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Abstract

The fraction who benefit from treatment is the proportion of patients whose po-
tential outcome under treatment is better than that under control. Inference on this
parameter is challenging since it is only partially identifiable, even in our context of a
randomized trial. We propose a new method for constructing a confidence interval for
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the fraction, when the outcome is ordinal or binary. Our confidence interval procedure
is pointwise consistent. It does not require any assumptions about the joint distribu-
tion of the potential outcomes, although it has the flexibility to incorporate various
user-defined assumptions. Unlike existing confidence interval methods for partially
identifiable parameters (such as m-out-of-n bootstrap and subsampling), our method
does not require selection of m or the subsample size. It is based on a stochastic
optimization technique involving a second order, asymptotic approximation that, to
the best of our knowledge, has not been applied to biomedical studies. This approx-
imation leads to statistics that are solutions to quadratic programs, which can be
computed efficiently using optimization tools. In simulation, our method attains the
nominal coverage probability or higher, and can have substantially narrower average
width than m-out-of-n bootstrap. We apply it to a trial of a new intervention for
stroke.

Keywords: Causal inference; Potential outcome; Quadratic program; Treatment effect het-
erogeneity.
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1 Introduction

The fraction who benefit from treatment is the proportion of patients whose potential out-

come under treatment is better than that under control. In other words, it is the proportion

who would be better off with treatment. This fraction provides different information than

the average treatment effect. For example, a positive average treatment effect could rep-

resent a small benefit to many or a large benefit to a small subpopulation. The fraction

who benefit can help distinguish between these scenarios. It may be informative to medical

researchers; for example, a small fraction indicates that an exclusive subgroup benefits and

resources could be devoted toward identifying it. We aim to draw inferences about the

fraction who benefit, using a randomized trial.

A parameter is partially identifiable if it cannot be determined from the data generating

distribution and model assumptions, but we can deduce that it lies within a set (Manski,

2010, p.178). In general, the fraction who benefit (abbreviated as the fraction) is only

partially identifiable from observed data, even in the randomized trial context. This occurs

because only one potential outcome can be observed per patient. Generally, identification

of the fraction necessitates strong, untestable assumptions about the joint distribution of

the potential outcomes, such as independence of the potential outcomes within a person.

We do not require any assumptions about the joint distribution, but do allow the user to in-

corporate certain types of assumptions if desired. Since the fraction is partially identifiable

in this setting, constructing a confidence interval is a challenging problem.

An existing confidence interval procedure for our problem involves applying the m-

out-of-n bootstrap to estimators of lower and upper bounds (which are identifiable) on

the fraction (Fan and Park, 2010). The m-out-of-n bootstrap is a generalization of the

standard nonparametric bootstrap, where bootstrap replicate data sets are generated by
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resampling m patients with replacement for m ≤ n. The m-out-of-n bootstrap is recom-

mended because the bound estimators for our problem can be non-regular (Huang et al.,

2017), and the standard bootstrap can be inconsistent in such cases. Fan and Park (2009,

2010) apply bootstrap-based methods to construct confidence intervals for bounds on the

fraction. Another existing method for constructing confidence intervals for the fraction is

the subsampling approach of Romano and Shaikh (2008). Subsampling is similar to the m-

out-of-n bootstrap, except resampling is done without replacement. Under the subsampling

condition (i) in Theorem 3.4 of their paper, Romano and Shaikh (2008) prove pointwise

consistency of their method. It is difficult to establish whether this condition holds in our

problem. A challenge in using m-out-of-n bootstrap or subsampling is how to select m to

achieve desired performance. We propose a new method that avoids having to select m.

Through simulation, we compare our method with the m-out-of-n bootstrap with re-

spect to coverage probability and average width. In all cases, the coverage probability of

our method is at or above the nominal level, while that of m-out-of-n bootstrap is some-

times below the nominal level. In some cases, our method achieves substantially narrower

average width than the m-out-of-n bootstrap, e.g., reduction of 40%. Our method achieves

the desired coverage probability even in cases where the lower and upper bound parameters

are non-differentiable functions of the marginal distributions under treatment and control,

as shown in Section 4.

We apply our method to the CLEAR III (Clot Lysis: Evaluating Accelerated Resolution

of Intraventricular Haemorrhage III) randomized trial of a new treatment for severe stroke,

which had a sample size of 500 patients (Hanley et al., 2017). Outcomes included disability

measured by the modified Rankin Scale and death. As examples of the output of our

procedure, the 95% confidence interval for the fraction is [0.01,0.18] for the outcome 30-day

mortality, [0.05,0.34] for 180-day mortality, [0,0.64] for 30-day disability, and [0.03,0.86] for
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180-day disability. The widths of these confidence intervals depend on the data generating

distribution and the sample size. We investigate this relationship in a variety of scenarios

through the aforementioned simulation study.

Our confidence interval procedure is based on representing the problem as a stochastic

optimization problem. Stochastic optimization involves maximizing or minimizing the ex-

pected value of a function of unknown parameters and random variables, based on repeated

observations of the random variables. As a simple example, M-estimators can be repre-

sented in terms of solving stochastic optimization problems (van der Vaart, 1998, chap.

5). Our problem is substantially harder, since its formulation as a stochastic optimization

problem involves a set of additional constraints on the parameter space (specifically, that

the parameter lies within a polyhedron). When the optimal solution converges to a point

on the boundary of the parameter space, the resulting statistics are generally not asymp-

totically normal; this rules out standard confidence interval procedures, many of which

require asymptotic normality.

Shapiro et al. (2014) present general approaches for deriving the asymptotic distri-

butions of such challenging stochastic optimization problems. To the best of our knowl-

edge, these general approaches have not previously been used to solve problems arising

in biomedical studies. We tailor one such approach to solve our problem, using a second

order, asymptotic approximation of the objective function. We provide a self-contained

proof of the validity of our method.

The statistic derived using the above approach can be computed with quadratic pro-

gramming, i.e., minimizing a quadratic function of the data and parameters subject to

linear equality and inequality constraints on the parameters. We used the quadprog solver

in MATLAB 2013B. Each confidence interval in the CLEAR III application was computed

within 4 to 8 minutes.

5
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Other parameters that contrast the distribution of an ordinal outcome under treatment

versus control include the number needed to treat and the parameter in a responder analysis

(Snapinn and Jiang, 2007). However, these parameters require that the ordinal outcome be

dichotomized into success or failure. The parameter in a responder analysis is the difference

between the population proportions who have a successful outcome under treatment versus

control, where success can be a function of baseline variables. The number needed to treat is

the reciprocal of this difference (Gordis, 2014, chap. 8). A limitation to dichotomization of

the outcome is that improvements not crossing the dichotomization threshold are ignored.

The fraction who benefit considers the full ordinal scale.

Our general approach can be used to construct confidence intervals for a variety of

partially identifiable parameters, such as the fraction who are harmed by treatment, the

fraction who benefit above a given threshold, and the average treatment effect among those

who benefit by at least the clinically meaningful, minimum threshold.

In Section 2, we describe the data generating distribution and state assumptions that

are used throughout the paper. Our proposed method is presented in Section 3, including

theorems about its asymptotic properties. We evaluate the method through simulation in

Section 4. It is applied to the CLEAR III randomized trial in Section 5. Future work is

discussed in Section 6.

2 Notation, Parameter Definition, and Assumptions

2.1 Parameter Definition

Consider an ordinal outcome with a finite number of levels, L. We assume that the levels

are numbered as integers from 1 to L, in order of least to most favorable. Let YT be the

6
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potential outcome under treatment and YC be the potential outcome under control. Let

P0 denote the unknown joint distribution on (YC , YT ). Let πi,j denote the probability that

YC = i and YT = j, i.e., πi,j = P0(YC = i, YT = j). We say that a patient with potential

outcome pair (yC , yT ) benefits from treatment compared to control, if yT > yC . She/he is

harmed by treatment if yT < yC , and experiences no individual treatment effect if yT = yC .

The fraction, our parameter of interest, is ψ0 = P0(YT > YC) =
∑

j>i πi,j.

We propose a method to construct a confidence interval for the parameter ψ0. The

method does not require assumptions about the distribution P0. However, it can incor-

porate restrictions on the support of P0 supplied by the user based on subject matter

knowledge. Support restrictions are assumptions that certain potential outcome pairs (i, j)

are not possible, i.e., πi,j = 0. The no harm assumption (πi,j = 0 if i > j) is one example.

For conciseness, we refer to support restrictions as restrictions. The user specifies restric-

tions through a function g : L × L → {0, 1}, where L is the set of integers from 1 to L.

For any given input (i, j), the user sets g(i, j) to 0 if she/he assumes that πi,j = 0, and 1

otherwise. Under no restrictions, the function g outputs 1 for all inputs. Let R be the set

of all joint distributions P on (YC , YT ) that satisfy the restrictions:

R = {P on (YC , YT ) : P (YC = i, YT = j) = 0 for all i, j with g(i, j) = 0}.

Assumption 1 The user-defined support restrictions are correct, i.e., P0 ∈ R.

2.2 Observed Data Distribution

We consider the context of a randomized trial. Let n be the number of participants. For

each participant m, denote her/his study arm assignment by Am ∈ {0, 1} (0 for control and

1 for treatment) and observed outcome by Ym ∈ L. We assume that the vectors (Am, Ym),

m = 1, . . . , n, are fully observed, i.e., no data is missing. Other assumptions include:

7
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Assumption 2 For each participant m, her/his potential outcome pair (YC,m, YT,m) is an

independent, identically distributed draw from the unknown distribution P0.

Assumption 3 The treatment assignments, Am, m = 1, .., n, are independent, identically

distributed Bernoulli(θ), where 0 < θ < 1. The treatment assignments {Am}nm=1 are inde-

pendent of the potential outcome pairs {(YC,m, YT,m)}nm=1.

Assumption 4 For each participant m, we have Ym = AmYT,m + (1− Am)YC,m.

Assumption 3 is satisfied by a simple randomized trial design (Friedman et al., 2015, chap.

6). The value θ is the probability of being assigned to treatment, which is known. As-

sumption 4 connects observed outcomes to potential outcomes and is called the consistency

assumption.

2.3 Partial Identifiability of the Fraction who Benefit

The assumptions above imply that the vectors V m = (Am, Ym), m = 1, .., n, are indepen-

dent and identically distributed. Let V = (A, Y ) denote the random vector corresponding

to a generic trial participant. The vector V is called the observed data, to distinguish it

from the vector of potential outcomes (YC , YT ) which is partially unobserved. In the rest

of the paper, P0 applied to a function of V is understood as the induced distribution on

the observed data vector V under P0. Let the column vector γ∗ = (γ∗01, .., γ
∗
0L, γ

∗
11, .., γ

∗
1L)t

denote the marginal distributions of the potential outcomes under control and treatment,

where γ∗0y = P0(YC = y) and γ∗1y = P0(YT = y) for all y ∈ L. By Assumptions 3 and 4, we

have that for all y ∈ L:

γ∗0y = P0(YC = y) = P0(Y = y | A = 0); γ∗1y = P0(YT = y) = P0(Y = y | A = 1). (1)
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This implies that the marginal distributions of the potential outcomes are identifiable.

Because only one potential outcome is observed per participant, the fraction ψ0 typically

is not point identified from observed data. However, the marginal distributions γ∗ and

restrictions R may rule out certain possibilities. Let ψRl (P0) and ψRu (P0) denote the sharp

lower and upper bounds on the fraction, given the marginal distributions and restrictions:

ψRl (P0) = min{P (YT > YC) : P has marginal distributions equal to γ∗ and P ∈ R};

ψRu (P0) = max{P (YT > YC) : P has marginal distributions equal to γ∗ and P ∈ R}.

These bounds, discussed in Huang et al. (2017), are functions of P0 due to their dependence

on γ∗, and are identifiable since γ∗ is identifiable. For conciseness, we suppress their

dependence on P0. The fraction ψ0 must lie between the bounds, i.e., ψ0 ∈ [ψRl , ψ
R
u ]. Also,

for any ψ ∈ [ψRl , ψ
R
u ], there exists some joint distribution P ∈ R that has marginals γ∗

and with fraction who benefit P (YT > YC) equal to ψ. This is proved in Appendix A of

the Supplementary Materials. Intuitively, the marginal distributions and restrictions rule

out candidate values of ψ outside the range [ψRl , ψ
R
u ], while candidates inside the range are

not ruled out.

Previous work on the bounds for an ordinal outcome includes Gadbury et al. (2004);

Borusyak (2015); Lu et al. (2016); Huang et al. (2017). Gadbury et al. (2004) derive closed-

form expressions for the bounds in the case of L = 2 and no restrictions. Borusyak (2015)

represents the bounds as solutions to linear programs. Lu et al. (2016) derive closed-form

expressions in the case of L ≥ 2 and no restrictions. Huang et al. (2017) propose consistent

estimators of the bounds.

