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Abstract

Many investigators are interested in combining biomarkers to predict an outcome of interest

or detect underlying disease. This endeavor is complicated by the fact that many biomarker

studies involve data from multiple centers. Depending upon the relationship between center, the

biomarkers, and the target of prediction, care must be taken when constructing and evaluating

combinations of biomarkers. We introduce a taxonomy to describe the role of center and

consider how a biomarker combination should be constructed and evaluated. We show that
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ignoring center, which is frequently done by clinical researchers, is often not appropriate. The

limited statistical literature proposes using random intercept logistic regression models, an

approach that we demonstrate is generally inadequate and may be misleading. We instead

propose using fixed intercept logistic regression, which appropriately accounts for center without

relying on untenable assumptions. After constructing the biomarker combination, we

recommend using performance measures that account for the multicenter nature of the data,

namely the center-adjusted area under the receiver operating characteristic curve. We apply

these methods to data from a multicenter study of acute kidney injury after cardiac surgery.

Appropriately accounting for center, both in construction and evaluation, may increase the

likelihood of identifying clinically useful biomarker combinations.

Keywords: biomarkers, combinations, diagnosis, multicenter, prognosis

1 Introduction

Biomedical investigations are often conducted in multiple centers (e.g., hospitals, clinics, providers).

For etiologic and therapeutic studies, there is a substantial literature on the challenges of a

multicenter study design. These challenges include correlations among observations from the same

center and the effect of differences across centers.1 The literature on multicenter studies is especially

extensive for randomized trials, where the need for careful design and analysis of such studies is

widely acknowledged.1

Multicenter biomarker studies are increasingly common as investigators seek to increase power and

generalizability (e.g., Feldstein et al.2, Degos et al.3, Nickolas et al.4). However, in contrast to

randomized trials, the literature on multicenter biomarker studies is small. As a cause or

consequence of this, the challenges and issues posed by a multicenter design appear not to be widely

appreciated among biomarker researchers. Furthermore, most biomarker studies measure many

2

http://biostats.bepress.com/uwbiostat/paper419



biomarkers. Since biomarkers often have only modest individual performance, investigators are

usually interested in constructing combinations of biomarkers. A multicenter study design can have

implications for both the construction and evaluation of biomarker combinations.

Center plays a unique role in biomarker studies, where the goal is generally prediction. Center may

be associated with the outcome one wants to predict, yet it cannot be used as a predictor. The

reason is that center does not generalize to patients from centers not in the study, so a prediction

instrument that used center as a predictor would not be broadly applicable. Recognizing this

situation, it seems many biomarker investigators decide to simply ignore the fact that their data

come from multiple centers. As we will demonstrate, ignoring center can produce misleading or

undesirable results. Although center cannot be used as a predictor, it generally must be accounted

for. However, not all methods for accounting for center are suitable for biomarker studies, and we

will illustrate shortcomings with some existing methods.

We will consider the role that center can play in multicenter biomarker studies, including proposing

a taxonomy that distinguishes different ways that center can be important and providing guidance

to researchers on identifying the role center may play in their studies. We assess the impact of

ignoring center and evaluate existing approaches for accounting for center in biomarker studies.

Finally, we propose suitable methods for constructing and evaluating biomarker combinations using

data from multiple centers. We restrict attention to biomarkers that will be used to identify

individuals likely to have (in the diagnostic setting) or develop (in the prognostic setting) some

clinical outcome; such biomarkers are sometimes referred to as “prognostic” or “diagnostic”

biomarkers, as opposed to biomarkers used to predict response to treatment, which are often called

“predictive” biomarkers.

This work was motivated by the Translational Research Investigating Biomarker Endpoints in Acute

Kidney Injury (TRIBE-AKI) study. The TRIBE-AKI study involves 1219 cardiac surgery patients
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at six centers in North America.5 The participants were followed for diagnosis of post-operative

acute kidney injury (AKI). For each patient, blood and urine were collected at multiple time points

pre- and post-operatively, and about two dozen biomarkers were measured at each time point. AKI

is typically diagnosed via changes in serum creatinine but these changes often do not happen until

several days after the injury.5 One goal of the study is to identify a combination of post-operative

biomarkers that can provide an earlier diagnosis of AKI.

2 Notation and Terminology

We discuss existing methods for (i) modeling clustered data and (ii) adjusting for covariates in

evaluating performance. We then apply these ideas to the multicenter setting, where center can be

thought of as both a clustering variable and a covariate. Below, we primarily use the term “cluster,”

though this is (for our purposes) interchangeable with “covariate.”

Let C indicate cluster and suppose the population consists of M clusters where cluster c has Nc

observations, c = 1, ...,M . Further suppose that we observe data from m of these clusters with nc

observations from cluster c, giving n total observations. We consider a p-dimensional vector of

predictors X and a binary outcome D. Cases (individuals who have or will develop the outcome) are

denoted by either D = 1 or the subscript D, while controls (individuals who do not have or will not

develop the outcome) are denoted by either D = 0 or the subscript D̄. Let (X, D) be the predictors

and outcome for an arbitrary observation. We use the subscript i on X and D to denote the

predictors and outcome, respectively, for the ith observation. We use the superscript c on X and D

to denote the predictors and outcome, respectively, for an observation from cluster c. We denote the

collection of predictors and outcomes for observations in cluster c as (X c,Dc).

In general, in the clustered data setting, predictors may be constant for all observations in a cluster
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(often called cluster-level, cluster-constant, or between-cluster predictors), may vary across

observations in a cluster (called cluster-varying or within-cluster predictors), or may vary both

within and between clusters. We focus on predictors that have at least some variation within

clusters. Throughout, we will assume a non-trivial cluster-specific prevalence of D; that is,

P (D = 1|C = c) := γc ∈ [1/V, 1− 1/V ], c = 1, ...,M , for some V ∈ (2,∞).

