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Summary

Autoimmune diseases are characterized by highly specific immune responses against molecules

in self-tissues. Different autoimmune diseases are characterized by distinct immune responses,

making autoantibodies useful for diagnosis and prediction. In many diseases, the targets of au-

toantibodies are incompletely defined. Although the technologies for autoantibody discovery have

advanced dramatically over the past decade, each of these techniques generates hundreds of possi-

bilities, which are onerous and expensive to validate. We set out to establish a method to greatly

simplify autoantibody discovery, using a pre-filtering step to define subgroups with similar speci-

ficities based on migration of labeled, immunoprecipitated proteins on sodium dodecyl sulfate

(SDS) gels and autoradiography [Gel Electrophoresis and band detection on Autoradiograms

(GEA)]. Human recognition of patterns is not optimal when the patterns are complex or scat-

tered across many samples. Multiple sources of errors - including irrelevant intensity differences

and warping of gels - have challenged automation of pattern discovery from autoradiograms.

In this paper, we address these limitations using a Bayesian hierarchical model with shrinkage
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2 Z. Wu and others

priors for pattern alignment and spatial dewarping. The Bayesian model combines information

from multiple gel sets and corrects spatial warping for coherent estimation of autoantibody sig-

natures defined by presence or absence of a grid of landmark proteins. We show the preprocessing

creates better separated clusters and improves the accuracy of autoantibody subset detection via

hierarchical clustering. Finally, we demonstrate the utility of the proposed methods with GEA

data from scleroderma patients.

Key words: Autoantibody signatures; Batch effect; Bayesian image registration; Clustering; Gel elec-

trophoresis; Peak detection; Markov chain Monte Carlo; Measurement error; Scleroderma.

1. Introduction

Discovering disease subgroups that share distinct disease mechanisms is fundamental to disease

prevention, monitoring and treatment. For example, in autoimmune diseases, specific autoimmune

responses are associated with distinct disease phenotypes and trajectories (Rosen and Casciola-

Rosen, 2016). Defining the molecular markers of these subgroups has value, as these markers are

of diagnostic and prognostic significance, and guide management and therapy. For example, an

immune response to RNA polymerase III in scleroderma is associated with cancer; this immune

response arises in response to a mutation in RNA polymerase III in that patient’s cancer. While

many prominent specificities recognized by the immune response have been defined, many remain

to be discovered. Although modern measurement technologies are revolutionizing the ability to

define specificities, each technique results in hundreds of possibilities, which are onerous and

expensive to validate. A simple technique identifies patterns of antibody reactivity based on

the abundance of different weighted autoantigens immunoprecipitated by patient sera. Defining

similar reactivity patterns prior to applying one of the new discovery technologies would greatly

simplify validation and therefore the cost and speed of antigen identification.

To obtain a patient’s unknown component autoantibodies present in serum, scientists mix
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Estimating AutoAntibody Signatures to Detect Autoimmune Disease Patient Subsets 3

serum collected from each patient with radiolabeled lysates made from cultured cells. These

lysates contain a representation of all the proteins expressed in that cell type. Antibodies in

each patients serum recognize and bind tightly to the specific protein(s) in the lysate against

which they are directed (termed immunoprecipitation). After further processing, electrophoresis

is used to sort the immunoprecipitated mixture of molecules using a crosslinked polymer or gel

that separates the proteins by weight. Because different weighted molecules move through the

gel with differential speeds, the sorted molecules form distinct autoradiographed bands along the

gel. By design, one gel can sort multiple samples on parallel lanes. Such experiments, referred

to as gel electrophoresis autoradiography (GEA), serve to identify subsets of samples that share

one or more interesting observed bands. It is noteworthy that the lysate proteins are present

in their native conformation. In our experience, many autoantibodies have epitopes that are

conformationally dependent, making this a powerful advantage of this method over many of the

new peptide-based (linear epitopes) sequencing technologies.

In this paper, we focus on estimating a multivariate binary autoantibody signature for each

sample, that represents the presence or absence of autoantibodies by their weights. We discretize

the molecular weight scale (kDa) into landmarks for the signature estimation purpose and fast

Bayesian image dewarping (Section 2.3.2).

To infer patient subsets, we cluster patients based upon the presence or absence of each band

as well as other curve features such as the peak scale and amplitude. There are two critical barriers

to the successful implementation of this approach that we address. First, there are batch, or gel

effects in the raw GEA data. Ideally, identical weighted molecules should travel the same distance

through the gels. This distance however varies by gel due to differential experimental conditions.

Second, gels are frequently slightly warped as they electrophorese due to heating effects generated

during the electrophoresis procedure and due to artifacts introduced during physical processing of

the gels. As the size and complexity of GEA experiment database grows, the need for systematic,

Hosted by The Berkeley Electronic Press



4 Z. Wu and others

reproducible, scalable error correction has also grown.

In this paper, we introduce and illustrate a novel statistical approach based on hierarchical

Bayesian modeling with shrinkage priors for preprocessing the GEA data and estimating autoim-

mune disease subgroups. We focus on clustering individuals into a small number of subgroups

within which people share similar autoantibody profiles estimated from the data.

We first preprocess the data by peak detection and batch-effect correction that set the stage

for cross-sample comparisons. In particular, we identify the locations along the gel where the

radioactive intensity rise above its neighboring level. We propose a computationally-efficient local

scoring algorithm that performs well for minor peaks (Section 2.2). Guided by the detected peaks,

we align and dewarp the images. Specifically, we first align multiple GEA images using piecewise

linear stretching/compression anchored at marker bands on the reference lanes loaded on all the

gels (Section 2.3.1). We then propose and fit a hierarchical Bayesian model that characterize

spatial gel deformations approximated by tensor-product B-spline bases. We use Markov chain

Monte Carlo to estimate the warping functions, the reverse application of which then dewarps the

gel images. In our framework, the dewarping accuracy depends on the resolution of the discretized

molecular weight landmarks (Section 2.3.2) and the pattern of detected peaks (Step 2, Appendix

S4). The Bayesian framework has the advantage of incorporating inherent uncertainty in assigning

a peak to a molecular landmark.

Finally, based on the aligned intensity profiles, one vector per sample lane, we use hierar-

chical clustering to create nested subgroups. For N samples, hierarchical clustering produces a

dendrogram that represents a nested set of clusters. Depending on where the dendrogram is cut,

between 1 and N clusters result. We then demonstrate through real data that preprocessing bet-

ter separates clusters and improves the accuracy of cluster detection compared to naive analyses

done without alignment.

At each iteration of the MCMC sampling, we can dewarp the gels and obtain the multivariate
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Estimating AutoAntibody Signatures to Detect Autoimmune Disease Patient Subsets 5

signatures. We obtain a collection of dendrograms by hierarchically clustering the aligned intensity

profiles at each iteration. In this paper, we focus on maximum a posterior (MAP) peak-to-

landmark matching and use multiscale bootstrap resampling (Shimodaira and others, 2004) to

assess the structural uncertainty of the dendrograms. A future work will focus on representations

of statistical uncertainties using a large number of posterior dendrograms, for example, building

on the log maps from metric tree spaces to Euclidean space (e.g., Billera and others, 2001; Willis

and Bell, 2016).

The rest of the paper is organized as follows. Section 2 introduces the importance of pre-

processing GEA data followed by algorithmic details for peak detection in Section 2.2 and batch

effect correction in Section 2.3. In Section 3, we describe model posterior inference by MCMC and

the statistical property of shrinkage priors. We demonstrate how the proposed methods function

through an application to signature estimation and subgroup identification of scleroderma pa-

tients in Section 4. The paper concludes with a discussion on model advantages and opportunities

for extensions.