A confidence set for ψ0 is defined as a measureable function that maps the observed

data {V1, . . . ,Vn} to a subset of the unit interval. We use the following definition for

pointwise consistency from Romano and Shaikh (2008) tailored to our problem:

9
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Definition 1 A confidence set CSn for ψ0 is pointwise consistent at level 1−α if, for any

data generating distribution P0 ∈ R, we have for all ψ ∈
[
ψRl (P0), ψRu (P0)

]
:

lim inf
n→∞

P0(ψ ∈ CSn) ≥ 1− α.

Roughly speaking, pointwise consistency is that, for any data generating distribution P0 ∈

R and any ψ ∈ [ψRl (P0), ψRu (P0)], the confidence set CSn includes ψ with at least 1 − α

probability when n is large. This is a desired property because the fraction ψ0 must be in

the range [ψRl (P0), ψRu (P0)] and the observed data distribution provides no information on

where it lies within that range.

3 Proposed Confidence Interval Procedure

3.1 Overview

We construct a 95% confidence set for the fraction ψ0 through hypothesis test inversion. We

consider candidate values of ψ on a grid on [0, 1]. In our simulations and data application

(Sections 4 and 5), the grid has a point at every hundredth. A candidate value of ψ is

excluded from the confidence set if and only if the hypothesis test for ψ rejects. If the

confidence set is not an interval, we form a confidence interval using as endpoints the

smallest and largest points of the set. We present our hypothesis test in Sections 3.2-3.5

and provide its implementation in Section 3.6. The asymptotic properties of the resulting

confidence interval are presented in Section 3.5. For simplicity, this section focuses on the

case where the assignment probability θ = 0.5.
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3.2 Hypothesis Test for Candidate Value of ψ0

Let Π denote the set of all L× L matrices with nonnegative, real-valued entries that sum

to 1. Define the set of column vectors Γ ⊂ R2L as

Γ =


γ = (γ01, . . . , γ0L, γ11, . . . , γ1L)t ∈ R2L :

For some π ∈ Π, we have

πi,j = 0 if g(i, j) = 0;

γ0i =
∑L

j=1 πi,j for all i ∈ L;

γ1j =
∑L

i=1 πi,j for all j ∈ L.


. (2)

This set is comprised of the pairs of marginal distributions (under control and treatment)

that are compatible with the restrictions encoded by g. If no restrictions are made, Γ is the

set of all vectors with nonnegative entries such that the sum of the first L entries equals

1 and the sum of the last L entries equals 1. If L = 2 and the no harm assumption is

made, the set Γ comprises all vectors satisfying γ12 ≥ γ02 and the property in the previous

sentence. Under Assumption 1, the pair of marginal distributions γ∗ is in the set Γ.

Consider any candidate value of ψ ∈ [0, 1] for the parameter ψ0. Define the set Γψ as

(2), but adding the constraint that the fraction who benefit equals ψ, i.e,
∑

j>i πi,j = ψ.

The set Γψ is comprised of the pairs of marginal distributions (under control and treatment)

that are compatible with the restrictions R and the fraction who benefit equal to ψ. The

sets Γ and Γψ are not random. Also, each is a compact, convex polyhedron.

The null and alternative hypotheses for the candidate value of ψ are

H0(ψ) : γ∗ ∈ Γψ

Ha(ψ) : γ∗ 6∈ Γψ.

The null hypothesis means that the pair of marginals γ∗ (which is a function of the popu-

lation distribution on the observed data vector (A, Y )) is compatible with both the restric-
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tions R and fraction who benefit being equal to ψ; that is, there exists a joint distribution

P on (YC , YT ) such that its marginals equal γ∗, it satisfies the restrictions, and the fraction

who benefit P (YT > YC) equals ψ. The null hypothesis is equivalent to ψ ∈ [ψRl , ψ
R
u ], while

the alternative hypothesis is equivalent to ψ 6∈ [ψRl , ψ
R
u ]. The null hypothesis means that

the candidate value of ψ is not ruled out by the marginals γ∗ and the restrictions R.

As an example, consider a binary outcome with failure = 1 and success = 2. Assume the

marginals γ∗ = (0.5, 0.5, 0.25, 0.75) and we make no restrictions on the joint distribution P0

on (YC , YT ). The purpose of this example is to illustrate which values of ψ can be ruled out

just from knowledge of the marginals. The joint distribution P0 on (YC , YT ) is pictured in

Figure 1 (left panel). The fraction ψ0 equals π1,2, in the upper right cell. For the candidate

fraction who benefit ψ = 0, the alternative hypothesis Ha(ψ) holds. There exists no joint

distribution of the form in Figure 1 (middle panel), i.e., with its marginals equal to γ∗ and

0 in its upper right cell. Satisfying this form would require the lower right cell to be 0.75,

but this contradicts that the second row sum is 0.5. For the candidate fraction who benefit

ψ = 0.5, the null hypothesis H0(ψ) is true. There is a joint distribution with its marginals

equal to γ∗ and its upper right cell equal to 0.5, as shown in Figure 1 (right panel). The

challenge below in constructing a confidence interval for ψ0 is to rule out candidate values

in the setting where the marginal distributions are estimated from the data in a randomized

trial; also, we consider ordinal-valued outcomes, which correspond to L× L matrices.

3.3 Statistic For Testing Null Hypothesis H0(ψ)

If Γψ is the empty set, this implies ψ0 = ψ is incompatible with the restrictions R and

H0(ψ) is false, so we immediately reject H0(ψ). Else, if either arm has zero participants,

then we fail to reject H0(ψ). Below, we consider the case where neither of these extreme

situations occurs.

12
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YT

1 2

YC
1 π1,1 π1,2 0.5

2 π2,1 π2,2 0.5

0.25 0.75

YT

1 2

YC
1 ? 0 0.5

2 ? ? 0.5

0.25 0.75

YT

1 2

YC
1 0 0.5 0.5

2 0.25 0.25 0.5

0.25 0.75

Figure 1: Example Showing Partial Identifiability of ψ0 for Binary Outcome. The figure

at the left depicts the unknown joint distribution on (YC , YT ), under known marginals.

The figure in the middle is used to illustrate why the alternative hypothesis Ha(ψ) holds

for candidate fraction who benefit ψ = 0. The figure at the right illustrates why the null

hypothesis H0(ψ) holds for candidate fraction who benefit ψ = 0.5.

We use the notation P0X to denote the expectation of X with respect to P0. Define

F (γ,V ) =
1∑

a=0

L∑
j=1

1(A = a) {1(Y = j)− γaj}2 ,

where 1(S) denotes the indicator variable that has value 1 if S is true and 0 otherwise. The

minimizer of P0F (γ,V ) over γ ∈ Γ is unique and equal to γ∗ defined in (1), as proved in

Appendix B of the Supplementary Materials.

We define the test statistic at sample size n corresponding to the null hypothesis H0(ψ)

as

Tn,ψ = n

{
min
γ∈Γψ

PnF (γ,V )−min
γ∈Γ

PnF (γ,V )

}
, (3)

where Pn denotes the empirical distribution, i.e., PnF (γ,V ) = 1
n

∑n
m=1 F (γ,V m). Since

Γψ ⊆ Γ, we have Tn,ψ ≥ 0. We use min instead of inf in the definition of Tn,ψ since

the minimum is always achieved, due to F being continuous and each of Γ and Γψ being

13
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compact. Each term in (3) has a unique minimizer, as proved in Appendix C of the

Supplementary Materials.

Let γ̂ = (γ̂01, . . . , γ̂0L, γ̂11, . . . , γ̂1L)t denote the empirical marginal distributions under

control and treatment, i.e., for each arm a ∈ {0, 1} and outcome value i ∈ L,

γ̂ai =
n∑

m=1

1(Am = a, Ym = i)

/
n∑

m=1

1(Am = a) ,

where we set γ̂ai to 0 if the rightmost sum equals 0. We next define the following function

of γ̂ and a generic vector γ ∈ R2L:

Discrep(γ, γ̂) =
1∑

a=0

{Pn1(A = a)}
L∑
j=1

(γaj − γ̂aj)2 .

The above function is a weighted sum of the squared differences between corresponding

elements of the input γ and empirical marginals γ̂. Intuitively, Discrep(γ, γ̂) measures the

discrepancy between γ and γ̂, with higher values indicating more discrepancy.

Lemma 1

Tn,ψ = n

{
min
γ∈Γψ

Discrep(γ, γ̂)−min
γ∈Γ

Discrep(γ, γ̂)

}
. (4)

Lemma 1 is proved in Appendix C of the Supplementary Materials. It shows that the test

statistic Tn,ψ contrasts the minimum discrepancy between the empirical marginals γ̂ and

the set of vectors γ ∈ Γψ versus the analogous discrepancy over γ ∈ Γ.

3.4 Deriving the Null Distribution of Test Statistic Tn,ψ

Our method rejects the null hypothesis H0(ψ) for large values of Tn,ψ. Specifically, the

hypothesis test involves approximating the asymptotic distribution of the statistic under

the null hypothesis, and rejecting H0(ψ) if Tn,ψ exceeds the 0.95 quantile of this distribution.

14
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We give an overview of the second order approximation from Shapiro et al. (2014,

pp. 166–169) that we applied to our problem to derive the asymptotic null distribution

of Tn,ψ given in Theorem 1 below. We also give a self-contained proof in Appendix D

of the Supplementary Materials, which we constructed after deriving the asymptotic null

distribution. The key approximation we use from Shapiro et al. (2014, pp. 166–169) is based

on the second order, functional delta method, which is that under regularity conditions we

have the following expansion:

φ(fn)− φ(f) = φ′f (fn − f) + (1/2)φ′′f (fn − f) + op(1/n), (5)

for φ a second order, Hadamard differentiable function, and a sequence of random functions

fn and fixed function f such that n1/2(fn−f) converges in distribution to a random element.

In our case, we let fn(γ) = PnF (γ,V), f(γ) = P0F (γ,V), and φ denote the min-

function over γ ∈ Γ, i.e., φ(δ) = minγ∈Γ δ(γ), where the domain of φ is the set F of Lips-

chitz continuous functions δ from Γ → R. The min-function φ is second order Hadamard

differentiable at f in direction δ ∈ F with first order directional derivative φ′f (δ) = δ(γ∗)

(recall γ∗ = arg minγ∈Γ f(γ)) and second order directional derivative

φ′′f (δ) = min
h̃∈C(γ∗,Γ)

{
2h̃

t∇δ(γ∗) + h̃
t
D2f(γ∗)h̃

}
, (6)

for set of column vectors C(γ∗,Γ) = {r(γ−γ∗) : γ ∈ Γ, r ∈ R+}, R+ the nonnegative reals,

and ∇, D2 the gradient and Hessian with respect to γ evaluated at γ = γ∗; this follows

from Theorem 7.23 of Shapiro et al. (2014, p. 352). Substituting the above functions into

(5) and setting δ = fn − f gives

min
γ∈Γ

fn(γ)− f(γ∗) = fn(γ∗)− f(γ∗) + (1/2)φ′′f (fn − f) + op(1/n),

since φ′f (δ) = δ(γ∗) = fn(γ∗)− f(γ∗). It follows from the above display and (6) that

min
γ∈Γ

fn(γ)− fn(γ∗) = min
h̃∈C(γ∗,Γ)

{
h̃
t∇(fn − f)(γ∗) + h̃

t
D2f(γ∗)h̃/2

}
+ op(1/n). (7)
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We next consider the limit distribution of ∇(fn−f)(γ∗) in the above display, which equals

∇(fn − f)(γ∗) = (Pn − P0)∇F (γ,V)|γ=γ∗ = (Pn − P0)W ,

where W = (W01, . . . ,W0L,W11, . . . ,W1L)t with Waj = 2 × 1(A = a)
{
γ∗aj − 1(Y = j)

}
for each a ∈ {0, 1}, j ∈ L. By the central limit theorem, the limit distribution of Zn =

n1/2∇(fn−f)(γ∗) is multivariate normal with mean 0 and covariance matrix Σ = P0WW t.

Let Z = (Z01, . . . , Z0L, Z11, . . . , Z1L)t denote a random vector with this limit distribution.

