates prepared from HEK-293T cells transfected with Renilla and firefly luciferase expressing con-
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although all proteoforms increase when ribosomes do not

translate uORF2, the ratio of N-terminally extended proteo-

forms relative to each other does not change (electronic

supplementary material, figure S10c). In contrast, mutation of

uORF2 increases the ratio of N-terminal proteoforms relative

to the main ORF proteoform (electronic supplementary

material, figure S10d ) such that proteoforms M/N increase

by 50% from 12% to 18% of all proteoforms. Similar approxi-

mately 50% increases were also observed for the L- and O-

proteoforms (electronic supplementary material, figure S10d ).

Furthermore, there is a concomitant decrease in the relative

abundance of the main ORF proteoform from 83% down to

75%. Mutation of uORF1 and uORF2 together results in even

further increases to the relative abundance of N-terminally

extended proteoforms and further decreases the main ORF

proteoform (electronic supplementary material, figure S10d).

Because we show that translation of uORF2 can alter the

ratio of extended and main ORF proteoforms and uORF2 trans-

lation seems to be dependent on efficient re-initiation after

translation of uORF1, we predict that conditions which can

regulate re-initiation events could alter translation of the

main ORF. Increasing the phosphorylation status of eIF2

can reduce re-initiation by limiting the pool of functional

(non-phosphorylated) eIF2. To gain some understanding of

possible regulation of these uORFs, we transfected wild-type

and ‘no uAUG’ firefly reporters into HEK-293T cells and

then treated with sodium arsenite. Sodium arsenite activates

the integrated stress response by inducing phosphorylation

of eIF2. Many mRNAs (main ORFs) whose translation is resist-

ant to eIF2 phosphorylation harbour translated uORFs [64]. If

sodium arsenite decreased re-initiation on uORF2, then we

would expect to see an increase in FLuc activity with the

wild-type reporter; however, we observed little difference in

main ORF reporter translation upon sodium arsenite treatment

(electronic supplementary material, figure S11).

4. Discussion
The results presented above provide strong evidence for the

existence of three (or perhaps four) non-AUG-initiated proteo-

forms of PTEN that are expressed in human cells in addition to,

and at lower levels than, the well-studied canonical AUG-

initiated PTEN. The longest PTEN proteoform, PTEN-L,

has previously been reported [37,49,50] and its function has

been investigated in more detail in subsequent studies

[60,61,65–67]. However, PTEN-M, PTEN-N and PTEN-O

have not been previously described and are reported here for

the first time. We show that PTEN-M initiates at an AUU

codon that is completely conserved in 52 eutherian mamma-

lian species with available sequences, whereas the other

PTEN proteoforms (PTEN-L, PTEN-N and PTEN-O) initiate

at CUG, the first two also completely conserved while the

latter only partially conserved. CUG codons are generally

better initiators than AUU codons [14,52,53], so it is somewhat

surprising that AUU-initiated PTEN-M is more abundant than

CUG-initiated PTEN-L, especially, because the CUG is more 50

than the AUU. The PTEN-L CUG initiation codon Kozak con-

text is slightly less favourable (C at 23 and G atþ4) than that of

the PTEN-M AUU initiation codon (A at 23). It is also possible

that an as yet unidentified RNA secondary structure 30 of the

AUU codon contributes to its favourable utilization for

initiation (see Introduction), especially because the PTEN 50

leader is 70% GC rich with numerous potential stem-loops.

Yet another possibility is that the abundance of the PTEN pro-

teoforms is a reflection of differing protein stabilities rather

than initiation levels, although a similar level of exogenous

PTEN-L and PTEN-M expression when their non-AUGs

start codons are mutated to AUGs (figure 4b and electronic

supplementary material, figure S3) would argue against this.