2. Data Pre-Processing

2.1 GEA Data and Preprocessing Overview

Gel electophoresis for autoantibodies (GEA) is designed to separate autoantigen mixtures ac-

cording to molecular weight and to radioactively map them as bands along the gel. Figure 1(a)

shows one example of raw GEA image. We tested four sets of samples from scleroderma patients

with a malignancy; of note, these sera were pre-selected as being negative for the 3 most com-

monly found scleroderma autoantibodies (anti-topoisomerase 1, anti-centromere and anti-RNA

polymerase III antibodies, which in aggregate are found in ∼ 60% of scleroderma patients). Each

sample set consisted of 19 patient sera plus one reference comprising a mixture of protein stan-

dards with known molecular weights, referred to as marker molecules. The middle panel of Figure
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1(b) shows marker molecule reference (lane 1) and a set of 19 patient samples (lanes 2-20), each

showing the band patterns that read out autoantibodies present in that patient’s serum. The

intensity curves are overlaid above the heatmap in Figure 1(b). Seven clear spikes indicated by

vertical lines mark the locations of the marker molecules, or marker peaks, from reference lane 1.

The marker molecular weights decrease from the left to the right (bottom of Figure 1(b)). Using

polynomial interpolation, we infer the intermediate molecular weight of a peak appearing at an

arbitrary location.

Identical marker molecules scatter horizontally (empty circles, bottom panel of Figure 1(b))

caused by different experimental conditions such as the strength of the electric field. We correct

the marker peak misalignment by aligning the marker peaks across gels and piecewise-linearly

stretch or compress each gel anchoring at the matched marker peaks, a technique first used in

human motion alignment anchored at body joints (e.g., Uchida and Sakoe, 2001).

The autoradiographic process is also vulnerable to smooth non-rigid, spatial gel deformation.

This is most evident from the bands of actin, a ubiquitous protein of molecular weight 42 kDa,

present in all lanes at around 0.45 (middle panel of Figure 1(b)). The bands form a smooth curve

top-to-bottom. The curvature represents the gel deformation since actin has identical weight and

should appear at identical locations across the 19 lanes. Without correction, this deformation

interferes with accurate cross-sample assessment of the presence or absence of the same autoan-

tibody. In Section 2.3.2, we propose a Bayesian hierarchical image-dewarping model to correct

the deformation and align the peaks.

Let (t0,M0) =
{(
t0b ,M

0
gib

)}
represent the standardized, high-frequency GEA data, for bin

b = 1, . . . , B on lane i = 1, . . . , Ng from gel g = 1, . . . , G. Appendix S1 describes standardization

of raw data. Here t0 is a grid that evenly splits the unit interval [0, 1] with t0gb = b/B ∈ [0, 1].

M0
gib is the radioactive intensity scanned at t0b for lane i = 1, . . . , Ng on gel g = 1, . . . , G. Let

N =
∑
g Ng be the total sample size.

http://biostats.bepress.com/jhubiostat/paper286



Estimating AutoAntibody Signatures to Detect Autoimmune Disease Patient Subsets 7

For the rest of this section, we take the high-frequency data (t0,M0) and map it to multivariate

binary data D on a coarser common grid across gels. In Section 2.2, we propose a generic method

to transform an arbitrary high frequency, nearly continuous intensity data into raw peak locations.

We first apply the peak detection algorithm to (t0,M0) and obtain the peak locations P0. In

Section 2.3.1 we use the marker peaks, a subset in P0 from reference lane 1s, to process (t0,M0)

into reference-aligned data (tR,MR). In Section 2.3.2, we transform the peaks detected from

(tR,MR), denoted by P, in a Bayesian framework to a joint posterior distribution of multivariate

binary data D that represents presence or absence of a peak for all samples at a smaller number

of landmarks, L = 100 in our application. In Section 3.2, we will process the reference-aligned

high-frequency data (tR,MR) into (t,M) whose peaks are exactly matched to the landmarks

present in D.

2.2 Peak Detection

This section presents an algorithm for detecting the peaks P0 from standardized, high-frequency

intensity data (t0,M0). The peaks may appear with varying background intensities. Because the

occurrence of a local maximum is thought to be more important than the background level in

signature estimation, we design the algorithm to be insensitive to the absolute intensity.

We adopted the following peak detection algorithm:

i. Local Difference Scoring. Calculate the local difference score by comparing the intensity at

bin b to its left and right neighbors exactly h bins away and to the local minimum intensity

for bin b = 1, . . . , B, lane i = 1, . . . , Ng of gel g = 1, . . . , G. That is, we calculate

scoregi(b) = sign
{
M0
gib −M0

gi,`(b)

}
+ sign

{
M0
gib −M0

gi,r(b)

}
+

sign

{
M0
gib − min

`(b)≤b′≤r(b)
M0
gib′ − C0

}
, (2.1)

where sign(a) = 1, 0,−1 indicates positive, zero, or negative values; `(b) = max{b − h, 1}
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8 Z. Wu and others

and r(b) = min{b + h,B} denote the left and right neighbors h(= 10) bins away, and C0

denotes the minimum peak relative elevation. The tunning parameter h controls the locality

of the peaks and C0 controls the minimum relative peak magnitude.

ii. Peak Calling. We look for the bins among peak candidates defined by {b | scoregi(b) =

ν(= 3)} that maximize their respective local intensities (see Appendix S2 for details and

alternative peak calling methods). Let P0
gi represent the collection of the peak locations for

lane i and gel g.

Remark 1: Because the score defined in Step 3 depends on the intensity values only through local

differences, the absolute background intensity and possible slowly changing baseline intensity are

irrelevant. The local scoring method is fast and accurate. A 2-dimensional analogue has been used

in astrophysics to find low grey-scale intensity galaxies from telescope images (Xu and others,

2016).

2.3 Batch Effect Correction

2.3.1 Reference Alignment via Piecewise Linear Dewarping Molecules with identical weight do

not travel exactly the same distance along two arbitrary gels. Therefore, we first align the peaks

on the reference lanes: P0
g1, g = 1, . . . , G via piecewise linear dewarping (Uchida and Sakoe, 2001).

In our application, we used seven marker molecules of weight (200, 116, 97, 66, 45, 31, 21.5) kDa.

We first exactly match the reference peaks P0
g1 on a query gel g to the reference peaks Pg01 on

the template gel g0, and then linearly stretch or compress the gels between the reference peaks.

Quadratic or higher-order dewarping is also possible, but we found linear dewarping performs

sufficiently well for our data. Appendix S3 gives details of the algorithm. We denote the high

frequency, reference aligned data by (tR,MR) = {(tRgib,MR
gib)}; Let P collect the detected peaks.

http://biostats.bepress.com/jhubiostat/paper286
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2.3.2 Correcting for Gel Deformation via Bayesian Image Dewarping Another source of error

during autoradiographic visualization is the non-rigid, spatial gel deformation. Middle panel of

Figure 1(b) shows one such example. It also reveals three analytical challenges to be addressed

before obtaining meaningful results from an automatic disease subsetting algorithm. First, some

proteins, e.g., actin, are detected on multiple gels and must be aligned. The blue asterisks that

denote the detected peaks near 0.43, form a smooth but non-linear curve from the top to the

bottom of the gel. Second, fewer bands appear on the right half of the image, because these

smaller proteins tend to contain fewer methionine residues for radiolabeling. Higher estimation

uncertainty of the dewarping function is therefore expected for the right half. Third, the observed

locations of the peaks are likely random around their true locations as the result of the multiple

sources of error.

To address these issues, we designed a hierarchical Bayesian dewarping algorithm for two-

dimensional images. The algorithm simulates presence/absence data from the conditional dis-

tribution of protein occurrence on a grid of equally-spaced landmark weights given the filtered

(tR,MR) from the prior pre-processing. The stochastic model is defined on a coarser grid of land-

mark proteins, ν = (0 = ν0 < ν1 < . . . < νL < νL+1 = 1) with ν` = `/(L+ 1), ` = 0, 1, . . . , L+ 1.

As defined further below, for each peak, the algorithm assigns a vector of probabilities to land-

mark proteins to optimize the joint probability of observing nearby peaks that drift across lanes.