The Hessian matrix D2f at γ = γ∗ is the identity matrix for the case of θ = 1/2. It follows

from the above arguments, multiplying both sides of (7) by n, and substituting h = n1/2h̃,

that

n

{
min
γ∈Γ

fn(γ)− fn(γ∗)

}
= min
h∈C(γ∗,Γ)

{
htZn + hth/2

}
+ op(1). (8)

Under the null hypothesis H0(ψ), the analogous formula as above holds replacing Γ by Γψ,

i.e.,

n

{
min
γ∈Γψ

fn(γ)− fn(γ∗)

}
= min
h∈C(γ∗,Γψ)

{
htZn + hth/2

}
+ op(1). (9)

Taking the difference between (9) and (8) implies that the null distribution of the test

statistic (3) has the second order approximation

Tn,ψ = n

{
min
γ∈Γψ

fn(γ)−min
γ∈Γ

fn(γ)

}
= min

h∈C(γ∗,Γψ)

{
htZn + hth/2

}
− min
h∈C(γ∗,Γ)

{
htZn + hth/2

}
+ op(1).

Taking the limit as n goes to infinity yields the following, for which the formal proof is

given in Appendix D of the Supplementary Materials:

Theorem 1 Under the null hypothesis H0(ψ), Tn,ψ converges in distribution to Tψ, where

Tψ = min
h∈C(γ∗,Γψ)

(htZ + hth/2)− min
h∈C(γ∗,Γ)

(htZ + hth/2). (10)
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The distribution of Tψ depends on the value ψ and on the data generating distribution P0

through Σ defined above. We approximate the distribution of Tψ as described in Section 3.6.

As an example, Figure 2 shows this distribution in Setting A (described in Section 4) for

ψ = 0.5. In this case, the distribution of Tψ is a mixture of a point mass at 0 with

probability 0.25 and a density with support on the positive reals.

Theorem 2 Under the alternative hypothesis Ha(ψ), for any M ∈ R, P (Tn,ψ > M) → 1

as n→∞.

Under the alternative hypothesis Ha(ψ), the test statistic grows arbitrarily large, by The-

orem 2 which is proved in Appendix E of the Supplementary Materials. Since the statistic

converges to a distribution (which can be approximated from the data) under the null

hypothesis but grows arbitrarily large under the alternative hypothesis, our test can differ-

entiate between the null H0(ψ) and alternative Ha(ψ), as the sample size goes to infinity.

For any ψ ∈ [0, 1], let t0.95
ψ denote the 0.95 quantile of Tψ. Our test rejects the null

hypothesis H0(ψ) if and only if Tn,ψ > t0.95
ψ + ε, where ε = 10−10. The addition of ε

accounts for the error tolerance in our computations below, which involve solving quadratic

programs. Let CSn be the 95% confidence set constructed by inverting our hypothesis test:

CSn = {ψ ∈ [0, 1] : Tn,ψ ≤ t0.95
ψ + ε}. (11)

3.5 Properties of Confidence Set and Corresponding Confidence

Interval

Using Theorems 1 and 2, we prove the following theorems in Appendices F and G of the

Supplementary Materials:

Theorem 3 The confidence set CSn in (11) is pointwise consistent at level 0.95.
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Figure 2: Histogram of Tψ in Setting A (described in Section 4), with ψ = 0.5. This plot

is obtained through simulation, using 100,000 draws from Tψ. The empirical probability of

Tψ = 0 was 0.25.
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Theorem 4 For any ψ for which the null hypothesis H0(ψ) is false, i.e., for which γ∗ 6∈ Γψ,

the probability that ψ is excluded from CSn in (11) converges to 1.

The confidence set CSn may not be an interval. A confidence interval, denoted as CIn, is

constructed by taking the minimum and maximum of CSn, i.e., CIn = [minCSn,maxCSn].

From pointwise consistency of the confidence set CSn, the confidence interval CIn is point-

wise consistent. We focus on the confidence interval because it is simpler to report than

the corresponding set.

3.6 Using Quadratic Programming to Implement the Hypothesis

Test

We present how to compute Tn,ψ and estimate t0.95
ψ . The test statistic Tn,ψ can be com-

puted from its form in (3) or (4). We present how to use (3). This requires solving two

optimization problems, minγ∈Γψ PnF (γ,V ) and minγ∈Γ PnF (γ,V ). We show that each is

the minimization of a quadratic function subject to a finite number of linear equality and

inequality constraints. This is called a quadratic program, which can be solved efficiently

using existing software such as MATLAB.

Consider the optimization problem minγ∈Γ PnF (γ,V ). Define the following as the

unknown variables: {πi,j : i, j ∈ L}, {γ0i : i ∈ L}, {γ1j : j ∈ L}. Let x denote the vector

including all of these variables. The function to be minimized, PnF (γ,V ), simplifies to

1∑
a=0

L∑
j=1

[
γ2
ajPn1(A = a)− 2γajPn1(A = a, Y = j) + Pn1(A = a, Y = j)

]
. (12)

The expression (12) is a quadratic function of the variables x. In the optimization prob-

lem minγ∈Γ PnF (γ,V ), the function (12) is minimized under the constraint γ ∈ Γ, which

by (2) can be represented by linear equality and inequality constraints on the variables
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x. Thus, the constrained minimization problem minγ∈Γ PnF (γ,V ) can be solved by

quadratic programming. The other optimization problem required to compute Tn,ψ is

minγ∈Γψ PnF (γ,V ). Its quadratic program is the same as for minγ∈Γ PnF (γ,V ), except

with the additional linear constraint
∑

j>i πi,j = ψ.

We use Monte Carlo simulation to approximate the distribution of Tψ. Each draw

from Tψ is computed as follows. Let γ̂R denote the minimizer over γ ∈ Γ of PnF (γ,V ),

that is, we have γ̂R ∈ Γ and PnF (γ̂R,V ) = minγ∈Γ PnF (γ,V ); as noted above, this

minimizer is unique. Next, we generate a random draw from the distribution of Z, where

we approximate the covariance matrix Σ by replacing γ∗ by γ̂R and P0 by Pn in the

definition of Σ. We then solve the two quadratic programs in (10). To solve the second

quadratic program minh∈C(γ∗,Γ)(h
tZ + hth/2), define the following variables: {πij : i, j ∈

L}, h = (h01, . . . , h0L, h11, . . . , h1L)t, γ = (γ01, . . . , γ0L, γ11, . . . , γ1L)t. Let x̃ denote the

vector including all of these variables. Define the linear constraints: πi,j ≥ 0, πi,j = 0

if g(i, j) = 0, γ0i =
∑L

j=1 πij, γ1j =
∑L

i=1 πij, h = γ − (
∑

i,j πij)γ̂R (note, this is a

vector of equalities). Define the quadratic program to be minhtZ + hth/2, over the

variables x̃ and under the above linear constraints. To solve the first quadratic program

minh∈C(γ∗,Γψ)(h
tZ+hth/2), do as above but add the constraint that

∑
i<j πij = ψ

∑
i,j πij.

We repeat the above procedure 1000 times, which generates 1000 independent draws of

Tψ. We then compute the empirical 0.95 quantile, denoted as t̂0.95
ψ . The hat symbol indicates

that we use estimates of γ∗ and the covariance matrix Σ in generating draws from the

distribution of Tψ. We reject the null hypothesis H0(ψ) if Tn,ψ > t̂0.95
ψ + ε, where ε = 10−10.

The confidence set computed from this procedure is ĈSn = {ψ ∈ G[0, 1] : Tn,ψ ≤ t̂0.95
ψ + ε},

where G[0, 1] is a grid on [0, 1], e.g., {0, 0.01, . . . , 0.99, 1}.

Let ĈIn denote the confidence interval computed from ĈSn. That is, we have ĈIn =

[min ĈSn,max ĈSn]. To efficiently compute ĈIn , we perform the hypothesis test for ψ = 0
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and for successively larger ψ until failing to reject, in order to obtain the left endpoint. To

obtain the right endpoint, we perform the hypothesis test for ψ = 1 and for successively

smaller ψ until failing to reject. This reduces computation time because the hypothesis

test need not be done for every candidate value of ψ in G[0, 1]. Run time can be further

reduced by computing the tests for different ψ in parallel, with different computing nodes.

4 Simulation Studies

4.1 Confidence Interval Procedure Based on m-out-of-n Boot-

strap

We use simulation to assess our method ĈIn at sample sizes n ranging from 200 to 2000.

We also compare ĈIn to a competitor method that utilizes m-out-of-n bootstrap. The

competitor method is to construct a one-sided 0.975 confidence interval denoted [A, 1] for

the lower bound ψRl using m-out-of-n, percentile bootstrap, and analogously a one-sided

0.975 confidence interval denoted [0, B] for the upper bound ψRu using m-out-of-n, percentile

bootstrap, and taking their intersection. If both of the confidence intervals are pointwise

consistent, then asymptotically the coverage probability for any point in [ψRl , ψ
R
u ] will be

at least 0.95. Appendices H and I of the Supplementary Materials present how A and B

are obtained. We consider subsample sizes m ∈ {0.25n, 0.5n, 0.75n, 0.9n, n}.

4.2 Data Generating Distributions

We consider four simulation settings, labeled A-D, shown in Table 1. In each setting, the

number of levels L, the marginal distributions γ∗, and the restrictions R are specified;

these determine the corresponding bound parameters [ψRl , ψ
R
u ].
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Table 1: Simulation Settings

Setting L γ∗ User-defined restrictions R ψRl ψRu

A 2 (0.5, 0.5, 0.5, 0.5)t no restrictions 0 0.5

B 2 (0.5, 0.5, 0.5, 0.5)t no harm 0 0

C 2 (0.5, 0.5, 0.25, 0.75)t no restrictions 0.25 0.5

D 6 MISTIE II empirical marginals no restrictions 0.82 0.96

Setting D is designed to mimic features from the MISTIE II (Minimally Invasive Surgery

for Intracerebral Hemorrhage Evacuation Phase II) randomized trial, which compared a

new surgical intervention for stroke to standard care (Hanley et al., 2016). The outcome is

ordinal-valued with six levels, representing the reduction in clot volume (after discretizing

into intervals of 5 mL). We define this outcome, abbreviated as RICV5, in Appendix J of

the Supplementary Materials. In Setting D, we set the marginal distributions γ∗ under

treatment and control to be those observed in the MISTIE II trial, which are shown in

Figure 1 of the Supplementary Materials.

For each setting, we conduct a simulation study at each of the following sample sizes:

n = 200, 500, 1000, and 2000. For Settings A-C, each simulation study consists of 5000

simulated trials. For Setting D, each study consists of 1000 trials, since the six-level ordinal

outcome requires longer running times. The steps to generate and analyze data for a single

simulated trial are as follows. First, we generate a data set consisting of the treatment

assignments and observed outcomes of n participants, i.e., (Am, Ym) with m = 1, . . . , n.

Each participant is randomly assigned to treatment or control using the randomization

probability θ = 0.5. Given Am, the outcome Ym is a draw from the multinomial distribution

on (1, . . . , L) with probabilities corresponding to the marginal distribution (γ∗a1, . . . , γ
∗
aL) for
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a = Am. Second, a 95% confidence interval for the fraction who benefit is computed using

ĈIn defined in Section 3.6. Third, a 95% confidence interval for the fraction is computed

using the m-out-of-n bootstrap, as described in Section 4.1.

For each simulation study, we compute the empirical coverage probability and average

confidence interval width of each method. For any given ψ ∈ [0, 1], the coverage probability

of ψ equals the proportion of the confidence intervals that contain ψ.

4.3 Simulation Results

We present the coverage probabilities at n = 500 for Settings A and B in Figures 3 and

4, respectively. The plots for the other settings and sample sizes are given in the Supple-

mentary Materials (Figures 2 - 15). In each figure, we shade the region from ψ = ψRl to

ψ = ψRu in grey. In Setting B, we have [ψRl , ψ
R
u ] = [0, 0], so the grey region is the thin line

at ψ = 0. In general, under Assumption 1, the fraction ψ0 must be in the grey region and

could be anywhere in this region. For any ψ in the grey region, the goal is to have the

probability that the confidence interval contains ψ be ≥ 0.95.

In Figures 3 and 4, our method has coverage probabilities ≥ 0.95 for all ψ in the

grey region. Moreover, our method achieves this in all four settings and at all sample

sizes n = 200, 500, 1000, 2000. In contrast, the m-out-of-n bootstrap can have coverage

probability < 0.95 in the grey region, for some values of m. This occurs in Figure 3

(Setting A, n = 500) for ψ = 0.5. The coverage probability is 0.95 for our method (as is

desired since H0(ψ) is true), but for m-out-of-n bootstrap the coverage probability is 0.89

(m = n), 0.90 (m = 0.9n), 0.93 (m = 0.75n), 0.97 (m = 0.5n), and 1.00 (m = 0.25n).

The choices m = 0.5n and m = 0.25n do not lead to undercoverage problems in our

simulations. However, in all but one case, they have larger average widths than our method.

