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ABSTRACT 

It is currently a major scientific and medical goal to identify and characterize 

genetic defects and their impact in health and disease. For example, mutations in genes 

that encode collagen alpha chains can cause skeletal dysplasia and lead to premature 

degenerative joint disease. Collagen is the main structural protein in the ECM of 

connective tissues such as the cartilage, joints, ligaments and tendons. Therefore, the goal 

of this research is to define the impact of the alpha one chain of collagen type XI chain, 

encoded by the COL11A1 gene in humans, on chondrocyte behavior during development 

of the cartilage. We hypothesize that altered expression of COL11A1 dysregulates 

chondrocyte behavior during cartilage development by altering β-catenin dependent 

signaling pathways. To test this hypothesis, we inhibited the expression of the COL11A1 

homolog col11a1a in transgenic zebrafish expressing green fluorescence protein in neural 

crest derived cells and osteoblast. Then, the col11a1a deficient zebrafish were imaged by 

confocal microscopy to analyze the organization of cells contributing to craniofacial 

development. Inhibiting col11a1a expression reduced the size and shape of the 

developing Meckel’s cartilage in zebrafish. These changes occurred because the cells 

failed to form the hallmark columns that normally promote longitudinal growth. In 

addition, premature and ectopic mineralization was found to occur in the cartilage tissue 

of the Meckel’s cartilage. Additional investigation using the well-established embryonic 

mouse cell line ATDC5 led to the identification of changes in post translational 

modification of proteins which regulate cell behavior. Specifically, the AKT/GSK3β/β-
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catenin proteins were modified to increase the activity of the transcription factor 

TCF/LEF. This activation was coupled to 1) changes in gene expression, 2) decreased 

cartilage growth, and 3) increased mineralization. In conclusion, the results confirm that 

loss of COL11A1 homolog expression in zebrafish (col11a1a) and mouse (Col11a1) cells 

leads to severe chondrodysplasia that affects cells behavior and tissue shape. Treatment 

enhancing COL11A1 protein production in humans may be useful in inhibiting excessive 

mineralization. On the other hand, inhibition of COL11A1 protein production could be 

useful for tissue engineers and researchers developing treatments to accelerate the 

mineralization of cartilage during fracture healing in patients.
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CHAPTER ONE: INTRODUCTION 

The Extracellular Matrix 

Morphogenesis is the process of forming the tissue shape during development. 

Many factors influence the morphogenesis including autonomous cell behavior, cell-cell 

interactions, soluble growth factors and the extracellular matrix (ECM). Conceivably, 

some of the most fascinating influences come directly from the ECM. The ECM is a 

dynamic network of diverse molecules secreted during tissue development and 

morphogenesis (Rozario and DeSimone 2010). Molecules found outside the cell and that 

have formed an insoluble network through crosslinking interactions are typically 

considered the ECM. The molecules contributing to these molecular networks remain 

close to the site at which they were secreted by the cell, creating a conserved and 

predictable environment for the cell during the stages of development and 

morphogenesis. 

Collagens, proteoglycans and glycosaminoglycans, and the non-collagenous 

glycoproteins are major molecules that contribute to the composition of the ECM (Hynes 

2009). Collagens are the most abundant protein in the vertebrate body with at least 28 

different collagen types identified (Shoulders and Raines 2009). The collagen alpha 

chains form trimeric molecules that assemble and form triple helical regions. Collagens 

are primarily considered structural molecules, providing strength and support for the 

tissue (Gordon and Hahn 2010). Glycosaminoglycans (GAGs) are linear and unbranched 

polymers of the disaccharides hexosamine and uronic acid. GAGs are classified by the 
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composition of their carboxyl, hydroxy and sulfate groups (i.e. chondroitin, dermatan, 

keratan and heparan sulfates). GAGs, excluding hyaluronan (HA), are covalently linked 

to core proteins to assemble the proteoglycans. On the other hand, HA links 

proteoglycans into an essential network critical for establishing the pericellular matrix 

(Evanko et al. 2007). HA can induce cell behavior through interactions with the cell 

surface receptor CD44 and provides one example of ECM induced cell signaling (Toole 

2004). The non-collagenous glycoproteins include fibronectin, tenascin, and laminin all 

of which share common structural motifs such as Arg-Gly-Asp (RGD) sequences. The 

RGD sequences are essential for integrin mediated binding, and therefore provide a 

means for cell-matrix interactions (Shattil et al. 2010) 

Both the individual molecules as well as the architecture of the ECM mediate cell 

behavior in diverse and complex ways. Cell surface receptors interact with individual 

structural motifs found within large extracellular molecules such as the collagens 

(Discher, Mooney, and Zandstra 2009). On the other hand, the matrix environment can 

both limit or facilitate the interaction of smaller morphogens with the appropriate 

receptors and co-receptors (Fuerer, Habib, and Nusse  2010). Of course, these 

interactions never occur in isolation, and the cell must interpret multiple matrix-cell as 

well as cell-cell interactions at a given time and respond favorably to generate and 

maintain a normal tissue. Additionally, the cell response itself can cue changes in the 

ECM that the cell must also respond to, creating a dynamic environment. 

Although the molecules of the matrix can be very stable and long lived, changes 

to the ECM composition occur to facilitate tissue development and morphogenesis 

(Mouw, Ou, and Weaver 2014). These changes are mediated through the synthesis and 
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secretion of additional molecules and through the active degradation and replacement of 

the existing molecules. For example, the secretion of proteases such as matrix 

metalloproteinase (MMP) and a disintegrin and metalloprotease (ADAM) degrade and 

disrupt the stable molecular networks (Lu et al. 2011). Changes in gene expression 

altering protein translation and secretion, contribute to an evolving ECM and cellular 

behavior. 

Cell migration is a fundamental process of development that requires ECM 

interactions. Focal adhesions are integrin based complexes that connect the cell 

cytoskeleton with extracellular substrates such as collagens and fibronectin, to generate 

traction forces and create cell locomotion (Cukierman et al. 2001). Differential 

compositions of integrin subunits and binding motifs provide directional cues for cellular 

migration. Additionally, diffusible factors such as morphogens that bind surface receptors 

can direct cell migration. Once cells reach the site of the future tissue, adhesion and 

differentiation processes can proceed. 

Loosely associated vertebrate cells can form tight associations with each other 

and the extracellular matrix through cell adhesion molecules (CAMs). Cadherins are 

calcium dependent cell-cell adhesion molecules that hold cells together during vertebrate 

development, although they are also expressed in invertebrates. Cadherins are typically 

single-pass transmembrane glycoproteins that form dimers and connect the actin 

cytoskeleton of neighboring cells. The expression of cadherins are dynamic and can be 

considered cyclic during embryonic development to facilitate changes in cell location, 

providing another morphogenic mechanism (Takeichi 1991). For example, Neural 

cadherin (N-cadherin or Cdh2) expression can be detected in the developing neural tube 
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before it is down regulated as neural crest cell migration begins (Taneyhill and 

Schiffmacher 2017). Then, at new sites of tissue development, where cell adhesion is 

required to facilitate differentiation and patterning, such as in the developing brain or 

cartilage, N-cadherin expression reemerges. 

Cell fate decisions and differentiation during development is also influenced by 

the composition of the ECM, although ultimately controlled by gene expression patterns 

driven by transcription factors. The contribution of the ECM is complicated by the 

multitude of molecules presented to the cell and apparent compensatory mechanisms that 

may mask the direct contribution of individual molecules. For example, studies 

disrupting the expression of matrix molecules through loss of function experiments often 

cause multiple defects or a spectrum of severity that are difficult to interpret as a direct 

effect. Additionally, disruption of the ECM can have no effect on cell differentiation, but 

still cause severe disorganization of the cells within the tissue. The cellular 

disorganization itself may expose cells to cues that alter cell fate and differentiation 

pathways disrupting the overall tissue pattern. 

Tissue patterning during development is mediated through well conserved 

secreted signaling molecules such as the transforming growth factor (TGF), fibroblast 

growth factor (FGF), Wingless/integrated (Wnt) and hedgehog (Hh) families, in 

combination with the direct cell-cell signaling induced through Notch (Clevers 2006, 

Goldring, Tsuchimochi, and Ijiri 2006, Swartz et al. 2012, Melrose et al. 2016). The 

ECM can indirectly influence the availability of these molecules to the required cell 

surface receptor. For example, matrix molecules may bind and sequester soluble 

signaling molecules, preventing the ligand-receptor interactions from occurring or 
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attenuating the interaction. Alternatively, the receptors themselves may be masked from 

the ligand through direct or indirect ECM interactions. Additionally, the matrix 

composition alters the charge density and volume of the fluid which mediate 

concentration gradients and rates of diffusion. These mechanisms indirectly influence cell 

behavior through modulating the availability of the soluble morphogen but should be 

considered attributes of the ECM. 

Endochondral Ossification 

Endochondral ossification is a tightly regulated, multistep process of skeletal 

formation. Most of the bones in the vertebrate skeleton, such as the vertebrae, ribs and 

long bones, form through the process of endochondral ossification. Unlike 

intramembranous ossification, endochondral ossification must be preceded by the 

formation of cartilage anlagen that serve as templates. The steps involved in 

endochondral ossification are mesenchymal condensation, chondrogenic differentiation 

of mesenchymal cells and cartilage formation, primary ossification and secondary 

ossification (Figure 1) (Kozhemyakina, Lassar, and Zelzer 2015). 

Initially, mesenchymal cells migrate to the site of the future bone and commit to 

the chondrogenic lineage in preparation of chondrogenesis, the formation of cartilage. 

The cells contributing to the vertebrate skeleton arise from multiple lineages, depending 

on the skeletal element. For example, cranial neural crest cells arise from the anterior-

dorsal aspect of the closing neural tube, delaminate and migrate in a distinct stream to 

populate the ventral pharyngeal arches, which give rise to the craniofacial skeleton. On 

the other hand, cells contributing to the skull, middle ear, ribs and vertebrae of the axial 

skeleton arise from somites, or paraxial mesoderm, while the cells of the appendicular 
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skeleton arise from lateral plate mesoderm (Chai et al. 2000, Kague et al. 2012, 

Berendsen and Olsen 2015). Regardless of the initial source of the cells, they must 

migrate to the future site of the bone to initiate mesenchymal condensation and 

subsequently, chondrogenesis. 

After successful migration, mesenchymal cells form high density cellular 

condensations and upregulate the expression of versican, tenascin, syndecan, N-CAM 

and N-cadherin. Cells surrounding the condensation form the perichondrium and 

establish the cartilage border. The perichondrium prevents additional mesenchymal cells 

from being recruited to the condensation. Proliferative cells in the center of the 

condensation will differentiate into cartilage forming chondrocytes (Hall and Miyake 

2000). 

Chondrocytes secrete a cartilage matrix that contains collagens, proteoglycans, 

hyaluronan and noncollagenous glycoproteins. Collagens type II, IX, and XI are highly 

expressed in the developing cartilage, as are sulfated proteoglycans. As chondrogenesis 

proceeds, chondrocytes mature and develop spatially recognizable zones with 

phenotypically unique characteristics that define the growth plate (Goldring et al. 2006, 

Berendsen and Olsen 2015) (Figure 2). Chondrocyte hypertrophy and matrix 

mineralization occurs as cells cease proliferation, increase in cell volume and 

differentiate into hypertrophic chondrocytes. These cells express collagen type X 

followed by increased matrix metalloproteinase-13 (MMP13) and alkaline phosphatase 

(Kozhemyakina et al. 2015). Neighboring perichondrial mesenchymal cells differentiate 

and form osteoblasts of the bone collar. Vascular invasion and ossification occurs in the 

final stage as hypertrophic chondrocytes undergo apoptosis. The vascularization is 
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necessary to recruit chondroclast that resorb the ECM around the hypertrophic cells and 

osteoblasts that secrete new bone and thus creating the primary ossification center of the 

bone. 

The growth plate is a specialized tissue that enables the longitudinal elongation of 

the long bones and persists until the end of adolescence (Melrose et al. 2016). 

Chondrocytes in the growth plate undergo spatially organized differentiation and 

maturation processes. The differentiation stage is organized by the transcriptional activity 

regulated by tissue specific growth factors. Chondrocytes in the resting zone are 

dispersed within the extracellular matrix and are isolated from the ossification front. 

These cells are a pool of cells that contribute to the proliferative zone chondrocytes. 

Chondrocytes in the proliferative zone of the growth plate are flat and orientated with the 

long axis perpendicular to the plane of longitudinal growth. Clonal expansion of the cells 

generates a columnar structure with a stack like appearance (Figure 2). The cartilage 

producing cells in the upper proliferative zone synthesize and secrete abundant collagen 

type II and aggrecan. Chondrocytes in the prehypertrophic zone begin to increase in size 

and express Indian hedgehog (Ihh) and parathyroid hormone-related peptide receptors 

(Vortkamp et al. 1996). Cells in the hypertrophic zone are non-proliferative and secrete 

collagen type X instead of collagen type II. Interestingly, the fate of the hypertrophic 

chondrocyte is divided by at least potential outlooks. The first is that hypertrophic cells 

die by apoptosis and are subsequently replaced by osteoblast, and the second suggesting 

hypertrophic chondrocytes transdifferentiate directly into osteoblast (Hill et al. 2005, 

Yang et al. 2014). 
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Regulation of Chondrogenesis 

The Sry-related high-mobilty group box (Sox) transcription factor, SOX9, has 

been identified as the master regulator for chondrogenic commitment and differentiation 

of mesenchymal cells (de Crombrugghe, Lefebvre, and Nakashima 2001, Lefebvre et al. 

2007). Sox9 transcripts are expressed in both chondroprogenitor cells and differentiated 

chondrocytes and declines in hypertrophic chondrocytes (Lefebvre and Dvir-Ginzberg 

2017). Sox9 binds the Col2a1, Col11a2 and aggrecan promoters, making it essential for 

cartilage formation (Bell et al. 1997, Deng, Huang, and Yuan 2016). Interestingly, loss of 

SOX9 before mesenchymal condensation prevented the aggregation of mesenchymal 

cells and the loss of subsequent skeletal formation. On the other hand, deletion of SOX9 

after mesenchymal condensation caused severe chondrodysplasia with decreased 

proliferation and maturation. In addition to the effects on proliferation, loss of SOX9 

causes disorganization of cells in the growth plate. The expression of SOX9 is required to 

prevent proliferating chondrocytes from transitioning into hypertrophic chondrocytes 

(Akiyama et al. 2002). Furthermore, overexpression of SOX9 in chondrocytes decreased 

cell proliferation through interactions with the canonical Wnt signaling pathway 

(Akiyama 2004, Topol et al. 2009). 