3 Background

3.1 Models for Clustered Data: Random Intercept Logistic

Regression

The random intercept logistic regression (RILR) model can be written as:

logit {P (D = 1|X, C = c, bc)} = bc + τ0 + τ>X, bc
iid∼ F. (1)

Typically, it is assumed that bc ∼ N(0, σ2) so σ2 is an additional parameter in this model. If we

view the random intercept bc as σzc, where zc
iid∼ , σ is the regression coefficient for this standardized

omitted (cluster-level) predictor.6 In that sense, bc is generally “interpreted as the combined effects

of omitted cluster-level predictors.”7

3.1.1 Assumptions

The key assumptions typically made by the RILR model given in equation (1) are:8,9

(A1) bc and X c are independent
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(A2) bc
iid∼ N(0, σ2)

(A3) Conditional on (X c, bc), Dc
1, ...D

c
nc

are independent and P (Dc
i = 1|X c, bc) = P (Dc

i = 1|Xc
i , bc),

i = 1, ..., nc

Assumption (A1) can be written as f(bc|X c) = f(bc), which is a fairly strong assumption in the

non-randomized setting.6 In particular, this assumption is often implausible when the distribution of

the predictors varies by cluster.

3.1.2 Estimates

It is important to distinguish between marginal and conditional modeling approaches: the

conditional (or cluster-specific) approach, for example, RILR, involves modeling the probability

distribution of D as a function of predictors and cluster-specific parameters (e.g., cluster-specific

intercepts), while the marginal (or population-averaged) approach involves modeling the marginal

expectation of D as a function of predictors.10 Due to the inclusion of cluster-specific parameters,

parameter interpretation under the conditional approach is with respect to cluster.10 For predictors

that vary within clusters, conditional methods are often more appropriate than marginal methods,

such as generalized estimating equations.10

Predictors frequently have both a between- and within-cluster component; that is, they vary both

within and between clusters.11 Estimates obtained via conditional methods are generally interpreted

as estimates of the within-cluster association, i.e., the association within each cluster, averaged

across clusters; this is typically what researchers are trying to estimate when they use these methods

with predictors that vary within clusters.1,12,13 However, as discussed below, estimated coefficients

obtained from RILR may not actually represent the within-cluster association: depending upon the

nature of the data, the resulting estimates are often a combination of within- and between-cluster
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variations.1,9–11,13–16 Importantly, between-cluster differences are likely to include the effects of

cluster-constant confounders.13

3.1.3 Violations of Assumptions

First we consider (A1); that is, independence of bc and X c. In the context of a randomized

multicenter clinical trial, the assumption holds if randomization is stratified by center, since in this

situation the distribution of the predictor, treatment, is the same across centers.1,11 However, as

noted above, it is generally the case predictors are not purely within-cluster and have both a

between-cluster component and a within-cluster component.11,17,18 When such predictors are

included in a RILR model, the assumption bc and X c are independent may not hold, leading to

distortions of the association of interest.11,17

As a concrete example, suppose the following model holds for the predictor X:

logit {P (D = 1|X,C = c, b′c)} = b′c + τ0 + τBh(X c) + τW (X − h(X c))

= b′c + τ0 + (τB − τW )h(X c) + τWX, (2)

where b′c ∼ N(0, σ2) and h(·) is some cluster-level summary of X c such that X − h(X c) has the same

distribution across clusters. Here, X − h(X c) corresponds to the within-cluster component of X and

h(X c) corresponds to the between-cluster component of X. If the distribution of the predictor X is

the same across clusters, then (τB − τW )h(X c) will be constant in large samples, and can be

combined with the fixed intercept τ0. However, if the distribution of the predictor varies across

clusters such that h(X c) varies and the RILR model given in equation (1) is fit to the data,

bc = b′c + (τB − τW )h(X c) which is not independent of X c if τB 6= τW , violating assumption

(A1).
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Results from research on omitted variable bias indicate that when (2) holds, and (1) is fit to the

data, the estimate of τW will be a combination of the within- and between-effects τB and τW .11

Importantly, the combination of within- and between-effects, if these effects differ, is not of

substantive interest, lacking clinical relevance.1,11 Even in situations where it is thought that the

between- and within-cluster effects are reasonably close to one another, there is the potential for

differential confounding at the between- versus within-cluster level; thus, using both within- and

between-cluster comparisons to estimate the within-cluster effect is problematic.13,19 If cluster-level

factors are associated with predictors, as is often true in observational studies, the distribution of

the predictors is likely to vary across clusters, which may in turn lead to correlation between the

random intercepts and the predictors.7,16

This issue is often called “confounding by cluster” since the within-cluster association, τW , is

distorted by the between-cluster association, τB ;1,9,17,20,21 in the econometrics literature, it is called

the “endogenous covariates problem.”7 In our example, omitting h(X c) leads to correlation between

bc and X c, which, as described by Greenland et al., has the effect of confounding τW .22 Thus,

confounders are “now covariates that ‘explain’ the correlation between” bc and X c;22 that is, the

cluster-level variable h(X c).

Assumption (A2) requires that the random cluster-specific intercepts be independently and

identically distributed according to a normal distribution with mean zero and variance σ2. Broadly

speaking, misspecifications of the random intercept distribution may lead to bias in the estimate of

the fixed intercept and the coefficients for cluster-level variables but typically do not have a large

effect on the estimates for cluster-varying predictors.6,18,23,24
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3.1.4 Decomposing Predictors