For example, in Setting B at n = 200, the average width of our method is 0.09, while the
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average widths are 0.20 and 0.28 form = 0.5n andm = 0.25n, respectively. In the exception

case (Setting D at n = 200), m-out-of-n bootstrap with m = 0.5n yields a slightly shorter

average width (0.004 difference in absolute units) compared to our method.

In Setting B (Figure 4), the set of ψ for which the null hypothesis H0(ψ) is true is

the single point {0} (under the no harm assumption). Using our method, the confidence

interval is [0, 0] in 50% of the simulations. In other words, our method gives the best

possible confidence interval 50% of the time, up to the precision of 0.01. The first point

in the grid that should be excluded is ψ = 0.01. Our method excludes ψ = 0.01 53%

percent of the time. The m-out-of-n bootstrap excludes it only 6% of the time at best

(with m = n). Our method’s ability to exclude ψ outside of the grey region translates to

large improvements in average width as described below.

In Figure 3, we show zoomed-in figures of the upper part of the grey region. They

show that, at the left and right edges, our method (the solid line) has the nominal coverage

probability 0.95, while the m-out-of-n bootstrap has coverage probability above 0.95. In

Figure 4, the zoom-in on the upper left of the plot shows that, at ψ = 0 (the only point in

the grey region), our method has the nominal coverage probability 0.95, while the m-out-of-

n bootstrap again has probability above 0.95. Therefore, our method not only achieves the

nominal coverage probability in all of our simulation cases, but also can be less conservative

than the m-out-of-n bootstrap at the boundaries of the identified region [ψRl , ψ
R
u ].

The average widths of our method and the m-out-of-n bootstrap are tabulated in Tables

1-4 of the Supplementary Materials. For each method, the average widths decrease with

higher sample size. At the largest sample size n = 2000, the average width of our method is

approximately the difference between the upper and lower bound parameters. Our method

can have substantially shorter average width than the m-out-of-n bootstrap. In Setting

B, the reduction in average width of our method (compared to the m-out-of-n bootstrap)
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Figure 3: Coverage probabilities in Setting A at n = 500 for our method (solid) and the

m-out-of-n bootstrap with m = n (dots), m = 0.5n (dashes), and m = 0.25n (dot-dash).

The grey region spans from ψ = 0 to ψ = 0.5, which are the lower and upper bounds ψRl

and ψRu in Setting A. To achieve good coverage under Assumption 1, coverage probabilities

should be ≥ 0.95 for all ψ in the grey region. For legibility of the plot, the curves for

m = 0.9n and m = 0.75n are not shown. They lie between the curves for m = n and

m = 0.5n, but closely resemble the curve for m = n. For ψ > 0.5, the curve for m = 0.5n

closely resembles the curve for our method.
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Figure 4: Coverage probabilities in Setting B at n = 500 for our method (solid) and the m-

out-of-n bootstrap with m = n (dots), m = 0.5n (dashes), and m = 0.25n (dot-dash). The

grey region is the single point ψ = 0, since in Setting B the lower and upper bounds ψRl and

ψRu are both zero. To achieve good coverage under Assumption 1, coverage probabilities

should be ≥ 0.95 at ψ = 0. For legibility of the plot, the curves for m = 0.9n and m = 0.75n

are not shown. They lie between the curves for m = n and m = 0.5n, but closely resemble

the curve for m = n.
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ranges from 37-69% at n = 200, 40-70% at n = 500, 41-71% at n = 1000, and 43-71% at

n = 2000. The ranges are due to trying different options for the choice of m. In Setting

C, the reduction in average width of our method ranges from 6-33% at n = 200, 7-32% at

n = 500, 6-28% at n = 1000, and 6-23% at n = 2000.

In Settings A and D, the m-out-of-n bootstrap sometimes has narrower average width

than our method. In Setting A, this occurs only when the m-out-of-n bootstrap has cover-

age probability < 0.95 in the grey region. In Setting D, the m-out-of-n bootstrap achieves

narrower average width at n = 200, with an improvement ranging from 2-14%. At n = 500,

the m-out-of-n bootstrap offers an improvement of 2% when m = n. However, our method

has narrower average width at the higher sample sizes, with reductions in average width

ranging from 3-23% at n = 1000 and 6-22% at n = 2000.

Unsurprisingly, our method and the m-out-of-n bootstrap can have poor coverage if

Assumption 1 is violated, that is, if the assumed restrictions R fail to hold. Consider

Setting B and suppose that the no harm assumption does not hold. Then the fraction who

benefit could be larger than zero, but both our method and the m-out-of-n bootstrap have

coverage probabilities below 0.95 for candidate values of ψ > 0 (Figure 4).

Our method achieves the nominal coverage probability 0.95 or higher, even in cases

where the lower and upper bound parameters are non-differentiable functions of the marginal

distributions under treatment and control. For binary outcomes and under no restrictions,

the lower bound is non-differentiable when γ∗02 = γ∗12; the upper bound is non-differentiable

when γ∗01 = γ∗12. Hence, the bounds ψRl and ψRu are non-differentiable in Setting A. Figure

3 shows that, despite the non-differentiability, our method has coverage probability 0.95 at

ψ = ψRl and ψ = ψRu .
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5 Application to the CLEAR III Randomized Trial

5.1 Analysis Procedure

We apply our method to a Phase III randomized trial called CLEAR III (Hanley et al.,

2017). This trial enrolled patients with intraventricular haemorrhage, or bleeding into

the ventricles of the brain, due to a stroke. It tested whether using the drug alteplase

(treatment) to remove the blood clot from the ventricles results in a better functional

outcome than using saline (control). The trial had 500 participants, with 249 assigned to

alteplase and 251 to saline. The primary outcome was the modified Rankin scale (mRS)

score at 180 days post-stroke. The mRS score is an ordinal rating of functional outcome

with seven levels ranging from 0 = no symptoms to 6 = death (Cheng et al., 2014). Based

on CLEAR III, the probability of having 180-day mRS ≤ 3 was estimated as 0.48 under

alteplase and 0.45 under saline (95% confidence interval for difference in proportions: [-0.04,

0.12]).

We consider the primary outcome 180-day mRS, as well as the outcomes 30-day mRS,

30-day mortality, and 180-day mortality. For mRS, we utilize the full ordinal scale. A

separate analysis is performed for each outcome. We apply our method ĈIn from Section

3 to compute a 95% confidence interval for the fraction who benefit from alteplase (relative

to saline). Also, we compute 95% confidence intervals using m-out-of-n bootstrap, with

choices of m as considered in Section 4. Participants with missing outcomes are excluded.

Out of 500 participants, the number of participants excluded is 6 for 30-day mRS, 9 for

180-day mRS, 0 for 30-day mortality, and 5 for 180-day mortality.

The confidence intervals are constructed without any restrictions (g = 1), so Assump-

tion 1 is met. In CLEAR III, a covariate adaptive randomization method was used to

achieve balance between the alteplase and saline arms on two pre-selected baseline vari-
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ables. For the purpose of demonstrating our method, we assume that simple randomization

was performed throughout CLEAR III with θ = 0.5. A potential area of future research is

to extend our method to handle more randomization schemes.

5.2 Results

Table 2 shows the confidence intervals for each outcome. We discuss the results for 30-day

mortality, shown in the third column. The 95% confidence interval computed using our

method is [0.01, 0.18]. In words, we are 95% confident that the fraction of patients who

benefit with respect to 30-day mortality (i.e., the proportion who would be alive under

alteplase but dead under saline, at 30 days) is between 0.01 and 0.18. Using m-out-of-n

bootstrap, the 95% confidence interval computed when m = n is [0, 0.19], which is very

close to our result. The results for the otherm are also comparable, except when m = 0.25n.

For 30-day mRS, the confidence interval for our method is 0.04 wider (absolute units)

than those for m-out-of-n bootstrap when m = n and m = 0.9n. However, the narrower

width of m-out-of-n bootstrap could potentially be due to its coverage probability falling

below the nominal rate 0.95, which we observed in Simulation Setting A for these choices

of m at the same sample size as the CLEAR III trial. For m-out-of-n bootstrap, the choice

of m can affect the result. For 180-day mortality, the confidence interval is [0.04, 0.35] for

m = n, and [0, 0.38] for m = 0.5n. A feature of our method is that it does not require

selecting m.

The confidence intervals for mortality are narrow, while those for mRS are wide. For

180-day mRS, the 95% confidence interval outputted by our method is [0.03, 0.86]. One

possible explanation for the wide width is that the marginal distributions of the potential

outcomes are not very informative about the fraction, so the lower and upper bound pa-

rameters span a wide range. Support restrictions can potentially reduce the width of the
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Table 2: 95% Confidence Intervals for the Fraction who Benefit from Alteplase Compared

to Saline, in the CLEAR III Data Analysis

30-day mRS 180-day mRS 30-day mortality 180-day mortality

ĈIn [0 , 0.64] [0.03, 0.86] [0.01, 0.18] [0.05, 0.34]

m = 1.00n [0.03, 0.63] [0.04, 0.84] [0 , 0.19] [0.04, 0.35]

m = 0.90n [0.03, 0.63] [0.03, 0.84] [0 , 0.19] [0.03, 0.36]

m = 0.75n [0.02, 0.65] [0.03, 0.84] [0 , 0.20] [0.02, 0.36]

m = 0.50n [0.02, 0.67] [0.02, 0.85] [0 , 0.21] [0 , 0.38]

m = 0.25n [0.01, 0.71] [0 , 0.87] [0 , 0.24] [0 , 0.41]

bounds (Huang et al., 2017). We do not make restrictions in this application due to lack of

supporting subject matter knowledge. We discuss future directions to address wide bound

parameters in Section 6.

6 Discussion

Our simulations and CLEAR III application show that the confidence interval constructed

using the proposed method can be narrow. We also encountered some cases in which the

confidence intervals are wide, possibly due to the lower and upper bound parameters being

far apart. Our confidence interval is designed so that for any given value between the

bounds, the coverage probability is at least 0.95. Consequently, if the bounds are far apart,

the confidence intervals will tend to be wide. Huang et al. (2017) found that incorporating

a baseline variable can in some cases substantially narrow the bounds. A potential area for

future research is to incorporate a baseline variable into our method.
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We can apply our general approach to any parameter ψ defined as a linear combination

of πi,j, which include the fraction who benefit (sum over πi,j with j > i), the fraction who

are harmed (sum over πi,j with j < i), the fraction who benefit above a given threshold t

(sum over πi,j with j− i > t), and the average treatment effect among those who benefit by

at least the clinically meaningful, minimum threshold t (sum over (j − i)πi,j with j − i ≥ t

and then divide by the sum
∑

j−i≥t πi,j). The same statistic can be used, except that Γψ is

redefined by replacing ψ =
∑

j>i πi,j by the new parameter definition. Alternative statistics

could be constructed by adding positive weights to the definition of F in Section 3.3.

In the CLEAR III analysis, the proportion of participants with missing data was only

1-2% for each outcome. However, in other trials, there may be higher rates of missingness.

A potential area of future research is to address the issue of missing outcome data, such as

by using double robust estimators of the marginal distributions that account for dropout,

instead of the empirical marginal distributions ignoring participants with missing outcomes.
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Appendix A proves that, for each value ψ between the bound parameters, there exists a joint
distribution P that has marginals γ∗, is in the set R, and satisfies P (YT > YC) = ψ. Appendix B
proves that the minimizer of P0F (γ,V ) over γ ∈ Γ is unique and equals γ∗. Appendix C proves
Lemma 1 and uniqueness of the minimizer in each term in the test statistic Tn,ψ. Appendices D, E,
F, and G prove Theorems 1, 2, 3, and 4, respectively. Appendices H and I present the competitor
method using m-out-of-n bootstrap, which was implemented in the simulation studies and CLEAR
III analysis of the main paper. Appendix J presents the RICV5 outcome from Setting D of the
simulation studies. Tables 1-4 present the average confidence interval widths for our method ĈIn
and them-out-of-n bootstrap, in each simulation setting. Figure 1 shows the distribution of RICV5
observed in the MISTIE II trial. Figures 2-15 show the coverage probabilities of our method ĈIn
and the m-out-of-n bootstrap, for each simulation setting and at each sample size.

A Proof of Claim in Section 2.3
Claim. Let P0 be any joint distribution on (YC , YT ). Let γ∗ denote the pair of marginal distri-
butions of YC and YT , under P0. Suppose the restrictions R satisfy P0 ∈ R. Then, for any given
ψ ∈ [ψRl , ψ

R
u ], there exists some joint distribution P on (YC , YT ) that has marginals γ∗, is in the

set R, and satisfies P (YT > YC) = ψ.