The Wnt signaling pathway plays conserved roles in regulating fundamental cell 

behavior during tissue development and morphogenesis in multiple tissue, including 

skeletal tissues (Clevers 2006). During skeletal development, Wnt influences the cell fate 

decisions of mesenchymal stem cells by directing them toward either the chondrocyte or 

osteocyte lineage (Day et al. 2005, Hill et al. 2005, Reinhold et al. 2006)  High β-catenin 
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levels inhibit Sox9 expression and activity while promoting runt-related transcription 

factor-2 (Runx2) expression, therefore promoting differentiation toward the osteoblast 

lineage. Additionally, activation of T-cell specific transcription factor/lymphoid 

enhancer-binding factor (TCF/LEF) in chondrocytes accelerates hypertrophic 

differentiation and stimulates ectopic mineralization (Kitagaki et al. 2003). On the other 

hand, low Wnt/β-catenin signaling enhances Sox9 expression and promotes the 

chondrocyte fate. Therefore, the balance of Wnt/β-catenin is an important molecular 

switch between chondrocyte and osteoblast fate choice in mesenchymal cells contributing 

to skeletal development. 

Wnt molecules can act through at least three unique signaling pathways leading to 

distinct cellular responses: canonical Wnt signaling, noncanonical planar cell polarity, 

and Wnt/calcium dependent pathways. Canonical pathways refer to the involvement of β-

catenin in the signal transduction. In the canonical Wnt signaling pathway, the absence of 

Wnt binding to the seven pass transmembrane surface receptor frizzled, promotes β-

catenin phosphorylation at the amino terminal domain by glycogen synthase kinase 

(GSK) 3β and casein kinase 1α (CK1α) in a complex with the scaffolding protein axin 

and adenomatous polyposis coli (APC). This phosphorylation event on β-catenin targets 

it for subsequent ubiquitination and proteasome mediated degradation (Aberle et al. 

1997). On the other hand, binding of Wnt to the frizzled receptor and co-receptor LDL 

related proteins (LRP) 5/6, leads to phosphorylation of GSK3β and thereby uniquely 

inhibiting GSK3β’s kinase activity, and stabilizing β-catenin levels in the cytoplasm. 

Stable β-catenin accumulates and translocates to the nucleus where it interacts with T-cell 
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specific transcription factor/lymphoid enhancer-binding factor (TCF/LEF) to drive Wnt 

target gene transcription. 

GSK3β is a serine/threonine kinase with multiple substrates including β-catenin 

(Doble and Woodgett 2003, Saegusa et al. 2009, Umschweif et al. 2013). Uniquely, 

GSK3β is an active kinase under normal conditions and is inhibited when phosphorylated 

at serine-9. Phosphorylation is mediated by several upstream kinases including 

phosphoinositide 3-kinase (PI3K)/AKT, cyclic AMP-dependent protein kinase (PKA) 

and protein kinase C (PKC). As mentioned above, GSK3β mediated phosphorylation of 

β-catenin leads to the ubiquitination and proteasome-mediated degradation, therefore 

decreasing the activity of TCF/LEF transcription factors (Clevers 2006). Therefore, 

GSK3β is an important mediator of chondrocyte behavior and cell fate decisions through 

the regulation of β-catenin degradation and stabilization. 

Collagen α1(XI) 

Collagen type XI is a heterotrimeric protein containing three unique chains, 

α1(XI), α2(XI) and α3(XI) (Mendler et al. 1989, Fernandes et al. 2007). The collagen 

α1(XI) chain is translated as a procollagen alpha chain that will undergo future 

modifications through proteolytic cleavage of the amino and carboxyl terminal ends. The 

rate of proteolytic cleavage at the amino terminal domain is influenced by the variable 

region located between the amino terminal domain and the major triple helix (Medeck et 

al. 2003, Oxford et al. 2004). 

The COL11A1 gene contains 67 exons in which exons 6 through 9 (also referred 

to as exons 6a through 8) are subject to alternative splicing (Davies et al. 1998). 

Alternative splicing of COL11A1 mRNA leads to complex combinations of exons 6A, 
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6B, 7 and 8 which give rise to variants of the variable region of the collagen α1(XI) 

protein. Exons 2-5 are expressed in all isoforms and code for the conserved amino 

propeptide. The variable region is included in the amino terminal domain but is not part 

of the proteolytically cleaved amino propeptide. Therefore, the variable region is retained 

in the mature collagen fibril and contributes to diverse isoforms of the collagen type 

α1(XI) chain. The expression of the isoforms is regulated during embryonic development 

and are tissue specific (Davies et al. 1998, Morris et al. 2000). Furthermore, the tissue 

specific expression of collagen type α1(XI) chain isoforms is temporally and spatially 

controlled by cis-acting elements (Chen et al. 2001). 

Collagen type XI is a minor fibrillar collagen expressed in multiple tissues 

including brain, placenta, skeletal muscle, heart, lung, the vitreous bone and cartilage 

(Yoshioka et al. 1995). Collagen type α1(XI) chain is first detected during embryonic 

development in the developing limb and craniofacial cartilage. Additionally accumulating 

evidence has asserted that collagen type α1(XI) chain is a cancer biomarker (Bowen et al. 

2008, García-Pravia et al. 2013, Wu et al. 2015). The tissue distribution has been 

investigated and confirmed in mouse, rat, chick and most recently, zebrafish models (Li 

1995, Yoshioka et al. 1995, Fang et al. 2010). 

The amino terminal domain of collagen α1(XI) chain remains exposed on the 

surface of the fibril for an extended amount of time (Morris and Bachinger 1987). The 

rate at which the amino propeptide is cleaved is influenced or potentially controlled, by 

the isoform present, which is dictated by the variable region primary sequence (Medeck 

et al. 2003, Oxford et al. 2004). The diameter of mature collagen fibrils in cartilage has 

been linked to collagen type XI expression. The amino terminal domain acts to sterically 
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hinder the additional collagen fibrils in the cartilage because the amino terminal domain 

remains extended at the collagen surface (Gregory et al. 2000, Holmes and Kadler 2006). 

The surface location of collagen α1 (XI) amino terminal domain enables the possibility 

for multiple interactions. Proteomic analysis has identified multiple molecules that show 

an affinity for the amino terminal domain. Several collagens (II, IX, XI, XII and XIV), 

proteoglycans biglycan, perlecan, chondroadherin, fibromodulin, epiphycan, 

thrombospondin 1 and 5, and matrilin 1 and 3, were found to interact with the amino 

terminal domain either directly or indirectly (Oxford et al. 2004). 

Mutations in human COL11A1 gene are the cause of Fibrochondrogenesis a 

neonatally lethal chondrodysplasia (Lazzaroni-Fossati 1978, Li 1995, Tompson et al. 

2010). Heterozygous mutations in COL11A1 cause milder forms of chondrodysplasia, 

Stickler’s syndrome type II and Marshall’s syndrome (Vijzelaar et al. 2013, Acke et al. 

2014). COL11A1 associated chondrodysplasia present with long bone and rib shortening 

with flared metaphysis or cupping, vertebral malformation, flattened midface, reduced 

jaw protrusion and sensorineural defects affecting hearing and vision (Whitley et al. 

1984, Akawi, Al-Gazali, and Ali 2012, Hufnagel et al. 2014). 

The chondrodystrophic mouse (cho) demonstrates the importance of Col11a1 

expression in development. The autosomal recessive chondrodysplasia is caused by a 

mutation generating a reading frame shift in the Col11a1 gene that produces a premature 

stop codon (Li 1995). The collagen diameter in the cho mouse is abnormally thick, 

highlighting the ultrastructural influence of collagen type XI on fibril diameter 

(Fernandes et al. 2007). Recent analysis of the cho mouse demonstrated the importance 

of Col11a1 in regulating mineralization of the bone collar and trabecular bone (Hafez et 



13 

 

 

al. 2015). These developmental defects irrefutably demonstrate the necessity of 

COL11A1 expression in skeletal development. 

 

 

 

Figure 1.1. Schematic of cartilage development and endochondral ossification. 

Source: (Usami et al. 2016) The process of endochondral ossification requires multiple 

steps to successfully develop the cartilage and bone. (a) Mesenchymal cells first form 

a condensation at the future site of the cartilage. The cells of the condensation 

contribute to cells of the chondrocyte and osteoblast lineage. Chondrocyte 

differentiation and matrix production occurs in the mesenchymal condensation. (b) 

The cells of the condensation continue to grow, differentiation and organize the 

cartilage template, creating the growth plate. Perichondral cells border the cartilage 

template and prevent the addition of new mesenchymal cells. (c) Cells in the center 

undergo hypertrophy and create the primary ossification center that is occupied by 

microvessels. (d) Vessels invade at the epiphyses, and generate a secondary 

ossification center that contains osteoblast. (e) The growth plate continues to advance 

and promote longitudinal growth. The articular cartilage is formed at the superficial 

surface providing resilience in load-bearing situations and a smooth surface for the 

joint. 
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Figure 1.2. Organization of the growth plate and articular cartilage Source:(Usami 

et al. 2016). (A) The growth plate contains distinct zones with morphological 

differences in each: The resting zone, proliferating zone, prehypertrophic zone, and 

hypertrophic zone. (B) The articular cartilage also contains distinct zones: Superficial 

layer, mid layer, deep layer, calcified layer. 
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Figure 1.3. Canonical Wnt signaling pathway. Source: (Clevers 2006). In the 

absence of the Wnt ligand, CK1 and GSK3 phosphorylate β-catenin. Phosphorylated 

β-catenin is recognized by β-TrCP of the E3 ubiquitin ligase complex, ubiquitinated, 

and degraded by the proteasome. Therefore, in the absence of Wnt ligand, 

cytoplasmic β-catenin does not accumulate or enter the nucleus to activate Wnt target 

genes. In the presence of Wnt ligand, the Frizzled/ LRP complex activates the 

canonical signaling pathway. Axin is recruited to the membrane and β-catenin 

escapes phosphorylation and subsequent ubiquitination and degradation. Therefore, 

β-catenin accumulates in the cytoplasm and translocates to the nucleus. In the 

nucleus, β-catenin interacts with TCF/LEF and promotes the expression of Wnt 

target genes. 
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CHAPTER TWO: ZEBRAFISH COL11A1A REGULATES CRANIOFACIAL 

MORPHOGENESIS DURING DEVELOPMENT 

Abstract 

Expression of the col11a1a gene is essential for normal skeletal development in 

both cartilage and bone. Although col11a1a loss of function mutations cause abnormal 

growth plate organization, the effect on craniofacial development has not been well 

studied. To further understand the effect of col11a1a gene function in craniofacial 

development, we analyzed the developing craniofacial skeleton in zebrafish using gene 

knockdown by injection of antisense morpholino oligonucleotide (AMO). We 

demonstrate that col11a1a knockdown impairs organization of the craniofacial cartilage 

and bone forming cells in and adjacent to the Meckel’s cartilage. These results are 

consistent with reported cell behavior in the growth plate and suggest a conserved role for 

col11a1a expression in growth plate and jaw. 

Introduction 

The craniofacial skeleton is derived from cranial neural crest cells (CNCC) that 

migrate into the pharyngeal arches and establish a cartilage anlagen (Kimmel et al. 1998, 

Kague et al. 2012, Berendsen and Olsen 2015). The cranial neural crest cells of the seven 

pharyngeal arches occupy the appropriate segmented arch through predetermined 

migratory streams during craniofacial development (Schilling and Kimmel 1994). The 

first of seven pharyngeal arches give rise to the Meckel’s cartilage which functions as the 

cartilage template of the mandible, or lower jaw (Mork and Crump 2015). Ossification of 
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the mandible occurs through a combination of intramembranous ossification at the 

mediolateral dentary and endochondral ossification at the distal-most cartilage (Eames et 

al. 2013). 

During development, most of the skeleton is composed of cartilage, a firm yet 

flexible connective tissue composed primarily of chondrocytes embedded in a collagen 

and proteoglycan rich matrix. Collagens are a large family of extracellular molecules of 

at least 28 members found mostly in connective tissues (Carter and Raggio 2009, Ricard-

Blum 2011). The functions of collagens are diverse and have been linked to cell 

adhesion, migration, structure and cell signaling during skeletal morphogenesis (Kadler et 

al. 2007). 

The collagen type XI alpha 1 gene, COL11A1, is expressed by chondrocytes in 

the developing fetal cartilage, the growth plate, and articular cartilage. The translated 

protein is incorporated into collagen type XI fibrils and primarily localized to thin fibrils 

of the pericellular matrix of chondrocytes. Collagen type XI heterotrimeric molecules are 

composed of two unique alpha chains, α1(XI), α2(XI), as well as the α3(XI) chain which 

is  identical to collagen α1(II)B (Poole, Flint, and Beaumont 1987, Eyre 2002). 

Autosomal recessive null mutations in COL11A1 cause the lethal chondrodysplasia, 

Fibrochondrogenesis in humans (Tompson et al. 2010). Mutations that reduce or modify 

COL11A1 gene expression cause milder forms of chondrodysplasia in Stickler’s and 

Marshall’s syndrome (Vijzelaar et al. 2013, Acke et al. 2014). Fibrochondrogenesis is 

clinically characterized by long bone and rib shortening with flared metaphysis or 

cupping, vertebral malformation, flattened midface, reduced jaw protrusion and 
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sensorineural defects affecting hearing and vision (Whitley et al. 1984, Akawi, Al-Gazali, 

and Ali 2012, Hufnagel et al. 2014). 

Ultrastructural and biochemical analysis of collagen type XI alpha one chain  

molecules have provided valuable information regarding structure, location and binding 

interactions (Warner et al. 2006, McDougal et al. 2011, Brown et al. 2011, Ryan et al. 

2015). In addition, clinical samples and animal models have indicated a clear link 

between chondrodysplasia, chain misassembly and COL11A1 gene defects (Fernandes et 

al. 2007). This study seeks to elucidate the impact that zebrafish col11a1a gene defects 

have on tissue morphogenesis and cell organization during skeletal development. 

Evidence that COL11A1 gene defects disrupt the growth plate and long bone 

development in human patients led us to hypothesize that zebrafish col11a1a is essential 

for craniofacial development. Based on this hypothesis, we predict that col11a1a gene 

defects will disrupt chondrocyte organization and subsequent mineralization in 

craniofacial development. 

Methods 

Fish Care and Transgenic Lines 

Vertebrate animal use was approved by the Institutional Animal Care and Use 

Committee (IACUC Protocol 006-AC15-011)). Zebrafish embryos were obtained from 

ZIRC (Eugene, OR). The following lines were used in these studies; AB, Tg(sp7:EGFP) 

(DeLaurier et al. 2010) and Tg(Fli1a:EGFP) (Lawson and Weinstein 2002). 

