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ABSTRACT 

In a complex information system, controlling the access to resources is 

challenging. As a new generation of access control techniques, Attribute-Based Access 

Control (ABAC) can provide more flexible and fine-grained access control than Role-

Based-Access Control (RBAC). XACML (eXtensible Access Control Markup Language) 

is an industrial standard for specifying ABAC policies. XACML policies tend to be 

complex because of the great variety of attribute types for fine-grained access control. 

This means that XACML policies are prone to errors and difficult to debug. This paper 

presents a first attempt at automating the debugging process of XACML policies. Two 

techniques are used for this purpose: fault localization and mutation-based policy repair. 

Fault localization produces an ordered list of suspicious policy elements by correlating 

the test results and the test coverage information. Mutation-based policy repair searches 

for potential fixes by mutating suspicious policy elements with predefined mutation 

operators. Empirical studies show that the proposed approach is able to repair various 

faulty XACML policies with one or two seeded faults. Among the scoring methods for 

fault localization that are studied in the experiment, Naish2 and CBI-Inc are the most 

efficient.
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CHAPTER ONE: INTRODUCTION 

Background 

Access control is a mechanism for regulating user access to resources in an 

information system. As information systems are getting more and more complex, it is 

highly desirable to separate access control policies from system functionality since the 

functionality is subject to frequent changes. Another benefit of the separation is that 

access control policies can be changed on the fly without re-compiling. 

Attribute-based access control (ABAC) grants or denies access based on various 

attributes of authorization elements[1], including predefined characteristics of subjects 

(e.g., job title and age), resources (e.g., data, programs, and networks), actions, and 

environments (e.g., current time and IP address). Thus ABAC offers a flexible and fine-

grained access control.  

XACML (eXtensible Access Control Markup Language) is a standard 

specification language for ABAC, which was proposed by OASIS [2]. XACML supports 

a variety of data types and functions for specifying attributes and their operations. While 

XACML policies allows for fine-grained access control, the complexity makes it more 

prone to faults caused by misunderstanding of requirements, coding errors during 

development and maintenance phase. Faults in XACML policies can cause serious 

consequences such as unauthorized accesses or denial of service.  

Several methods have been proposed to generate test inputs (i.e., access requests) 

from a given XACML policy [3][4][5][6][7][8][9]. The expected responses (or oracle 
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values) are determined by examining access control requirements. A policy’s actual 

response to a test input is compared with the oracle value. A test fails if the actual 

response is different from the oracle.  

The debugging of XACML policies can happen in multiple phases in the system 

life cycle, including development, maintenance and operation. During the development 

phase, tests are created according to access control requirements. Before the deployment 

of the system, the tests are executed for verification and validation. During system 

maintenance, when security or functional requirements are changed, the XACML policy 

is run against the regression tests to find out broken tests or faults introduced by the 

changes. After the system is put into operation, there still might be residual faults as 

current testing and verification technologies cannot guarantee to eliminate all faults. 

When unexpected access control decisions are observed, we can find out the actual access 

requests that triggered the residual faults in the system logs. These access requests are 

similar to the tests in development and maintenance phases, and can be added to the 

regression test suite. 

Test failure provides little insight in which element in the XACML policy is 

wrong. Actually testing is not concerned with finding out where the faults are and how to 

fix them. The activity of finding out faults and fixing them is often referred to as 

debugging. Similar to debugging a program, debugging an access control policy can be 

difficult and frustrating, especially when the access control logic is complex and the 

access control policy is large. Debugging an access control policy often relies on trial and 

error, especially when there are multiple faults. Thus a technique that automatically 

locates faulty elements in an XACML policy and fixes them is highly desirable. 
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Problem Definition 

The policy repair problem is formulated as follows: given a faulty XACML policy 

(or policy set), along with a test suite where at least one test fails when executed against 

the policy (or policy set), make one or more changes to the faulty policy (or policy set) so 

that the revised policy will pass all the tests.  

The above definition assumes an adequate test suite, which is not always true in 

reality. Intuitively, the more adequate the test suite is, the better the policy repair 

performs. As mentioned before, the test cases of an XACML policy may come from 

policy testing during system development and maintenance or from actual access requests 

in an operational system. Each test consists of test input (access request) and oracle value. 

The oracle value is used to determine whether the test passes or fails. An access request 

consists of attribute names, data types, and values. 

It is possible that an attribute name, data type, or value in an access request is 

invalid. The response to such a request is typically NotApplicable or Indeterminate. In an 

operational system, access requests with invalid attribute names or values may come 

from malicious users who attempt to gain unauthorized access or render the system out of 

service. During the development and maintenance stages, policy testing should include 

not only normal test inputs but also tests with invalid attribute names and values. 

In the empirical studies, for each subject policy, tests are generated automatically 

to achieve the Multi-Condition/Decision Coverage (MC/DC). MC/DC originated from 

NASA’s RTCA/DO-178B document, which requires level-A aviation software to achieve 

MC/DC of the software structure [15]. Prior works has applied MC/DC to automatic test 

generation of XACML policies in order to achieve high assurance of XACML policies 
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[16]. The MC/DC test suite of an XACML policy satisfies the MC/DC of each policy (or 

policy set) target, each rule target, and each rule condition. It also includes a test to make 

each policy (or policy set) target and each rule to evaluate to error (i.e., to cover the 

Indeterminate decisions). 

Proposed Approach 

The proposed approach to repair a faulty XACML policy includes two major 

steps: fault localization and mutation-based repair.  

As shown in Figure 1.1, the proposed approach to policy repair is an iterative 

process because there might be multiple faults in the faulty policy. The approach first 

produces a list of suspicious policy elements by fault localization, and then generates 

mutants by applying mutation operators to the ranked suspicious elements, starting from 

the most suspicious one. If a mutant is a plausible fix, the process is repeated, otherwise 

the next mutant is tried. The repair fails when all mutants have been tried and none of 

them is a fix. 
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Figure 1.1 Process of Automatic Repair 

As illustrated in Figure 1.1, the first step of each iteration is ranking suspicious 

elements in a policy. This is accomplished by fault localization. As shown in Figure 1.2, 

a faulty policy P and a test suite are given as input. Each test in the test suites consists of 

an XACML request and the oracle value (expected decision). Given an XACML policy 

and an XACML request as input, XACML engine will output a decision. Test results are 

produced by comparing the actual decision and the oracle value. Meanwhile, coverage 

information is collected. Then a coverage matrix is built by combining the test results and 

coverage information. From the coverage matrix the suspicion score of each policy 

element can be calculated using a scoring method. Finally the policy elements are sorted 

by their corresponding suspicion scores, producing a sorted list of suspicious elements. 



6 

 

 

 

 
Figure 1.2 Process of Fault Localization 

Chapter 4 will describe illustrate the fault localization, mutation based repair 

process in more details with a running example. 

Outline 

The remainder of this paper is organized as follows. Chapter 2 summarizes related 

work about the research topic. Chapter 3 gives an introduction to the structure of 

XACML policies, and illustrates it with an example. Chapter 4 describes the proposed 

approach with a running example then presents the general process. Chapter 5 elaborates 

on the implementation. Chapter 6 reports the empirical studies. Chapter 7 concludes this 

paper.
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CHAPTER TWO: RELATED WORK 

The existing work on policy debugging focuses on firewall policies. Marmorstein 

et al. used failed tests to locate faulty rules in a small firewall policy containing only 

several rules [10]. It does not identify faulty rules according to different fault types. 