The identity of the major non-AUG-initiated PTEN proteo-

forms identified in this study contrasts with the findings of

both Hopkins et al. [49] and Liang et al. [50], who both report

only a single CUG-initiated proteoform that corresponds

in our study to PTEN-L. Most of the anti-PTEN immunoblots

presented by Hopkins et al. show a single slower migrating

approximately 75 kDa PTEN proteoform which they term

PTEN-Long (PTEN-L in our study). A possible reason for

this discrepancy is that, in their study, proteins were separa-

ted for shorter time intervals while we purposely allowed

SDS–PAGE gels to run for extended periods (see Material

and methods) in an attempt to resolve as many PTEN proteo-

forms as technically possible. Perhaps the approximately

75 kDa PTEN-long detected by Hopkins et al. corresponds to

a mixture of unresolved PTEN-L, PTEN-M and PTEN-N.

Liang et al. similarly identify a PTEN proteoform

(PTEN-a) that initiates with the most 50 in-frame CUG and

corresponds to our PTEN-L and Hopkins et al. PTEN-Long.

Their anti-PTEN immunoblots from cells exogenously expres-

sing a PTEN-a construct clearly show two higher molecular

weight proteins in addition to PTEN. In agreement with

our study, mutation of the first in-frame CUG prevents trans-

lation of the longest protein. Furthermore, even when the first

and third CUG codons (PTEN-L and PTEN-N in our study)

are mutated together, an extended PTEN proteoform is still

apparent which is very likely to correspond to PTEN-M.

A recent report showing anti-PTEN immunoblots from

matched normal and tumour tissue samples clearly identifies,

in addition to canonical PTEN, at least two slower migrating

endogenous PTEN proteoforms expressed in a similar ratio to

PTEN-L and PTEN-M in our study [61].

When multiple proteoforms are translated from a single

mRNA, the efficiency of initiation at each start codon could

set the ratio of proteoform steady-state levels assuming each

protein has similar stability. However, this ratio may vary

during conditions in which initiation efficiency is altered.

Eukaryotes have developed elaborate mechanisms for the

recognition of the correct initiation codon and the levels of

certain initiation factors can regulate the fidelity of initiation,

especially on suboptimal (non-AUG and AUG in poor

context) start codons [52,53,68]. While elevated levels of eIF1

can increase the stringency of start codon selection, elevated

levels of eIF5 have the opposite effect. Here we show that over-

expression of either eIF1 or eIF5 had minimal effect on the

steady-state levels of PTEN proteoforms (electronic supplemen-

tary material, figure S6). This suggests that either the non-AUG

initiation events in PTEN are refractory to normal stringency con-

trols or the steady-state protein levels of these proteoforms are

regulated tightly by rapid turnover. An alternative explanation

is that because the PTEN 50 leader is long, the many potential

out-of-frame near-cognate codons could create uORFs and

thus preclude the expected effects of eIF1/5 overexpression on

translation of the PTEN N-terminal extensions.

Several groups have observed that PTEN-L can downregu-

late the PI3K pathway in a similar manner to PTEN [49,50,61].

In vitro studies comparing the catalytic activities of purified
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PTEN and PTEN-L reveal that both enzymes can dephosphory-

late PIP3, although, interestingly, PTEN phosphatase activity

can be activated by its reaction product (PIP2), whereas PTEN-

L cannot and is thus constitutively active [60,67]. We tested

whether the PTEN proteoforms identified in our study still

retained the ability to downregulate the PI3K pathway

(figure 4 and electronic supplementary material, figure S3). All

PTEN proteoforms were able to reduce AKT phosphorylation

to levels similar to those of canonical PTEN and PTEN-L,

suggesting that the N-terminal extensions do not have major

effects on the dephosphorylation activity of PTEN proteoforms.

Hopkins et al. [49] report that exogenously expressed PTEN-

L is targeted for secretion from cells by a predicted N-terminal

signal peptide and cleavage site. Furthermore, they also show

that immediately following the predicted cleavage site is a func-

tional cell re-entry signal similar to the HIV TAT protein [49].

