
HEXARRAY: A NOVEL SELF-RECONFIGURABLE

HARDWARE SYSTEM

by

Fady Hussein

A dissertation

submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy in Electrical and Computer Engineering

Boise State University

May 2017



© 2017
Fady Hussein

ALL RIGHTS RESERVED



BOISE STATE UNIVERSITY GRADUATE COLLEGE 

 

 

DEFENSE COMMITTEE AND FINAL READING APPROVALS 
 
 

of the dissertation submitted by 

 

 

Fady Hussein 

 

 

Dissertation Title: HexArray: A Novel Self-Reconfigurable Hardware System 
 

Date of Final Oral Examination: 13 March 2017 

 

The following individuals read and discussed the dissertation submitted by student Fady Hussein, 

and they evaluated his presentation and response to questions during the final oral examination. 

They found that the student passed the final oral examination.  

 

Nader Rafla, Ph.D.     Chair, Supervisory Committee 

 

Elisa Barney Smith, Ph.D.    Member, Supervisory Committee 

 

Jennifer A. Smith, Ph.D.    Member, Supervisory Committee 

 

The final reading approval of the dissertation was granted by Nader Rafla, Ph.D., Chair of the 

Supervisory Committee. The dissertation was approved by the Graduate College. 

 



This is for y’all, Mona, Eliana, Joanna, and Kareem.

iv



ACKNOWLEDGMENTS

I am using this opportunity to express my gratitude to everyone who supported me

throughout the course of this dissertation. I am thankful for their aspiring guidance, invalu-

ably constructive criticism and friendly advice during the project work, specifically my

advisor (Dr. Nader Rafla) and his research team, Luka Daoud and Shelton Jacinto.

v



AUTOBIOGRAPHICAL SKETCH

Fady Hussein is a PhD Candidate at Electrical and Computer Engineering at Boise

State University. He joined the PhD program on August 2013. He received his MSc

degree from Louisiana State University and bachelors degree in Electrical Engineering

at Birzeit University, Palestine. Fady is, currently, a senior test engineer for DRAM at

Micron Technology in Boise, Idaho. His main research focuses on evolvable hardware

and reconfigurable computing. Currently, he is developing a framework for an evolvable

system that can be utilized in design automation, image processing, reverse engineering

and fault-tolerant systems.

vi



ABSTRACT

Evolvable hardware (EHW) is a powerful autonomous system for adapting and finding

solutions within a changing environment. EHW consists of two main components: a

reconfigurable hardware core and an evolutionary algorithm. The majority of prior research

focuses on improving either the reconfigurable hardware or the evolutionary algorithm in

place, but not both. Thus, current implementations suffer from being application oriented

and having slow reconfiguration times, low efficiencies, and less routing flexibility. In this

work, a novel evolvable hardware platform is proposed that combines a novel reconfig-

urable hardware core and a novel evolutionary algorithm.

The proposed reconfigurable hardware core is a systolic array, which is called HexAr-

ray. HexArray was constructed using processing elements with a redesigned architecture,

called HexCells, which provide routing flexibility and support for hybrid reconfigura-

tion schemes. The improved evolutionary algorithm is a genome-aware genetic algo-

rithm (GAGA) that accelerates evolution. Guided by a fitness function the GAGA utilizes

context-aware genetic operators to evolve solutions. The operators are genome-aware con-

strained (GAC) selection, genome-aware mutation (GAM), and genome-aware crossover

(GAX). The GAC selection operator improves parallelism and reduces the redundant eval-

uations. The GAM operator restricts the mutation to the part of the genome that affects the

selected output. The GAX operator cascades, interleaves, or parallel-recombines genomes

at the cell level to generate better genomes. These operators improve evolution while not

limiting the algorithm from exploring all areas of a solution space.

The system was implemented on a SoC that includes a programmable logic (i.e., field-

vii



programmable gate array) to realize the HexArray and a processing system to execute

the GAGA. A computationally intensive application that evolves adaptive filters for image

processing was chosen as a case study and used to conduct a set of experiments to prove the

developed system robustness. Through an iterative process using the genetic operators and

a fitness function, the EHW system configures and adapts itself to evolve fitter solutions.

In a relatively short time (e.g., seconds), HexArray is able to evolve autonomously to the

desired filter.

By exploiting the routing flexibility in the HexArray architecture, the EHW has a

simple yet effective mechanism to detect and tolerate faulty cells, which improves sys-

tem reliability. Finally, a mechanism that accelerates the evolution process by hiding the

reconfiguration time in an “evolve-while-reconfigure” process is presented. In this process,

the GAGA utilizes the array routing flexibility to bypass cells that are being configured and

evaluates several genomes in parallel.

viii



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

AUTOBIOGRAPHICAL SKETCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxix

LIST OF LISTINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxii

LIST OF ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxiii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Evolvable Hardware (EHW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Main Components of Evolvable Hardware . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Reconfigurable Hardware Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Evolutionary Algorithms (EAs) . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

ix



1.3 Applications of EHW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Motivation and Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Reconfigurable Hardware Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Properties of Reconfigurable Hardware Cores . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Fabric Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Reconfiguration Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Reconfigurable Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Commercial Simple Programmable Logic Devices . . . . . . . . . . . . . 20

2.3.2 Commercial High-Capacity Programmable Logic Devices . . . . . . . 25

2.3.3 Custom Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Genetic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.2 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.3 Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.4 Elitism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Fitness Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

x



3.4 Evolutionary Algorithm Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Evolvable Hardware Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Classifications of Evolvable Hardware Systems . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Hardware Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.2 Reconfiguration Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.3 Evolutionary Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.4 Evolutionary Level of Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.5 Hardware Evolution Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.6 Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.7 Application Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Evolvable Hardware Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 Systolic Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 HexArray Platform Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 HexArray Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Proposed Reconfigurable Hardware Core . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3.1 A Novel Processing Element – HexCell . . . . . . . . . . . . . . . . . . . . . 66

5.3.2 A Novel Systolic Array – HexArray . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 Proposed Genome-Aware Genetic Algorithm (GAGA) . . . . . . . . . . . . . . . . 74

5.4.1 Algorithm Utility Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xi



5.4.2 Genome-Aware Constrained (GAC) Selection . . . . . . . . . . . . . . . . . 85

5.4.3 Genome-Aware Mutation (GAM) . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.4 Genome-Aware Crossover (GAX) . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.5 Genome-Aware Pruner (GAP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5 Overall System Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.6 Additional Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.6.1 A Novel Fault Detection and Tolerance Mechanism . . . . . . . . . . . . 97

5.6.2 A Novel Evolve-while-Reconfigure Mechanism . . . . . . . . . . . . . . . 99

5.7 HexArray Versus State-of-the-Art Systolic Array . . . . . . . . . . . . . . . . . . . . 102

5.7.1 Degree of Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Evaluations and Implementation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Evolution Speed Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.1 Experiment 1: HexArray Outperforms State-of-the-Art Systolic

Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2.2 Experiment 2: GAC Selection Accelerates Evolution . . . . . . . . . . . 115

6.2.3 Experiment 3: GAM Outperforms Traditional Mutation . . . . . . . . . 118

6.2.4 Experiment 4: GAX Outperforms Traditional Crossover . . . . . . . . . 123

6.2.5 Experiment 5: The Effect of Population Size on Evolution . . . . . . . 127

6.2.6 Experiment 6: Adaptive Filter Evaluations . . . . . . . . . . . . . . . . . . . 131

6.2.7 Experiment 7: Autonomous Evolution for Variety of Filters . . . . . . 138

6.3 Implementation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.3.1 Resource Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

xii



6.3.2 Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

A Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

A.2 Image Groups: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

xiii



LIST OF TABLES

2.1 Comparison of VRC and DPR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Summary of hardware evolution types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Simulator parameters to control the evolution process. . . . . . . . . . . . . . . . . 65

5.2 Function set for the selected image processing application. . . . . . . . . . . . . . 69

5.3 HexArray in comparison to Cartesian Array with RectCell. . . . . . . . . . . . . . 102

6.1 A collection of image groups used in the experiments. . . . . . . . . . . . . . . . . 108

6.2 Summary of the best and median fitness values collected for evaluation of

Cartesian arrays based on traditional RectCells and modified RectCells and

HexArray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3 Data were collected by running 100 iterations of 1000 genomes generated

by unconstrained random selection in comparison to GAC random selection. 116

6.4 Median normalized fitnesses were collected by running 100 iterations of

10,000 genomes generated by traditional mutation in opposition to GAM

with different numbers of mutation bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.5 Best normalized fitnesses were collected by running 100 iterations of 10000

genomes generated by traditional mutation in opposition to GAM with

different numbers of mutation bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.6 Best and median fitnesses obtained from 100 runs of 8×8 HexArray with

crossover and GAX running in three modes. . . . . . . . . . . . . . . . . . . . . . . . . 126

xiv



6.7 Different combinations of number of generations and genome size with a

fixed total number of genomes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.8 Best and median fitnesses obtained from 50 runs of 8×8 HexArray with

different generation/population combinations. . . . . . . . . . . . . . . . . . . . . . . . 129

6.9 Variety of image groups to explore the autonomous adaptivity of the system. 140

6.10 Resource utilization reported by Vivado for 8×8 HexArray. . . . . . . . . . . . . 156

7.1 Function set for an OCR application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A.1 Properties of 10% and 25% Salt and Pepper noise images. . . . . . . . . . . . . . 189

A.2 Properties of EdgaDetect, Thresholding, and Gaussian image groups. . . . . . 192

A.3 Properties of Lena image with different levels of impulsive noise. . . . . . . . . 192

A.4 Properties of Cameraman image with different levels of impulsive noise. . . 195

A.5 Properties of experiment 7 image groups. . . . . . . . . . . . . . . . . . . . . . . . . . . 197

xv



LIST OF FIGURES

1.1 Evolvable hardware and embryonic hardware are the main branches of bio-

inspired hardware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 EHW is the field where biology, electrical engineering, and computer sci-

ence meet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Main components of EHW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Evolution cycle between (a) biology and (b) electronics [1]. . . . . . . . . . . . . 7

1.5 Intrinsic EHW types based on where the EA is running [2]. . . . . . . . . . . . . 10

2.1 Hardware core properties in terms of structure and reconfiguration. . . . . . . . 16

2.2 VRC and DPR: the two reconfiguration schemes for EHW [3]. . . . . . . . . . . 18

2.3 Classifications of reconfigurable architectures. . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Simplified SPLD, adapted from [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 PROM: the simplest programmable architecture [5]. . . . . . . . . . . . . . . . . . . 22

2.6 PLA has a programmable AND plane and a programmable OR plane. . . . . . 23

2.7 PAL architecture with loopback wiring to improve flexibility [6]. . . . . . . . . 24

2.8 A simplified block diagram of CPLD architecture [4]. . . . . . . . . . . . . . . . . . 25

2.9 MAX V: a CPLD manufactured by Altera [7]. . . . . . . . . . . . . . . . . . . . . . . 26

2.10 LABs are the building blocks of CPLDs. Each LAB has 10 LEs [7]. . . . . . . 27

2.11 Simplified FPGA block diagram [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.12 Two slices per CLB, Xilinx 7 series [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

xvi



2.13 Variety of programmable logic blocks are arranged in a column-style, ASMBL

architecture [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.14 Block diagram of MONTIUM tile [9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.15 Reconfigurable architecture based on fuzzy logic, Fuzzy CoCo [10]. . . . . . . 33

2.16 Colt reconfigurable architecture with 16 functional units, smart crossbar

interconnect and 6 data ports [11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.17 Garp reconfigurable architecture [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.18 KressArray: a non-von-Neumann reconfigurable architecture [13]. . . . . . . . 36

2.19 Pleiades: a heterogeneous coarse-grained reconfigurable platform [14]. . . . 37

2.20 POEtic: a reconfigurable bio-inspired architecture [15]. . . . . . . . . . . . . . . . 38

3.1 A general workflow for evolutionary algorithms. The closer the fitness is

to zero, the better the solution is. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 GP represents genomes as parse trees. Tree nodes are mapped to computer

programs. The shown tree is equivalent to the program MIN(In1+(In2 &

255), 10+(In3× In1)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Example of two-bit multiplier circuit evolved using CGP by Miller et al.

[16]. Each integer in the genotype defines a function selection or a routing

option. Some chromosomes were left unused in this example. . . . . . . . . . . . 47

4.1 Classification schemes of EHW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Type R systolic array proposed Kung et al. in 1978 [17]. . . . . . . . . . . . . . . . 59

4.3 Type H systolic array proposed Kung et al. in 1979 [18]. . . . . . . . . . . . . . . 59

4.4 A 5×5 systolic array of state-of-the-art PEs, where the array uses a single

output and PEs use DPR reconfiguration scheme. . . . . . . . . . . . . . . . . . . . . 60

xvii



5.1 (a) A training image with 20% salt & pepper noise. (b) Image produced

by algorithm with a 63% noise reduction. (c) Reference image used for the

fitness calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 The HexCell structure and representation: the HexCell’s functional unit is

on a dynamic partition while the remaining logic is static. The HexCell

chromosome has four genes, where three genes implicate a VRC and one

implicates a DPR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Data window controller formats the input data stream received from the

DMA as a sliding data window accessible by the array input controllers,

which are controlled by the i GENOME and fed into the array cells. . . . . . . . 71

5.4 4×4 HexArray with AICs (shown in red) and AOCs (shown in yellow). . . . 73

5.5 Array output controller module which accumulates the absolute differance

between the evolved pixel and the reference pixel for “Expected Count”

pixels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.6 HexArray can have different levels of dependencies where (1) the static

chromosome-level dependency is unaware of the cells’ functional units

dependencies, (2) the dynamic chromosome-level dependency is aware of

the cells’ functional units dependencies, and (3) the dynamic gene-level

dependency is aware of the cells’ functional units dependencies and the

cells’ output ports selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.7 Boundbox and free boundbox for a genome of HexArray. . . . . . . . . . . . . . . 79

5.8 The probability distribution for selecting a genome out of 20 parents. Be-

cause Genome 0 is the parent with the best fitness, it has the highest chance

(22.3%) of being selected. Genome 19 is the one with the worst fitness

(compared to others); thus, it has the lowest chance (2.5%). . . . . . . . . . . . . 84

xviii



5.9 Estimated probability for routing certain functions to the closest array out-

puts. The darker the cell is, the lower the chance is for f to reach an output.

For example, the probability value of 0.5 was obtained from the probability

of f being routed through X or Y (0.25+0.25). . . . . . . . . . . . . . . . . . . . . . . 86

5.10 GAX modes. (Top) An offspring is generated by cascading genomes, where

one feeds into the other. (Middle) An offspring is generated by interleaving

genomes at the cell level. (Bottom) An offspring is generated by combining

genomes in parallel and inserting some cells in-between with randomly

selected functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.11 HexArray platform with HexArray and GAGA. HexArray, array input con-

trollers, array output controllers, data widow controller, and genome regis-

ter are implemented on the FPGA programmable logic, while the GAGA

is implemented on the processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.12 Data propagation in HexArray, where a pixel is processed by PE1,1 at time

1 and by PE8,8 at time 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.13 (a) Single-cell fault results in unexpected outputs. (b) Multi-cell fault re-

sults in unexpected outputs. (c) Example of an output dependency tree,

where any fault in PE1,1, PE1,2, PE2,1, and PE1,3 will affect the output. . . . . 97

5.14 Example for fault detection mechanism using row by row testing where the

array output of a predefined genome is checked against a pre-calculated

output. If the outputs are matching, then the circuit is fault-free. If the

outputs are not matching, then the circuit has one or more faulty cells. A

row by row test is needed to determine which cells are faulty. . . . . . . . . . . 98

5.15 Flowchart for the proposed fault detection and tolerance mechanism. . . . . . 100

xix



5.16 Running on “evolve-while-reconfigure” mode, where the evaluation occurs

while some of the cells are being programmed (shown in dark gray). . . . . . 101

5.17 Degree of polynomial of HexArray is higher than Cartesian arrays. . . . . . . . 103

5.18 Fitting the degree of polynomial of HexArray and state-of-the-art systolic

array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.1 (a) A Cartesian array constructed using classical RectCells. One output is

evaluated per genome (based on SelO), and a cell functional output is routed

to the E and S ports. (b) A Cartesian array constructed using “modified”

RectCells, where an output multiplexer has been added to every cell output

to select from the N port, W port or the functional unit output. (c) and (d)

are similar to (a) and (b), respectively, but with evaluating five outputs per

one genome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2 Evolution is accelerated by the HexArray architecture in comparison to

Cartesian arrays with traditional RectCells and with modified RectCells.

Adding parallelism to the Cartesian arrays appears to improve the quality

of generated solutions more than adding the output multiplexers. . . . . . . . . 113

6.3 HexArray has multiple (different sizes) search spaces. The highlighted

output (O7) has a search space size of 2112. . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4 GAC for an 8×8 HexArray where the search space is reduced by 272. . . . . 115

6.5 A side-by-side comparison of the evolution results generated by randomly

selected genomes versus GAC selected genomes by running 100 iterations

with 1000 genomes. Dashed lines show the data mean and standard devia-

tion. Generated solutions were improved by GAC selection. . . . . . . . . . . . . 117

xx



6.6 An example of GAM where mutation is restricted to a subset bits of the

genome, where “M” means mutation is allowed and “-” means it is not

allowed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.7 Comparison of traditional mutation with different numbers of mutation

bits. One-bit mutation is the worst option because of the high probability

of mutating bits of inactive cells. Seven-bit mutation appears to be the best

option for an 8×8 HexArray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.8 Comparison of GAM with different numbers of mutation bits. One-bit

GAM is the worst case, while 4-bit is the best case for an 8×8 HexArray. . 123

6.9 GAM showed improvement to all data sets’ median and best solutions.

Moreover, the distribution of solutions became more condensed and biased

toward better fitness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.10 Best fitness obtained in 100 iterations using 2-point traditional crossover,

GAX-Cascade, GAX-Interleave, and GAX-Parallel. . . . . . . . . . . . . . . . . . . 127

6.11 Fitness distribution for different numbers of generations and population

size. The best combination for improving generated solutions overall was

using the smallest population size with the largest number of generations.

However, the best combination for finding high-quality solutions occa-

sionally was using the largest population size with the smallest number

of generations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.12 Average of filters evolved for every noise level of an image (Lena) were

tested on other noise levels of the same image (right) and a different image

(left). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xxi



6.13 Best of filters evolved for every noise level of an image (Lena) were tested

on other noise levels of the same image (right) and a different image (left).

Some evolved filters showed consistent behavior on a wide spectrum of

noise, unlike the median filter. Filters developed for images with high SNR

performed poorly on images with a low SNR. . . . . . . . . . . . . . . . . . . . . . . . 134

6.14 Average of filters evolved for every noise level of an image (cameraman)

were tested on other noise levels of the same image (right) and a different

image (left). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.15 Best of filters evolved for every noise level of an image (cameraman) were

tested on other noise levels of the same image (right) and a different image

(left). The median filter did not perform well for an image with a high SNR. 136

6.16 HexArray could autonomously evolve many filters. All genetic operators

contributed in evolution. Some filters were solely generated using GAX (or

GAX and GAM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.17 Deblurring was difficult because the blurred image was constructed using

a 6×6 window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.18 The system performed moderately in developing a blurring filter with a

35% fitness improvement; the filters were mostly generated using GAX. . . . 143

6.19 The system achieved a 17% fitness improvement for the de-pixelate filter. . . 143

6.20 The system evolved an edge detection filter (Roberts cross). . . . . . . . . . . . . 144

6.21 The system generated an edge detection filter (Canny operator). . . . . . . . . . 144

6.22 The system developed an edge detection filter (Sobel operator). . . . . . . . . . 145

6.23 The system found a good filter for the blob detection problem. . . . . . . . . . . 146

6.24 A gray-scale morphological filter was developed with good fitness. . . . . . . . 146

6.25 The system evolved a good filter for image brightness adjustment. . . . . . . . 147

xxii



6.26 The generated filter was decent because the training image had a narrow

tonal distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.27 Removable of periodic dark rows noise with static shade on a 4-pixel period

– the noise is X-coordinate dependent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.28 Periodic dark columns noise with a nonlinear Fourier transform on an 8-

pixel period – the noise is Y-coordinate dependent. . . . . . . . . . . . . . . . . . . . 149

6.29 Gradient noise is a spatially variant degradation where pixels with a small

X-location were brightened and pixels with a high X-location were darkened.149

6.30 Evolving filters for brightness equalization problems. (Top) Histogram

equalization. (Middle) Contrast adjustment. (Bottom) White balancing. . . . 150

6.31 High-level dashboard for monitoring evolution is created. It allows the user

to customize inputs and visualize the results. . . . . . . . . . . . . . . . . . . . . . . . 155

6.32 DMA and AXI interfaces between the PS and HexArray, generated by Vivado.157

6.33 Evolution traces for 100 independent runs using (top) 1000 generations

and 50 population size or (bottom) 50 generations and 1000 population

size. Note that evaluating 50K of genomes using larger populations takes

less time. In 2 to 5 seconds, filters comparable to the median filter are

evolved. In approximately 250 to 300 seconds, most of the evolved filters

outperform the median filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.1 Every character is represented by an 8×8 bit matrix (i.e., input data). Ver-

tical or horizontal slices of the input data are fed into the HexArray’s AICs. 168

7.2 Example of characters get classified to one or more classes. The class is

the output of HexArray which can hold the value of 0 to 255. An undesired

case is when the characters “C” and “B” are classified as class 255. . . . . . . 170

xxiii



A.1 S&P 25% and S&P 10% image groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

A.2 EdgeDetect image group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

A.3 (Top) Thresholding image group. (Bottom) Gaussian image group. . . . . . . . 191

A.4 Lena image with different levels of impulsive noise. . . . . . . . . . . . . . . . . . . 193

A.5 Cameraman image with different levels of impulsive noise. . . . . . . . . . . . . . 194

A.6 Blurring image group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

A.7 Deblurring image group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

A.8 Edge detection (Roberts) image group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

A.9 Edge detection (Canny) image group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

A.10 Edge detection (Sobel) image group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

A.11 Gradient adjustment image group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

A.12 Periodic dark rows image group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

A.13 Histogram equalization image group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

A.14 Morphological (erosion) image group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

A.15 White balancing image group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

A.16 Blob detection (Laplacian) image group. . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

A.17 Contrast adjustment image group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

A.18 Darkness equalization image group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

A.19 Brightness equalization image group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

A.20 De-pixelate image group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

A.21 Periodic dark columns image group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

xxiv



LIST OF ABBREVIATIONS

2D – Two Dimensional

AOC – Array Output Controller

AIC – Array Input Controller

ALU – Arithmetic Logic Unit

API – Application Programming Interface

ASMBL – Advanced Silicon Modular Block

AXI – Advanced Extensible Interface

BRAM – Block Random-Access Memory

CAD – Computer-Aided Design

CLB – Configurable Logic Block

CMOS – Complementary Metal-Oxide Semiconductor

CPLD – Complex Programmable Logic Device

DMA – Direct Memory Address

DNA – Deoxyribonucleic Acid

DPR – Dynamic Partial Reconfiguration

DSP – Digital Signal Processor

EA – Evolutionary Algorithm

xxv



EDA – Electronic Design Automation

EEPROM – Electrically Erasable Programmable Read-Only Memory

EHW – Evolvable Hardware

EmHW – Embryonic Hardware

EPROM – Erasable Programmable Read-Only Memory

FFT – Fast Fourier Transform

FIFO – First In, First Out

FIR – Finite Impulse Response

FPAA – Field-Programmable Analog Array

FPGA – Field-Programmable Gate Array

FPTA – Field-Programmable Transistor Array

GA – Genetic Algorithm

GAC – Genome-Aware Constrained

GAGA – Genome-Aware Genetic Algorithm

GAL – Generic Array Logic

GAM – Genome-Aware Mutation

GAP – Genome-Aware Pruner

GAX – Genome-Aware Crossover

HCPLD – High Capacity Programmable Logic Device

HDL – Hardware Description Language

HexArray – Hexagonal Systolic Array

xxvi



HexCell – Hexagonal Cell

HWICAP – Hardware Internal Configuration Access Port

ICAP – Internal Configuration Access Port

IOB – Input/output Block

IP – Intellectual Property

ISE – Integrated Synthesis Environment

JTAG – Joint Test Action Group

LAB – Logic Array Block

LE – Logic Element

LUT – Look-Up Table

MAE – Mean Absolute Error

MIMD – Multiple Instruction, Multiple Data

PE – Processing Element

PCAP – Processor Configuration Access Port

PL – Programmable Logic

PAL – Programmable Array Logic

PLA – Programmable Logic Array

PLD – Programmable Logic Device

PROM – Programmable Read-Only Memory

PS – Processing System

PSNR – Peak Signal-to-Noise Ratio

xxvii



RAM – Random-Access Memory

rDPA – reconfigurable Data Path Array

RectCell – Rectangular Cell

ROAM – Read-Only Associative Memory

SNR – Signal-to-Noise Ratio

SoC – System on Chip

SPLD – Simple Programmable Logic Device

SQL – Structured Query Language

SRAM – Static Random Access Memory

TECS – Transactions on Embedded Computing Systems

VHDL – VHSIC Hardware Description Language

VHSIC – Very High Speed Integrated Circuit

VRC – Virtual Reconfiguration Circuit

xxviii



LIST OF SYMBOLS

' is similar or equal to

λ number of child genomes (offsprings)

µ number of parent genomes or micro (10-6) if used for time

∞ infinity

gi genome i

gr randomly generated genome

gm genome generated by mutation

gc genome generated by crossover

gp selected parent genome

gs selected child genome

Gparents list of parent genomes

Gchildren list of children genomes

r× c an array or a window of a r rows and c columns

∈ is member of

R number of rows in HexArray

C number of columns in HexArray

L number of rows or columns in a symmetric HexArray

xxix



⊕ bitwise XOR operation

MGAM number of bits to be mutated using GAM

Mmutation number of bits to be mutated using traditional mutation

A the North input port of a HexCell

B the North West input port of a HexCell

C the South West input port of a HexCell

f the output port of the functional unit of a HexCell

X the North East output port of a HexCell

Y the South East output port of a HexCell

Z the South output port of a HexCell

Selx the selection signal for the North East output port of a HexCell

Sely the selection signal for the South East output port of a HexCell

Selz the selection signal for the South output port of a HexCell

Sel f uncthe selection signal for functional unit of a HexCell

fi function i – a possible value for Sel f unc

b c floor operation of the given number, e.g., b12.6c = 12

& bitwise AND

| bitwise OR

∼ bitwise NOT

� shift left

� shift right

xxx



0x.. base 16 integer number (i.e., hexadecimal number)

L image (horizontal) length in pixels

W image (vertical) width in pixels

Out(m,n) HexArray output pixel

Re f (m,n) reference pixel

∑ |entries| summation of the absolute value of all entries

PE1,2 processing element at row 1 and column 2

O3 HexArray output port number 3

fsystem frequency of the system

MAENormnormalized mean absolute error

MAEInit initial mean absolute error (i.e., training image MAE)

Selo the selection signal for the Cartesian systolic array output

log10 logarithmic scale with base 10

xxxi



Listings

5.1 GAGA utilizes temporary, permanent, and global rules. . . . . . . . . . . . . . . . 75

5.2 Example for the function to generate a random chromosome. Note that

generated chromosomes are GLOBAL RULES-compliant. . . . . . . . . . . . . . . . . 76

5.3 The List code structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Example for how to declare genome objects and use some functions such

as get/set a genome/chromosome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Explaining some basic functions to obtain the DV value, check if a cell is

active, obtain the number of active cells, and obtain an active cell randomly. 80

5.6 Boundbox versus free Boundbox. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.7 The process of merging two genomes that do not align. . . . . . . . . . . . . . . . . 81

5.8 The select parent function filters a list and performs a biased selection

based on fitness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xxxii



List of Algorithms

1 A simplified (1+λ ) ES algorithm, assuming that smaller fitness is better. . . 45

2 Pseudo code for the canonical genetic algorithm. . . . . . . . . . . . . . . . . . . . . . 49

3 Pseudo code for genome-aware constrained selection – GAC selection. . . . . . 87

4 Pseudo code for genome-aware mutation – GAM changes MGAM bits in the

Active-Output datapath and randomizes other bits. . . . . . . . . . . . . . . . . . . 87

5 Pseudo code for genome-aware crossover running in cascade mode – GAX-

Cascade. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Pseudo code for genome-aware crossover running in interleave mode – GAX-

Interleave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Pseudo code for genome-aware crossover running in parallel mode – GAX-

Parallel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8 Pseudo code for genome-aware genetic algorithm (GAGA). . . . . . . . . . . . . . 93

xxxiii



1

CHAPTER 1

INTRODUCTION

The design specifications given to hardware designers for today’s applications have become

more challenging. Systems that support increasingly complex functions are required to

have shorter design times and higher flexibility and adaptability to changing environments;

these requirements are needed while meeting time, space, and power constraints. Further-

more, some systems may have an unpredicted environment, or the design specifications

are not able to fully describe the problem. Consequently, for these applications and many

others, evolvable hardware is used to automate the design process or dynamically and

autonomously adapt the system to a changing environment. By examining the trend of

advances made in the evolvable hardware field over the past 50 years, one can predict that

there will be further advances and widespread adoption in the near future.

