
TOWARDS AUTOMATIC REPAIR OF XACML POLICIES

by

Shuai Peng

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Boise State University

May 2017

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Boise State University - ScholarWorks

https://core.ac.uk/display/84069016?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

© 2017

Shuai Peng

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Shuai Peng

Thesis Title: Towards Automatic Repair of XACML Policies

Date of Final Oral Examination: 01 March 2017

The following individuals read and discussed the thesis submitted by student Shuai Peng,

and they evaluated his presentation and response to questions during the final oral

examination. They found that the student passed the final oral examination.

Dianxiang Xu, Ph.D. Chair, Supervisory Committee

Gaby Dagher, Ph.D Member, Supervisory Committee

Jyh-haw Yeh, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Dianxiang Xu, Ph.D., Chair of the

Supervisory Committee. The thesis was approved by the Graduate College.

iv

DEDICATION

I dedicate my thesis work to my parents, who have always loved me

unconditionally and have taught me by example to work hard and to be nice to others.

v

ACKNOWLEDGEMENTS

Thank my committee members for their patience and precious time. A special

thanks to Dr. Dianxiang Xu, who has spent numerous hours discussing with me about the

problems I encountered during the research. Without his guidance, I could never have

accomplished the research.

And I would like to thank my fellow graduate students, Milson Munakami and

Nitish Dhakal. The discussions with you have been inspiring.

vi

ABSTRACT

In a complex information system, controlling the access to resources is

challenging. As a new generation of access control techniques, Attribute-Based Access

Control (ABAC) can provide more flexible and fine-grained access control than Role-

Based-Access Control (RBAC). XACML (eXtensible Access Control Markup Language)

is an industrial standard for specifying ABAC policies. XACML policies tend to be

complex because of the great variety of attribute types for fine-grained access control.

This means that XACML policies are prone to errors and difficult to debug. This paper

presents a first attempt at automating the debugging process of XACML policies. Two

techniques are used for this purpose: fault localization and mutation-based policy repair.

Fault localization produces an ordered list of suspicious policy elements by correlating

the test results and the test coverage information. Mutation-based policy repair searches

for potential fixes by mutating suspicious policy elements with predefined mutation

operators. Empirical studies show that the proposed approach is able to repair various

faulty XACML policies with one or two seeded faults. Among the scoring methods for

fault localization that are studied in the experiment, Naish2 and CBI-Inc are the most

efficient.

vii

 TABLE OF CONTENTS

DEDICATION ... iv

ACKNOWLEDGEMENTS ...v

ABSTRACT ... vi

LIST OF TABLES ... ix

LIST OF FIGURES ...x

LIST OF ABBREVIATIONS .. xi

CHAPTER ONE: INTRODUCTION ..1

Background ..1

Problem Definition...3

Proposed Approach ..4

Outline..6

CHAPTER TWO: RELATED WORK ..7

CHAPTER THREE: XACML POLICIES ..9

Structure of XACML Policies ...9

A Sample XACML Policy ...10

CHAPTER FOUR: AUTOMATIC REPAIR OF XACML POLICIES14

A Running Example ...14

General Process for Automatic Policy Repair ...20

CHAPTER FIVE: IMPLEMENTATION..23

viii

Coverage Analysis ...23

Coverage ..23

TestSuite ..25

PolicyCoverageFactory and XpathSolver ..26

PolicyTracer ...30

Fault Localization ..32

Mutation ...35

Mutant ..36

Mutator ...37

Repairing ..39

CHAPTER SIX: EMPIRICAL STUDIES ...42

Experiment Setup ...42

Experiment Results and Analysis ..44

CHAPTER SEVEN: CONCLUSIONS ...47

REFERENCES ..49

APPENDIX A ..52

A.1 KmarketBluePolicy ...53

A.2 A Sample Request for KmarketBluePolicy ..57

ix

LIST OF TABLES

Table 3.1 Response of a Rule.. 10

Table 3.2 Main Policy Elements in the Sample Policy ... 12

Table 4.1 Test suite for the sample policy .. 15

Table 4.2 Firing of the policy target and rules in the sample policy......................... 16

Table 4.3 Mutation operators and target faults. .. 18

Table 4.4 Suspicion scores of policy elements in CRE1 .. 19

Table 4.5 Scoring methods for fault localization .. 21

Table 6.1 Subject policies, tests, and mutants... 43

Table 6.2 Repair time of single fault mutants (in seconds) 45

Table 6.3 Repair time of two-fault mutants (in seconds) .. 45

x

LIST OF FIGURES

Figure 1.1 Process of Automatic Repair .. 5

Figure 1.2 Process of Fault Localization .. 6

Figure 3.1 Language elements of XACML 3.0[14] ... 9

Figure 3.2 A Sample XACML Policy .. 11

Figure 5.1 UML Class Diagram of Package Coverage .. 24

Figure 5.2 UML Class Diagram of XpathSolver ... 29

Figure 5.3 Source code of PolicyTracer ... 32

Figure 5.4 UML Class Diagram of Component Fault Localization 33

Figure 5.5 UML Class Diagram of Component Mutation ... 36

Figure 5.6 Simplified UML Class Diagram of AbstractPolicy, Policy, PolicySet and

Mutant ... 37

Figure 5.7 Implementation of CRC .. 38

Figure 5.8 Implementation of CRE .. 38

Figure 5.9 Implementation of PTT and RTT ... 39

Figure 5.10 UML Class Diagram of Component Repairing .. 41

Figure 6.1 Cumulative distribution of repair time of itrust and itrust5 mutants 46

xi

LIST OF ABBREVIATIONS

RBAC Role-Based Access Control

XACML eXtensible Access Control Markup Language

OASIS Organization for the Advancement of Structured Information Standards

SBFL Spectrum-Based Fault Localization

PDP Policy Decision Point

MC/DC Multi-Condition/Decision Coverage

XPA XACML Policy Analyzer

CRC Change Rule Combining algorithm

CRE Change Rule Effect

ANF Add Negation Function

RNF Remove Negation Function

RCF Replace Comparison Function

CCF Change Comparison Function

LOC Line Of Code

XML eXtensible Markup Language

XSLT Extensible Stylesheet Language Transformations

UML Unified Modeling Language

AOP Aspect-Oriented Programming

CSV Comma Separated Values

1

CHAPTER ONE: INTRODUCTION

Background

Access control is a mechanism for regulating user access to resources in an

information system. As information systems are getting more and more complex, it is

highly desirable to separate access control policies from system functionality since the

functionality is subject to frequent changes. Another benefit of the separation is that

access control policies can be changed on the fly without re-compiling.

Attribute-based access control (ABAC) grants or denies access based on various

attributes of authorization elements[1], including predefined characteristics of subjects

(e.g., job title and age), resources (e.g., data, programs, and networks), actions, and

environments (e.g., current time and IP address). Thus ABAC offers a flexible and fine-

grained access control.

XACML (eXtensible Access Control Markup Language) is a standard

specification language for ABAC, which was proposed by OASIS [2]. XACML supports

a variety of data types and functions for specifying attributes and their operations. While

XACML policies allows for fine-grained access control, the complexity makes it more

prone to faults caused by misunderstanding of requirements, coding errors during

development and maintenance phase. Faults in XACML policies can cause serious

consequences such as unauthorized accesses or denial of service.

Several methods have been proposed to generate test inputs (i.e., access requests)

from a given XACML policy [3][4][5][6][7][8][9]. The expected responses (or oracle

2

values) are determined by examining access control requirements. A policy’s actual

response to a test input is compared with the oracle value. A test fails if the actual

response is different from the oracle.

The debugging of XACML policies can happen in multiple phases in the system

life cycle, including development, maintenance and operation. During the development

phase, tests are created according to access control requirements. Before the deployment

of the system, the tests are executed for verification and validation. During system

maintenance, when security or functional requirements are changed, the XACML policy

is run against the regression tests to find out broken tests or faults introduced by the

changes. After the system is put into operation, there still might be residual faults as

current testing and verification technologies cannot guarantee to eliminate all faults.

When unexpected access control decisions are observed, we can find out the actual access

requests that triggered the residual faults in the system logs. These access requests are

similar to the tests in development and maintenance phases, and can be added to the

regression test suite.

Test failure provides little insight in which element in the XACML policy is

wrong. Actually testing is not concerned with finding out where the faults are and how to

fix them. The activity of finding out faults and fixing them is often referred to as

debugging. Similar to debugging a program, debugging an access control policy can be

difficult and frustrating, especially when the access control logic is complex and the

access control policy is large. Debugging an access control policy often relies on trial and

error, especially when there are multiple faults. Thus a technique that automatically

locates faulty elements in an XACML policy and fixes them is highly desirable.