Proof. Consider any ψ ∈ [ψRl , ψ
R
u ]. The lower and upper bounds ψRl and ψRu on the fraction who

benefit are sharp (Huang et al., 2017). Thus, there exists a joint distribution Pl on (YC , YT ) that
has marginals γ∗, is in the set R, and satisfies Pl(YT > YC) = ψRl . Analogously, there exists a joint
distribution Pu on (YC , YT ) that has marginals γ∗, is in the setR, and satisfies Pu(YT > YC) = ψRu .
If ψRl = ψRu , the claim directly follows. The rest of the proof is for the case that ψRl 6= ψRu .

If ψRl 6= ψRu , we have ψ = (1−β)ψRl +βψRu , where β = (ψ−ψRl )/(ψRu −ψRl ). β is well-defined
since ψRu − ψRl 6= 0. Also, we have β ≥ 0 because ψ − ψRl ≥ 0 and ψRu − ψRl > 0. We have β ≤ 1
because ψRl ≤ ψ ≤ ψRu , which implies that ψ − ψRl ≤ ψRu − ψRl .

Define P as follows: For any given i, j, let P (YC = i, YT = j) = (1 − β)Pl(YC = i, YT =
j) + βPu(YC = i, YT = j).

For any given i, j, we have Pl(YC = i, YT = j) ≥ 0, Pu(YC = i, YT = j) ≥ 0 since Pl and Pu
are probability distributions. Since 0 ≤ β ≤ 1, we also have 1 − β ≥ 0 and β ≥ 0. It follows that
P (YC = i, YT = j) ≥ 0. Moreover, the sum P (YC = i, YT = j) over all i, j pairs satisfies∑

i,j

P (YC = i, YT = j) =
∑
i,j

[(1− β)Pl(YC = i, YT = j) + βPu(YC = i, YT = j)]

= (1− β)
∑
i,j

Pl(YC = i, YT = j) + β
∑
i,j

Pu(YC = i, YT = j)

= 1− β + β = 1,

since Pl and Pu are probability distributions. By the results in this paragraph, P is a valid
probability distribution.
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Now we will show that P has marginals γ∗, is in the set R, and satisfies P (YT > YC) = ψ. For
any i = 1, ..., L, we have

P (YC = i) =
∑
j

P (YC = i, YT = j)

= (1− β)
∑
j

Pl(YC = i, YT = j) + β
∑
j

Pu(YC = i, YT = j)

= (1− β)Pl(YC = i) + βPu(YC = i)

= (1− β)γ∗0i + βγ∗0i = γ∗0i.

Analogously, for any j = 1, ..., L, we have

P (YT = j) = (1− β)Pl(YT = j) + βPu(YT = j) = (1− β)γ∗1j + βγ∗1j = γ∗1j .

For any (i, j) such that g(i, j) = 0, we have

P (YC = i, YT = j) = (1− β)Pl(YC = i, YT = j) + βPu(YC = i, YT = j) = (1− β)× 0 + β × 0 = 0,

since Pl, Pu ∈ R. Thus, we have P ∈ R.
Also, we have

P (YT > YC) =
∑
j>i

P (YC = i, YT = j)

= (1− β)
∑
j>i

Pl(YC = i, YT = j) + β
∑
j>i

Pu(YC = i, YT = j)

= (1− β)ψRl + βψRu = ψ.

In conclusion, the joint distribution P has marginals γ∗, is in the set R, and satisfies P (YT >
YC) = ψ.

B Proof that minimizer of P0F (γ,V ) over γ ∈ Γ is unique and
equal to γ∗

Claim 1. The minimizer of P0F (γ,V ) over γ ∈ Γ is unique and equal to γ∗.

Proof. We have that

P0F (γ,V ) = P0

 1∑
a=0

L∑
j=1

1(A = a){1(Y = j)− γaj}2


=
1∑
a=0

L∑
j=1

θa(1− θ)1−a(γaj − γ∗aj)2 +
1∑
a=0

L∑
j=1

θa(1− θ)1−aγ∗aj(1− γ∗aj).

Since θ and γ∗ are constants, the rightmost double sum is also a constant. Denote it as c, i.e.,

c =
1∑
a=0

L∑
j=1

θa(1− θ)1−aγ∗aj(1− γ∗aj).

Then we have

P0F (γ,V ) = c+
1∑
a=0

L∑
j=1

θa(1− θ)1−a(γaj − γ∗aj)2.

Since 0 < θ < 1, we have that θa(1−θ)1−a(γaj−γ∗aj)2 ≥ 0 for all a, j. It follows that P0F (γ,V ) ≥ c
for all γ ∈ R2L. If γ = γ∗, we have that P0F (γ,V ) = c. If γ 6= γ∗, we have that P0F (γ,V ) > c.
This occurs since, if γ 6= γ∗, there is a pair (a, j) with γaj 6= γ∗aj , which implies that θa(1 −
θ)1−a(γaj − γ∗aj)2 > 0.

It follows that the minimizer of P0F (γ,V ) over γ ∈ R2L is unique and equal to γ∗. Since
Γ ⊆ R2L and γ∗ ∈ Γ (by Assumption 1), we conclude that the minimizer of P0F (γ,V ) over γ ∈ Γ
is unique and equal to γ∗.
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C Proof of Lemma 1 and of Uniqueness of Minimizer of Each
Term in Tn,ψ

C.1 Proof of Lemma 1
Claim. The test statistic Tn,ψ is equivalent to

n

{
min
γ∈Γψ

Discrepθ̂n(γ, γ̂)−min
γ∈Γ

Discrepθ̂n(γ, γ̂)

}
,

where θ̂n = PnA and Discrepθ̂n(γ, γ̂) =
∑1
a=0

∑L
j=1 (γaj − γ̂aj)2

θ̂an(1− θ̂n)1−a.

Proof. We have

F (γ, V ) =
1∑
a=0

L∑
j=1

1(A = a){1(Y = j)− γaj}2

=
1∑
a=0

L∑
j=1

[
1(A = a, Y = j) + γ2

aj1(A = a)− 2γaj1(A = a, Y = j)
]
.

Thus,

PnF (γ, V ) =
1

n

n∑
m=1

1∑
a=0

L∑
j=1

[
1(Am = a, Ym = j) + γ2

aj1(Am = a)− 2γaj1(Am = a, Ym = j)
]

=

1∑
a=0

L∑
j=1

Pn
[
1(A = a, Y = j) + γ2

aj1(A = a)− 2γaj1(A = a, Y = j)
]

=

1∑
a=0

L∑
j=1

[
Pn1(A = a, Y = j) + γ2

ajPn1(A = a)− 2γajPn1(A = a, Y = j)
]
.

Let γ̂ denote the empirical marginal distributions under control and treatment. In other words, γ̂
is the vector (γ̂01, .., γ̂0L, γ̂11, .., γ̂1L), where γ̂aj =

Pn1(A=a,Y=j)
Pn1(A=a) . We have

PnF (γ, V ) =
1∑
a=0

L∑
j=1

[
(γaj − γ̂aj)2Pn1(A = a) + γ̂aj(1− γ̂aj)Pn1(A = a)

]
=

1∑
a=0

L∑
j=1

[
(γaj − γ̂aj)2Pn1(A = a)

]
+

1∑
a=0

L∑
j=1

[γ̂aj(1− γ̂aj)Pn1(A = a)] .

The second term
∑1
a=0

∑L
j=1 [γ̂aj(1− γ̂aj)Pn1(A = a)] only depends on the data and not on γ.

Below, we denote it by f(data).
The test statistic is defined as

Tn,ψ = n

{
min
γ∈Γψ

PnF (γ, V )−min
γ∈Γ

PnF (γ, V )

}
.

We have

min
γ∈Γψ

PnF (γ, V ) = min
γ∈Γψ


1∑
a=0

L∑
j=1

[(γaj − γ̂aj)2Pn1(A = a)] + f(data)


= min

γ∈Γψ


1∑
a=0

L∑
j=1

(γaj − γ̂aj)2Pn1(A = a)

+ f(data).

We can move f(data) outside of the braces since it does not depend on γ. Analogously,

min
γ∈Γ

PnF (γ, V ) = min
γ∈Γ


1∑
a=0

L∑
j=1

(γaj − γ̂aj)2Pn1(A = a)

+ f(data).
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In conclusion, the test statistic Tn,ψ simplifies to

Tn,ψ

= n

min
γ∈Γψ


1∑
a=0

L∑
j=1

(γaj − γ̂aj)2Pn1(A = a)

−min
γ∈Γ


1∑
a=0

L∑
j=1

(γaj − γ̂aj)2Pn1(A = a)




= n

min
γ∈Γψ


1∑
a=0

L∑
j=1

(γaj − γ̂aj)2(θ̂n)a(1− θ̂n)1−a

−min
γ∈Γ


1∑
a=0

L∑
j=1

(γaj − γ̂aj)2(θ̂n)a(1− θ̂n)1−a


 .

C.2 Existence and Uniqueness of Minimizer of Each Term in Tn,ψ

Consider the terms minγ∈Γ PnF (γ,V ) and minγ∈Γψ PnF (γ,V ) in the definition of the statistic
Tn,ψ in (3) of the main paper; we refer to these as the first and second terms, respectively. It
was claimed in Section 3.3 of the main paper that each term has a unique minimizer, under the
assumptions in the first paragraph of that section (that Γψ is non-empty and at least one participant
is assigned to each arm). We now prove this claim.

By the arguments in Section C.1 of the Supplementary Material, it follows that the set of min-
imizers of the first term equals the set of minimizers of minγ∈ΓDiscrepθ̂n(γ, γ̂), where θ̂n = PnA,
ĉa = θ̂an(1− θ̂n)1−a > 0 for each a ∈ {0, 1}, and Discrepθ̂n(γ, γ̂) =

∑1
a=0 ĉa

∑L
j=1 (γaj − γ̂aj)2

.

Consider the change of variables γ
aj

= γaj ĉ
1/2
a and γ∗

aj
= γ∗aj ĉ

1/2
a . It follows that the vector

γ = Bγ and γ̂ = Bγ̂ where B denotes the 2L×2L diagonal matrix with first L diagonal elements
equal to ĉ1/20 > 0 and last L diagonal elements equal to ĉ1/21 > 0. By the above arguments, there
exists a unique minimizer of minγ∈ΓDiscrepθ̂n(γ, γ̂) if and only if there exists a unique minimizer

of minγ∈(BΓ)

∑1
a=0

∑L
j=1

(
γ
aj
− γ̂

aj

)2

. The latter minimization problem has a unique minimum
equal to the Euclidean projection of γ̂ on BΓ (which is a closed, convex set since Γ has these
properties). Here we used that the Euclidean projection of any point on a closed, convex set
in Euclidean space both exists and is unique. This proves that there is a unique minimizer of
the first term minγ∈Γ PnF (γ,V ). The proof that there is a unique mimizer of the second term
minγ∈Γψ PnF (γ,V ) is analogous, replacing Γ by Γψ throughout.

D Proof of Theorem 1
We use the general argument in Section 5.1.3 of Shapiro et al. (2014), except tailored to our specific
problem. The proof here is self-contained.

The null hypothesis γ∗ ∈ Γψ implies that the minimizer γ∗ of minγ∈Γ P0F (γ,V ) is unique and
satisfies γ∗aj = P0(Y = j|A = a) for each a ∈ {0, 1}, j ∈ {1, . . . , L}. This implies ∇P0F (γ∗,V ) = 0,
where the gradient is with respect to γ∗.

Define Zn = (Z01,n, . . . , Z0L,n, Z11,n, . . . , Z1L,n)t = n1/2{∇PnF (γ∗,V ) − ∇P0F (γ∗,V )}. It
follows that

Zaj,n = −2n1/2Pn
[
1(A = a)

{
1(Y = j)− γ∗aj

}]
,

for each a ∈ {0, 1}, j ∈ {1, . . . , L}. By the multivariate central limit theorem, Zn converges in
distribution to Z defined above. Let Dn denote the 2L× 2L diagonal matrix with first L diagonal
elements equal to 2Pn1(A = 0) and last L diagonal elements equal to 2Pn1(A = 1). Recall we
assume that P0(A = a) = 1/2 for each a ∈ {0, 1}. It follows that (Zn,Dn) converges in distribution
to (Z,D), for D the 2L× 2L identity matrix.