Subsequently, Wang et al. [61] confirmed that PTEN-L, but

not PTEN, can enter cells, although whether PTEN-L can be

secreted from cells was not tested. Intriguingly, both PTEN-M

and PTEN-N, while lacking the predicted signal peptide, do

still retain the putative cell re-entry signal (electronic sup-

plementary material, figure S5). We overexpressed GFP fused

to both the PTEN-L (with putative secretion signal)

and PTEN-M N-terminal extensions but could not detect

PTEN-L-GFP in the cell culture media after concentrating by

immunoprecipitation (figure 5b). It is not so surprising that

PTEN-M-GFP is not found extracellularly because it lacks the

putative signal peptide, but failure to detect PTEN-L was unex-

pected and suggests that most PTEN-L is not secreted. It is

possible that this assay was not sensitive enough to detect

low levels of secreted PTEN-L-GFP, so we further tested

whether a secretion signal resided in the PTEN-L extension

by fusing the PTEN 50 leader to Gaussia luciferase. Gaussia luci-

ferase is approximately 1000 times more sensitive than either

Renilla or firefly luciferases [69], yet we could not detect any

extracellular luciferase activity, above background, in con-

structs harbouring the putative PTEN-L signal peptide

(figure 5c). One explanation for the discrepancy between our

PTEN localization experiments and those of previous studies

is that, because canonical PTEN has been found in exosomes

[70,71] and can homodimerize [72], we decided to make repor-

ters that do not contain sequences encoding the canonical PTEN
CDS. Perhaps the important targeting signals are only ‘visible’

in the context of the full-length PTEN proteins. Yet another

possible explanation for not detecting our PTEN-L chimeras

in the cell culture media could be that the efficiency of cell re-

entry is extremely high. However, detection of extracellular

luciferase activity when the PTEN-L signal peptide is replaced

with either the Gaussia luciferase or interleukin-2 signal peptide

would argue against this possibility (figure 5c).

The functional significance of the PTEN-M N-terminal

extension has yet to be determined but perhaps some insight

may be gained from previous studies on PTEN-L. There are con-

flicting reports as to whether the PTEN-L extension has the

potential to form a three-dimensional structure [60,67] or

whether it is intrinsically disordered [65,66]. A recent elegant

HDX-MS approach by Masson et al. [62] indicates that while

most of the PTEN-L N-terminal extension is indeed intrinsically

disordered, there is a potential a-helix at position 151–174

(where residue 174 is the methionine encoded by the canonical

PTEN AUG). This peptide is protected by liposomes, suggesting

an interaction with the membrane. Furthermore, this potential

membrane-spanning region alters both the interfacial kinetics

of PTEN-L and the protein/membrane interface, causing

PTEN-L to function on membranes in a ‘scooting’ mode rather

than a ‘hopping’ mode that is characteristic of PTEN [62]. All

N-terminally extended proteoforms described in our study pos-

sess this potential a-helix so it will be interesting to see whether

these new PTEN proteoforms act in a similar manner. It is

perhaps noteworthy that we could not detect PTEN-O by immu-

noprecipitation with PTEN antibodies, presumably because this

N-terminal extension (and not L, M and N) alters protein confor-

mation in a manner that prevents antibody access to the PTEN

antigen under native conditions. This suggests possible struc-

tural differences between the PTEN-O N-terminal extension

and the other PTEN proteoforms.

In our analysis of the conserved PTEN uORFs, we initially

hypothesized that translation of uORF1 could reduce trans-

lation of uORF2, which, because of its size (45 codons), we

expect to be severely inhibitory for downstream translation.