One solution that has been proposed to address violations of assumption (A1) is to decompose

predictors into a between-cluster component and a within-cluster component.6,9,11,14,16,18,19,25,26 In

the context of the model at (2), this means fitting a model with h(X c) and X as predictors. When

h(X c) = X̄ c, the cluster mean, this approach is called the “poor man’s” method.11 Using the cluster

mean may be overly simplistic17 and more flexible methods have been proposed based on modeling

bc as a function of X c.27 Of course, these methods require that the model for bc is correctly

specified.16,26,27

3.1.5 Efficiency

RILR is often touted as being more efficient than alternative methods due in part to the assumption

that bc has some (parametric) distribution.12,28 In addition, RILR can use both between- and

within-cluster comparisons to estimate coefficients, which allows it to use more information in

estimating these parameters.8,9,12,29 Some studies have found reduced efficiency when the

distribution of the random intercept is not normal and normality is assumed.30

3.2 Models for Clustered Data: Fixed Intercept Logistic Regression

Fixed intercept logistic regression (FILR) can be used to model clustered data by including a fixed

intercept for each cluster. These models are a special case of generalized linear models. We consider

two variants of FILR: conditional (cFILR) and unconditional (uFILR). Both cFILR and uFILR have

the same model form:

logit {P (D = 1|X, C = c, βc0)} = βc0 + β>X, (3)
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where βc0 represents a cluster-specific intercept. The conditioning on βc0 in (3) is only necessary if βc0

is random. cFILR and uFILR differ in their approach to estimation: uFILR relies on the full

likelihood, while cFILR uses a conditional likelihood, conditioning on the number of cases in each

cluster.31

3.2.1 Assumptions

In the econometrics literature, the distinction between RILR and FILR is based not on whether the

cluster-specific intercepts are fixed or random, but whether they are independent of the predictors.8

Thus, the key assumption for FILR is:8,9

(B1) Conditional on X c, Dc
1, ...D

c
nc

are independent

If the βc0 are random, then they must be independent across clusters and assumption (B1) must

additionally condition on βc0.8,9

3.2.2 Estimates

FILR consistently estimates the within-cluster effect of predictors that vary within clusters, provided

(B1) is satisfied and model (3) holds.11,12,15,17 Thus, this method avoids the issue of confounding by

cluster; in fact, the resulting estimates are not subject to confounding by any unmeasured

cluster-constant variable.13,17

For both uFILR and cFILR, only within-cluster comparisons are used to estimate the coefficients,

and, since clusters for which all observations have D = 1 or all observations have D = 0 (we call

these “concordant clusters”) do not contribute any information to the estimation of the

within-cluster effect, they are not used in estimation.8,12 This is also true of clusters that are
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concordant on the predictors, though this situation is unlikely when there are multiple and/or

continuous predictors.

3.2.3 Efficiency

Many investigators are hesitant to use FILR since the exclusion of concordant clusters could reduce

efficiency.11 However, previous research has shown that cFILR provides estimates that are efficient

relative to RILR for predictors that vary predominantly within-clusters.19,32 Indeed, as pointed out

by Neuhaus and Kalbfleisch, for predictors with between- and within-cluster components, the

increased efficiency of estimates from RILR that is sometimes observed is often largely due to the

assumption of common within- and between-cluster effects.11 If these effects are indeed equal, there

will be some efficiency gain from using RILR since this approach uses both within- and

between-cluster variations to estimate the coefficients.19 However, as noted above, using both types

of variation in estimation is generally not recommended since the between and within effects may

not be equal and the potential exists for differential confounding. Furthermore, concordant clusters

contribute to between-cluster variation and often exhibit strong between-cluster effects, which have

the potential to heavily distort the estimated coefficients for predictors that vary within clusters if

RILR is used.14,15

3.3 Evaluating Performance

Suppose we have a predictor Z and are interested in evaluating its performance. Without loss of

generality, we will assume that higher values of Z are more indicative of D. We focus on

discrimination, since determining the discriminative ability of a predictor is often the first step in

developing a clinically useful diagnostic or prognostic tool. Discrimination is the ability of Z to
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separate cases and controls, and is commonly assessed via the area under the receiver operating

characteristic (ROC) curve (AUC). The ROC curve plots the true positive rate, the proportion of

correctly classified cases, versus the false positive rate, the proportion of incorrectly classified

controls, over the range of possible thresholds for Z.33 The ROC curve for a useless predictor is the

45-degree line, and the corresponding AUC is 0.5.33 The ROC curve for a perfect predictor reaches

the upper left-hand corner of the unit square, and the AUC for such a predictor is 1.33 The AUC

has a probabilistic interpretation: it is the probability that, for a randomly selected case and control,

the value of Z for the case is higher than the value of Z for the control.33

Covariate effects could influence the evaluation of the predictor Z; in particular, associations between

Z and the covariate could allow the covariate to contribute to or attenuate the discriminatory

accuracy of Z.34 In order to prevent the covariate from affecting the assessment of the discriminatory

accuracy of Z, the covariate-adjusted AUC should be evaluated. The covariate-adjusted ROC

(aROC) and corresponding covariate-adjusted AUC (aAUC) for a discrete covariate C, proposed by

Janes and Pepe, can be written as aROCZ and aAUCZ , respectively, where35

aAUCZ =

∫ 1

0

aROCZ(t)dt =

∫ 1

0

∑
c

ROCZ|C=c(t)P (C = c|D = 1)dt

=
∑
c

wcAUCZ|C=c, (4)

where t denotes the false positive rate, ROCZ|C=c and AUCZ|C=c denote the covariate-specific ROC

and AUC, respectively, and wc = P (C = c|D = 1) denotes the distribution of the covariate among

cases. Thus, the aAUC is a weighted average of the covariate-specific AUCs, where the weights

correspond to the proportion of cases with each covariate value.35,36

When the same data are used to construct a combination and evaluate its performance, the resulting

estimate of performance is optimistic.37 This can be addressed by using a bootstrapping procedure
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to estimate the degree of optimism.37,38 Bootstrapping assumes observations are exchangeable,

which may not be reasonable when the data are clustered; thus, bootstrap resampling of clusters has

been suggested.1,36,39,40 However, Bouwmeester et al. found similar results for the average

cluster-specific AUC whether resampling was done on clusters or individual observations.39

4 Methods

Our predictors consist of a collection of biomarkers, and both the covariate and the cluster variable

are center.