We next show

n

{
min
γ∈Γ

PnF (γ,V )− PnF (γ∗,V )

}
= min

h∈Cn(γ∗,Γ)
(htZn + htDnh/2), (1)

n

{
min
γ∈Γψ

PnF (γ,V )− PnF (γ∗,V )

}
= min

h∈Cn(γ∗,Γψ)
(htZn + htDnh/2), (2)

for Cn(γ∗,Γ) = {n1/2(γ − γ∗) : γ ∈ Γ} and Cn(γ∗,Γψ) = {n1/2(γ − γ∗) : γ ∈ Γψ}.
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To show (1), we have

n

{
min
γ∈Γ

PnF (γ,V )− PnF (γ∗,V )

}
(3)

= nmin
γ∈Γ

Pn {F (γ,V )− F (γ∗,V )}

= nmin
γ∈Γ

1∑
a=0

L∑
j=1

Pn1(A = a)
[
{1(Y = j)− γaj}2 −

{
1(Y = j)− γ∗aj

}2
]

= nmin
γ∈Γ

1∑
a=0

L∑
j=1

Pn1(A = a)
[
−2
{

1(Y = j)− γ∗aj
}

(γaj − γ∗aj) + (γaj − γ∗aj)2
]

= min
γ∈Γ

n1/2
1∑
a=0

L∑
j=1

Zaj,n(γaj − γ∗aj) +
1∑
a=0

Pn1(A = a)
L∑
j=1

{
n1/2(γaj − γ∗aj)

}2


= min

γ∈Γ

n1/2(γ − γ∗)tZn +
1∑
a=0

Pn1(A = a)
L∑
j=1

{
n1/2(γaj − γ∗aj)

}2

 (4)

= min
h∈Cn(γ∗,Γ)

htZn + htDnh/2, (5)

which proves (1). The proof of (2) is analogous, except replacing Γ by Γψ

Taking the difference between the left sides of (2) and (1), we have

Tn,ψ = min
h∈Cn(γ∗,Γψ)

(htZn + htDnh/2)− min
h∈Cn(γ∗,Γ)

(htZn + htDnh/2).

Now we will prove that under the null hypothesis H0(ψ), we have

min
h∈Cn(γ∗,Γψ)

(htZn + htDnh/2)− min
h∈Cn(γ∗,Γ)

(htZn + htDnh/2) (6)

→ min
h∈C(γ∗,Γψ)

(htZ + hth/2)− min
h∈C(γ∗,Γ)

(htZ + hth/2), (7)

where the above convergence indicated by → is in distribution as n → ∞. The expression (6)
equals Tn,ψ, and (7) equals Tψ. Therefore, showing the above result implies the convergence of
Tn,ψ to the null distribution Tψ under H0(ψ).

Throughout, we assume the null hypothesis H0(ψ). For any column vectors h,A ∈ R2L and
positive definite matrix B ∈ R2L×2L, define the function f(h,A,B) = (htA + htBh/2); for any
set C ⊆ R2L, define g(C,A,B) = minh∈C(htA+ htBh/2). Let ||A|| denote the Euclidean norm
of A. Define the ball of radius M by BM = {h ∈ R2L : ||h|| ≤M}.

By Skorokhod’s representation theorem (Jakubowski, 1998), there exist Zn,Dn,Z such that
(Zn,Dn) converges almost surely to (Z, I) (under the sup-norm), where for each n these have the
same distribution as the corresponding random vectors/matrices defined in the main text. We use
this representation throughout this proof. We suppress the dependence of Cn(γ∗,Γ) and C(γ∗,Γ)
on γ∗,Γ; all results below hold as well replacing Γ by Γψ under the null hypothesis H0(ψ). The
key features of Cn and C used below are that they are each closed, convex, and contain 0.

We will prove that |g(Cn,Zn,Dn)− g(C,Z, I)| converges to 0 in probability. By the triangle
inequality:

|g(Cn,Zn,Dn)− g(C,Z, I)| ≤ |g(Cn,Zn,Dn)− g(Cn,Z, I)|+ |g(Cn,Z, I)− g(C,Z, I)|. (8)

In a series of steps involving the lemmas below, we prove that each term on the right side of the
above inequality converges to 0 in probability.

Lemma 1. For all ε > 0, there exists an M > 0 such that the event E = {||Z|| ≤ M} has
probability at least 1− ε.
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Proof. Consider any ε > 0. We have

E
[
||Z||2

]
= E

[
Z2

01 + . . .+ Z2
0L + Z2

11 + . . .+ Z2
1L

]
= E[Z2

01] + . . .+ E[Z2
0L] + E[Z2

11] + . . .+ E[Z2
1L]

= V ar(Z01) + . . .+ V ar(Z0L) + V ar(Z11) + . . .+ V ar(Z1L)

= 4
1∑
a=0

L∑
j=1

[
(1− γ∗aj)P0(A = a, Y = j)

]
.

Notice that E
[
||Z||2

]
is finite because it is a sum of a finite number of terms, which are themselves

finite (since 0 ≤ γ∗aj ≤ 1 and 0 ≤ P0(A = a, Y = j) ≤ 1). Choose M to be any positive number
large enough that E

[
||Z||2

]
/M2 ≤ ε. By Chebyshev’s Inequality, we have

P (||Z|| > M) ≤
E
[
||Z||2

]
M2

≤ ε.

This implies that
P (||Z|| ≤M) ≥ 1− ε.

Lemma 2. For any M > 0, there exists an n0 > 0 such that Cn ∩BM = C ∩BM for all n > n0.

Proof. Since Γ is a bounded polyhedron, it is the convex hull of a finite number t > 0 of extreme
points {e1, e2, ..., et}. Thus, we have that C1 is the convex hull of the extreme points {e1−γ∗, e2−
γ∗, ..., et − γ∗} and so is also a bounded polyhedron. If C1 is the set containing the single point
0, then so is C and each Cn : n ≥ 1, so the lemma holds trivially. We assume C1 6= {0} for the
remainder of the proof. Let Ẽ denote the union of all facets of C1 that do not contain 0. Then Ẽ
is closed, bounded, does not contain 0, and minh∈Ẽ ‖h‖ > 0. Denote d = minh∈Ẽ ‖h‖ > 0.

Let n0 = dM/de+ 1. Consider any h ∈ C ∩BM . We will show that h ∈ Cn0
∩BM . It suffices

to show h ∈ Cn0
. Since h ∈ C ∩BM , we have that h = r(γ − γ∗) for some r > 0 and γ ∈ Γ, and

‖h‖ = r‖γ − γ∗‖ ≤ M . If h = 0, then h ∈ Cn0
∩ BM since γ∗ ∈ Γ. Next, consider the case of

h 6= 0. Define ξ = max{ξ′ ≥ 0 : ξ′(γ − γ∗) ∈ C1}; the maximum is achieved and ξ(γ − γ∗) ∈ C1

since C1 is closed, convex, and contains 0. We have ξ ≥ 1 since (γ − γ∗) ∈ C1. By construction,
we have ξ(γ − γ∗) ∈ Ẽ and so has norm at least d; it follows that ‖n0ξ(γ − γ∗)‖ > (M/d)d = M .
It follows from ξ(γ − γ∗) ∈ C1 that n0ξ(γ − γ∗) ∈ Cn0

. Since Cn0
is convex and contains both 0

and n0ξ(γ − γ∗), we have y(γ − γ∗) ∈ Cn0
for every y ≥ 0 : ‖y(γ − γ∗)‖ ≤ ‖n0ξ(γ − γ∗)‖. The

value r satisfies this property since as shown above,

r‖γ − γ∗‖ ≤M < ‖n0ξ(γ − γ∗)‖.

Therefore, h = r(γ − γ∗) ∈ Cn0
, as desired. We have shown C ∩BM ⊆ Cn0

∩BM .
We have that Cn0

⊆ C and so C ∩BM ⊇ Cn0
∩BM . Combining this with the above result, we

have C ∩BM = Cn0 ∩BM as desired.

Lemma 3. i. For any A ∈ R2L, we have arg minh∈R2L(htA+ hth/2) = −A.
ii. For any A ∈ R2L and closed, convex C ′ ⊆ R2L, we have arg minh∈C′(h

tA+ hth/2) is the
Euclidean projection of −A on C ′.

iii. For any A ∈ R2L, and closed, convex C ′ ⊆ R2L with 0 ∈ C ′, we have

|| arg min
h∈C′

(htA+ hth/2)|| ≤ ||A||.

An important consequence is that if ||Z|| ≤ M then the minimizer h∗ of minh∈C′(h
tZ + hth/2)

is in the ball BM . In particular, this applies to C ′ = C and C ′ = Cn for all n.

Proof. i. The gradient of htA+hth/2 is h+A and the Hessian is the identity matrix. Therefore,
the unique mimimum occurs at h = −A.

ii. Since C ′ is closed and convex, the Euclidean projection of −A on C ′ exists and is unique; it
is the solution to minh∈C′ ‖h − (−A)‖2. Since the optimization problem minh∈C′(h

tA + hth/2)
is equivalent to the optimization problem minh∈C′

{
‖h− (−A)‖2/2−AtA/2

}
, and the solution
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to the latter is the Euclidean projection of −A on C ′, we have that the Euclidean projection of
−A on C ′ is the unique minimizer of the former problem.

iii. Denote by PC′(h) the Euclidean projection of h onto the convex set C ′. We have that by
(ii),

arg min
h∈C′

(htA+ hth/2) = PC′(−A).

Then, we have that

‖ arg min
h∈C′

(htA+ hth/2)‖ = ‖PC′(−A)− PC′(0)‖ ≤ ‖ −A− 0‖ = ‖A‖,

where the inequality holds by the nonexpansiveness of convex projection (Proposition 1.1.9 by
Bertsekas (2009)), and our claim holds as desired.

In the lemma below, we defineN0, N1, Nz, Nd which are random (i.e., functions of the underlying
probability space).

Lemma 4. i. On the event ||Z|| ≤M , with probability 1 there exists an N0 > 0 such that n > N0

implies the following results: ||Zn|| ≤ 2M ; Dn is a diagonal matrix with each diagonal entry at
least 0.9; and,

|| arg min
h∈Cn

(htZn + htDnh/2)|| ≤ 5M,

i.e., the minimizer of minh∈Cn(htZn + htDnh/2) is in the ball B5M .
ii.

sup
h∈B5M

|f(h,Zn,Dn)− f(h,Z, I)| ≤ 5M ||Zn −Z||+ (5M)2|2Pn1(A = 0)− 1|.

iii. If ||Z|| ≤M , then with probability 1 the first term on the right of (8) satisfies

|g(Cn,Zn,Dn)− g(Cn,Z, I)| → 0

almost surely as n→∞.
iv. If ||Z|| ≤M , then with probability 1 the second term on the right of (8) satisfies

|g(Cn,Z, I)− g(C,Z, I)| → 0

almost surely as n→∞.
v. |g(Cn,Zn,Dn)− g(C,Z, I)| converges to 0 in probability.
vi. (6) converges in distribution to (7).

Proof. (i) Assume that ||Z|| ≤ M . By our above use of the Skorokhod’s representation theorem,
we have (Zn,Dn) converges almost surely to (Z, I). Let E′ denote the zero probability event that
this convergence does not occur; we work on the complement of this event throughout the proof
of this lemma, so that all claims hold with probability 1. By the Continuous Mapping Theorem,
||Zn|| converges almost surely to ||Z||. Since ||Z|| ≤ M , there exists an Nz such that for n > Nz
we have that ||Zn|| ≤ 2M .

The matrix Dn is defined as a 2L× 2L diagonal matrix with the first L diagonal entries equal
to 2Pn1(A = 0) and the last L diagonal entries equal to 2Pn1(A = 1). Since (Zn,Dn) converges
almost surely to (Z, I), it follows that 2Pn1(A = 0) converges almost surely to 1 and 2Pn1(A = 1)
converges almost surely to 1. Thus, there exists an Nd > 0 such that |2Pn1(A = 0)− 1| ≤ 0.1 and
|2Pn1(A = 1)− 1| ≤ 0.1 for n > Nd. It follows that for n > Nd, Dn is a diagonal matrix with each
diagonal entry at least 0.9.

Let N0 = max{Nz, Nd}. For any n > N0, we have that

htZn + htDnh/2 ≥ htDnh/2− |htZn| ≥ 0.9||h||2/2− ||h|| · ||Zn|| = ||h|| {0.9||h||/2− ||Zn||} .

If ||h|| > 5M and n > N0, then we have ||Zn|| ≤ 2M and

0.9||h||/2− ||Zn|| > 0.9 · 5M/2− ||Zn|| ≥ 0.9 · 5M/2− 2M = M/4 > 0.

Thus, if ||h|| > 5M and n > N0, we have that htZn + htDnh/2 > 0. At h = 0, we have that
(htZn + htDnh/2) = 0. This implies that, for n > N0, the minimizer h∗ of htZn + htDnh/2
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over h ∈ Cn (where Cn contains 0) cannot be such that ||h∗|| > 5M . We conclude that
|| arg minh∈Cn(htZn + htDnh/2)|| ≤ 5M .