In this way, translation of uORF1 could, in theory, have an

overall positive effect on main ORF translation by reducing

the number of ribosomes accessing the predicted inhibitory

uORF2. However, intriguingly, increasing the number of ribo-

somes accessing uORF2 by mutation of uORF1 appears not to

be very inhibitory under the conditions tested (figure 6). There-

fore, we conclude that either uORF1 is frequently passed by

leaky scanning, which seems unlikely given the evidence we

described previously for uORF1 translation, or ribosomes

translating uORF1 can re-initiate efficiently at uORF2. Alterna-

tively, similar results would be observed if uORF2 were not

very inhibitory (i.e. permits high level re-initiation). However,

when ribosomes do not translate uORF2, downstream trans-

lation increases approximately 2.5-fold at the CUG of the

L-proteoform in comparison with when uORF2 is available

for translation (figure 6b,c). As one would predict from the

scanning model of translation initiation, removal of both

uORFs further increases the level of downstream initiation a

further twofold (for L-FLuc). Importantly, the presence of

uORF2 affects the ratio of N-terminally extended proteoforms

relative to the main ORF, but has no effect on the ratio of

N-terminally extended proteoforms to each other (electronic

supplementary material, figure S10c,d).

These reporter assay results raise the intriguing possibility

that the deeply conserved uORFs in the PTEN 50 leader may

become less inhibitory for PTEN translation under, as yet uni-

dentified, conditions that could either decrease elongation

rates, which in theory would result in ribosome accumulation

along uORFs and hamper scanning, or else downregulate re-

initiation. There is evidence that the canonical mTOR–S6K

pathway regulates re-initiation after uORFs in plants [73].

We predict that such regulation could have dramatic effects

on the abundance of N-terminally extended proteoforms,

especially if initiation of both uORFs were reduced.

These findings, together with the findings on PTEN-L

from other groups, could have profound implications for

the interpretation of previous studies on both the catalytic

activity and localization of endogenous PTEN as well as

the analysis of polymorphisms within the PTEN 50 leader.

Furthermore, the discovery of these new PTEN proteo-

forms could have implications for the development of

PTEN-based chemotherapeutic agents.
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Hinnebusch AG. 2001 Related eIF3 subunits TIF32
and HCR1 interact with an RNA recognition motif in
PRT1 required for eIF3 integrity and ribosome
binding. EMBO J. 20, 891 – 904. (doi:10.1093/
emboj/20.4.891)

11. Hinnebusch AG. 2014 The scanning mechanism of
eukaryotic translation initiation. Annu. Rev. Biochem.
83, 779 – 812. (doi:10.1146/annurev-biochem-
060713-035802)

12. Kozak M. 1987 An analysis of 50-noncoding
sequences from 699 vertebrate messenger RNAs.
Nucleic Acids Res. 15, 8125 – 8148. (doi:10.1093/
nar/15.20.8125)

13. Noderer WL, Flockhart RJ, Bhaduri A, Diaz de Arce
AJ, Zhang J, Khavari PA, Wang CL. 2014
Quantitative analysis of mammalian translation
initiation sites by FACS-seq. Mol. Syst. Biol. 10, 748.
(doi:10.15252/msb.20145136)

14. Peabody DS. 1989 Translation initiation at non-AUG
triplets in mammalian cells. J. Biol. Chem. 264,
5031 – 5035.

15. Starck SR, Jiang V, Pavon-Eternod M, Prasad S,
McCarthy B, Pan T, Shastri N. 2012 Leucine-tRNA
initiates at CUG start codons for protein synthesis
and presentation by MHC class I. Science 336,
1719 – 1723. (doi:10.1126/science.1220270)

16. Ramakrishnan V. 2002 Ribosome structure and the
mechanism of translation. Cell 108, 557 – 572.
(doi:10.1016/S0092-8674(02)00619-0)

17. Simonetti A, Marzi S, Myasnikov AG, Fabbretti A,
Yusupov M, Gualerzi CO, Klaholz BP. 2008 Structure
of the 30S translation initiation complex. Nature
455, 416 – 420. (doi:10.1038/nature07192)

18. Ogle JM, Brodersen DE, Clemons WM, Tarry MJ,
Carter AP, Ramakrishnan V. 2001 Recognition
of cognate transfer RNA by the 30S ribosomal
subunit. Science 292, 897 – 902. (doi:10.1126/
science.1060612)