When the data come from a single center, common practice is to first construct a combination of the

biomarkers, often using logistic regression, and evaluate its performance using measures such as the

AUC. With more than one center, it is important to consider how to appropriately accommodate

center in both the construction and evaluation of biomarker combinations. As with the

center-adjusted odds ratio in multicenter etiologic studies or the center-adjusted treatment effect in

multicenter randomized trials, we propose using conditional approaches in the construction and

evaluation of biomarker combinations; in particular, we propose using FILR to construct biomarker

combinations and the center-adjusted AUC to evaluate them.

Throughout, we focus on constructing a single biomarker combination; that is, we do not allow the

relationship between the biomarkers and the outcome to vary across centers. In the clinical trial

setting, assessing treatment-by-center interactions is usually not part of the primary analysis.29

Analogously, in the diagnostic and prognostic settings, it is preferable to give a single combination

that is not center-specific, as this would make combination development highly localized. We focus

on constructing linear combinations via the logistic regression framework. While this may seem

restrictive, Pepe et al. noted that the class of linear combinations is actually quite large (taking into
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consideration possible biomarker transformations and interactions) and the logistic form is fairly

robust.41

4.1 The Role of Center

We consider the role of center in the context of two sets of characteristics:

1. Characteristics affecting the prevalence of D: differences in the populations served by each

center could affect the prevalence of D.

2. Characteristics affecting biomarker measurements: center-level factors, including storage and

handling of specimens and practices in each center, could lead to variations in biomarker

measurements unrelated to D.

We focus on three possibilities for the role of center. We call center a confounder when it affects

both the prevalence of D and biomarker measurements, a case mix variable when it affects only the

prevalence of D, and a calibration variable when it affects only the biomarker measurements.

In the TRIBE-AKI study, where the goal is to use biomarkers to diagnose AKI, certain centers may

serve particularly unhealthy communities and that this results in differences in biomarker levels

across center; however, these differences may reflect true underlying biology. If factors such as

storage and handling of biomarkers and surgical practices are standardized, such that the

distribution of biomarkers is similar across centers, conditional on case status, center would be a

case mix variable. If, however, these factors vary across centers (e.g., in some centers surgeons use

different protocols for fluid administration) in addition to variability in disease prevalence, center

would be a confounder. On the other hand, if the populations served by each center are relatively

similar in terms of underlying AKI risk, but factors such as surgical protocols vary across centers
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and lead to variations in biomarker measurements, center would be a calibration variable.

In Figure 1, we present graphical and probabilistic depictions of center as a case mix variable, a

calibration variable, and a confounder for diagnostic or prognostic biomarkers X. Diagnostic

biomarkers represent some underlying disease or disease process, that is, D → X, while prognostic

biomarkers that cause some future outcome, that is, X→ D.

Figure 1: Select potential roles of center in biomarker studies.

It is important to distinguish center as a confounder, as defined in Figure 1, from “confounding by

cluster” in the context of a RILR model. Our use of “confounding” in Figure 1 is in line with

standard epidemiological notions of confounding, where a variable C distorts the effect of interest,

the causal association between X and D. The idea of “confounding by cluster” for RILR models, on

the other hand, is specific to the RILR framework: “confounding by cluster” occurs when the

15
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random intercepts and the biomarkers are not independent, leading to distortion of the effect of

interest, the within-cluster association. As we will see, there are situations where center is not a

confounder by the definitions in Figure 1, but the random intercepts and the biomarkers may not be

independent, so in the context of the RILR model, we are susceptible to “confounding by

cluster.”

4.2 Ignoring Center

Clinical researchers frequently ignore center in the construction and/or evaluation of combinations of

diagnostic or prognostic biomarkers (e.g., Shapiro et al.42 and Vuilleumier at al.43). This is likely

due to the fact that investigators acknowledge that center should not näıvely be included as a

predictor, but are not familiar with methods for accommodating center or the repercussions of

ignoring it.

4.2.1 Construction

Suppose the linear-logistic model holds:

logit {P (D = 1|X, C = c, βc0)} = βc0 + β>X. (5)

Such a model could arise from the following data-generating model for two biomarkers,

X = (X1, X2):

 X1

X2

∣∣∣∣∣∣∣D = d,C = c

 ∼ N

 fX1

(c) + µX1
d

fX2(c) + µX2d

 ,

 1 ρ

ρ 1


 (6)

16

http://biostats.bepress.com/uwbiostat/paper419



where µX1 and µX2 are related to the center-specific AUC for each marker: µX1 =
√

2Φ−1(λ1) and

µX2
=
√

2Φ−1(λ2), where Φ is the standard normal distribution function and λ1 and λ2 are the

center-specific AUCs for X1 and X2, respectively. Thus, we consider constant center-specific AUCs

for X1 and X2, and allowing for center effects on biomarker levels via conditional mean shifts (f(c)).

Equation (6) gives

logit {P (D = 1|X, C = c, βc0)} = βc0 + β1X1 + β2X2.

where βc0 is a center-specific offset and, as shown in the Supplementary Materials (S1),

βc0 =
−µ2

X1
− µ2

X2

2(1− ρ2)
+
ρµX1µX2 + ρµX1fX2(c) + ρµX2fX1(c)

1− ρ2

− {µX1
fX1

(c) + µX2
fX2

(c)}
1− ρ2

+ log

(
γc

1− γc

)
,

and

β1 =
µX1 − ρµX2

1− ρ2
, β2 =

µX2 − ρµX1

1− ρ2
.

Returning to the general linear-logistic model given in (5), suppose that the model holds, but βc0 is

not allowed to vary across centers. That is, suppose we fit the following model to the data pooled

across centers:

logit {P (D = 1|X)} = α0 + α>X. (7)

When C and D are independent conditional on X or C and X are independent conditional on D,

and model (5) holds, we have collapsibility,44 so the conditional and marginal coefficients are the

same (α = β) and the marginal logit, logit{P (D = 1|X)}, is still linear. Therefore, in these

situations, the relationship between the biomarkers and the outcome is the same whether or not we

condition on center. Furthermore, under model (5), when C and D are independent conditional on

X, βc0 will not vary across centers, so α0 = βc0.
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However, when model (5) holds yet C and D are not independent conditional on X and C and X

are not independent conditional on D, we may no longer have α = β. Furthermore, the

linear-logistic model (5) may not hold, in which case the results on collapsibility will no longer be

expected to apply. More generally, ignoring center in the construction of the biomarker combination

potentially allows center to be predictive; that is, part of the effect of center may be included in the

estimates of the biomarker coefficients when center is omitted.