As shown in figure 1.1, computational intelligence is a subfield of artificial intelligence

that studies the mechanisms that enable intelligent behavior in complex and changing

environments [19]. The main focus of computational intelligence is to design and utilize

heuristic algorithms to solve complex real-world problems. The branches of this field

are machine learning, evolutionary computation, fuzzy logic, and probabilistic reasoning.

Evolutionary computation is the field in which the theory of evolution is used in comput-

ing systems. Its main areas are artificial neural networks, bio-inspired hardware, swarm

intelligence, and artificial immune systems. Bio-inspired hardware, short for biologically



2

Ar��cial 

Intelligence

Computa�onal 

Intelligence

Expert 

System
Robo�cs

Evolu�onary 

Computa�on

Ar��cial Neural 

Networks

Machine 

Learning

Fuzzy 

Logic

Probabilis�c 

Reasoning

Ar��cial Immune 

System

Evolvable 

Hardware

Bio-Inspired 

Hardware

Embryonic 

Hardware

Swarm 

Intelligence

Natural Language 

Processing

Other 

�elds

Figure 1.1: Evolvable hardware and embryonic hardware are the main branches of bio-
inspired hardware.

inspired hardware, is the research domain that relates the natural principles with electronic

systems. Evolvable hardware and embryonic hardware (EmHW) are the two main types of

bio-inspired hardware [20].

Evolvable hardware is defined as a hardware system that is capable of real-time adapta-

tion by reconfiguring internal hardware dynamically and autonomously [21]. Conversely,

EmHW can be defined as a hardware system with self-healing capability. Self-healing

(self-diagnosis, self-repair ability, or self-replication) is accomplished by in-cell failure

detection mechanisms, such as double modular redundancy or triple modular redundancy

[22], or out-of-cell mechanisms, where nearby cells can detect failing cells [20]. Since

systems with real-time adaptation are the focus of our research, evolvable hardware is



3

discussed here.

1.1 Evolvable Hardware (EHW)

Evolvable hardware1 is the field in which biological concepts are implemented in electrical

hardware using computer science algorithms, as shown in figure 1.2.

Figure 1.2: EHW is the field where biology, electrical engineering, and computer science
meet.

The applications of EHW are classified into two main categories:

• EHW for Solving Design Problems: For complicated design problems, EHW can be

used to find a solution based on a set of specified criteria. The environment where the

EHW is running is generally fully described, and the output is deterministic. Since

the search space is large (2N , where N > 100) and the EHW is often running in an

extrinsic mode (e.g., simulation), finding a solution typically takes a few days up

to weeks depending on the size of the search space, the complexity of the problem,

1Unfortunately, in many studies, evolvable hardware, evolutionary computation, artificial evolution, and
evolutionary electronics are often used interchangeably.



4

and the objective function. At the end of the evolution, many possible solutions

may be generated, but only one solution must be selected to be implemented on

hardware. Most of the early applications of EHW can be categorized in this category

[23, 24, 25, 26, 27].

• EHW for Online Adaptation: For applications with a changing environment, EHW

can be used to improve adaptivity at different levels, including fault detection and

tolerance. EHW is fast because it is often running in an intrinsic mode (online mode,

i.e., on hardware) and evolution is completely autonomous. Running in this mode

requires reconfigurable hardware platforms, which were not common until recently.

Therefore, many of these implementations are recent, as in [28, 1, 29, 30].

1.2 Main Components of Evolvable Hardware

As shown in figure 1.3, EHW consists of two components: a reconfigurable hardware core

and an evolutionary algorithm – the body and the brain.

Recon�gurable 

Hardware Core

EHW 

Components

Evolu�onary 

Algorithm

Figure 1.3: Main components of EHW.



5

1.2.1 Reconfigurable Hardware Core

A reconfigurable hardware core is the medium to embody possible solutions generated by

the evolutionary algorithm. The hardware core can be implemented in one of four possible

architectures:

1. Programmable logic devices used for digital designs.

2. Field-programmable analog arrays (FPAAs) used for analog designs.

3. Field-programmable transistor arrays (FPTAs) used for low-level mixed signal de-

signs.

4. Custom hardware architectures used for application-specific digital, analog, or mixed

systems.

Since the focus of our research is digital systems, programmable logic devices, specif-

ically field-programmable gate arrays (FPGAs), and digital custom hardware architectures

will be discussed in Chapter 2 in more detail.

A hardware architecture is considered to be a reconfigurable hardware core if it meets

certain requirements, including the following:

• Supporting reconfiguration multiple times – the architecture can be reconfigured

many or unlimited times.

• Supporting fast reconfiguration – since the search space is vast and millions of re-

configurations are needed, the reconfiguration speed is critical.

• Supporting partial reconfiguration – reconfiguration can occur partially on a subre-

gion of the programmable logic (called dynamic region) without the need for recon-

figuring the entire array. In other words, the architecture should allow fine-grained



6

reconfiguration, where small regions of the programmable logic are reprogrammed

independently.

• Supporting dynamic reconfiguration – reconfiguring a (dynamic) region of a system

should not affect other (static) regions.

• Being inexpensive, flexible, and reliable – general requirements for any usable archi-

tecture.

1.2.2 Evolutionary Algorithms (EAs)

In biology literature, evolution is defined as the change that occurs on inherited characteris-

tics of populations over consecutive generations to better adapt to the environment [31]. In

EHW, the term gene is used to represent a building block of a chromosome that represents

the aggregation of heredity information. Chromosomes are collections of genes, and the

collection of chromosomes of an individual is called a genome. Genomes in EHW can

be represented by integers, real numbers, strings, graphs, or trees and can fully describe

an individual (solution) [13]. Figure 1.4 shows the evolution cycle in biology with the

equivalent cycle in electronics. Evolution is achieved by heuristic algorithms, algorithms

that trade solution optimality for speed – evolutionary algorithms.

Evolutionary algorithms are bio-inspired computer algorithms that feature natural evo-

lution and self-adaptation. These are search and optimization algorithms that attempt to

find optimal (or at least suboptimal) solutions in a large search space where classical

search methods are too slow. The search process, also known as the evolution process,

is performed iteratively using genetic operators and one or more evaluation functions. EAs

rely heavily on randomness, which makes the search process nondeterministic. This means



7

Figure 1.4: Evolution cycle between (a) biology and (b) electronics [1].

that re-running the search process results in finding different solutions. The subfunctions

for an EA can be listed as follows:

• Representation: EA has to determine how to represent a hardware solution as a

genome. In other words, a decoding function or criterion needs to be defined that

allows mapping between two domains: the genotype (genome in the solution space)

and phenotype (individual in the problem space). For example, for a digital circuit

design, the genotype – a genome in the EA domain – can be represented by a string of

bits, while the phenotype – an individual in electronics – might be configuration data

for a circuit. Henceforth, genome, individual, and solution will used interchangeably

in this work.

• Population: the collection of individuals in a generation is called population. It is

generally fixed in size during evolution. The EA has to determine how to generate

and manage populations. The two common approaches for managing population are



8

generational, where a population is erased and recreated after every generation, and

overlapping, where a population is modified after every generation [32]. Population

diversity is a critical aspect of a successful EA.

• Evaluation function (also called fitness function or objective function): the EA has

to determine how to evaluate individuals. In other words, a fitness function needs

to be defined. A fitness function is a gauge of how close an individual is to meeting

the design specifications. In some applications, multiple fitness functions are defined.

Fitness functions are discussed in section 3.3. There are three methods to evaluate the

fitness in EHW: extrinsic [33], intrinsic [34], and mixtrinsic [35], which are discussed

in the following section.

• Genetic operators (also called variation operators): the EA has to determine how

genomes are raised and evolved in generations. These operators are selection, muta-

tion and crossover, and they are discussed in section 3.2.

• Termination condition: the EA has to determine when to stop evolution, e.g., after

evaluating a certain number of genomes or achieving a certain quality goal (i.e.,

fitness value).

Hardware Evolution Types

The type of evolution is determined by where individuals are evaluated, i.e., software and/or

hardware models, and where the EA and fitness function are running. The three types are

described as follows:

Extrinsic evolution is performed when an individual is modeled and evaluated on soft-

ware. Subsequently, the solution with the best fitness is implemented in hardware. The

simulation is an approximate modeling of hardware and, in some cases, may not behave



9

equally. In digital circuits, the software modeling can represent hardware with almost

complete correctness [36, 37, 38, 39]. An example of this method is using a hardware

description language (HDL) to simulate a circuit; then, based on the simulation results, the

fittest circuit is replicated in hardware.

Intrinsic evolution is performed directly on hardware where a genome is modeled

and evaluated on hardware. This method requires hardware with a fast reconfiguration

time. Intrinsic evolution is fast, and since there is no software modeling, there is no

hardware-to-software functional mismatching. There are four subcategories of intrinsic

EHW, which are based on where the EA and fitness evaluation are performed. These

are intrinsic, complete intrinsic, multi-chip intrinsic, and multi-board intrinsic, which are

summarized in figure 1.5.

Mixtrinsic evolution is where individual solutions are modeled in a mixture of hardware

and software models. This method solves the extrinsic evolution issue of mismatching by

guaranteeing that a solution behaves well on hardware and during simulation. Comple-

mentary mixtrinsic and combined mixtrinsic are the two modes of operation for mixtrinsic

evolution [35]. Complementary mixtrinsic evolution is where a genome is assigned ran-

domly to a hardware model or software model. Combined mixtrinsic evolution is where

a genome is modeled in software and hardware and an average fitness value is calculated

when the two fitness values are mismatching.

1.3 Applications of EHW

The applications of EHW can be seen in many fields. This is because EHW allows on-

line adaptation to environment changes, solves complex problems, and increases system

reliability. One of the common uses of EHW is circuit synthesis: analog circuit design



10

Figure 1.5: Intrinsic EHW types based on where the EA is running [2].

[40, 41, 42, 43, 44] and digital circuit design [45, 46, 47, 48, 49, 50, 51]. EHW is also used

in image processing applications, such as developing adaptive filters [30, 52] and pattern

recognition [53, 54, 21, 55]. In other cases, EHW is used to evolve systems with fault tol-

erance capabilities, such as fault-tolerant circuits [56, 57, 58], circuits with fault tolerance

using natural redundancy [59], fault-tolerant image processors [60], and high-reliability

space applications [61]. EHW has been used in solving some hard problems, such as

the classical applications in [23] and NP-complete problems [62]. In the communication

systems domain, EHW is used to adapt to different communication protocols [63] and

autonomously optimize signal strength [64]. In computer hardware, EHWs have been used

to evolve functional accelerators [65, 66]. Moreover, EHWs are utilized in neural networks



11

[67, 68, 15, 69, 70, 71], robotic and control systems [72, 73, 74, 75], data mining [76, 77],

data compression [78, 79], data cryptography [80, 81, 82], medical applications [83], many

analog applications as summarized on page 68 of [13], and many others.

1.4 Motivation and Research Objectives

The objectives and main areas proposed for investigation are summarized as follows:

1. Developing an autonomous system with accelerated evolution: The term accelerated

evolution represents many subgoals, including developing a fast hardware core and

an efficient evolutionary algorithm. In our work, we develop a set of EHWs where

the hardware core and evolutionary algorithm are cooperating to improve evolution.

2. Achieving fast reconfiguration without sacrificing resources: Although this objective

can be a subgoal of the previous one, fast reconfiguration is set as a goal by itself

because reconfiguration with less overhead is a vital goal of EHW. Because there are

advantages and disadvantages for both common types of reconfiguration schemes,

a hybrid scheme is created that combines the merits of both schemes while still

avoiding their drawbacks.

3. Improving reliability by fault detection and tolerance: In general, on an EHW system,

self-adaptation is the main target, which is in contrast to EmHW, where self-healing

is the main goal. The flexibility of the designed system allows for a simple yet

efficient fault detection and tolerance mechanism.

4. Improving genetic algorithm to perform better genetic operations: The genetic op-

erators of an EA are often independent of the underlying reconfigurable hardware



12

core. Although we believe it is a desirable abstraction, some modifications can still

be made to make them perform better on systolic arrays.

1.5 Contributions

An efficient and complete intrinsic EHW platform is proposed. The system can be enclosed

entirely on a commercial low-cost system-on-chip (SoC). The presented system features

a novel FPGA-based reconfigurable hardware core (called HexArray). HexArray offers a

high level of routing flexibility and combines the merits of the two common reconfiguration

schemes.

In addition, the proposed system also features a novel genome-aware genetic algorithm

(called GAGA), which is a context-aware genetic algorithm designed specifically for sys-

tolic arrays (such as HexArray). Moreover, some of the introduced genetic operations

are applicable to a wide range of evolutionary algorithms and evolvable architectures.

A collection of experiments shows that the proposed GAGA operators truly accelerate

evolution. Additionally, the new architecture supports a simple but robust fault detection

and tolerance mechanism. Moreover, a technique is proposed that allows the system to

evaluate genomes while the arrays are being reconfigured.

In this work, we propose a novel EHW platform based on a new reconfigurable hard-

ware core and evolutionary algorithm. Furthermore, additional features have been proposed

that exploit the features of the new platform. The contributions in this dissertation are

summarized as follows:

1. A novel processing element (called HexCell).

2. A novel systolic array of HexCells (called HexArray) featuring the following:



13

(a) A novel hybrid reconfiguration scheme.

(b) A novel fault detection and tolerance mechanism.

(c) A novel evolve-while-reconfigure technique.

3. A novel evolutionary algorithm (called GAGA) featuring the following:

(a) A novel genome-aware constrained selection (GAC selection).

(b) A novel genome-aware mutation (GAM).

(c) A novel genome-aware crossover (GAX) running in three different modes.

(d) A novel genome-aware pruner (GAP).

1.6 Dissertation Overview

Since an EHW is proposed in this dissertation, the first EHW component is discussed

in Chapter 2. The discussion starts with the properties of reconfigurable hardware cores

followed by the common architectures in the field. The next chapter, Chapter 3, discusses

the other component of an EHW, evolutionary algorithms. This chapter explores the means

of EAs, which are genetic operators and the fitness functions. Different common types of

EAs are then briefly considered, with a special emphasis on genetic algorithms. Different

classifications of EHWs are presented in Chapter 4, along with a variety of FPGA-based

and custom-hardware implementations with a special focus on the systolic arrays.

The contributions of this work are presented in Chapter 5. The discussion starts with

an early implementation of the proposed system in software – HexArray Simulator. The

simulator served as a proof of concept, but discussing it permits a high-level understanding

of the system without involving much complexity. In the next section, section 5.3, the

hardware part of the system is presented in detail – HexCell and HexArray. The second



14

part (section 5.4) will be dedicated to presenting the GAGA and its utility functions and

genome-aware genetic operators. Additional features enabled by the new system are pro-

vided in section 5.6. A comparison between HexArray and the state-of-the-art systolic

array is presented at the end of the chapter.

Chapter 6 consists of a comprehensive set of experiments to test the new platform;

the discussion in this part of the chapter is limited to the evolution speed (i.e., for a

fixed number of genomes, what is the best fitness achieved). Section 6.3 discusses the

implementation details, timing analysis, and resource utilization.

Finally, we conclude this dissertation by summarizing the contributions of this work.

“What is the value of HexCell, HexArray, GAC Selection, GAM, and GAX?” will also be

answered. Future work and suggestions are presented in section 7.1.



15

CHAPTER 2

RECONFIGURABLE HARDWARE CORE

2.1 Introduction

To develop an EHW system, a reconfigurable architecture and an evolutionary algorithm

are needed. A reconfigurable architecture is a hardware system that can be programmed by

the user or application. The hardware system is used to realize solutions suggested by the

EA.

There are several technologies that enable programmability (and re-programmability).

Early programmable architectures used programmable read-only memory (PROM). Since

PROM was a one-time programmable memory, erasable PROM (EPROM) was introduced

to allow for reprogramming several times. However, EPROM was erasable by long ex-

posure to ultraviolet light, e.g., several minutes using an ultraviolet eraser machine. Con-

sequently, electrically EPROM (EEPROM) was invented, which accelerated the erasing

process and eliminated the need for an external device to erase the memory. Subsequently,

flash memories were used. A flash device is a matrix of EEPROMs that are segmented

into smaller blocks that can be independently erased. One aspect of all previous non-

volatile devices is the limitation on how many times they can be reprogrammed. Another

reconfigurable device is static RAMs (SRAMs), which are volatile devices used for fast

configuration and unlimited reconfigurations. As mentioned previously in section 1.2.1,

for an architecture to be considered a reconfigurable hardware core, it must support being



16

reconfigured multiple times.

2.2 Properties of Reconfigurable Hardware Cores

As shown in figure 2.1, there are several ways to characterize reconfigurable architec-

tures, including architecture, interconnect, fabric structure and reconfiguration schemes.

Although these terms are tightly connected, some key differences can still be outlined, as

follows:

A
rc

h
it

e
ct

u
re

Recon gurable

Hardware 

Proper es

F
a

b
ri

c

S
tr

u
n

ct
u

re

In
te

rc
o

n
n

e
ct

H
o

m
o

g
e

n
e

it
y

G
ra

n
u

la
ri

ty

R
e

co
n

fi
g

u
ra

ti
o

n

∙ Linear

∙ Array

∙ Mesh

∙ Crossbar

∙ Data-path

∙ Cell-to-cell

∙ Network-on-chip
∙ Homogeneous

∙ Heterogeneous 

∙ Fine-grained

∙ Medium-grained

∙ Coarse-grained

∙ Virtual Recon�gura�on (VRC)

∙ Na�ve Recon�gura�on (DPR)

Figure 2.1: Hardware core properties in terms of structure and reconfiguration.



17

2.2.1 Architecture

Reconfigurable architectures generally have building blocks that are connected in a certain

way – called the architecture of the platform. In other words, the architecture describes

the connectivity scheme of processing elements (PEs) in a reconfigurable architecture.

Common architectures are as follows:

1. Linear: PEs are connected linearly (without any dynamic routing). The connection,

however, does not need to be to the nearest neighboring PEs.

2. Array: PEs are placed and connected in a regular manner.

3. Mesh: Array architectures can be further classified as a mesh architecture when the

neighboring PEs are grouped in “super-blocks” to reduce the routing density. In

this architecture, high-density routing is maintained intra-super-blocks while reduced

inter-super-blocks.

4. Crossbar: Architectures that were classified as mesh can be classified as crossbar

when extra (dynamic) routing resources are available between the super-blocks.

5. Datapath: An architecture is said to be a datapath when the routing of data is con-

trolled at the bus-level rather than at the bit-level. This is typically for course-grained

architectures such as x-bit processors, where the routing is controlled at the x-bit

level.

2.2.2 Interconnect

The interconnect of an architecture describes the mechanism of the data flow. Depending on

the system granularity, hardware interconnects can be as simple as cell-to-cell interconnects



18

(for fine-grained logic) or as complex as a network-on-chip (for coarse-grained logic),

where data are sent as network packets.

2.2.3 Fabric Structure

In terms of homogeneity, an architecture is classified as homogeneous when all the config-

urable blocks are identical in function and arranged in a regular manner, or it is classified

as heterogeneous when specialized blocks exist. Conversely, the fabric structure can also

be defined in terms of granularity: fine-grained (e.g., array of transistors or logic gates),

medium-grained (e.g., array of basic processing units such as adder, subtractor, or multi-

plexer) or coarse-grained (e.g., array of DSP cores or processors).

2.2.4 Reconfiguration Schemes

In terms of reconfigurability, the hardware core can be reconfigured in one of two methods:

virtual reconfiguration circuit (VRC) or native reconfiguration (often called dynamic partial

reconfiguration, DPR), as shown in figure 2.2; additionally, a comparison is presented in

table 2.1.

(a) VRC (b) DPR

Figure 2.2: VRC and DPR: the two reconfiguration schemes for EHW [3].



19

Virtual Reconfiguration Circuit (VRC)

Virtual reconfiguration circuit is a method where the evolutionary algorithm switches be-

tween a set of existing functions that are physically implemented in hardware. This method

is fast since the delay only depends on the time consumed by switching between functions,

but it is not space or power efficient. Moreover, in some applications, VRC may result in

lowering the maximum operational frequency [84]. Most of the early EHW systems were

VRC-based for three reasons: (1) VRC is a simple method to be implemented. (2) VRC

works well for fine-grained functions. (3) Until recently, the technology did not support

any other way of reconfiguration.

Dynamic Partial Reconfiguration (DPR)

Dynamic partial reconfiguration is the method of reconfiguring or reprogramming a dy-

namic region of an FPGA fabric using a bitstream from a library of pre-compiled func-

tions. Because the dynamic region is relatively large, DPR is fairly slow for the required

speed of most real-world applications. However, DPR is power and space efficient, and it

may be the only practical choice for applications with coarse-grained functions. Initially,

DPR was feasible using low-level bitstream manipulation methods [85, 56] enabled by

open architectures, bitstream reverse engineering and/or some open-source application

programming interfaces (APIs) such as TORC [86] and RapidSmith [87]. A low-level

bitstream manipulation method can be unsafe and complicated, particularly on recent FP-

GAs [45]. Currently, major FPGA vendors support native run-time reconfiguration, but

with some limitations, such as complex design flow and unsupported bitstream relocation.

Despite these limitations, many successful EHW implementations have been proposed

[23, 88, 3, 89, 90, 91, 60].



20

Table 2.1: Comparison of VRC and DPR.

Parameter VRC DPR

Reconfiguration speed Fast (∼GHz)
Slow, depending on the bit-
stream size (<10 KHz)

Fabric utilization Inefficient Efficient

Power consumption All functions are ON.
One function is ON. Some
transient power consumption
on reconfiguration.

Max. operational frequency Good (with limitation) Best

Requirements None
Reconfiguration device, port
and memory for storing
bitstreams

Complexity Simple
Complicated but many efforts
to streamline it

Best for
Applications with fine-
grained functions

Applications with medium- to
coarse-grained functions

2.3 Reconfigurable Architectures

Reconfigurable architectures can be classified into two categories: commercial and custom

architectures, as shown in figure 2.3. Commercial programmable architectures are dis-

cussed first. Then, custom reconfigurable architectures are discussed, where some EHWs

utilize FPGAs to realize the final system architecture.

2.3.1 Commercial Simple Programmable Logic Devices

After the birth of PROMs and because of the high demand for compact and flexible “glue

logic” architectures, a new family of devices were created. Programmable logic devices

(PLDs) come in many forms, as shown in figure 2.3, but they all serve one purpose. PLDs

are programmed (and reprogrammed) by the user to realize a digital circuit.



21

SPLD

PLD

Reconfigurable 
Architectures

Custom HW

HCPLD FPGA-Based Reconf. VLSI

EHW

Evolutionary 
Algorithm

· PROM
· PLA
· PAL
· GAL

· CPLD
· FPGA
· Other 

Arch.

· SPLASH
· DReAM
· MONTIUM
· Fuzzy CoCo
· MPoPCs
· Other Arch.

· Colt
· RaPiD
· MATRIX
· PIG
· Garp
· KressArray
· PADDI-1/2
· Pleiades
· POEtic
· Alnajjar Arch.
· PAnDA
· Other Arch.

· GA
· CGP
· ES
· GP
· Other EAs

Figure 2.3: Classifications of reconfigurable architectures.

Simple Programmable Logic Devices

Simple programmable logic devices (SPLDs) are the simplest reconfigurable arrays with a

relatively low amount of simple logic (< 1000 gates). These devices contain a set of fully

connected macrocells, where each macrocell contains a mix of simple gates and flip-flops,

which are sufficient to realize basic functions in the product-of-sums (or sum-of-products)

canonical form. The SPLD consists of three main blocks: the input block, AND plane, and

OR plane, as shown in figure 2.4.