Hwang et al. used failed tests to find the potential faulty rules based on structural 

coverage of firewall rules [11]. Two types of faults, wrong decisions and wrong 

predicates, were considered. In our approach, both passed and failed tests are used. Chen 

et al. proposed an approach to automatic correction of five types of faulty firewall rules: 

wrong order, missing rules, wrong predicates, wrong decisions, and wrong extra rules 

[12]. Part of this approach converts the given firewall rules into a firewall decision 

diagram (FDD) as a compact representation for reasoning about faulty rules. Compared 

to firewall rules, XACML policies are much more complex. Firewall rules are defined 

over a fixed set of network attributes and primarily specified in propositional logic, while 

rules in XACML policies are specified with predicates and functions with various data 

types. 

Various fault localization techniques have been proposed for software debugging. 

This paper has adapted the scoring methods from spectrum-based fault localization (i.e., 

SBFL) for software debugging [13]. A program spectrum is an execution profile that 

indicates which parts of a program are active during a run. SBFL analyzes the differences 

in program spectra for passed and failed runs. Although the scoring methods in our 
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approach are from SBFL, the variables are defined upon firing of policy elements, not 

coverage of policy elements. 

Several testing methods have been proposed to generate test inputs from XACML 

policies [3] [4][5][6][7][8][9]. Testing is concerned with whether or not there are faults, 

whereas our work is concerned with how to locate and fix the faults. It is worth pointing 

out that the existing testing methods all use policy mutation to evaluate testing 

effectiveness. This paper, however, exploits mutation to fix faults. Our prior work has 

investigated coverage-based and firing-based approaches to fault localization of XACML 

policies [14]. It shows that firing-based fault localization outperforms coverage-based 

fault localization. Based on this result, this paper takes a step further to apply firing-based 

fault localization to rank policy elements for repair purposes.
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CHAPTER THREE: XACML POLICIES 

Structure of XACML Policies 

The basic elements in XACML 3.0 language model are policy set, policy, rule, 

target, condition and combining algorithm [2]. Figure 3.1 shows the relationships 

between the main elements of XACML3.0. 

 
Figure 3.1 Language elements of XACML 3.0[14] 

At the root of each XACML document is a policy or policy set. A policy or policy 

set defines the circumstances under which whether an access request should be granted. 

A policy set contains a target, a combining algorithm, and one or more policies or policy 

sets. The target decides if the XACML document is applicable to an access request. 

Policy combining algorithms include deny-overrides, permit-overrides, 

deny-unless-permit, permit-unless-deny, first-applicable, and 

only-one-applicable, etc. The combining algorithms combines the decisions of 

individual component policies or policy sets to form a final decision. For example, when 
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the combining algorithm is deny-overrides and there is one component policy that 

evaluates to Deny, then the authorization decision of the whole policy set will be Deny, 

regardless of the decisions of other component policies. 

Similarly, a policy contains a target, a combining algorithm, and one or more 

rules. A rule is the smallest unit of decision making. In addition to a target, a rule also 

contains an effect and a condition. The effect is either Permit or Deny. And the condition 

is a boolean expression which refines the applicability. As shown in Table 3.1, given an 

access request, the response of a rule can be Permit, Deny, NotApplicable or 

Indeterminate. The response is NotApplicable when the access request doesn’t match 

with the target or condition of the rule. And the response is Indeterminate only when an 

error occurs during the evaluation. 

Table 3.1 Response of a Rule  

target condition effect response 

false - - NotApplicable 

true false - NotApplicable 

true true Permit Permit 

true true Deny Deny 

 

In addition, a rule, policy, or policy set may have one or more obligation or advice 

expressions. This paper will not discuss about obligation and advice as they are irrelevant 

to the topic. 

A Sample XACML Policy 

Figure 3.2 shows an example XACML policy named KmarketBluePolicy (line 2). 
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Figure 3.2 A Sample XACML Policy 

The rule combining algorithm is deny-overrides (line 2). The policy’s target 

(lines 3-12) means role=”blue”, where role is an attribute in the subject 

category and its type is string. There are four rules: total-amount (line 13), 

deny-liquor-medicine (line 31), max-drink-amount (line 57), and permit-

rule (line 85). The policy target and rules are summarized in plain text in Table 3.2. 

The policy target (denoted as PT) is role=”blue”. For rule total-amount, its 

effect is Permit, its target is totalAmount>100, and its condition is omitted. Its 

decision would be Permit if totalAmount>100 evaluates to true. Similarly, rule 

deny-liquor-medicine would result in a Deny decision if resource-

id>Liquor ∨ resource-id=Medicine evaluates to true. Rule max-drink-

amount has both target and condition components. Its decision would be Deny if both 

its target and condition evaluate to true (i.e., resource-id=Drink ∧ amount>10). 
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Rule permit-rule has neither a target nor a condition. It results in a Permit decision 

whenever it is applied. 

Table 3.2 Main Policy Elements in the Sample Policy 

Policy Element Target Condition Effect 

Policy Target(PT) role = Blue -  

total-amount totalAmount > 100 - Permit 

deny-liquor-

medicine 

Resource-id > “liquor” 

∨ resource-id = 

“medicine” 

- Deny 

max-drink-amount Resource-id = “drink” account > 10 Deny 

permit-rule - - Permit 

 

Similar to the case of policy set, the authorization decision of a policy depends 

not only on the target and rules, but also on the rule combining algorithm. In this 

example, if the rule deny-liquor-medicine evaluates to Deny, the whole policy 

will evaluates to Deny, as the rule combining algorithm is deny-overrides. In such 

case, the remaining rules in the policy will be skipped since their decision won’t affect 

the overall decision. 

Note that although Policy Decision Point (PDP) outputs only 3 kind of decisions: 

Permit, Deny and Indeterminate, internally Indeterminate is divided into 3 different 

decisions: Indeterminate {P}, Indeterminate {D} and Indeterminate {DP}. A rule or 

policy produces a Indeterminate {P} when an error occurred during evaluation, and the 

decision would be Permit if the error had not occurred. Similarly, a rule or policy 

produces a Indeterminate {D} when an error occurred during evaluation, and the decision 

would be Deny if the error had not occurred. An Indeterminate {DP} is produced when 
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Indeterminate {P} and Indeterminate {D} are combined. To make full use of coverage 

information from the PDP, all 6 kinds of decisions are used and a strict matching strategy 

is adopted, e.g. a test is deemed as failed if the oracle is Indeterminate {D} and the actual 

result is Indeterminate {P}.
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CHAPTER FOUR: AUTOMATIC REPAIR OF XACML POLICIES 

A Running Example 

Consider the sample XACML policy in Chapter 3. It has two faults:  

a. The effect of rule total-amount should be Deny, not Permit;  

b. The target of rule deny-liquor-medicine should be resource-

id=“Liquor” ∨ resource-id=“Medicine”, not resource-

id>“Liquor” ∨ resource-id=“Medicine”.  

The original version of KmarketBluePolicy is one of the policies in a 

demonstration application of Balana [17], which is currently the only open-source 

implementation of XACML 3.0.  

Table 4.1 shows the MC/DC test suite generated automatically from the correct 

version of KmarketBluePolicy by the open source XPA (XACML Policy Analyzer) tool1. 

The valid attribute names in access requests are role, resource-id, amount, and 

totalAmount. A test input may also consist of invalid attribute names and their 

attribute values. In Table 4.1, there are seven tests where all attribute names are valid. 

Each of the remaining tests (Test 1, 3, 5, 10) includes an invalid attribute name. The 

invalid attribute names are generated randomly to produce error conditions when the 

policy is tested. In this case, XPA simply uses Indeterminate as the attribute value, which 

indicates that an error occurrence is expected during policy testing. 