19. Potapov AP, Triana-Alonso FJ, Nierhaus KH. 1995
Ribosomal decoding processes at codons in the A or
P sites depend differently on 20-OH groups. J. Biol.
Chem. 270, 17 680 – 17 684. (doi:10.1074/jbc.270.
30.17680)

20. Baranov PV, Gesteland RF, Atkins JF. 2004 P-site
tRNA is a crucial initiator of ribosomal frameshifting.
RNA 10, 221 – 230. (doi:10.1261/rna.5122604)

21. Svidritskiy E, Korostelev AA. 2015 Ribosome
structure reveals preservation of active sites in the
presence of a P-site wobble mismatch. Structure 23,
2155 – 2161. (doi:10.1016/j.str.2015.08.011)

22. Herr AJ, Wills NM, Nelson CC, Gesteland RF, Atkins
JF. 2004 Factors that influence selection of coding
resumption sites in translational bypassing: minimal
conventional peptidyl-tRNA:mRNA pairing can
suffice. J. Biol. Chem. 279, 11 081 – 11 087. (doi:10.
1074/jbc.M311491200)

23. Chen SJ, Lin G, Chang KJ, Yeh LS, Wang CC. 2008
Translational efficiency of a non-AUG initiation
codon is significantly affected by its sequence
context in yeast. J. Biol. Chem. 283, 3173 – 3180.
(doi:10.1074/jbc.M706968200)

24. Kozak M. 1989 Context effects and inefficient
initiation at non-AUG codons in eucaryotic cell-free
translation systems. Mol. Cell Biol. 9, 5073 – 5080.
(doi:10.1128/MCB.9.11.5073)

25. Portis JL, Spangrude GJ, Mcatee FJ. 1994
Identification of a sequence in the unique 5’ open

reading frame of the gene encoding glycosylated
gag which influences the incubation period of
neurodegenerative disease induced by a murine
retrovirus. J. Virol. 68, 3879 – 3887.

26. Kozak M. 1990 Downstream secondary structure
facilitates recognition of initiator codons by
eukaryotic ribosomes. Proc. Natl Acad. Sci. USA 87,
8301 – 8305. (doi:10.1073/pnas.87.21.8301)

27. Michel AM, Andreev DE, Baranov PV. 2014
Computational approach for calculating the
probability of eukaryotic translation initiation from
ribo-seq data that takes into account leaky
scanning. BMC Bioinformatics 15, 380. (doi:10.1186/
s12859-014-0380-4)

28. Calvo SE, Pagliarini DJ, Mootha VK. 2009 Upstream
open reading frames cause widespread reduction of
protein expression and are polymorphic among
humans. Proc. Natl Acad. Sci. USA 106, 7507 – 7512.
(doi:10.1073/pnas.0810916106)

29. Ingolia NT, Ghaemmaghami S, Newman JRS,
Weissman JS. 2009 Genome-wide analysis in vivo of
translation with nucleotide resolution using
ribosome profiling. Science 324, 218 – 223. (doi:10.
1126/science.1168978)

30. Ingolia NT, Lareau LF, Weissman JS. 2011
Ribosome profiling of mouse embryonic stem cells
reveals the complexity and dynamics of
mammalian proteomes. Cell 147, 789 – 802.
(doi:10.1016/j.cell.2011.10.002)

31. Lee S, Liu B, Lee S, Huang S-X, Shen B, Qian S-B.
2012 Global mapping of translation initiation sites
in mammalian cells at single-nucleotide resolution.
Proc. Natl Acad. Sci. USA 109, E2424 – E2432.
(doi:10.1073/pnas.1207846109)

32. Fritsch C et al. 2012 Genome-wide search for novel
human uORFs and N-terminal protein extensions
using ribosomal footprinting. Genome Res. 22,
2208 – 2218. (doi:10.1101/gr.139568.112)