4.2.2 Evaluation

Suppose p = 2 and we have a linear combination: Lθ(X) = θ>X = θ1X1 + θ2X2. When center is

ignored in the evaluation of Lθ(X), the data are pooled across centers, giving the marginal AUC,

AUC(θ) = P (Lθ(XD) > Lθ(XD̄)). In practice, AUC(θ) is estimated empirically:

ˆAUC(θ) =

∑nD

i=1

∑nD̄

j=1 1(Lθ(XDi) > Lθ(XD̄j))

nDnD̄
,

where 1(a > b) is 1 if a > b and 0 otherwise. If the Lθ(X) is associated with center, the marginal

AUC may not reflect the center-specific AUC.34

4.3 Accounting for Center

Often, multicenter studies of association account for center in some way, typically by estimating a

center-adjusted measure of association. In multicenter randomized trials, randomization is often

stratified by center and the target of estimation is then the center-adjusted treatment effect.29 This

idea can be extended to the construction and evaluation of biomarker combinations for diagnosis

and prognosis. In particular, we focus on methods that stratify (condition) on center in both the
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construction and evaluation of biomarker combinations.

4.3.1 Construction

We will consider two methods for constructing combinations that involve conditioning on center,

namely, RILR and FILR; for FILR, we will consider both cFILR and uFILR. For concreteness, we

consider p = 2 in the discussion below.

4.3.2 Construction: RILR

To the extent that the literature has acknowledged the potential role of center in the prediction

setting, RILR is often the approach used in constructing combinations.45 This model can be written

as

logit {P (D = 1|X, C = c, bc)} = bc + τ0 + τ1X1 + τ2X2,

bc
iid∼ F (0, σ2), (8)

where the distribution of the random center-specific intercepts. The model makes three key

assumptions, (A1)–(A3). In general, when the distribution of X1 or X2 varies by center, assumption

(A1) may not hold and the corresponding estimates (τ̂0, τ̂1, τ̂2) may not be meaningful.

The “poor man’s” method may be useful in addressing violations of (A1), and can be written

logit {P (D = 1|X1, X2, b
∗
c)} = b∗c + τ∗0 + τW1 (X1 − X̄c

1) + τW2 (X2 − X̄c
2) + τB1 X̄

c
1 + τB2 X̄

c
2 ,

b∗c ∼F (0, σ∗2),
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where X̄c
1 and X̄c

2 are the means of X1 and X2 in center c, respectively, b∗c represents the random

intercept in center c, τ∗0 represents the overall (fixed) intercept, τW1 and τW2 represent the

within-center effects of the biomarkers, and τB1 and τB2 represent the between-center effects of the

biomarkers.

4.3.3 Construction: FILR

An option that has been discussed at length in the literature on multicenter randomized trials,1,11,17

but has been largely (if not entirely) neglected in the prediction literature is FILR. We propose

using uFILR when the number of centers is modest, and cFILR when the number of centers is large

in order to avoid the incidental parameters problem.31 The FILR model can be written as

logit {P (D = 1|X, C = c, βc0)} = βc0 + β1X1 + β2X2.

If the βc0 are not random, this model relies on assumption (B1).

4.3.4 RILR vs. FILR in Diagnostic and Prognostic Research

Random intercept models are, at first glance, appealing in the context of prediction when the data

arise from multiple centers: these models are thought to represent a situation where there exists a

large population of centers, and the data at hand constitute a random draw of centers from that

population. This intuition may make investigators more comfortable with generalizing their results

to centers not included in their data, typically the goal of prediction research, and thus more likely

to use RILR. However, the key distinction between random and fixed intercept models is not

necessarily whether the center-specific intercepts are random or fixed, but rather whether they are

associated with the biomarkers.8 Thus, while the notion of center-specific intercepts as random
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quantities may have intuitive appeal, this is outweighed by the statistical reality that random

intercept models rely on potentially untenable assumptions.

Researchers may also be drawn to RILR since it gives an estimate of the overall intercept τ0 and the

center-specific intercepts bc are typically assumed to be normally distributed with mean 0; this leads

researchers to believe that they can provide predicted probabilities for patients in new centers not

used in model fitting via τ̂0 + τ̂1X1 + τ̂2X2. However, assuming bc = 0 in new centers generally leads

to poor calibration; that is, it does not provide useful estimates of P (D = 1|X).21 Even if a valid

estimate of bc is available, the estimate of τ0 from RILR can be badly biased if the random intercept

distribution is misspecified.

The “poor man’s” method has been proposed as an alternative to standard RILR. Even if the

distributions of the mean-centered predictors are the same across centers (which would help to

address violations of assumption (A1)), this method is not particularly compelling in the prediction

setting since application of the model to new centers requires estimates of the center-specific

biomarker means; such reliance on information from the new center makes external validation and

clinical application (if predicted probabilities are sought) more challenging. In addition, since the

“poor man’s” method still relies on a RILR model, the estimate of the fixed intercept may face the

same challenges as with the standard RILR model.

The goal of the poor man’s method is to transform the biomarkers into predictors that are

independent of bc. This is an attempt to force the model to estimate the within-center effect of the

biomarkers, as opposed to a combination of the within- and between-center effects. However, FILR

estimates the within-center effect with no further assumptions or transformations of the data. This

is compelling as estimates of biomarker associations (and thus, fitted biomarker combinations) that

are unaffected by center differences are most useful in identifying promising combinations for further

development.
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Conversely, an obvious criticism of FILR is that it does not allow predicted probabilities to be

calculated either in new centers (for uFILR) or at all (for cFILR). However, as discussed above,

RILR does not necessarily solve this problem. Furthermore, the biomarker combination can still be

useful, for example, to stratify patients within each center according to likelihood of having or

developing the outcome.