Morpholino Injections 

Gene-specific and standard control antisense morpholino oligonucleotides (AMO) 

were purchased from Genetools, LLC (Philomath, OR). The col11a1a morpholino 
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targeted the translational start site with the following sequence:  5’-

GGGACCACCTTGGCCTCTCCATGGT-3’. Morpholinos were diluted in water and 

0.05% phenol red. The morpholinos were injected at a volume of 2 nL and at a 

concentration of 3 ng/nL. 

Cartilage and Bone Staining 

Five days post fertilization (dpf) zebrafish embryos were fixed overnight with 4% 

paraformaldehyde in phosphate buffered saline (PBS). The samples were washed with 

PBS with 0.1% Tween-20 (PBT) then dehydrated through a 30:50:90% series of ethanol 

followed by overnight incubation in Alcian blue solution of 0.1mg/mL in 75:25% 

ethanol:acetic acid overnight with rocking. Samples were rehydrated through 70:50:30% 

ethanol series and bleached in 1% hydrogen peroxide and monitored until the eyes were 

clear (2-3 hours). 

For vital imaging of calcification, live zebrafish were incubated in 30 mL of the 

zebrafish housing system water with 200 µL of 0.5% Alizarin Red (final concentration 

0.003%) for 3 hour. Fish were subsequently rinsed in zebrafish housing system water 

prior to imaging. 

Imaging 

Transgenic zebrafish were anesthetized in 0.016% tricaine methanesulfonate 

(MS-222) in system water prior to mounting in 0.6% (w/v) low melting point agarose 

containing MS-222. Confocal imaging was performed using a Zeiss LSM 510 Meta 

inverted laser scanning microscope. Alizarin Red vital stained images were collected by 

excitation between 530-560 nm and by monitoring emission at 580 nm. GFP transgene-

expressing zebrafish images were generated by excitation at 488 and monitoring emission 
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at 509 nm. Wide field fluorescence microscopy was also performed using the EVOS Fl 

imaging system (ThermoFisher Scientific). Alcian blue stained zebrafish were mounted 

in glycerol and imaged using the Olympus BX53 light microscope. 

Results 

Knockdown of Col11a1a Leads To Skeletal Deformities In Zebrafish 

Fibrochondrogenesis is clinically distinguished by wide long-bone metaphyses, 

abnormally pear-shaped vertebral bodies, flattened facial appearance, micrognathia and 

abnormal curvature of the spine. In addition, ultrastructural changes in the growth plate 

cartilage and chondrocyte dysplasia are observed at the microscopic level (Lazzaroni-

Fossati 1978, Whitley et al. 1984, Tompson et al. 2010). We compared morphant and 

wild type zebrafish at 5 dpf. By this time most of the cartilage elements have developed 

and can be stained with Alcian blue to detect the cartilaginous ventral pharyngeal 

skeleton. Col11a1a antisense morpholino oligonucleotide (AMO) induced a 

chondrodysplasia that recapitulates Fibrochondrogenesis and morphants were 

distinguishable from stage-matched controls (Figure 1). The body axis of the morphants 

were curved ventrally, the midface had a flattened appearance and the jaw size was 

reduced. In addition to the skeletal defects, heart edema was observed (Figure 1B). 

Otoliths were abnormal and fused when compared to the controls (Figure 1D). Staining 

GAGs of the cartilage with Alcian blue showed the knockdown of col11a1a caused the 

development of cartilage derived from the pharyngeal arches to be deformed (Figure 1E). 

Specifically, the Meckel’s cartilage of the control zebrafish was completely formed and 

extended to enable lower jaw articulation, indicating appropriate development had 

occurred. In contrast, Alcian blue staining of the morphants revealed that the Meckel’s 
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cartilage was smaller compared to zebrafish injected with the control AMO and 

compared at stage matched times. Further examination of the Meckel’s cartilage showed 

that not only does it fail to protrude, but the overall shape is altered. The lower jaw 

normally extends anteriorly and forms a single stack of cells by 5 dpf in normal zebrafish 

development (Piotrowski et al. 1996, Schilling et al. 1996). Inhibiting col11a1a 

expression by injection of AMO disrupted morphogenesis of the developing craniofacial 

skeleton, causing the eyes to appear that they are bulging. Also, the zebrafish otoliths 

became abnormally positioned in the otic vesicle as a condition of the severe dysplasia. 

Additionally, the 2nd arch failed to form anteriorly pointing segments at the midline of the 

zebrafish. The remaining posterior arches, ceratobranchial 1-5, were weakly stained and 

lacked the proper structure. 

Cranial Neural Crest Derived Cells Form Segmented Pharyngeal Arches with 

Abnormal Shape 

The cells of the pharyngeal arches were visualized by laser scanning confocal 

microscopy using the transgenic Fli1a:EGFP reporter (Figure 2). Fli1a is expressed in 

cranial neural crest derived mesenchymal cells of the developing cartilage as well as the 

aortic arches and endothelial cells of the vasculature. Enhanced green fluorescence 

protein (EGFP) expression in the neural crest derived cells of the developing pharyngeal 

skeletal can be detected until at least 7dpf (Lawson and Weinstein 2002). The EGFP was 

imaged 72-hours post fertilization to determine if the cells of the pharyngeal arches could 

organize in a manner sufficient to establish the cartilage template of the future 

craniofacial skeleton. We identified the neural crest derived cell pattern in the morphants 

and compared it to the control embryos (Figure 2). We predicted that the cells of the 
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pharyngeal arches would form condensations but not migrate and organize into ordered 

columns representing the normal cellular organization of the developing cartilage. 

Consistent with this prediction, the neural crest derived cells formed abnormally shaped 

pharyngeal arches in the morphants. We determined that the CNCCs occupied segmented 

pharyngeal arches, but subsequent patterning consistent with cartilage development failed 

to occur. Notably, the 1st and 2nd arches were closer to each other and neither arch 

extended anteriorly as seen in normal development (Figure 2B). Each pharyngeal arch 

was present and segmented from each other, and cell populations that could potentially 

contribute to cartilage development were present. The overall pattern at this stage was not 

consistent with normal cartilage development and patterning. 

The lateral view of the normal zebrafish was used to visualize the extension of the 

Meckel’s cartilage at this stage of development. Meckel’s cartilage supports lower jaw 

formation by forming a template for mineralization. The morphant jaw failed to extend 

anteriorly to the extent that the control jaw, and cells of the palatoquadrate did not 

organize into stacked cells (Figure 2B). The result of these two events resulted in both a 

smaller and wider Meckel’s cartilage, and formed kinks in the palatoquadrate where cell 

alignment normally contributes to generating a protruding structure. A ventral view of the 

ceratobranchial arches showed that they were smaller and cellular organization was 

distinguishable from the control zebrafish. The ceratobranchial arches did not extend 

anteriorly, but instead pointed toward the midline (Figure 2D). 
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Cells in the Meckel’s Cartilage Fail To Converge And Extend In Col11a1 

Morphants 

We analyzed the cell organization of the Meckel’s cartilage in 5 dpf zebrafish to 

determine if the observed craniofacial defects in col11a1a chondrodystrophies is 

correlated with unaligned cells. Additionally, we analyzed the effect on mineralization of 

the cartilage template. At this stage in development, the anterior region of the jaw 

cartilage should be fully developed. We observed that the organization of the cells in the 

morphant was distinct. The cells of the Meckel’s cartilage form a single file column 

under normal conditions (Figure 3A). We observed both cartilage forming cells, which 

form the single column, and perichondral bone forming cells lining the Meckel’s 

cartilage. The cartilage lining cells produced a mineralized matrix that was detectable 

with Alizarin Red in controls (Figure 3B and C). Mineralization along the normal jaw is 

intramembranous and contributes to the zebrafish dentary and maxilla. In contrast, cells 

in the morphant failed to organize into a single stack and the two-bilateral rod-like arches 

did not extend anteriorly (Figure 3D). Additionally, mineralization of the dentary was not 

observed, but instead mineralization of the cartilage where the two rods of the Meckel’s 

cartilage meet at the anterior-most region was detected (Figure 3 E and F). This is a site 

presumed to mineralize through endochondral ossification (Eames et al. 2012). We found 

that the cells contributing to the Meckel’s cartilage failed to form single file columns and 

that mineralization pattern was altered. 

Bone Forming Cells Form Condensations at the Morphant Meckel’s Cartilage 

Sp7/osterix expression in bone forming cells has been reported in mice and 

zebrafish models (Nakashima et al. 2002, DeLaurier et al. 2010). To determine if the 
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bone forming cells lining the Meckel’s cartilage were displaced by the abnormal template 

shape, we tracked the location of the EGFP positive cells in the transgenic sp7:EGFP 

zebrafish. We predicted that the osteocytes would not be able to organize and form a 

detectable mineralized jaw. At 5 dpf, the Meckel’s cartilage defect in the morphant jaw 

was detectable in the transgenic morphants while the control zebrafish had a protruding 

jaw and normal midface (Figure 4A and B). Sp7:EGFP positive cells were detected by 

fluorescence microscopy adjacent to the developing Meckel’s cartilage. The sp7:EGFP 

positive cells in the control zebrafish were detected lining the cartilage and the 

mineralization pattern followed the expression pattern of sp7:EGFP positive cells (Figure 

4A). In the developing morphant jaw, sp7:EGFP cells were located in the mediolateral 

cartilage rods, but the cells did not line the cartilage as did the perichondral cells of the 

control. Instead, the cells formed small condensations adjacent to the cartilage and did 

not produced detectable mineralization at this time point (Figure 4D). Although 

sp7:EGFP cells were not detected at the distal tip of the cartilage where the cartilage rods 

meet, mineralization was detectable, suggesting accelerated endochondral ossification, 

potentially by increased calcifying chondrocytes. 

Discussion 

Collagen expression is linked to a large and diverse group of skeletal 

developmental diseases (Jobling et al. 2014, Deng, Huang, and Yuan 2016). 

Endochondral bone formation begins when mesenchymal cell condensations form and 

initiate production of the cartilage template. The cartilage increases in size and develops 

shape and structure through cell maturation and extracellular matrix production 

(Kronenberg 2003). While col11a1a has been linked to chondrodystrophies, the influence 
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of Col11a1a protein on cell behavior and organization remains unclear. Determining how 

a Col11a1a-deficient matrix may impact cartilage and bone morphogenesis through the 

spatial organization and behavior of cells is an important step in understanding skeletal 

development as well as degenerative diseases. 

In this study, we analyzed the spatial arrangement of cells in zebrafish during 

craniofacial development after col11a1a knockdown by AMO injection. Through 

fluorescence microscopy and tissue staining, we determined that col11a1a deficiency 

disrupts the morphogenesis of pharyngeal arch derived cartilage and bone by preventing 

the normal arrangement of cells. 

Collagen is the major component of the cartilage extracellular matrix secreted by 

chondrocytes. Collagen type XI plays a structural role in the cartilage through many 

interaction including nucleating and limiting the diameter of collagen type II fibrils and 

interacting with non-collagenous molecules (Wu and Eyre 1995, Brown et al. 2011). A 

previous study demonstrated severe changes to the extracellular matrix and collagen 

network when col11a1a AMO were injected into zebrafish (Baas et al. 2009). Col11a1 

mutations in the chondrodysplasia (cho) mouse also showed disorder chondrocytes and 

collagen fibers in the growth plate (Li et al. 1995, Fernandes et al. 2007). Micro-

computed tomography (µ-CT) analysis of the same mouse model revealed alterations in 

the mineralization of the developing long bones, ribs, vertebrae and skull (Hafez et al. 

2015). These reports are consistent with our findings indicating col11a1a is required for 

normal endochondral ossification in zebrafish. 

The first pharyngeal arch contributes to the Meckel’s cartilage and the bones of 

the inner ear (Schilling and Kimmel 1994, Chai et al. 2000, Kague et al. 2012). In 
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col11a1a morphants, the lower jaw was affected as well as the otoliths of the developing 

ear. Although the otoliths are present the size and location of the otoliths are altered. 

Previous research has identified collagen gene expression, specifically col2a1 and 

col11a1a in the developing zebrafish ear (Fang et al. 2010; Nemoto et al. 2008)  This is 

consistent with reported craniofacial and hearing defects that occur in 

Fibrochondrogenesis as well as Stickler’s syndrome patients (Acke et al. 2012, Akawi et 

al. 2012). 

These data support our conclusion that the cells in the craniofacial skeleton are 

subject to similar mechanisms as the cells of the long bone growth plate and that the 

absence of col11a1a impacts the cellular arrangement and alters mineralization. Based on 

these findings, we propose; 1) the loss of Col11a1a protein prevents cell-matrix 

interactions that permit cell intercalation and; 2) loss of Col11a1a protein prematurely 

promotes cartilage matrix mineralization. Testing these hypotheses and determining the 

molecular mechanisms involved will be the subject of future studies. 

This study was limited to analyzing the overall shape of tissues, arrangement of 

cells that contribute to skeletal morphogenesis and the accumulation of proteoglycans and 

presence of mineralization. No effort was made in the current study to determine the gene 

or protein expression in the cell populations. It is important to note that 

chondrodystrophies linked to COL11A1 present as a spectrum of disorders, such as 

Stickler’s syndrome (Stevenson et al. 2012). Variations in the morphant phenotype and 

lethality were observed and therefore make it challenging to generalize broadly about the 

effect of COL11A1 deficiencies. Because zebrafish col11a1a is expressed in many 

tissues, embryonic lethality could be a possible outcome. 
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Future work will aim to determine the molecular phenotype of the cartilage and 

bone cells. Subsequently, should abnormalities in cell identity be found, the mechanisms 

regulating the cell differentiation and fate should be further investigated. For example, is 

chondrocyte differentiation affected by the absence of co11a1a?  Are the perichondral, 

bone lining cells differentiating properly?  Is hypertrophic differentiation accelerated? 

Does transdifferentiation occur from hypertrophic chondrocytes to osteoblast?  In 

addition to the cell identity, future studies will investigate why the cells fail to organize 

properly. It is possible that planar cell polarity programs are disrupted in col11a1a 

chondrodystrophies. The role of Col11a1a protein in cell signaling pathways that mediate 

planar cell polarity will be investigated in future studies. Integrin-matrix interactions may 

also be inhibited, based on the reported findings of integrin β1 knockdown (Aszodi et al. 

2003). 