33. Rajkowitsch L, Vilela C, Berthelot K, Ramirez CV,
McCarthy JEG. 2004 Reinitiation and recycling are
distinct processes occurring downstream of
translation termination in yeast. J. Mol. Biol. 335,
71 – 85. (doi:10.1016/j.jmb.2003.10.049)

34. Hinnebusch AG. 2005 Translational regulation of
GCN4 and the general amino acid control of yeast.
Annu. Rev. Microbiol. 59, 407 – 450. (doi:10.1146/
annurev.micro.59.031805.133833)

35. Shabalina SA, Ogurtsov AA, Rogozin IB, Koonin EV,
Lipman DJ. 2004 Comparative analysis of
orthologous eukaryotic mRNAs: potential hidden
functional signals. Nucleic Acids Res. 32,
1774 – 1782. (doi:10.1093/nar/gkh313)

36. Tikole S, Sankararamakrishnan R. 2006 A survey of
mRNA sequences with a non-AUG start codon in

rsob.royalsocietypublishing.org
Open

Biol.6:150203

12

 on July 22, 2016http://rsob.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/10.1016/j.cell.2009.01.042
http://dx.doi.org/10.1016/j.cell.2009.01.042
http://dx.doi.org/10.1016/0092-8674(80)90148-8
http://dx.doi.org/10.1126/science.3051379
http://dx.doi.org/10.1016/S0378-1119(99)00210-3
http://dx.doi.org/10.1074/jbc.R800031200
http://dx.doi.org/10.1074/jbc.R800031200
http://dx.doi.org/10.1038/nrm2838
http://dx.doi.org/10.1016/j.molcel.2015.06.033
http://dx.doi.org/10.1016/j.molcel.2015.06.033
http://dx.doi.org/10.1016/j.cell.2014.10.001
http://dx.doi.org/10.1016/j.cell.2014.10.001
http://dx.doi.org/10.1016/j.jmb.2009.09.017
http://dx.doi.org/10.1093/emboj/20.4.891
http://dx.doi.org/10.1093/emboj/20.4.891
http://dx.doi.org/10.1146/annurev-biochem-060713-035802
http://dx.doi.org/10.1146/annurev-biochem-060713-035802
http://dx.doi.org/10.1093/nar/15.20.8125
http://dx.doi.org/10.1093/nar/15.20.8125
http://dx.doi.org/10.15252/msb.20145136
http://dx.doi.org/10.1126/science.1220270
http://dx.doi.org/10.1016/S0092-8674(02)00619-0
http://dx.doi.org/10.1038/nature07192
http://dx.doi.org/10.1126/science.1060612
http://dx.doi.org/10.1126/science.1060612
http://dx.doi.org/10.1074/jbc.270.30.17680
http://dx.doi.org/10.1074/jbc.270.30.17680
http://dx.doi.org/10.1261/rna.5122604
http://dx.doi.org/10.1016/j.str.2015.08.011
http://dx.doi.org/10.1074/jbc.M311491200
http://dx.doi.org/10.1074/jbc.M311491200
http://dx.doi.org/10.1074/jbc.M706968200
http://dx.doi.org/10.1128/MCB.9.11.5073
http://dx.doi.org/10.1073/pnas.87.21.8301
http://dx.doi.org/10.1186/s12859-014-0380-4
http://dx.doi.org/10.1186/s12859-014-0380-4
http://dx.doi.org/10.1073/pnas.0810916106
http://dx.doi.org/10.1126/science.1168978
http://dx.doi.org/10.1126/science.1168978
http://dx.doi.org/10.1016/j.cell.2011.10.002
http://dx.doi.org/10.1073/pnas.1207846109
http://dx.doi.org/10.1101/gr.139568.112
http://dx.doi.org/10.1016/j.jmb.2003.10.049
http://dx.doi.org/10.1146/annurev.micro.59.031805.133833
http://dx.doi.org/10.1146/annurev.micro.59.031805.133833
http://dx.doi.org/10.1093/nar/gkh313
http://rsob.royalsocietypublishing.org/