We introduce a novel shrinkage prior to promote alignment of peaks to a common landmark

protein. We also introduce shrinkage priors that regularize the overall smoothness of the spatial

dewarping functions.

Let (ugi, Tgij) denote the (lane number, location) for peak j = 1, . . . , Jgi on lane i = 1, . . . , Ng,

gel g = 1, . . . , G. We fix ugi to take values in {1, 2, . . . , Ng} and collect them in u = {ugij} where

ugij = ugi if they belong to the same lane i. Let Pg =
∑
i Jgi denote the total number of peaks

on gel g and P =
∑
Pg. Let T = {Tg}, where Tg = (. . . , Tgi1, Tgi2, . . . , Tgi,Jgi , . . .)

′ collects

Hosted by The Berkeley Electronic Press



10 Z. Wu and others

the peak locations for gel g = 1, . . . , G. Both u and T are P -dimensional column vectors. For

computational stability, without changing notation, we standardize u, T and ν by substract their

means and dividing by their standard deviations. We denote the data for the Bayesian dewarping

model by P = {u,T } collect the locations of all the peaks.

Model Likelihood. Peak-to-landmark indicators Z. Let Zgij take values in {1, . . . , L}. For example,

Zgij = 3 indicates that the j-th peak in lane i on gel g is aligned to Landmark 3. Note that any

Z can be converted to multivariate binary data D = {Dgi`} for presence or absence of a detected

peak at the landmarks by Dgi` = 1{` ∈ {Zgij , j = 1, . . . , Jgi}}, referred to as signature.

Gaussian mixture model for aligning observed peaks T . We model T = {Tgij} as observations

from a Gaussian mixture model with L components, each representing one landmark protein.

Given Z = {Zgij} and spatial dewarping function Sg to be discussed later, we assume

p

( ugi︸︷︷︸
lane

number

, Tgij = t︸ ︷︷ ︸
peak

location

) | Zgij = `︸ ︷︷ ︸
matched to
landmark `

, Tgi,j−1︸ ︷︷ ︸
nearest left

peak location

, Sg︸︷︷︸
warping
function

, σε︸︷︷︸
noise
level

 =

{
φ(t;Sg(ugi, ν`), σε), t ∈ Igij(ν`, A0);

0, otherwise,

(2.2)

` = 1, . . . , L, for peak j = 1, . . . , Jgi, lane i = 1, . . . , Ng, gel g = 1, . . . , G, where φ(·; a, b)

is the Gaussian density function with mean a and standard deviation b, and Sg(u, ν) is an

unknown smooth bivariate function that characterizes the spatial gel deformation (ugi, ν`) 7→

(ugi,Sg(ui, ν`)).

Remark 2: The peak location Tgij follows Gaussian distribution with mean equal to ν` plus a hor-

izontal displacement Sg(ugi, ν`) and noise level σε. We assume σε is independent of landmark and

lane. The density function (2.2) is supported in the set Igij(ν`, A0)
∆
= {t : |t− ν`|< A0 and t > Tgi,j−1}.

The first inequality prohibits Tgij being matched to distant landmarks and the second prevents

reverse warping, i.e., ensures Zgij ≤ Zgij′ whenever Tgij ≤ Tgij′ .

Bivariate smooth warping functions Sg. For gel g, we model the warping function Sg : R2 → R

http://biostats.bepress.com/jhubiostat/paper286



Estimating AutoAntibody Signatures to Detect Autoimmune Disease Patient Subsets 11

that warps the landmarks (ugi, ν`) horizontally to (ugi,Sg(ugi, ν`)) using tensor product basis

expansion

Sg(u, ν) =

Tu∑
s=1

Tν∑
t=1

βgstBg1s(u)Bg2t(ν), (2.3)

where Bg1s(·) and Bg2t(·) are the s-th and t-th cubic B-spline basis with intercept anchored at

knots κu and κν along the two coordinate directions, respectively (Friedman and others, 2001,

Chapter 5) and Tu = |κu|, Tν = |κν | are the total number of basis functions in u− and ν−

direction. In subsequent analyses, we choose κν with Tν − 4 internal knots at the s/(Tν − 3)-th

quantile of {Tgij}, s = 1, . . . , Tν − 4 and similarly for κu.

However, valid spatial gel deformations are gel stretching, compression or shift along the ν

direction. We thus constrain the shape of Sg, g = 1, . . . , G by

Monotonicity : ν0 < Sg(u, ν`−1) < Sg(u, ν`) < νL+1,∀` = 1, . . . , L,∀u; (2.4)

Boundary Constraint : Sg(u, ν0) = ν0,Sg(u, νL+1) = νL+1. (2.5)

The first constraint prevents reverse gel dewarping and the second assumes away gel shifting;

it can be relaxed to allow horizontal shifts by adding/substracting ∆ for both equalities. We

implement both constraints by requiring the B-spline coefficients βg = {βgst}Tu,Tνs=1,t=1 to satisfy:

ν0 = βgs1 < βgs2 < . . . < βgs,Tν−1 < βgsTν = νL+1, ∀s = 1, . . . , Tu. Although only sufficient

for Sg’s monotonicity and boundary constraints, the βg constraints allow flexible and realistic

warpings. Figure 3 shows a member warping function that corrects for local L-, S- and 7-shaped

deformations. This approach extends the curve registration method (Telesca and Inoue, 2008) to

two-dimensional surfaces without the self-similarity assumption.

Priors. Prior for Z. We describe a shrinkage prior for Z motivated by the needs 1) to align the

actin peaks (as in middle panel of Figure 1(b)) to an identical landmark in a single gel, and

2) to share the information about the location of actin peaks across multiple gels. We specify

the prior distribution based on non-homogeneous Poisson processes with extreme intensities at

Hosted by The Berkeley Electronic Press



12 Z. Wu and others

a small number of landmarks. For each landmark, the intensity is further shared across multiple

gels to facilitate borrowing of information.

Let the total number of observed peaks follow a Poisson distribution: Jgi
d∼ Poisson(Λg),

for lane i = 1, . . . , Ng, gel g = 1, . . . , G. Given Jgi, let Z∗gij
iid∼ Categorical

(
{λ∗`}

L
`=1

)
describe

which landmarks are present in lane i of gel g. Because {Zgij , j = 1, . . . , Jgi} are by definition

ordered on each lane, we increasingly sort {Z∗gij}. For hyperpriors, let λ∗` = λ`/
∑
`′ λ`′ where

λ`
iid∼ Normal(0, τ), ` = 1, . . . , L, and the hyperparameter τ

d∼ Inv-Gamma(10−4, 10−4). Integrating

over τ , λ` is t-distributed.

Remark 3: The intensity parameters {λ∗`}, one per landmark, in a priori determines the prob-

ability of a landmark protein present on one lane: P(Dgi` = 1 | λ∗` ) ≈ 1− exp(−λ∗` ) if L is large.

By (A2), the ratio of conditional posterior probabilities of assigning the peak Tgij to one versus

another landmark is
φ(Tgij ;Sg(ugi,ν`),σ)
φ(Tgij ;Sg(ugi,ν`′ ),σ) ·

1−exp(−λ∗` )
1−exp(−λ∗

`′ )
. Suppose λ∗` > λ∗`′ , the second ratio favors

ν`, unless the likelihood ratio in the first term is small. The {λ∗`} are independent of g and i

hence globally modulate the probability of landmark presence for all the gels. For subsequent

analyses, we withhold prior biological knowledge about the prevalent landmark proteins, and in-

stead assign independent t-distributed prior for λ`s, whose heavy tails generate occasional large

λ∗` values. The posterior inference algorithm will occasionally visit the Z-configuration that, say

many Zgij = `, which if increases the joint posterior, will retain such configuration and identify

important landmark `.