(ii) Consider any h ∈ B5M . Denote the elements of h as (h01, . . . , h0L, h11, . . . , h1L). Then we
have

|f(h,Zn,Dn)− f(h,Z, I)|
= |htZn + htDnh/2− (htZ + hth/2)|
= |ht(Zn −Z) + ht(Dn − I)h/2|
≤ |ht(Zn −Z)|+ |ht(Dn − I)h/2|

≤ ||h||||Zn −Z||+

[2Pn1(A = 0)− 1]
L∑
j=1

h2
0j + [2Pn1(A = 1)− 1]

L∑
j=1

h2
1j

 /2

≤ 5M ||Zn −Z||+ |Pn1(A = 0)− 1/2| · ||h||2

≤ 5M ||Zn −Z||+ |Pn1(A = 0)− 1/2|(5M)2

≤ 5M ||Zn −Z||+ (5M)2|2Pn1(A = 0)− 1|.

Thus, for h ∈ B5M , the value 5M ||Zn − Z|| + (5M)2|2Pn1(A = 0) − 1| is an upper bound on
|f(h,Zn,Dn)− f(h,Z, I)|. We conclude that

sup
h∈B5M

|f(h,Zn,Dn)− f(h,Z, I)| ≤ 5M ||Zn −Z||+ (5M)2|2Pn1(A = 0)− 1|.

(iii) Consider any δ > 0. We will show that if ||Z|| ≤ M , then with probability 1 there exists
an N1 > 0 such that n > N1 implies

|g(Cn,Zn,Dn)− g(Cn,Z, I)| < δ. (9)

Assume that ||Z|| ≤M holds. Then by Lemma 4(i), there exists an N0 > 0 such that the minimizer
of minh∈Cn(htZn + htDnh/2) is in the ball B5M , if n > N0. For any n > N0, we have

|g(Cn,Zn,Dn)− g(Cn,Z, I)| =

∣∣∣∣min
h∈Cn

f(h,Zn,Dn)− min
h∈Cn

f(h,Z, I)

∣∣∣∣
=

∣∣∣∣min
h∈Cn

f(h,Zn,Dn)− min
h∈Cn∩B5M

f(h,Z, I)

∣∣∣∣
=

∣∣∣∣ min
h∈Cn∩B5M

f(h,Zn,Dn)− min
h∈Cn∩B5M

f(h,Z, I)

∣∣∣∣
≤ sup

h∈Cn∩B5M

|f(h,Zn,Dn)− f(h,Z, I)|

≤ 5M ||Zn −Z||+ (5M)2|2Pn1(A = 0)− 1|.

The first line follows from the definition of g. The second line follows from Lemma 3(iii), according
to which the minimizer h∗ of minh∈Cn(htZ+hth/2) must be in the ball BM and hence also in the
ball B5M . The third line follows from Lemma 4(i). The proof of the fourth line is as follows. First,
consider the case where minh∈Cn∩B5M

f(h,Z, I) ≤ minh∈Cn∩B5M
f(h,Zn,Dn). Let h∗ denote

the minimizer of minh∈Cn∩B5M
(htZ + hth/2). Then∣∣∣∣ min

h∈Cn∩B5M

f(h,Zn,Dn)− min
h∈Cn∩B5M

f(h,Z, I)

∣∣∣∣ = min
h∈Cn∩B5M

f(h,Zn,Dn)− f(h∗,Z, I)

≤ f(h∗,Zn,Dn)− f(h∗,Z, I)

≤ sup
h∈Cn∩B5M

|f(h,Zn,Dn)− f(h,Z, I)|.

The case of minh∈Cn∩B5M
f(h,Z, I) > minh∈Cn∩B5M

f(h,Zn,Dn) is handled analogously. The
fifth line follows from Lemma 4(ii).

Since (Zn,Dn) converges almost surely to (Z, I), there exists an N1 > 0 such that for n > N1

we have that ||Zn − Z|| < δ/(10M) and |2Pn1(A = 0) − 1| < δ/(2(5M)2). Combining this with
the results in the above displays, we have shown for any n > max{N0, N1}, we have that (9) holds.
It follows that on the event ||Z|| ≤ M , we have |g(Cn,Zn,Dn) − g(Cn,Z, I)| → 0 almost surely
as n→∞.
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(iv) Assume that ||Z|| ≤M . By Lemma 2, there exists an n0 > 0 such that Cn∩BM = C∩BM
for all n > n0. By Lemma 3(iii), the minimizer h∗ of minh∈C(htZ + hth/2) is in the ball BM .
Also, for all n, the minimizer h∗n of minh∈Cn(htZ +hth/2) is in the ball BM . Thus, we have that
for n > n0,

min
h∈C

(htZ + hth/2) = min
h∈C∩BM

(htZ + hth/2) = min
h∈Cn∩BM

(htZ + hth/2) = min
h∈Cn

(htZ + hth/2).

It follows that |g(Cn,Z, I) − g(C,Z, I)| = 0 for n > n0. We conclude that |g(Cn,Z, I) −
g(C,Z, I)| → 0 almost surely as n→∞.

(v) Consider any ε > 0 and δ > 0. By Lemma 1, there exists anM > 0 such that the event E =
{||Z|| ≤M} has probability at least 1− δ/2. By (iii), (iv), and (8), we have 1(E)|g(Cn,Zn,Dn)−
g(C,Z, I)| → 0 almost surely as n→∞, where 1(E) is the indicator of the event E. Thus, there
exists a natural number n1 such that for n ≥ n1, we have

P (|g(Cn,Zn,Dn)− g(C,Z, I)| > ε|E) < δ/2.

It follows that for n ≥ n1, we have

P (|g(Cn,Zn,Dn)− g(C,Z, I)| > ε) = P (|g(Cn,Zn,Dn)− g(C,Z, I)| > ε|E)P (E)

+ P (|g(Cn,Zn,Dn)− g(C,Z, I)| > ε|EC)P (EC)

≤ P (|g(Cn,Zn,Dn)− g(C,Z, I)| > ε|E)

+ P (|g(Cn,Zn,Dn)− g(C,Z, I)| > ε|EC)δ/2

≤ P (|g(Cn,Zn,Dn)− g(C,Z, I)| > ε|E) + δ/2

< δ/2 + δ/2

= δ.

Since ε and δ were arbitrary, we conclude that |g(Cn,Zn,Dn) − g(C,Z, I)| converges to 0 in
probability.

(vi) By (v) and the definition of g, we have∣∣∣∣ min
h∈Cn(γ∗,Γ)

(htZn + htDnh/2)− min
h∈C(γ∗,Γ)

(htZ + hth/2)

∣∣∣∣→ 0

in probability. It follows that minh∈Cn(γ∗,Γ)(h
tZn +htDnh/2) converges to minh∈C(γ∗,Γ)(h

tZ +

hth/2) in probability. Under the null hypothesis H0(ψ), Lemmas 1, 2, 3, and 4(i-vi) hold if Γ
is replaced by Γψ. It follows that minh∈Cn(γ∗,Γψ)(h

tZn + htDnh/2) converges in probability
to minh∈C(γ∗,Γψ)(h

tZ + hth/2). By Theorem 2.7 in van der Vaart (1998) and the Continuous
Mapping Theorem, we have that

min
h∈Cn(γ∗,Γψ)

(htZn + htDnh/2)− min
h∈Cn(γ∗,Γ)

(htZn + htDnh/2)

→ min
h∈C(γ∗,Γψ)

(htZ + hth/2)− min
h∈C(γ∗,Γ)

(htZ + hth/2)

in probability. This implies (6) converges in distribution to (7), completing the proof.

E Proof of Theorem 2
Claim 2. Under the alternative hypothesis Ha(ψ), for any M ∈ R, we have P (Tn,ψ > M)→ 1 as
n→∞.

Proof. Assume the alternative hypothesis Ha(ψ) : γ∗ /∈ Γψ holds. Choose any M ∈ R. By Lemma
1 from the main paper,

Tn,ψ = n

{
min
γ∈Γψ

Discrepθ̂n(γ, γ̂)−min
γ∈Γ

Discrepθ̂n(γ, γ̂)

}
,

where θ̂n = PnA and Discrepθ(γ,γ∗) =
∑1
a=0

∑L
j=1

[(
γaj − γ∗aj

)2
θa(1− θ)1−a

]
.
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We have as n→∞ (
γ̂, θ̂n

)
p→ (γ∗, θ) ,

by the Weak Law of Large Numbers, Slutsky’s lemma, and Theorem 2.7(vi) in van der Vaart
(1998).

For any positive integer n, we have

P (Tn,ψ > M) = P

(
n

{
min
γ∈Γψ

Discrepθ̂n(γ, γ̂)−min
γ∈Γ

Discrepθ̂n(γ, γ̂)

}
> M

)
= P

(
min
γ∈Γψ

Discrepθ̂n(γ, γ̂)−min
γ∈Γ

Discrepθ̂(γ, γ̂) >
M

n

)
. (10)

For conciseness, let

dn,ψ = min
γ∈Γψ

Discrepθ̂n(γ, γ̂)−min
γ∈Γ

Discrepθ̂n(γ, γ̂).

Thus, we have P (Tn,ψ > M) = P (dn,ψ > M/n). By Lemmas 5 and 6 (see end of this section)
and the Continuous Mapping Theorem, we have min

γ∈Γψ
Discrepθ̂n(γ, γ̂)

p→ min
γ∈Γψ

Discrepθ(γ,γ∗) and

min
γ∈Γ

Discrepθ̂n(γ, γ̂)
p→ min
γ∈Γ

Discrepθ(γ,γ∗). Let c = min
γ∈Γψ

Discrepθ(γ,γ∗) and b = min
γ∈Γ

Discrepθ(γ,γ∗).

If γ = γ∗, Discrepθ(γ,γ∗) = 0 because γaj = γ∗aj for all (a, j) pairs. If γ 6= γ∗, we have
Discrepθ(γ,γ∗) > 0 since γaj 6= γ∗aj for some (a, j) pair and 0 < θ < 1. Since γ∗ ∈ Γ, we have
that b = 0. We have c > 0 since γ∗ /∈ Γψ and Γψ is compact, as proved in Lemma 5 at the end of
this section. By Slutsky’s lemma, the random variable dn,ψ converges in probability to c > 0. Let
ε = c/2. Since the sequence M/n converges to 0 as n→∞, we have for sufficiently large n,

P (dn,ψ ≥ c− ε) ≤ P (dn,ψ > M/n).

Because dn,ψ converges in probability to c, the probability on the left converges to 1. Since the
right side of the above display is at most 1, we have P (dn,ψ > M/n) = P (Tn,ψ > M) converges to
1.

Lemma 5. The sets Γ and Γψ, for any ψ ∈ [0, 1], are compact.

Proof. Let ψ be an arbitrary number in [0, 1]. We prove that the set Γψ is compact. The proof for
Γ is analogous. Define

Πψ =

π = (π1,1, . . . , π1,L, π2,1, . . . , π2,L, . . . , πL,1, . . . , πL,L)t :

πi,j ≥ 0 for all i, j ∈ L∑L
i=1

∑L
j=1 πi,j = 1

πi,j = 0 if g(i, j) = 0∑
j>i πi,j = ψ

 . (11)

Choose any vector π ∈ Πψ. By the definition of Πψ, the components of π satisfy 0 ≤ πi,j ≤ 1 for
all i, j. Thus, we have

||π|| =
√
π2

1,1 + · · ·+ π2
1,L + π2

2,1 + · · ·+ π2
2,L + · · ·+ π2

L,1 + · · ·+ π2
L,L ≤ L.

It follows that the set Πψ is bounded. Also, the set Πψ is closed since it is a polyhedron.
Since Πψ is closed and bounded, it is compact. Define the mapping F : Πψ → R2L, where

F (π) = (γ01, . . . , γ0L, γ11, . . . , γ1L),

γ0i =
L∑
j=1

πi,j for all i ∈ L,

γ1j =
L∑
i=1

πi,j for all j ∈ L.

The mapping F is continuous by Proposition 11.1, Theorem 11.2, and Theorem 11.4 in Fitzpatrick
(1996). Let F (Πψ) denote the image of F : Πψ → R2L, i.e.,

F (Πψ) = {γ|γ = F (π) for some point π ∈ Πψ}.