3

Problem Definition

The policy repair problem is formulated as follows: given a faulty XACML policy

(or policy set), along with a test suite where at least one test fails when executed against

the policy (or policy set), make one or more changes to the faulty policy (or policy set) so

that the revised policy will pass all the tests.

The above definition assumes an adequate test suite, which is not always true in

reality. Intuitively, the more adequate the test suite is, the better the policy repair

performs. As mentioned before, the test cases of an XACML policy may come from

policy testing during system development and maintenance or from actual access requests

in an operational system. Each test consists of test input (access request) and oracle value.

The oracle value is used to determine whether the test passes or fails. An access request

consists of attribute names, data types, and values.

It is possible that an attribute name, data type, or value in an access request is

invalid. The response to such a request is typically NotApplicable or Indeterminate. In an

operational system, access requests with invalid attribute names or values may come

from malicious users who attempt to gain unauthorized access or render the system out of

service. During the development and maintenance stages, policy testing should include

not only normal test inputs but also tests with invalid attribute names and values.

In the empirical studies, for each subject policy, tests are generated automatically

to achieve the Multi-Condition/Decision Coverage (MC/DC). MC/DC originated from

NASA’s RTCA/DO-178B document, which requires level-A aviation software to achieve

MC/DC of the software structure [15]. Prior works has applied MC/DC to automatic test

generation of XACML policies in order to achieve high assurance of XACML policies

4

[16]. The MC/DC test suite of an XACML policy satisfies the MC/DC of each policy (or

policy set) target, each rule target, and each rule condition. It also includes a test to make

each policy (or policy set) target and each rule to evaluate to error (i.e., to cover the

Indeterminate decisions).

Proposed Approach

The proposed approach to repair a faulty XACML policy includes two major

steps: fault localization and mutation-based repair.

As shown in Figure 1.1, the proposed approach to policy repair is an iterative

process because there might be multiple faults in the faulty policy. The approach first

produces a list of suspicious policy elements by fault localization, and then generates

mutants by applying mutation operators to the ranked suspicious elements, starting from

the most suspicious one. If a mutant is a plausible fix, the process is repeated, otherwise

the next mutant is tried. The repair fails when all mutants have been tried and none of

them is a fix.

5

Figure 1.1 Process of Automatic Repair

As illustrated in Figure 1.1, the first step of each iteration is ranking suspicious

elements in a policy. This is accomplished by fault localization. As shown in Figure 1.2,

a faulty policy P and a test suite are given as input. Each test in the test suites consists of

an XACML request and the oracle value (expected decision). Given an XACML policy

and an XACML request as input, XACML engine will output a decision. Test results are

produced by comparing the actual decision and the oracle value. Meanwhile, coverage

information is collected. Then a coverage matrix is built by combining the test results and

coverage information. From the coverage matrix the suspicion score of each policy

element can be calculated using a scoring method. Finally the policy elements are sorted

by their corresponding suspicion scores, producing a sorted list of suspicious elements.

6

Figure 1.2 Process of Fault Localization

Chapter 4 will describe illustrate the fault localization, mutation based repair

process in more details with a running example.

Outline

The remainder of this paper is organized as follows. Chapter 2 summarizes related

work about the research topic. Chapter 3 gives an introduction to the structure of

XACML policies, and illustrates it with an example. Chapter 4 describes the proposed

approach with a running example then presents the general process. Chapter 5 elaborates

on the implementation. Chapter 6 reports the empirical studies. Chapter 7 concludes this

paper.

7

CHAPTER TWO: RELATED WORK

The existing work on policy debugging focuses on firewall policies. Marmorstein

et al. used failed tests to locate faulty rules in a small firewall policy containing only

several rules [10]. It does not identify faulty rules according to different fault types.

Hwang et al. used failed tests to find the potential faulty rules based on structural

coverage of firewall rules [11]. Two types of faults, wrong decisions and wrong

predicates, were considered. In our approach, both passed and failed tests are used. Chen

et al. proposed an approach to automatic correction of five types of faulty firewall rules:

wrong order, missing rules, wrong predicates, wrong decisions, and wrong extra rules

[12]. Part of this approach converts the given firewall rules into a firewall decision

diagram (FDD) as a compact representation for reasoning about faulty rules. Compared

to firewall rules, XACML policies are much more complex. Firewall rules are defined

over a fixed set of network attributes and primarily specified in propositional logic, while

rules in XACML policies are specified with predicates and functions with various data

types.

Various fault localization techniques have been proposed for software debugging.

This paper has adapted the scoring methods from spectrum-based fault localization (i.e.,

SBFL) for software debugging [13]. A program spectrum is an execution profile that

indicates which parts of a program are active during a run. SBFL analyzes the differences

in program spectra for passed and failed runs. Although the scoring methods in our

8

approach are from SBFL, the variables are defined upon firing of policy elements, not

coverage of policy elements.

Several testing methods have been proposed to generate test inputs from XACML

policies [3] [4][5][6][7][8][9]. Testing is concerned with whether or not there are faults,

whereas our work is concerned with how to locate and fix the faults. It is worth pointing

out that the existing testing methods all use policy mutation to evaluate testing

effectiveness. This paper, however, exploits mutation to fix faults. Our prior work has

investigated coverage-based and firing-based approaches to fault localization of XACML

policies [14]. It shows that firing-based fault localization outperforms coverage-based

fault localization. Based on this result, this paper takes a step further to apply firing-based

fault localization to rank policy elements for repair purposes.

9

CHAPTER THREE: XACML POLICIES

Structure of XACML Policies

The basic elements in XACML 3.0 language model are policy set, policy, rule,

target, condition and combining algorithm [2]. Figure 3.1 shows the relationships

between the main elements of XACML3.0.

Figure 3.1 Language elements of XACML 3.0[14]

At the root of each XACML document is a policy or policy set. A policy or policy

set defines the circumstances under which whether an access request should be granted.

A policy set contains a target, a combining algorithm, and one or more policies or policy

sets. The target decides if the XACML document is applicable to an access request.

Policy combining algorithms include deny-overrides, permit-overrides,

deny-unless-permit, permit-unless-deny, first-applicable, and

only-one-applicable, etc. The combining algorithms combines the decisions of

individual component policies or policy sets to form a final decision. For example, when

10

the combining algorithm is deny-overrides and there is one component policy that

evaluates to Deny, then the authorization decision of the whole policy set will be Deny,

regardless of the decisions of other component policies.

Similarly, a policy contains a target, a combining algorithm, and one or more

rules. A rule is the smallest unit of decision making. In addition to a target, a rule also

contains an effect and a condition. The effect is either Permit or Deny. And the condition

is a boolean expression which refines the applicability. As shown in Table 3.1, given an

access request, the response of a rule can be Permit, Deny, NotApplicable or

Indeterminate. The response is NotApplicable when the access request doesn’t match

with the target or condition of the rule. And the response is Indeterminate only when an

error occurs during the evaluation.

Table 3.1 Response of a Rule

target condition effect response

false - - NotApplicable

true false - NotApplicable

true true Permit Permit

true true Deny Deny

In addition, a rule, policy, or policy set may have one or more obligation or advice

expressions. This paper will not discuss about obligation and advice as they are irrelevant

to the topic.

A Sample XACML Policy

Figure 3.2 shows an example XACML policy named KmarketBluePolicy (line 2).

11

Figure 3.2 A Sample XACML Policy

The rule combining algorithm is deny-overrides (line 2). The policy’s target

(lines 3-12) means role=”blue”, where role is an attribute in the subject

category and its type is string. There are four rules: total-amount (line 13),

deny-liquor-medicine (line 31), max-drink-amount (line 57), and permit-

rule (line 85). The policy target and rules are summarized in plain text in Table 3.2.

The policy target (denoted as PT) is role=”blue”. For rule total-amount, its

effect is Permit, its target is totalAmount>100, and its condition is omitted. Its

decision would be Permit if totalAmount>100 evaluates to true. Similarly, rule

deny-liquor-medicine would result in a Deny decision if resource-

id>Liquor ∨ resource-id=Medicine evaluates to true. Rule max-drink-

amount has both target and condition components. Its decision would be Deny if both

its target and condition evaluate to true (i.e., resource-id=Drink ∧ amount>10).

12

Rule permit-rule has neither a target nor a condition. It results in a Permit decision

whenever it is applied.