                                                 

1 https://github.com/dianxiangxu/XPA. It includes the policies and test suites used in this paper. 
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Table 4.1 Test suite for the sample policy 

No 
Input (attribute names and values in request) Oracle 

Value role resource-id amount total 

Amount 
invalid attribute, value 

1         nzocphnmz1, 

Indeterminate 
NotApplicable 

2 ak      0  NotApplicable 

3 
Blue      0 6m9dv7gdw6, 

Indeterminate 
Indeterminate 

{DP} 

4 Blue k  0  Permit 

5 
Blue Drink  0 j4yxpw95g1, 

Indeterminate 
Indeterminate 

{DP} 

6 Blue Drink 0 0  Permit 

7 Blue Drink 11 0  Deny 

8 Blue Liquor  0  Deny 

9 Blue Medicine  0  Deny 

10 
Blue    o5eqqyvjdx, 

Indeterminate 
Indeterminate 

{DP} 

11 Blue   101  Deny 

 

When the test suite in Table 4.1 is executed with the sample policy in Chapter 2, 

Test 5, 6, 8, and 11 shall fail. Consider Test 11, where role=”Blue” and 

totalAmount=101, the oracle value is Deny. However, the actual response of the 

faulty policy is Permit because the effect of rule total-amount is Permit.  

The goal is to repair the given KmarketBluePolicy policy such that the revised 

policy will pass all the tests in Table 4.1. Ideally, the revised policy will be identical to 

the original KmarketBluePolicy in Balana’s Kmarket demonstration application. 

The first step is to determine the policy elements (including the policy target, and 

individual rules, and the rule combining algorithm) that likely contain the faults. This is 

achieved by ranking all policy elements according to their suspicion scores obtained from 

the correlation between the firing information of policy elements and the test execution 

results (i.e., pass and fail). The higher the score, the more likely that the policy element is 

faulty.  
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A policy target (or policy set target) is said to be fired by a test if it is evaluated to 

true when the test is executed. A rule is said to be fired by a test if its target and condition 

are both evaluated to true when the test is executed. Note that the rule combining 

algorithm will always be evaluated. Therefore, the firing information of rule combining 

algorithm is not meaningful. Its suspicion score can be defined in different ways (e.g., 

highly suspicious or least suspicious). For simplicity, herein the rule combining algorithm 

is treated as the most suspicious element in a policy and attempts to change the rule 

combining algorithm first. The reason is that the number of repair attempts is small as 

there are only 11 rule combining algorithms. 

Table 4.2 Firing of the policy target and rules in the sample policy 

Test 

No 

Firing of policy target and rules Test  
Result 

PT 
total-

amount 
deny-liquor-

medicine 
max-drink-

amount 
permit-

rule 
1      Pass 

2      Pass 

3 x    x Pass 

4 x    x Pass 

5 x  x   Fail 

6 x  x   Fail 

7 x  x   Pass 

8 x    x Fail 

9 x  x   Pass 

10 x    x Pass 

11 x x   x Fail 

Starantula 0.583 1.0 0.636 0.0 0.538  

 

Table 4.2 shows the firing information of the policy target and each rule in the 

sample policy when the test suite in Table 4.1 is executed, where ‘x’ means that the 

policy element in the given column is fired by the test in the given row. The set of failed 
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tests is {Test 5, Test 6, Test 8, Test 11}. To correlate policy elements with test results, the 

following four variables are associated with each policy element: 

 𝑎00: number of passed tests in which the policy element was not fired  

 𝑎01: number of failed tests in which the policy element was not fired 

 𝑎10: number of passed tests in which the policy element was fired   

 𝑎11: number of failed tests in which the policy element was fired 

For each policy element, the subscript 𝑖 in 𝑎𝑖𝑗 refers to whether the policy element 

is fired (𝑖 =1) or not (𝑖 =0), whereas 𝑗 is concerned with the number of passed tests (𝑗 =0) 

or failed tests (𝑗 =1). For each policy element, a suspicion score is calculated by feeding 

𝑎𝑖𝑗 to a scoring method and then sort all policy elements in the descending order of their 

scores. For example, the suspicion scores of the policy target and rules in Table 4.2 are 

0.583, 1.0, 0.636, 0, and 0.538, respectively when the following Tarantula scoring 

method [18] is applied: 

𝑆𝑇𝑎𝑟𝑎𝑛𝑡𝑢𝑙𝑎 =

𝑎11

𝑎11 + 𝑎01
𝑎11

𝑎11 + 𝑎01
+

𝑎10

𝑎10 + 𝑎00

 

The resultant ranking is <total-amount, deny-liquor-medicine, PT, permit-rule, 

max-drink-amount >. Then the rule combining algorithm (denoted as CA) is put at the 

beginning of the rankings. Therefore, the complete suspicion ranking of all policy 

elements is <CA, total-amount, deny-liquor-medicine, PT, permit-rule, max-drink-

amount>. 

Next step would be repairing the faulty policy according to the suspicion rankings 

of the policy elements. The faulty policy is repaired by changing the suspicious policy 

elements, starting from the most suspicious one. Herein the action of changing a policy is 
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referred as policy mutation and a revised policy as a policy mutant. Policy mutation is 

performed by applying predefined mutation operators to the current policy. Mutation 

operators are defined with respect to the constructs of policy elements. Table 4.3 shows 

the mutation operators used in the current approach. Each operator aims at fixing a 

particular type of faults in a policy element. 

   Table 4.3 Mutation operators and target faults.  

Operator Meaning Fault to be fixed  

Change Rule Combining 

algorithm (CRC)  
Replace the existing rule combining 

algorithm with another rule 

combining algorithm 

Wrong rule combining algorithm 

Change Rule Effect 

(CRE)  
Change the rule effect by replacing 

permit with deny or deny with 

permit 

Wrong rule effect 

Add Negation Function 

(ANF) 
add the not function as the first 

function of a rule condition element 
Missing negation in a condition 

element 

Remove Negation 

Function (RNF) 
Remove the not function in a rule 

condition 
Extra negation in a condition 

element 

Replace Comparison 

Function (RCF) 
Replace the comparison function in 

a target with a different one 
Wrong comparison function in 

target 

Change Comparison 

Function (CCF) 
Change a comparison function in 

rule condition 
Wrong comparison function in 

rule condition 

 

In the above example, the rule combining algorithm is assumed to be the most 

suspicious element. So the mutation operator CRC (change rule combining algorithm) is 

applied to the faulty policy first. Consider changing the rule combining algorithm from 

deny-overrides to permit-overrides. The resultant policy mutant is denoted 

as CRC1. Run the test suite against CRC1 and CRC1 will fail the following set of tests 

{Test 3, Test 5, Test 7, Test 8, Test 9, Test 10, Test 11}. Apparently CRC1 is not a valid 

repair. As it is unknown how many faults are there in the policy, however, CRC1 might 

be a step toward the right direction or it might have introduced another fault. In the 

former case, the debugging process should be repeated until the faulty policy is repaired 

successfully. In the latter case, we would want to give it up and try other policy mutants. 
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Assuming that multiple faults in the same policy are independent, whether or not the 

mutation is in the right direction can be determined by examining the set of failed tests. 

The mutant is considered to be a plausible intermediate fix if the set of tests failed by the 

policy mutant is a subset of the tests failed by the faulty policy before the mutation. 

Apparently, CRC1 is not a plausible fix because it fails more tests than the example 

faulty policy does. As there are other candidate rule combining algorithms, we continue 

to create new CRC mutants and evaluate if any of these mutants is a plausible fix.  

For KmarketBluePolicy, it turns out that none of the CRC mutants is a plausible 

fix. So now all possible attempts about the most suspicious policy element are completed.  

Now we move on to the next candidate element – the rule total-amount. Since a rule 

has several components (target, condition, and effect), there can be a number of 

applicable mutation operators. For simplicity, here we first consider the mutation 

operator CRE (change rule effect). The mutant after applying CRE to the rule total-

amount is denoted as CRE1, where the rule effect is changed from permit to deny. 