RefSeq database. J. Biomol. Struct. Dyn. 24, 33 – 42.
(doi:10.1080/07391102.2006.10507096)

37. Ivanov IP, Firth AE, Michel AM, Atkins JF, Baranov
PV. 2011 Identification of evolutionarily conserved
non-AUG-initiated N-terminal extensions in human
coding sequences. Nucleic Acids Res. 39,
4220 – 4234. (doi:10.1093/nar/gkr007)

38. Van Damme P, Gawron D, Van Criekinge W,
Menschaert G. 2014 N-terminal proteomics and
ribosome profiling provide a comprehensive view of
the alternative translation initiation landscape
in mice and men. Mol. Cell Proteomics 13,
1245 – 1261. (doi:10.1074/mcp.M113.036442)

39. Arnaud E, Touriol C, Boutonnet C, Gensac MC, Vagner
S, Prats H, Prats AC. 1999 A new 34-kilodalton
isoform of human fibroblast growth factor 2 is cap
dependently synthesized by using a non-AUG start
codon and behaves as a survival factor. Mol. Cell Biol.
19, 505 – 514. (doi:10.1128/MCB.19.1.505)

40. Tee MK, Jaffe RB. 2001 A precursor form of vascular
endothelial growth factor arises by initiation from
an upstream in-frame CUG codon. Biochem. J. 359,
219 – 226. (doi:10.1042/bj3590219)

41. Packham G, Brimmell M, Cleveland JL. 1997
Mammalian cells express two differently localized
Bag-1 isoforms generated by alternative translation
initiation. Biochem. J. 328, 807 – 813. (doi:10.1042/
bj3280807)

42. Hann SR, King MW, Bentley DL, Anderson CW,
Eisenman RN. 1988 A non-AUG translational
initiation in c-myc exon 1 generates an N-terminally
distinct protein whose synthesis is disrupted in
Burkitt’s lymphomas. Cell 52, 185 – 195. (doi:10.
1016/0092-8674(88)90507-7)

43. Coldwell MJ, Hashemzadeh-Bonehi L, Hinton TM,
Morley SJ, Pain VM. 2004 Expression of fragments
of translation initiation factor eIF4GI reveals a
nuclear localisation signal within the N-terminal
apoptotic cleavage fragment N-FAG. J. Cell Sci. 117,
2545 – 2555. (doi:10.1242/jcs.01106)

44. Li J et al. 1997 PTEN, a putative protein tyrosine
phosphatase gene mutated in human brain, breast,
and prostate cancer. Science 275, 1943 – 1947.
(doi:10.1126/science.275.5308.1943)

45. Steck PA et al. 1997 Identification of a candidate
tumour suppressor gene, MMAC1, at chromosome
10q23.3 that is mutated in multiple advanced
cancers. Nat. Genet. 15, 356 – 362. (doi:10.1038/
ng0497-356)

46. Stambolic V, Tsao M, Macpherson D, Suzuki A,
Chapman WB, Mak TW. 2000 High incidence of
breast and endometrial neoplasia resembling
human Cowden syndrome in ptenþ/2 mice.
Cancer Res. 60, 3605 – 3611.

47. Varga EA, Pastore M, Prior T, Herman GE. 2009 The
prevalence of PTEN mutations in a clinical pediatric
cohort with autism spectrum disorders,
developmental delay, and macrocephaly. Genet.