Table 3.2 Main Policy Elements in the Sample Policy

Policy Element Target Condition Effect

Policy Target(PT) role = Blue -

total-amount totalAmount > 100 - Permit

deny-liquor-

medicine

Resource-id > “liquor”

∨ resource-id =

“medicine”

- Deny

max-drink-amount Resource-id = “drink” account > 10 Deny

permit-rule - - Permit

Similar to the case of policy set, the authorization decision of a policy depends

not only on the target and rules, but also on the rule combining algorithm. In this

example, if the rule deny-liquor-medicine evaluates to Deny, the whole policy

will evaluates to Deny, as the rule combining algorithm is deny-overrides. In such

case, the remaining rules in the policy will be skipped since their decision won’t affect

the overall decision.

Note that although Policy Decision Point (PDP) outputs only 3 kind of decisions:

Permit, Deny and Indeterminate, internally Indeterminate is divided into 3 different

decisions: Indeterminate {P}, Indeterminate {D} and Indeterminate {DP}. A rule or

policy produces a Indeterminate {P} when an error occurred during evaluation, and the

decision would be Permit if the error had not occurred. Similarly, a rule or policy

produces a Indeterminate {D} when an error occurred during evaluation, and the decision

would be Deny if the error had not occurred. An Indeterminate {DP} is produced when

13

Indeterminate {P} and Indeterminate {D} are combined. To make full use of coverage

information from the PDP, all 6 kinds of decisions are used and a strict matching strategy

is adopted, e.g. a test is deemed as failed if the oracle is Indeterminate {D} and the actual

result is Indeterminate {P}.

14

CHAPTER FOUR: AUTOMATIC REPAIR OF XACML POLICIES

A Running Example

Consider the sample XACML policy in Chapter 3. It has two faults:

a. The effect of rule total-amount should be Deny, not Permit;

b. The target of rule deny-liquor-medicine should be resource-

id=“Liquor” ∨ resource-id=“Medicine”, not resource-

id>“Liquor” ∨ resource-id=“Medicine”.

The original version of KmarketBluePolicy is one of the policies in a

demonstration application of Balana [17], which is currently the only open-source

implementation of XACML 3.0.

Table 4.1 shows the MC/DC test suite generated automatically from the correct

version of KmarketBluePolicy by the open source XPA (XACML Policy Analyzer) tool1.

The valid attribute names in access requests are role, resource-id, amount, and

totalAmount. A test input may also consist of invalid attribute names and their

attribute values. In Table 4.1, there are seven tests where all attribute names are valid.

Each of the remaining tests (Test 1, 3, 5, 10) includes an invalid attribute name. The

invalid attribute names are generated randomly to produce error conditions when the

policy is tested. In this case, XPA simply uses Indeterminate as the attribute value, which

indicates that an error occurrence is expected during policy testing.

1 https://github.com/dianxiangxu/XPA. It includes the policies and test suites used in this paper.

15

Table 4.1 Test suite for the sample policy

No
Input (attribute names and values in request) Oracle

Value role resource-id amount total

Amount
invalid attribute, value

1 nzocphnmz1,

Indeterminate
NotApplicable

2 ak 0 NotApplicable

3
Blue 0 6m9dv7gdw6,

Indeterminate
Indeterminate

{DP}

4 Blue k 0 Permit

5
Blue Drink 0 j4yxpw95g1,

Indeterminate
Indeterminate

{DP}

6 Blue Drink 0 0 Permit

7 Blue Drink 11 0 Deny

8 Blue Liquor 0 Deny

9 Blue Medicine 0 Deny

10
Blue o5eqqyvjdx,

Indeterminate
Indeterminate

{DP}

11 Blue 101 Deny

When the test suite in Table 4.1 is executed with the sample policy in Chapter 2,

Test 5, 6, 8, and 11 shall fail. Consider Test 11, where role=”Blue” and

totalAmount=101, the oracle value is Deny. However, the actual response of the

faulty policy is Permit because the effect of rule total-amount is Permit.

The goal is to repair the given KmarketBluePolicy policy such that the revised

policy will pass all the tests in Table 4.1. Ideally, the revised policy will be identical to

the original KmarketBluePolicy in Balana’s Kmarket demonstration application.

The first step is to determine the policy elements (including the policy target, and

individual rules, and the rule combining algorithm) that likely contain the faults. This is

achieved by ranking all policy elements according to their suspicion scores obtained from

the correlation between the firing information of policy elements and the test execution

results (i.e., pass and fail). The higher the score, the more likely that the policy element is

faulty.

16

A policy target (or policy set target) is said to be fired by a test if it is evaluated to

true when the test is executed. A rule is said to be fired by a test if its target and condition

are both evaluated to true when the test is executed. Note that the rule combining

algorithm will always be evaluated. Therefore, the firing information of rule combining

algorithm is not meaningful. Its suspicion score can be defined in different ways (e.g.,

highly suspicious or least suspicious). For simplicity, herein the rule combining algorithm

is treated as the most suspicious element in a policy and attempts to change the rule

combining algorithm first. The reason is that the number of repair attempts is small as

there are only 11 rule combining algorithms.

Table 4.2 Firing of the policy target and rules in the sample policy

Test

No

Firing of policy target and rules Test
Result

PT
total-

amount
deny-liquor-

medicine
max-drink-

amount
permit-

rule
1 Pass

2 Pass

3 x x Pass

4 x x Pass

5 x x Fail

6 x x Fail

7 x x Pass

8 x x Fail

9 x x Pass

10 x x Pass

11 x x x Fail

Starantula 0.583 1.0 0.636 0.0 0.538

Table 4.2 shows the firing information of the policy target and each rule in the

sample policy when the test suite in Table 4.1 is executed, where ‘x’ means that the

policy element in the given column is fired by the test in the given row. The set of failed

17

tests is {Test 5, Test 6, Test 8, Test 11}. To correlate policy elements with test results, the

following four variables are associated with each policy element:

 𝑎00: number of passed tests in which the policy element was not fired

 𝑎01: number of failed tests in which the policy element was not fired

 𝑎10: number of passed tests in which the policy element was fired

 𝑎11: number of failed tests in which the policy element was fired

For each policy element, the subscript 𝑖 in 𝑎𝑖𝑗 refers to whether the policy element

is fired (𝑖 =1) or not (𝑖 =0), whereas 𝑗 is concerned with the number of passed tests (𝑗 =0)

or failed tests (𝑗 =1). For each policy element, a suspicion score is calculated by feeding

𝑎𝑖𝑗 to a scoring method and then sort all policy elements in the descending order of their

scores. For example, the suspicion scores of the policy target and rules in Table 4.2 are

0.583, 1.0, 0.636, 0, and 0.538, respectively when the following Tarantula scoring

method [18] is applied:

𝑆𝑇𝑎𝑟𝑎𝑛𝑡𝑢𝑙𝑎 =

𝑎11

𝑎11 + 𝑎01
𝑎11

𝑎11 + 𝑎01
+

𝑎10

𝑎10 + 𝑎00

The resultant ranking is <total-amount, deny-liquor-medicine, PT, permit-rule,

max-drink-amount >. Then the rule combining algorithm (denoted as CA) is put at the

beginning of the rankings. Therefore, the complete suspicion ranking of all policy

elements is <CA, total-amount, deny-liquor-medicine, PT, permit-rule, max-drink-

amount>.

Next step would be repairing the faulty policy according to the suspicion rankings

of the policy elements. The faulty policy is repaired by changing the suspicious policy

elements, starting from the most suspicious one. Herein the action of changing a policy is

18

referred as policy mutation and a revised policy as a policy mutant. Policy mutation is

performed by applying predefined mutation operators to the current policy. Mutation

operators are defined with respect to the constructs of policy elements. Table 4.3 shows

the mutation operators used in the current approach. Each operator aims at fixing a

particular type of faults in a policy element.

 Table 4.3 Mutation operators and target faults.