22

...
...

...Inputs

IBuffers

&

Inverters

AND

Plane

OR

Plane
Outputs

...

Figure 2.4: Simplified SPLD, adapted from [4].

Programmable Read-Only Memory (PROM)

The simplest form of programmable devices is PROM, which is a block of programmable

memory that stores truth table data of the intended logical design. The input to the PROM

works as an address to the memory, and the stored data serves as the output. An example

of a PROM is shown in figure 2.5. For PROMs, the user can only program the content

of the memory and is unable to change the input or output routing. Due to the discussed

limitations, flexibility and scalability are the major drawbacks of PROMs.

Figure 2.5: PROM: the simplest programmable architecture [5].



23

Programmable Logic Arrays (PLAs)

Programmable logic arrays are another type of SPLD. PLAs were introduced in the early

1970s by Texas Instruments based on read-only associative memory (ROAM) to solve the

drawbacks from which PROMs suffered. The main feature of PLAs is that both of their

planes (i.e., AND plane and OR plane) are programmable, as shown in figure 2.6. The

architecture of the input interconnect allows for more flexibility on the input ports. Since

the two programmable links were slow OR gates, PLAs were slower than PROMs and did

not gain popularity.

input

output

AND plane

OR plane

Figure 2.6: PLA has a programmable AND plane and a programmable OR plane.

Programmable Array Logic (PAL)

Programmable array logic was introduced in 1978 by Monolithic Memories Inc. [92]. In

this architecture, the output interconnect was hardwired and the user could only program



24

the input connection matrix, as shown in figure 2.7. Since there is a single (AND gate)

link in the PALs compared with two (OR gate) links in the PLAs, PALs were faster than

PLAs. However, PALs were less reprogrammable than PLAs since they had AND-based

programmable links. Although a hardwired output indicates a flexibility limitation on what

logical equations the circuit can represent in comparison with the former PLA devices, the

additional programmable loopback interconnect in PALs improved their flexibility because

it allowed realization of multi-level canonical forms.

Figure 2.7: PAL architecture with loopback wiring to improve flexibility [6].

Generic Array Logic (GAL)

Generic array logic, introduced by Lattice Semiconductor in 1985, was the next generation

of PALs. The main features showcased were the integration of CMOS technology and

improved reconfigurability, where the device can be reconfigured many times using a

programmer or in-circuit programming techniques.



25

2.3.2 Commercial High-Capacity Programmable Logic Devices

Another branch of PLDs consists of high-capacity programmable logic devices (HCPLDs).

HCPLDs include complex programmable logic devices (CPLDs), FPGAs, and other com-

mercial programmable architectures.

Complex Programmable Logic Devices (CPLDs)

A CPLD is a high-density programmable logic device that is more complex (larger) than

PALs but less complex than FPGAs. In contrast to FPGAs, CPLDs have a non-volatile

EEPROM-based configuration memory that makes them fast to boot but slow to be re-

programmed. Due to their simpler architecture, CPLDs have low pin-to-pin delays. A

simplified high-level block diagram for a CPLD is presented in figure 2.8. Macrocells are

the building blocks of CPLDs, which are relatively larger than the building blocks of FP-

GAs. However, a CPLD typically has less than a few hundred macrocells versus more than

ten thousand building blocks for FPGAs. Figure 2.9 shows MAX V, a CPLD manufactured

kc
ol

B
O/
I

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Interconnection Array

kc
ol

B
O/I

Figure 2.8: A simplified block diagram of CPLD architecture [4].



26

by Altera. This device (5M40Z specifically) has 24 logic array blocks (LABs) stacked in

a 6x4 array with a MultiTrack interconnect in-between. Each LAB consists of 10 logic

elements (LEs). The structure of an LE is shown in figure 2.10. The typical equivalent

macrocells for 5M40Z is 32 macrocells, indicating that an LAB in this device is larger than

a typical macrocell.

LogicArray

BLock(LAB)

MultiTrack

Interconnect

MultiTrack

Interconnect

Logic

Element

Logic

Element

IOE

IOE

IOE IOE

Logic

Element

Logic

Element

IOE

IOE

Logic

Element

Logic

Element

IOE IOE

Logic

Element

Logic

Element

Logic

Element

Logic

Element

IOE IOE

Logic

Element

Logic

Element

Figure 2.9: MAX V: a CPLD manufactured by Altera [7].

Field-Programmable Gate Arrays (FPGAs)

FPGAs are integrated circuits designed to be configured by customers in the field. An

FPGA is an array of configurable logic blocks (CLBs), block RAM memory (BRAM), dig-



27

DirectLink

interconnect from

adjacent LAB

or IOE

DirectLink

interconnect to

adjacent LAB

or IOE

RowInterconnect

ColumnInterconnect

Local InterconnectLAB

DirectLink

interconnect from

adjacent LAB

or IOE

DirectLink

interconnect to

adjacent LAB

or IOE

Fast I/O connection

to IOE (1)

Fast I/O connection

to IOE (1)

LE0

LE1

LE2

LE3

LE4

LE6

LE7

LE8

LE9

LE5

LogicElement

Figure 2.10: LABs are the building blocks of CPLDs. Each LAB has 10 LEs [7].

ital signal processor blocks (DSPs), and other hard-cores (occasionally hard-IP cores). The

programmable blocks are arranged in columns with complex intermediate interconnects.

The programmable array is surrounded by programmable input/output blocks (IOBs). A

simplified FPGA layout is shown in figure 2.11.

CLBs are the main building blocks of FPGAs. In the case of the Xilinx 7 series, a CLB,

as shown in figure 2.12, consists of two slices, where each slice has four 6-input look-up

tables (LUTs), eight flip-flops, multiplexers, and arithmetic carry logic. The arrangement

of programmable blocks for this FPGA is called the ASMBL (advanced silicon modular

block) architecture, as shown in figure 2.13.

Most of the FPGAs’ configuration memory is SRAM-based. The configuration of an

FPGA is performed using a bitstream that is initially generated from a design modeled



28

I/O Block

Interconnecting

Switches

Logic Block

Figure 2.11: Simplified FPGA block diagram [4].

using an HDL, such as VHSIC (very high speed integrated circuit) hardware description

language (VHDL) or Verilog using electronic design automation (EDA) tools provided by

the FPGA vendor. This process includes many subprocesses, such as elaboration, synthesis,

placement, routing, implementation, bitstream generation, and optionally simulation.

There are two types of bitstreams: full-chip bitstream and partial bitstream. The

full-chip bitstream is for configuring the entire chip, where the device functionality is inter-

rupted while it is being programmed. Conversely, partial bitstream is where only a subarray

of the logic (called dynamic partition) is reprogrammed without interrupting the operation

of the remaining part of the array. The size of the partial bitstream depends on the size of the

dynamic partition, which determines the speed of reconfiguration. Xilinx 7 series devices

(specifically Zynq-7000) support several ways to configure the programmable logic, such

as using the processor configuration access port (PCAP), joint test action group (JTAG),

or internal configuration access port (ICAP). PCAP uses the device configuration interface



29

Switch

Matrix

Slice(1)

COUTCOUT

CINCIN

Slice(0)

CLB

Figure 2.12: Two slices per CLB, Xilinx 7 series [8].

module (DevC), which has an embedded direct memory access (DMA) controller capable

of initiating data transfers from the external memory to the fabric configuration memory.

Therefore, PCAP does not need any hardware instantiations on the programmable logic.

The maximum configuration speed achieved by PCAP is 128 MB/sec. ICAP, in contrast,

requires instantiating a Hardware ICAP (HWICAP) module in the programmable logic.

Although the theoretical maximum speed of ICAP is 400 MB/s, the maximum achievable

speed is 67 MB/sec using conventional DMA-dependent transactions. Vipin et al. proposed

an efficient management system, ZyCAP, that increases ICAP performance to 382 MB/sec

[93].

Other Commercial Reconfigurable Platforms

There are many commercial reconfigurable architectures. One example is D-Fabrix manu-

factured by Panasonic, which is a low-power ASIC aimed at embedded multimedia applica-

tions [94]. The device is an array of homogeneous word-based processing elements based



30

Column

Based

ASMBL

Architecture

Feature Options

Domain A Domain B Domain C

Applications Applications Applications

Logic (SLICEL)

Logic (SLICEM)

DSP

Memory

Clock Management Tile

Global Clock

High-performance I/O

High-range I/O

Integrated IP

Mixed Signal

Transceivers

Figure 2.13: Variety of programmable logic blocks are arranged in a column-style,
ASMBL architecture [8].

on the CHESS reconfigurable platform developed by Hewlett Packard Labs [95]. The

device specifications are not disclosed. Another example of commercial reconfigurable

architectures is the PACT XPP-III architecture used in low-power irregular control-flow-

dominated streaming algorithms [13]. The XPP-III architecture is based on a hierarchical

array of sequential coarse-grained processors optimized to run in different types of par-

allelism [96]. QuickSilver Adapt2400 [97], Coherent Logix HyperX [98], and Adapteva

Parallella [99] are examples of other common commercial reconfigurable architectures.

2.3.3 Custom Architectures

Custom architectures include two branches. The first branch is for FPGA-based archi-

tectures, but here it does not mean using the FPGA fabric (e.g., LUTs or CLBs) as the

building block for the reconfigurable core but rather using it to construct a higher-level



31

reconfigurable architecture. Thus, in this sense, the system can be realized in any platform,

including VLSI. The second branch is custom-hardware architectures. These systems are

fabricated on silicon.

FPGA-Based Reconfigurable Architectures

FPGAs are strong candidates as hosts for EHWs due to many reasons enabled by the

advancements made in this technology. Some of these reasons are (1) high-speed per-

formance, (2) high reliability (compared to non-commercial VLSI), (3) low cost, (4) high-

speed reconfiguration and native support for dynamic partial reconfiguration [100], and

including high-performing hard-IP cores (such as processors) [101].

In fact, considerable research has been performed that simply takes advantage of the

device features to improve the performance and integration of EHW, such as the CoPR

framework implemented on Zynq, which isolates the designer from the low-level archi-

tecture by using a high-level API [102]; implementing Linux accelerators on Zynq [103];

and ZyCAP, which increases the reconfiguration throughput [93]. In this section, a brief

overview of some of the FPGA-based reconfigurable architectures is presented.

SPLASH, proposed by Gokhale et al., is one of the early FPGA-based platforms de-

signed for DNA sequence matching [104].

DReAM is a dynamically reconfigurable hardware architecture for mobile communica-

tion systems proposed by Becker et al. [105]. The system is composed of a coarse-grained

array of reconfigurable processing units and configuration controllers. The reconfigurable

processing units are connected to the nearest neighbor, are capable of performing high-level

arithmetic operations and include a complex correlation unit needed for communications

applications. The configuration controllers can perform a local reconfiguration based on



32

local configuration memory without the need for external memory. DReAM was imple-

mented on an FPGA and uses a CAD tool to create and customize bitstreams.

The MONTIUM architecture, proposed by Heysters et al., is an energy-efficient, flex-

ible, coarse-grained array of tiles designed for high-performance applications [9]. As

shown in figure 2.14, each tile has a set of ALUs connected to a direct datapath. Each

ALU has a local memory used to increase parallel processing throughput. This system was

successfully configured for fast Fourier transform (FFT) and finite impulse response (FIR)

filtering.

Figure 2.14: Block diagram of MONTIUM tile [9].

Fuzzy CoCo is a reconfigurable system based on fuzzy logic used for general computa-

tion applications, and it was proposed by Mermoud et al. [10]. FPGAs were used due to

their flexibility for the testing of modular layers by dynamically using an adaptation mech-



33

anism to tune system parameters. The system has three layers of operation: fuzzification,

rule-based inference, and defuzzification, as shown in figure 2.15.

Figure 2.15: Reconfigurable architecture based on fuzzy logic, Fuzzy CoCo [10].

The MPoPCs architecture is an FPGA-based reconfigurable system with heterogeneous

coarse-grained processing elements proposed by Wang et al. [106]. The system consists

of IP-based processing systems running in MIMD (multiple instruction, multiple data)

mode, customizable memory and an interconnection network. The system is designed

for massively parallel operations, such as matrix operations. The scheduling process for

run-time load-balancing is made possible by software techniques.

Custom-Hardware Reconfigurable Architectures

Over the past 30 years, many custom reconfigurable platforms have been proposed. In this

section, several common platforms will be discussed.

The Colt architecture, presented by Bittner et al., consists of an array of functional

units and data ports connected via a smart crossbar switch, as shown in figure 2.16 [11].

The system utilizes the wormhole run-time reconfiguration computing paradigm to allow



34

operation while reconfiguring; thus, the system targets online partial reconfiguration. A

major disadvantage of this platform is that there is a lack of hardware mapping tools

available to designers.

Figure 2.16: Colt reconfigurable architecture with 16 functional units, smart crossbar
interconnect and 6 data ports [11].

The RaPiD system, proposed by Ebeling et al., is a resource-efficient coarse-grained

FPGA-like architecture optimized for performance that supports deep application-specific

pipelines [107]. The system is designed for computationally intensive applications and

uses a mixture of static reconfiguration and dynamic control. Static reconfiguration is used

to program the underlying pipeline datapath, and dynamic control is used to schedule the

pipelined operations.

A common approach for developing reconfigurable platforms is to have a special con-

figuration layer, similar to that in MATRIX as proposed by Mirsky et al. [108], which is a

coarse-grained platform that enabled applications to control resources using a multi-level

configuration scheme by configurable instruction distribution. MATRIX building blocks

can be configured to serve as instructions store, memory elements or computational ele-



35

ments. The platform also features configurable datapaths, but their effect was not studied.

A drawback of this system is the lack of mapping tools, as mapping is performed manually.

PIG is a general-purpose massively parallel fine-grained reconfigurable system that con-

tains a two-layered (data and configuration) 2D grid of cells [109]. These cells are capable

of reconfiguring other cells to scale the array dynamically and autonomously.

Garp is another reconfigurable platform proposed by Hauser et al. [12], which is a

fine-grained architecture capable of complex bit-oriented computations for image process-

ing applications. The programmable grid works as a co-processor for an in-chip MIPS

II processor. The programmable array organization is shown in figure 2.17, where an

operation can be mapped to a burst of logical blocks.

lsb
16 logic blocks (32 bits)
aligned with processor data word

3 extra logic
blocks

23 logic blocks per row

msb

1 control block
for each row

88 88 88 88 88 88 88 88 88 88 8888

blocks
4 extra logic

4 memory buses

Figure 2.17: Garp reconfigurable architecture [12].



36

Other reconfigurable platforms use nontraditional architectures, such as that for Kres-

sArray proposed by Kress et al., which is a super systolic array with a nonlinear and

wide reconfigurable datapath array (rDPA, shown in figure 2.18) to reduce communication

resources [110]. Another feature in this architecture is the globally scheduled high-level se-

rial bus. Several platforms were constructed based on this non-von-Neumann architecture,

such as the KressArray Xplorer CAD [111] and MoM-PDA [112].

Figure 2.18: KressArray: a non-von-Neumann reconfigurable architecture [13].

PADDI is a family of three architectures. These are arrays of processing elements with a

crossbar interconnect. PADDI-1 is an array of homogeneous fine-grained nano-processors

reconfigured by software [113]. PADDI-2 presents a data-driven execution feature and

improved processing elements built on an array that is still fine-grained and homogeneous



37

[65]. Finally, the Pleiades architecture, shown in figure 2.19, is a reusable architecture

platform with a heterogeneous network of coarse-grained processing elements that can be

programmed for a selected application domain [14].

Figure 2.19: Pleiades: a heterogeneous coarse-grained reconfigurable platform [14].

Some EHW platforms are bio-inspired architectures, such as POEtic tissue, which

contained three layers (phenotype, mapping, and genotype) to support three processes

(evolution, development, and learning) [15], as shown in figure 2.20.

Alnajjar et al. proposed a coarse-grained dynamically reconfigurable architecture with

flexible reliability [114]. The system consists of an array of clusters, where a cluster

can select four operation modes with different levels of spatial redundancy. By utilizing

redundancy, the system is designed to tolerate soft errors and device aging. The level of

redundancy (i.e., error detection or error correction) can be selected by the user based on

the application reliability constraints.

The PAnDA project, proposed by Walker et al., is a programmable analog and digital

array with bio-inspired techniques that enable reconfiguration of the analog layer to over-



38

O
P
E
R
A
T
O
R
0

O
P
E
R
A
T
O
R
1

O
P
E
R
A
T
O
R
2

O
P
E
R
A
T
O
R
N

IN
T
E
R
P
R
E
T
E
R

EXECUTION UNIT

COMMUNICATION UNIT

G
E
N
O
T
Y
P
E
L
A
Y
E
R

P
H
E
N
O
T
Y
P
E
L
A
Y
E
R

M
A
P
P
IN
G
L
A
Y
E
R

D
IF
F
E
R
E
N
T
IA
T
IO
N

L
O
G
IC

D
IF
F
E
R
E
N
T
IA
T
IO
N

T
A
B
L
E

EPIGENESIS

ONTOGENESIS

PHYLOGENESIS

Figure 2.20: POEtic: a reconfigurable bio-inspired architecture [15].

come process variations [115].

2.4 Summary

The body of an EHW system is the reconfigurable hardware core. Early EHW implemen-

tations were PLD based, but their capabilities were limited. The next wave of systems were

a mixture of custom VLSI architectures and FPGA-based architectures, where the fabric of

the FPGA was used as the building block. The majority of these systems had a VRC-based

reconfiguration scheme.

Subsequently, many novel systems were proposed with more emphasis on the DPR

reconfiguration scheme, which was motivated by technology advancements. These systems

were a mixture of custom VLSI architectures and FPGA-based architectures, where FPGAs

were used to realize a higher-level reconfigurable system.

Currently, FPGA-based systems are the common trend of EHW systems. This is due

to their advantages over custom VLSI, including low cost, short design time, fast run-time



39

reconfiguration, high reliability, and soft/hard-IP core processors. Additionally, FPGAs are

considered to be the ideal platforms for hosting evolutionary algorithms while interfacing

with the outside world.



40

CHAPTER 3

EVOLUTIONARY ALGORITHMS

3.1 Introduction

Through an iterative process, from generation to generation, the genetic operations are

applied to a subset of selected solutions to produce increasingly fitter “offspring” solutions.

The fittest of these individuals, or solutions, survive to the next generation. A general

workflow of EAs is presented in figure 3.1. In brief, an EA requires recipes (which are the

genetic operators discussed in section 3.2) to produce new solutions and a gauge (which

are the fitness functions discussed in section 3.3) to measure the quality of the solutions.

3.2 Genetic Operators

Genetic operators are used to guide EAs toward generating fitter genomes. EAs depend

on these operators for selecting solutions, maintaining genetic diversity, and recombining

existing solutions. The main four genetic operators are selection, mutation, crossover, and

elitism.

3.2.1 Selection

Selection is an operator for selecting the best individuals of a generation to pass to the next

generation. The selection can be performed using roulette wheel selection [116], stochastic



41

Figure 3.1: A general workflow for evolutionary algorithms. The closer the fitness is to
zero, the better the solution is.



42

remainder [117], rank selection, tournament selection or Genitor selection [118].

3.2.2 Mutation

Mutation is an operator that changes one or more randomly chosen genes on a selected

genome to produce a new offspring. In its simplest form, mutation is flipping a bit in a

genome represented by a string of bits. Some of the mutation techniques are mutation

with adaptive probability [119], mutation with optimal rates [120], and mutation with hill-

climbing strategy [121].

3.2.3 Crossover

Crossover (also called recombination) is an operator that is analogous to natural reproduc-

tion, in which a new offspring is produced by recombining chromosomes from two or more

parents [122]. Several recombination techniques exist, including single-point crossover,

two-point crossover, three-parent crossover [123], uniform crossover [124], and adaptive

crossover [125].

3.2.4 Elitism

Elitism is an operator that originates in response to the potential concern of losing good

genomes in the evolution process. In other words, genetic operators may damage a selected

genome and prevent it from raising to the next generation. Elitism guarantees that a genome

will not be discarded except in a case where a better genome exists [126]. In some literature,

elitism is considered to be a selection operator.



43

3.3 Fitness Functions

Evolutionary algorithms are used by scientists to solve non-trivial problems. This means

that EA will hopefully provide the final design without human intervention. However, that

does not mean that human designers do not become involved. An EA requires a fitness

function (also called an objective function) [127], which is supposed to summarize the

performance of an individual in a single figure of merit (score). It simply describes how

close a solution is from achieving a defined goal. One of the top challenges in designing

EAs is the design of a fitness function. Poorly designed fitness functions may cause the

system to produce inappropriate solutions or not produce solutions.

For a successful EA, a successful fitness function must be designed. The outline for a

successful fitness function is as follows:

1. Accurate but simple: The fitness function must describe a solution behavior without

involving low-level specifications.

2. High-speed computation: The computations needed for calculating the fitness value

must not slow the system. In fact, for an intrinsic evolution, the fitness function must

be hardware implementable and as fast as the system running in hardware.

3. Comprehensive: The fitness function must capture all design objectives, such as

reducing power consumption and resource utilization. A challenge that arises when

combining multi-objective functions is the mechanism of assigning weight to them.

Because speed and accuracy are generally working against each other, a trade-off needs

to be made by the fitness function designers or another approach should be used – fitness

approximation. Since many of the evolutionary systems are not searching for optimal solu-

tions and are running in a noisy environment, fitness approximation can be utilized. Fitness



44

approximation can be achieved by many techniques, such as assuming that individuals

that behave similarly have similar fitness [128], using local approximation of difference

evaluation functions [129], or fitness landscape approximation with a Fourier transform

[130].

Fitness approximation cannot be used in applications where finding solutions with

complete correctness is desired, e.g., designing a multiplier; bitwise fitness functions are

often used in this case [131].

Finally, fitness values can be absolute or relative. Although relative values are desired,

the implementation implicates challenges, such as an increase in the required computations

and the prior knowledge of the fitness of a “perfect” solution, which will be used as a refer-

ence. The fitness used in the previous example in figure 3.1 was relative and normalized to

1, where 1 is given to solutions with no improvements and 0 for the best possible solution.

In other words, the closer the fitness is to zero, the better the solution is.

3.4 Evolutionary Algorithm Types

Commonly used EAs are the genetic algorithm [132], evolutionary strategies [133], genetic

programming [134], Cartesian genetic programming [16], differential evolution [135], neu-

roevolution [136], and learning classifier system [137]. This work focuses on the major

EAs, which are the first four algorithms and are discussed in this section. The genetic

algorithm is the most commonly used EA and the best fit for EHW [13], as discussed in

section 3.5.

Evolutionary strategy (ES) was developed in parallel to genetic algorithms, but with

more focus on optimization problems, specifically (floating-point) parameter optimization.

Algorithm 1 provides a simplified (1+λ ) ES pseudo code, where 1 is the number of parent



45

genomes and λ is the number of the generated child genomes (offspring). Offspring are

generated using mutation alone; in other words, ES does not use crossover operations.

Mutating one parent to generate λ genomes in multiple generations can result in a hill-

climbing search. However, this may reduce the search space and cause evolution to be

stuck in a local minimum, which affects the quality of the generated results. Note that

the mutation operator in this context is not simply by flipping random bits but uses further

sophisticated mechanisms, such as adding randomly distributed numbers [138]. Another

common version of this algorithm is the (µ + λ ) ES, where µ parent genomes are used

(rather than 1).

Algorithm 1: A simplified (1+ λ ) ES algorithm, assuming that smaller fitness is
better.
1 gparent = null
2 f itness(gparent) = ∞

3 generation = 0
4 while not termination condition do
5 gchild = gparent
6 for i← 0 to 1+λ do
7 if generation=0 then
8 generate gi by random selection
9 else

10 generate gi by mutation of gparent
11 end
12 if fitness(gi) ≤ fitness(gchild) then
13 gchild = gi
14 end
15 end
16 gparent = gchild
17 generation++
18 end

Genetic programming (GP) was introduced by John Koza in 1992 [134]. GP is a form of

autonomous computer program evolution that is performed by genetically modifying a pop-

ulation of computer programs using natural bio-inspired concepts. The main characteristic

of this algorithm is the representation of individuals, where the genotype is a parse tree and

the phenotype is a computer program, as shown in figure 3.2. GP is a domain-independent

method, but the functions (called functions set and terminals set) and fitness function are



46

domain dependent and need to be defined per the application. Similar to other algorithms,

evolution using this algorithm is an iterative process that includes a variety of genetic op-

erators, such as crossover, mutation, reproduction, gene duplication and gene deletion. GP

uses some unique genetic operators that are not used in other algorithms; gene duplication

is an illegitimate crossover process that results in longer genomes, whereas gene deletion is

the complementary process that results in shorter genomes. Therefore, implementing this

variable-length phenotype in hardware is a challenge. In general, GP exploits the flexibility

of software, which cannot be offered by hardware. Another major disadvantage of GP is

the scalability because the algorithm performs poorly on complex problems [139].

In1

� �

MIN

In3 In1255

�

In2

10 X

Figure 3.2: GP represents genomes as parse trees. Tree nodes are mapped to computer
programs. The shown tree is equivalent to the program MIN(In1+(In2 & 255), 10+(In3×
In1)).

Cartesian genetic programming (CGP) was introduced by JF Miller to solve the scal-

ability drawback of genetic programming [140]. CGP is simply a general form of genetic

programming. It is called Cartesian because it represents programs in 2D grids of nodes,

as shown in 3.3. Programs are described as directed acyclic graphs. In its simplest form,

CGP uses a vector of integers to represent program primitives along with the routing inter-

connects. Although CGP was used efficiently in many computational application domains



47

such as circuit design, neural networks, mathematical equations, computer programs, and

image processing, CGP has many drawbacks, as follows:

1. It requires a large logic space when implemented in hardware. In other words, CGP

utilizes resources inefficiently.

2. Practical problems yield a large solution space, which results in a high demand for

computational efforts and a low rate of convergence.

3. The reconfiguration scheme is limited to VRC.

New algorithms of CGP are self-modifying CGP (SMCGP) [141], modular CGP [142],

and recurrent CGP [143].