In conclusion, loss of col11a1a gene expression not only affects the extracellular 

matrix composition and organization, but also has profound consequences for the spatial 

organization of cells during development of the craniofacial skeleton. Mechanisms 

involving Col11a1a protein during development described here may be conserved in 

other examples of tissue development and degeneration, such as cancer tumor growth 

(Lee, Kim and Kim 2012, Wu et al. 2015) and osteoarthritis (Xu et al. 2003, Rodriguez et 

al. 2004)  Therefore, understanding the impact of col11a1a gene expression on cell 

behavior may contribute to the development of therapies that can target fundamental cell 

mechanisms of growth, differentiation, and homeostasis. 
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Figure 2.1. Col11a1a knockdown causes chondrodysplasia that recapitulates 

Fibrochondrogenesis in zebrafish. Injection of a col11a1a targeting AMO induces 

curvature of the body axis (B) while embryos injected with standard control AMO 

maintain a straight body axis (A). Two otoliths and normal face protrusion are 

present in the control zebrafish (C). In contrast, the morphant zebrafish have fused 

otoliths, heart edema, and an apparent reduction in the face and jaw protrusion (D). 

Alcian blue staining of the pharyngeal arch cartilage shows normal patterning and 

anteriorly facing cartilage (E). Alcian blue staining in the morphant cartilage shows 

perturbed pharyngeal cartilage patterning with a decreased protrusion of the 1st arch 

and posteriorly facing 2nd arch (F). Scale bar in A and B 0.5 mm. Scale bars in C-F 

50 µm 

  



36 

 

 

 
Figure 2.2. Cranial neural crest derived cells form segmented pharyngeal arches 

with abnormal shape in the absence of Col11a1a. Fli1a:EGFP positive cells indicated 

that the neural crest derived cells did occupy the pharyngeal arches. After occupying 

the pharyngeal arch however, cells failed to form organized cartilage structures. The 

cells aligned to form an elongated structure in the palatoquadrate (pq) that joins the 

Meckel’s cartilage in the control morphant (A). The pq of the col11a1a morphant did 

not form a straight structure and the Meckel’s did not extend anteriorly (B). The 

ventral view indicated segmentation of each of the developing pharyngeal arches in 

both the control (C) and the morphant (D). Scale bar 50 µm. (m; Meckel’s cartilage, 

pq; palatoquadrate, ch; ceratohyal, cb; ceratobranchial) 
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Figure 2.3. Col11a1a expression is required for Meckel’s cartilage organization, 

elongation and normal mineralization. The Fli1a:EGFP expressing cells in the 

Meckel’s cartilage and bone lining cells formed an organized stack of flat cells that 

extended the Meckel’s cartilage anteriorly (A)  Alizarin Red staining indicated that 

the bone lining cells produced a mineralized rod-like structure bordering the 

Meckel’s cartilage (C, white star) and initiated mineralization at the distal tip (B and 

C)  In contrast, the cells in the morphant were not flat and did not form a stack (D). 

Consequently, the Meckel’s cartilage did not extend anteriorly. Mineralization of the 

bilateral rods in the morphant was not detected (F, white star), although 

mineralization was present at the distal tip (F). Scale bars 20 µm. 
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Figure 2.4. Col11a1a knockdown disrupts the organization of bone forming cells 

lining the Meckel’s cartilage. Ventral view of sp7:EGFP positive cells imaged in 5 dpf 

control zebrafish (A and C) and morphant (B and D). sp7:EGFP expressing cells line 

the cartilage template in control zebrafish (C). sp7:EGFP expressing cells form small 

condensations at the mediolateral cartilage but fail to expand in morphants (D). Scale 

bar 20 µm.   
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Figure 2.5. Model of Meckel’s cartilage development and the cellular organization 

in normal development and in the col11a1a morphant. Cranial neural crest cells form 

initial condensations. During normal development, the cells reorganize and form a 

single file stack of cells that promotes extension anteriorly. In contrast, inhibition of 

col11a1a expression prevents reorganization into stacked cells. Therefore, the 

Meckel’s cartilage does not extend anteriorly. 
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Figure 2.6. Model of Meckel’s cartilage mineralization in the col11a1a morphant. 

The organized chondrocytes (green) serve as a template for bone forming cells (red) 

to generate a calcified matrix. These cells extend along the template and form two 

bilateral mineralized rods. Bone forming cells in the morphant have less template to 

serve as guide for the bone lining cells. Therefore, these cells cluster and produce 

abnormal mineralization at the cartilage template. 

  



41 

 

 

References 

Acke, F., Malfait, F., Vanakker, O., Steyaert, W., De Leeneer, K., Mortier, G., Dhooge, 

I., De Paepe, A., De Leenheer, E., and Coucke, P. 2014. Novel pathogenic 

COL11A1/COL11A2 variants in Stickler syndrome detected by targeted NGS and 

exome sequencing. Mol. Genet. Metab. 113(3): 230–5.  

Acke, F., Dhooge, I., Malfait, F., and De Leenheer, E. 2012. Hearing impairment in 

Stickler syndrome: a systematic review. Orphanet J. Rare Dis. 7: 84.  

Akawi, N., Al-Gazali, L., and Ali, B. 2012. Clinical and molecular analysis of UAE 

fibrochondrogenesis patients expands the phenotype and reveals two COL11A1 

homozygous null mutations. Clin. Genet. 82(2): 147–56.  

Aszodi, A., Hunziker, E., Brakebusch, C., and Fässler, R. 2003. Beta1 integrins regulate 

chondrocyte rotation, G1 progression, and cytokinesis. Genes Dev. 17(19): 2465–

79.  

Baas, D., Malbouyres, M., Haftek-Terreau, Z., Le Guellec, D., and Ruggiero, F. 2009. 

Craniofacial cartilage morphogenesis requires zebrafish col11a1 activity. Matrix 

Biol. 28(8): 490–502.  

Berendsen, A., and Olsen, B. 2015. Bone development. Bone 80: 14–8.  

Brown, R., Mallory, C., McDougal, O., and Oxford, J. 2011. Proteomic analysis of 

Col11a1-associated protein complexes. Proteomics 11(24): 4660–76.  

Carter, E., and Raggio, C. 2009. Genetic and orthopedic aspects of collagen disorders. 

Curr. Opin. Pediatr. 21(1): 46–54. 

Chai, Y., Jiang, X., Ito, Y., Bringas, P., Han, J., Rowitch, D., Soriano, P., McMahon, A., 

and Sucov, H. 2000. Fate of the mammalian cranial neural crest during tooth and 

mandibular morphogenesis. Development 127(8): 1671–9. 

DeLaurier, A., Eames, B., Blanco-Sánchez, B., Peng, G., He, X., Swartz, M., Ullmann, 

B., Westerfield, M., and Kimmel, C. 2010. Zebrafish sp7:EGFP: A transgenic for 

studying otic vesicle formation, skeletogenesis, and bone regeneration. genesis 

48(8): 505–511.  



42 

 

 

Deng, H., Huang, X., and Yuan, L. 2016. Molecular genetics of the COL2A1-related 

disorders. Mutat. Res. Mutat. Res. 768: 1–13.  

Eames, B., Amores, A., Yan, Y., and Postlethwait, J.H. 2012. Evolution of the osteoblast: 

skeletogenesis in gar and zebrafish. BMC Evol. Biol. 12(1): 27.  

Eames, B., DeLaurier, A., Ullmann, B., Huycke, T., Nichols, J., Dowd, J., McFadden, 

M., Sasaki, M., and Kimmel, C. 2013. FishFace: interactive atlas of zebrafish 

craniofacial development at cellular resolution. BMC Dev. Biol. 13: 23.  

Eyre, D. 2002. Collagen of articular cartilage. Arthritis Res. 4(1): 30–5. BioMed Central.  

Fang, M., Adams, J., McMahan, B., Brown, R., and Oxford, J. 2010. The expression 

patterns of minor fibrillar collagens during development in zebrafish. Gene Expr. 

Patterns 10(7–8): 315–22.  

Fernandes, R., Weis, M., Scott, M., Seegmiller, R., and Eyre, D. 2007. Collagen XI chain 

misassembly in cartilage of the chondrodysplasia (cho) mouse. Matrix Biol. 

26(8): 597–603.  

Hafez, A., Squires, R., Pedracini, A., Joshi, A., Seegmiller, R., and Oxford, J. 2015. 

Col11a1 Regulates Bone Microarchitecture during Embryonic Development. J. 

Dev. Biol. 3(4): 158–176. 

Hufnagel, S., Weaver, K., Hufnagel, R., Bader, P., Schorry, E., and Hopkin, R. 2014. A 

novel dominant COL11A1 mutation resulting in a severe skeletal dysplasia. Am. 

J. Med. Genet. A 164A(10): 2607–12.  

Jobling, R., D’Souza, R., Baker, N., Lara-Corrales, I., Mendoza-Londono, R., Dupuis, L., 

Savarirayan, R., Ala-Kokko, L., and Kannu, P. 2014. The Collagenopathies: 

Review of Clinical Phenotypes and Molecular Correlations. Curr. Rheumatol. 

Rep. 16(1): 394. 

Kadler, K., Baldock, C., Bella, J., and Boot-Handford, R. 2007. Collagens at a glance. J. 

Cell Sci. 120(12). 



43 

 

 

Kague, E., Gallagher, M., Burke, S., Parsons, M., Franz-Odendaal, T., and Fisher, S. 

2012. Skeletogenic Fate of Zebrafish Cranial and Trunk Neural Crest. PLoS One 

7(11): e47394. 

Kimmel, C., Miller, C., Kruze, G., Ullmann, B., BreMiller, R., Larison, K., and Snyder, 

H. 1998. The shaping of pharyngeal cartilages during early development of the 

zebrafish. Dev. Biol. 203(2): 245–63. 

Kronenberg, H. 2003. Developmental regulation of the growth plate. Nature 423(6937): 

332–336. Nature Publishing Group. 

Lawson, N., and Weinstein, B. 2002. In Vivo Imaging of Embryonic Vascular 

Development Using Transgenic Zebrafish. Dev. Biol. 248(2): 307–318.  

Lazzaroni-Fossati, F. 1978. Fibrochondrogenesis. Arch. françaises pédiatrie 35: 1096-

1104. 

Lee, J., Kim, G., and Kim, J. 2012. Androgen receptor is up-regulated by a BLT2-linked 

pathway to contribute to prostate cancer progression. Biochem. Biophys. Res. 

Commun. 420(2): 428–33. 

Li, Y., Lacerda, D., Warman, M., Beier, D., Yoshioka, H., Ninomiya, Y., Oxford, J., 

Morris, N., et al. 1995. A fibrillar collagen gene, Col11a1, is essential for skeletal 

morphogenesis. Cell 80(3): 423–30 

McDougal, O., Warner, L., Mallory, C., and Oxford, J. 2011. Predicted structure and 

binding motifs of collagen α1(XI). GSTF Int. J. Bioinforma. Biotechnol. 1(1): 43–

48.  

Mork, L., and Crump, G. 2015. Zebrafish Craniofacial Development: A Window into 

Early Patterning. Curr. Top. Dev. Biol. 115: 235–69. 

Nakashima, K., Zhou, X., Kunkel, G., Zhang, Z., Deng, J., Behringer, R., and de 

Crombrugghe, B. 2002. The Novel Zinc Finger-Containing Transcription Factor 

Osterix Is Required for Osteoblast Differentiation and Bone Formation. Cell 

108(1): 17–29. 



44 

 

 

Nemoto, Y., Chatani, M., Inohaya, K., Hiraki, Y., and Kudo, A. 2008. Expression of 

marker genes during otolith development in medaka. Gene Expression Patterns.  

Piotrowski, T., Schilling, T., Brand, M., Jiang, Y., Heisenberg, C., Beuchle, D., Grandel, 

H., van Eeden, F., Furutani-Seiki, M., Granato, M., Haffter, P., Hammerschmidt, 

M., Kane, D., Kelsh, R., Mullins, M., Odenthal, J., Warga, R., and Nüsslein-

Volhard, C. 1996. Jaw and branchial arch mutants in zebrafish II: anterior arches 

and cartilage differentiation. Development 123: 345–56. 

Poole, C., Flint, M., and Beaumont, B. 1987. Chondrons in cartilage: Ultrastructural 

analysis of the pericellular microenvironment in adult human articular cartilages. 

J. Orthop. Res. 5(4): 509–522. 

Ricard-Blum, S. 2011. The collagen family. Cold Spring Harb. Perspect. Biol. 3(1): 

a004978.  

Rodriguez, R., Seegmiller, R., Stark, M., and Bridgewater, L.C. 2004. A type XI collagen 

mutation leads to increased degradation of type II collagen in articular cartilage. 

OsteoArthritis Cart.12(4): 314-20. 

Ryan, R., Martin, B., Mellor, L., Jacob, R., Tawara, K., McDougal, O., Oxford, J., and 

Jorcyk, C. 2015. Oncostatin M binds to extracellular matrix in a bioactive 

conformation: Implications for inflammation and metastasis. Cytokine 72(1): 71–

85. 

Schilling, T., and Kimmel, C. 1994. Segment and cell type lineage restrictions during 

pharyngeal arch development in the zebrafish embryo. Development 120(3): 483-

94. 

Schilling, T., Piotrowski, T., Grandel, H., Brand, M., Heisenberg, C., Jiang, Y., Beuchle, 

D., Hammerschmidt, M., Kane, D., Mullins, M., van Eeden, F., Kelsh, R., 

Furutani-Seiki, M., Granato, M., Haffter, P., Odenthal, J., Warga, R., Trowe, T., 

and Nüsslein-Volhard, C. 1996. Jaw and branchial arch mutants in zebrafish I: 

branchial arches. Development 123: 329–44. 



45 

 

 

Stevenson, D., Vanzo, R., Damjanovich, K., Hanson, H., Muntz, H., Hoffman, R., and 

Bayrak-Toydemir, P. 2012. Mosaicism in Stickler syndrome. Eur. J. Med. Genet. 

55(6–7): 418–22. 

Tompson, S., Bacino, C., Safina, N., Bober, M., Proud, V., Funari, T., Wangler, M., 

Nevarez, L., Ala-Kokko, L., Wilcox, W., Eyre, D., Krakow, D., and Cohn, D. 

2010. Fibrochondrogenesis results from mutations in the COL11A1 type XI 

collagen gene. Am. J. Hum. Genet. 87(5): 708–12. 

Vijzelaar, R., Waller, S., Errami, A., Donaldson, A., Lourenco, T., Rodrigues, M., 

McConnell, V., Fincham, G., Snead, M., and Richards, A. 2013. Deletions within 

COL11A1 in Type 2 stickler syndrome detected by multiplex ligation-dependent 

probe amplification (MLPA). BMC Med. Genet. 14(1): 48. 