Operator Meaning Fault to be fixed

Change Rule Combining

algorithm (CRC)
Replace the existing rule combining

algorithm with another rule

combining algorithm

Wrong rule combining algorithm

Change Rule Effect

(CRE)
Change the rule effect by replacing

permit with deny or deny with

permit

Wrong rule effect

Add Negation Function

(ANF)
add the not function as the first

function of a rule condition element
Missing negation in a condition

element

Remove Negation

Function (RNF)
Remove the not function in a rule

condition
Extra negation in a condition

element

Replace Comparison

Function (RCF)
Replace the comparison function in

a target with a different one
Wrong comparison function in

target

Change Comparison

Function (CCF)
Change a comparison function in

rule condition
Wrong comparison function in

rule condition

In the above example, the rule combining algorithm is assumed to be the most

suspicious element. So the mutation operator CRC (change rule combining algorithm) is

applied to the faulty policy first. Consider changing the rule combining algorithm from

deny-overrides to permit-overrides. The resultant policy mutant is denoted

as CRC1. Run the test suite against CRC1 and CRC1 will fail the following set of tests

{Test 3, Test 5, Test 7, Test 8, Test 9, Test 10, Test 11}. Apparently CRC1 is not a valid

repair. As it is unknown how many faults are there in the policy, however, CRC1 might

be a step toward the right direction or it might have introduced another fault. In the

former case, the debugging process should be repeated until the faulty policy is repaired

successfully. In the latter case, we would want to give it up and try other policy mutants.

19

Assuming that multiple faults in the same policy are independent, whether or not the

mutation is in the right direction can be determined by examining the set of failed tests.

The mutant is considered to be a plausible intermediate fix if the set of tests failed by the

policy mutant is a subset of the tests failed by the faulty policy before the mutation.

Apparently, CRC1 is not a plausible fix because it fails more tests than the example

faulty policy does. As there are other candidate rule combining algorithms, we continue

to create new CRC mutants and evaluate if any of these mutants is a plausible fix.

For KmarketBluePolicy, it turns out that none of the CRC mutants is a plausible

fix. So now all possible attempts about the most suspicious policy element are completed.

Now we move on to the next candidate element – the rule total-amount. Since a rule

has several components (target, condition, and effect), there can be a number of

applicable mutation operators. For simplicity, here we first consider the mutation

operator CRE (change rule effect). The mutant after applying CRE to the rule total-

amount is denoted as CRE1, where the rule effect is changed from permit to deny.

Running the test suite against CRE1 will result in the following set of failed tests: {Test

5, Test 6, Test 8}, as shown in Table 4.4. This is a subset of the failed tests in Table 4.2.

Thus, CRE1 is a plausible fix. Then we continue to apply the above debugging process to

CRE1. Specifically, we create new suspicion rankings of the policy elements in CRE1

except for the rule combining algorithm because it is already shown non-promising as

discussed before. According to Table 4.4, the suspicion rankings are <deny-liquor-

medicine, PT, permit-rule, total-amount, max-drink-amount>.

Table 4.4 Suspicion scores of policy elements in CRE1

Test

No

Firing of policy elements Test
 Result

PT
total-

amount
deny-liquor-

medicine
max-drink-

amount
permit-

rule

20

1 Pass

2 Pass

3 x x Pass

4 x x Pass

5 x x Fail

6 x x Fail

7 x x Pass

8 x x Fail

9 x x Pass

10 x x Pass

11 x x Pass

Starantula 0.571 0.0 0.727 0.0 0.471

Now the repair attempt focuses on the rule deny-liquor-medicine in

CRE1. The applicable mutation operators are CRE (change rule effect) and RCF (replace

comparison function in target). CRE is not promising. Instead, a RCF mutant that

replaces the function “string-greater-than” to “string-equal” will pass all the tests. This

mutant, named CRE1_RCF2_1, is a successful repair of the faulty policy

KmarketBluePolicy. And it is identical to the original policy KmarketBluePolicy.

General Process for Automatic Policy Repair

Figure 1.1 shows the general process of automatic policy repair. The two key

techniques of automatic policy repair are fault localization and mutation-based repair.

Fault localization aims to rank all policy elements according to their suspicion scores

obtained from the correlation between the firings of policy elements and the test results.

In the running example, the Tarantula scoring method is used. In fact, there are various

scoring methods. Table 4.5 summarizes the scoring methods implemented in the

proposed approach. Tarantula [18] is one of the pioneer tools for software fault

21

localization. Naish2 and CBI-Inc are among the best performing methods for software

fault localization, whereas Sokal is among the average ones [13]. These representative

methods are adapted for use in the fault localization of XACML policies and their

performance are compared from the perspective of automatic policy repair.

Mutation-based repair applies mutation operators to each suspicious policy

element in order to find an intermediate or final fix. If a policy mutant passes all the tests,

it is a final fix. In this case, the faulty policy has been repaired successfully. If a policy

mutant fails some tests that are a subset of the failed tests before the mutation, it is

considered a plausible intermediate fix in the right direction. In this case, we continue to

apply the debugging process to the policy mutant. However, if no fix is found for the

current suspicious element after applying all mutation operators, the next suspicious

policy element is selected for further mutation. If no fix is found after all policy elements

have tried, then the faulty policy cannot be repaired by the approach.

Table 4.5 Scoring methods for fault localization

Method Name Formula

CBI-Inc 𝑎11

𝑎11 + 𝑎10

−
𝑎11 + 𝑎01

𝑎11 + 𝑎01 + 𝑎10 + 𝑎00

Naish2 𝑎11 −
𝑎10

𝑎10 + 𝑎00 + 1

Sokal 2(𝑎11 + 𝑎00)

2(𝑎11 + 𝑎00) + 𝑎01 + 𝑎10

Tarantula 𝑎11

𝑎11 + 𝑎01
𝑎11

𝑎11 + 𝑎01
+

𝑎10

𝑎10 + 𝑎00

The proposed approach is not intended to repair all possible faulty policies

automatically due to the theoretical and implementation challenges. Automatic policy

repair essentially tries to search all possible mutants of the faulty policy. For a policy

with 𝑛 faults, the mutation operators may be applied to each policy element for up to 𝑛

22

times. The number of possible mutants grows exponentially with the number of faults

(i.e., the number of repetitions that mutation is applied). For a multi-fault policy with a

large number of policy elements, it could be too slow to be of practical use when no fix

can be found. The proposed approach can estimate remaining time, and allows using a

predefined timeout to terminate the search. Nevertheless, as will be shown in the

empirical studies, our approach can repair faulty XACML policies with one or two

seeded faults.

23

CHAPTER FIVE: IMPLEMENTATION

This chapter presents how the proposed approach to policy repair is implemented.

The program architecture consists of four major components: Coverage Analysis,

Fault Localization, Mutation, and Repairing.

Coverage Analysis

The component Coverage Analysis deals with running tests and collecting

coverage information. There are four modules in this component: Coverage,

TestSuite, PolicyCoverageFactory, and PolicyTracer. Figure 5.1 shows

the UML class diagram of this component.

Coverage

The coverage information of rules and targets are defined differently, so there are

two kinds of coverage information: RuleCoverage and TargetCoverage. They are

modeled as two classes and they both extend the abstract class Coverage, so that both

kind of coverage information can be handled in a uniformed way.

There can be only three evaluation results of a target: MATCH, NOT_MATCH and

INDETERMINATE. The evaluation result is INDETERMINATE when an error occurred

during the evaluation. If no error occurred during the evaluation, and the target is

evaluated to be true, the evaluation result is MATCH, otherwise it is NOT_MATCH. So

evaluation result of a target is modeled as Enum type TargetMatchResult.

24

The coverage information of a rule is more complex as a rule has a target and a

condition, the coverage of which must be both taken into account. As summarized in

Table 3.1, when a rule is evaluated, the target is evaluated first, and the condition is

evaluated only if the target is evaluated to be true.

Figure 5.1 UML Class Diagram of Package Coverage

The evaluation results of an individual target and condition can be defined in a

uniformed way: The result is TRUE if the target or condition is evaluated to be true;

25

FALSE if it is evaluated to be false; ERROR if an error occurred during evaluation. And

there are two additional cases: EMPTY if the target or condition is an empty element,

which can be regarded as a special case of TRUE; NOT_EVALUATED if the target or

condition is not touched by the test. A target is not touch if the evaluation has finished

before this target is reached. A condition is not touched if the result of the target is

FALSE or ERROR. This uniformed representation of evaluation results is modeled as

Enum type IntermediateCoverage.

The coverage information of a rule is a combination of that of the target and

condition in that rule. Rule coverage can be defined in two ways, with different

granularity.

One way is to define it in the same way as in Table 3.1, except that the result

would be INDETERMINATE if an error occurred during the evaluation of either the

target or the condition. This is modeled by Enum type RuleDecisionCoverage.

Another definition is more fine grained: the result is FALSE_TARGET if the

target is evaluated to be false; FALSE_CONDITON if the condition is evaluated to be

false; ERROR_TARGET if an error occurred during the evaluation of the target;

ERROR_CONDITON if an error occurred during the evaluation of the condition;

BOTH_TRUE if both are evaluated to be true. This is modeled in Enum type

CombinedCoverage.