Prior for βg. We first specify priors for the horizontal basis coefficients βgst, t = 2, . . . , Tν − 1 at

the u-direction basis s = 1. We use a first-order random walk prior (Lang and Brezger, 2004)

βgst − βid
t−1

d∼ N(·;βgs,t−1 − βid
t , σ

2
g1)I(βgs,t−1, νL+1), s = 1, t = 2, . . . , Tν − 1, (2.6)

where βid = (βid
1 , . . . , β

id
Tν

)′ is the vector of coefficients for identity warping function S(u, ν) = ν.

The hyperparameter σ2
g1 controls the similarity of {β1t}Tνt=1 to βid and hence the similarity of

http://biostats.bepress.com/jhubiostat/paper286



Estimating AutoAntibody Signatures to Detect Autoimmune Disease Patient Subsets 13

S(u2, ν) to identify function; σ2
g1 = 0 represents no warping. We refer σ−2

g1 as the smoothing

parameter in the ν-direction.

Next, for any t = 2, . . . , Tν − 1, we specify another random walk prior for the vertical basis

coefficients βgst, s = 1, . . . , Tu:

βgst
d∼ N(·;βg,s−1,t, σ

2
gt). (2.7)

Similarly, the hyperparameter {σ2
gt} is the smoothness parameter of for Sg in the vertical u−

direction; σ2
gt = 0 means identical amount of warping across lanes. Details about the hyperpriors

on σ2
g1 and {σ2

gt} are provided in Appendix S5.

Joint Distribution. Let Bg be a matrix with P rows, each defined by Bg1(ugi)
′⊗Bg2(νZgij )

′ for

a peak (ugi, Tgij), where νZgij is the aligned landmark, Bg1(u) = (Bg11(u), . . . , Bg1Tu(u))
′

and

Bg2(ν) = (Bg21(ν), . . . , Bg2Tν (ν))′ are the B-spline bases evaluated at u and ν, respectively. Let

vec(β′g) be a column vector that stacks the rows of βg. We obtain the join distribution

p(λ∗)×
G∏
g=1

{
p(σ2

g1)

Tν−1∏
t=2

p(σ2
gt, ρg)×NP

(
Tg;Bgvec[β

′
g], σ

2
ε I
)

× NTν−1

(
{βg1t}Tν−1

t=1 ;βid[−Tν ], σ
2
g1I
)
×
Tν−1∏
t=2

NTu

(
{βgst}Tus=1; 0, σ2

gtI
)∏

ij

OrderedCategorical (Zgij ;λ
∗
` )

}
,

(2.8)

where p(λ∗), p(σ2
g1) and p(σ2

gt, ρg) are the priors and hyperpriors and Nd(·;µ,Σ) denotes the

d-dimensional multivariate normal density with mean µ and variance Σ.

3. Model Estimation and Implementation

3.1 Posterior Sampling

We use Markov chain Monte Carlo (MCMC) for versatile posterior inference by simulating sam-

ples from the joint posterior distributions of all the unknowns (e.g., Gelfand and Smith, 1990).

Based on the samples obtained from MCMC, we can perform posterior inferences about any
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14 Z. Wu and others

functionals of model parameters, e.g., the gel warping functions {Sg(β)}, the peak-to-landmark

alignment indicators Z. Appendix S4 provides full details about the sampling algorithm along

with discussions of scattering condition that ensures statistical identifiability of the warping func-

tions. Subsequent posterior analyses were based on three chains of 10,000 iterations with a burn-in

period of 5,000 iterations. We monitor the convergence by chain histories, auto-correlations, ker-

nel density plots, and Brooks-Gelman-Rubin statistic. Convergence is fast within thousands of

burn-in iterations. All model estimation and visualization is performed by the R package spotgear

(https://github.com/zhenkewu/spotgear).

Turning to dewarping a new GEA image, let Dg∗ be new raw intensity data after reference

alignment described in Section 2.3.1. We can approximate the joint posterior of unknown basis

coefficients and peak-to-landmark indicators by

p(βg∗ ,Zg∗ | D,Dg∗) =

∫
p(βg∗ ,Zg∗ | λ,Dg∗)p(λ | D,Dg∗)dλ ≈

∫
p(βg∗ ,Zg∗ | λ,Dg∗)p(λ | D)dλ,

where the two terms in the integrand are the one-sample conditional posterior and the posterior

of λ given the preprocessed data D. The first term can be calculated from the joint distribution

(2.8) and the integral is readily estimated by
∑
t p(βg∗ ,Zg∗ | λ(t),Dg∗) using the stored posterior

samples {λ(t)}.

3.2 Approximation for Dewarping Function Sg

We also need to produce exact peak-aligned high-frequency data (t,M) for disease subsetting in

Section 4. However, because Sg is the mean surface and does not account for the noise introduced

by σ2
ε , reverse mapping of Sg from (tR,MR) cannot do exact peak alignment. Instead, for each

sample lane, because {Zgij}j maps the peaks to the corresponding landmark proteins, as an

approximation, we simply perform piecewise linear dewarping of reference aligned high-frequency

data (tR,MR) by anchored at the landmarks {Zgij}j and the two endpoint landmarks ν0 and

νL+1. One can view the Bayesian dewarping model first estimates Sg based on a sparse grid of

http://biostats.bepress.com/jhubiostat/paper286
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landmarks to encourage nearby peaks to be aligned. We then can ignore the Sg estimates and use

the estimated peak-to-landmark indicators Z for exact peak matching. In subsequent analyses,

we use the maximum a posteriori (MAP) {Ẑgij} to construct this approximation.

4. Application to Scleroderma

We used sera from well-characterized patients with scleroderma and an associated cancer identi-

fied through the IRB-approved Johns Hopkins Scleroderma Center database (Shah and others,

2017). We first analyze data comprised of GEA replicates on 20 samples and thus 20 experi-

mental pairs of size two. Compared to hierarchical clustering without preprocessing, we show

the preprocessing creates better separated clusters and hence improves the accuracy of cluster

detection when compared to the truth defined by the replication. Based on a second set of GEA

data without replicates we apply the preprocessing method and identify strong clusters that are

well-separated and scientifically meaningful.

4.1 Outline of Analyses

Firstly, we preprocess the raw images. We apply the peak detection algorithm in Section 2.2

followed by batch effect corrections as described in Section 2.3. We exclude reference lane 1s

for 2D Bayesian dewarping. We used Tu = 6 and Tν = 10 cubic B-spline basis functions in the

vertical and horizontal directions, respectively. The 2D smooth dewarping functions for all the

gels are then estimated via the posterior mean dewarpings {Ŝg = Sg(·, ·; β̂g)}, where β̂g is the

posterior mean estimated by the empirical average of the MCMC samples. We also obtain the

maximum a posteriori peak-to-landmark indicators Ẑ = {Ẑgij}.

On the other hand, for every sample lane, as described in Section 3.2, we perform exact match-

ing of the observed peaks of identical weights. Based on the exact peak-aligned images M, for a

pair of sample lanes i and i′, we calculate the pairwise distances d(i, i′) = 1 − ĉor(Mgi·,Mgi′·)

Hosted by The Berkeley Electronic Press



16 Z. Wu and others

where Mgi· = (Mgi1, . . . ,MgiB)′ and ĉor(·, ·) is the Pearson’s correlation coefficient. We use the

obtained distance matrix D̂ for agglomerative hierarchical clustering with complete linkage to

produce a dendrogram T̂ = T (D̂). Let Ĉ(n), n = 1, . . . , N represent a nested set of clusters de-

pending on where the dendrogram is cut. We similarly denote the dendrogram produced without

preprocessing by T̂ 0 = T (D0) and the nested clusters by {Ĉ0(n)}, respectively.

When the true clustering is given, for example, in replication experiments, we will assess

the agreement of C(n) and C0(n) with the truth C∗, for the number of clusters n = 2, . . . , N/2.