Warner, L., Brown, R., Yingst, S., and Oxford, J. 2006. Isoform-specific heparan sulfate 

binding within the amino-terminal noncollagenous domain of collagen 

alpha1(XI). J. Biol. Chem. 281(51): 39507–16.  

Whitley, C., Langer, L., Ophoven, J., Gilbert, E., Gonzalez, C., Mammel, M., Coleman, 

M., Rosemberg, S., Rodriques, C., Sibley, R., Horton, W., Opitz, J., and Gorlin, 

R. 1984. Fibrochondrogenesis: Lethal, autosomal recessive chondrodysplasia with 

distinctive cartilage histopathology. Am. J. Med. Genet. 19(2): 265–275. 

Wu, J., and Eyre, D. 1995. Structural analysis of cross-linking domains in cartilage type 

XI collagen. Insights on polymeric assembly. J. Biol. Chem. 270(32): 18865–70. 

Wu, Y., Chang, T., Huang, Y., Chen, C., and Chou, C. 2015, COL11A1 confers 

chemoresistance on ovarian cancer cells through the activation of Akt/c/EBPβ 

pathway and PDK1 stabilization. Oncotarget. 6(27): 23748-63. 

Xu, L., Flahiff, C., Waldman, B., Wu, D., Olsen, B., Setton, L., and Li, Y. 2003. 

Osteoarthritis-like changes and decreased mechanical function of articular 

cartilage in the joints of mice with the chondrodysplasia gene (cho). Arthritis 

Rheum. 48(9): 2509–2518.



46 

 

 

CHAPTER THREE: Col11a1 expression regulates the chondrocyte phenotype during 

chondrogenesis in ATDC5 cells 

Abstract 

Cartilage development is a tightly regulated process that involves multiple 

molecules. Therefore, the loss of expression of a single gene can alter cell behavior and 

disrupt the development of the cartilage. Col11a1 encodes the alpha one chain of the 

minor fibrillar collagen type XI that is essential in skeletal development. We used an 

RNAi mediated knockdown approach to investigate the role of Col11a1 expression 

during chondrogenesis in ATDC5 cells. We hypothesized that Col11a1 expression 

promotes the transition of mesenchymal cells to the chondrogenic phenotype, and that 

reduction of Col11a1 expression will delay or inhibit this transition. The results are 

consistent with a role for COL11A1 protein in the regulation of cell shape, matrix 

production, mineralization and gene expression through a mechanism that involves 

AKT/GSK3β/β-catenin and increases TCF/LEF activity during chondrogenesis. These 

data indicate an underappreciated role for COL11A1 protein in the regulation of cell 

behavior. 

Introduction 

Endochondral ossification requires that a cartilage template is formed prior to 

initiating ossification (Hall and Miyake 2000). The process of endochondral ossification 

is the primary bone forming mechanism during vertebrate development (Kronenberg 

2003). Therefore, successful vertebrate development requires the formation of a cartilage 
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template through chondrogenesis. To successfully form cartilage analgen, the cells must 

proceed through a series of maturation steps that begins with prechondrogenic 

mesenchymal cells forming a condensation and initiating the expression of genes 

involved in chondrocyte differentiation and matrix formation. The chondrocytes continue 

to mature and further differentiate into hypertrophic chondrocytes that contribute to 

matrix remodeling and ossification. The cells involved in this initial cartilage template 

remain in the growth plate and are responsible for longitudinal growth of the bone 

(Kronenberg 2003, Berendsen and Olsen 2015). Errors occurring during the formation of 

the cartilage can cause skeletal dysplasia or increase the susceptibility to the early onset 

of connective tissue diseases such as osteoarthritis. 

COL11A1 gene expression is essential for normal skeletal development, evident 

by diseases in humans and by the observation that mutations in the Col11a1 gene result 

in severe tissue disorganization in mice (Li et al. 1995, Hafez et al. 2015). 

Fibrochondrogenesis and Stickler’s syndrome type II are human skeletal dysplasias 

associated with mutations in the COL11A1 gene (Tompson et al. 2010a, Hufnagel et al. 

2014). Additionally, genetic alteration in COL11A1 contributes to intervertebral disc 

disease and degradation of the articular cartilage (Noponen-Hietala et al. 2003, Rodriguez 

et al. 2004, Raine et al. 2013). 

Collagen type XI is composed of three alpha chains, α1(XI), α2(XI), and α3(XI) 

(Morris and Bächinger 1987, Fernandes et al. 2007). Collagen type XI both nucleates 

fibril formation and regulates the fibril diameter (Blaschke et al. 2000, Gregory et al. 

2000, Holmes and Kadler 2006). The amino terminal domain of the α1(XI) chain is a 

unique domain to clade B fibrillar collagens that interacts with multiple extracellular 
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molecules, making it essential in providing integrity to the matrix network (Bernard et al. 

1988, Oxford et al. 2004, Warner et al. 2006, Brown et al. 2011). Despite our knowledge 

of the structural role of collagen type XI in the extracellular matrix of cartilage, the 

biological impact of COL11A1 gene mutations on cell behavior and molecular phenotype 

remain unknown. 

Previous studies have established the importance of COL11A1 protein in skeletal 

development, maintenance and health, but they have not investigated how decreased 

COL11A1 expression affects the chondroprogenitor cell behavior during chondrogenesis. 

The chondroprogenitors are derived from mesenchymal stem cells and their maturation 

into overt chondrocytes is a tightly regulated, sequential process (Goldring, Tsuchimochi, 

and Ijiri 2006). The chondrocytes undergo proliferation and upregulate chondrogenic 

gene expression of COL2A1, ACAN, and SOX9. These cells further change their 

expression to include upregulation of the hypertrophic chondrocyte markers COL10A1, 

RUNX2, and MMP13. Deviation from the normal expression pattern may alter the 

extracellular matrix environment permanently, causing chondrodysplasia and 

susceptibility to degenerative cartilage disease. Furthermore, cells interact with and react 

to the extracellular environment; therefore, dysplastic tissue has the potential to alter 

downstream cellular behaviors such as differentiation. In addition to nucleation and 

collagen fibril diameter, we propose the hypothesis that COL11A1 expression is required 

to promote chondroprogenitor cell maturation during endochondral ossification and 

chondrogenesis. Based on this hypothesis, we predict that skeletal dysplasia resulting 

from loss of COL11A1 expression alters chondrocyte phenotype and disrupts cell 

signaling events during chondrogenesis. 
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To test this hypothesis, we utilized the mouse ATDC5 chondrogenic cell line and 

induced differentiation using media containing insulin, transferrin, selenium (ITS), and 

ascorbic acid. ATDC5 cells are a well-established murine cell line used for studying the 

process of chondrogenesis and the transcriptome has been well documented (Chen et al. 

2005, Altaf et al. 2006, Yao and Wang 2013). To investigate the early role of Col11a1 in 

chondroprogenitor cells, we first identified the expression pattern of Col11a1 and then 

used an RNAi approach to inhibit the upregulation of Col11a1 during chondrocyte 

maturation. We analyzed the expression of chondrogenic markers in the knockdown cell 

culture as well as the activity of the β-catenin signaling pathway. We found that in the 

absence of Col11a1 expression, cellular morphology differed from control cultures. We 

also identified changes in the phosphorylation of AKT, GSK3β and β-catenin. The 

pattern of phosphorylation was consistent with the increased transcriptional activity of 

TCF/LEF and downstream gene expression. These results suggest that Col11a1 

expression mediates changes in cell phenotype by attenuating the β-catenin signaling 

pathway during chondrogenesis and endochondral ossification. 

Methods 

Cell Culture 

Mouse chondrogenic cell line ATDC5 cells were cultured in DMEM/F12 

containing 5% fetal bovine serum and 100 I.U./mL penicillin and 100 µg/mL 

streptomycin. Cells were passaged at 80% confluence by dissociating with 0.25% 

trypsin/EDTA for 3-5 mins at 37°C. For differentiation experiments, the culture media 

was replaced with differentiation media after the cells reached 100% confluency. 

Differentiation media was DMEM:F12 supplemented with Insulin (10 µg/mL), 
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Transferrin (0.5 µg/mL) Selenium (0.0067 µg/mL) (ITS, Gibco) and 50 µg/mL ascorbic 

acid 2-phosphate (A2P) (Wako Chemicals, USA). The differentiation media was replaced 

every other day for the duration of the experiment. 

Col11a1 Knockdown by Sirna Transfection 

ATDC5 cells were seeded in 6-well plates with 2.5 x 106 cells per well in culture 

media and allowed to reach 80-90% confluency prior to transfection. siRNA targeting 

Col11a1 was designed and purchased from Invitrogen. The 21-base pair double stranded 

siRNA was generated from interrogating RefSeq NM_007729.2 and targeting exon 2 at 

nucleotide location 590. Lipofectamine RNAiMAX was used for transfections following 

standard protocols. Transfections were performed in triplicate with a siRNA-lipid 

complex master mix prepared in Opti-MEM media. The final master mix solution 

contained 1 mL Opti-MEM, 10 µL of 10 µM siRNA stock and18 µL of Lipofectamine 

RNAiMAX. Control wells were transfected with negative control siRNA and performed 

in triplicate with each experiment under the same conditions as the experimental siRNA. 

BLOCK-iT Alexa Fluor Red Fluorescent Oligo was used to determine and optimize the 

transfection efficiency. A transfection efficiency of 90-100% was achieved when 

determined by monitoring uptake of the fluorescent oligonucleotide. Cell cultures 

recovered for 24 hours before changing the media to differentiation medium. 

3d Micromass Cultures 

Micromass cultures were generated by dissociating cells with 0.25% 

trypsin/EDTA from the wells and resuspending to 2.0 x 107 cells/mL in differentiation 

medium containing ITS and 50 µg/mL ascorbate 2-phosphate. Ten microliters of the cell 

suspension was gently spotted in tissue culture wells. The cells were allowed to adhere 
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for 2-3 hours in a tissue culture incubator at 37°C with 5% CO2 before adding additional 

medium. The medium was changed every other day for the duration of the experiment. 

Quantitative Rt-Pcr (Qpcr) Analysis 

RNA was extracted and purified using the RNAeasy minikit following 

manufacturer’s instructions (Qiagen). Isolated RNA was analyzed by spectrophotometry 

for purity and quantity and used immediately for cDNA synthesis or alternatively, 

aliquoted and stored at -80°C. RNA was reverse transcribed into cDNA using the RT2 

first strand kit. The cDNA template was analyzed by qRT-PCR reaction using Sybr 

Green and specific primers or directly in RT2 profiler PCR arrays in 96 well format. 

Reactions were carried using the Roche Lightcycler 96 target specific primers (Table 1). 

The relative amount of PCR product was normalized to the indicated reference genes and 

the change in threshold cycle (dCt) was compared using Student’s t-test. The fold change 

was calculated using the 2-ΔΔCt method (Schmittgen and Livak 2008) 

Luciferase Assays 

Cignal 45-pathway reporter array was used to identify changes in transcription 

factor activity following manufactures instructions. Lipofectamine 2000 was used with 

Opti-Mem to simultaneously reverse transfect Col11a1 siRNA and a mixture of 

transcription factor responsive firefly luciferase reporter and a constitutively expressing 

Renilla constructs. 5.0 x103 cells per well were added to each well of a 96-well plate 

containing 100 µL of transfection media containing 10 µM Col11a1 siRNA and 0.8 µL 

Lipofectamine 2000 per well. The cells were incubated at 37°C with 5% CO2 for 24 hours 

prior to changing the media to the indicated treatment. Dual luciferase reporter assay 
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system and Glomax multi detection system was used to measure the activity of the 

transcription factors following standard protocol. 

Western Blot Analysis 

Cell lysates were extracted using ice-cold radioimmunoprecipitation (RIPA) cell 

lysis buffer (ThermoFisher Scientific) supplemented with protease and phosphatase 

inhibitor cocktails added directly to the wells of six-well plates after washing with cold 

phosphate buffered saline (PBS). The cell lysates were collected and added to 

microcentrifuge tubes and the supernatant was cleared by centrifugation at 4°C, 14,000xg 

for 15 min and transferred to a new tube. Protein lysates were quantified using 

bicinchoninic (BCA) protein assay (Pierce). Proteins were separated by SDS PAGE and 

then transferred to nitrocellulose membranes for western blot analysis. SDS-PAGE gels 

were stained with coomassie blue to verified equal amounts of loading and transfer for 

each sample. Membranes were blocked using a 5% (w/v) non-fat milk solution in Tris-

buffered saline with 0.1% Tween-20, pH 7.4 (TBST) buffer for 1 hour at room 

temperature prior to incubation with primary antibodies. Primary antibodies were diluted 

in 5% (w/v) bovine serum albumin (BSA) in TBST prior to overnight incubation of the 

membranes at 4°C with shaking. Immunoblots were washed and then incubated with 

horseradish peroxidase (HRP) conjugated secondary antibodies for 1 hour at room 

temperature. Signal was detected using Pierce enhanced chemiluminescence (ECL) 

western blotting substrate. Western blots were performed using the following rabbit 

primary antibodies from Cell Signaling Technology at a dilution of 1:1000 unless 

otherwise stated: phospho-β-catenin (Ser33/37/Thr41), β-catenin (6B3) mAb, AKT, 

phospho-AKT (1:2000) (Ser473) (D9E) XP mAb, Gsk-3beta, phospho-GSK3-β (Ser9) 
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(5B3) mAb, β-Actin (13E5) mAb. Collagen type XI α1 chain specific rabbit polyclonal 

antibodies were designed to recognize epitopes within the amino propeptide (7990) or 

variable region 2 (1703) (Davies et al. 1998). 

Alcian Blue And Alizarin Red Staining 

Cells were differentiated for the indicated times and then stained with 0.1% 

Alcian blue 8GX in 1N HCl at 4°C overnight. For detection of matrix calcification, 

Alizarin Red solution (pH 4.2) was added for 5 min at room temperature and then washed 

with deionized water three times before imaging. 

Immunocytochemistry 

Cells were seeded on sterilized coverslips in 6-well plates in differentiation 

medium. Cells were fixed with 4% paraformaldehyde in PBS for 10 min at room 

temperature and washed 3 times with cold PBS. When required, permeabilization was 

performed by incubating samples for 10 min in 0.1% Triton X-100. Non-specific binding 

was blocked using 1% (w/v) BSA in PBS + 0.1% Tween20 (PBST) for 30 min at room 

temperature. Samples were incubated with diluted antibodies in 1% (w/v) BSA/PBST in 

a covered chamber overnight. Cells were incubated with secondary antibodies for 1 hour 

at room temperature in the dark. Counter stain for nuclei was performed by using Prolong 

gold anti fade mounting media with DAPI. 