G
e
n
o
ty
p
e

P
h
e
n
o
ty
p
e

Figure 3.3: Example of two-bit multiplier circuit evolved using CGP by Miller et al.
[16]. Each integer in the genotype defines a function selection or a routing option. Some
chromosomes were left unused in this example.



48

3.5 Genetic Algorithm

John Holland invented the software implementation of genetic algorithms (GAs) in the

early 1970s [132]. GA is an adaptive bio-inspired heuristic search algorithm that utilizes

genetic operators to guide the search process. It can be described as an algorithm that allows

the fittest among individuals to survive over consecutive generations. Algorithm 2 shows

the simplest form of a GA (called canonical genetic algorithm), where the best individuals

(solutions) are selected to rise to the next generation; in the next generation, offspring

of those selected individuals will be generated through genetic operators. The genetic

operators in the GA are selection, mutation, and crossover, as discussed in section 3.2.

GAs use random search “intelligently” in evolution, which make them desirable options

over other algorithms such as linear programming, depth-first, breath-first, and heuristic

algorithms.

The size of the search space in the GA depends on the length of the genomes (number

of bits, when genomes are represented in a string of bits). For an L-bit-long genome, the

search space is an L-dimensional hypercube with a size of 2L. In some literature [144], it

was stated that a search space of 2400 would be “ridiculously large” assuming that there

was one solution. However, this search space size is acceptable when there are plenty of

“good” solutions randomly scattered.

The main drawbacks of GAs are slow convergence, no guarantee of finding global

optima, and the need for fine tuning the evolution parameters. In the case where an EHW

is utilizing GA, which is the most common use case [134, 13], convergence is accelerated

because evolution is running in hardware. EHW is often used to find local optima and does

not actually search for global optima; in fact, GA has no means to check whether a solution

is a global optimal solution. Tuning the evolution operators can be performed experimen-



49

Algorithm 2: Pseudo code for the canonical genetic algorithm.
Result: GA returns the fittest genome

1 gr = gm = gc = null
2 generation = 0
3 while not termination condition do
4 if generation=0 then
5 for i← 1 to population do
6 gri = generate random()
7 end
8 else
9 for i← 1 to (population×mutation rate) do

10 gp = random select(Gparents)
11 gmi = generate mutation(gp)
12 end
13 for i← 1 to (population×crossover rate) do
14 gp1 = random select(Gparents)
15 gp2 = random select(Gparents)
16 gci = generate crossover(gp1,gp2)
17 end
18 end
19 Gchildren⇐ [gr1 . . . , gm1 . . . , gc1 . . .]
20 Gparents⇐ [ ]
21 for i← 1 to parents do
22 gs = get f ittest(Gchildren)
23 Gparents.add(gs)
24 Gchildren.remove(gs)
25 end
26 generation++
27 end

tally after selecting the application, function set and the fitness function. However, if the

tuning did not occur, the risk is slowing the evolution, which is undesirable but not fatal.

The advantages of GAs are as follows:

1. GAs are robust search algorithms because they use probabilistic computations and

naturally embody a high level of noise tolerance.

2. The mapping to phenotype is feasible since the genotype is represented in binary.

3. There are many (sub)optimal solutions scattered in the search space. A GA has no

bias toward any subregion of the solution space.



50

4. By using mutation, evolution is guarded against becoming stuck in local optima.

5. GAs are domain independent. However, the function set and fitness function are

domain dependent.

6. A GA is modular and inherently parallel, which makes it easily distributed.

There are many variants of GAs; some of the well-known algorithms are parallel GAs

[145], adaptive GAs [146], GA with elitist selection [147], messy GA [148], learning gene

linkage GA [149], and gene expression GA [150].

Focusing on GAs that are hardware capable, Higuchi et al. has many publications on

implementing a GA on an FPGA/PLD to perform gate-level evolution [151] and function-

level evolution [152]. Gallagher, Vigraham, and Kramer proposed a family of compact

genetic algorithms that could be integrated in digital systems without a substantial increase

in size and complexity [153]. Stomeo, Kalganova, and Lambert presented a scalable GA

built on a PLA for the design of digital circuits that could evolve faster than a traditional

GA [154]. Another enhanced GA was proposed in [155] to reduce the evolution time and

the required computations. Li, Fialho, Kwong, and Zhang proposed an adaptive operator

selection method in which the application rate of different genetic operators is determined

in an online fashion based on their performance [156].

3.6 Summary

The brain of an EHW is the evolutionary algorithm. An EA requires two types of means,

one to generate and select genomes, called genetic operators, and the other is to measure

the “goodness” of a genome, called the fitness function. There are four common types of

genetic operators. These are selection, mutation, crossover, and elitism. Selection is the



51

operator to select some of the best children of the current generation to be parents for the

next generation. Mutation is the operator that maintains genetic diversity as it creates new

chromosome combinations by randomly mutating current genes. Crossover is the operator

that recombines genomes to produce hopefully better combinations. Elitism is a selection

mechanism that allows elite genomes to survive in different generations.

The fitness function is simply a method to provide a score for any genome. This score

alone is used to compare among genomes. Designing a fitness function is the greatest

challenge in designing an efficient EA; it needs to be accurate but simple, capable of high

speed, and comprehensive. There are four common types of EAs: ES, GP, CGP, and GA.

All of them have limitations. However, if they were to be implemented in hardware, GA

would be the best fit for many reasons, including (1) easy mapping to hardware, (2) being

modular, (3) being a robust random guided search, (4) being domain independent, and (5)

the use of mutation and crossover. There are many successful examples of implementations

of GA on hardware.



52

CHAPTER 4

EVOLVABLE HARDWARE SYSTEMS

4.1 Introduction

Evolutionary hardware is defined as a set of hardware modules that have the ability to

autonomously design and optimize a system using stochastic algorithms, specifically evolu-

tionary algorithms. These algorithms are used for searching a given solution space for a set

of inputs and internal parameters to achieve an optimal or suboptimal solution. The power

of evolutionary algorithms comes from their ability to search the entire solution space,

including the areas that would often be missed if humans were designing an algorithm.

Thus, evolutionary algorithms need to have no bias or constraint that can prevent the system

from exploring any subspace of the solution space [157].

In this chapter, EHW systems will be explored, starting with their classifications fol-

lowed by the implementations. Systolic arrays are one of the implementations that will be

discussed in more detail here because they are related to the proposed system.

4.2 Classifications of Evolvable Hardware Systems

EHW systems can be classified in many ways, including hardware platform, reconfigura-

tion scheme, evolutionary algorithm, evolutionary level of abstraction, hardware evolution

type, operation mode, and application area, as summarized in figure 4.1.



53

H
a

rd
w

a
re

 
P

la
tf

o
rm

EHW

H
a

rd
w

a
re

 
E

v
o

lu
ti

o
n

 
T

y
p

e

R
e

co
n

fi
g

u
ra

ti
o

n
 

S
ch

e
m

e

A
p

p
li

ca
ti

o
n

 
A

re
a

E
v

o
lu

ti
o

n
a

ry
 

Le
v

e
l 

o
f 

A
b

st
ra

ct
io

n
E

v
o

lu
ti

o
n

a
ry

 
A

lg
o

ri
th

m

O
p

e
ra

ti
o

n
 

M
o

d
e

· PLD/FPGA
· FPTA
· FPAA
· ASIC

· Intrinsic
· Extrinsic
· Mixtrinsic

· VRC
· DPR

· Circuit design
· Computation extensive application
· Image processing
· Robotics and Autonomous Control
· Many others

· Transistor level evolution
· Gate-level evolution
· Functional level evolution
· Increased complexity evolution
· Incremental evolution

· Genetic Algorithm
· Genetic Programming
· Cartesian Genetic Programming
· Evolution Strategies

· Constrained operation
· Unconstrained operation

Figure 4.1: Classification schemes of EHW.

4.2.1 Hardware Platform

EHW systems can be classified based on the hardware platform used. For digital systems,

FPGAs (a type of PLD) and ASICs (also known as custom hardware) are commonly used.

FPTAs can be used for analog and digital systems. FPAAs are used for analog EHW

systems. Based on the published research, ASIC-based EHW systems were the common

trend for digital systems until the early 2000s, when FPGA-based EHW systems became

the mainstream.



54

4.2.2 Reconfiguration Scheme

EHW is classified as a VRC-based system when the reconfiguration scheme, as discussed

in section 2.2.4, in use is a VRC or DPR-based system when using DPR. Note that VRC

and DPR are generally accepted terms that mean signal multiplexing and time multiplexing,

respectively.

4.2.3 Evolutionary Algorithm

EHW systems can be classified based on the EA that is used. The common GAs for EHW

systems are GA, ES, GP, and CGP. Although many systems use modified versions of the

EA, they are still classified using the original EA. There is a strong correlation between the

EA used and the application domain.

4.2.4 Evolutionary Level of Abstraction

Evolution is performed using different levels of abstraction, which describe the function

set that is in use. Netlist-level evolution was the mainstream when problems were small

(e.g., 1-bit adder) and architectures, specifically FPGAs, had open (and relatively simple)

architectures. At this level, device-specific modules (e.g., CLBs) were used as the re-

configurable blocks, and genetic operations occurred on the configuration bits of LUTs.

Subsequently, logic-level evolution became the trend for many reasons, including (1) the

increased complexity of problems, (2) avoiding low-level device-specific details, and (3)

because some manufacturers concealed the netlist-level details of their devices. AND, OR,

XOR, NOT, and Multiplexer are examples of functions used at this level. Finally, the

function level is the highest level of abstraction that emerged to bridge the gap between

gate-level abstraction and coarse-grained systems. It brings the function sets closer to the



55

application domain and away from low-level device-specific details. Within the function-

level abstraction, there is a wide spectrum of functions; for example, functions can be as

simple as adders and as complex as FFT.

In contrast to the previous “fixed” levels of abstraction, some studies focused on sup-

porting dynamic levels of abstraction. Increased complexity evolution is a novel mech-

anism in which the system is initially evolved by evolving smaller subsystems [158].

Incremental evolution is another novel mechanism that supports automatic incremental

evolution in two directions: full system to subsystem and subsystem to full system [159].

4.2.5 Hardware Evolution Type

The type of hardware evolution is based on where genomes are evaluated and where the

fitness function and EA are running, as discussed in section 1.2.2. The summary for these

types is provided in table 4.1.

Table 4.1: Summary of hardware evolution types.

Hardware Evolution Type Genome evaluation EA and fitness function
Extrinsic Software Software

Intrinsic Hardware Software (PC)

Complete intrinsic Chip A Chip A

Multi-chip intrinsic Chip A Chip B

Multi-board intrinsic Board A Board B

4.2.6 Operation Mode

EHW systems can operate under two modes: constrained operation and unconstrained

operation. Hardware that has a deterministic output is said to be running in constrained

operation. An example of this is the evolution of a digital circuit, where the outcome



56

circuit is expected to function identically to the initial evolved design even on a different

digital architecture (e.g., a circuit that was evolved on Xilinx FPGAs can be implemented

on Altera’s FPGAs). Unconstrained operation, in contrast, is where an evolved hardware

system is free to use any parameter in the environment, including those parameters that are

not typically considered in a conventional design flow, e.g., using the analog characteristics

of a digital device or the temperature in circuit design.

4.2.7 Application Area

EHW systems can be classified based on the application area, as discussed in section 1.3.

Some of the common areas are circuit synthesis, computation-extensive applications, image

processing, robotic and autonomous control, satellite, communications, data compression,

data encryption, data mining, and so forth.

4.3 Evolvable Hardware Implementations

Integrating an evolutionary algorithm with a reconfigurable architecture creates an EHW

system. Looking at the past 50 years of EHW history, many milestones have been achieved.

In 1963, the first publication in this field was by Larry Fogel. He used a hardware system

driven by a primitive version of GA to accelerate the solving of wire routing problems on

the Atlas Missile Guidance system [23]. Other works of the same nature followed over the

next two decades, such as that by Alvin Owens and Michael Walsh [25]. In the early 1980s,

EHW was used in solving gas pipeline routing problems [25]. In the late 1980s, the field

of EHW witnessed incredible advances sparked by the widespread use of computers. In

1992, de Garis predicted that the commercial FPGAs at that time were capable of building

a “Darwin Machine”, a machine capable of evolution [28].



57

Followed by de Garis’s prediction, in 1999, Adrian Thompson conducted an exper-

iment to search for a solution for tone discrimination on FPGAs using EAs [157]. A

tone discrimination circuit is not the typical application for FPGAs, specifically without

using a clock or an external timing reference. FPGA-based EHW systems could find

an unconventional solution using the underlying physics of the substrate, a solution that

would not be considered by human intelligence itself. The significance of this work was

(1) proving that an EHW can find solutions that circuit designers do not know about, (2)

FPGAs are good hosts for EHW systems, and (3) FPGA-based EHW systems were the first

online EHW (intrinsic), while all previous implementations of EHW were offline or by

simulation (extrinsic) only. Additionally, this experiment was an example of evolution in

an unconstrained operation where the evolved circuit used the underlying substrate, which

is not expected in a digital design domain. This evolved circuit only worked on the specific

type of FPGAs used in the evolution process and could not be replicated to other FPGAs

with similar architectures. Moreover, the evolved circuit was temperature dependent and

did not perform well using a temperature different than what was used in the evolution

process.

Searching the literature from the past 30 years, many successful EHW implementations

can be found due to the advances made in computing systems and FPGAs. Some of these

implementations were novel reconfigurable architectures fabricated on custom-hardware

with traditional EAs [11, 107, 110, 12, 109, 108]. Other implementations were EHWs with

novel FPGA-based architectures with traditional EAs [160, 161, 162, 152, 163, 164]. Some

of the EHW systems were using traditional reconfigurable hardware (e.g., PLD or FPGAs)

with novel EAs [153, 151, 155, 152, 154]. There were no EHW implementations that were

constructed with a novel reconfigurable hardware core and novel EA; our proposed system

is the first that includes both.



58

4.3.1 Systolic Arrays

An architecture of interest is the systolic array, which is one of the common hardware

architectures that provides a high-level of parallelism. The systolic array is an array of

tightly coupled functional cells, called processing elements, with a linear data dependency.

This architecture was proposed by Kung in 1978 [17]. As Kung and Leiserson [18] wrote,

“A systolic system is a network of processors which rhythmically compute and pass data

through the system. Physiologists use the word “systole” to refer to the rhythmically recur-

rent contraction of the heart and arteries which pulses blood through the body. In a systolic

computing system, the function of a processor is analogous to that of the heart. Every

processor regularly pumps data in and out, each time performing some short computation,

so that a regular flow of data is kept up in the network”. The architecture was invented

to be patterned efficiently in VLSI systems for computationally intensive applications (i.e.,

convolution computation).

Processing elements come in many shapes; in fact, in many of the classical papers

[17, 18, 165, 166], the design of a processing element was to serve in a specific application.

The most common designs are the “type R” and “type H” proposed by Kung et al., as

shown in figure 4.2 and figure 4.3. The different shapes were designed to achieve certain

functions where “type R” were used for two-operand operations and “type H” were used

for three-operand operations.

Systolic arrays are well suited for EHW systems and have been used several times

[167, 104, 168, 3, 169, 170]. A common paradigm for many systolic array implementations

is to have functional cells in a rectangle shape with communication ports going in four

directions (similar to type R).

Applications with clearly defined functional blocks that can be dynamically swapped



59

Figure 4.2: Type R systolic array proposed Kung et al. in 1978 [17].

Figure 4.3: Type H systolic array proposed Kung et al. in 1979 [18].

during execution are well suited for systolic arrays, such as image processing, big data

searches, data sorting, communication decoders, packet filtering, accelerated SQL mod-

ules, matrix operations, computation accelerators, and so forth [22]. In this work, image

processing applications were chosen for their distinct phases of processing.

State-of-the-Art Systolic Array

Prof. Sekanina’s research team at Brno University of Technology, Czech Republic, have

conducted considerable research in using systolic arrays in image processing applications

[84, 90, 169, 171, 172, 30]. The utilized system was a 2D array of medium-grained

processing elements that were reconfigured using a DPR scheme, as shown in figure 4.4.

The system showed impressive results, although there were some major drawbacks,

including the following:



60

A

B X

Y

(a) State-of-the-art PE (b) State-of-the-art systolic array

Figure 4.4: A 5×5 systolic array of state-of-the-art PEs, where the array uses a single
output and PEs use DPR reconfiguration scheme.

1. Slow reconfiguration due to the use of DPR solely. In [30] [172] the team compared

DPR against the “traditional” VRC, which resulted in the argument that using DPR

alone was the best choice.

2. Parallelism was not exploited. Only a single output is evaluated per genome [90],

while many can be evaluated in parallel.

3. The EA (ES/CGP hybrid) is not aware of the genome structure, thereby causing

inefficient evolution operations. For example, mutation of bits representing a PE that

is not in the datapath of the selected output is not worth evaluating.

4. The systolic array suffers from “narrow” data propagation. For example, based on

figure 4.4, all cells in rows 2, 3, and 4 are not contributing to the output at row 1.

In a recent paper (in 2015), a VRC/DPR hybrid FPGA-based EHW system was pro-

posed, which was the first attempt toward this goal [84]. This system, however, has many

drawbacks. It involves high-complexity mechanisms as it deals with low-level bitstream

modifications, which are device specific. We believe that our new VRC/DPR hybrid con-

tribution is more general and robust.



61

4.4 Summary

Pairing a reconfigurable hardware core with an evolutionary algorithm creates an EHW

system. There are several ways to classify an EHW system, in which some of them

are somewhat connected, such as (1) using CGP/GP (evolutionary algorithm) for netlist-

level evolution (evolutionary level of abstraction), (2) using extrinsic evolution (hardware

evolution type) for circuit synthesis (application area), or (3) using DPR (reconfiguration

scheme) when FPGAs (hardware platform) are used.

There were many successful implementations of EHW systems. However, the majority

of the systems were constructed after improving either the reconfigurable hardware core or

the evolutionary algorithm. A systolic array is one of the commonly used architectures for

EHW systems. It is defined as a pipelined grid of processing elements with a linear data

dependency. It was invented, along with many processing element architectures, in the

late 1970s to allow a modular design for VLSI. Although the state-of-the-art systolic array

proposed by Sekanina et al. [30] has impressive performance, it still has some drawbacks,

including (1) slow reconfiguration, (2) lack of parallelism, (3) inefficient genetic operators,

and (4) limited data propagation.



62

CHAPTER 5

HEXARRAY PLATFORM DESIGN

5.1 Introduction

This dissertation designs an EHW using a new reconfigurable hardware core and a context-

aware GA. The design considerations of the proposed platform were two-fold:

• The reconfigurable hardware core should have a high level of parallelism to improve

performance.

• The reconfigurable hardware core should have flexible routing to improve system

reliability.

• The reconfigurable hardware core should have a reconfiguration scheme that com-

bines the merits of the virtual and native reconfigurations while avoiding their draw-

backs: wasting resources and slow reconfiguration.

• The evolutionary algorithm should be guided to make “smarter” decisions to accel-

erate evolution.

To meet these considerations, a novel reconfigurable hardware core is designed. The

system is a systolic array called HexArray, which features a high level of parallelism.

HexArray is constructed using a novel PE called HexCells. HexCells feature flexible ports

that, when tiled in a HexArray, allow a “virtual” DPR and other additional features, such



63

as routing around faulty cells (discussed in subsection 5.6.1) or cells under reconfiguration

(discussed in subsection 5.6.2).

Additionally, a genome-aware genetic algorithm (GAGA) is designed. The GAGA is

designed to perform genetic operations based on understanding the genome structure and

cell dependency; in addition, for randomly generating (selecting) genomes, GAGA follows

a statistical model and “common sense” to reduce redundant evaluations.

Early in the project life, a software model (a simulator) of the system was implemented

to prove the concept. This simulator is functionally identical to the hardware system

(although the performance difference is 1:1000). The discussion of the simulator will serve

as a high-level workflow of the system and will be discussed first in section 5.2.

Finally, a comparison between HexArray and the state-of-the-art systolic array will be

presented in section 5.7.

5.2 HexArray Simulator

A simulator for the HexArray platform was initially developed to validate the effectiveness

of the proposed platform and to tune some parameters. The text-based simulator was

written in the Python programming language and was tested on many data sets.

After setting the evolution parameters, the simulator input is a training image, e.g.,

noisy image. Starting with this input, the simulator will evaluate a large set of genomes –

genomes in this case are image filters – and measure their fitness using a fitness function.

In our case, the fitness function requires a reference image to be able to assess how close

or far a genome is from achieving the target. Here, the target is to find an image filter

that transforms the training image to bring it closer to the reference image, as shown in

figure 5.1. The fittest genome will be selected as the best solution at the end of the evolution



64

process. The user adjusts the simulator parameters to control the evolution process. The

parameters are shown in table 5.1.

(a) Training image (b) Evolved image (c) Reference image

Figure 5.1: (a) A training image with 20% salt & pepper noise. (b) Image produced by
algorithm with a 63% noise reduction. (c) Reference image used for the fitness calculations.

Once the parameters are set and evolution is started, the system generates a genome

and applies it to the array cells and input ports. A small sliding window on the training

image pixels will be used iteratively to generate filtered pixels. The array has multiple

outputs, and each output has a fitness unit. After the last pixel of the image, the system

reads the fitness values. Fitter genomes are selected as parents for the next generation. The

system uses these parents to generate better offspring. The number of genomes required

for generating a good filter is problem dependent, but it is generally a large number (e.g.,

> 10N , where N > 4).

During the simulator evaluations, it was observed that there were many solutions with

no observed improvement. Consequently, a new parameter, f itness threshold, was added

to the algorithm to only report genomes with appreciable improvements. Another observa-

tion was the effect of the gen operators mode parameter, where A GENOME appeared to

be the best option. This is expected for two reasons:



65

Table 5.1: Simulator parameters to control the evolution process.

Parameter Description Example
R×C HexArray size 8×8

window size Image data window size 5×5

reference img Reference image file name Lena

training img Training image file name Lena sp10

generation number of generations 10

population number of individuals per generation 1000

parents (µ) number of parents to be selected 100

m rate mutation rate 0.3

c rate crossover rate 0.4

MGAM number of bits to be mutated 1

fitness threshold
A genome is good when its fitness is less than
the fitness threshold of the best fitness of the
previous generation.

0.99

gen operators mode

To which part of the genome genetic operations
can be applied; the options are A GENOME for
Array-Genome or ALL for Array-Genome and
Input-Genome

A GENOME

• In ALL mode, the search space significantly increases, which slows evolution (for

example, for an 8×8 HexArray, the size of A GENOME is 2640, while the size of

A GENOME+I GENOME is 2795).

• Genetic operations are not effective when applied to the input genome.

An intrinsic issue of simulators and software models in general is poor performance.

This simulator is no exception. Moreover, it was observed that parameters such as array

size have a direct impact on speed. The simulator took 3.5 seconds to evaluate a single

genome on a 3× 3 array, whereas 14.4 seconds elapsed when evaluating a genome on an

8×8 array. For an evolution process of 10 generations with populations of 1000 on an

8×8 array, the simulator took more than 40 hours. However, implementing the system



66

in hardware achieved an approximately 2500× speed up, and running the same evolution

example mentioned previously on the hardware module took less than one minute.

5.3 Proposed Reconfigurable Hardware Core

The discussion in this section will begin with the design of HexCell. HexCell will be

discussed from two perspectives: cell structure and cell chromosome representation. The

exploration of HexArray will follow, including the array structure with its auxiliary mod-

ules and the array genome representation.

5.3.1 A Novel Processing Element – HexCell

A
B
C

Sely

A
B
C

Selxf

ABC

S
elz

f

f func

A

B

C

X

Y

Z

A
B
C
f

(a) HexCell architecture

Selfunc Selx Sely Selz

00 00 000000}

Assuming P=4:

0000 selects f0

0001 selects  f1

0010 selects f2

:

1110 selects f14

1111 selects f15

2x3=6bits:

00 selects A

01 selects B

10 selects C

11 selects f

}

(DPR) (VRC)

(b) HexCell chromosome

Figure 5.2: The HexCell structure and representation: the HexCell’s functional unit is on
a dynamic partition while the remaining logic is static. The HexCell chromosome has four
genes, where three genes implicate a VRC and one implicates a DPR.



67

HexCell Structure

HexCell is a virtual hexagonal-shaped PE designed to be tile-able in systolic arrays, as

shown in figure 5.2.a. The cell’s main components are input ports, input buffers, functional

unit, and output ports. HexCell is different than the type H PE, proposed by Kung et al.

[18], figure 4.3, where the later contains a memory and executes a fixed function.

1. Input Ports: The cell has three inputs, north (N), north west (NW), and south west

(SW), called A, B, and C, respectively. Each input has a data bus and a ready signal.

The ready signal works as a “WRITE ENABLE” for the input buffers.

2. Input Buffers: Every cell input must have a data buffer (FIFO) because the pipelined

data are coming at different latencies on different input ports. The depth of an input

buffer depends on the cell location, where the maximum depth is dependent on the

size of the array. For a cell located at row x and column y in an R rows × C HexCell

array, where x ∈ {1, ...,R} and y ∈ {1, ...,C}, the depth for input buffers is:

DepthA =


y+
⌊ y

2

⌋
if x = 1

1 for all other
(5.1)

DepthB =


x if y = 1

y+
⌊ y

2

⌋
if x = 1 & y ∈ {1, ...,C}odd

2 for all other

(5.2)



68

DepthC =


x if y = 1

R+ 3
2y−1 if x = 1 & y ∈ {2, ...,C}even

1 for all other

(5.3)

and the maximum depth is:

DepthMax = R+C+

⌊
C
2

⌋
−1. (5.4)

3. Functional Unit: The core of the cell is the functional unit, which is a reconfigurable

partition that can be reconfigured at run time to one of many functions using DPR.

Designing the library of functions is performed by the user and is based on the

desired application. The functions can operate on all three inputs or just a few

of them; the operation starts when all dependent inputs are ready. Whether the

functions are simple or complex will decide the granularity of the EHW system.

It is recommended, but not required, to select 2P functions, e.g., 4, 8, 16 and so on

functions, as shown by:

Sel f ∈
{

f0, f1, f2, ... f2P−1
}
. (5.5)

For real-world applications where resource utilization is optimized, it is important

to identify the granularity of the used functions; thus, an FPGA with a compatible

dynamic partition size is selected. Our chosen application has a mixture of fine-

/medium-grained functions, but an FPGA with coarse-grained dynamic partitions has

been used due to availability, which is suitable for our purpose as a proof of concept.