By Theorem 11.12 in Fitzpatrick (1996), F (Πψ) is compact. Since Γψ = F (Πψ), the set Γψ is
compact.
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Lemma 6. Let A be the set of vectors γ̃ = (γ̃01, . . . , γ̃0L, γ̃11, . . . , γ̃1L) that satisfy the following:
(1) γ̃aj ≥ 0 for any a ∈ {0, 1} and j ∈ L; (2)

∑L
j=1 γ̃aj = 1 for any a ∈ {0, 1}. The functions

g : (0, 1)×A→ R and gψ : (0, 1)×A→ R, defined as

g(θ̃, γ̃) = min
γ∈Γ

Discrepθ̃(γ, γ̃), (12)

gψ(θ̃, γ̃) = min
γ∈Γψ

Discrepθ̃(γ, γ̃), (13)

are continuous at (θ, γ∗).

Proof. We prove that gψ is continuous at (θ, γ∗). The proof for g is analogous. Consider any
sequence (θ̃n, γ̃n) that converges to (θ, γ∗), where (θ̃n, γ̃n) ∈ (0, 1) × A for every n. We want to
show that gψ(θ̃n, γ̃n) converges to gψ(θ, γ∗).

Define the mappings f : R2L → R and fn : R2L → R as:

f(γ) = Discrepθ(γ, γ
∗),

fn(γ) = Discrepθ̃n(γ, γ̃n).

Thus, we have

gψ(θ, γ∗) = min
γ∈Γψ

f(γ),

gψ(θ̃n, γ̃n) = min
γ∈Γψ

fn(γ).

Consider any γ ∈ Γψ. Let δn(γ) = fn(γ)− f(γ). Then we have

δn(γ) = (1− θ)
L∑
j=1

(γ∗0j − γ̃n,0j)2 + θ
L∑
j=1

(γ∗1j − γ̃n,1j)2

+(θ − θ̃n)
L∑
j=1

(γ0j − γ̃n,0j)2 + (θ̃n − θ)
L∑
j=1

(γ1j − γ̃n,1j)2

+2(1− θ)
L∑
j=1

(γ0j − γ∗0j)(γ∗0j − γ̃n,0j) + 2θ
L∑
j=1

(γ1j − γ∗1j)(γ∗1j − γ̃n,1j).

Thus, we have that

|δn(γ)| ≤ (1− θ)
L∑
j=1

(γ∗0j − γ̃n,0j)2 + θ
L∑
j=1

(γ∗1j − γ̃n,1j)2

+
∣∣∣θ − θ̃n∣∣∣ L∑

j=1

(γ0j − γ̃n,0j)2 +
∣∣∣θ̃n − θ∣∣∣ L∑

j=1

(γ1j − γ̃n,1j)2

+2(1− θ)
L∑
j=1

(∣∣γ0j − γ∗0j
∣∣ ∣∣γ∗0j − γ̃n,0j∣∣)+ 2θ

L∑
j=1

(∣∣γ1j − γ∗1j
∣∣ ∣∣γ∗1j − γ̃n,1j∣∣) .

Since 0 < θ < 1, we have

|δn(γ)| ≤
1∑
a=0

L∑
j=1

(γ∗aj − γ̃n,aj)2 +
∣∣∣θ − θ̃n∣∣∣ 1∑

a=0

L∑
j=1

(γaj − γ̃n,aj)2

+2
1∑
a=0

L∑
j=1

(∣∣γaj − γ∗aj∣∣ ∣∣γ∗aj − γ̃n,aj∣∣) .
Since γ∗ ∈ Γ, γ ∈ Γψ, and γ̃n ∈ A, we have that |γaj −γ∗aj | is bounded by 1 and

∑1
a=0

∑L
j=1(γaj −

γ̃n,aj)
2 is bounded by 2L. This implies that

|δn(γ)| ≤
1∑
a=0

L∑
j=1

(γ∗aj − γ̃n,aj)2 + 2L
∣∣∣θ − θ̃n∣∣∣+ 2

1∑
a=0

L∑
j=1

∣∣γ∗aj − γ̃n,aj∣∣ .
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Let α be any positive number. Since (θ̃n, γ̃n) converges to (θ, γ∗), there exists a positive integer
Nα such that if n ≥ Nα,

|θ − θ̃n| < α,
1∑
a=0

L∑
j=1

(γ∗aj − γ̃n,aj)2 < α,

|γ∗aj − γ̃n,aj | < α for any a ∈ {0, 1}, j ∈ L.

It follows that if n ≥ Nα,

0 ≤ |δn(γ)| < (6L+ 1)α.

Since this result holds for arbitrary γ ∈ Γψ, it follows that if n ≥ Nα,

0 ≤ sup
γ∈Γψ

|δn(γ)| ≤ (6L+ 1)α.

Since the choice of α was arbitrary, we have that supγ∈Γψ |δn(γ)| → 0.
We want to show that gψ(θ̃n, γ̃n)→ gψ(θ, γ∗). For any n, we have

|gψ(θ̃n, γ̃n)− gψ(θ, γ∗)| =

∣∣∣∣min
γ∈Γψ

fn(γ)− min
γ∈Γψ

f(γ)

∣∣∣∣
≤ sup

γ∈Γψ
|fn(γ)− f(γ)|

= sup
γ∈Γψ

|δn(γ)|,

which was shown above to converge to 0. This completes the proof of the lemma.

F Proof of Theorem 3
Claim. The confidence set CSn is pointwise consistent at level 0.95.

Proof. Consider an arbitrary data generating distribution P0 that satisfies Assumption 1. Choose
any ψ that is consistent with the marginal distributions γ∗ and restrictions R, i.e., γ∗ ∈ Γψ. Then
for ε = 10−10,

lim inf
n→∞

P0(ψ ∈ CSn) = lim inf
n→∞

P0(Tn,ψ ≤ t0.95
ψ + ε)

≥ lim inf
n→∞

P0(Tn,ψ < t0.95
ψ + ε)

≥ P0(Tψ < t0.95
ψ + ε)

≥ P0(Tψ ≤ t0.95
ψ )

= 0.95,

where the second inequality follows from Theorem 1 and the Portmanteau Lemma (van der Vaart,
1998).

G Proof of Theorem 4
Claim. For any ψ satisfying γ∗ 6∈ Γψ, the probability that ψ is excluded from CSn converges to 1.

Proof. Consider any data generating distribution P0 that satisfies Assumption 1. Consider any ψ
such that γ∗ 6∈ Γψ. For ε = 10−10,

lim
n→∞

P0(ψ 6∈ CSn) = lim
n→∞

P0(Tn,ψ > t0.95
ψ + ε) = 1.

The first equality follows from the definition of CSn. The second equality follows from Theorem
2.
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H The m-out-of-n bootstrap
Let A and B denote the left and right endpoints of the confidence interval constructed using the
m-out-of-n bootstrap, which we define next. For a given trial data set, to compute the value A,
10,000 replicate data sets are generated, each by sampling m ≤ n participants with replacement.
Using each replicate data set, the lower and upper bounds ψRl and ψRu are estimated using the
consistent estimators ψ

R
l and ψ

R
u proposed in Huang et al. (2017). These estimators are presented

in the following section, entitled “Estimators from Huang et al. (2017)”. The value A is taken to
be the 0.025 quantile of the 10,000 lower bound estimates. The value B is the 0.975 quantile of
the 10,000 upper bound estimates. The rationale behind the choice of A and B is

P0(A ≤ ψ0 ≤ B) ≥ P0(A ≤ ψRl ≤ ψ0 ≤ ψRu ≤ B)

= P0(A ≤ ψRl ≤ ψRu ≤ B)

= 1− P0(A > ψRl or B < ψRu )

≥ 1− P0(A > ψRl )− P0(B < ψRu )

≈ 1− 0.025− 0.025

= 0.95.

I Estimators from Huang et al. (2017)
For any i ∈ L and j ∈ L, let

F̂C(i) =

∑n
m=1 1(A = 0, Y ≤ i)∑n

m=1 1(A = 0)
;

F̂T (j) =

∑n
m=1 1(A = 1, Y ≤ j)∑n

m=1 1(A = 1)
.

Below is a direct excerpt from Appendix G in the Supplementary Materials of Huang et al. (2017):
“The lower bound estimator ψ

R
l is computed using a sequence of two linear programs:

ε = min


ε ≥ 0 :

πi,j ≥ 0 for all i, j ∈ L
|
∑i
i′=1

∑L
j=1 πi′,j − F̂C(i)| ≤ ε for all i = 1, .., L− 1

|
∑j
j′=1

∑L
i=1 πi,j′ − F̂T (j)| ≤ ε for all j = 1, .., L− 1∑L

i=1

∑L
j=1 πi,j = 1

πi,j = 0 if g(i, j) = 0


, (14)

ψ
R
l = min


∑
j>i
i,j∈L

πi,j :

πi,j ≥ 0 for all i, j ∈ L
|
∑i
i′=1

∑L
j=1 πi′,j − F̂C(i)| ≤ ε for all i = 1, .., L− 1

|
∑j
j′=1

∑L
i=1 πi,j′ − F̂T (j)| ≤ ε for all j = 1, .., L− 1∑L

i=1

∑L
j=1 πi,j = 1

πi,j = 0 if g(i, j) = 0


. (15)

The upper bound estimator ψ
R
u is (15), with min replaced by max.”

J Definition of Outcome in Setting D
We discretize reduction in clot volume using a bin length of 5 mL. The resulting ordinal outcome
is as follows, where y represents the continuous reduction in clot volume:

Level 1: y < 0 mL
Level 2: 0 mL ≤ y < 5 mL
Level 3: 5 mL ≤ y < 10 mL
Level 4: 10 mL ≤ y < 15 mL
Level 5: 15 mL ≤ y < 20 mL
Level 6: y ≥ 20 mL.

13 http://biostats.bepress.com/jhubiostat/paper287



The list above is directly from Appendix L in the Supplementary Materials of Huang et al. (2017).
In that paper, this outcome was referred to as RICV5.
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m-out-of-n bootstrap
n ĈIn m = n m = 0.9n m = 0.75n m = 0.5n m = 0.25n
200 0.56 0.54 0.55 0.55 0.57 0.60
500 0.53 0.53 0.53 0.53 0.54 0.56
1000 0.52 0.52 0.52 0.52 0.53 0.54
2000 0.51 0.51 0.51 0.52 0.52 0.53

Table 1: Average widths of our method ĈIn and the m-out-of-n bootstrap in Setting A, at each
sample size

m-out-of-n bootstrap
n ĈIn m = n m = 0.9n m = 0.75n m = 0.5n m = 0.25n
200 0.09 0.14 0.15 0.16 0.20 0.28
500 0.05 0.09 0.09 0.10 0.12 0.18
1000 0.04 0.06 0.06 0.07 0.09 0.12
2000 0.03 0.04 0.05 0.05 0.06 0.09

Table 2: Average widths of our method ĈIn and the m-out-of-n bootstrap in Setting B, at each
sample size

m-out-of-n bootstrap
n ĈIn m = n m = 0.9n m = 0.75n m = 0.5n m = 0.25n
200 0.45 0.48 0.49 0.51 0.56 0.66
500 0.37 0.39 0.40 0.42 0.45 0.54
1000 0.33 0.35 0.36 0.37 0.39 0.45
2000 0.30 0.32 0.33 0.33 0.35 0.39

Table 3: Average widths of our method ĈIn and the m-out-of-n bootstrap in Setting C, at each
sample size

m-out-of-n bootstrap
n ĈIn m = n m = 0.9n m = 0.75n m = 0.5n m = 0.25n
200 0.29 0.25 0.25 0.26 0.29 0.33
500 0.22 0.21 0.22 0.22 0.24 0.28
1000 0.19 0.19 0.19 0.20 0.21 0.24
2000 0.17 0.18 0.18 0.18 0.19 0.21

Table 4: Average widths of our method ĈIn and the m-out-of-n bootstrap in Setting D, at each
sample size
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Figure 1: Empirical probability mass functions of RICV5 under treatment and control, computed
using the MISTIE II randomized trial. The sample sizes of the treatment and control arms are
shown in the upper left hand corner.
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Figure 2: Coverage probabilities in Setting A at n = 200.
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Figure 3: Coverage probabilities in Setting A at n = 1000.
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Figure 4: Coverage probabilities in Setting A at n = 2000.
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Figure 5: Coverage probabilities in Setting B at n = 200.
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Figure 6: Coverage probabilities in Setting B at n = 1000.
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Figure 7: Coverage probabilities in Setting B at n = 2000.
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Figure 8: Coverage probabilities in Setting C at n = 200.
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Figure 9: Coverage probabilities in Setting C at n = 500.
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Figure 10: Coverage probabilities in Setting C at n = 1000.
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Figure 11: Coverage probabilities in Setting C at n = 2000.
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Figure 12: Coverage probabilities in Setting D at n = 200.
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Figure 13: Coverage probabilities in Setting D at n = 500.
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Figure 14: Coverage probabilities in Setting D at n = 1000.
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Figure 15: Coverage probabilities in Setting D at n = 2000.
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