Results 

Characterization Of Col11a1 And Chondrogenic Mrna Expression During 

Chondrogenesis In Atdc5 Cells 

We characterized the expression profile of the Col11a1 gene in the mouse 

chondrogenic ATDC5 cell line induced to differentiate with ITS and A2P (Figure 1). Day 
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0 of the experiment was designated as the time at which culture medium was exchanged 

for differentiation medium in confluent cultures. Using quantitative RT-PCR, we 

determined that Col11a1 mRNA was increased 7.6-fold at day 7 relative to day 0, and 

156-fold by day 14. We also demonstrated that Col11a1 mRNA levels significantly 

decreased between day 14 and 21 to 20% of the levels observed on day 14 (Figure 1A). 

Western blot analysis using two separate rabbit polyclonal antibody directed to the 

collagen α1(XI) chain amino terminal epitope or variable region 2 (V2) confirmed 

expression at each of the investigated time points (Figure 1B). Protein levels were 

detectable at day 0 and day 7 and in agreement with the mRNA levels, collagen α1(XI) 

chain protein reached maximally detectable levels in cell lysates by day 14. The protein 

detected on day 21 remained high despite the significant decrease in mRNA levels, a 

result that is not surprising given the long half-life on collagen proteins (Verzijl et al. 

2000, Toyama and Hetzer 2013). 

In addition to Col11a1, we confirmed the expression of chondrogenic 

differentiation markers in culture (Figure 1C). The expression patterns that we observed 

were consistent with previously reported results in ATDC5 cells using ITS and A2P to 

induce chondrogenic differentiation (Chen et al. 2005, Altaf et al. 2006). Col2a1 and 

Acan mRNA were increased at day 7 of differentiation. We did not observe significant 

changes in Sox9 mRNA between day 0 and 7 (Figure 1C). 

Col11a1 Knockdown Induces Fibroblast-Like Cytoskeletal Phenotype, Inhibits 

Cartilage Growth, And Increases Mineralization 

To investigate the requirement for Col11a1 expression during the transition of 

prechondrogenic cells to differentiated chondrocytes, we transfected ATDC5 cells with 
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double stranded siRNA complexes targeting Col11a1 mRNA. We optimized and verified 

the effectiveness of this approach by monitoring mRNA and protein levels in ATDC5 

cells. RNAi transfection prevented the increase in Col11a1 mRNA previously observed 

on day 7 (Figure 2). Expression on day 3 was decreased by 90% compared to negative 

control transfected cells and by more than 75% on day 7 (Figure 2A). Western blot 

analysis confirmed a decrease in total collagen α1(XI) chain protein levels in the cell 

lysates on day 7, although some protein was detectable (Figure 2B). Due to collagen’s 

long half-life, it is likely that the protein detected was translated prior to transfection with 

siRNA. New protein translation was blocked through RNAi degradation complexes as we 

could not detect collagen α1(XI) chain by immunofluorescence in transfected cells 

(Figure 2C). We observed changes in the actin cytoskeletal organization 3 days after 

Col11a1 siRNA transfection with cells appearing more elongated and fibroblast-like than 

control cells (Figure 2C). 

The development of the cartilage extracellular matrix can be determined by the 

presence of sulfated glycosaminoglycans in developing cartilage nodules. Additionally, 

late stage chondrogenesis is marked by increased matrix calcification. Micromass 

cultures transfected with Col11a1 siRNA and subsequently grown for 7 days produced 

less extracellular matrix than cells transfected with negative control siRNA as indicated 

by the decreased Alcian blue staining (Figure 3A and B). Additionally, increased 

mineralization was detectable in knockdown micromass cultures after 7 days in 

differentiation media (Figure 3C and D). 
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Inhibition Of Col11a1 Does Not Affect Genes Involved in Mesenchymal 

Condensation but Does Affect Genes Involved in Matrix Production and 

Remodeling 

The expression of mesenchymal condensation and stereotypical chondrogenic 

differentiation markers were analyzed by quantitative RT-PCR. Condensation of 

mesenchymal prechondrogenic cells is a prerequisite for chondrogenic differentiation and 

subsequent chondrocyte maturation. The expression of versican (Vcan), tenascin (Tnc), 

N-cadherin (Cdh2) and N-CAM (Ncam) are required for successful condensation to occur 

(Hall and Miyake 1995). The expression of Vcan, Tnc, Cdh2, and Ncam were unaffected 

by Col11a1 knockdown in ATDC5 cells (Figure 4). However, in the absence of Col11a1 

expression, the mRNA levels of collagen α1(II)chain (Col2a1) and matrix 

metallopeptidase-13 (Mmp13) were increased, while the expression of Sox9, Acan, and 

Col10a1 did not significantly change (Figure 5). 

To further investigate the link of between Col11a1 mRNA expression and 

cartilage development, we utilized a quantitative RT-PCR profiler array for extracellular 

matrix and adhesion genes. Consistent with our previous results, Mmp13 and Col2a1 

were upregulated in the assay. Additionally, Hyaluronan and Proteoglycan Link Protein 1 

(Hapln1), Connective tissue growth factor (Ctgf), Integrin beta 3 (Itgb3), Intercellular 

adhesion molecule 1 (Icam1), Laminin beta 3 (Lamb3), Laminin alpha 3 (Lama3) and 

collagen α3(IV)chain (Col4a3) were significantly increased by Col11a1 knockdown 

(Figure 6). 
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β-Catenin Signaling Pathway Activity is Increased When Col11a1 Expression is 

Inhibited During Chondrogenesis and is Independent of Wnt Induction 

Wnt/β-catenin signaling and the regulation of TCF/LEF transcriptional activity is 

essential in the development of the cartilage (Tamamura et al. 2005, Dao et al. 2012). 

Unregulated activity in cells of the chondrocyte lineage negatively influence tissue 

morphogenesis and consequently leads to disease (Usami et al. 2016). GSK3β is a 

constitutively expressed, multifunction, protein kinase involved in a variety of cellular 

mechanisms, including homeostasis of the cartilage (Doble and Woodgett 2003, Miclea 

et al. 2011). Phosphorylation of GSK3β at serine 9 uniquely inhibits the molecules kinase 

activity (Doble and Woodgett 2003, Kawasaki et al. 2008). Active GSK3β can 

phosphorylate β-catenin when in complex with Axin2, leading to the degradation and a 

decrease in the cytoplasmic levels (Aberle et al. 1997, Delcommenne et al. 1998). 

GSK3β is phosphorylated at Serine 9 in response to stimuli that include Wnt3a 

and insulin. Inhibition of Col11a1 expression increased the phosphorylation of GSK3β at 

serine 9 and decreased amino terminal β-catenin phosphorylation (Figure 7A). 

Interestingly, we also identified increased AKT phosphorylation at serine 473 in the 

absence of insulin. In addition to changes in AKT, GSK3βand β-catenin phosphorylation, 

we observed increased TCF/LEF activity when measured by luciferase assay with the 

TOP:FLASH reporter construct (Figure 7B). β-Catenin levels and localization fluctuate 

with cell behavior, gene expression and activation of cell signaling pathways. To identify 

changes in cell shape and localization of β-catenin caused by Col11a1 expression we 

used immunofluorescence microscopy. Actin fibers in control cells had a cortical actin 

pattern consistent with a chondrocyte phenotype. In contrast, inhibition of Col11a1 



58 

 

 

expression prevented cortical actin and favored cell spreading. Additionally, β-catenin 

was localized more perinuclear and β-catenin appeared throughout the cytoplasm of the 

cell (Figure 8). Stimulation of the canonical Wnt signaling pathway with recombinant 

Wnt3a protein was not inhibited by Col11a1 knockdown as indicated by substantial 

GSK3β phosphorylation and decreased β-catenin phosphorylation in both the negative 

control and Col11a1 siRNA samples. 

Discussion 

This is the first demonstration of a link between the extracellular matrix protein 

collagen α1(XI) chain and the activation of the AKT/GSK3β/β-catenin pathway during 

skeletal development. This cell culture model system provides a means by which to ask 

cellular questions relevant to chondrodysplasia in vitro. These results support the 

hypothesis that Col11a1 expression is required for chondrocyte maturation during 

chondrogenesis and endochondral ossification. Mutations in the human COL11A1 gene 

cause severe chondrodysplasia, affecting bones that develop by endochondral 

ossification, including the craniofacial skeleton, long bones, and the vertebrae (Li et al. 

1995, Tompson et al. 2010a, Stevenson et al. 2012, Faletra et al. 2014, Hafez et al. 2015). 

Although the shape and structure of skeletal tissues impacted by COL11A1 mutations 

have been described radiologically and at the ultrastructural level, the response of the 

cells to the altered matrix have not been fully characterized (Fernandes et al. 2007). Since 

the cells are ultimately responsible for both generating and maintaining tissues, 

understanding the consequences of the absence or reduction of COL11A1 expression has 

important ramifications for skeletal development, disease progression and therapies. We 
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hypothesize that COL11A1 expression is required for mesenchymal, prechondrogenic 

cells to transition to mature chondrocytes. 

In this study, we investigated the relationship between chondrocyte phenotype 

and the expression of Col11a1 using a mouse cell culture model system. We inhibited the 

expression of Col11a1 during chondrogenesis by transfecting prechondrocytes with 

siRNA targeting Col11a1 mRNA prior to inducing differentiation with ITS and ascorbate 

2-phosphate (A2P). The siRNA prevented the normal upregulation of Col11a1 

expression, thus creating a cell culture model system in which to investigate the effects of 

COL11A1 protein deficiency on chondroprogenitor maturation during cartilage 

development. We found that cells maintain a mesenchymal morphology, reduce matrix 

production, alter gene expression and activate AKT/GSK3β/β-catenin pathway in the 

absence of Col11a1 expression. Based on these results we propose that Col11a1 

expression attenuates β-catenin signaling in chondroprogenitor cells to regulate 

chondrocyte maturation and endochondral ossification. 

Collagen type XI’s role in skeletal development has previously been described as 

a structural constituent regulating collagen nucleation and fibril diameter. Additionally, 

Col11a1 expression in cell culture models, including ATDC5 cells, has been used to 

identify cells as having a chondrocyte phenotype (Davies et al. 1998, Chen et al. 2005). 

This study clearly supports that Col11a1 is expressed in chondrogenic cells during 

chondrogenesis and agrees with the hypothesis that Col11a1 expression is essential for 

skeletal development (Li et al. 1995). In addition to being a chondrocyte marker, the 

results of this study are consistent with the idea that Col11a1 is an early mediator of 
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chondrogenesis required to establish the overt chondrocyte phenotype from a 

mesenchymal prechondrocyte and provides a plausible and testable mechanism. 

Mutations in the COL11A1 gene cause the severe skeletal dysplasia, 

Fibrochondrogenesis. Skeletal development is severely affected in Fibrochondrogenesis, 

causing craniofacial defects such as micrognathia and long bone defects with flared 

metaphysis attributed to disorganization of the growth plate (Eteson et al. 1984, Whitley 

et al. 1984, Tompson et al. 2010). Additionally, the cartilage of the larynx is often weak 

and causes respiratory distress which is ultimately lethal. These morphological 

descriptions support COL11A1’s role to promotes cell shape, behavior and cartilage 

growth. The results presented in this study suggest that the inability of cells to stabilize 

the cell shape and cortical actin may prevent the necessary cell behavior from occurring 

during chondrogenesis. For example, cell-cell interactions requiring N-cadherin and β-

catenin promote cell shape, prechondrogenic cell condensations, and regulate Wnt 

signaling (Komori et al. 1997, Modarresi et al. 2005, Gao et al. 2010, Marie et al. 2014). 

Down regulation of these cell adhesions in favor of matrix-cell interactions is an essential 

step in chondrogenesis. Therefore, the inability of cells to establish stable cell-cell 

adhesions or transition to cell-matrix interactions may cause changes at the cellular level 

consistent with Col11a1 associated chondrodysplasia in mouse. 

The observed increases in mineralization may be due to accelerated hypertrophic 

differentiation or cartilage calcification in the absence of intermediate steps. 

Phosphorylation of GSK3β has previously been shown to promote hypertrophic 

differentiation (Kawasaki et al. 2008). Hypertrophic chondrocytes are a normal part of 

the endochondral ossification pathway and are required to initiate mineralization in the 
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growth plate under normal conditions (Ballock et al. 1993, Vega et al. 2004). On the 

other hand, premature initiation of the hypertrophic differentiation program has 

detrimental effects on the cartilage growth and integrity (van der Kraan and van den Berg 

2012, Jayasuriya et al. 2014). Additionally, hypertrophic chondrocytes can potentially 

transdifferentiate into osteoblasts during normal endochondral ossification (Yang et al. 

2014). 

Interestingly, we found that increased expression of Col2a1 and Mmp13 occurs in 

the absence of the collagen α1(XI) chain. These results indicate that the expression of 

Col2a1 and Mmp13 is dependent on collagen α1(XI) through an unidentified genetic 

network. The upregulation of Mmp13 was previously described in the articular cartilage 

of chondrodysplasia (cho) mouse with heterozygous null mutation in Col11a1 (Xu et al. 

2003, 2010). The researchers proposed that increased Mmp13 expression degraded the 

pericellular matrix and exposed chondrocyte discoidin domain-2 receptor (DDR2) to 

interact with the surrounding matrix, mainly collagen type II. The changes in gene 

expression in this study agree with their hypothesis. 

It is relevant to explain that the Col2a1 mRNA transcripts detected in our assays 

were total Col2a1 mRNA, and could not account for alternative splicing; therefore, it is 

possible that the increase in Col2a1 mRNA is primarily Col2a1 containing exon 2, which 

is highly expressed in mesenchymal cells. In contrast Col2a1 transcripts lacking exon 2 

are primarily found in differentiated chondrocytes (Hering et al. 2014; McAlinden et al. 

2008; Sandell et al. 1991; Sandell, et al. 1994). Future assays will utilize this unique 

splicing pattern to further understand the cellular phenotype involved in Col11a1 

expression. 
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The genes Hapln1, Ctgf, and Itgb3 each have essential roles in tissue 

morphogenesis and cartilage development and were upregulated by Col11a1 knockdown. 

Hapln1 is essential member of the cartilage matrix whose expression stabilizes aggrecan 

and hyaluronan links (Yamada and Watanabe 1999). Hapln1 overexpression has recently 

been linked to mesenchymal stem cell phenotype associated with the expression of β-

catenin (Mebarki et al. 2016). Ctgf is involved in both insulin mediated AKT/GSK3β 

signaling and hypertrophic chondrocyte differentiation (Nishida et al. 2003, Zhou et al. 