A library for the used functions in the proposed system is provided in table 5.2



69

with index, name, description and dependency vector given for each function. The

dependency vector is needed for the genome-aware operators, where an input with a

dependency value of 1 means that the function is dependent on this input and that the

operation will not start until the data ready signal for that input is asserted.

Table 5.2: Function set for the selected image processing application.

Function Index Function
Name Function Description Dependency

A, B, C
f0 Average AVG:=(A+B+C)/3 1, 1, 1
f1 Conditional MUX:=C[7]?A:B 1, 1, 1
f2 Greater GRT:=(A>B)?0x00:0xFF 1, 1, 0
f3 Full High FLH:=0xFF 0, 0, 0
f4 Bitwise OR OR :=A|B|C 1, 1, 1
f5 Bitwise AND AND:=A&B&C 1, 1, 1
f6 Bitwise NOT NOT:=∼A 1, 0, 0
f7 Bitwise XNR XNR:=∼(A⊕B⊕C) 1, 1, 1
f8 Shift Left SHL:=C�B[7] 0, 1, 1
f9 Shift Right SHR:=C�B[7] 0, 1, 1

f10 Maximum MAX:=max(A,B,C) 1, 1, 1
f11 Minimum MIN:=min(A,B,C) 1, 1, 1
f12 Low Pass LPS:=A&0x0F 1, 0, 0
f13 High Pass HPS:=A&0xF0 1, 0, 0
f14 Different DIF:=(B[7]⊕A[7])?0xFF:0x00 1, 1, 0
f15 Intensify TNS:=A[7]?A�2:A�2 1, 0, 0

4. Output Ports: HexCell contains three output ports: north east (NE), south east (SE),

and south (S), called X, Y, and Z, respectively. Each output can be independently

sourced from any of the input ports or the output of the functional unit. By having

this output control, the VRC reconfiguration scheme is achieved since changing an

output port selection of a cell will affect all dependent cells along the datapath. A cell

output can be selected to be A, B, C, or f , where f can be f0, f1, f2, ... f2P−1, resulting

in 3+2P possibilities. In other words, Selx,Sely,Selz ∈ {00,01,10,11}, resulting in

X ,Y,Z ∈ {A,B,C, f}.



70

HexCell Chromosome Representation

HexCell is represented by a chromosome of a (P+ 6)-long binary string of genes, which

contains two substrings as shown in figure 5.2.b. One is a fixed-length substring with 6 bits

(three genes) to control the selections of three output ports using a VRC scheme. The other

substring is the function selection, which implicates a DPR scheme. The chromosome is

structured as

ChromosomeHexCell =
〈
Selz, Sely, Selx, Sel f

〉
. (5.6)

5.3.2 A Novel Systolic Array – HexArray

HexArray is the reconfigurable hardware core of the proposed EHW system. HexArray is

discussed here from two perspectives: structure and representation. The hardware entities

of HexArray are the data window controller, genome register, array input controllers,

systolic array, and array output controllers. HexArray is represented by a genome, which

is the complete set of configurations to replicate the current state of the system. At the end

of this chapter, a comparison between HexArray and the state-of-the-art systolic array is

performed, and a summary of the properties of HexArray is outlined in table 5.3.

HexArray Structure

1. The data window controller is responsible for providing a sliding data window that

includes a window of 5×5 pixels from the training image, one pixel from the ref-

erence image and the pixel coordinates (X, Y), as shown in figure 5.3. Note that

the reference pixel is not used as an input pixel for the array and is used by the

fitness function. This module has a “Start” signal that propagates to the array input



71

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Pixel X 25 26 27 28 29

Pixel Y 30 31 32 33 34

Ref Image 35 36 37 38 39

Tr
ai

n
in

g 
Im

ag
e

 

5
x5

 W
in

d
o

w

Data Window

/64

t=  0         1         2         3        4    

:

:

:

Pixel 0

Pixel 1

Pixel 2

Pixel 39

DMA

Ready

PS

AXI

Control 

(Reset, Start, Speed)

PS

AXI

InputSel

Input-Genome

A

B

C

PE11

PE11-C

Data Window Controller

AIC

Figure 5.3: Data window controller formats the input data stream received from the DMA
as a sliding data window accessible by the array input controllers, which are controlled by
the i GENOME and fed into the array cells.

controllers, which start or pause the execution for the entire array. The controller

contains a DMA with a 64-bit bus.

2. The genome register contains an input genome (I GENOME) and an array genome

(A GENOME) that can be written by the PS using the AXI interface [101]. I GENOME

defines the pixel selection from the data window provided by the data window con-

troller for all array input controllers. A GENOME, in contrast, has two types of data.

One type of data is for controlling cells’ output multiplexers. These data have a

fixed length of 6×R×C, and any change to these data will take effect on the

hardware instantaneously, as the change implicates a VRC scheme. The second type

of A GENOME data is for selecting the cells’ functions. These data have a length of



72

P×R×C, and any change to these data means that cells’ functional units need

to be natively reconfigured, implicating a DPR reconfiguration. This process of

reconfiguration is maintained by the PS using the PCAP [101].

3. The array input controller (AIC) selects a pixel from the sliding data window and

feeds it into an array input port based on its desired selection signal defined in

I GENOME, as shown in figure 5.3.

4. The systolic array is a homogeneous array of HexCells patterned in a 2D symmetrical

mesh, where each cell is neighboring 6 cells, except those on the array boundary,

which may be connected to AICs or array output controllers (AOCs), as shown in

figure 5.4. Each cell receives data from neighboring cells or AICs in the N/NW/SW

directions through the ports A, B, and C, respectively, and is sending data to other

cells or AOCs on the NE/SE/S directions via the ports X, Y, and Z, respectively.

5. The array output controller is responsible for calculating the fitness value for each

array output. The selected fitness function is the mean absolute error (MAE), but it

can be any user-defined function. The function, which requires a reference data, is

defined as follows:

MAE =
1

WL

m=W

∑
m=1

n=L

∑
n=1
|Out(m,n)−Re f (m,n)| . (5.7)

Upon processing the “expected count” of pixels, the AOC will store the calculated

fitness value in an FIFO. The expected count is typically the total number of pixels in

the used image, which is programmed by the PS using the AXI interface, as shown

in figure 5.5.



73

A

B

C

A

B

C

Sely

f

A

B

C

Selx
f

ABC

S
elz

f

A

B

C

f func

A

B

C

A

B

C

Sely

f

A

B

C

Selx
f

ABC

S
elz

f

A

B

C

f func

A

B

C

A

B

C

Sely

f

A

B

C

Selx
f

ABC

S
elz

f

A

B

C

f func

A

B

C

A

B

C

Sely

f

A

B

C

Selx
f

ABC

S
elz

f

A

B

C

f func

A

B

C

A

B

C

Sely

f

A

B

C

Selx
f

ABC

S
elz

f

A

B

C

f func

A

B

C

A

B

C

Sely

f

A

B

C

Selx
f

ABC

S
elz

f

A

B

C

f func

A

B

C

A

B

C

Sely

f

A

B

C

Selx
f

ABC

S
elz

f

A

B

C

f func

A

B

C

A

B

C

Sely

f

A

B

C

Selx
f

ABC

S
elz

f

A

B

C

f func

A

B

C

A

B

C

Sely

f

A

B

C

Selx
f

ABC

S
elz

f

A

B

C

f func

A

B

C

A

B

C

Sely

f

A

B

C

Selx
f

ABC

S
elz

f

A

B

C

f func

A

B

C

A

B

C

Sely

f

A

B

C

Selx
f

ABC

S
elz

f

A

B

C

f func

A

B

C

A

B

C

Sely

f

A

B

C

Selx
f

ABC

S
elz

f

A

B

C

f func

A

B

C

A

B

C

Sely

f

A

B

C

Selx
f

ABC

S
elz

f

A

B

C

f func

A

B

C

A

B

C

Sely

f

A

B

C

Selx
f

ABC

S
elz

f

A

B

C

f func

A

B

C

A

B

C

Sely

f

A

B

C

Selx
f

ABC

S
elz

f

A

B

C

f func

A

B

C

A

B

C

Sely

f

A

B

C

Selx
f

ABC

S
elz

f

A

B

C

f func

I11 

I0 

I2 

I4 

I6 

I9 

I13 

I12 I14 

I1 

I3 

I5 

I7 

I8 I10 

O0

O2

O3

O5

O7

O4

O6

O10O1

O11

O12 O14

O13

O8

O9

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

PE11

PE21

PE31

PE41

PE13

PE23

PE33

PE43

PE14

PE24

PE34

PE44

PE12

PE22

PE32

PE42

Figure 5.4: 4×4 HexArray with AICs (shown in red) and AOCs (shown in yellow).

HexArray Genome Representation

The genomes of HexArray take two forms. When a genome is not evaluated, it takes the

form GENOMEHexArray = 〈 I GENOME, A GENOME 〉. However, when a genome is evaluated

and an output is selected, it takes the form GENOMEHexArray = 〈 I GENOME, A GENOME,

Active-Output 〉.

• The input genome (I GENOME) is a string of bits that defines the selected pixel for

each AIC. In our implementation, each AIC can point to one of 35 pixels (25 training



74

- + Fitness

=
Pixels Count

Expected Count

C
L
R

X

Y

Z

AIC Reference

Cell

Output

AXI

PS

AXI
PS

Store

Figure 5.5: Array output controller module which accumulates the absolute differance
between the evolved pixel and the reference pixel for “Expected Count” pixels.

image pixels and 10 pixels for X/Y coordinates); thus, 6 bits are needed, with the

allowed range being 0 to 34.

• The array genome (A GENOME) is a string of bits that defines the configuration of all

HexCells in the systolic array. Each cell is represented by P+ 2+ 2+ 2 bits for

Sel f unc, Selx, Sely, and Selz, respectively.

• Active-Output is an integer number that identifies which array output port is used

to obtain the desired result of a chosen genome. This is needed because of the

parallelism in HexArray, where there will be different output data coming from

different output ports and the EA or the user needs to know the specific output.

5.4 Proposed Genome-Aware Genetic Algorithm (GAGA)

The GAGA is a high-level algorithm, and the chosen implementation is written in C/C++

and runs on the hardcore processing system on the Xilinx Zynq-7000 All-Programmable

SoC [101]. The program has a class-based structure, which makes it modular and easy



75

to understand. The algorithm includes a library of utility functions that are necessary for

the content-aware processing of a genome. These functions allow the GAGA to identify

the cells’ hierarchical dependencies and perform smarter genetic operations. To understand

how the genome-aware genetic operators work, the main code structures need to be outlined

first. Two main classes (GENOME and DV) along with some utility functions and code

structures will be discussed in the following section. Most of the discussion is performed

using code listings.

5.4.1 Algorithm Utility Functions

All utility functions work under global rules (GLOBAL RULES), which allow control over

what cells can or cannot be used or what values ports can take. The global rules are

automatically generated by combining the temporary rules (TEMPORARY RULES) and the

permanent rules (PERMANENT RULES), where the GAGA controls both rules. The temporary

rules are temporary and can be changed throughout the evolution process; an example using

these rules is supporting the virtual resizing of the array in evolution, where the array starts

with a small array size, in which the TEMPORARY RULES ban the usage of cells’ functional

units outside the desired array size. When larger arrays are needed, usage is allowed for the

next row and column of cells to expand the array size. The permanent rules, in contrast, are

fixed. They are designed to permanently ban the use of a certain cell (e.g., a faulty cell).

To understand them better, consider the example in listing 5.1.
1

2 TEMPORARY_RULES = {PE11_X: [A, B], # X selects A or B (not C or f)

3 PE11_Y: [C, f], # not B or A

4 PE11_Z: [f], # Fixed to f

5 PE22_F: [0, 1, 2, 3, 4]} # f0 to f4 are allowed

6

7 PERMANENT_RULES = { PE11_X: [A, B, C], # Assuming that PE11 is

8 PE11_Y: [A, B, C], # faulty cell and we need

9 PE11_Z: [A, B, C]} # to avoid using it

10



76

11 # The algorithm generates GLOBAL_RULES , automatically , anytime

12 # a change to the TEMPORARY or PERMANENT rules occurs.

13 GLOBAL_RULES = combine(TEMPORARY_RULES , PERMANENT_RULES)

14

15 # combine function results in a rule that satisfies both.

16 # If constraints cannot be resolved , function goes with

17 # PERMANENT_RULES

18

19 # The result will be:

20 # GLOBAL_RULES ={ PE11_X: [A, B],

21 # PE11_Y: [C],

22 # PE11_Z: [A, B, C],

23 # PE22_F: [0, 1, 2, 3, 4]}

24 #

Listing 5.1: GAGA utilizes temporary, permanent, and global rules.

A function that is related to GLOBAL RULES is get rand chromosome, which is described

by listing 5.2. The List is a code structure that is frequently utilized in the proposed

algorithm. List can contain any (same) type of objects. The functions associated with this

class are add, remove and random select, as discussed in listing 5.3.
1

2 # get_rand_chromosome returns a random chromosome value

3 # that does not violate the GLOBAL_RULES.

4 # Assuming:

5 # GLOBAL_RULES ={ PE12_X: [A, B],

6 # PE12_Y: [C],

7 # PE12_Z: [A, B, C],

8 # PE12_F: [0, 1, 2, 3, 4]}

9

10 val=get_rand_chromosome (1, 2) # (1, 2) means PE12

11 # val can be <Z=A, Y=C, X=A, F=0>

12 # but not <Z=A, Y=C, X=A, F=5>

13 # or <Z=A, Y=C, X=C, F=0>

14 # or <Z=A, Y=A, X=A, F=0>

15 # or <Z=f, Y=C, X=A, F=0>

Listing 5.2: Example for the function to generate a random chromosome. Note that
generated chromosomes are GLOBAL RULES-compliant.

1 G=[] # G is an empty list

2

3 # "add" function: adds to the List

4 G.add(g1, fitness) # G is now a list of genomes with g1 in the list

5 G.add(g2, fitness)

6 G.add(g3, fitness)



77

7 G.add(g4, fitness)

8 G.add(g5, fitness)

9 # G=[g1, g2, g3, g4, g5]

10

11 # "remove" function: removes a genome from the List

12 G.remove(g2)

13 # G=[g1, g3, g4, g5]

14

15 # "random_select" function: unbiased random selection

16 g = G.random_select ()

17 # random_select selects one object from the list randomly.

18 # Each object has 25% chance to be selected.

Listing 5.3: The List code structure.

Two concepts need to be described to understand how the GENOME class is working.

The first concept is the dependency vector (DV), which is a vector of bits where each bit

represents whether a gene or chromosome is “active”, meaning that a change to it can affect

the Active-Output (O). A bit is set to 1 if the gene or chromosome is active; otherwise,

it is set to 0. Three levels of dependency can be used, as shown in figure 5.6. They are

described as follows:

1. Static chromosome-level dependency is where knowing the Active-Output is all

that is needed to determine what are the active chromosomes (i.e., cells). In this

option, a bit in the DV represents a chromosome, which means that a genome has a

(R×C)-bit DV. This is the simplest implementation.

2. Dynamic chromosome-level dependency is where chromosomes and the Active-Output

of a genome are needed to allow the algorithm to recursively traverse cells in the

Active-Output datapath using the functions’ dependency defined in table 5.2 along

with taking the predefined inter-cell routing into consideration. In this option, a bit in

the DV represents a chromosome, which means that a genome has a (R×C)-bit DV.

3. Dynamic gene-level dependency is similar to dynamic chromosome-level depen-

dency except that a bit in the DV is now representing a gene (not a chromosome).



78

One cell will have 4 genes (P-bit for Sel f , 2-bit for Selx, 2-bit for Sely, and 2-bit

for Selz), which means that a genome has a (R×C×P)-bit DV. This is the most

sophisticated implementation.

Static chromosome-level 
dependency

Dynamic chromosome-level 
dependency

Dynamic gene-level 
dependency

0001_0111_1111_1111

OR

OR

OR

OR

OR

FLH

OR

OR

OR

OR

OR

OR

OR

SHL

OR

OR

OR

FLH

OR

OR

OR

OR

OR

OR

OR

SHL

OR

OR

OR

OR

OR

OR

OR

OR
OR

OR

OR

OR

O6 O6

0001_0111_1111_0011

SHL
FLH

OR
OR

OR

OR

OR
OR

OR

OR

0000_0000_1101_1111
0101_1101_1111_1111
0000_0011_0011_1111
0000_0000_0000_0011

O6

D
V

Figure 5.6: HexArray can have different levels of dependencies where (1) the static
chromosome-level dependency is unaware of the cells’ functional units dependencies,
(2) the dynamic chromosome-level dependency is aware of the cells’ functional units
dependencies, and (3) the dynamic gene-level dependency is aware of the cells’ functional
units dependencies and the cells’ output ports selection.

For our GAGA implementation, dynamic chromosome-level dependency was used be-

cause it can be performed without involving much complexity.

The second concept is the “boundbox”, which is defined as the smallest rectangular

boundary box around all active cells of a selected genome, as shown in figure 5.7. The

boundbox is represented by 〈(x1,y1)upper−le f t ,(x2,y2)lower−right〉. The “size” function of a

boundbox returns 〈width, length〉.



79

3,1

6,4

Fr
ee

 b
ou

n
d
b
ox

B
ou

n
d
b
ox

1,5

8,8

4x4
8x4

Figure 5.7: Boundbox and free boundbox for a genome of HexArray.

The main code structure used in the GAGA is the GENOME class. This class describes

genomes and all their aspects, including the DV and boundbox. The GENOME class construc-

tor and basic functions are explained by the example in listing 5.4.

1 # Assuming 2x2 HexArray with P=4

2 # genome =<PE22 , PE21 , PE12 , PE11 >

3 # PE = <Sel_z , Sel_y , Sel_x , Sel_f >

4 # PE is a 2+2+2+4= 10-bit number

5

6 # Constructor with no attributes:

7 G1 = GENOME () # Initialize an empty genome where chromosomes

8 # are set to 0s and DV is set to 0

9

10 G1.get_genome ()

11 # prints: 0x0000000000

12

13 G1.set_genome (0 x0000000005)

14 # G1 is now 0x0000000005

15

16 # Constructor with genome and Active -Output attributes:

17 g = 11.10.01.0000 _11 .10.01.0000 _11 .10.01.0000 _11 .10.01.0000

18 o = 0

19 G2 = GENOME(g, o) # Declares a genome (G2) where all functions

20 # are Sel_f =0 (AVG) and Sel_x=B, Sel_y=C

21 # Sel_z=f

22

23 G2.get_genome ()



80

24 # prints: 0xE4390E4390

25

26 # Mutate the lower bit of G2

27 G2.set_genome( G2.get_genome () ^ 0x1 )

28 # G2 is now 0xE4390E4391

29

30 # Chromosome -level functions

31 row=1

32 column =1

33

34 chromosome_value = get_chromosome(row , col)

35 #chromosome_value= 0x391 **Note: chromosome is a 10-bit number

36

37 new_chromosome_value =0xF

38

39 # Update the chromosome of PE11 to 0xF (00.00.00.1111)

40 G2.update_chromosome(new_chromosome_value , row , column)

41 # G2 is now 0xE4390E400F

Listing 5.4: Example for how to declare genome objects and use some functions such as
get/set a genome/chromosome.

A declaration of a genome object will automatically instantiate an internal object that

describes the dependency vector. The DV object is utilized by many functions. An example

to explain some of these functions is provided in listing 5.5.
1 g = 11.10.01.0000 _11 .10.01.0000 _11 .10.01.0000 _11 .10.01.0000

2 o = 0 # The Sel_o =0 means PE11 is the only cell

3 # in the Active -Output datapath

4 G=GENOME(g, o) # Create a genome object

5

6 dv=G.DV.get_value () # Return dependency vector value.

7 # dv=0001 # dv is (RxC -bit value).

8

9 # (row , col)

10 u11 = G.is_used_cell( 1, 1 ) # Returns 1

11 u12 = G.is_used_cell( 1, 2 ) # Returns 0

12 u21 = G.is_used_cell( 2, 1 ) # Returns 0

13 u22 = G.is_used_cell( 2, 2 ) # Returns 0

14

15 num_used_cells = G.num_used_cells ()

16 # num_used_cells = 1

17

18

19 # randomize_unused_cells:

20 # ----------------------

21 # Assigns a random value for any cell (chromosome) that is

22 # not in the Active -Output datapath. Note that generated



81

23 # chromosomes do not violate the GLOBAL_RULES.

24 #

25

26 # G = 11.10.01.0000 _11 .10.01.0000 _11 .10.01.0000 _11 .10.01.0000

27 # DV = <---- 0 ---->|<---- 0 ---->|<---- 0 ---->|<---- 1 ---->

28 G.randomize_unused_cells ()

29 # G = 10.11.10.1001 _01 .10.11.0110 _10 .00.11.1010 _11 .10.01.0000

30 # <-Randomized ->|<-Randomized ->|<-Randomized ->|<- same ->

31

32

33 ExcludeList = [0,1,2,3]

34 idx = G.DV.get_rand_index(ExcludeList)

35 # Returns a random index for bits in cells in use excluding

36 # bit indices in the ExcludeList.

37 # idx can be any of 4, 5, 6, 7, 8, 9 and cannot be any of 0, 1, 2, 3

Listing 5.5: Explaining some basic functions to obtain the DV value, check if a cell is
active, obtain the number of active cells, and obtain an active cell randomly.

The functions discussed thus far are not sufficient for the genome-aware operations.

Listing 5.6 shows an example of handling the boundbox. The merge and shift functions

will be defined and explained in listing 5.7.
1 G1 = GENOME(g1 , o1)

2 dv1=G1.DV.get_value () # --> 0000 _0000_0001_0111

3

4 bb=G1.DV.get_boundbox () # Returns the boundbox for the genome.

5 # The return object is BB-type.

6 # bb=<(1,1), (2,3)>

7

8 fbb=G1.DV.get_free_boundbox () # Returns the largest boundbox around

9 # the free cells. Returned object is

10 # BB -type. fbb=<(3,1), (4,4)>

11

12 # Assuming g2.dv2 = 1111 _1111_0000_0000

13 G1.merge_genome(g2 , o2)

14 dv1=G1.DV.get_value () # dv1 = 1111 _1111_0001_0111

15

16 bb2=G1.DV.get_boundbox () # bb2=<(1,1), (4,4)>

17 fbb2=G1.DV.get_free_boundbox () # fbb2 =<(1,4), (2,4)>

Listing 5.6: Boundbox versus free Boundbox.

1 # Assuming g1.dv = 0000 _0000_1111_1111

2 # Assuming g2.dv = 0000 _0000_0000_1111

3

4 G1=GENOME(g1 , o1)

5 G2=GENOME(g2 , o2)



82

6

7 # Check for intersection by doing bit -wise and (&)

8 intersect=G1.DV.get_value () & G2.DV.get_value ()

9 # if intersect = 0, they do not intersect

10 # if intersect = 1, they do intersect

11

12 # g1 and g2 cannot be merged because active cells intersect.

13 fbb1=G1.DV.get_free_boundbox () # fbb1 =<(3,1), (4,4)>

14 fbb1_size=fbb.size() # Returns <width , length >

15 # fbb1_size: is the largest unused boundbox is 2x4

16

17 bb2=G2.DV.get_boundbox ()

18 bb2_size=bb2.size() # = 1x4

19 # bb2_size: is the boundbox needed for G2.

20

21

22 # Since G1 has unused boundbox of size 2x4 and G2 needs 1x4, merging

23 # G1 and G2 can be done with the shift function

24

25 G2.shift(fbb1) # Shift G2 around to fit in the free boundbox

26 # ** Note that this DV is shifted as well

27

28 g2_shifted = G2.get_value ()

29 dv2_shifted = G2.DV.get_value ()

30

31 # g2.dv = 0000 _0000_0000_1111 (before shifting)

32 # fbb1 = 1111 _1111_0000_0000 i.e., <(3,1), (4,4)>

33 # -------------------

34 # dv2_shifted = 0000 _1111_0000_0000 (after shifting)

35

36 # Combines g2 to G1 based on the used cells defined by dv2_shifted

37 G1.merge_with_dv(g2_shifted , dv2_shifted)

38 # g1.dv = 0000 _0000_1111_1111 (before merging)

39 # dv2_shifted = 0000 _1111_0000_0000

40 # -------------------

41 # G1.dv = 0000 _1111_1111_1111 (after merging)

42

43 # Another way of doing this is by combining g1 to G2.

Listing 5.7: The process of merging two genomes that do not align.

Finally, the last utility function discussed here is select parent, which is used to select

a parent genome from a list of parents. The function initially filters the given list based on

an optional criterion provided by the user. The criterion can be set to select genomes that

have at least min size or at most max size of active cells or active cells fit into a boundbox



83

or can fit after shift operation. Some examples are given below. Second, the function

utilizes a biased selection based on the roulette wheel method [116], which is performed

where the probability of a genome to be selected is proportional to its fitness. In fact,

implementing a selection probability that scales with fitness involved some complexity;

thus, we constructed a simple selection function that scales with the available number of

parents and is biased toward the better ones. The function is defined as follows:

index =
⌊
(rand()×

√
µ )2

⌋
, (5.8)

where rand() is a random floating point number that is normally distributed and smaller

than 1 and µ is the number of available parents to choose from. The function returns a

random index of the parent genome in a list of µ parents, where the genome with the best

fitness is at index 0 and the worst one at index µ−1; an example is shown in figure 5.8.

The method of selecting a parent is described in listing 5.8.

1 # Genomes List

2 GS=[(g1 ,o1), (g2 ,o2), (g3 ,o3), (g4 ,o4), (g5 ,o5)]

3

4 # Format:

5 # g, o = select_parent(<Genomes List >, <filter >)

6

7 # filter is optional and can be inhibited

8 g, o = select_parent(GS) # Returns any of the genomes in the

9 # list according to probabilities

10

11 # filter can be min_size

12 g, o = select_parent(GS , min_size =6) # Returns any genome that

13 # has 6 or more active cells.

14 # Function returns null if

15 # no genome was found.

16

17 # filter can be max_size

18 g, o = select_parent(GS , max_size =6) # Returns any genome that

19 # has 6 or less active cells.