TestSuite

The module TestSuite models a test suite generated from an XACML policy.

It consists of a list of XACML requests and a list of corresponding oracle values. Each

26

pair of request and oracle value is a test. In addition, a list of request notes is defined in

the class to ease debugging. A request note is used as an annotation of a request.

A test suite can be created from the code that generates test suites from XACML

policies or loaded from hard drive. The second way allows users to load previously saved

auto-generated tests, or to load manually created tests, which is handy for debugging

purpose. A saved test suite consists of a CSV file and some XACML request files. In the

CSV file, in the first column are file paths to requests, which are XML files, and in the

second column are oracle values.

The runTests() method runs the test suite on an XACML policy, and it calls

the private method runTest() to run a single test in the test suite. Both methods are

instrumented by AspectJ to collect coverage information while the tests are running.

runTest() in turn calls PolicyRunner.evaluate() to evaluate an XACML

request against an XACML policy.

PolicyCoverageFactory and XpathSolver

The PolicyCoverageFactory module is a “global variable” to store

coverage information. All the data and method members in this module are static.

PolicyCoverageFactory has a coverageMatrix to store a matrix of

Coverage objects. The number of rows is equal to the number of tests in the

TestSuite, and the number of columns is equal to the number of policy elements in

the XACML policy. An example of coverageMatrix is the one in Table 4.2.

PolicyCoverageFactory also has results, a list of booleans, to store test

results. The size of results is equal to number of tests in the TestSuite.

27

PolicyCoverageFactory.init() is called when a test suite starts to run,

and initialize the coverageMatrix with an empty list. The newRow() method is called

when a test starts to run, and adds a new row in the coverageMatrix. The

addCoverage() method is called when a policy element is touched by a test, and

inserts a Coverage object to the last row in the coverageMatrix.

When adding the Coverage of a policy element to the coverageMatrix, we

need to know which column to add the Coverage object to, so a mapping from each

policy element to a column in the coverageMatrix is needed. And this is the purpose

of the data member mapping in the PolicyCoverageFactory.

The coverageMatrix has a flat structure in which one policy element

corresponds to a row in the coverageMatrix. However XACML policies have a

hierarchical structure: a policy set contains a policy set target, and one or more policies or

policy sets; a policy contains a policy target, and one or more rules. Therefore the

structure of XACML policies must be “flattened” when mapping a policy element to a

column in the coverageMatrix.

Simply giving each policy element an index number in the order they are visited

while traversing over the XACML policy will not work. This is because the XACML

engine might have implemented short-circuit evaluation (the balana implementation does

have), so some policy element might be skipped when evaluating a request. For example,

if an XACML policy is a policy set that consists of two policies: Policy1 and Policy2.

There are two rules in Policy1: Rule1 and Rule2. And the rule combining algorithm of

Policy1 is first-applicable. Suppose for a given request, Rule1 is fired(both target and

condition are evaluated to be true), then the XACML engine will skip Rule2, and go on

28

evaluating Policy2. In such scenario, the coverage information of the following policy

elements will be written to the wrong columns in the coverageMatrix.

This is solved by mapping each policy element’s XPath to its column index.

XPath is a part of the XSLT standard. It uses path expressions to select a node an XML

document. For example, the first rule in the sample XACML policy in Figure 3.1 can be

selected by the absolute XPath “/*[local-name()=’PolicySet’ and

@PolicySetId=’KMarketBluePolicy’]/*[local-name()=’Rule’ and

@RuleId=’total-amount’]”. The XPath expression means that starting from the root

node, first look for a node whose local-name is “PolicySet”, and has an attribute

“PolicySetId” that equals to “’KMarketBluePolicy”; then from the child nodes of this

node, look for a node whose local-name is “Rule”, and has an attribute “RuleId” that

equals to “total-amount”. The “*” in the XPath expression means ignoring namespace

prefix. The first rule can also be selected by the relative XPath “//*[local-

name()=’Rule’ and @RuleId=’total-amount’]”. The double slash at the

beginning of the path expression means that this is a relative path so the node is not

necessarily a child of the root node.

According to the specifications of XACML, the policy element ID attribute must

be unique in an XACML policy. So each policy element can be uniquely identified by its

local-name and policy element ID attribute, and only one node will be selected even if

using relative XPath. And since there is no getParent() method in PolicySet, Policy,

Rule classes in the Balana implementation of XACML engine, it is impossible to

construct an absolute XPath from a policy element. Therefore, the relative XPath is used

for mapping policy elements to column indices.

29

The module XpathSolver in the component PolicyUtils is used for

getting the XPath of policy elements in an XACML policy. Figure 5.2 shows the UML

class diagram of XpathSolver. The method

getEntryListRelativeXPath(Document) returns XPath strings of all policy

elements in the order they are visited in a recursive traversal of the XACML document.

PolicyCoverageFactory.init() uses this method to set the mapping, thus

getting a mapping from XPath of each policy element to their column index in the

coverageMatrix. Latter while the tests are running, each time a policy element is

touched by a test, the column index of the policy element is looked up in the mapping,

and a Coverage object is created and inserted at the column index in the last row.

Figure 5.2 UML Class Diagram of XpathSolver

30

PolicyTracer

PolicyTracer is used to change the behavior of some methods related to the

evaluation of XACML requests in the XACML engine for the purpose of collecting

coverage information. This functionality is accomplished with AspectJ. AspectJ is an

Aspect-Oriented Programming (AOP) extension for Java. The aim of AOP is to increase

modularity by putting code that is not central to business logic and appears multiple

places into one module, e.g. logging.

Basic concepts in AspectJ include join points, pointcuts, and advices. A join point

is a point in a program where additional code can be joined into, e.g. method execution,

object initialization, field read and write. A pointcut is an expression that matches one or

more joint points. For example, in the PolicyTracer code shown in Figure 5.3, line 45-47

defines a pointcut called runNewTestSuite, which matches the runtTests()

method in the TestSuite class. An advice is a piece of code that runs before, after or

around a join point that matches a pointcut. During execution, when a joint point matches

a pointcut, the AspectJ runtime automatically invokes the advice associated with the

pointcut. In Figure 5.3, line 49-53 is an advice associated with the pointcut

runNewTestSuite. Therefore, before TestSuite.runTests() is called, a

message is written to log and PolicyCoverage.init() is called.

 Figure 5.3 shows the source code of PolicyTracer. The advice associated with

ruleEvaluationPointCut is omitted to save space.

Line 35-43 defines a pointcut runNewTest and an associated advice that calls

PolicyCoverageFactory.newRow(), adding a new row in the

coverageMatrix before every test starts.

31

Line 15-27 defines an advice that gets the XPath of a policy target or policy set

target, creates a Coverage object, and calls addCoverage() to add the Coverage

object into coverageMatrix.

32

Figure 5.3 Source code of PolicyTracer

Line 4-12 defines a pointcut ruleEvaluationPointCut and an associated

advice that gets the XPath of a rule, creates a Coverage object, and calls

addCoverage() to add the Coverage object into coverageMatrix.

Line 55-55 defines an advice that calls

PolicyCoverageFactory.setResults() to add the test results of the test suite

to PolicyCoverageFactory.testResults after TestSuite.runTests()

has finished.

Fault Localization

The component Fault Localization deals with fault localization. Figure

5.4 shows the UML diagram of this package.

33

Figure 5.4 UML Class Diagram of Component Fault Localization

The module SpectrumBasedFaultLoclizer calculates a suspicion score

for each policy element basing on the coverage matrix and test results. The coverage

information defined in the Coverage are Enum types. In order to calculate a score, the

values in the Enum types must be mapped to numbers. There can be different ways for

the mapping. In our implementation the “firing” criteria is used: a policy target or a

policy set target is fired if it is evaluated to be true; a rule is fired only if both the rule

target and condition are evaluated to be true. In TargetMatchResult, MATCH is

mapped to 1, other values are mapped to 0; in RuleDecisionCoverage,EFFECT is

34

mapped to 1, other values are mapped to 0. In addition, test results also need to be

mapped to numbers. If a test passes, the test result is mapped to 1, otherwise mapped to 0.

The mapping is done in the constructor of

SpectrumBasedFaultLocalizer. The coverageMatrix in

PolicyCoverageFactory is mapped to

SpectrumBasedFaultLocalizer.matrix, and testResults in

PolicyCoverageFactory. is mapped to

SpectrumBasedFaultLocalizer.verdicts.