2008, Huang, Brugger, and Lyons 2010, Oh et al. 2016). Additionally, the up regulation 

of Itgb3, which along with the ItgaV protein subunit, interacts with the IGF-1 receptors 

enhances AKT signaling (Saegusa et al. 2009). In agreement with the changes in gene 

expression, we observed that AKT and GSK3β phosphorylation was increased in the 

absence of COL11A1 protein in ATDC5 cells and that TCF/LEF activity was increased 

overall. A previous study found that GSK3β inhibition in the cartilage induces cartilage 

degradation and decreases glycosaminoglycan detection (Miclea et al. 2011). 

Interestingly, inhibition of GSK3β was recently shown to increase the volume of 

trabecular bone (Arioka et al. 2013, Tatsumoto et al. 2016). Additionally, GSK3β 

inhibitors enhanced fracture healing by altering the mineralization pattern and skipping 

the formation of a cartilage template (Sisask et al. 2013). Consistent with these findings, 

we have observed in previous studies, that COL11A1 protein deficiency alters 

mineralization patterns, increase bone collar thickness and leads to wider trabecular 

structures, yet this is the first time we have implicated chondroprogenitor cells in the 

process of calcification (Kahler et al. 2008, Hafez et al. 2015). 
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RNA silencing using siRNA knockdown has limitations in that it may not 

completely degrade all target mRNA and expression may recover over time. We 

confirmed the stability of the knockdown using quantitative RT-PCR, western blot 

analysis and immunofluorescence microscopy. Because of the transient nature of the 

mRNA silencing, this study focused on expression occurring within the first week of 

culture. Differentiation was accelerated by including ITS and ascorbate 2-phosphate in 

the medium. This in vitro model provides insight into the cellular response to altered 

cartilage matrix induced by genetic defects in chondrocytes, yet cannot provide valuable 

information concerning neighbor tissue interactions. 

This work suggests that we may be able to rescue the COL11A1 protein 

deficiency by modulating AKT, GSK3β, or β-catenin activity in mouse. Future directions 

will improve upon the understanding of the relationship between human COL11A1 and 

AKT/GSK3β/β-catenin. Future studies will include activators and inhibitors of these cell 

signaling intermediates in cell culture and animal model systems. COL11A1 gene defects 

are also associated with intervertebral disc degeneration and osteoarthritis and may 

induce similar cellular responses. Additionally, questions regarding the roles of the other 

collagen type XI and V alpha chains as well as alternative spliced forms of collagen 

α1(XI) remain to be investigated. This information may lead to development of cell based 

and tissue regeneration therapies for surgical intervention or fracture healing. 

The requirement for Col11a1 gene expression to establish the chondrocyte 

phenotype during cartilage development is presented here. We show that although 

considered a structural protein, loss of Col11a1 gene expression impacts cellular behavior 

and cell signaling pathways. Undoubtedly the mechanisms influencing the cell behavior 
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are diverse and complex and therefore we are unlikely to isolate a single factor 

responsible for any deviations in behavior and function. Yet, understanding the cell 

phenotype at a particular stage provides the opportunity for investigation of cell targeted 

therapies. 
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Figure 3 1. Col11a1 gene expression during chondrogenesis in ATDC5 cells. 

Differentiation media was added to confluent cell cultures at day 0. Quantitative RT-

PCR was performed to detect Col11a1 mRNA in ATDC5 during chondrogenesis (A). 

Western blot analysis using two polyclonal antibodies that recognize unique epitopes 

were used to detect protein expression over the same time course (B). Col11a1 mRNA 

expression correlates with the expression of established chondrogenic markers Sox9, 

Col2a1, and Acan (C). Data is represented as mean and the standard deviation. 

Significance was determined using the t-test, n=3 *p < 0.05, **p<0.005, ***p < 0.0005.   
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Figure 3 2. Col11a1 knockdown causes fibroblast-like actin organization. qRT-

PCR was used to quantify the decrease of Col11a1 mRNA and protein 7 days after 

siRNA transfection. Col11a1 mRNA was decreased to 0.24 ± 0.03, N=3, relative to 

negative control siRNA transfections at day 7 (A). Protein levels detected using 

COL11A1 polyclonal antibody show a decrease in COL11A1 protein. Beta actin used 

to demonstrate equal loading per lane (B). Immunofluorescence detecting COL11A1 

protein (red) and actin (green) verify the loss of detectable COL11A1 protein and 

changes in the actin cytoskeleton at 3-days post transfection. Scale bar in is 20 µm. 

Data is represented as mean and SD., data analyzed using the t-test, **p < 0.005.  
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Figure 3 3. Knockdown of Col11a1 expression decreases the area of Alcian blue 

staining and increases Alizarin Red staining. Alcian blue staining was used to 

quantify the proteoglycan production in 7 day micromasses. Col11a1 siRNA 

decreases the relative area of proteoglycans detected (A and B). Surface area maps 

provide a visual representation of the staining intensity and shape. An opposite trend 

was observed when staining for calcium with Alizarin Red in micromass cultures. The 

relative area and intensity increased in the micromass. (C and D). 
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Figure 3 4. COL11A1 expression is not required for the expression of cellular 

condensation markers during chondrogenesis in ATDC5 cells. The mRNA expression 

of Ncam, Vcan, Tnc, and Cdh2 were not significantly altered in response to COL11A1 

knockdown during chondrogenesis. Data were analyzed using an unpaired t-test and 

represented as the mean with the standard deviation (n=3).   
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Figure 3 5. The expression of Col2a1 and Mmp13 are regulated by Col11a1 

knockdown. ATDC5 cells were transfected with either Neg siRNA or Col11a1 siRNA 

prior to chondrogenic differentiation. Expression of Sox9, Acan, and Col10a1 mRNA 

was not significantly different following inhibition of Col11a1 expression. Col2a1 and 

Mmp13 mRNA expression was significantly increased by the inhibition of Col11a1 

expression. Data were analyzed using the unpaired t-test and represented as the mean 

with the standard deviation (n=3). *=P-value <0.05, **<0.005, ***<0.0005.  
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Figure 3 6. Extracellular matrix and adhesion gene transcription is regulated by 

Col11a1 expression levels. Changes in mRNA expression levels were determined by 

comparing the expression level of mRNA for each target gene relative to β-actin. The 

relative expression of the Col11a1 siRNA transfected cells was compared to the 

negative control siRNA transfected cells. The fold change was calculated using the 2-

ΔΔCt method. The data were analyzed using unpaired t-test and represented as the 

mean and standard deviation (n=3). *=P-value <0.05, **<0.005, ***<0.0005.  
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Figure 3 7. Col11a1 knockdown increases AKT/GSK3β/β-catenin signaling 

activity and increases TCF/LEF activity. Col11a1 siRNA treatment increased the 

phosphorylation of GSK3β while decreasing phosphorylation levels of β-catenin (A). 

Additionally, Col11a1 siRNA induced phosphorylation of AKT at serine 473 (B). 

The activity of the TCF/LEF transcription factor was significantly increased relative 

to negative control siRNA transfected cells. (C).   
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Figure 3 8. Immunofluorescence imaging of the actin cytoskeleton and β-catenin 

localization. Increased cell spreading and increased β-catenin nuclear localization 

was found following Col11a1 knockdown. Immunofluorescence of the actin 

cytoskeleton (green) shows cortical actin in Neg Ctl siRNA transfected cells (A) and 

an increase in actin stress fibers and increased cell spreading in cells transfected with 

Col11a1 siRNA (B). β-catenin (red) is primarily perinuclear in the Neg Ctl transfected 

cells (A) and is present throughout the cytoplasm and localized to the nucleus. (B). 

Scale bars are 20 µm. 
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Figure 3 9  Inhibition of Col11a1 expression does not prevent Wnt3a induced 

phosphorylation of GSK3β or inhibition of β-catenin phosphorylation. The addition 

of 100 ng/mL of recombinant Wnt3a induced phosphorylation of GSK3B and 

inhibited β-catenin phosphorylation. 
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Figure 3 10. Model of β-catenin signaling in the absence of Col11a1 expression. In 

the absence of Wnt or under low Wnt conditions GSK3β phosphorylates β-catenin 

and leads degradation, keeping cytoplasmic levels low and preventing nuclear 

translocation. High levels of Wnt lead to receptor complexes that recruits GSK3β 

away from β-catenin and leads to GSK3β phosphorylation and subsequent 

accumulation of B-catenin and increased TCF/LEF activity. Inhibition of Col11a1 

expression creates a high Wnt like situation where the cells responds to low Wnt levels 

with increased TCF/LEF activity, decreased β-catenin phosphorylation and increased 

GSK3β phosphorylation. Collagen α1(XI) chain may prevent Wnt receptor 

complexes from forming and therefore aberrantly activating β-catenin signaling 

pathways. 
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Table 3.1 Table of Primers used for RT-PCR 

Target Forward Sequence Reverse Sequence 

Mouse 

Col2a1 

ACGAAGCGGTGGCAACCTCA CCCTCGGCCCTCATCTCTACATCA 

Mouse 

HPRT 

CTGGTGAAAAGGACCTCTCGAA 

 

CTGAAGTACTCATTATAGTCAAGGGCAT 

 

Mouse 

PPIA 

CGCGTCTCCTTCGAGCTGTTTG 

 

TGTAAAGTCACCACCCTGGCACAT 

 

Mouse 

Col10a1 

TGCCCGTGTCTGCTTTTACTGTCA 

 

TCAAATGGGATGGGGGCACCTACT 

 

Mouse 

Sox9 

GAGGCCACGGAACAGACTCA 

 

CAGCGCCTTGAAGATAGCATT 

 

Mouse 

Acan 

CCTCGGGCAGAAGAAAGA 
 

GTCTCATGCTCCGCTTCTGT 

 

Mouse 

Mmp13 

AGTTGACAGGCTCCGAGAAA GGCACTCCACATCTTGGTTT 

Mouse 

Col11a1 

TGGAAACCCACACCGGAAA TGCCTCTGTTTGTGCTACTGT 

 

  



76 

 

 

References 

Aberle, H., Bauer, A., Stappert, J., Kispert, A., Kemler, R., Aberle, H., Butz, S., Stappert, 

J., Weissig, H., Kemler, R., Hoschützky, H., Aberle, H., and Moon, R. 1997. beta-

catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 16(13): 3797–

804.  

Altaf, F., Hering, T., Kazmi, N., Yoo, J., and Johnstone, B. 2006. Ascorbate-enhanced 

chondrogenesis of ATDC5 cells. Eur. Cell. Mater. 12: 64-9-70.  

Arioka, M., Takahashi-Yanaga, F., Sasaki, M., Yoshihara, T., Morimoto, S., Takashima, 

A., Mori, Y., and Sasaguri, T. 2013. Acceleration of bone development and 

regeneration through the Wnt/β-catenin signaling pathway in mice heterozygously 

deficient for GSK-3β. Biochem. Biophys. Res. Commun. 440(4): 677–682.  

Ballock, R., Heydemann, A., Wakefield, L., Flanders, K., Roberts, A., and Sporn, M. 

1993. TGF-β1 Prevents Hypertrophy of Epiphyseal Chondrocytes: Regulation of 

Gene Expression for Cartilage Matrix Proteins and Metalloproteases. Dev. Biol. 

158(2): 414–429.  

Berendsen, A., and Olsen, B. 2015. Bone development. Bone 80: 14–8.  

Bernard, M., Yoshioka, H., Rodriguez, E., Van der Rest, M., Kimura, T., Ninomiya, Y., 

Olsen, B., and Ramirez, F. 1988. Cloning and sequencing of pro-alpha 1 (XI) 

collagen cDNA demonstrates that type XI belongs to the fibrillar class of 

collagens and reveals that the expression of the gene is not restricted to 

cartilagenous tissue. J. Biol. Chem. 263(32): 17159–66.  

Blaschke, U., Eikenberry, E., Hulmes, D., Galla, H., and Bruckner, P. 2000. Collagen XI 

nucleates self-assembly and limits lateral growth of cartilage fibrils. J. Biol. 

Chem. 275(14): 10370–8.  

Brown, R., Mallory, C., McDougal, O., and Oxford, J. 2011. Proteomic analysis of 

Col11a1-associated protein complexes. Proteomics 11(24): 4660–76.  



77 

 

 

Chen, L., Fink, T., Zhang, X., Ebbesen, P., and Zachar, V. 2005. Quantitative 

transcriptional profiling of ATDC5 mouse progenitor cells during 

chondrogenesis. Differentiation 73(7): 350–363.  

Dao, D., Jonason, J., Zhang, Y., Hsu, W., Chen, D., Hilton, M., and O’Keefe, R. 2012. 

Cartilage-specific β-catenin signaling regulates chondrocyte maturation, 

generation of ossification centers, and perichondrial bone formation during 

skeletal development. J. Bone Miner. Res. 27(8): 1680–94.  

Davies, G., Oxford, J., Hausafus, L., Smoody, B., and Morris, N. 1998. Temporal and 

spatial expression of alternative splice-forms of the α1(XI) collagen gene in fetal 

rat cartilage. Dev. Dyn. 213(1): 12–26.  

Delcommenne, M., Tan, C., Gray, V., Rue, L., Woodgett, J., and Dedhar, S. 1998. 

Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 

3 and protein kinase B/AKT by the integrin-linked kinase. Proc. Natl. Acad. Sci. 

U. S. A. 95(19): 11211–6.  

Doble, B., and Woodgett, J. 2003. GSK-3: tricks of the trade for a multi-tasking kinase. J. 

Cell Sci. 116(7). 

Eteson, D., Adomian, G., Ornoy, A., Koide, T., Sugiura, Y., Calabro, A., Lungarotti, S., 

Mastroiacovo, P., Lachman, R., and Rimoin, D. 1984. Fibrochondrogenesis: 

radiologic and histologic studies. Am. J. Med. Genet. 19(2): 277–90.  

Faletra, F., D’Adamo, A.P., Bruno, I., Athanasakis, E., Biskup, S., Esposito, L., and 

Gasparini, P. 2014. Autosomal recessive Stickler syndrome due to a loss of 

function mutation in the COL9A3 gene. Am. J. Med. Genet. A 164A(1): 42–7.  

Fernandes, R., Weis, M., Scott, M., Seegmiller, R., and Eyre, D. 2007. Collagen XI chain 

misassembly in cartilage of the chondrodysplasia (cho) mouse. Matrix Biol. 

26(8): 597–603.  

Gao, L., McBeath, R., and Chen, C. 2010. Stem cell shape regulates a chondrogenic 

versus myogenic fate through Rac1 and N-cadherin. Stem Cells 28(3): 564–72.  