20

21 # filter can be boundbox

22 g, o = select_parent(GS , bb=<(3,1), (4,4) >)



84

23 # Returns any of the genomes that fit in the

24 # given bb without shifting

25

26 # filter can be boundbox size

27 g, o = select_parent(GS , bb_size =1x4) # Returns any genome that

28 # has a width <= 1 AND

29 # a length <= 4

Listing 5.8: The select parent function filters a list and performs a biased selection based
on fitness.

Genome_0
22.3%

Genome_1
9.25%

Genome_2
7.11%

Genome_3
6%

G
en

om
e_4

5.27%

G
en

om
e_

5
4.

78
%

G
en

om
e_

6
4.

38
%Gen

om
e_

7
4.

08
%

Genome_8

3.83%

Genome_9

3.63%

Genome_10

3.45%

Genome_11
3.3%

Genome_123.17%

Genome_133.03%

Genome_14
2.95%

Genom
e_15

2.85%

G
enom

e_16

2.75%

G
en

om
e_17

2.68%

G
en

om
e_18

2.6%

G
en

om
e_19

2.53%

Probability Distribution for Roulette-Wheel Selection for 20 Parents

Figure 5.8: The probability distribution for selecting a genome out of 20 parents. Because
Genome 0 is the parent with the best fitness, it has the highest chance (22.3%) of being
selected. Genome 19 is the one with the worst fitness (compared to others); thus, it has the
lowest chance (2.5%).

In the following subsections, the GAGA operators will be presented, which are genome-

aware constrained selection, genome-aware mutation, and genome-aware crossover, in

addition to the new GA operator, genome-aware pruner. The target of these improvements



85

is to accelerate evolution and increase parallelism without limiting the GA from exploring

the entirety of the search space.

5.4.2 Genome-Aware Constrained (GAC) Selection

GAC is a set of rules (using TEMPORARY RULES) that are assigned by the user or GAGA to

accomplish the following goals:

1. Reduce redundant evaluations: For example, the Selx, Sely, and Selz for PE4,4, as

shown in figure 5.4, should have different selections. In other words, forcing the

signals Selx to select A, Sely to select B, and Selz to select f eliminates redundant

evaluations and reduces the search space by 6 bits.

2. Reduce the genome string length (practically reduce search space): For example, the

two bits needed for Selx of PE1,1 should be fixed to f as other selections will route

an input pixel, not an interesting output. This constraint reduces the search space by

2 bits. However, Selx of PE1,3 can be constrained to be C or f , which further reduces

the search space by 1 bit.

3. Improve probabilities of routing the less-fortunate ports of the array based on statis-

tical analysis, as shown in figure 5.9: For example, O5 and O6, figure 5.4, are forced

to not select A as A has a good chance of being routed through (O3, O4) and (O9,

O10, O14).

4. Support virtual resizing of the systolic array: For example, forcing the cells of the

last row and last column to bypass the outputs of the cells of the second-to-last row

and second-to-last column would virtually make the array one row/column smaller.

The pseudo code for GAC selection is given in algorithm 3.



86

2 Cells, P   0.25

1 Cell, P   0.5

3 Cells, P   0.125

4 Cells, P   0.0625

5 Cells, P   0.03125

6 Cells, P   0.015625 ~_

~_

~_

~_

~_

~_

Figure 5.9: Estimated probability for routing certain functions to the closest array outputs.
The darker the cell is, the lower the chance is for f to reach an output. For example, the
probability value of 0.5 was obtained from the probability of f being routed through X or
Y (0.25+0.25).

5.4.3 Genome-Aware Mutation (GAM)

GAM is an effective mechanism for performing bit mutation. For a selected genome with

a specific Active-Output, the GAGA recursively traverses the Active-Output datapath

and identifies the dependent cells and performs mutation only on these cells. Mutation can

be for MGAM bits, defined by the user. All cells that do not affect the Active-Output are

changed randomly to increase the evolution efficiency. The GAM method is presented in

algorithm 4.

5.4.4 Genome-Aware Crossover (GAX)

GAX is a genetic operator that generates an offspring by combining two or more selected

genomes. Three methods of combining are defined: cascade, interleave, and parallel,



87

Algorithm 3: Pseudo code for genome-aware constrained selection – GAC selection.
Result: GAGA returns a constrained genome (gGAC)

1 gGAC=GENOME()
2 for row← 1 to R do
3 for col← 1 to C do
4 chromosome = get rand chromosome(row, col)
5 gGAC.update chromosome(chromosome, row, col)
6 end
7 end
8 return gGAC

Algorithm 4: Pseudo code for genome-aware mutation – GAM changes MGAM bits
in the Active-Output datapath and randomizes other bits.

Result: GAGA returns a mutated genome (gGAM)
1 gs, os = select parent(Gparents)
2 gGAM =GENOME(gs, os)
3 gGAM.randomize unused cells()
4 excludingList= [ ]
5 for i← 1 to MGAM do
6 bit index= gGAM.DV.get rand index(excludingList)
7 excludingList.add( bit index)
8 gGAM = gGAM

⊕
(1�bit index)

9 end
10 return gGAM

which are summarized in figure 5.10. In all modes, any cell that is not active in any of

the combined genomes receives a random chromosome value.

Cascade mode

In cascade mode the hypothesis is that cascading two (or more) good genomes can yield an

additive improvement. The method is defined as the output of one genome is fed as an input

into another genome. This method clearly requires relatively short genomes1. Algorithm 5

explains the procedure for GAX-Cascade.

1Short genome means a genome with a short active datapath.



88

+ =

+ =

g
1

g
2

random chromosomes

Selected parent (   ) Selected parent (   ) Offspring

+ =

C
a
sc
a
d
e

In
te
rl
e
a
v
e

P
a
ra
ll
e
l

Figure 5.10: GAX modes. (Top) An offspring is generated by cascading genomes, where
one feeds into the other. (Middle) An offspring is generated by interleaving genomes at
the cell level. (Bottom) An offspring is generated by combining genomes in parallel and
inserting some cells in-between with randomly selected functions.



89

Algorithm 5: Pseudo code for genome-aware crossover running in cascade mode –
GAX-Cascade.

Input: SHORT GENOME := R×C
4

Output: GGAX : a recombined genome
1 SGparents= f ilter parents(Gparents, max size =SHORT GENOME)
2 gs, os = select parent(SGparents)
3 GGAX =GENOME(gs, os)
4 GGAX .randomize unused cells()
5 BB f ree=GGAX .DV.get f ree boundbox()
6 Gcandidates = f ilter genomes(SGparents, bb=BB f ree)
7 if (Gcandidates = [ ]) then
8 return GGAX . No genome fits in the remaining BB
9 end

10 gi, oi = select parent(Gcandidates)
11 Gi =GENOME(gi, oi)
12 Gi.shi f t(BB f ree)
13 gshi f ted =Gi.get value()
14 dvshi f ted =Gi.DV.get value()
15 GGAX .merge with dv(gshi f ted,dvshi f ted)
16 go to 5 . Try more cascading

Interleave mode

In interleave mode the theory is that merging chromosomes of good genomes can result

in an improved hybrid genome. The method is a simple interleaving of cell-level chro-

mosomes of two or more selected genomes. To allow effective cell interleaving, it is

recommended to use genomes with more than R×C
4 cells being active. Algorithm 6 shows

the strategy for GAX-Interleave.

Parallel mode

Finally, in parallel mode the operator combines the genomes in parallel while leaving some

cells in-between. These cells, which have random chromosomes, will have a chance to

incorporate intermediate cell outputs of the merged genomes to create better offspring. The



90

Algorithm 6: Pseudo code for genome-aware crossover running in interleave mode –
GAX-Interleave.

Input: LONG GENOME := R×C
4

THRESHOLD := R×C
Output: GGAX : a recombined genome

1 LGparents= f ilter parents(Gparents, min size =LONG GENOME)
2 k = 0
3 used cells = 0
4 while (used cells 6 THRESHOLD) do
5 k++
6 gk, ok = select parent(LGparents)
7 Gk =GENOME(gk,ok)
8 used cells +=Gk.num used cells
9 end

10 GGAX =GENOME()
11 GGAX .randomize unused cells()
12 for row← 1 to R do
13 for col← 1 to C do
14 Candidate Chromosomes = [ ]
15 for i← 1 to k do
16 if Gi.is used cell(row, col) then
17 c=Gi.get chromosome(row, col)
18 Candidate Chromosomes.add(c)
19 end
20 end
21 if (Candidate Chromosomes 6= [ ]) then
22 csel = random select(Candidate Chromosomes)
23 GGAX .update chromosome(csel, row, col)
24 end
25 end
26 end
27 return GGAX



91

recommended genome size for this method is to not be too short or too long. Algorithm 7

provides the methodology for GAX-Parallel.

Algorithm 7: Pseudo code for genome-aware crossover running in parallel mode –
GAX-Parallel.

Input: LONG GENOME := R×C
4

THRESHOLD := 3×R×C
4

Output: GGAX : a recombined genome
1 LGparents= f ilter parents(Gparents, min size =LONG GENOME)
2 gs,os = select parent(LGparents, max size =THRESHOLD)
3 GGAX =GENOME(gs, os)
4 GGAX .randomize unused cells()
5 while (GGAX .num used cells < THRESHOLD) do
6 BB f ree=GGAX .DV.get f ree boundbox()
7 Gi, Oi=select parent(LGparents, bb=BB f ree)
8 GGAX .merge genome(Gi, Oi)
9 end

10 return GGAX

5.4.5 Genome-Aware Pruner (GAP)

GAP is a new operator that can alter the genome structure without affecting its functionality.

It is defined as a mechanism of generating different genomes with identical functionality;

note that for a selected genome, only one output is active and altering other outputs has

no effect. GAP is unique to HexArray as it is an artifact of HexArray being an array of

identical cells and having flexible routing that can provide more than one route to a targeted

function.

GAP can be used as a step in other genetic operations, such as shifting genomes for

GAX, where in this case the shifting does not affect the genome output, in contrast to what

was proposed earlier where cells are shifted while array inputs are not. Another use of



92

GAP is to reduce power consumption by shutting off2 non-used functional units. Finally,

the operator can be used to condense genomes by eliminating chromosomes of bypassed

cells.

5.5 Overall System Workflow

In this section, the overall workflow of evolution in HexArray will be presented first,

followed by the full sequence of evaluating a genome. Algorithm 8 presents the GAGA

flow control at a higher level; all used functions and genetic operations were described

earlier. GAGA supports elitism, in addition to other common genetic operations. Elitism

is supported by simply allowing the all-time-best genomes to compete with children of the

current generation to create new parents for the next generation. Since GAX operations

have restrictions on genomes’ length, they can potentially fail to generate offspring. In

these cases, GAGA uses GAC selection to generate random genomes instead. All subpro-

cesses of the GAGA algorithm are running on the PS as software, except the “evaluate”

function.

“Evaluate” is the function responsible for evaluating genomes, that is, “returning a

fitness value for a given genome”. The function is executed in hardware, and the execution

process is identical for all genomes regardless of how they are generated or their content.

In this sense, studying the workflow of a single genome is adequate for understanding the

overall system behavior.

To describe the process of evaluating a genome, the system initial status and spec-

ifications need to be outlined first. A high-level anatomy of the HexArray platform is

shown in figure 5.11, where a 4× 4 HexArray is implemented in hardware, with 15 AICs

2Shutting off a functional unit is done by sending a blank partial bitstream to clear the dynamic partition
content.



93

Algorithm 8: Pseudo code for genome-aware genetic algorithm (GAGA).
Result: GAGA returns the fittest genome

1 gGAC = gGAM = gGAX C = gGAX I = gGAX P = null
2 GElite = [ ]
3 generation = 0
4 while not termination condition do
5 if generation=0 then
6 for i← 1 to population do
7 gGACi = call GAC selection . as described in algorithm 3
8 FGACi = Evaluate(gGACi)

9 end
10 else
11 for i← 1 to (population×m rate) do
12 gGAMi = call GAM . as described in algorithm 4
13 FGAMi = Evaluate(gGAMi)

14 end
15 for i← 1 to (population×c rate/3) do
16 gGAX Ci = call GAXCascade . as described in algorithm 5
17 FGAX Ci = Evaluate(gGAX Ci)
18 gGAX Ii = call GAXInterleave . as described in algorithm 6
19 FGAX Ii = Evaluate(gGAX Ii)
20 gGAX Pi = call GAXParallel . as described in algorithm 7
21 FGAX Pi = Evaluate(gGAX Pi)

22 end
23 for i← 1 to (population×(1− (m rate+ c rate))) do
24 gGACi = call GAC selection
25 FGACi = Evaluate(gGACi)

26 end
27 end
28 Gchildren⇐ GElite +[gGACi . . . , gGAMi . . . , gGAX Ci . . . , gGAX Ii . . . , gGAX Pi . . . ]
29 Gparents⇐ [ ]
30 for i← 1 to parents do
31 gs = get f ittest(Gchildren)
32 Gparents.add(gs)
33 Gchildren.remove(gs)

34 end
35 GElite⇐ Gparents
36 generation++

37 end



94

GAGA

AXI
INTR

DMA

PCAP

DATA WINDOW 
CONTROLLER

f2f1f0
PS

: Array Input Controller
: Array Output Controller

I0 

O0

PL

A
B
C

A
B

C

Sely

f

A
B

C

Selxf

ABC

Selz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A
B

C

Selxf

ABC

Selz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A
B

C

Selxf

ABC

Selz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A
B

C

Selxf

ABC

Selz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A
B

C

Selxf

ABC

Selz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A
B

C

Selxf

ABC

Selz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A
B

C

Selxf

ABC

Selz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A
B

C

Selxf

ABC

Selz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A
B

C

Selxf

ABC

Selz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A
B

C

Selxf

ABC

Selz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A
B

C

Selxf

ABC

Selz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A
B

C

Selxf

ABC

Selz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A
B

C

Selxf

ABC

Selz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A
B

C

Selxf

ABC

Selz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A
B

C

Selxf

ABC

Selz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A
B

C

Selxf

ABC

Selz

f

A

B

C

f func

I11 

I0 

I2 

I4 

I6 

I9 

I13 

I12 I14 

I1 

I3 

I5 

I7 

I8 I10 

O0

O2

O3

O5

O7

O4

O6

O10O1

O11

O12 O14

O13

O8

O9

A_GENOMEI_GENOME
Genome Register

PL CFG MEM

Systolic Array

DPRDPR

VRC

AXI
INTR

Figure 5.11: HexArray platform with HexArray and GAGA. HexArray, array input
controllers, array output controllers, data widow controller, and genome register are im-
plemented on the FPGA programmable logic, while the GAGA is implemented on the
processor.



95

and 15 AOCs. All functional units of the HexCells (16 of them) are initially blank (not

programmed to any function) or programmed for a previous genome. Partial bitstreams

are loaded into memory; assuming that P = 4, there will be 16 of them in addition to the

blank bitstream. Buffers and counters of all units are assumed to be cleared initially. The

GAGA is running on the PS. It is generating the next genome in parallel with evaluating

the previous one. Training and reference images are selected by the user. PS creates and

loads in memory a stream of pre-formatted data, including a sliding 8-byte vertical window

of data from both images and the middle pixel coordinates. In other words, for the pixel at

(x,y), the vertical window is 〈 Train(x−2,y), Train(x−1,y), Train(x,y), Train(x+1,y), Train(x+2,y),

Reference(x,y), x, and y 〉, as shown in figure 5.3. PS sends an AXI transaction to all AOCs

to set the image size (e.g., for a 256×256 image, expected count=65,536). PS sends an

AXI transaction to the data window controller to inform it of the image size and enable it

to get ready to pass data to the array. However, data are not sent to this module yet.

Now, assume that gi = 〈I GENOME, A GENOME〉 need to be evaluated. PS initializes the

DMA for future transactions. PS determines the difference between the current state of the

array functional units and what is defined in A GENOME. For those different functional units,

PS sends DPR transactions through PCAP to reprogram them. Note that while a PCAP

transaction is executing, the PS is free. PS sends an AXI transaction to set the genome

register using I GENOME and A GENOME. The array routing is now completed as AICs and

HexCell output ports are configured by A GENOME. Upon the completion of the DPR, PS

requests the DMA to send the stream of pre-formatted data to the data window controller.

The data window controller stacks the 8-byte vertical data window into shift registers

to create an 8x5-byte data window. For every pixel in the training image, this unit sends a

ready signal to all AICs every time that a data window is formatted. AICs of boundary

HexCells select a pixel from the data window based on the predefined I GENOME and



96

inform the functional cell that data are available. When all data needed by a functional

cell are ready, the execution is started, and the resulting data are sent to the next HexCell

downstream. The data propagation is shown in figure 5.12.

1

2

3

3

5

6

7

9
13

14

16
17

18

19

12
11

10

8

4

4

5

4

5

6

6

6
7

7

7

7

8

8

8

8

9

9

9

9

10

10

10

10

10

11

11

11

11

12

12

12

12

13

13

13

13

14

14

14

15

15

15

16

16
17

Figure 5.12: Data propagation in HexArray, where a pixel is processed by PE1,1 at time 1
and by PE8,8 at time 19.

An AOC, connected to every array output, is calculating the fitness by accumulating the

absolute difference between the generated pixel and the reference pixel, which is provided

by the data window controller as part of the data window. As the AOC executes the evolved

pixels, it also counts them. After the last pixel in the image, the AOC counter will match

the “expected count”, resulting in pushing the fitness value into an FIFO and triggering the

PS. On a trigger, the PS issues an AXI transaction to read fitness values. At this point, the

evaluation is completed and the GAGA can perform evolution.



97

5.6 Additional Features

5.6.1 A Novel Fault Detection and Tolerance Mechanism

The routing flexibility and parallelism features in HexArray are exploited to enable a fault

detection and tolerance mechanism. The targeted fault type is physical damage to the

fabric of a dynamic partition. In other words, the fault is a persistent failure in the HexCell

functional unit and not in the static circuit. This is a reasonable assumption because the

static circuit of a HexCell is typically considerably smaller than the dynamic functional

unit.

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

I11 

I0 

I2 

I4 

I6 

I9 

I13 

I12 I14 

I1 

I3 

I5 

I7 

I8 I10 
O0

O2

O3

O5

O7

O4

O6

O10O1

O11

O12 O14

O13

O8

O9

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

f func

PE11

PE21

PE31

PE41

PE13

PE23

PE33

PE43

PE14

PE24

PE34

PE44

PE12

PE22

PE32

PE42

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

A
B
C

A
B

C

Sely

f

A

B
C

Selx
f

ABC

S
elz

f

A

B

C

f func

I11 

I0 

I2 

I4 

I6 

I9 

I13 

I12 I14 

I1 

I3 

I5 

I7 

I8 I10 
O0

O2

O3

O5

O7

O4

O6

O10O1

O11

O12 O14

O13

O8

O9

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

f func

PE11

PE21

PE31

PE41

PE13

PE23

PE33

PE43

PE14

PE24

PE34

PE44

PE12

PE22

PE32

PE42

(a) Single-Cell Fault (b) Multi-Cell Fault (c) O2 Dependency Tree 

XNR
PE13

I9
XNR
PE12

I13

I12

XNR
PE11

I0
I11 I1

XNR
PE21

XNR
PE11

I0 I1I11

I2

I3

O2

Figure 5.13: (a) Single-cell fault results in unexpected outputs. (b) Multi-cell fault results
in unexpected outputs. (c) Example of an output dependency tree, where any fault in PE1,1,
PE1,2, PE2,1, and PE1,3 will affect the output.

The proposed fault detection mechanism is simply to verify that the system generates

the expected data using a predefined genome. This genome is designed such that its outputs

are functionally dependent on all functional units in a way that any change to the behavior

of a (defective) cell will affect all outputs downstream and yield unexpected results on

these outputs, as shown in figure 5.13.a. It is critical to engineer this genome such that



98

any deviation by the functions in the datapath is reflected in the output. An example of

the dependency tree for O2 is shown in figure 5.13.c; the suggested function is XNR here.

This mechanism works perfectly if there is one faulty cell. However, depending on this

technique alone is not sufficient because the output of the array with two faulty cells may

look like that resulting from one faulty cell, as shown in figure 5.13.b.

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR XNR

XNR XNR

(1) (2)

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

XNR

0x01

0x40

0x20

0x10

0x08

0x04

0x02

0x80

0x12 0x21

0x11 0x18

0x22 0x24

0x14

0xEE

0xDD

0xD1

0x11

0xD1

0xE2

0xE8

(3)(1) (2) (3)

(4) (5) (6)

Figure 5.14: Example for fault detection mechanism using row by row testing where the
array output of a predefined genome is checked against a pre-calculated output. If the
outputs are matching, then the circuit is fault-free. If the outputs are not matching, then the
circuit has one or more faulty cells. A row by row test is needed to determine which cells
are faulty.



99

To expand the fault detection mechanism to detect multi-cell faults, an extensive cell

by cell testing needs to be performed; an example for that is presented in figure 5.14 with

6 steps. A suitable test case to achieve this concept is that in which all cells have the same

chromosomes equal to 〈Selz = f , Sely = f , Selx = f , Sel f unc =XNR 〉), and the input data

of every cell port is unique, as shown in steps (1) and (2), respectively. The PS expects

specific data on every output port. If one or more outputs are not matching, then a fault

is detected. For example, at step (2), five cells are suspected. To determine which one (or

more) is faulty, a row by row testing (i.e., one row is active and all others are bypassed)

will be performed, as shown in steps (3), (4), (5), and (6). Since at step (5) the third output

is failing, PE3,3 is the faulty cell.

The fault tolerance mechanism also exploits the routing flexibility feature of HexArray

to route around the faulty cell. The algorithm updates its PERMANENT RULES to enforce

this routing. In the previous example, to recover from that fault, the following rules are

added to PERMANENT RULES: 〈Selz = [A,B,C], Sely = [A,B,C], and Selx = [A,B,C] 〉PE3,3 .

In the evolution process, the selected genomes that use the faulty cell will be re-structured

by the GAGA automatically as the utility functions work with the GLOBAL RULES in place.

Note that in some cases, the defect does not affect all input combinations of a functional

unit, for example, a function that is partially working. In this case, the amount of test cases

needs to provide a full coverage of all bit permutations. This is clearly a trade-off between

speed and reliability that the user/application can define. An overall flowchart of the fault

detection and tolerance mechanism is presented in figure 5.15.

5.6.2 A Novel Evolve-while-Reconfigure Mechanism

Another feature that is gained by the flexibility offered by HexArray is evolving while some

cells are under DPR. When the DPR process is active, the array is not ready to be used,



100

F
a
u
l
t
 

T
o
l
e
r
a
n
c
e

START

EvaluateEND: No fault

P
A
S
S

ROW=1

FAIL

Set SELX=A, SELY=A, SELZ=F if Cell ϵ ROW

Set SELX=A, SELY=A, SELZ=A otherwise  

Evaluate

Reconfigure all cells’ functions to F=XOR

Set SELX=F, SELY=F, SELZ=F for all cells

For failing outputs, identify faulty cells

FAIL

Next ROW PASS

Valid Row

END

No More

Rows

Add new constraints to PERMANENT_RULES so that 

SELX, SELY, and SELZ can NOT select F

Figure 5.15: Flowchart for the proposed fault detection and tolerance mechanism.



101

or at least the cells that are being programmed cannot be used. Therefore, if these cells

are bypassed, the array can be used. The concept of evolve-while-reconfigure is that rather

than leaving the array idle while reconfiguration is in process, a genome (different than the

target one) can be evaluated.

Because the time for evaluating a genome is longer than the time for reconfiguring a

cell (e.g., 1 to 10), GAGA sets up the TEMPORARY RULES to bypass a group of cells under

reconfiguration, as shown in figure 5.16. Note that not all cells need to be reconfigured

because some functions do not change between two genomes and others are not used (the

case where none of the cell’s ports are routing f ). For an 8×8 HexArray implemented on

Zynq assuming a 1 to 10 time ratio between a single cell DPR and a genome evaluation,

GAGA can theoretically evaluate 7 genomes before evaluating the targeted one. Note that

no time penalty is attached to this mechanism.

...

P
E
1
1

P
E
1
2

P
E
1
3

P
E
2
7

P
E
2
8

Evaluation1

...

P
E
3
1

P
E
3
2

P
E
3
3

P
E
4
7

P
E
4
8

...

P
E
5
1

P
E
5
2

P
E
5
3

P
E
6
7

P
E
6
8

...
P
E
7
1

P
E
7
2

P
E
7
3

P
E
8
7

P
E
8
8

Evaluation2 Evaluation3 Evaluation4

Figure 5.16: Running on “evolve-while-reconfigure” mode, where the evaluation occurs
while some of the cells are being programmed (shown in dark gray).



102

5.7 HexArray Versus State-of-the-Art Systolic Array

HexArrays have many advantages over the traditional Cartesian systolic arrays (presented

in [30] and other publications [173, 3]), such as having a hybrid reconfiguration scheme,

more inputs/outputs, higher parallelism, higher throughput, and can evolve to higher-order

functions (i.e., has the potential to solve more complex problems). Cells of the Cartesian

systolic arrays are called RectCells for short, and table 5.3 summarizes the properties of

HexArray in comparison with Cartesian array with RectCells.

Table 5.3: HexArray in comparison to Cartesian Array with RectCell.

Property Cartesian Array HexArray
Probability of DPR 100% 100× P

P+6%
Probability of VRC 0% 100× 6

P+6%
Input-ports count (R+C) 2× (R+C)−1

Output-ports count 1 2× (R+C)−1
Neighboring Cells 4 6
Data Propagation E,S NE,SE,S

Shortest Data Path C 1
Longest Data Path (R+C)−1 (R+C)−1+

⌊C
2

⌋
Degree of Polynomial 1

3e1.35R 1
6e1.95R

Array Throughput fsystem fsystem× [(R+C)− 1
2 ]

Cell Latency(cycles) 1 2

5.7.1 Degree of Polynomial

The algebraic term “degree of a polynomial” can be described as the highest order of

a function, and it can represent, in our scope, the maximum number of functions and

combinations that an array can yield. To simplify the following calculations, symmetric

arrays can be assumed (where R = C = L). How the degree of the polynomial grows in

both arrays is shown in figure 5.17.



103

f 1 f 1

f 2

f 3

f 4

f 4

f 10

f 18

f 28

f 5

f 20

f 49

f 96

f 26

f 96

f 241

f 503

f 2 f 3 f 4

f 2 f 5 f 9 f 14

f 3 f 9 f 19 f 34

f 4 f 14 f 34 f 69

Figure 5.17: Degree of polynomial of HexArray is higher than Cartesian arrays.