Adjusted Rand index (aRI; Hubert and Arabie (1985)) can assess the similarity of two ways of

partitioning the same set of observations and can handle different numbers of clusters. ARI is

defined by

aRI =

∑
r,c

(
nrc
2

)
−
[∑

r

(
nr·
2

)∑
c

(
n·c
2

)]
/
(
N
2

)
0.5
[∑

r

(
nr·
2

)
+
∑
c

(
n·c
2

)]
+
[∑

r

(
nr·
2

)∑
c

(
n·c
2

)]
/
(
N
2

) , (4.9)

where nrc represents the number of observations placed in the rth cluster of the first partition

and in the cth cluster of the second partition,
∑
r,c

(
nrc
2

)
(≤ 0.5

[∑
r

(
nr·
2

)
+
∑
c

(
n·c
2

)]
) is the

number of observation pairs placed in the same cluster in both partitions and
∑
r

(
nr·
2

)
and∑

c

(
n·c
2

)
calculate the number of pairs placed in the same cluster for the first and the same

cluster for second partition, respectively. ARI is bounded between −1 and 1 and corrects for

chance agreement: it equals one for identical clusterings and is on average zero for two random

partitions with larger values indicating good agreements.

We also evaluate the clustering strength of Ĉ(n) and Ĉ0(n), for n = 2, . . . , N/2, by calcu-

lating the average silhouette based on the comparison between cluster tightness and separation

(Rousseeuw, 1987). For observation i, its silhouette s(i) with respect to an arbitrary partition

C compares the within- to between-cluster average distances: s(i) = [b(i)− a(i)]/max{a(i), b(i)}

where a(i) is the average distance of i to all other observations within the same cluster and

b(i) = minC∈C:i/∈C

∑
i′∈C d(i,i′)

|C| is the minimum average distance between i and a cluster not con-

taining i. s(i) lies in [−1, 1] with a large value indicating observation i in a tight and isolated
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cluster. A large average silhouette N−1
∑
s(i) indicates well separated and tight clusterings.

The structural uncertainty of the finite-sample dendrogram estimate T̂ and T̂ 0 can be assessed

via multiscale bootstrap resampling (Shimodaira and others, 2004). The multiscale bootstrap re-

sampling (MBR) is a method to perturb the data and assess the confidence levels for the presence

of each subtree in the estimated dendrogram (e.g., Shimodaira, 2002; Efron and others, 1996).

MBR calculates the frequency with which a subtree appears in an estimated dendrogram across

all bootstrap iterations. A bias-corrected frequency, referred to as the approximately unbiased

(AU) probability value will be used to determine the strength of evidence for the presence of a

subtree, where a large value (e.g., > 0.95) indicates strong evidence.

4.2 Replication Experiments

Twenty samples are tested each with two different lengths of exposure to autoradiography devices,

long (two-week) versus short (one-week). We thus obtain 40 lanes on two gel images that form

20 replicate pairs. Each gel image is has 19 serum sample lanes plus one reference sample lane

comprised of marker molecules with known molecular weights. The posterior dewarping results

by the 2D Bayesian dewarping are shown in Appendix Figure S2.

Upon hierarchical clustering, we assess the agreement of the estimated clusterings Ĉ(n) and

Ĉ0(n) with the true replication-based clusters for the number of clusters n = 2, . . . , 20. For every n,

we calculate the adjusted Rand Index (aRI) and obtain its confidence intervals by bootstrapping.

Specifically, to account for the inherent replication design, we repeat for b = 1, . . . , B = 1000 the

following procedure: 1) resample replicate pairs with replacement, 2) calculate the boostrapped

distance matrix D̂∗(b), 3) obtain dendrogram by hierarchical clustering, 4) cut the dendrogram at

various levels to form clusters and compare them to the truth. Note that the truth might contain

clusters of size four or larger doubles of two because one pair can be resampled more than once.

Figure 4 shows that preprocessing achieves overall higher mean aRI, aRI(Ĉ(n),True Pairs),
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across different numbers of clusters n. One of the benefits is that we improved the ability of

the hierarchical clustering to detect the true replicate pairs. Compared to the analysis without

preprocessing, we identified more replicate pairs on terminal leaves (13 versus 8 out of the 20

true replicate pairs) with percent reductions in the within-pair distance ranging from 6.2 −

66.4% (mean 26.9%). For example, if 20 clusters are formed by dendrogram cutting, the aRI is

0.69 (95% confidence interval: (0.51,0.89)) compared to 0.47 (0.30, 0.68) for the analysis without

preprocessing. The aRI(Ĉ(n),True Pairs) and aRI(Ĉ0(n),True Pairs) are most discrepant at n = 18:

0.73 (0.52, 0.91) with preprocessing versus 0.49 (0.29, 0.73) otherwise.

Confidence levels of the presence of true replicate pairs are also much improved by preprocess-

ing. Appendix Figure S3 examines the confidence levels associated with each subtree (numbered

edges) with and without preprocessing. There are uniform increases in the confidence levels for

many clusters defined by the subtrees. For example, for pair 18, the confidence level increases

from 0.67 to 0.99 after preprocessing; The confidence levels for detecting the pairs 2, 8 and 11 see

similar increases from (0.68, 0.59, 0.67) to (0.96, 0.92, 0.93) after preprocessing, as confirmed by

the 14.2−117.6% percent increase, 0.03−0.18 absolute increase in cluster separation as measured

by average silhouette. The better separation and tighter clusters provided by preprocessing also

lead to more parsimonious clusters, e.g., the dendrogram with preprocessing correctly excluded

the subtree 35 and 37 in T̂ 0 at the bottom of Appendix Figure S3.

4.3 Scleroderma GEA Data without Replicates

We conducted GEA on four sets of sera from scleroderma patients with cancer who are all negative

for autoantibodies to RNA polymerase III, topoisomerase I and centromere proteins. The status

of any other specificities in these sera, whether defined or novel, was not known at the time this

study was done. Each gel is loaded with 19 serum samples (loaded in random order in the gel

lanes) and one reference sample comprised of molecules with known molecular weights. Results
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of their joint analysis are discussed below.

We applied the preprocessing methods described above to the four gel sets. We first removed a

few spots on the right of the gels caused by localized gel contamination assuming absence of peaks

there. The posterior dewarping results are shown in Figure 5. Each detected peak {Tgij} shown

by a blue dot is connected to a red triangle that represents the landmark Ẑgij that maximizes

the marginal posterior probability: Ẑgij = arg max` P(Zgij = ` | Pgi, g = 1, 2, 3, 4, i = 2, . . . , 20).

The vertical bundle of black curves, one per landmark, shows the global shape of the estimated

warping functions Ŝg, g = 1, 2, 3, 4, where Ŝg = Sg(·, ·; β̂g) and β̂g is the posterior mean. The

locations traced by the same curve are estimated to represent identical molecular weights. Bottom

of Figure 5 shows the marginal posterior probabilites of each landmark being matched with a

peak for one sample. For example, the posterior probability is 0.59 for Landmark 50 (∼ 43.4 kDa):

MAP of Ẑ shows that 73 out of 76 lanes have a peak being matched to it. In gel 1, this high

probability caused the many detected peaks (blue dots) to the right of 45 kDa marker aligned

altogether to Landmark 50. Note that we did not use any prior knowledge that actin is present

in all samples here. The marginal posterior probability is expected to further increase when more

samples containing actin are combined for hierarchical Bayesian dewarping. Landmark 46 (∼ 46.6

kDa) is another molecular hotspot where 54 out of 76 lanes have matched peaks. On the other

hand, for example, 18 and 1 out of 76 are matched to Landmarks 36 (∼ 59.8 kDa) and 89 (∼ 23.4

kDa), respectively. Their marginal posterior probabilities are hence low at 0.21 and 0.01.

An animation of the continuous dewarping process is available at https://github.com/zhenkewu/spotgear.

It matches the detected peaks Tgij to their inferred landmarks Ẑgij and morphs the posterior

mean dewarping Ŝg into constant function I : (u, ν) 7→ (u, ν). There also shows the preprocessed

high-frequency data with exactly matched peaks as described in Section 3.2.