Goldring, M., Tsuchimochi, K., and Ijiri, K. 2006. The control of chondrogenesis. J. Cell. 

Biochem. 97(1): 33–44.  



78 

 

 

Gregory, K., Oxford, J., Chen, Y., Gambee, J., Gygi, S., Aebersold, R., Neame, P., 

Mechling, D., Bächinger, H., and Morris, N. 2000. Structural organization of 

distinct domains within the non-collagenous N-terminal region of collagen type 

XI. J. Biol. Chem. 275(15): 11498–506.  

Hafez, A., Squires, R., Pedracini, A., Joshi, A., Seegmiller, R., and Oxford, J. 2015. 

Col11a1 Regulates Bone Microarchitecture during Embryonic Development. J. 

Dev. Biol. 3(4): 158–176. 

Hall, B., and Miyake, T. 1995. Divide, accumulate, differentiate: cell condensation in 

skeletal development revisited. Int. J. Dev. Biol. 39(6): 881–93.  

Hall, B., and Miyake, T. 2000. All for one and one for all: condensations and the 

initiation of skeletal development. BioEssays 22(2): 138–147.  

Hering, T., Wirthlin, L., Ravindran, S., and McAlinden, A. 2014. Changes in type II 

procollagen isoform expression during chondrogenesis by disruption of an 

alternative 5’ splice site within Col2a1 exon 2. Matrix Biol. 36: 51–63.  

Holmes, D., and Kadler, K. 2006. The 10+4 microfibril structure of thin cartilage fibrils. 

Proc. Natl. Acad. Sci. 103(46): 17249–17254. 

Huang, B., Brugger, S., and Lyons, K. 2010. Stage-specific control of connective tissue 

growth factor (CTGF/CCN2) expression in chondrocytes by Sox9 and beta-

catenin. J. Biol. Chem. 285(36): 27702–12. 

Hufnagel, S., Weaver, K., Hufnagel, R., Bader, P., Schorry, E., and Hopkin, R. 2014. A 

novel dominant COL11A1 mutation resulting in a severe skeletal dysplasia. Am. 

J. Med. Genet. A 164A(10): 2607–12.  

Jayasuriya, C., Zhou, F., Pei, M., Wang, Z., Lemme, N., Haines, P., and Chen, Q. 2014. 

Matrilin-3 chondrodysplasia mutations cause attenuated chondrogenesis, 

premature hypertrophy and aberrant response to TGF-β in chondroprogenitor 

cells. Int. J. Mol. Sci. 15(8): 14555–73.  

Kahler, R., Yingst, S., Hoeppner, L., Jensen, E., Krawczak, D., Oxford, J., and 

Westendorf, J. 2008. Collagen 11a1 is indirectly activated by lymphocyte 



79 

 

 

enhancer-binding factor 1 (Lef1) and negatively regulates osteoblast maturation. 

Matrix Biol. 27(4): 330–8. 

Kawasaki, Y., Kugimiya, F., Chikuda, H., Kamekura, S., Ikeda, T., Kawamura, N., Saito, 

T., Shinoda, Y., Higashikawa, A., Yano, F., Ogasawara, T., Ogata, N., Hoshi, K., 

Hofmann, F., Woodgett, J., Nakamura, K., Chung, U., and Kawaguchi, H. 2008. 

Phosphorylation of GSK-3beta by cGMP-dependent protein kinase II promotes 

hypertrophic differentiation of murine chondrocytes. J. Clin. Invest. 118(7): 

2506–15. 

Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y., 

Bronson, R., Gao, Y., Inada, M., Sato, M., Okamoto, R., Kitamura, Y., Yoshiki, 

S., and Kishimoto, T. 1997. Targeted Disruption of Cbfa1 Results in a Complete 

Lack of Bone Formation owing to Maturational Arrest of Osteoblasts. Cell 89(5): 

755–764. 

Kronenberg, H. 2003. Developmental regulation of the growth plate. Nature 423(6937): 

332–336. 

Li, Y., Lacerda, D., Warman, M., Beier, D., Yoshioka, H., Ninomiya, Y., Oxford, J., 

Morris, N., et al. 1995. A fibrillar collagen gene, Col11a1, is essential for skeletal 

morphogenesis. Cell 80(3): 423–30. 

Marie, P., Haÿ, E., Modrowski, D., Revollo, L., Mbalaviele, G., and Civitelli, R. 2014. 

Cadherin-mediated cell-cell adhesion and signaling in the skeleton. Calcif. Tissue 

Int. 94(1): 46–54. 

McAlinden, A., Johnstone, B., Kollar, J., Kazmi, N., and Hering, T. 2008. Expression of 

two novel alternatively spliced COL2A1 isoforms during chondrocyte 

differentiation. Matrix Biol. 27(3): 254–66. 

Mebarki, S., Désert, R., Sulpice, L., Sicard, M., Desille, M., Canal, F., Dubois-Pot 

Schneider, H., Bergeat, D., Turlin, B., Bellaud, P., Lavergne, E., Le Guével, R., 

Corlu, A., Perret, C., Coulouarn, C., Clément, B., and Musso, O. 2016. De novo 

HAPLN1 expression hallmarks Wnt-induced stem cell and fibrogenic networks 



80 

 

 

leading to aggressive human hepatocellular carcinomas. Oncotarget 7(26): 

39026–39043. 

Miclea, R., Siebelt, M., Finos, L., Goeman, J., Löwik, C., Oostdijk, W., Weinans, H., 

Wit, J., Robanus-Maandag, E., and Karperien, M. 2011. Inhibition of Gsk3β in 

cartilage induces osteoarthritic features through activation of the canonical Wnt 

signaling pathway. Osteoarthr. Cartil. 19(11): 1363–1372. 

Modarresi, R., Lafond, T., Roman-Blas, J.A., Danielson, K.G., Tuan, R.S., and 

Seghatoleslami, M. 2005. N-cadherin mediated distribution of β-catenin alters 

MAP kinase and BMP-2 signaling on chondrogenesis-related gene expression. J. 

Cell. Biochem. 95(1): 53–63. 

Morris, N., and Bächinger, H. 1987. Type XI collagen is a heterotrimer with the 

composition (1 alpha, 2 alpha, 3 alpha) retaining non-triple-helical domains. J. 

Biol. Chem. 262(23): 11345–50. 

Nishida, T., Kubota, S., Fukunaga, T., Kondo, S., Yosimichi, G., Nakanishi, T., Takano-

Yamamoto, T., and Takigawa, M. 2003. CTGF/Hcs24, hypertrophic chondrocyte-

specific gene product, interacts with perlecan in regulating the proliferation and 

differentiation of chondrocytes. J. Cell. Physiol. 196(2): 265–275. 

Noponen-Hietala, N., Kyllönen, E., Männikkö, M., Ilkko, E., Karppinen, J., Ott, J., and 

Ala-Kokko, L. 2003. Sequence variations in the collagen IX and XI genes are 

associated with degenerative lumbar spinal stenosis. Ann. Rheum. Dis. 62(12): 

1208–14. 

Oh, C., Yasuda, H., Zhao, W., Henry, S., Zhang, Z., Xue, M., de Crombrugghe, B., and 

Chen, D. 2016. SOX9 directly Regulates CTGF/CCN2 Transcription in Growth 

Plate Chondrocytes and in Nucleus Pulposus Cells of Intervertebral Disc. Sci. 

Rep. 6: 29916. 

Oxford, J., DeScala, J., Morris, N., Gregory, K., Medeck, R., Irwin, K., Oxford, R., 

Brown, R., Mercer, L., and Cusack, S. 2004. Interaction between amino 

propeptides of type XI procollagen alpha1 chains. J. Biol. Chem. 279(12): 10939–

45. 



81 

 

 

Raine, E., Dodd, A., Reynard, L., and Loughlin, J. 2013. Allelic expression analysis of 

the osteoarthritis susceptibility gene COL11A1 in human joint tissues. BMC 

Musculoskelet. Disord. 14(1): 85. 

Rodriguez, R., Seegmiller, R., Stark, M., and Bridgewater, L. 2004. A type XI collagen 

mutation leads to increased degradation of type II collagen in articular 

cartilage11. Osteoarthr. Cartil. 12(4): 314–320. 

Saegusa, J., Yamaji, S., Ieguchi, K., Wu, C., Lam, K., Liu, F., Takada, Y., and Takada, 

Y. 2009. The Direct Binding of Insulin-like Growth Factor-1 (IGF-1) to 

Integrin  v 3 Is Involved in IGF-1 Signaling. J. Biol. Chem. 284(36): 24106–

24114. 

Sandell, L., Morris, N., Robbins, J., and Goldring, M. 1991. Alternatively spliced type II 

procollagen mRNAs define distinct populations of cells during vertebral 

development: differential expression of the amino-propeptide. J. Cell Biol. 

114(6): 1307-19. 

Sandell, L., Nalin, A., and Reife, R. 1994. Alternative splice form of type II procollagen 

mRNA (IIA) is predominant in skeletal precursors and non-cartilaginous tissues 

during early mouse development. Dev. Dyn. 199(2): 129–140. 

Schmittgen, T., and Livak, K. 2008. Analyzing real-time PCR data by the comparative 

C(T) method. Nat. Protoc. 3(6): 1101–8. 

Sisask, G., Marsell, R., Sundgren-Andersson, A., Larsson, S., Nilsson, O., Ljunggren, Ö., 

and Jonsson, K. 2013. Rats treated with AZD2858, a GSK3 inhibitor, heal 

fractures rapidly without endochondral bone formation. Bone 54(1): 126–132. 

Stevenson, D., Vanzo, R., Damjanovich, K., Hanson, H., Muntz, H., Hoffman, R., and 

Bayrak-Toydemir, P. 2012. Mosaicism in Stickler syndrome. Eur. J. Med. Genet. 

55(6–7): 418–22. 

Tamamura, Y., Otani, T., Kanatani, N., Koyama, E., Kitagaki, J., Komori, T., Yamada, 

Y., Costantini, F., Wakisaka, S., Pacifici, M., Iwamoto, M., and Enomoto-

Iwamoto, M. 2005. Developmental regulation of Wnt/beta-catenin signals is 



82 

 

 

required for growth plate assembly, cartilage integrity, and endochondral 

ossification. J. Biol. Chem. 280(19): 19185–95. 

Tatsumoto, N., Arioka, M., Yamada, S., Takahashi‐Yanaga, F., Tokumoto, M., Tsuruya, 

K., Kitazono, T., and Sasaguri, T. 2016. Inhibition of GSK3 β increases trabecular 

bone volume but not cortical bone volume in adenine-induced uremic mice with 

severe hyperparathyroidism. Physiol. Rep. 4(21): e13010. 

Tompson, S., Bacino, C., Safina, N., Bober, M., Proud, V., Funari, T., Wangler, M., 

Nevarez, L., Ala-Kokko, L., Wilcox, W., Eyre, D., Krakow, D., and Cohn, D. 

2010. Fibrochondrogenesis results from mutations in the COL11A1 type XI 

collagen gene. Am. J. Hum. Genet. 87(5): 708–12. 

Toyama, B., and Hetzer, M. 2013. Protein homeostasis: live long, won’t prosper. Nat. 

Rev. Mol. Cell Biol. 14(1): 55–61. 

Usami, Y., Gunawardena, A., Iwamoto, M., and Enomoto-Iwamoto, M. 2016. Wnt 

signaling in cartilage development and diseases: lessons from animal studies. Lab. 

Investig. 96(2): 186–196. 

van der Kraan, P., and van den Berg, W. 2012. Chondrocyte hypertrophy and 

osteoarthritis: role in initiation and progression of cartilage degeneration? 

Osteoarthr. Cartil. 20(3): 223–232. 

Vega, R., Matsuda, K., Oh, J., Barbosa, A., Yang, X., Meadows, E., McAnally, J., 

Pomajzl, C., Shelton, J., Richardson, J., Karsenty, G., and Olson, E. 2004. Histone 

Deacetylase 4 Controls Chondrocyte Hypertrophy during Skeletogenesis. Cell 

119(4): 555–566. 

Verzijl, N., DeGroot, J., Thorpe, S., Bank, R., Shaw, J., Lyons, T., Bijlsma, J., Lafeber, 

F., Baynes, J., and TeKoppele, J. 2000. Effect of collagen turnover on the 

accumulation of advanced glycation end products. J. Biol. Chem. 275(50): 

39027–31. 

Warner, L., Brown, R., Yingst, S., and Oxford, J. 2006. Isoform-specific Heparan Sulfate 

Binding within the Amino-terminal Noncollagenous Domain of Collagen α1(XI). 

J. Biol. Chem. 281(51): 39507–39516. 



83 

 

 

Whitley, C., Langer, L., Ophoven, J., Gilbert, E., Gonzalez, C., Mammel, M., Coleman, 

M., Rosemberg, S., Rodriques, C., Sibley, R., Horton, W., Opitz, J., and Gorlin, 

R. 1984. Fibrochondrogenesis: Lethal, autosomal recessive chondrodysplasia with 

distinctive cartilage histopathology. Am. J. Med. Genet. 19(2): 265–275. 

Xu, L., Flahiff, C., Waldman, B., Wu, D., Olsen, B., Setton, L., and Li, Y. 2003. 

Osteoarthritis-like changes and decreased mechanical function of articular 

cartilage in the joints of mice with the chondrodysplasia gene (cho). Arthritis 

Rheum. 48(9): 2509–2518. 

Xu, L., Servais, J., Polur, I., Kim, D., Lee, P.L., Chung, K., and Li, Y. 2010. Attenuation 

of osteoarthritis progression by reduction of discoidin domain receptor 2 in mice. 

Arthritis Rheum. 62(9): 2736–2744 

Yamada, Y., and Watanabe, H. 1999. Mice lacking link protein develop dwarfism and 

craniofacial abnormalities. Nat. Genet. 21(2): 225–229. 

Yang, L., Tsang, K., Tang, H., Chan, D., and Cheah, K. 2014. Hypertrophic chondrocytes 

can become osteoblasts and osteocytes in endochondral bone formation. Proc. 

Natl. Acad. Sci. 111(33): 12097–12102. 

Yao, Y., and Wang, Y. 2013. ATDC5: An excellent in vitro model cell line for skeletal 

development. J. Cell. Biochem. 114(6): 1223–1229. 

Zhou, Y., Capuco, A., and Jiang, H. 2008. Involvement of connective tissue growth 

factor (CTGF) in insulin-like growth factor-I (IGF1) stimulation of proliferation of a 

bovine mammary epithelial cell line. Domest. Anim. Endocrinol. 35(2): 180–189.  

 