The exponential fit of the degree of polynomial for both arrays is plotted in figure 5.18.

When solving these two equations, the results show that a 10×10 RectCell array is func-

tionally equivalent to a 7×7 HexCell array. This result is somewhat expected because of

the three-operator functions and the added output multiplexers.

5.8 Summary

The contributions of this dissertation are presented in this chapter. The discussion of

the HexArray simulator, which served initially as a proof of concept, serves as a high-

level description of the HexArray platform. The simulator, which is a software model,

is functionally equivalent to the proposed hardware model. However, as evolution is a

slow process, the software model can not achieve acceptable performance and a hardware

module is needed. The hardware implementation can boost the speed by more than 1000×.

The proposed system includes a novel reconfigurable hardware core and an enhanced

genetic algorithm.



104

1 2 3 4 5 6
5

1

2

5

10

2

5

100

2

5

1000

2

5

10k

2

Exponential Trendlines for Degree of Polynomial of HexCell and RectCell Arrays

Array Size

D
eg

re
e

of
Po

ly
no

m
ia

l

RectCell Array
HexCell Array
RectCell Array - fit
HexCell Array - fit

R 2  = 0.9998
f(x) = 0.3*exp(1.35*x)

R 2  = 1.000
f(x) = 0 + 0.17*exp(1.95*x)

Figure 5.18: Fitting the degree of polynomial of HexArray and state-of-the-art systolic
array.

The reconfigurable hardware core is a systolic array, called HexArray, which is con-

structed using a new processing element called HexCell. HexCell is a virtual hexagonal

cell with three buffered input ports, three output ports, and a functional unit. The output

ports are data selectors that route one of the input ports or the output of the functional

unit. The functional unit is built on a dynamic partition that can be programmed to realize

any function from a predefined function set. The hardware representation of the cell is

called the phenotype of the cell, while the logical representation of it is the genotype, a

string of bits in this case. The genotype of HexCell is a (P+6)-bit chromosome with four

genes, three 2-bit genes (for output port selection signals) and a P-bit gene (for selecting

the function used in the functional unit). The output port genes reflect a VRC process,

while the functional unit gene reflects a DPR process. An R×C HexArray, which is a

collection of cells (chromosomes), is represented logically by an (R×C× (P+ 6))-bit

genome. In addition to the systolic array itself, HexArray requires other modules; these are



105

(1) data window controller responsible for “systoling” input data into the array, (2) genome

register responsible for storing the current genome data, (3) AICs responsible for selecting

a specific pixel in a window of pixels around the target pixel, and (4) AOCs for “sinking”

the generated data and measuring the fitness.

The enhanced genetic algorithm is a genome-aware genetic algorithm. GAGA has

a library of low-level functions used to achieve higher-level operations. The algorithm

performs context-aware genetic operations; these are GAC selection, GAM, and GAX.

GAC selection is an operator that replaces the “totally-random” genome generation in the

canonical GAs with a mechanism that constrains the randomness in a way that does not

limit the ability of the GA from searching the entire solution space. GAM is a mechanism

to limit mutation to the active chromosomes of a genome. GAX is a chromosome-level

crossover that has three modes of operation: (1) cascade, which allows genome outputs

to feed into another genome input; (2) interleave, which allows a random swapping at

the chromosome level; and (3) parallel, which merges genomes in a way that permits

in-between cells to interact with them. Elitism is achieved by the parent selection process

as it allows all genomes to compete for the parents’ “seats” in the next generation. GAP

is a new operator that can condense genomes to save power by turning off functional units

that are not in use.

Additional features are enabled by the new architecture; these are the fault detection/-

tolerance mechanism and evolve-while-reconfigure mechanism. Fault detection is achieved

by testing the array using a known test set (genome/output); if the produced data are

not expected, then one or more faulty cells exist and a row by row testing needs to be

performed. This is achieved by utilizing the flexible routing of HexArray to bypass other

rows. Fault tolerance is simply achieved by adding a constraint to ban the use of the faulty

cells; GAGA’s functions work under these rules.



106

The concept of evolve-while-reconfigure is that a genome that has some of its HexCells

bypassed is still worth evaluating. Thus, cells that are under DPR are bypassed, and the

resulting genome is evaluated concurrently.

The last part of this chapter provides a comparison between HexArray and the state-

of-the-art systolic array. HexArray has many advantages, including having (1) more inputs

and outputs, (2) a hybrid reconfiguration scheme, (3) wider data propagation, (4) variable

datapath (e.g., variable search space size), (5) higher throughput, and (6) higher degree of

polynomial (e.g., has the potential to solve harder problems).



107

CHAPTER 6

EVALUATIONS AND IMPLEMENTATION ANALYSIS

6.1 Introduction

In this chapter, a set of experiments have been designed and conducted to validate certain

assumptions about the proposed platform. These experiments were designed to achieve the

following:

1. Demonstrate the efficiency of the new HexArray hardware architecture.

2. Demonstrate the effectiveness of the genome-aware genetic operators.

3. Demonstrate the adaptive behavior of the system.

4. Demonstrate the performance of the overall system.

5. Demonstrate the ability of the system to evolve autonomously.

The discussions in the next section are limited to the acceleration of the evolution con-

vergence; that is, for a fixed number of genomes, what is the best fitness obtained? The

implementation, time analysis, and resource utilization of the system will be discussed in

section 6.3.



108

6.2 Evolution Speed Evaluations

For the evaluations, training and reference images with a variety of noise types and feature

extraction types were used. Appendix A includes all image groups used in the experiments.

All images are in gray-scale format and 256×256 pixels in size. The “Group Name” is used

to uniquely address certain training sets.

In most of the following experiments, unless otherwise stated, an 8×8 HexArray was

used, which was implemented in hardware. The array had 31 outputs, where each was fed

into an AOC implemented in hardware to calculate the fitness value online. A normalized

MAE fitness function was used, which is described as follows:

MAENorm =

(
1

WL

m=W

∑
m=1

n=L

∑
n=1
|Out(m,n)−Re f (m,n)|

)
× 1

MAEInit
, (6.1)

where W and L are the image width and length, respectively; Re f (m,n) is the reference

pixel; Out(m,n) is the evolved output pixel; and MAEInit is the initial fitness value (mean

absolute error for the training image). MAENorm equals 1.000 for an evolved image with

no improvement (e.g., evolved image = training image), and it equals 0.000 for an evolved

image that matches the reference image. Clearly, the smaller the fitness value is, the better

the output is. For all collected data points, three significant figures were considered. Unless

otherwise stated, most of the experiments used 5 image groups, as shown in table 6.1.

Table 6.1: A collection of image groups used in the experiments.

Group Name Training Image Reference Image
S&P 25% 25% impulsive noise Original image (without noise)
S&P 10% 10% impulsive noise Original image

EdgeDetect Original image Laplacian of Gaussian filter
Thresholding Original image Simple thresholding filter

Gaussian Gaussian noise Original image



109

Seven experiments were conducted and will be described in the following subsections.

Each experiment was repeated multiple times to increase confidence and allow statistical

analysis. For each experiment, we collected the best (minimum) solution of each run (it-

eration) and plotted them using statistical box plots [174] to visualize the data distribution.

For comparisons between two or more data groups, the median fitness and the best fitness

were mainly used.

6.2.1 Experiment 1: HexArray Outperforms State-of-the-Art Systolic Array

Evolution was expected to be accelerated using HexArray. This expectation was due to

three reasons (features) in the new architecture: routing flexibility offered by the HexCells,

improved parallelism and “wider” data propagation offered by the HexArray architecture.

This experiment was designed to explore the acceleration achieved by HexArray over the

state-of-the-art systolic array (the traditional Cartesian array of RectCells) proposed by

Sekanina et al. [30]. To understand and assess the effect of each of HexArray’s features

mentioned earlier, the experiment was extended by improving the routing flexibility and

parallelism of the Cartesian arrays. The wide data propagation feature, however, is a unique

feature of HexArray and could not be modeled on Cartesian arrays.

Hypotheses

1. HexArray can evolve faster than a traditional Cartesian array.

2. HexArray can evolve faster than a Cartesian array with modified RectCells (with

flexible output ports).

3. HexArray can evolve faster than a traditional Cartesian array with improved paral-

lelism.



110

4. HexArray can evolve faster than a Cartesian array with modified RectCells (with

flexible output ports) and improved parallelism.

 f  func
A

B

Selx

A

B
f

S
ely

ABf

A

B

 f  func
A

B

Selx

A

B
f

S
ely

ABf

A

B

 f  func
A

B

Selx

A

B
f

S
ely

ABf

A

B

 f  func
A

B

Selx

A

B
f

S
ely

ABf

A

B

 I8

 f  func
A

B

Selx

A

B
f

S
ely

ABf

A

B

 f  func
A

B

Selx

A

B
f

S
ely

ABf

A

B

 f  func
A

B

Selx

A

B
f

S
ely

ABf

A

B

 f  func
A

B

Selx

A

B
f

S
ely

ABf

A

B

 I9

 f  func
A

B

Selx

A

B
f

S
ely

ABf

A

B  f  func
A

B

Selx

A

B
f

S
ely

ABf

A

B

ffunc
A

B

Selx

A

B
f

S
ely

ABf

A

B

 f  func
A

B

Selx

A

B
f

S
ely

ABf

A

B

 f  func
A

B

Selx

A

B
f

S
ely

ABf

A

B

 f  func
A

B

Selx

A

B
f

S
ely

ABf

A

B

 I8

ffunc
A

B

Selx

A

B
f

S
ely

ABf

A

B

 f  func
A

B

Selx

A

B
f

S
ely

ABf

A

B

 f  func
A

B

Selx

A

B
f

S
ely

ABf

A

B

 f  func
A

B

Selx

A

B
f

S
ely

ABf

A

B

 I9

 f  func
A

B

Selx

A

B
f

S
ely

ABf

A

B  f  func
A

B

Selx

A

B
f

S
ely

ABf

A

B

O

Selo

O
0

O
1

O
2

O
3

O
4

O
0

O
1

O
2

O
3

O
4

O
0

O
1

O
2

O
3

O
4

O
0

O
1

O
2

O
3

O
4

(a) RectCell (b) RectCell+M (c) RectCell+P (d) RectCell+MP 

Figure 6.1: (a) A Cartesian array constructed using classical RectCells. One output is
evaluated per genome (based on SelO), and a cell functional output is routed to the E and
S ports. (b) A Cartesian array constructed using “modified” RectCells, where an output
multiplexer has been added to every cell output to select from the N port, W port or the
functional unit output. (c) and (d) are similar to (a) and (b), respectively, but with evaluating
five outputs per one genome.

Experimental Setup

The experiment was conducted using 5 image sets selected from the library of data sets in

table 6.1. For each image group, using a 3×3 window size, we evaluated 1000 randomly

generated genomes and selected the best fitness obtained. We repeated the process 100

times.

The experiment was conducted on the following hardware architectures:



111

1. 5×5 Cartesian array with traditional RectCells (figure 6.1.a, called RectCell).

2. 5×5 Cartesian array with modified RectCells (figure 6.1.b, called RectCell+M).

3. 5×5 Cartesian array with traditional RectCells and improved parallelism (figure 6.1.c,

called RectCell+P).

4. 5×5 Cartesian array with modified RectCells and improved parallelism (figure 6.1.d,

called RectCell+MP).

5. 5×5 HexArray.

Results

For each image group and each hardware architecture, the best fitness of the generated

solutions (filters) for each iteration was collected, resulting in 100 data points per image

group per hardware architecture. For these data points, considering their normalized fitness

values described earlier, the calculated median and best fitness for all combinations of

image groups and hardware architectures are summarized in table 6.2. The box plot for the

collected data is shown in figure 6.2.

Discussion

As shown in figure 6.2, the median fitness for the solutions generated by HexArray were

always better than those generated by the RectCell array. The best solutions generated

by HexArray were also better than those generated by RectCell in most image groups.

For the “Thresholding” image group, the best fitness obtained by HexArray was 0.046

higher (worse) than RectCell’s best fitness. This was a small difference that can be ignored,

particularly since the data distribution indicated that RectCell’s best fitness was an outlier.



112

Table 6.2: Summary of the best and median fitness values collected for evaluation of
Cartesian arrays based on traditional RectCells and modified RectCells and HexArray.

RectCell RectCell+P RectCell+M RectCell+MP HexArray
Median Fitness

S&P 25% 0.768 0.678 0.744 0.678 0.669
S&P 10% 0.853 0.69 0.818 0.698 0.643

EdgeDetect 0.536 0.514 0.545 0.538 0.525
Thresholding 0.556 0.377 0.619 0.575 0.535

Gaussian 0.994 0.953 0.979 0.934 0.809
Best (min) Fitness

S&P 25% 0.613 0.615 0.583 0.481 0.467
S&P 10% 0.514 0.566 0.582 0.546 0.459

EdgeDetect 0.495 0.486 0.492 0.481 0.181
Thresholding 0.208 0.133 0.387 0.217 0.254

Gaussian 0.919 0.819 0.786 0.767 0.747

Another method to validate that it was an outlier is to consider the second-best solution

in both arrays and verify that RectCell is still outperforming HexArray. The second-best

solutions were similar for both arrays, which indicates that we can ignore this case.

A 5×5 RectCell array can have 2100 genomes (25 cells with 4-bit chromosomes) while

2250 (25 cells with 10-bit chromosomes) for HexArray, which is a considerable size dif-

ference between the two search spaces that could slow evolution. However, the evolution

was faster using HexArray. This result may appear unexpected, but it can be explained as

follows. (1) Although the search space was increased, the number of good solutions was

also increased. (2) HexArray has multiple outputs (19 outputs for 5×5 HexArray), where

each output has a search space with a specific size (as shown in figure 6.3). In general, the

HexArray architecture outperforms the state-of-the-art systolic array.

To explore the effect of the routing flexibility on RectCell and determine whether it is the

one feature that could bridge the gap, we conducted the experiment using the RectCell+M

array, as shown in figure 6.2.b. For 60% of the image groups, RectCell+M reported better



113

Figure 6.2: Evolution is accelerated by the HexArray architecture in comparison to Carte-
sian arrays with traditional RectCells and with modified RectCells. Adding parallelism to
the Cartesian arrays appears to improve the quality of generated solutions more than adding
the output multiplexers.

best and median fitnesses than RectCell, which indicated that the improvement was not

significant. This might be due to the lack of parallelism and/or the reduced probability of

routing the cells’ functional outputs since the output port could select data from A, B, or

f , which means that each has a 1
3 chance of being selected. Therefore, the probability of

bypassing the cell’s functional output is 2
3 , which resulted in reducing the complexity of

the generated solutions. For example, consider the case where the output selection of a

genome is 0 (e.g., SelO = 0, as shown in figure 6.2.b); then, the probability of routing the

“raw” input data (I9) directly to the output will be 1
3 , which is high for a not interesting

solution. Additionally, for the same example with SelO = 0, if the problem required a

solution with 5 functional units (i.e., the degree of polynomial=5), then the probability of

satisfying that would be very low ( 1
35 = 0.004). In general, adding routing flexibility to

RectCells contributed to a moderate acceleration of the evolution process.



114

24

230 2122

226

278
278

266

2168

2168

266

2112

2158

2158

2196

2196

2214

2214

2214

Search Space 

2112

Figure 6.3: HexArray has multiple (different sizes) search spaces. The highlighted output
(O7) has a search space size of 2112.

To evaluate the effect of improving parallelism, we tested the evolution process using

RectCell+P and RectCell+MP arrays. This modification resulted in better solutions for

almost all the cases. This result was expected, because five outputs per genome were

evaluated rather than one. In general, parallelism can consistently improve the evolved

solutions.

HexArray reported improved best solutions in 85% of the cases and improved medians

in 90% of the cases compared with all four Cartesian array architectures. The cases where

HexArray did not outperform others were mostly from one image group (Thresholding),

which might indicate unique circumstances that are problem specific that made RectCell

evolve better. Overall, the combination of the improved parallelism, routing flexibility,

and data propagation features of the HexArray architecture contributed to accelerating the

evolution and generated better quality filters in comparison with Cartesian arrays.



115

6.2.2 Experiment 2: GAC Selection Accelerates Evolution

In the previous chapter, GAC selection techniques were proposed to generate better genomes

that can accelerate evolution. This experiment was designed to quantify the value of using

GAC selection versus the traditional random selection in HexArrays. The used GAC is

shown in figure 6.4, which reduces the search space from 2640 to 2568.

f

C,f

f

C,f C,f f

C

C

f
B

f

B

A

f
B

A

A,B
f

A
f

A,f

f
B

A

f
B

A
A,B
f

A,B
f

A,B
f

A,B
f

PE11

PE12

PE31

PE23

PE14

PE24

PE33

PE13

PE21

PE22

PE88

PE78

PE27PE25

PE26 PE28

PE18

PE17

PE16

PE15

PE87

PE86

PE85

PE84

PE83

PE82

PE81

PE77

PE76

PE75

PE74

PE73

PE72

PE71

PE35 PE37

Figure 6.4: GAC for an 8×8 HexArray where the search space is reduced by 272.

Hypotheses

1. Evolution is accelerated using GAC selection in contrast to the classical uncon-

strained random selection.



116

Experimental Setup

The experiment was conducted using the same 5 image groups used in the previous experi-

ment. For each image group, using a 5×5 data window, 1000 genomes were evaluated, and

the best fitness was selected. This procedure was repeated 100 times. The experiment was

conducted on the following platforms:

1. 8×8 HexArray with randomly generated genomes.

2. 8×8 HexArray with GAC selection.

Results

For each image group and each hardware architecture, we collected the best solution gen-

erated for each iteration. The collected data are summarized in table 6.3 and plotted in

figure 6.5.

Table 6.3: Data were collected by running 100 iterations of 1000 genomes generated by
unconstrained random selection in comparison to GAC random selection.

Image Group S&P 25% S&P 10% EdgeDetect Thresholding Gaussian
Median Fitness

Random 0.691 0.712 0.507 0.387 0.809

GAC Selection 0.676 0.64 0.503 0.331 0.809

Best (Min) Fitness

Random 0.518 0.429 0.453 0.18 0.771

GAC Selection 0.455 0.508 0.445 0.145 0.785

Standard Deviation

Random 0.056 0.128 0.016 0.085 0.04

GAC Selection 0.061 0.116 0.015 0.087 0.032



117

Figure 6.5: A side-by-side comparison of the evolution results generated by randomly
selected genomes versus GAC selected genomes by running 100 iterations with 1000
genomes. Dashed lines show the data mean and standard deviation. Generated solutions
were improved by GAC selection.

Discussion

In four image groups, GAC selection reported improvements in the generated solutions’

medians ranging from 0.4% to 7.2%. Since the fifth image group (Gaussian) showed

no improvement for the median, we examined the mean and the standard deviation of

the generated solutions and observed small improvements on both, from 0.834±0.040 to

0.825±0.032. Additionally, the generated best solutions were better using GAC selection

in three image groups. For the other two image groups, if we considered the second-best

solutions, then they would be within ±1% of each other. This is insignificant to the gain

that GAC selection is providing in the overall population. This improvement was expected

due to the size reduction of the search space. In general, evolution using GAC improves

the generated genome populations in many aspects.



118

6.2.3 Experiment 3: GAM Outperforms Traditional Mutation

The mutation operator plays a significant role in maintaining the genetic diversity of pop-

ulations in GA [175]. In the previous chapter, we proposed GAM, an improved mutation

operator for HexArray, which restricts the mutation to a subset of bits contributing to the

Active-Output; figure 6.6 presents an example.

Active-Output

GRT

DIF

AND

NOT

Figure 6.6: An example of GAM where mutation is restricted to a subset bits of the
genome, where “M” means mutation is allowed and “-” means it is not allowed.

Hypotheses

1. Classical mutation on HexArray yielded the best genomes when Mmutation bits are

used.

2. GAM on HexArray yielded the best genomes when MGAM bits are used.

3. Evolution using 1-bit GAM converges faster than that using 1-bit classical mutation.



119

4. Evolution using MGAM-bit GAM converges faster than that using Mmutation-bit clas-

sical mutation.

Experimental Setup

The experiment was conducted using 5 image groups. For each image group, using a 5×5

window size, we evaluated 10 generations with 1000 genomes each and selected the best

fitness obtained. We repeated the process for 100 iterations. The experiment was conducted

using an 8×8 HexArray with traditional mutation with Mmutation ∈ {1-bit,2-bit, ...,9-bit}

and using GAM with MGAM ∈ {1-bit,2-bit, ...,9-bit}.

Results

For each image group and each hardware architecture, we collected the best solution gen-

erated for each iteration. The solutions of the first generation were generated using GAC

selection, and afterward, 100% of the generated genomes were by mutation (i.e., m rate =

1.0). The median and best fitnesses of the collected data are summarized in table 6.4 and

table 6.5, respectively. Mutation with different Mmutation is shown in figure 6.7, and GAM

with different MGAM is shown in figure 6.8. GAM using 1-bit and the best MGAM-bit versus

traditional mutation using 1-bit and the best Mmutation-bit are shown in figure 6.9.

Discussion

For traditional mutation, as shown in figure 6.7, a significant1 improvement was observed

by increasing the mutation from 1 to 2 bits, and slight improvements were observed for

every increase up to 7 bits. This was expected because the probability of mutating a bit (or

1The term significant used in this dissertation for its general meaning and it does not mean statistically
significant.



120

Table 6.4: Median normalized fitnesses were collected by running 100 iterations of 10,000
genomes generated by traditional mutation in opposition to GAM with different numbers
of mutation bits.

Image Group S&P 25% S&P 10% EdgeDetect Thresholding Gaussian
Median Fitness

Tr
ad

iti
on

al
M

ut
at

io
n

Mmutation =1 bit 0.735 0.754 0.507 0.342 0.861

2 bits 0.638 0.593 0.495 0.287 0.809

3 bits 0.621 0.594 0.493 0.277 0.809

4 bits 0.621 0.604 0.493 0.272 0.809

5 bits 0.618 0.591 0.493 0.27 0.809

6 bits 0.629 0.586 0.49 0.264 0.809

7 bits 0.607 0.587 0.489 0.252 0.809

8 bits 0.626 0.594 0.492 0.269 0.809

9 bits 0.614 0.591 0.493 0.265 0.809

G
A

M

MGAM =1 bit 0.597 0.565 0.487 0.24 0.809

2 bits 0.597 0.56 0.487 0.243 0.809

3 bits 0.6 0.563 0.486 0.251 0.809

4 bits 0.581 0.567 0.485 0.236 0.809

5 bits 0.581 0.562 0.486 0.251 0.809

6 bits 0.595 0.553 0.486 0.242 0.809

7 bits 0.598 0.564 0.486 0.233 0.809

8 bits 0.593 0.561 0.484 0.24 0.809

9 bits 0.582 0.564 0.488 0.234 0.809



121

Table 6.5: Best normalized fitnesses were collected by running 100 iterations of 10000
genomes generated by traditional mutation in opposition to GAM with different numbers
of mutation bits.

Image Group S&P 25% S&P 10% EdgeDetect Thresholding Gaussian
Best (min) Normalized Fitness

Tr
ad

iti
on

al
M

ut
at

io
n

Mmutation =1 bit 0.548 0.44 0.475 0.205 0.78

2 bits 0.414 0.424 0.43 0.143 0.771

3 bits 0.465 0.47 0.437 0.139 0.788

4 bits 0.481 0.468 0.441 0.154 0.785

5 bits 0.468 0.406 0.449 0.149 0.789

6 bits 0.432 0.421 0.448 0.139 0.754

7 bits 0.457 0.412 0.424 0.133 0.779

8 bits 0.418 0.346 0.46 0.139 0.788

9 bits 0.408 0.456 0.436 0.139 0.788

G
A

M

MGAM =1 bit 0.458 0.339 0.449 0.139 0.778

2 bits 0.419 0.258 0.44 0.14 0.748

3 bits 0.46 0.381 0.429 0.139 0.765

4 bits 0.397 0.47 0.404 0.136 0.739

5 bits 0.448 0.343 0.446 0.136 0.756

6 bits 0.42 0.396 0.441 0.139 0.763

7 bits 0.419 0.389 0.431 0.15 0.771

8 bits 0.428 0.407 0.441 0.139 0.781

9 bits 0.435 0.33 0.442 0.139 0.732



122

Figure 6.7: Comparison of traditional mutation with different numbers of mutation bits.
One-bit mutation is the worst option because of the high probability of mutating bits of
inactive cells. Seven-bit mutation appears to be the best option for an 8×8 HexArray.

bits) that affects the Active-Output increases with increasing number of bits, while at the

same time mutating too many bits can degrade the genome.

For GAM, as shown in figure 6.8, increasing mutation bits caused slight improvements

to the generated fitnesses, where 4-bit mutation was mostly the best choice.

Comparisons between 1-bit and 7-bit mutations and 1-bit and 4-bit GAMs are shown

in figure 6.9. The generated solutions were improved in all image groups when GAM was

used. The gaps between filters generated by 1-bit mutation and 1-bit GAM were significant,

but the gaps were smaller when we examined the results of 7-bit mutation and 4-bit GAM.

A note of caution is due here since the traditional mutation does not care about whether



123

S&P 25% S&P 10% EdgeDetect Thresholding Gaussian
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Evolution using GAM with M GAM  bits

Image Group

N
or

m
al

iz
ed

 F
it

n
es

s GAM 1 bit
GAM 2 bits
GAM 3 bits
GAM 4 bits
GAM 5 bits
GAM 6 bits
GAM 7 bits
GAM 8 bits
GAM 9 bits

Figure 6.8: Comparison of GAM with different numbers of mutation bits. One-bit GAM
is the worst case, while 4-bit is the best case for an 8×8 HexArray.

the cell is used and performs the mutation blindly, and because HexArray has multiple out-

puts (with different numbers of cells), there will be possible bias where short subgenomes

are mutated lightly while long ones are mutated heavily. This is not the case for GAM

since mutations are applied only on active cells. Overall, for an 8×8 HexArray, 4-bit GAM

significantly improves the quality of the generated solutions.

6.2.4 Experiment 4: GAX Outperforms Traditional Crossover

The crossover operation guides the GA toward recombining good genomes to generate

better ones. The proposed GAX can operate in three different modes, which describe the

mechanism of recombining the parent genomes.