Running the test suite against CRE1 will result in the following set of failed tests: {Test 

5, Test 6, Test 8}, as shown in Table 4.4. This is a subset of the failed tests in Table 4.2. 

Thus, CRE1 is a plausible fix. Then we continue to apply the above debugging process to 

CRE1. Specifically, we create new suspicion rankings of the policy elements in CRE1 

except for the rule combining algorithm because it is already shown non-promising as 

discussed before. According to Table 4.4, the suspicion rankings are <deny-liquor-

medicine, PT, permit-rule, total-amount, max-drink-amount>.   

Table 4.4  Suspicion scores of policy elements in CRE1 

Test 

No 

Firing of policy elements Test 
 Result 

PT 
total-

amount 
deny-liquor-

medicine 
max-drink-

amount 
permit-

rule 
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1      Pass 

2      Pass 

3 x    x Pass 

4 x    x Pass 

5 x  x   Fail 

6 x  x   Fail 

7 x  x   Pass 

8 x    x Fail 

9 x  x   Pass 

10 x    x Pass 

11 x x    Pass 

Starantula 0.571 0.0 0.727 0.0 0.471  

 

Now the repair attempt focuses on the rule deny-liquor-medicine in 

CRE1. The applicable mutation operators are CRE (change rule effect) and RCF (replace 

comparison function in target). CRE is not promising. Instead, a RCF mutant that 

replaces the function “string-greater-than” to “string-equal” will pass all the tests. This 

mutant, named CRE1_RCF2_1, is a successful repair of the faulty policy 

KmarketBluePolicy. And it is identical to the original policy KmarketBluePolicy. 

General Process for Automatic Policy Repair  

Figure 1.1 shows the general process of automatic policy repair. The two key 

techniques of automatic policy repair are fault localization and mutation-based repair. 

Fault localization aims to rank all policy elements according to their suspicion scores 

obtained from the correlation between the firings of policy elements and the test results. 

In the running example, the Tarantula scoring method is used. In fact, there are various 

scoring methods. Table 4.5 summarizes the scoring methods implemented in the 

proposed approach. Tarantula [18] is one of the pioneer tools for software fault 
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localization. Naish2 and CBI-Inc are among the best performing methods for software 

fault localization, whereas Sokal is among the average ones [13]. These representative 

methods are adapted for use in the fault localization of XACML policies and their 

performance are compared from the perspective of automatic policy repair.  

Mutation-based repair applies mutation operators to each suspicious policy 

element in order to find an intermediate or final fix. If a policy mutant passes all the tests, 

it is a final fix. In this case, the faulty policy has been repaired successfully. If a policy 

mutant fails some tests that are a subset of the failed tests before the mutation, it is 

considered a plausible intermediate fix in the right direction. In this case, we continue to 

apply the debugging process to the policy mutant. However, if no fix is found for the 

current suspicious element after applying all mutation operators, the next suspicious 

policy element is selected for further mutation. If no fix is found after all policy elements 

have tried, then the faulty policy cannot be repaired by the approach. 

Table 4.5 Scoring methods for fault localization 

Method Name Formula 

CBI-Inc 𝑎11

𝑎11 + 𝑎10

−
𝑎11 + 𝑎01

𝑎11 + 𝑎01 + 𝑎10 + 𝑎00

 

Naish2 𝑎11 −
𝑎10

𝑎10 + 𝑎00 + 1
 

Sokal 2(𝑎11 + 𝑎00)

2(𝑎11 + 𝑎00) + 𝑎01 + 𝑎10

 

Tarantula 𝑎11

𝑎11 + 𝑎01
𝑎11

𝑎11 + 𝑎01
+

𝑎10

𝑎10 + 𝑎00

 

 

The proposed approach is not intended to repair all possible faulty policies 

automatically due to the theoretical and implementation challenges. Automatic policy 

repair essentially tries to search all possible mutants of the faulty policy. For a policy 

with 𝑛 faults, the mutation operators may be applied to each policy element for up to 𝑛  
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times. The number of possible mutants grows exponentially with the number of faults 

(i.e., the number of repetitions that mutation is applied). For a multi-fault policy with a 

large number of policy elements, it could be too slow to be of practical use when no fix 

can be found. The proposed approach can estimate remaining time, and allows using a 

predefined timeout to terminate the search. Nevertheless, as will be shown in the 

empirical studies, our approach can repair faulty XACML policies with one or two 

seeded faults.



23 

 

CHAPTER FIVE: IMPLEMENTATION 

This chapter presents how the proposed approach to policy repair is implemented. 

The program architecture consists of four major components: Coverage Analysis, 

Fault Localization, Mutation, and Repairing.  

Coverage Analysis 

The component Coverage Analysis deals with running tests and collecting 

coverage information. There are four modules in this component: Coverage, 

TestSuite, PolicyCoverageFactory, and PolicyTracer. Figure 5.1 shows 

the UML class diagram of this component. 

Coverage 

The coverage information of rules and targets are defined differently, so there are 

two kinds of coverage information: RuleCoverage and TargetCoverage. They are 

modeled as two classes and they both extend the abstract class Coverage, so that both 

kind of coverage information can be handled in a uniformed way.  

There can be only three evaluation results of a target: MATCH, NOT_MATCH and 

INDETERMINATE. The evaluation result is INDETERMINATE when an error occurred 

during the evaluation. If no error occurred during the evaluation, and the target is 

evaluated to be true, the evaluation result is MATCH, otherwise it is NOT_MATCH. So 

evaluation result of a target is modeled as Enum type TargetMatchResult. 
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The coverage information of a rule is more complex as a rule has a target and a 

condition, the coverage of which must be both taken into account. As summarized in 

Table 3.1, when a rule is evaluated, the target is evaluated first, and the condition is 

evaluated only if the target is evaluated to be true. 

 

Figure 5.1 UML Class Diagram of Package Coverage 

The evaluation results of an individual target and condition can be defined in a 

uniformed way: The result is TRUE if the target or condition is evaluated to be true; 
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FALSE if it is evaluated to be false; ERROR if an error occurred during evaluation. And 

there are two additional cases: EMPTY if the target or condition is an empty element, 

which can be regarded as a special case of TRUE; NOT_EVALUATED if the target or 

condition is not touched by the test. A target is not touch if the evaluation has finished 

before this target is reached. A condition is not touched if the result of the target is 

FALSE or ERROR. This uniformed representation of evaluation results is modeled as 

Enum type IntermediateCoverage. 

The coverage information of a rule is a combination of that of the target and 

condition in that rule. Rule coverage can be defined in two ways, with different 

granularity.  

One way is to define it in the same way as in Table 3.1, except that the result 

would be INDETERMINATE if an error occurred during the evaluation of either the 

target or the condition. This is modeled by Enum type RuleDecisionCoverage. 

Another definition is more fine grained: the result is FALSE_TARGET if the 

target is evaluated to be false; FALSE_CONDITON if the condition is evaluated to be 

false; ERROR_TARGET if an error occurred during the evaluation of the target; 

ERROR_CONDITON if an error occurred during the evaluation of the condition; 

BOTH_TRUE if both are evaluated to be true. This is modeled in Enum type 

CombinedCoverage. 

TestSuite 

The module TestSuite models a test suite generated from an XACML policy. 

It consists of a list of XACML requests and a list of corresponding oracle values.  Each 
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pair of request and oracle value is a test. In addition, a list of request notes is defined in 

the class to ease debugging. A request note is used as an annotation of a request.  