4.3.5 Evaluation: Center-Adjusted ROC and AUC

When the data come from multiple centers, it is important to avoid allowing center to be predictive,

so conditional approaches to constructing combinations are appropriate. Likewise, in order to

prevent center differences from affecting the assessment of the discriminatory accuracy of a fitted

combination, a conditional measure should be used to evaluate performance. In particular, the

marginal AUC would be appropriate if between-center heterogeneity were able to be used in making

decisions, but this is not typically true.46 Thus, some summary of the conditional, or center-specific,

AUCs should be used to avoid allowing center differences to influence the evaluation of performance.

The summary measure defined in equation (4), that is, using the distribution of center among cases

to weight the center-specific AUCs, is compelling because it is the area under the ROC curve

corresponding to the true and false positive rates based on center-specific thresholds; these

center-specific thresholds are chosen such that the false positive rate is the same in each center.35

That is, for a predictor Z, we can write aROCZ(t) = P
(
Z > gc(t)

∣∣∣D = 1
)

, where gc(t) is the

center-specific threshold giving a false positive rate of t in center c.

For a given combination Lθ(X) = θ>X, the center-adjusted AUC can be written as

aAUC(θ) =
∑M
c=1 wcAUCc(θ) where the center-specific AUC is AUCc(θ) = P (Lθ(Xc

D) > Lθ(Xc
D̄)).
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In practice, AUCc(θ) is estimated empirically:

ˆAUCc(θ) =

∑nc
D
i=1

∑nc
D̄
j=1 1(Lθ(Xc

Di) > Lθ(Xc
D̄j)

ncDn
c
D̄

.

The empirical aAUC estimate is then

ˆaAUC(θ) =
m∑
c=1

ŵc ˆAUCc(θ),

where ŵc is the fraction of observed cases in center c and is the empirical estimate of the weight wc,

that is, ŵc =
nc
D

nD
. The AUCc can only be estimated in discordant centers.

When the ROC curve varies by a covariate, it is generally recommended that a separate ROC curve

be estimated for each value of the covariate.36 In the case of center, where only a fraction of the

centers are observed, this is not possible. However, it is reasonable to assess the heterogeneity in the

center-specific AUCs, as this provides some indication of how the predictor may perform in a new

center.45

Finally, as a consequence of focusing on the center-specific AUC, summarized via the aAUC, we do

not need an estimate of the center-specific intercept to evaluate a combination, as the center-specific

AUC is a rank-based measure and so would be unaffected by such offsets. This allows for

identification of promising combinations of biomarkers for further development without the need for

center-specific intercept estimates.

4.3.6 Asymptotic Properties

Our proposal involves constructing linear combinations of biomarkers by estimating θ and

evaluating the performance of these combinations with the aAUC. We would like to demonstrate
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consistency of this estimate of performance; that is, ˆaAUC(θ̂) converges in probability to aAUC(θ0)

if θ̂ converges in probability to θ0. This is shown by Lemma 1 and Theorems 1 and 2, which are

stated and proved in the Supplementary Material (S2).

4.4 Combining Construction and Evaluation

When constructing and evaluating biomarker combinations, there are two binary decisions to make

regarding center, giving four possibilities (using the notation of models (5) and (7)):

1. Pool the data across centers for both construction and evaluation, giving AUC(α)

2. Pool the data across centers for construction, but stratify by center for evaluation, giving

aAUC(α)

3. Stratify by center for construction, but pool across centers for evaluation, giving AUC(β)

4. Stratify by center for both construction and evaluation, giving aAUC(β)

Proposition 1, given in the Supplementary Material (S3), follows directly from Pepe33 and shows

that the marginal and center-adjusted AUCs of a combination based on some θ are equivalent if C

and Lθ(X) are independent among controls. If C and X are independent conditional on D, then C

and Lθ(X) will be independent among controls. Thus, if model (5) holds and C and X are

independent conditional on D, then AUC(β) = aAUC(β) = aAUC(α) = AUC(α), since α = β by

collapsibility. Proposition 2, given in the Supplementary Material (S3), also follows directly from

Pepe33 and shows that when the prevalence and center-specific AUC do not vary with center and

the center-specific ROC curves are concave, the aAUC for a given biomarker combination will be at

least as large as the marginal AUC. In general, the center-specific ROC curves will be concave if for

a given θ, in each center, increasing Lθ(X) increases the likelihood that D = 1.37
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When model (5) holds, optimality of the risk score P (D = 1|X, C = c, βc0) implies that the

combination based on β is optimal within each center, in terms of maximizing center-specific

AUC.33,47 Thus, under this model,

aAUC(β) ≥ aAUC(θ),

for any θ. Furthermore, by the collapsibility results discussed above, when model (5) holds and C

and D are independent conditional on X, α = β, so

AUC(α) = AUC(β)

aAUC(α) = aAUC(β).

5 Simulations

5.1 Ignoring Center

We studied the impact of ignoring center in the construction and/or evaluation of biomarker

combinations. We considered diagnostic markers, and allowed center to be a case mix variable, a

calibration variable, or a confounder (as summarized in Figure 1). The two biomarkers X1 and X2

were distributed as described in equation (6) with ρ = 0.5, and λ1 = 0.6 and λ2 = 0.65 in all

centers.

Throughout, fX1(c) = fX2(c) = f(c). When center was a case mix variable, logit(γc) ∼ N(0, σ2
γc)

and f(c) = 0. When center was a calibration variable, γc = 0.5 and f(c) ∼ N(0, σ2
f(c)). Finally, when
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center was a confounder,

 logit(γc)

f(c)

 ∼ N

 0

0

 ,

 σ2
γc δσγcσf(c)

δσγcσf(c) σ2
f(c)


 .

We considered σ2
γc = 1, σ2

f(c) = 5, and δ ∈ {−0.75, 0.75}.