Fourteen scoring methods are implemented. For example jaccard()

implements the scoring method jaccard. In the empirical study of fault localization,

sometimes it is desirable to be able to loop over a list of scoring methods. As in Java

language methods are not first class functions, this is implemented by way of reflection.

The method applyFaultLocalizeMethod(String) takes a scoring method

name as input, and invoke the scoring method using reflection.

PolicyElementCoefficient bundles the index, suspicion score and rank

of a policy element together, and used by SpectrumBasedDiagnosisResults,

which evaluates the effectiveness of a scoring method. The constructor of

SpectrumBasedDiagnosisResults sorts the policy elements by their suspicion

score and calls rankSuspicion(List<PolicyElementCoefficient>) to

give each policy element a rank according to their suspicion score. For example, suppose

the suspicion scores of 4 policy elements are [0.5, 0.4, 0.4, 0.1], then the rank of them is

[1, 2, 2, 4]. The method getNumberOfElementsToInspect(int) evaluates a

scoring method by calculating how many policy element must be inspected in the worst

35

case before the faulty policy element is found out. The input of this method is the index

of the faulty policy element. For example, suppose in the previous example the second

policy element is faulty, in the worst case three policy element must be inspected before

it is found out. And the method

getAverageNumberOfElementsToInspect(List<Integer>) calculates

when there are multiple faulty policy elements, on average how many policy elements

must be inspected in the worst case. Similarly, the input of this method is a list of indices

of the faulty policy elements.

The FaultLocalizationExperiment is for empirical study of the

performance of different scoring methods. It first generates or loads from hard drive a list

of mutants, then perform fault localization on each mutant, using several scoring

methods, and writes the number of policy elements to inspect of each pair of mutant and

scoring method to a CSV file. And in the last row of the CSV file, it appends the average

number of policy elements to inspect of each scoring method.

Mutation

The component Mutation deals with mutating XACML policies. Figure 5.5

shows the UML class diagram of package mutation.

36

Mutant

Figure 5.5 UML Class Diagram of Component Mutation

Mutant models a policy mutant. In the Balana implementation of XACML

engine, Policy class models a policy, and PolicySet class models a policy set. And

they both extends the AbstractPolicy class. A mutant is an XACML policy too. So

the Mutant class should have all the public methods and fields of AbstractPolicy.

Besides that, a mutant has faulty policy element, so Mutant should have a field that

37

stores the indices of faulty policy elements, and a getter method for the field. Meanwhile,

a mutant is created by mutating either a policy or a policy set, so a Mutant should

behave like either a Policy or a PolicySet, depending on which one it was created

from. Henceforth, Mutant is designed to extend the AbstractPolicy, and to have

an AbstractPolicy as data member, which can be an instance of Policy or

PolicySet. All the public methods of the data member are “forwarded” to inherited

methods. Figure 5.6 shows a simplified UML class diagram of these four classes. And

Mutant has a faultLocations field which stores the indices of faulty policy

elements, and a getter method for the field.

Figure 5.6 Simplified UML Class Diagram of AbstractPolicy, Policy, PolicySet

and Mutant

Mutator

The Mutator module is used for creating mutants from a Policy, a

PolicySet or a Mutant.

All the public methods starting with “create” in Mutator are methods

implementing a mutation operator. For example,

createRuleEffectFlippingMutants(String) implements the CRE mutation

https://www.draw.io/#G0B7-KNrwOqP-YWkhhcmlvb3JOYk0

38

operator in Table 4.3, which changes the effect of a rule from Permit to Deny, or vice

versa.

Because there are too many mutation operators, only a few typical mutation

operators’ implementation is described in this paper.

Figure 5.7 Implementation of CRC

Figure 5.7 shows how the mutation operator CRC is implemented.

Figure 5.8 Implementation of CRE

createCombiningAlgorithmMutants(xpathString)

 mutants = an empty list

 policyNode = xpath.evaluate(xpathString)

 originalCombiningAlgo = get rule combining algorithm of policyNode

 for each rule combining algorithm algo:

 if algo is not equal to originalCombiningAlg

 set rule combining algorithm in policyNode to be algo

 create a mutant and add to mutants

 set rule combining algorithm in policyNode to be originalCombiningAlg

 return mutants

createRuleEffectFlippingMutants (xpathString)

 mutants = an empty list

 ruleNode = xpath.evaluate(xpathString)

 originalEffect = get effect of ruleNode

 if originalEffect is equal to “Permit”

 set effect of ruleNode to “Deny”

 else

 set effect of ruleNode to “Permit”

 create a mutant and add to mutants

 set effect of ruleNode to be originalEffect

 return mutants

39

Figure 5.8 shows how the mutation operator CRE is implemented.

Figure 5.9 Implementation of PTT and RTT

Figure 5.9 shows how PTT (Policy Target True) and RTT (Rule Target True) is

implemented. Note that the code makes use of the XACML specification that an empty

target is always evaluated to be true.

From the above examples we can see that generally implementing a mutation

operator takes three steps: find the node to change and store its state; change the node and

create a mutant from the changed document; restore the node.

Repairing

The component Repairing deals with repairing faulty policy elements. Figure

5.10 shows the UML class diagram of this component.

The module PolicyRepairer repairs a faulty policy or policy set. The method

repairSmartly(PolicyMutant, String) repairs a faulty policy or policy set

by performing fault localization, generating mutants and looking for a mutant that passes

all tests. Figure 1.1 describes this process. Chapter 4 has a running example of this

process.

The mutation-based repair traverses a tree where the root is the faulty policy and

each node is a policy mutant. As the tree can be very large, it is pruned by excluding

those branches that are unlikely leading to a successful repair. If the policy mutant in the

createTargetTrueMutants(xpathString)

 mutants = an empty list

 targetNode = xpath.evaluate(xpathString)

 childNodes = an empty list

 remove all child nodes of targetNode and add into childNodes

 create a mutant and add to mutants

 add all nodes in childNodes into targetNode

 return mutants

40

current node passes all the tests, the repair is successful. If the set of tests failed by the

policy mutant is a subset of those failed by its parent, this mutant is considered an

intermediate fix. In this case, the current node shall be expanded, i.e., apply fault location

and mutation to the mutant. If this mutant is not an intermediate or final fix, the node will

not be expanded.

Another implementation issue is the order of mutation operators in which they are

applied to the sorted policy elements. We use (𝑃𝐸𝑖) to denote the set of mutants resulted

from applying mutation operators to the 𝑖-th suspicious policy element. When we run

tests against the mutants in the set (𝑃𝐸𝑖) and apply mutation operators to the j-th

suspicious policy element, the resultant set of mutants are denoted as (𝑃𝐸𝑖 , 𝑃𝐸𝑗). For

(𝑃𝐸𝑖1
, 𝑃𝐸𝑖2

, … , 𝑃𝐸𝑖𝑛
), the lesser (𝑖1 + 𝑖2 + ⋯ + 𝑖𝑛)is, the more suspicious this set of

mutants are. This is handled by a priority queue.

The method repairRandomOrder(PolicyMutant) follows a similar

process except that the list of suspicious policy element is not obtained from fault

localization, but generated randomly. And repairOneByOne(PolicyMutant) is

similar except that the list of suspicious policy elements is in the order they are in the

XACML policy.

The module ExperimentOnRepair performs experiment on repairing of an

XACML policy with only one faulty element. And the module

ExperimentMultiFault performs experiment on repairing of an XACML policy

with one or more faulty elements. The module MutantNode is used as a node in the

priority queue during repairing an XACML policy with one or more faulty elements.

41

Figure 5.10 UML Class Diagram of Component Repairing

42

CHAPTER SIX: EMPIRICAL STUDIES

The empirical studies aim to answer the following research questions: (a) Can

faulty XACML policies be repaired automatically? (2) How do the various scoring

methods for suspicion rankings affect time performance of automatic policy repair?

In this chapter, firstly the setup of the experiments will be described, then the

experiment results will be presented and analyzed.

Experiment Setup

Since faulty versions of real-world XACML policies are unavailable, the

experiments rely on mutants of XACML policies. Table 6.1 shows the list of subject

policies. In order to be representative, the subject policies used for experiment varies in

size. The number of lines of XML code (LOC) ranges from 227 to 12,803. The number

of rules ranges from 12 to 640. Continue is an access control policy for a conference

management system [19]; fedora is “an open source repository system for the

management and dissemination of digital content”; itrust is “a medical application that

provides patients with a means to keep up with their medical history and records as well

as communicate with their doctors”. itrustX (X=5, 10) are expanded versions of itrust

[20]. They have X times as many rules as itrust. The sizes of the policy files are believed

to be a good representation of real-world applications because a very large policy is often

decomposed into a number of manageable policy files.