A test suite can be created from the code that generates test suites from XACML 

policies or loaded from hard drive. The second way allows users to load previously saved 

auto-generated tests, or to load manually created tests, which is handy for debugging 

purpose. A saved test suite consists of a CSV file and some XACML request files. In the 

CSV file, in the first column are file paths to requests, which are XML files, and in the 

second column are oracle values. 

The runTests() method runs the test suite on an XACML policy, and it calls 

the private method runTest() to run a single test in the test suite. Both methods are 

instrumented by AspectJ to collect coverage information while the tests are running. 

runTest() in turn calls PolicyRunner.evaluate() to evaluate an XACML 

request against an XACML policy. 

PolicyCoverageFactory and XpathSolver 

The PolicyCoverageFactory module is a “global variable” to store 

coverage information. All the data and method members in this module are static.  

PolicyCoverageFactory has a coverageMatrix to store a matrix of 

Coverage objects. The number of rows is equal to the number of tests in the 

TestSuite, and the number of columns is equal to the number of policy elements in 

the XACML policy. An example of coverageMatrix is the one in Table 4.2. 

PolicyCoverageFactory also has results, a list of booleans, to store test 

results. The size of results is equal to number of tests in the TestSuite.  
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PolicyCoverageFactory.init() is called when a test suite starts to run, 

and initialize the coverageMatrix with an empty list. The newRow() method is called 

when a test starts to run, and adds a new row in the coverageMatrix. The 

addCoverage() method is called when a policy element is touched by a test, and 

inserts a Coverage object to the last row in the coverageMatrix. 

When adding the Coverage of a policy element to the coverageMatrix, we 

need to know which column to add the Coverage object to, so a mapping from each 

policy element to a column in the coverageMatrix is needed. And this is the purpose 

of the data member mapping in the PolicyCoverageFactory.  

The coverageMatrix has a flat structure in which one policy element 

corresponds to a row in the coverageMatrix. However XACML policies have a 

hierarchical structure: a policy set contains a policy set target, and one or more policies or 

policy sets; a policy contains a policy target, and one or more rules. Therefore the 

structure of XACML policies must be “flattened” when mapping a policy element to a 

column in the coverageMatrix.  

Simply giving each policy element an index number in the order they are visited 

while traversing over the XACML policy will not work. This is because the XACML 

engine might have implemented short-circuit evaluation (the balana implementation does 

have), so some policy element might be skipped when evaluating a request. For example, 

if an XACML policy is a policy set that consists of two policies: Policy1 and Policy2. 

There are two rules in Policy1: Rule1 and Rule2. And the rule combining algorithm of 

Policy1 is first-applicable. Suppose for a given request, Rule1 is fired(both target and 

condition are evaluated to be true), then the XACML engine will skip Rule2, and go on 
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evaluating Policy2. In such scenario, the coverage information of the following policy 

elements will be written to the wrong columns in the coverageMatrix. 

This is solved by mapping each policy element’s XPath to its column index. 

XPath is a part of the XSLT standard. It uses path expressions to select a node an XML 

document. For example, the first rule in the sample XACML policy in Figure 3.1 can be 

selected by the absolute XPath “/*[local-name()=’PolicySet’ and 

@PolicySetId=’KMarketBluePolicy’]/*[local-name()=’Rule’ and 

@RuleId=’total-amount’]”. The XPath expression means that starting from the root 

node, first look for a node whose local-name is “PolicySet”, and has an attribute 

“PolicySetId” that equals to “’KMarketBluePolicy”; then from the child nodes of this 

node, look for a node whose local-name is “Rule”, and has an attribute “RuleId” that 

equals to “total-amount”.  The “*” in the XPath expression means ignoring namespace 

prefix. The first rule can also be selected by the relative XPath “//*[local-

name()=’Rule’ and @RuleId=’total-amount’]”. The double slash at the 

beginning of the path expression means that this is a relative path so the node is not 

necessarily a child of the root node.  

According to the specifications of XACML, the policy element ID attribute must 

be unique in an XACML policy. So each policy element can be uniquely identified by its 

local-name and policy element ID attribute, and only one node will be selected even if 

using relative XPath. And since there is no getParent() method in PolicySet, Policy, 

Rule classes in the Balana implementation of XACML engine, it is impossible to 

construct an absolute XPath from a policy element. Therefore, the relative XPath is used 

for mapping policy elements to column indices. 
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The module XpathSolver in the component PolicyUtils is used for 

getting the XPath of policy elements in an XACML policy. Figure 5.2 shows the UML 

class diagram of XpathSolver. The method 

getEntryListRelativeXPath(Document) returns XPath strings of all policy 

elements in the order they are visited in a recursive traversal of the XACML document. 

PolicyCoverageFactory.init() uses this method to set the mapping, thus 

getting a mapping from XPath of each policy element to their column index in the 

coverageMatrix. Latter while the tests are running, each time a policy element is 

touched by a test, the column index of the policy element is looked up in the mapping, 

and a Coverage object is created and inserted at the column index in the last row. 

 

Figure 5.2 UML Class Diagram of XpathSolver 
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PolicyTracer 

PolicyTracer is used to change the behavior of some methods related to the 

evaluation of XACML requests in the XACML engine for the purpose of collecting 

coverage information. This functionality is accomplished with AspectJ. AspectJ is an 

Aspect-Oriented Programming (AOP) extension for Java. The aim of AOP is to increase 

modularity by putting code that is not central to business logic and appears multiple 

places into one module, e.g. logging. 

Basic concepts in AspectJ include join points, pointcuts, and advices. A join point 

is a point in a program where additional code can be joined into, e.g. method execution, 

object initialization, field read and write. A pointcut is an expression that matches one or 

more joint points. For example, in the PolicyTracer code shown in Figure 5.3, line 45-47 

defines a pointcut called runNewTestSuite, which matches the runtTests() 

method in the TestSuite class. An advice is a piece of code that runs before, after or 

around a join point that matches a pointcut. During execution, when a joint point matches 

a pointcut, the AspectJ runtime automatically invokes the advice associated with the 

pointcut. In Figure 5.3, line 49-53 is an advice associated with the pointcut 

runNewTestSuite. Therefore, before TestSuite.runTests() is called, a 

message is written to log and PolicyCoverage.init() is called. 

 Figure 5.3 shows the source code of PolicyTracer. The advice associated with 

ruleEvaluationPointCut is omitted to save space.  

Line 35-43 defines a pointcut runNewTest and an associated advice that calls 

PolicyCoverageFactory.newRow(), adding a new row in the 

coverageMatrix before every test starts.  
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Line 15-27 defines an advice that gets the XPath of a policy target or policy set 

target, creates a Coverage object, and calls addCoverage() to add the Coverage 

object into coverageMatrix. 
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Figure 5.3 Source code of PolicyTracer 

Line 4-12 defines a pointcut ruleEvaluationPointCut and an associated 

advice that gets the XPath of a rule, creates a Coverage object, and calls 

addCoverage() to add the Coverage object into coverageMatrix. 

Line 55-55 defines an advice that calls 

PolicyCoverageFactory.setResults() to add the test results of the test suite 

to PolicyCoverageFactory.testResults after TestSuite.runTests() 

has finished. 

Fault Localization 

The component Fault Localization deals with fault localization. Figure 

5.4 shows the UML diagram of this package. 
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Figure 5.4 UML Class Diagram of Component Fault Localization 

The module SpectrumBasedFaultLoclizer calculates a suspicion score 

for each policy element basing on the coverage matrix and test results. The coverage 

information defined in the Coverage are Enum types. In order to calculate a score, the 

values in the Enum types must be mapped to numbers. There can be different ways for 

the mapping. In our implementation the “firing” criteria is used: a policy target or a 

policy set target is fired if it is evaluated to be true; a rule is fired only if both the rule 

target and condition are evaluated to be true. In TargetMatchResult, MATCH is 

mapped to 1, other values are mapped to 0; in RuleDecisionCoverage,EFFECT is 
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mapped to 1, other values are mapped to 0. In addition, test results also need to be 

mapped to numbers. If a test passes, the test result is mapped to 1, otherwise mapped to 0.  