We constructed combinations in a training dataset consisting of either 6 centers with 200

observations each or 500 centers with 20 observations each. The combinations were constructed via

logistic regression, where center was either ignored or incorporated using FILR (uFILR for m = 6

and cFILR for m = 500). These estimates correspond to estimates of α and β (defined in equations

(7) and (5)), respectively.

We evaluated fitted combinations via the conditional AUC, AUCc(·), in a large test dataset with a

single center, and the marginal AUC, AUC(·), in a large test dataset with multiple centers. As

shown in the Supplementary Material (S4), the conditional AUC is constant across centers under

our data-generating model so AUCc(·) = aAUC(·). The test set used to evaluate the conditional

AUC consisted of a single center with 200 000 observations while the test set used to evaluate the

marginal AUC included either 6 centers with 30 000 observations each or 500 centers with 400

observations each, depending on the structure of the training data. The observations in the test data

represent subjects from new centers, i.e., not the same centers as used in the training data. The true

coefficients β = (β1, β2) and AUCc(β) were determined analytically for comparison. The simulations

were repeated 500 times.

Figure 2 presents the results of the simulations with 500 centers. These simulations support the

conclusions given above: that is, when center is a case mix variable, the combination and its

performance (in terms of the AUC) are not affected by ignoring center in construction and/or
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evaluation. Likewise, the simulation results when center is a calibration variable are consistent with

the relationships described above, that is, AUCc(β̂) ≥ AUCc(α̂), AUCc(β̂) ≥ AUC(β̂) and

AUCc(α̂) ≥ AUC(α̂). Thus, when center is a calibration variable, ignoring center during

construction can lead to a biomarker combination with reduced predictive capacity in new centers,

and ignoring center during evaluation yields a measure of performance that is lower than the actual

performance of the combination in a new center.

Figure 2: Simulation results for training data with 500 centers. The first column, AUC(α̂), is the
marginal AUC based on the combination constructed by ignoring center and the second column,
AUCc(α̂), is the conditional AUC based on the combination constructed by ignoring center. The

third column, AUC(β̂), is the marginal AUC based on the combination constructed by stratifying by

center and the fourth column, AUCc(β̂), is the conditional AUC based on the combination constructed
by stratifying by center. For each, the median and middle 90% of the distribution across simulations
are shown. Different colors and shapes correspond to different roles for center: blue circles indicate
center is a case mix variable, red squares indicate center is a calibration variable, purple triangles
indicate center is a confounder with positive correlation (0.75) between logit(γc), and f(c) and green
diamonds indicate center is a confounder with negative correlation (−0.75) between logit(γc) and f(c).
The gray horizontal line represents AUCc(β) as determined analytically.
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When center is a confounder and center is ignored during construction (yielding α̂), further ignoring

center during evaluation tends to give a measure of performance that is higher than the actual

performance in a new center (i.e., AUC(α̂) tends to be larger than AUCc(α̂)). On the other hand, if

center is included in construction (yielding β̂), ignoring center during evaluation can give a measure

of performance that may be higher or lower than the performance of the combination in a new

center; that is, AUC(β̂) may be larger or smaller than than AUCc(β̂), depending on the correlation

δ. As expected, ignoring center during construction generally results in a combination with worse

performance in new centers (AUCc(α̂) vs. AUCc(β̂)).

Supplementary Material (S5.1) gives the full results.

5.2 Including Center

We conducted simulations to compare combinations constructed by RILR to those constructed by

FILR. The set-up of these simulations is similar to those described in Section 5.1. When center was

a case mix variable, logit(γc) ∼ F with mean 0 and variance σ2
γc and f(c) = 0. When center was a

calibration variable, γc = 0.5 or 0.1 and f(c) ∼ F with mean 0 and variance σ2
f(c). Finally, when

center was a confounder, logit(γc) ∼ F with mean 0 and variance σ2
γc , f(c) ∼ F with mean 0 and

variance σ2
f(c), and Corr(logit(γc), f(c)) = δ. We varied F (Normal, Gumbel, Laplace, or Uniform),

σ2
γc (0.5, 1, 3, (0.5, 1.5), or (1, 5)), σ2

f(c) (1, 5, or (2,8)) and δ (−0.5, 0, 0.5). We considered some

settings where the variances of logit(γc) (or f(c)) were not constant (those pairs of values in

parentheses); in these scenarios, half of the centers were assigned one value of σ2
γc (or σ2

f(c)) and the

remainder were assigned the other. When center was a calibration variable, γc = 0.5 in most

simulations; however, to study the impact of concordance, we also considered simulations where

γc = 0.1. This was also the motivation for including large values of σ2
γc .
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Linear combinations were constructed in training data (which had either 6 or 200 centers) via

logistic regression, where center was either (i) incorporated using RILR assuming bc
iid∼ N(0, σ2) or

(ii) incorporated using uFILR (in the case of 6 centers) or cFILR (in the case of 500 centers). The

fitted biomarker combinations based on RILR and FILR were evaluated in test data, which consisted

of a single new center with 10 000 observations. These simulations were repeated 500 times.

In Figure 3, we present the results for m = 500 centers in the training data with F = Normal,

σ2
γc = 1, σ2

f(c) = 5, γc = 0.5 when center was a calibration variable, and δ = −0.5 when center was a

confounder. In all scenarios, the results from FILR are close to the true values. The differences in

the coefficient estimates when RILR is used are clear, particularly when center is a calibration

variable or a confounder. This leads to substantially different conditional AUCs for RILR compared

to FILR, particularly when center is a calibration variable. The differences in AUC are small when

center is a case mix variable; in this setting, the differences in the coefficient estimates are not as

large, and the AUC, which is a rank-based measure, can overcome these more modest perturbations.

Additionally, the differences in the coefficient estimates and the AUC are much larger when center is

a calibration variable than when it is a confounder. The full results are given in the Supplementary

Materials (S5.2). In general, we see that the differences between RILR and FILR tend to be smaller

when there are fewer centers (m = 6 vs. m = 500), σ2
f(c) is small, or σ2

γc is large.