The original subject policies are considered to be the correct version. The tests are

generated automatically from the original policies by the XPA tool using the MC/DC

43

criterion. For each test, its oracle value is the actual response to the access request

produced by the original policy. The mutants of each policy are also generated

automatically by the XPA tool. Each mutant is a variation of the original policy with one

or two faults seeded using the mutation operators in Table 4.3.

Note that mutation analysis is a common approach to the evaluation of software

testing and debugging techniques. Program mutation has the following hypotheses:

a. Mutants are based on actual fault models and are representative of real

faults

b. Programs written by developers are close to being correct. This is known

as the competent programmer hypothesis [21]

c. Tests that detect simple faults are also capable of detecting complex faults.

This is known as the coupling effect hypothesis [22].

Empirical studies have confirmed that program mutants are indeed similar to real

faults for evaluating testing techniques [23] [24]. We believe that the competent

programmer hypothesis and the coupling effect hypothesis are also applicable to

XACML policies. The mutants in Table 6.1 are representative of real faults because

mutation operators are defined over an actual fault model of XACML policies [14].

Table 6.1 Subject policies, tests, and mutants

Subject

Policy
LOC

No. of

rules
No. of

tests
Single fault

mutants
Two-fault

mutants
continue 229 15 27 75 5,625

fedora 227 12 31 74 5,471

itrust 1,283 64 197 324 972

itrust5 6,403 320 983 163 N/A

itrust10 12,803 640 1,965 328 N/A

44

The mutants are created by applying the mutation operators in Table 4.3 to the

correct subject policies. Table 6.1 only includes non-equivalent mutants. An equivalent

mutant has the same behavior as the original policy -- no failure would be reported when

it is executed against the given test suite. Thus, the policy repair problem is not

applicable to equivalent mutants. Note that the number of two-fault mutants grows

quickly with the increase of policy size due to the combinations of mutation operators.

The XPA tool is unable to complete the generation of all two-fault mutants for itrust5 or

itrust10 because of memory and disk space constraints. Due to the large number of

mutants, our experiments randomly selected 1% of the two-fault mutants of itrust, and

10% of the single fault mutants of itrust5 and itrust10.

Experiment Results and Analysis

The proposed approach is able to repair all mutants in Table 6.1, as the mutation

operators in Table 4.3 are reversible – a mutant created by one operator can be mutated

back to the original by the same or another mutation operator.

Table 6.2 and Table 6.3 show the average repair time of single fault mutants and

two-fault mutants, respectively. “Random” refers to the scoring method that ranks all

policy elements in a random fashion. It is used as a baseline method for identifying

suspicious elements.

For a small policy like continue, the performance difference between different

scoring methods is small, but for large policies the difference is significant. For example,

for the subject policy itrust10, the best scoring method, CBI-Inc, is about 4 times faster

than Tarantula, and almost 14 times faster than the random method. This is because larger

policies have more policy elements so the benefits of a better ranking (a ranking in which

45

the faulty policy element is at the top) is more obvious. Thus for a real world XACML

policy, the choice of scoring method is crucial to the performance of automated repair.

And by comparing Table 6.2 and Table 6.3 we can also see that repair time grows much

faster with the number of faults than with the number of rules, as the number of mutants

to be examined grows polynomially with the number of rules, but exponentially with the

number of faults.

Table 6.2 Repair time of single fault mutants (in seconds)

 continue fedora itrust itrust5 itrust10

CBI-Inc 0.053 0.073 0.496 14.813 77.165

Naish2 0.056 0.079 0.558 14.926 79.827

Sokal 0.1 0.109 0.645 23.988 124.178

Tarantula 0.051 0.068 1.367 53.517 370.067

Random 0.111 0.213 4.409 162.251 1149.35

Table 6.3 Repair time of two-fault mutants (in seconds)

 continue fedora itrust

CBI-Inc 0.539 0.371 6.659

Naish2 0.531 0.466 9.435

Sokal 2.240 1.042 15.265

Tarantula 0.497 0.418 46.831

Random 1.298 2.257 100.705

Figure 6.1 shows the cumulative distributions of repair time of single fault

mutants for itrust and itrust5. The x-axis stands for how much time it takes at most to

repair a mutant. The y-axis stands for the percentage of mutants that can be repaired

within a certain time. All mutants can be repaired eventually, so all curves eventually

approach 1.0. The steeper the curve is, the shorter time it takes to repair the mutants on

average.

46

For itrust mutants (on the left), nearly 20% can be repaired instantly. Most of

them can be repaired in 715 milliseconds using a non-random scoring method. CBI-Inc

and Naish2 are the most efficient. About 97% mutants can be repaired in 715

milliseconds. Using Tarantula, more than 80% of mutants can be repaired in 715

milliseconds. However, it takes 8 times more time to achieve the 80% repair rate when

the policy elements are ranked randomly.

Figure 6.1 Cumulative distribution of repair time of itrust and itrust5 mutants

For itrust5 mutants (on the right), most of them can be repaired in about 13

seconds. CBI-Inc and Naish2 have almost the same performance. Within 13 seconds,

both can achieve nearly 95% repair rate, while Sokal can repair more than 90% mutants

and Tarantula can repair about 75%. Thus if timeout is set to be 13 seconds, the

probability of fixing a faulty policy within the cutoff time is nearly 95%.

In brief, if a mutant can be fixed, a more efficient scoring method will make the

faulty elements appear higher in the suspicion rankings.

47

CHAPTER SEVEN: CONCLUSIONS

In this paper an approach to automatic repair of XACML policies is presented. It

first ranks suspicious policy elements according to the test execution information and

then attempts to mutate suspicious policy elements to make all tests pass. The proposed

approach also provides several scoring methods for suspicion ranking of policy elements.

They are an important factor in the overall time performance of automatic policy repair,

especially for policies of large size. The empirical studies show that our approach can

automatically repair faulty policies with one or two injected faults and that, among the

scoring methods, Naish2 and CBI-Inc have the best time performance.

This work offers the first yet promising attempt to develop techniques for

automatic repair of XACML policies although the current empirical studies are inherently

limited due to the general unavailability of real faults in real-world XACML policies and

the use of policy mutants with only one or two seeded faults. Nevertheless, more efficient

mutation-based repair techniques can be developed to deal with the search space problem

for large XACML policies with a number of faults. It is worth pointing out that automatic

repair is not meant to replace manual debugging of complex policies but to provide useful

hints on suspicious elements and potential fixes.

In this paper, the use of MC/DC test suite of XACML policy is thought to be

critical for the approach to be able to successfully repair the mutants with seeded faults.

For a real-world faulty policy under debugging, however, the test suite may not be

MC/DC adequate. Future research may focus on how the coverage and size of test suite

48

affects the success rate of automatic repair. To reduce the search space of mutation-based

repair, future research may also investigate coarse-grained mutation operators. The

current mutation operators in the proposed approach only make a small primitive change

at a time. A coarse-grained mutation can make multiple primitive changes. To do so,

further research can investigate typical patterns of policy target, rule targets, rule

conditions in real-world XACML policies and define coarse-grained mutation operators

with respect to these patterns.

49

REFERENCES

[1] Hu, V. C., et al. "SP 800-162. Guide to Attribute Based Access Control (ABAC)

Definitions and Considerations." Nat’l Inst. Standards and Technology, Jan

(2014): 800-162.

[2] OASIS, “eXtensible Access Control Markup Language (XACML) Version 3.0,”

http://www.oasisopen.org/committees/xacml/. 2013.

[3] Martin, E. and Xie. T. Automated Test Generation for Access Control Policies via

Change-Impact Analysis. In Proceedings of the Third International Workshop on

Software Engineering for Secure Systems. IEEE Computer Society, pp.5-11,

2007.

[4] Martin, E. and Xie. T. A Fault Model and Mutation Testing of Access Control

Policies. In Proc. of the 16th International Conference on World Wide Web.

ACM, pp. 667-676, 2007.

[5] Bertolino A, Lonetti F., Marchetti E., Systematic XACML Request Generation for

Testing Purposes, EUROMICRO Conference on Software Engineering and

Advanced Applications (SEAA), Lille 1-3 September 2010.

[6] Bertolino A., Daoudagh S., Lonetti F., Marchetti E. Automatic XACML Requests

Generation for Policy Testing, The Third International Workshop on Security

Testing (SecTest 2012), pp. 842 - 849. Montreal, QC, Canada, April 2012.