The mapping is done in the constructor of 

SpectrumBasedFaultLocalizer. The coverageMatrix in 

PolicyCoverageFactory is mapped to 

SpectrumBasedFaultLocalizer.matrix, and testResults  in 

PolicyCoverageFactory. is mapped to 

SpectrumBasedFaultLocalizer.verdicts.  

Fourteen scoring methods are implemented. For example jaccard() 

implements the scoring method jaccard. In the empirical study of fault localization, 

sometimes it is desirable to be able to loop over a list of scoring methods. As in Java 

language methods are not first class functions, this is implemented by way of reflection. 

The method applyFaultLocalizeMethod(String) takes a scoring method 

name as input, and invoke the scoring method using reflection.  

PolicyElementCoefficient bundles the index, suspicion score and rank 

of a policy element together, and used by SpectrumBasedDiagnosisResults, 

which evaluates the effectiveness of a scoring method. The constructor of 

SpectrumBasedDiagnosisResults sorts the policy elements by their suspicion 

score and calls rankSuspicion(List<PolicyElementCoefficient>) to 

give each policy element a rank according to their suspicion score. For example, suppose 

the suspicion scores of 4 policy elements are [0.5, 0.4, 0.4, 0.1], then the rank of them is 

[1, 2, 2, 4]. The method getNumberOfElementsToInspect(int) evaluates a 

scoring method by calculating how many policy element must be inspected in the worst 
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case before the faulty policy element is found out. The input of this method is the index 

of the faulty policy element. For example, suppose in the previous example the second 

policy element is faulty, in the worst case three policy element must be inspected before 

it is found out. And the method 

getAverageNumberOfElementsToInspect(List<Integer>) calculates 

when there are multiple faulty policy elements, on average how many policy elements 

must be inspected in the worst case. Similarly, the input of this method is a list of indices 

of the faulty policy elements.  

The FaultLocalizationExperiment is for empirical study of the 

performance of different scoring methods. It first generates or loads from hard drive a list 

of mutants, then perform fault localization on each mutant, using several scoring 

methods, and writes the number of policy elements to inspect of each pair of mutant and 

scoring method to a CSV file. And in the last row of the CSV file, it appends the average 

number of policy elements to inspect of each scoring method. 

Mutation 

The component Mutation deals with mutating XACML policies. Figure 5.5 

shows the UML class diagram of package mutation. 
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Mutant 

 

Figure 5.5 UML Class Diagram of Component Mutation 

Mutant models a policy mutant. In the Balana implementation of XACML 

engine, Policy class models a policy, and PolicySet class models a policy set. And 

they both extends the AbstractPolicy class. A mutant is an XACML policy too. So 

the Mutant class should have all the public methods and fields of AbstractPolicy. 

Besides that, a mutant has faulty policy element, so Mutant should have a field that 
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stores the indices of faulty policy elements, and a getter method for the field. Meanwhile, 

a mutant is created by mutating either a policy or a policy set, so a Mutant should 

behave like either a Policy or a PolicySet, depending on which one it was created 

from. Henceforth, Mutant is designed to extend the AbstractPolicy, and to have 

an AbstractPolicy as data member, which can be an instance of Policy or 

PolicySet. All the public methods of the data member are “forwarded” to inherited 

methods. Figure 5.6 shows a simplified UML class diagram of these four classes. And 

Mutant has a faultLocations field which stores the indices of faulty policy 

elements, and a getter method for the field. 

 

Figure 5.6 Simplified UML Class Diagram of AbstractPolicy, Policy, PolicySet 

and Mutant 

Mutator 

The Mutator module is used for creating mutants from a Policy, a 

PolicySet or a Mutant.   

All the public methods starting with “create” in Mutator are methods 

implementing a mutation operator. For example, 

createRuleEffectFlippingMutants(String) implements the CRE mutation 

https://www.draw.io/#G0B7-KNrwOqP-YWkhhcmlvb3JOYk0
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operator in Table 4.3, which changes the effect of a rule from Permit to Deny, or vice 

versa. 

Because there are too many mutation operators, only a few typical mutation 

operators’ implementation is described in this paper. 

Figure 5.7 Implementation of CRC 

Figure 5.7 shows how the mutation operator CRC is implemented.  

Figure 5.8 Implementation of CRE 

createCombiningAlgorithmMutants(xpathString) 

 mutants = an empty list 

 policyNode = xpath.evaluate(xpathString) 

 originalCombiningAlgo = get rule combining algorithm of policyNode 

 for each rule combining algorithm algo: 

  if algo is not equal to originalCombiningAlg  

   set rule combining algorithm in policyNode to be algo 

   create a mutant and add to mutants 

 set rule combining algorithm in policyNode to be originalCombiningAlg 

 return mutants 

createRuleEffectFlippingMutants (xpathString) 

 mutants = an empty list 

 ruleNode = xpath.evaluate(xpathString) 

 originalEffect = get effect of ruleNode 

 if originalEffect is equal to “Permit” 

  set effect of ruleNode to “Deny” 

 else  

  set effect of ruleNode to “Permit” 

 create a mutant and add to mutants 

 set effect of ruleNode to be originalEffect 

 return mutants 



39 

 

 

 

Figure 5.8 shows how the mutation operator CRE is implemented.   

Figure 5.9 Implementation of PTT and RTT 

Figure 5.9 shows how PTT (Policy Target True) and RTT (Rule Target True) is 

implemented. Note that the code makes use of the XACML specification that an empty 

target is always evaluated to be true. 

From the above examples we can see that generally implementing a mutation 

operator takes three steps: find the node to change and store its state; change the node and 

create a mutant from the changed document; restore the node. 

Repairing 

The component Repairing deals with repairing faulty policy elements. Figure 

5.10 shows the UML class diagram of this component. 

The module PolicyRepairer repairs a faulty policy or policy set. The method 

repairSmartly(PolicyMutant, String) repairs a faulty policy or policy set 

by performing fault localization, generating mutants and looking for a mutant that passes 

all tests. Figure 1.1 describes this process. Chapter 4 has a running example of this 

process.  

The mutation-based repair traverses a tree where the root is the faulty policy and 

each node is a policy mutant. As the tree can be very large, it is pruned by excluding 

those branches that are unlikely leading to a successful repair. If the policy mutant in the 

createTargetTrueMutants(xpathString) 

 mutants = an empty list 

 targetNode = xpath.evaluate(xpathString) 

 childNodes = an empty list 

 remove all child nodes of targetNode and add into childNodes 

 create a mutant and add to mutants 

 add all nodes in childNodes into targetNode 

 return mutants 



40 

 

 

 

current node passes all the tests, the repair is successful. If the set of tests failed by the 

policy mutant is a subset of those failed by its parent, this mutant is considered an 

intermediate fix. In this case, the current node shall be expanded, i.e., apply fault location 

and mutation to the mutant. If this mutant is not an intermediate or final fix, the node will 

not be expanded. 

Another implementation issue is the order of mutation operators in which they are 

applied to the sorted policy elements. We use (𝑃𝐸𝑖) to denote the set of mutants resulted 

from applying mutation operators to the 𝑖-th suspicious policy element. When we run 

tests against the mutants in the set (𝑃𝐸𝑖) and apply mutation operators to the j-th 

suspicious policy element, the resultant set of mutants are denoted as (𝑃𝐸𝑖 , 𝑃𝐸𝑗). For 

(𝑃𝐸𝑖1
, 𝑃𝐸𝑖2

, … , 𝑃𝐸𝑖𝑛
), the lesser (𝑖1 + 𝑖2 + ⋯ + 𝑖𝑛)is, the more suspicious this set of 

mutants are. This is handled by a priority queue. 