Preprocessing eliminates many huge clusters that are otherwise formed without preprocessing

as shown at the bottom of Appendix Figure S4. The percent and absolute increases in the
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average silhouette are between 8.8 − 39.5% and 0.02 − 0.08 respectively for varying n upon

prepreocessing. The better separation enabled by the proposed preprocessing corrected potential

misaligned cross-lane, removed global warping phenomena and revealed a few strong clusters after

maximal separation observations. The clusters with 0.95 confidence levels or higher are shown in

red rectangles in Appendix Figure S4 for the analyses done with preprocessing (top) and without

preprocessing (bottom). For the former, the first cluster from the right (number 44) comprises

of seven sample lanes ((Set, Lane): (1,19), (4,3), (1,18), (3,8), (4,10), (2,4), (2,13)) enriched at

∼ 32.7 and ∼ 27.9 kDa which is split into two clusters (number 47 and 14) for the analyses

without preprocessing. Enriched at ∼ 103.4 kDa, Clusters 46 at the bottom and 40 at the top

are comprised of identical samples with improvement in the confidence level from 0.97 to 1 after

preprocessing.

4.4 Additional Validation of the Algorithm Method

We selected one prominent cluster to validate the method. Before knowing the algorithm cluster-

ing results, an experienced investigator carefully reviewed the 4 sets of immunoprecipitation data

and assigned groups based on visual band patterns and sizes. Four sera were assigned to a group

based on a pattern consistent with antibodies against a known autoantigen (termed anti-PMScL).

The algorithm identified these same 4 sera as a cluster (lanes marked in red font on Appendix

Figure S4). All 76 sera were tested using a commercially available line immunoblot assay (Eu-

roImmun; Systemic Sclerosis (Nucleoli) profile) to determine which of the sera had antibodies

against PMScL. Only 4 sera were positive for this antibody specificity, and they were identical

to those assigned to this cluster by both the investigator and the algorithm.

It is noteworthy that the algorithm detected several other clusters of > 3 sera, e.g., Number

34 ((Set, Lane): (3,14), (3,12), (4,4)), 38 (Reference Lanes), 50 ((2,11), (3,18), (2,9), (2,12)) and

53 ((1,7), (1,20), (2,16)). After reviewing the clusters identified by the algorithm, the experienced
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investigator went back to the original immunoprecipitation data again and confirmed that the

antibody patterns of these sera were indeed similar enough to cluster, and warrant further inves-

tigation for discovery of the relevant specificities. Because the dendrogram is constructed using

the distance matrix D̂ that is informed by the preprocessing step, observations placed together

in the subtrees, although not detected with > 95% confidence level, can guide subsetting and

validation.

5. Discussion

In this article, we have developed a novel statistical approach to preprocessing and analyzing two-

dimensional image data obtained from gel electrophoresis autoradiography with the objective

of detecting autoimmune disease subsets based on autoantibody signatures. The hierarchical

Bayesian image dewarping model provides a natural framework for assessing uncertainty in the

estimated alignment and warping functions and through MCMC sampling technique allows us to

derive inferences about a richer set of quantities of interest.

Through the analyses of two sets of gel data from scleroderma patients, with and without

replicates, we have shown that the sample lanes are better compared and clusters are better

separated and more accurately estimated upon hierarchical Bayesian dewarping. We also studied

the performance of naive analysis without the proposed preprocessing. We conclude that there

is added benefits of the proposed automated procedure to estimating disease subsets compared

to the naive analysis and human recognition of band patterns scattered across multiple gels, and

hence provides a useful improvement for researchers using gel electrophoresis to study differential

autoantibody compositions among disease subgroups. We expect marginal though worthwhile

gains to be achievable by using more carefully designed and tested tuning parameter selection

procedure for local scoring (Section 2.2).

Multiple extensions to the proposed method that build on biological processes warrant fu-
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ture research. First, in our hierarchical Bayesian dewarping model, we assume that the intensity

parameters {λ∗`} of alignment to each landmark are drawn from a common set of population

distributions. Autoantibody presence or absence may differ across samples, however. For exam-

ple, cancer versus non-cancer patients may have distinct priors of certain autoantibody pres-

ence/absence. We can either add another hierarchy for Bayesian dewarping or develop regression

models for {λ∗`} to incorporate disease phenotype information or other covariates, e.g, age and

gender to refine disease subsetting. Second, multiple autoantibodies produced against a particular

molecular complex are considered to be present or absent in a grouped fashion. This intermolec-

ular spreading of the immune response to multiple components linked within a multimolecular

complex is an important property of the immune response, reflecting the ability of B cells to

use their specific surface immunoglobulin to capture whole molecular complexes through binding

to the single component that they recognize, and then driving additional immune response to

other components of the complex. The biological structure can be represented by a binary matrix

MC×L, one row per complex, where {Mc`}L`=1 is a multivariate binary vector with 1 for presence

of landmark ` in complex c and 0 otherwise. The complexes are then assembled via ηN×L = AM

to produce the actual presence or absence of landmarks for every patient, where A is a N × C

binary matrix with one assembly vector per row representing presence or absence of the list of

complexes. Prior biological knowledge can be readily implemented via constraints on A or M. For

example, Ai1 = 1 for all subjects acknowledges the universal presence of autoantibodies produced

by Complex 1, e.g., actin and likely others. A and M can be inferred from alignment indicators

Z or extracted continuous intensity shape information for each landmark and lane either by reg-

ularization or using shrinkage priors in a Bayesian framework for encouraging few and maximally

different complexes (e.g., Broderick and others, 2013; Miller and Harrison, 2015). Our preliminary

results (not shown here) show good subset and signature estimation performance. One practical

advantage of the Bayesian complex assembly approach lies in its convenient accommodation of
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repeated GEA on the same unknown sample by equality constraints on rows of A. Models for

repeated autoantibody measurements across multiple clinic visits are also important. Finally, the

latent variable formulation of the dewarping enables easy coupling with general latent variable

models with discrete state space and factorization structures that incorporate multiple sources

of lab test and phenotype data, facilitate definition of disease subgroups and perform individual

predictions (e.g., Coley and others, 2016; Wu and others, 2016, 2017).

Supplementary Materials

Supplementary Material is available at http://biostatistics.oxfordjournals.org.
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Fig. 3: Example: a gel warping function S that corrects local L-,S- and 7-shaped stretching
or compression. Highlighted are three vertical smooth curves that each aligns the peaks (blue
asterisks “∗”) with identical molecular weights.
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bands are the mean curves and 95% confidence bands for varying number of clusters n.
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Appendix S1. Raw Data and Standardization

Let (traw,Mraw) =
{

(trawgs ,M
raw
gis )

}
represent the raw, high-frequency GEA data, for pixel s =

1, . . . , Sg on lane i = 1, . . . , Ng from gel g = 1, . . . , G. Here traw is a grid that evenly splits

the unit interval [0, 1] with trawgs = s/Sg ∈ [0, 1], where a large Sg represents a high imaging

resolution. Note that in the raw data, Sg varies by gel from 1, 437-1, 522 in our application.

M raw
gis is the radioactive intensity scanned at trawgs for lane i = 1, . . . , Ng on Gel g = 1, . . . , G. Let

N =
∑
g Ng be the total number of samples tested.

For the rest of this section, we process the high-frequency data (traw,Mraw) into high-frequency

data (t0,M0) that have been standardized across multiple gels. The latter will be used as input

for peak detection (Section 2.2) and batch effects correction (Section 2.3).

∗To whom correspondence should be addressed.

c© The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
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2 Z. Wu and others

i. Smoothing. For each sample lane, smooth the raw intensity data by LOESS, with a span

h = 0.022. Let M̃ = {M̃gis} denote the smoothed mean function evaluated at raw imaging

location trawgs .

ii. Standardization Across Gels. Imaging resolution may vary by gel, we hence standardize

the smoothed intensity values M̃ into B0 = 700 bins using a set of evenly-spaced break

points {0 = κ0 < κ1 < . . . < κB0 = 1} shared by all gels.