[7] Bertolino, A, Daoudagh, S, Lonetti, F, Marchetti, E. The X-CREATE Framework-

A Comparison of XACML Policy Testing Strategies, Proc. of the 8th

International Conference on Web Information Systems and Technologies

(WEBIST). pp. 155-160, 2012.

50

[8] Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E. XACMUT: XACML 2.0

Mutants Generator, Proc. of 2013 IEEE Sixth International Conference on

Software Testing, Verification and Validation Workshops, pp. 28-33, 2013.

[9] Li, Y.C., Li, Y., Wang, L.Z. and Chen, G. Automatic XACML Requests

Generation for Testing Access Control Policies. In Proc. of the 26th International

Conf. on Software Engineering and Knowledge Engineering (SEKE'14),

Vancouver. July 2014.

[10] Marmorstein, R., Kearns, P. Assisted Firewall Policy Repair Using Examples

and History. In Proc. of USENIX Large Installation System Administration

Conference (LISA), pp.1–11, 2007.

[11] Hwang, J., Xie, T., Chen, F., Liu, A.X. Fault Localization for Firewall Policies,

In Proc. of IEEE International Symposium on Reliable Distributed Systems

(SRDS). pp. 100–106, 2009.

[12] Chen, F., Liu, A. X. Liu, Hwang, J., Xie. T. First Step towards Automatic

Correction of Firewall Policy Faults. ACM Transactions on Autonomous and

Adaptive Systems, Vol. 7, No. 2, July 2012.

[13] Tang, C.M., Chan, W.K., Yu, Y.T. Extending the Theoretical Fault Localization

Effectiveness Hierarchy with Empirical Results at Different Code Abstraction

Levels. In Proc. of the 38th Conference on Computer Software and Applications

Conference (COMPSAC’14), pp. 161-170, Västerås, July 2014.

[14] Xu, D., Wang, Z., Peng, P., Shen, N. Automated Fault Localization of XACML

Policies, Proc. of the 21st ACM Symposium on Access Control Models and

Technologies (SACMAT’16), Shanghai, China, June 2016.

[15] RTCA/DO-178B, Software Considerations in Airborne Systems and Equipment

Certification. RTCA, Inc., Washington, D. C., December 1992.

[16] Xu, D., Shen, N., Wang Z. Coverage-Based Testing for Quality Assurance of

XACML Policies, IEEE Transactions on Dependable and Secure Computing,

Under review after revision.

51

[17] Balana, Open Source XACML 3.0 Implementation,

http://xacmlinfo.org/2012/08/16/balana-the-open-source-xacml-3-0-

implementation/, 2012.

[18] J. Jones, M. Harrold, and J. Stasko. Visualization of Test Information to Assist

Fault Localization. In Proc. of the 22th International Conference on Software

Engineering (ICSE’02), pp. 467–477, 2002.

[19] Fisler, K., Krishnamurthi, S., Meyerovich, L.A. and Tschantz, M.C. Verification

and Change-Impact Analysis of Access Control Policies. In Proc. of the 27th

International Conference on Software Engineering (ICSE’05). pp. 196-205, 2005.

[20] Xu, D., Zhang, Y., Shen, N. Fault-Based Testing of Combining Algorithms in

XACML3.0 Policies, In Proc. of the 27th International Conf. on Software

Engineering and Knowledge Engineering (SEKE'15), Vancouver. July 2015.

[21] DeMillo, R.A., Lipton, R.J., and Sayward, F.G. Hints on Test Data Selection:

Help for the Practical Programmer. IEEE Computer no. 11, pp. 34-41, 1978.

[22] Offutt, A.J. Investigations of the Software Testing Coupling Effect. ACM

Transactions on Software Engineering Methodology, vol. 1, pp. 5-20, Jan. 1992.

[23] Andrews, J.H., Briand, L.C., and Labiche, Y. Is Mutation an Appropriate Tool

for Testing Experiments? In Proc. 27th International Conference on Software

Engineering (ICSE’05), pp. 402-411, 2005.

[24] Just, R., Jalali,D., Inozemtseva, L., Ernst, M.D., Holmes, R. and Fraser, G. Are

Mutants a Valid Substitute for Real Faults in Software Testing? In Proc. of the

Symposium on the Foundations of Software Engineering (FSE’14), Hong Kong,

pp. 654-665, November 2014.

52

APPENDIX A

53

A.1 KmarketBluePolicy

<?xml version="1.0" encoding="UTF-8"?>

<Policy xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17"

PolicyId="KmarketBluePolicy"

RuleCombiningAlgId="urn:oasis:names:tc:xacml:3.0:rule-combining-algorithm:deny-

overrides" Version="1.0">

 <Target>

 <AnyOf>

 <AllOf>

 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">blue</AttributeValue>

 <AttributeDesignator AttributeId="http://kmarket.com/id/role"

Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true" />

 </Match>

 </AllOf>

 </AnyOf>

 </Target>

 <Rule Effect="Deny" RuleId="total-amount">

 <Condition>

 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:integer-greater-

than">

 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:integer-one-

and-only">

 <AttributeDesignator AttributeId="http://kmarket.com/id/totalAmount"

Category="http://kmarket.com/category"

DataType="http://www.w3.org/2001/XMLSchema#integer" MustBePresent="true" />

 </Apply>

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#integer">100</AttributeValue>

54

 </Apply>

 </Condition>

 <AdviceExpressions>

 <AdviceExpression AdviceId="deny-liquor-medicine-advice"

AppliesTo="Deny">

 <AttributeAssignmentExpression

AttributeId="urn:oasis:names:tc:xacml:2.0:example:attribute:text">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">You are not allowed to do

more than $100 purchase

 from KMarket on-line trading system</AttributeValue>

 </AttributeAssignmentExpression>

 </AdviceExpression>

 </AdviceExpressions>

 </Rule>

 <Rule Effect="Deny" RuleId="deny-liquor-medicine">

 <Target>

 <AnyOf>

 <AllOf>

 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">Liquor</AttributeValue>

 <AttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true" />

 </Match>

 </AllOf>

 <AllOf>

 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">Medicine</AttributeValue>

55

 <AttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true" />

 </Match>

 </AllOf>

 </AnyOf>

 </Target>

 <AdviceExpressions>

 <AdviceExpression AdviceId="deny-liquor-medicine-advice"

AppliesTo="Deny">

 <AttributeAssignmentExpression

AttributeId="urn:oasis:names:tc:xacml:2.0:example:attribute:text">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">You are not allowed to buy

Liquor or Medicine

 from KMarket on-line trading system</AttributeValue>

 </AttributeAssignmentExpression>

 </AdviceExpression>

 </AdviceExpressions>

 </Rule>

 <Rule Effect="Deny" RuleId="max-drink-amount">

 <Target>

 <AnyOf>

 <AllOf>

 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">Drink</AttributeValue>

 <AttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true" />

56

 </Match>

 </AllOf>

 </AnyOf>

 </Target>

 <Condition>

 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:integer-greater-

than">

 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:integer-one-

and-only">

 <AttributeDesignator AttributeId="http://kmarket.com/id/amount"

Category="http://kmarket.com/category"

DataType="http://www.w3.org/2001/XMLSchema#integer" MustBePresent="true" />

 </Apply>

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#integer">10</AttributeValue>

 </Apply>

 </Condition>

 <AdviceExpressions>

 <AdviceExpression AdviceId="max-drink-amount-advice" AppliesTo="Deny">

 <AttributeAssignmentExpression

AttributeId="urn:oasis:names:tc:xacml:2.0:example:attribute:text">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">You are not allowed to buy

more tha 10 Drinks

 from KMarket on-line trading system</AttributeValue>

 </AttributeAssignmentExpression>

 </AdviceExpression>

 </AdviceExpressions>

 </Rule>

 <Rule RuleId="permit-rule" Effect="Permit" />

</Policy>

57

A.2 A Sample Request for KmarketBluePolicy

<?xml version="1.0" encoding="UTF-8"?>

<Request xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17"

CombinedDecision="false" ReturnPolicyIdList="false">

 <Attributes Category="http://kmarket.com/category">

 <Attribute AttributeId="http://kmarket.com/id/totalAmount"

IncludeInResult="false">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#integer">0</AttributeValue>

 </Attribute>

 </Attributes>

 <Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-

category:resource">

 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

IncludeInResult="false">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">k</AttributeValue>

 </Attribute>

 </Attributes>

 <Attributes Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-

subject">

 <Attribute AttributeId="http://kmarket.com/id/role"

IncludeInResult="false">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">blue</AttributeValue>

 </Attribute>

 </Attributes>

</Request>