The method repairRandomOrder(PolicyMutant) follows a similar 

process except that the list of suspicious policy element is not obtained from fault 

localization, but generated randomly. And repairOneByOne(PolicyMutant) is 

similar except that the list of suspicious policy elements is in the order they are in the 

XACML policy. 

The module ExperimentOnRepair performs experiment on repairing of an 

XACML policy with only one faulty element. And the module 

ExperimentMultiFault performs experiment on repairing of an XACML policy 

with one or more faulty elements. The module MutantNode is used as a node in the 

priority queue during repairing an XACML policy with one or more faulty elements. 
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Figure 5.10 UML Class Diagram of Component Repairing 
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CHAPTER SIX: EMPIRICAL STUDIES 

The empirical studies aim to answer the following research questions: (a) Can 

faulty XACML policies be repaired automatically? (2) How do the various scoring 

methods for suspicion rankings affect time performance of automatic policy repair?  

In this chapter, firstly the setup of the experiments will be described, then the 

experiment results will be presented and analyzed. 

Experiment Setup 

Since faulty versions of real-world XACML policies are unavailable, the 

experiments rely on mutants of XACML policies. Table 6.1 shows the list of subject 

policies. In order to be representative, the subject policies used for experiment varies in 

size. The number of lines of XML code (LOC) ranges from 227 to 12,803. The number 

of rules ranges from 12 to 640. Continue is an access control policy for a conference 

management system [19]; fedora is “an open source repository system for the 

management and dissemination of digital content”; itrust is “a medical application that 

provides patients with a means to keep up with their medical history and records as well 

as communicate with their doctors”. itrustX (X=5, 10) are expanded versions of itrust 

[20]. They have X times as many rules as itrust. The sizes of the policy files are believed 

to be a good representation of real-world applications because a very large policy is often 

decomposed into a number of manageable policy files.  

The original subject policies are considered to be the correct version. The tests are 

generated automatically from the original policies by the XPA tool using the MC/DC 
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criterion. For each test, its oracle value is the actual response to the access request 

produced by the original policy. The mutants of each policy are also generated 

automatically by the XPA tool. Each mutant is a variation of the original policy with one 

or two faults seeded using the mutation operators in Table 4.3. 

Note that mutation analysis is a common approach to the evaluation of software 

testing and debugging techniques. Program mutation has the following hypotheses: 

a. Mutants are based on actual fault models and are representative of real 

faults 

b. Programs written by developers are close to being correct. This is known 

as the competent programmer hypothesis [21] 

c. Tests that detect simple faults are also capable of detecting complex faults. 

This is known as the coupling effect hypothesis [22]. 

Empirical studies have confirmed that program mutants are indeed similar to real 

faults for evaluating testing techniques [23] [24]. We believe that the competent 

programmer hypothesis and the coupling effect hypothesis are also applicable to 

XACML policies. The mutants in Table 6.1 are representative of real faults because 

mutation operators are defined over an actual fault model of XACML policies [14]. 

Table 6.1 Subject policies, tests, and mutants 

Subject 

Policy 
LOC 

No. of 

rules 
No. of 

tests 
Single fault 

mutants 
Two-fault 

mutants 
continue 229 15 27 75 5,625 

fedora 227 12 31 74 5,471 

itrust 1,283 64 197 324 972 

itrust5 6,403 320 983 163 N/A 

itrust10 12,803 640 1,965 328 N/A 
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The mutants are created by applying the mutation operators in Table 4.3 to the 

correct subject policies. Table 6.1 only includes non-equivalent mutants. An equivalent 

mutant has the same behavior as the original policy -- no failure would be reported when 

it is executed against the given test suite. Thus, the policy repair problem is not 

applicable to equivalent mutants. Note that the number of two-fault mutants grows 

quickly with the increase of policy size due to the combinations of mutation operators. 

The XPA tool is unable to complete the generation of all two-fault mutants for itrust5 or 

itrust10 because of memory and disk space constraints. Due to the large number of 

mutants, our experiments randomly selected 1% of the two-fault mutants of itrust, and 

10% of the single fault mutants of itrust5 and itrust10. 

Experiment Results and Analysis 

The proposed approach is able to repair all mutants in Table 6.1, as the mutation 

operators in Table 4.3 are reversible – a mutant created by one operator can be mutated 

back to the original by the same or another mutation operator. 

Table 6.2 and Table 6.3 show the average repair time of single fault mutants and 

two-fault mutants, respectively. “Random” refers to the scoring method that ranks all 

policy elements in a random fashion. It is used as a baseline method for identifying 

suspicious elements.  

For a small policy like continue, the performance difference between different 

scoring methods is small, but for large policies the difference is significant. For example, 

for the subject policy itrust10, the best scoring method, CBI-Inc, is about 4 times faster 

than Tarantula, and almost 14 times faster than the random method. This is because larger 

policies have more policy elements so the benefits of a better ranking (a ranking in which 
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the faulty policy element is at the top) is more obvious. Thus for a real world XACML 

policy, the choice of scoring method is crucial to the performance of automated repair. 

And by comparing Table 6.2 and Table 6.3 we can also see that repair time grows much 

faster with the number of faults than with the number of rules, as the number of mutants 

to be examined grows polynomially with the number of rules, but exponentially with the 

number of faults. 

Table 6.2 Repair time of single fault mutants (in seconds) 

  continue fedora itrust itrust5 itrust10 

CBI-Inc 0.053 0.073 0.496 14.813 77.165 

Naish2 0.056 0.079 0.558 14.926 79.827 

Sokal 0.1 0.109 0.645 23.988 124.178 

Tarantula 0.051 0.068 1.367 53.517 370.067 

Random 0.111 0.213 4.409 162.251 1149.35 

 

Table 6.3 Repair time of two-fault mutants (in seconds)  

  continue fedora itrust 

CBI-Inc 0.539 0.371 6.659 

Naish2 0.531 0.466 9.435 

Sokal 2.240 1.042 15.265 

Tarantula 0.497 0.418 46.831 

Random 1.298 2.257 100.705 

 

Figure 6.1 shows the cumulative distributions of repair time of single fault 

mutants for itrust and itrust5. The x-axis stands for how much time it takes at most to 

repair a mutant. The y-axis stands for the percentage of mutants that can be repaired 

within a certain time. All mutants can be repaired eventually, so all curves eventually 

approach 1.0. The steeper the curve is, the shorter time it takes to repair the mutants on 

average. 
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For itrust mutants (on the left), nearly 20% can be repaired instantly. Most of 

them can be repaired in 715 milliseconds using a non-random scoring method. CBI-Inc 

and Naish2 are the most efficient. About 97% mutants can be repaired in 715 

milliseconds. Using Tarantula, more than 80% of mutants can be repaired in 715 

milliseconds. However, it takes 8 times more time to achieve the 80% repair rate when 

the policy elements are ranked randomly. 

 
 

Figure 6.1 Cumulative distribution of repair time of itrust and itrust5 mutants 

For itrust5 mutants (on the right), most of them can be repaired in about 13 

seconds. CBI-Inc and Naish2 have almost the same performance. Within 13 seconds, 

both can achieve nearly 95% repair rate, while Sokal can repair more than 90% mutants 

and Tarantula can repair about 75%. Thus if timeout is set to be 13 seconds, the 

probability of fixing a faulty policy within the cutoff time is nearly 95%. 