We clip the images at the right end {b : tb > 0.956} because they represent small molecular

weight molecules migrating at the dye front (that is, not separable by gel type used). Their

exclusion from autoantibody comparisons is standard practice. We denote the standardized

data by (t0,M0) =
{
t0b ,M

0
gib

}
.

Appendix S2. Peak Calling Algorithm

Given a half-width h, collect the peak-candidate bins defined by B0gi(h) = {b | scoregi(b) = ν}.

Because h controls the locality of a peak, we perform peak-candidacy search for a few values of

h. The union of the identified peak-candidate bins under various h, B0gi = ∪hB0gi(h), generally are

comprised of multiple blocks, one per set of contiguous peak-candidate bins. Among the blocks, we

merge two nearby ones, for example, if B0gij and B0gi,j+1 satisfy minB0gi,j+1 −maxB0gij 6 γ(= 5).

We also remove short blocks of length less than three to obtain the final peak-candidate bins

{Bgij}
Jgi
j=1. Finally, we pick the bin bgij that maximizes its within-block intensities and denote

them peak j = 1, . . . , Jgi for lane i = 1, . . . , Ng on gel g = 1 . . . , G.

The true and false peak detection rates are determined by several factors including the half-

peak width h, the minimum intensity elevation C0, the true intensities at each bin and the

measurement errors inherent in autoradiography. We calibrate the first two parameters so that

1) the reference lanes have exactly 7 detected peaks (perfect observed sensitivity and specificity),

and 2) the peaks for actin stand out clearly. For example, middle panel of Figure 1(b) shows the

Hosted by The Berkeley Electronic Press
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result of peak detection by blue asterisks for one set of the gels, where the peaks rising slightly

above the background are effectively captured, most notably for lanes 5,10,15 where the small

actin peaks are identified. Note that, we have reduced the impact of measurement noise on peak

detection by computing the local difference scores from the smoothed data rather than the raw

data. In our analyses, we have chosen the minimum peak amplitude parameter C0 = 0.01 of

higher order than the noise level obtained from LOESS smoothing.

Alternative approaches to peak detection include random process modeling (e.g., Carlson

and others, 2015), multiplicity adjustment after local maxima hunting (e.g., Schwartzman and

others, 2011) and filtering methods (e.g., Du and others, 2006). From our experience, they are

designed and hence more suitable for data with appreciably higher noise levels; our data show

much lower noise level in the measured autoradiographic intensities. For example, in random

process models that are motivated by the analysis of pulsatile, or episodic time series data, the

unknown locations of peaks and the observed intensity values are modeled by double stochastic

processes, such as Cox processes, to fit the continuous intensity data for each gel and sample

(e.g., Carlson and others, 2015). However, because a tiny peak has a narrow span, its associated

few observed data is not as informative about the peak location compared to that for a wider

peak, hence tends to identify small peaks with larger uncertainties in peak presence/absence and,

if present, its location. In addition, fitting the random process models for peak detection for

hundreds of subjects and hundreds of dimensions per person involves iterative MCMC sampling

and could be computationally expensive.

Appendix S3. Reference Alignment via Piecewise Linear Dewarping

We align all the gels towards an arbitrarily chosen template gel g0 using piecewise linear dewarping

(Uchida and Sakoe, 2001) whose knots are anchored at gel-specific marker peaks
{
P0
g1

}G
1

. We

first match the marker peaks P0
g1 observed on a query gel g to the reference peaks P0

g01 on the

http://biostats.bepress.com/jhubiostat/paper286



4 Z. Wu and others

template gel g0, and then linearly stretch or compress gel g between the reference peaks.

Let the function Wg(·; g0) : b 7→ b′ denote the matching of the b-th bin of the template gel g0

to the b′-th bin of gel g to be dewarped. Suppose in the template gel g0 the b-th bin falls within

two neighboring reference peaks Tg01j 6 tb < Tg01,j+1, where j = j(b; g0) is determined by the

bin number b and the gel g0 used as reference. Let

Wg(b; g0) = bw · bg1,j+1 + (1− w)bg1jc, (A1)

where w = w(b; g0) = (b− bg01j)
/

(bg01,j+1 − bg01,j) , and bac is the largest integer smaller than

or equal to a. The piecewise linear dewarping function for gel g 6= g0, defined as

∑
j

Wg(b; g0)1{Tg01j6tb<Tg01,j+1},

corrects the batch effects for all the lanes by anchoring gel stretching or compression at the

locations representing the marker molecules {P0
g1}G1 .

Figure Figure S1 illustrates the results before and after batch-effect correction. The piecewise

linear dewarping automatically matches the marker peaks from multiple gels to facilitate cross-gel

band comparisons.

Appendix S4. Details on Posterior Sampling Algorithm

We sample from the joint posterior by the following algorithm:

1. Update peak-to-landmark indicators Zgij for peak j = 1, . . . , Jgi, lane i = 1, . . . , Ng and

gel g = 1, . . . , G by categorical distribution

P(Zgij = ` | others) ∝ N
(
Tgij ;Sg(ui, ν`;βg), σ2

ε

)
{1− exp(−λ∗` )} , (A2)

for ` = 1, . . . , L that satisfy the support constraint |ν` − Tgij | < A0.

2. Update the B-spline basis coefficients βg = [βgst] for gel g = 1, . . . , G. Let ∆1 be the first

order difference operator of dimension (Tν − 1)× Tν with entries ∆1ij = δ(i+ 1, j)− δ(i, j)
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and δ(i, j) is the (i, j)th entry in identity matrix ITν ; Similarly let ∆2 with ∆2ij = δ(i +

1, j) − δ(i, j) with δij from ITu . The random walk priors (2.6) and (2.7) can be written

as βgs·
d∼ NTν−1(·;βid[−Tν ], σ

−2
g1 ∆′1∆1)1{ν0 = βg11 <, . . . , βg1,Tν−1 < νL+1} and βg·t

d∼

NTu(·; 0, σ−2gt ∆′2∆2). Although both ∆1 and ∆2 are rank deficient, we show below that the

conditional posterior for βg is proper under scattering condition.

Update the B-spline basis coefficients βg = [βgst] for gel g = 1, . . . , G by multivariate

normal distribution

[vec{β′g} | others] ∝ exp(− 1

σ2
‖Tg −Bgvec[β

′
g]‖22)

× exp(− 1

σ2
g1

‖∆aug
1 βid,aug −∆aug

1 vec[β′g]‖22)

× exp(−
Tν∑
t=2

1

σ2
gt

‖∆aug
2,t vec[β

′
g]‖22),

where βid,aug is a column vector formed by stacking βid Tν times hence of length T1T2; ∆aug
1 is

a matrix augmenting ∆1 to [∆1 | 0(Tν−1)×(T1T2−Tν)]; ∆aug
2,t augments ∆2 to a (Tu−1)×T1T2

matrix whose (t, t+Tν , . . . , t+ (Tu− 1)Tν))-th columns correspond to βg1t, βg2t, . . . , βg,Tu,t

and form a submatrix identical to ∆2.