The superior performance of FILR persisted even when we considered situations where there were

500 centers and, on average, 7−12% were concordant (Supplementary Material S5.2). In simulations

not designed specifically to have high concordance, up to 2% of centers were concordant, on

average.

Finally, we evaluated the estimate of the overall fixed intercept provided by RILR and found

absolute biases of more than 20% in many scenarios (Supplementary Material S5.2).
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Figure 3: Simulation results comparing random and fixed intercept logistic regression for m = 500
in the training data, where F = Normal, σ2

γc = 1, σ2
f(c) = 5, γc = 0.5 when center was a calibration

variable, and δ = −0.5 when center was a confounder. The median and interquartile ranges across
the simulations are reported. The columns in each plot correspond to different roles for center. The
results based on FILR are displayed as blue triangles and the results based on RILR are displayed as
red circles. The results for the biomarker coefficients are shown in the first two plots, and the results
for the AUC in a single new test center are shown in the third plot. In each plot, the dashed horizontal
line indicates the true value.

We have provided the R functions used to conduct these simulations in the Supplementary Material

(S6).

6 Application to the TRIBE-AKI Study

We applied the methods we have discussed to data from the TRIBE-AKI study. Recall that this is a

study of 1219 adults undergoing cardiac surgery at six medical centers, and there is interest in using

biomarkers to provide an earlier diagnosis of post-operative AKI. All participants provided written

informed consent and details regarding subject recruitment and sample collection and storage have

been previously reported.5 These data are used as illustration and not to report new findings of the

TRIBE-AKI study. We consider three biomarkers, urine NGAL, h-FABP, and plasma TNI, and use

the measurements taken immediately after surgery. After removing observations with missing values
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for any of these biomarkers, 962 observations remained. The three biomarkers were

log-transformed.

First we consider the role of center in this study. Since we are considering diagnostic biomarkers, we

evaluated the distribution of the biomarkers in each center among AKI controls. There is variation

in the distribution of the biomarker measurements across centers among controls (Figure 4).

Additionally, the center-specific AKI prevalences were between 7.8% and 22.9%. These results

strongly suggest that center is a confounder in this study.

Figure 4: Distribution of log urine NGAL, log plasma h-FABP, and log plasma TNI in the TRIBE-AKI
study among controls. The biomarker distributions are stratified by center.

We constructed linear biomarker combinations and evaluated their performance by estimating the

center-adjusted AUC. We corrected this estimate for optimism due to resubstitution bias by

bootstrapping the individual observations.

The biomarker combination estimated by FILR was

0.025 ∗ log(NGAL) + 1.103 ∗ log(h-FABP)− 0.065 ∗ log(TNI).
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The optimism-corrected center-adjusted AUC for this combination was 0.6823. The combination

estimated by RILR was

0.054 ∗ log(NGAL) + 1.096 ∗ log(h-FABP)− 0.065 ∗ log(TNI).

The optimism-corrected center-adjusted AUC for this combination was 0.6806. When center was

ignored during construction, the estimated combination was

0.081 ∗ log(NGAL) + 1.103 ∗ log(h-FABP)− 0.094 ∗ log(TNI),

and the optimism-corrected center-adjusted AUC for this combination was 0.6811. Thus, in these

data, the three fitted combinations were quite similar, and, correspondingly, the gains offered by

FILR in terms of the center-adjusted AUC were very modest.

7 Discussion

We have created a unified framework for constructing and evaluating biomarker combinations in

multicenter studies, including a taxonomy to differentiate the role center can play, tools for

identifying the role of center, and methods for constructing a biomarker combination and evaluating

its performance. Essentially, by conditioning on center in both the construction and evaluation of

biomarker combinations, we obtain combinations and measures of performance that are unaffected

by center differences. Given that such center differences are often not scientifically relevant and are

expected to vary in magnitude from center to center, using conditional approaches for construction

and evaluation of biomarker combinations is advised in order to avoid allowing center differences to

influence either the combination itself or the assessment of its performance. The concepts and
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methods we describe apply to biomarker combinations, and also to combinations of biomarkers and

other clinical or demographic variables.

The center-specific AUC may not be the same across centers; in this situation, it is generally

informative to evaluate the variability in the center-specific AUCs across center. This offers some

indication of how the biomarker combination might be expected to perform in a new center, if the

centers included in the evaluation are “similar” to the new centers. However, when assessing the

center-specific AUCs, it is important to keep in mind that AUC estimates from centers with fewer

observations are less reliable.

Different sampling schemes could affect the estimated weights ŵc, which could in turn affect the the

estimated center-adjusted AUC. The center-specific AUC itself is unaffected by case-control

sampling within each center41 and the center-adjusted AUC is unaffected by center-dependent

sampling among controls,35 though the asymptotic results we have provided may not hold under

certain sampling schemes. If a multicenter study also involves matching, care must be taken to

adjust the AUC for the matching in addition to center.34

Future research will consider approaches that do not rely on empirical estimates of the AUC, perhaps

by modeling the fitted combination parametrically (e.g., using a model to relate the combination to

center among controls);36 such an approach may be useful when there are a large number of very

small centers, as might happen when the “centers” are clinicians. In these settings, the empirical

AUC estimate may be unreliable, and an alternative estimate may be preferable.

An important contribution of this work is that it demonstrates that methods often applied to

multicenter biomarker data are frequently not appropriate. Biomarkers hold great potential for use

as diagnostic and prognostic tools, but have for the most part been relatively disappointing thus far.

Much of the problem has been blamed on “validation failures”; that is, biomarkers that are found to
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be quite promising initially, but are never used in clinical practice due to disappointing results in

follow-up studies.48 Thus, to the extent possible, it is important to recognize aspects of study

design, conduct, and analysis that require special attention when developing biomarker

combinations. Carefully addressing these issues can increase the likelihood of identifying clinically

useful combinations, ultimately leading to improvements in patient care.
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