In brief, if a mutant can be fixed, a more efficient scoring method will make the 

faulty elements appear higher in the suspicion rankings.
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CHAPTER SEVEN: CONCLUSIONS 

In this paper an approach to automatic repair of XACML policies is presented. It 

first ranks suspicious policy elements according to the test execution information and 

then attempts to mutate suspicious policy elements to make all tests pass.  The proposed 

approach also provides several scoring methods for suspicion ranking of policy elements. 

They are an important factor in the overall time performance of automatic policy repair, 

especially for policies of large size. The empirical studies show that our approach can 

automatically repair faulty policies with one or two injected faults and that, among the 

scoring methods, Naish2 and CBI-Inc have the best time performance.   

This work offers the first yet promising attempt to develop techniques for 

automatic repair of XACML policies although the current empirical studies are inherently 

limited due to the general unavailability of real faults in real-world XACML policies and 

the use of policy mutants with only one or two seeded faults. Nevertheless, more efficient 

mutation-based repair techniques can be developed to deal with the search space problem 

for large XACML policies with a number of faults. It is worth pointing out that automatic 

repair is not meant to replace manual debugging of complex policies but to provide useful 

hints on suspicious elements and potential fixes.   

In this paper, the use of MC/DC test suite of XACML policy is thought to be 

critical for the approach to be able to successfully repair the mutants with seeded faults. 

For a real-world faulty policy under debugging, however, the test suite may not be 

MC/DC adequate. Future research may focus on how the coverage and size of test suite 
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affects the success rate of automatic repair. To reduce the search space of mutation-based 

repair, future research may also investigate coarse-grained mutation operators. The 

current mutation operators in the proposed approach only make a small primitive change 

at a time. A coarse-grained mutation can make multiple primitive changes. To do so, 

further research can investigate typical patterns of policy target, rule targets, rule 

conditions in real-world XACML policies and define coarse-grained mutation operators 

with respect to these patterns.
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A.1 KmarketBluePolicy 

<?xml version="1.0" encoding="UTF-8"?> 

<Policy xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17" 

PolicyId="KmarketBluePolicy" 

RuleCombiningAlgId="urn:oasis:names:tc:xacml:3.0:rule-combining-algorithm:deny-

overrides" Version="1.0"> 

  <Target> 

    <AnyOf> 

      <AllOf> 

        <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 

          <AttributeValue 

DataType="http://www.w3.org/2001/XMLSchema#string">blue</AttributeValue> 

          <AttributeDesignator AttributeId="http://kmarket.com/id/role" 

Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject" 

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true" /> 

        </Match> 

      </AllOf> 

    </AnyOf> 

  </Target> 

  <Rule Effect="Deny" RuleId="total-amount"> 

    <Condition> 

      <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:integer-greater-

than"> 

        <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:integer-one-

and-only"> 

          <AttributeDesignator AttributeId="http://kmarket.com/id/totalAmount" 

Category="http://kmarket.com/category" 

DataType="http://www.w3.org/2001/XMLSchema#integer" MustBePresent="true" /> 

        </Apply> 

        <AttributeValue 

DataType="http://www.w3.org/2001/XMLSchema#integer">100</AttributeValue> 
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      </Apply> 

    </Condition> 

    <AdviceExpressions> 

      <AdviceExpression AdviceId="deny-liquor-medicine-advice" 

AppliesTo="Deny"> 

        <AttributeAssignmentExpression 

AttributeId="urn:oasis:names:tc:xacml:2.0:example:attribute:text"> 

          <AttributeValue 

DataType="http://www.w3.org/2001/XMLSchema#string">You are not allowed to do 

more than $100 purchase 

    from KMarket on-line trading system</AttributeValue> 

        </AttributeAssignmentExpression> 

      </AdviceExpression> 

    </AdviceExpressions> 

  </Rule> 

  <Rule Effect="Deny" RuleId="deny-liquor-medicine"> 

    <Target> 

      <AnyOf> 

        <AllOf> 

          <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 

            <AttributeValue 

DataType="http://www.w3.org/2001/XMLSchema#string">Liquor</AttributeValue> 

            <AttributeDesignator 

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id" 

Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource" 

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true" /> 

          </Match> 

        </AllOf> 

        <AllOf> 

          <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 

            <AttributeValue 

DataType="http://www.w3.org/2001/XMLSchema#string">Medicine</AttributeValue> 
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            <AttributeDesignator 

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id" 

Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource" 

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true" /> 

          </Match> 

        </AllOf> 

      </AnyOf> 

    </Target> 

    <AdviceExpressions> 

      <AdviceExpression AdviceId="deny-liquor-medicine-advice" 

AppliesTo="Deny"> 

        <AttributeAssignmentExpression 

AttributeId="urn:oasis:names:tc:xacml:2.0:example:attribute:text"> 

          <AttributeValue 

DataType="http://www.w3.org/2001/XMLSchema#string">You are not allowed to buy 

Liquor or Medicine 

    from KMarket on-line trading system</AttributeValue> 

        </AttributeAssignmentExpression> 

      </AdviceExpression> 

    </AdviceExpressions> 

  </Rule> 

  <Rule Effect="Deny" RuleId="max-drink-amount"> 

    <Target> 

      <AnyOf> 

        <AllOf> 

          <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 

            <AttributeValue 

DataType="http://www.w3.org/2001/XMLSchema#string">Drink</AttributeValue> 

            <AttributeDesignator 

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id" 

Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource" 

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true" /> 
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          </Match> 

        </AllOf> 

      </AnyOf> 

    </Target> 

    <Condition> 

      <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:integer-greater-

than"> 

        <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:integer-one-

and-only"> 

          <AttributeDesignator AttributeId="http://kmarket.com/id/amount" 

Category="http://kmarket.com/category" 

DataType="http://www.w3.org/2001/XMLSchema#integer" MustBePresent="true" /> 

        </Apply> 

        <AttributeValue 

DataType="http://www.w3.org/2001/XMLSchema#integer">10</AttributeValue> 

      </Apply> 

    </Condition> 

    <AdviceExpressions> 

      <AdviceExpression AdviceId="max-drink-amount-advice" AppliesTo="Deny"> 

        <AttributeAssignmentExpression 

AttributeId="urn:oasis:names:tc:xacml:2.0:example:attribute:text"> 

          <AttributeValue 

DataType="http://www.w3.org/2001/XMLSchema#string">You are not allowed to buy 

more tha 10 Drinks 

    from KMarket on-line trading system</AttributeValue> 

        </AttributeAssignmentExpression> 

      </AdviceExpression> 

    </AdviceExpressions> 

  </Rule> 

  <Rule RuleId="permit-rule" Effect="Permit" /> 

 

</Policy> 
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A.2 A Sample Request for KmarketBluePolicy 

<?xml version="1.0" encoding="UTF-8"?> 

<Request xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17" 

CombinedDecision="false" ReturnPolicyIdList="false"> 

  <Attributes Category="http://kmarket.com/category"> 

    <Attribute AttributeId="http://kmarket.com/id/totalAmount" 

IncludeInResult="false"> 

      <AttributeValue 

DataType="http://www.w3.org/2001/XMLSchema#integer">0</AttributeValue> 

    </Attribute> 

  </Attributes> 

  <Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-

category:resource"> 

    <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id" 

IncludeInResult="false"> 

      <AttributeValue 

DataType="http://www.w3.org/2001/XMLSchema#string">k</AttributeValue> 

    </Attribute> 

  </Attributes> 

  <Attributes Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-

subject"> 

    <Attribute AttributeId="http://kmarket.com/id/role" 

IncludeInResult="false"> 

      <AttributeValue 

DataType="http://www.w3.org/2001/XMLSchema#string">blue</AttributeValue> 

    </Attribute> 

  </Attributes> 

</Request> 