Med. 11, 111 – 117. (doi:10.1097/GIM.
0b013e31818fd762)

48. Maehama T, Dixon JE. 1998 The tumor suppressor,
PTEN/MMAC1, dephosphorylates the lipid second
messenger, phosphatidylinositol 3,4,5-
trisphosphate. J. Biol. Chem. 273, 13 375 – 13 378.
(doi:10.1074/jbc.273.22.13375)

49. Hopkins BD et al. 2013 A secreted PTEN
phosphatase that enters cells to alter signaling and
survival. Science 341, 399 – 402. (doi:10.1126/
science.1234907)

50. Liang H et al. 2014 PTENa, a PTEN isoform translated
through alternative initiation, regulates mitochondrial
function and energy metabolism. Cell Metab. 19,
836 – 848. (doi:10.1016/j.cmet.2014.03.023)

51. Grentzmann G, Ingram JA, Kelly PJ, Gesteland RF,
Atkins JF. 1998 A dual-luciferase reporter system for
studying recoding signals. RNA 4, 479 – 486.
(doi:10.1017/S1355838298971576)

52. Ivanov IP, Loughran G, Sachs MS, Atkins JF. 2010
Initiation context modulates autoregulation of
eukaryotic translation initiation factor 1 (eIF1). Proc.
Natl Acad. Sci. USA 107, 18 056 – 18 060. (doi:10.
1073/pnas.1009269107)

53. Loughran G, Sachs MS, Atkins JF, Ivanov IP. 2012
Stringency of start codon selection modulates
autoregulation of translation initiation factor eIF5.
Nucleic Acids Res. 40, 2898 – 2906. (doi:10.1093/
nar/gkr1192)

54. Dmitriev RI, Zhdanov AV, Nolan YM, Papkovsky DB.
2013 Imaging of neurosphere oxygenation
with phosphorescent probes. Biomaterials 34,
9307 – 9317. (doi:10.1016/j.biomaterials.2013.
08.065)

55. Crooks GE, Hon G, Chandonia JM, Brenner SE. 2004
WebLogo: a sequence logo generator. Genome Res.
14, 1188 – 1190. (doi:10.1101/gr.849004)

56. Heringa J. 1999 Two strategies for sequence
comparison: profile-preprocessed and secondary
structure-induced multiple alignment. Comput.
Chem. 23, 341 – 364. (doi:10.1016/S0097-
8485(99)00012-1)

57. Pulido R et al. 2014 A unified nomenclature and
amino acid numbering for human PTEN. Sci. Signal.
7, ppe15. (doi:10.1126/scisignal.2005560)

58. Kawaji H et al. 2011 Update of the FANTOM web
resource: from mammalian transcriptional landscape
to its dynamic regulation. Nucleic Acids Res. 39,
D856 – D860. (doi:10.1093/nar/gkq1112)

59. Michel AM et al. 2014 GWIPS-viz: development of a
ribo-seq genome browser. Nucleic Acids Res. 42,
D859 – D864. (doi:10.1093/nar/gkt1035)

60. Johnston SB, Raines RT. 2015 Catalysis by the
tumor-suppressor enzymes PTEN and PTEN-L. PLoS
ONE 10, e0116898. (doi:10.1371/journal.pone.
0116898)

61. Wang H et al. 2015 Relevance and therapeutic
possibility of PTEN-long in renal cell carcinoma.

PLoS ONE 10, e114250. (doi:10.1371/journal.pone.
0114250)

62. Masson GR, Perisic O, Burke JE, Williams RL. 2015
The intrinsically disordered tails of PTEN and PTEN-L
have distinct roles in regulating substrate specificity
and membrane activity. Biochem. J. 473, 135 – 144.
(doi:10.1042/BJ20150931)

63. Verhaegent M, Christopoulos TK. 2002 Recombinant
Gaussia luciferase: overexpression, purification, and
analytical application of a bioluminescent reporter
for DNA hybridization. Anal. Chem. 74, 4378 – 4385.
(doi:10.1021/ac025742k)

64. Andreev DE et al. 2015 Translation of 50 leaders is
pervasive in genes resistant to eIF2 repression. Elife
4, e03971. (doi:10.7554/eLife.03971)

65. Malaney P, Uversky VN, Davé V. 2013 The PTEN
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