The conditional distribution above simplifies to a multivariate normal distribution with

mean vector

Λ−1g

{
σ−2ε B′gTg + σ−2g1 ∆aug′

1 ∆aug
1 βid,aug

}
where precision matrix Λg = σ−2ε B′gBg +σ−2g1 ∆aug′

1 ∆aug
1 +

∑Tν
t=2 σ

−2
gt ∆aug′

2,t ∆aug
2,t . Given large

σ2
gt, the mean vector will be close to βid,aug, i.e. no warping, if the smoothness parameter σ−2g1

is large and otherwise close to the flexible fitted surface by the observed peaks. Turning

to the smoothing parameter in the u-direction, σ−2gt , the Gamma-InversePareto mixture

(Appendix S5) encourages the sampling chains to jump between no versus flexible warping

in the u-direction.

http://biostats.bepress.com/jhubiostat/paper286
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The matrix B′gBg is full rank when the observed peaks are well scattered across lanes

and along the gels. Let (ct0 , ct0+1) be the support of the t0-th B-spline basis B2t0(·) in

the ν-direction. Suppose, for example, no peaks appear in (ct0 , ct0+1). Bg will be constant

zeros for columns t0, t0 + Tν ,. . . , and t0 + Tν(Tu − 1) thus rank deficient. As a result, the

posterior of {βgst0}
Tu
s=1 will not converge to a point mass given infinite samples and can

only be learned through its neighboring coefficients via random walk priors (2.6) and (2.7).

Rank deficiency also occurs if multiple neighboring lanes have no observed peaks. Given

sparse peaks, though Bg can be made full rank by reducing the number of basis functions,

judicious trade-off between flexibility of Sg and parameter identifiability is necessary for

specific applications. We refer to the condition that Bg is full rank as scattering condition.

In our applications, failure of the scattering condition is rare. Λg is then a sum of positive

definite matrix and semi-definite matrices and hence is invertable. Also recall that B′gBg is

sparse as constructed from sparse B-spline bases. Because ∆aug′

1 ∆aug
1 and

∑Tν
t=1 σ

−2
gt ∆aug′

2 ∆aug
2

are both sparse square matrix with at most O(T1T2) nonzeros, Λg preserves the sparsity of

B′gBg. So we use sparse Cholesky factorization of Λg to produce its Cholesky factors.

We first block update {βgst}Tus=1 for t = 2 from [βgst | βgj1j2 , j2 6= t, others] with constraint

βgst > βgs1 = ν0, s = 1, . . . , Tu and continue for t = 3, . . . , Tν − 1. This step requires

calculation of inverse of submatrices of Λ−1g for Tν times. In our application, computing

one such inverse when Tu = 6 and Tν = 10 requires < 0.001 seconds.

3. Update the smoothing parameters τ2gt = σ−2gt and smoothness selectio indicator ξgt (Ap-

pendix S5). First randomly switch ξgt to ξ∗gt either from 0 to 1 or 1 to 0 for t = 1, . . . , Tν ,

g = 1, . . . , G. For the parameter τ2gt, we propose its candidate τ∗2gt from the log-normal

distribution with log-mean parameter τ2gt. We accept (τ∗2gt , ξ
∗
gt) with probability

α(1)
g = min

{
1,
p(Tg;βg, τ

∗2
gt )π(τ∗2gt | ξ∗gt)q(τ2gt | τ∗2gt )q(ξgt | ξ∗gt)

p(Tg;βg, τ2gt)π(τ2gt | ξgt)q(τ2gt | τ2gt)q(ξ∗gt | ξgt)

}
. (A3)

Hosted by The Berkeley Electronic Press
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We update τ2gt again because it is continuous and therefore has a much bigger parameters

space than that of discrete parameter. Using random walk Metroplis-within-Gibbs algo-

rithm, we propose τ∗2gt from the log-normal distribution with log-mean parameter τ2gt and

accept with probability

α(2)
g = min

{
1,
p(Tg;βg, τ

∗2
gt )π(τ∗2gt | ξ∗gt)q(τ2gt | τ∗2gt )

p(Tg;βg, τ2gt)π(τ2gt | ξgt)q(τ∗2gt | τ2gt)

}
. (A4)

4. Update the smoothing parameter in the ν-direction τ2g1 = σ−2g1 , g = 1, . . . , G by proposing

its candidate τ2g1 from the log-normal distribution with log-mean parameter τ2g1. We accept

the proposal with probability min

{
1,

NTν−1({βg1t}Tν−1
t=1 ;0,τ∗−2

g1 I)q(τ2
g1|τ

∗2
g1 )

NTν−1({βg1t}Tν−1
t=1 ;0,τ−2

g1 I)q(τ∗2g1 |τ2
g1)

}
.

5. Update smoothness selection hyperparameter ρg (Appendix S5), for g = 1, . . . , G from

[ρg | others] ∼ Beta(aρ +
∑
t

1{ξgt = 1}, bρ +
∑
t

1{ξgt = 0}). (A5)

We calibrate the scale of the proposals in Step 3-4 at the burn-in period of the MCMC to achieve

an acceptance rate between 30% and 70%.

Appendix S5. Details on Shrinkage Prior for Hyperparameters {σ−2gt }

For the hyperpriors on the smoothing parameter for the warping function Sg in the u-direction,

{τ2gt = σ−2gt }, we specify a mixture with two well-separated component distributions with one

favoring small and the other large values (Morrissey and others, 2011):

τ2gt ∼ ξgtGamma(· | aτ , bτ ) + (1− ξgt)InvPareto(· | a′τ , b′τ ), (A6)

InvPareto(τ ; a, b) =
a

b

(τ
b

)a−1
, a > 0, 0 < τ < b, (A7)

where the Gamma-distributed component (aτ = 3, bτ = 2) concentrates near smaller values while

the inverse-Pareto component prefers larger values (a′τ = 1.5, b′τ = 400).

We designed the mixture priors for τ2gt so that given t, βgst, s = 1, . . . , Tu are similar or

discrepant according as τ2gt being large or small. This bimodal mixture distribution creates a sharp

http://biostats.bepress.com/jhubiostat/paper286
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separation between flexible and smooth warping functions across lanes on a gel (u-direction). The

random smoothness indicator ξt represents a flexible (1) or constant (0) relationship of warping

across lanes. We let ξgt ∼ Bernoulli(ρg) with success probability ρg and then put a hyperprior

ρg ∼ Beta(aρ, bρ) to let data inform the degree of smoothness. In this paper’s application, we

use aρ = bρ = 1 so that the prior has a mean of 1/2 that assigns equal prior probabilities to all

submodels with flexible or constant warping functions across lanes; in the case of high-dimensional

basis function (large Tν), the Beta prior with other hyperparameters can also allow a prior that

lets the fraction of constant warpings ρg = ρgp to approach 1 as p→∞.

We specify the hyperprior for the smoothing parameter τ2g1 = σ−2g1
d∼ InvPareto(· | a′τ , b′τ ).

We also fix the measurement error variance σε = ∆/3 where ∆ is the minimum distance among

grid points {ν`} in the standardized scale. These parameters are chosen to constrain the shape

of Sg and are shown to have good dewarping performances, e.g., aligning all actin peaks towards

a single landmark.

Hosted by The Berkeley Electronic Press
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Appendix Figures
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Figure S1. Before (bottom) and after (top) piecewise linear dewarping towards Gel 4. Top: 21 intensity
curves, 20 solid curves from one GEA experiement (g = 1) after reference alignment; one dashed curve
for the reference lane in gel g0 = 4. The two curves not in purple denote the Lane 1 intensities from
the two gels and are aligned. Bottom: The same 21 intensity curves without reference alignment. The
reference lanes (non-purple ones) are mismatched.
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Figure S2. Bayesian gel dewarping for the replication experiment (Top/Middle: short/long exposure;
reference lane 1s excluded). Top: For each gel set, 19 serum lanes at L = 100 interior landmarks. Solid
blue dots “•” are detected peaks deviating from its true weight. Each detected peak Tgij is connected to a
red triangle “∆” that represents the maximum a posteriori molecular weight landmark Ẑgij . The bundle
of black vertical curves visualize the deformations, with each black vertical curve connecting estimated
locations with identical molecular weights. The curves are drawn for each landmark. Bottom: Marginal
posterior probabilities of each landmark protein present in a sample.
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Figure S4. Estimated dendrograms with (top) and without (bottom) preprocessing for the second data
set. The red boxes show the subtree appearing in > 95% of bootstrapped dendrograms with the actual
estimated frequencies shown in red on top of the subtrees.
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