124

S&P 25% S&P 10% EdgeDetect Thresholding Gaussian
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Evolution using GAM versus Traditional Mutation

Image Group

N
or

m
al

iz
ed

 F
it

n
es

s

Trad. Mutation 1 bit
Trad. Mutation 7 bits
GAM 1 bit
GAM 4 bits

Figure 6.9: GAM showed improvement to all data sets’ median and best solutions.
Moreover, the distribution of solutions became more condensed and biased toward better
fitness.

Hypotheses

1. GAX in cascade mode improves evolution as opposed to the traditional (two-point)

crossover.

2. GAX in interleave mode improves evolution as opposed to the traditional crossover.

3. GAX in parallel mode improves evolution as opposed to the traditional crossover.



125

Experimental Setup

The experiment was conducted using 5 image groups. For each image group, using a 5×5

window size, we evaluated 10 generations with 1000 genomes each and selected the best

fitness obtained. We repeated the process 100 times. The experiment was conducted on the

following hardware architectures:

1. 8×8 HexArray with two-point chromosome-level crossover.

2. 8×8 HexArray with GAX in cascade mode.

3. 8×8 HexArray with GAX in interleave mode.

4. 8×8 HexArray with GAX in parallel mode.

Results

Using the five image groups used in the previous experiments, the data were collected by

running 100 iterations of evolution using 10 generations of a population of 1000 genomes

generated by a traditional crossover or GAX running in different modes. The genomes of

the first generation were generated using GAC selection, and afterward, 100% of the gener-

ated genomes were using crossover (i.e., c rate = 1.0). The collected data are summarized

in table 6.6 and plotted in figure 6.10.

Discussion

As shown in figure 6.10, the solutions generated using GAX were better than those using

traditional two-point crossover. All modes of GAX reported improvements of the median

fitnesses in all image groups ranging from 1.3% to 11.8% and better best solutions for

almost all cases. Certain GAX modes outperformed others in particular image groups.



126

Table 6.6: Best and median fitnesses obtained from 100 runs of 8×8 HexArray with
crossover and GAX running in three modes.

Image Group S&P 25% S&P 10% EdgeDetect Thresholding Gaussian
Median Fitness

Trad. Crossover 0.619 0.561 0.499 0.282 0.809

GAX-Cascade 0.572 0.501 0.486 0.23 0.691

GAX-Interleave 0.552 0.517 0.48 0.221 0.785

GAX-Parallel 0.522 0.496 0.484 0.23 0.792

Best Fitness

Trad. Crossover 0.428 0.305 0.443 0.139 0.734

GAX-Cascade 0.366 0.278 0.442 0.139 0.615

GAX-Interleave 0.374 0.167 0.433 0.132 0.703

GAX-Parallel 0.417 0.263 0.445 0.138 0.721

GAX-Parallel appears to be the best mode for impulsive noise (S&P 25% and S&P 10%).

The reason for this result may be due to the nature of “salt and pepper” noise, where

evolved filters might target different noise pixels and using GAX-Parallel might allow the

in-between cells to merge these parent filters to provide better offspring. For feature extrac-

tion tasks, however, GAX-Interleave appears to be the best mode. A possible explanation

for this result might be that the functions used in the feature extractions were somewhat

independent of others in the subgenome (e.g., GRT and DIF), and swapping (interleaving)

them would be possible and could yield better filters. Finally, the GAX-Cascade perfor-

mance was significantly better than that of the other modes for the Gaussian image group.

This might be because the statistical noise had a relatively small magnitude (PSNR2=28.6

dB) and evolving a good filter was difficult and could only be performed by “cascading”

filters, where each made a small improvement. In general, GAX shows promising results

2Peak signal-to-noise ratio is the maximum value for the ratio between a signal and its noise. Since the
range is wide, PSNR is often expressed in logarithmic decibel scale.



127

S&P 25% S&P 10% EdgeDetect Thresholding Gaussian
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Evolution using GAX in comparison to Traditional Crossover

Image Group

N
or

m
al

iz
ed

 F
it

n
es

s

Trad. Crossover
GAX-Cascade
GAX-Interleave
GAX-Parallel

Figure 6.10: Best fitness obtained in 100 iterations using 2-point traditional crossover,
GAX-Cascade, GAX-Interleave, and GAX-Parallel.

in comparison with traditional crossover. Each of the GAX modes appear to be essential

for targeting specific problems. This result indicates that an adaptive selection method

for genetic operations that is based on their performance should be used, similar to that

proposed in [156].

6.2.5 Experiment 5: The Effect of Population Size on Evolution

Two important parameters for evolution are the generation and population sizes. Increasing

the number of generations allows for improving the populations incrementally from a

generation to the next through genetic operations. Increasing the population size (number



128

of genomes per generation) allows generation of a larger pool of parent genomes for the

next generation, which can result in diverse genetic operations.

Hypotheses

1. Increasing the number of generations improves evolution (implies decreasing the

population size).

2. Increasing the population per generation improves the evolution (implies decreasing

number of generations).

Experimental Setup

The experiment was conducted using 5 image groups, where genomes were generated using

GAC selection (20%), 4-bit GAM (20%), GAX-Cascade (20%), GAX-Interleave (20%),

and GAX-Parallel (20%). For each image group, using a 5×5 window size, we evaluated

10,000 genomes using the genome/population combinations described in table 6.7. We

tested each combination in 50 independent runs and selected the best fitness obtained.

Table 6.7: Different combinations of number of generations and genome size with a fixed
total number of genomes.

Combination name Number of generations Population size
G200 P50 200 50

G100 P100 100 100

G40 P250 40 250

G20 P500 20 500

G14 P750 14 750

G10 P1000 10 1000

G5 P2000 5 2000



129

Results

For each of the five image groups, 50 data points were collected for every combination

outlined previously, as summarized in table 6.8 and plotted in figure 6.11.

Table 6.8: Best and median fitnesses obtained from 50 runs of 8×8 HexArray with
different generation/population combinations.

S&P 25% S&P 10% EdgeDetect Thresholding Gaussian
Median Normalized Fitness

G200 P50 0.53 0.523 0.482 0.209 0.761

G100 P100 0.556 0.517 0.487 0.231 0.767

G40 P250 0.552 0.523 0.486 0.226 0.769

G20 P500 0.547 0.54 0.486 0.231 0.782

G14 P750 0.584 0.546 0.488 0.242 0.786

G10 P1000 0.58 0.552 0.482 0.225 0.791

G5 P2000 0.578 0.561 0.482 0.223 0.802

Best (min) Normalized Fitness

G200 P50 0.385 0.348 0.439 0.138 0.702

G100 P100 0.434 0.347 0.441 0.138 0.665

G40 P250 0.426 0.389 0.454 0.139 0.678

G20 P500 0.445 0.33 0.437 0.147 0.712

G14 P750 0.41 0.294 0.427 0.139 0.692

G10 P1000 0.405 0.246 0.456 0.139 0.722

G5 P2000 0.371 0.461 0.435 0.032 0.73

Discussion

Among all the image groups, G200 P50 reported better solutions with improvement in

the medians reaching 5%. A trend was clear on the S&P 25%, S&P10% and Gaussian

image groups, where the more generations (and smaller populations) there were, the better



130

S&P 25% S&P 10% EdgeDetect Thresholding Gaussian
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Evolution using Different Generation and Population Size

Group Group

N
or

m
al

iz
ed

 F
it

n
es

s G200_P50
G100_P100
G40_P250
G20_P500
G14_P750
G10_P1000
G5_P2000

Figure 6.11: Fitness distribution for different numbers of generations and population size.
The best combination for improving generated solutions overall was using the smallest
population size with the largest number of generations. However, the best combination for
finding high-quality solutions occasionally was using the largest population size with the
smallest number of generations.

the fitness was. The explanation of this finding was that evolution used genetic opera-

tions iteratively on small sets of genomes, resulting in a “depth-search” in a subdomain

of the search space. An unexpected observation was that the best solutions were not

obtained using smaller populations such as medians, but rather using larger populations.

We believe the reason for this result is that the genetic operations were running using a

large group of selected (diverse) parents, which resulted in a “breadth-search”. Generally,

small populations (many generations) cause a depth-search in a small subset of the solution

space, where the improvement is slow but steady. Conversely, larger populations (few



131

generations) resulted in a breadth-search, where good outliers (solution) were occasionally

found. Further research should be undertaken to investigate the gain achieved by allowing

dynamic assignment of the generation/population throughout the evolution process. The

dynamic assignment should use large populations with few generations in the early stages

of evolution and smaller populations with many generations toward the end of evolution.

6.2.6 Experiment 6: Adaptive Filter Evaluations

The online adaptation feature of EHW is a significant advantage over using traditional

methods. An evolved filter for an image with a low SNR (signal-to-noise ratio) would be

different than that evolved for a high SNR. The target of this experiment is not comparing

the evolved filters to commercial filters, but rather studying their behavior for different

levels of noise to determine how efficient they are.

Hypotheses

1. Evolved filters consistently adapt to noise levels.

2. Although filters are made specifically for one noise level, they work on other levels.

3. Although filters are made specifically using one image, they work on other images.

Experimental Setup

The experiment was conducted using 18 image groups, where 9 of them were for the same

image group (Lena) with different impulsive noise levels ∈ {2.5%, 5%, 7.5%, 10%, 15%,

20%, 30%, 40%, 50%}, while the other were for another image group (cameraman).

For each image group, using a 5×5 window size, we evaluated 1000 generations with

50 genomes each and selected the best filter evolved. This process was repeated 51 times,



132

resulting in 51 filters. We selected the median filter and the best filter of the current image

group and ran them on all other image groups (the other 17 image groups).

The experiment was conducted using an 8×8 HexArray. The genomes in every genera-

tion were generated using GAC selection (20%), 4-bit GAM (20%), GAX-Cascade (20%),

GAX-Interleave (20%), and GAX-Parallel (20%)

Results

For the first image (Lena), the average filter evolved for each noise level was tested on all

other noise levels of the same image (right side of figure 6.12) and all noise levels of other

images (left side of figure 6.12). Additionally, the result of using the median filter with a

5×5 window size was added to the plot. Similar to the previous results, the data for the best

filters obtained for the first image tested on the other is shown in figure 6.13. Accordingly,

figure 6.14 was plotted using data obtained when running average evolved filters of the

second image on all other images, while figure 6.15 was using the best evolved filters.



133

Fi
gu

re
6.

12
:A

ve
ra

ge
of

fil
te

rs
ev

ol
ve

d
fo

re
ve

ry
no

is
e

le
ve

lo
fa

n
im

ag
e

(L
en

a)
w

er
e

te
st

ed
on

ot
he

rn
oi

se
le

ve
ls

of
th

e
sa

m
e

im
ag

e
(r

ig
ht

)a
nd

a
di

ff
er

en
ti

m
ag

e
(l

ef
t)

.



134

Fi
gu

re
6.

13
:

B
es

to
f

fil
te

rs
ev

ol
ve

d
fo

r
ev

er
y

no
is

e
le

ve
lo

f
an

im
ag

e
(L

en
a)

w
er

e
te

st
ed

on
ot

he
r

no
is

e
le

ve
ls

of
th

e
sa

m
e

im
ag

e
(r

ig
ht

)
an

d
a

di
ff

er
en

t
im

ag
e

(l
ef

t)
.

So
m

e
ev

ol
ve

d
fil

te
rs

sh
ow

ed
co

ns
is

te
nt

be
ha

vi
or

on
a

w
id

e
sp

ec
tr

um
of

no
is

e,
un

lik
e

th
e

m
ed

ia
n

fil
te

r.
Fi

lte
rs

de
ve

lo
pe

d
fo

ri
m

ag
es

w
ith

hi
gh

SN
R

pe
rf

or
m

ed
po

or
ly

on
im

ag
es

w
ith

a
lo

w
SN

R
.



135

Fi
gu

re
6.

14
:

A
ve

ra
ge

of
fil

te
rs

ev
ol

ve
d

fo
r

ev
er

y
no

is
e

le
ve

lo
f

an
im

ag
e

(c
am

er
am

an
)

w
er

e
te

st
ed

on
ot

he
r

no
is

e
le

ve
ls

of
th

e
sa

m
e

im
ag

e
(r

ig
ht

)a
nd

a
di

ff
er

en
ti

m
ag

e
(l

ef
t)

.



136

Fi
gu

re
6.

15
:

B
es

to
f

fil
te

rs
ev

ol
ve

d
fo

r
ev

er
y

no
is

e
le

ve
lo

f
an

im
ag

e
(c

am
er

am
an

)
w

er
e

te
st

ed
on

ot
he

r
no

is
e

le
ve

ls
of

th
e

sa
m

e
im

ag
e

(r
ig

ht
)a

nd
a

di
ff

er
en

ti
m

ag
e

(l
ef

t)
.T

he
m

ed
ia

n
fil

te
rd

id
no

tp
er

fo
rm

w
el

lf
or

an
im

ag
e

w
ith

a
hi

gh
SN

R
.



137

Discussion

The performance of the median filter was dependent on the noise level. It performed poorly

on images with a high SNR (6 5% of S&P noise); in fact, images were degraded as the

fitness was > 1.0. However, for images with a low SNR (> 40% of S&P noise), the

filter performed well. The performance of the median filter did not change using different

images.

Filters evolved on a specific image with a specific SNR consistently scored good fitness

regardless of the noise level, unlike the median filter. Additionally, the evolved filters

performed similarly on different image groups (but with the same noise level), similar to

the median filter.

The average evolved filters3 outperformed the median filter in all images with noise

levels of 10% or less. The best evolved filters outperformed the median filter in all images

with noise levels of approximately 18% or less.

When examining the results of running all filters on images with different noise levels,

two trends were observed. First, the filters evolved for low noise levels performed best at

their levels but poorly on images with high noise levels. In some cases (e.g., F2.5 on 50%

S&P), degradation for the resulting image was observed. Second, filters evolved for high

noise levels performed best at their levels, but moderately on images with low noise levels.

These differences can be explained in part by considering the two corner cases, i.e., F2.5

on 50% S&P and F50 on 2.5% S&P. A 2.5% noise indicates that approximately 24 pixels

of the 25 pixels of the data window are not corrupted, allowing the evolved filter to use

them. Consequently, running this filter on an image with 50% S&P where almost half of

the pixels are corrupted will produce undesired fitness.

3The average evolved filter is the 26th genome after ranking the best genomes of the 51 runs.



138

For 50% noise, however, approximately half of the pixels are corrupted, resulting in

filters that avoid using half of the data. Therefore, when running this filter on an image

with 2.5% noise, it performs relatively well. Filters developed for 15% to 30% S&P noise

appear to perform well on the two sides of the noise spectrum.

In summary, evolved filters consistently adapt to the targeted noise level. These filters

are not image specific and perform comparably on different images. For images with a

high SNR, HexArray evolved high-quality filters, whereas the median filter degraded them.

For images with a low SNR, HexArray evolved decent quality filters, whereas the median

filter reduced noise significantly. Filters developed for 15% to 30% S&P might be good

candidates as noise-level-independent filters. Filters developed on images with a low SNR

can be used on images with a high SNR, whereas the opposite may corrupt images.

6.2.7 Experiment 7: Autonomous Evolution for Variety of Filters

The power of EHW is its ability to autonomously find solutions for unknown problems

(without manually identifying the problem). In other words, EHW needs no more than a

fitness function to start developing a filter for a training image irrespective of the problem

type. Since the system works locally on a sliding window of 5×5 pixels, it will not be

able to develop some of the advanced image filters that require a large window size. This

should be acceptable since the image processing application was selected as a case study to

explore the online adaptability of the HexArray system. Another target of this experiment

is to quantify the value of having GAC selection, GAM and GAX.

Hypotheses

1. HexArray can autonomously develop a variety of filters.



139

2. All genetic operations participate in generating the evolved filters.

Experimental Setup

The experiment was conducted using 16 image groups (as described in table 6.9). For each

image group, using a 5×5 window size and the pixel location (X, Y), we evaluated 1000

generations with 50 genomes each and selected the best fitness obtained. We repeated the

process 11 times (an odd number to ease selecting the median value). The genomes in every

generation were generated using GAC selection (20%), 4-bit GAM (20%), GAX-Cascade

(20%), GAX-Interleave (20%), and GAX-Parallel (20%).

Results

We collected 11 data points for every image group (plotted in figure 6.16); their best and

median values are shown in table 6.9. The data points were classified based on the genetic

operation that created them and are plotted in figure 6.16.



140

Table 6.9: Variety of image groups to explore the autonomous adaptivity of the system.

Normalized Fitness Generated by (in %)
Image Group Name Median Best GAC GAM GAX

Blurring 0.65 0.637 0 9 91

Deblurring 0.955 0.949 27 18 55

Edge detection (Roberts) 0.349 0.335 9 18 73

Edge detection (Canny) 0.253 0.247 9 27 64

Edge detection (Sobel) 0.118 0.11 36 9 55

Gradient adjustment 0.632 0.587 9 18 73

Periodic dark rows 0.135 0.135 9 18 73

Histogram equalization 0.416 0.405 0 0 100

Morphological (erosion) 0.351 0.329 0 18 82

White balancing 0.174 0.165 9 18 73

Blob detection (Laplacian) 0.287 0.258 18 9 73

Contrast adjustment 0.371 0.297 18 9 73

Darkness equalization 0.58 0.458 18 18 64

Brightness equalization 0.148 0.133 27 18 55

De-pixelate 0.845 0.833 0 36 64

Periodic dark columns 0.865 0.835 0 36 64

All image groups 12 18 70



141

Bl
ur

ri
ng

D
eb

lu
rr

in
gEd

ge
 d

et
ec

tio
n 

(R
ob

er
ts

)

Ed
ge

 d
et

ec
tio

n 
(C

an
ny

)

Ed
ge

 d
et

ec
tio

n 
(S

ob
el

)

G
ra

di
en

t a
dj

us
tm

en
t

Pe
ri

od
ic

 d
ar

k 
ro

w
s

H
is

to
gr

am
 e

qu
al

iz
at

io
n

M
or

ph
ol

og
ic

al
 (e

ro
si

on
)

W
hi

te
 b

al
an

ci
ng

Bl
ob

 d
et

ec
tio

n 
(L

ap
la

ci
an

)

Co
nt

ra
st

 a
dj

us
tm

en
t

D
ar

kn
es

s 
eq

ua
liz

at
io

n

Br
ig

ht
ne

ss
 e

qu
al

iz
at

io
n

D
e-

pi
xe

la
tePe

ri
od

ic
 d

ar
k 

co
lu

m
ns

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

E
vo

lv
ed

F
il

te
rs

fo
r

D
if

fe
re

n
t

T
yp

es
of

N
oi

se
an

d
E

xt
ra

ct
ed

Fe
at

u
re

s

Im
ag

e 
G

ro
u

p
 (

F
il

te
r 

N
am

e)

OperationTypes for Generated Solution
Normalized Fitness

G
en

er
at

ed
 b

y 
G

A
X

G
en

er
at

ed
 b

y 
G

A
M

G
en

er
at

ed
 b

y 
G

A
C

Fi
gu

re
6.

16
:H

ex
A

rr
ay

co
ul

d
au

to
no

m
ou

sl
y

ev
ol

ve
m

an
y

fil
te

rs
.A

ll
ge

ne
tic

op
er

at
or

s
co

nt
ri

bu
te

d
in

ev
ol

ut
io

n.
So

m
e

fil
te

rs
w

er
e

so
le

ly
ge

ne
ra

te
d

us
in

g
G

A
X

(o
rG

A
X

an
d

G
A

M
).



142

Discussion

We will divide and discuss the developed filters in five independent groups. The first group

includes deblurring, blurring, and de-pixelate filters, which are relatively hard problems, as

shown in order in figure 6.17, 6.18, and 6.19, respectively.

(a) Training image (b) Evolved image (c) Reference image

Figure 6.17: Deblurring was difficult because the blurred image was constructed using a
6×6 window.

Deblurring was the hardest problem, and the system could not make more than 5%

improvement to the fitness. One reason for this poor performance was that the blurry image

was created using a Gaussian filter with radius=6 4, which is larger than the window size

that HexArray was using. The second reason is that blurring (convolution) is a degrading

process, and reconstructing pixels using simple functions is difficult. The fact that 27%

of the generated filters were generated using GAC selection indicated that the system had

difficulties in generating better offspring of selected parents.

However, the system could develop better filters for the blurring problem. This result

occurred because blurring is inherently “easier” than deblurring. Most of the generated

solutions were produced using GAX, which was expected as GAX in cascade mode would

4The Gaussian filter radius is the standard deviation sigma.



143

(a) Training image (b) Evolved image (c) Reference image

Figure 6.18: The system performed moderately in developing a blurring filter with a 35%
fitness improvement; the filters were mostly generated using GAX.

be ideal for this problem. Finally, although the de-pixelate is a hard reconstruction mech-

anism of a degraded image (16 pixels were compressed to one pixel), the system found

filters with fitness improved by 17%. The number of filters generated by GAM was higher

than expected, 36% while expecting 20%, indicating that mutation is an effective operation

for this problem. Generally, the system evolved filters with improved fitness (5%-36%),

even for hard problems and using a small data window.

(a) Training image (b) Evolved image (c) Reference image

Figure 6.19: The system achieved a 17% fitness improvement for the de-pixelate filter.



144

The second group includes three edge detection filters (as shown in figure 6.20-6.22),

a blob detection filter (as shown in figure 6.23), and a morphological filter (as shown in

figure 6.24).

(a) Training image (b) Evolved image (c) Reference image

Figure 6.20: The system evolved an edge detection filter (Roberts cross).

(a) Training image (b) Evolved image (c) Reference image

Figure 6.21: The system generated an edge detection filter (Canny operator).

The system performed well and evolved some fine filters, such as that for Roberts edge

detection (as shown in figure 6.20) and Sobel edge detection (as shown in figure 6.22). This

result was anticipated since the functions needed for developing these filters are generally



145

similar to those that we are using in the HexArray system. A filter with a fitness value of

0.25 is considered to be a good filter since the noise is reduced by 75%.

(a) Training image (b) Evolved image (c) Reference image

Figure 6.22: The system developed an edge detection filter (Sobel operator).

The evolved Canny filter had a similar fitness, but the evolved image was not appealing

(the second image group from the top in figure 6.21). The explanation for this result was

that the system’s only gauge to determine the quality of a solution was the fitness function,

which was the normalized MAE function, and for this specific image group, the evolved

filter scored good fitness. In fact, the fitness value for an “all black” image was 0.26, and

the system would choose it if it could not find better solutions. This result indicated that for

real-world applications, sophisticated or multi-objective fitness functions [38] are needed.

All genetic operations contributed to finding solutions for this group. However, none of

the developed morphological filters used GAC selection, and most of them were generated

using GAX. A possible explanation for this might be that a complex filter, such as the

morphological filter, would typically be evolved by means of the genetic operations rather

than random selection. According to these data, we can infer that the system is able to

autonomously evolve satisfactory filters in this group.



146

(a) Training image (b) Evolved image (c) Reference image

Figure 6.23: The system found a good filter for the blob detection problem.

(a) Training image (b) Evolved image (c) Reference image

Figure 6.24: A gray-scale morphological filter was developed with good fitness.

The third group of filters consists of those for adjusting the tonal distribution, such as

brightness equalization (as shown in figure 6.25) and darkness equalization filters (as shown

in figure 6.26). The system evolved relatively good filters for the bright training image, but

did not perform as well for the dark training image. The difference in performance can

be explained by highlighting the difference in the tonal distribution (which might not be

noticed by the naked eye), where the dark image had a narrower spectrum of pixel values

ranging between 41 and 114 in comparison with 41 and 255 for the bright image. Filters



147

(a) Training image (b) Evolved image (c) Reference image

Figure 6.25: The system evolved a good filter for image brightness adjustment.

were generated using all genetic operations. GAC selection was quite effective for the

brightness equalization filters.

(a) Training image (b) Evolved image (c) Reference image

Figure 6.26: The generated filter was decent because the training image had a narrow tonal
distribution.

The fourth group of filters is for variable noise intensities based on pixel location,

such as periodic dark rows, periodic dark columns, and gradient adjustment filters. The

developed filters for the periodic dark rows were different versions of the same function,

as shown in figure 6.27. Surprisingly, this function did not include the pixel X-location as



148

we predicted; rather, it used a simple “maximum” function of a 3×1 data window, which

allowed filtering these dark lines. This observation may support the hypothesis that the

EHW can find solutions that might be overlooked by humans.

(a) Training image (b) Evolved image (c) Reference image

Figure 6.27: Removable of periodic dark rows noise with static shade on a 4-pixel period
– the noise is X-coordinate dependent.

In contrast to the previous image, HexArray did not find good filters for the “Periodic

dark columns”, as shown in figure 6.28. Two of the evolved filters included the pixel

Y-location, but they did not score the best fitness. The difference between this problem and

the previous one may explain the difference in performance. The earlier problem was easy

since it included a horizontal pattern of two normal rows and two shaded rows. Conversely,

the latter problem was comparatively hard because it included a vertical nonlinear noise

pattern generated by a Fourier transform with a period of eight pixels. Thus, given that the

system worked on a 5×5 window, it would not be able to develop good filters. Another

observation that indicated that this was a hard problem, was that none of the solutions were

generated by GAC selection.

The system evolved gradient adjustment filters with moderate fitness, as shown in figure

6.29. All evolved functions included the pixel X-location, as expected. The evolved image



149

(a) Training image (b) Evolved image (c) Reference image

Figure 6.28: Periodic dark columns noise with a nonlinear Fourier transform on an 8-pixel
period – the noise is Y-coordinate dependent.

with the best fitness was not appealing, and we thought that the other evolved images with a

slight fitness difference appeared better. However, this all goes back to the fitness function

in use.

(a) Training image (b) Evolved image (c) Reference image

Figure 6.29: Gradient noise is a spatially variant degradation where pixels with a small
X-location were brightened and pixels with a high X-location were darkened.

Finally, the last group in this discussion includes histogram equalization, contrast ad-

justment, and white balancing problems, as shown in figure 6.30. The system performed

well for all the problems using all genetic operations, except for the histogram equaliza-



150

(a) Training image (b) Evolved image (c) Reference image

(d) Training image (e) Evolved image (f) Reference image

(g) Training image (h) Evolved image (i) Reference image

Figure 6.30: Evolving filters for brightness equalization problems. (Top) Histogram
equalization. (Middle) Contrast adjustment. (Bottom) White balancing.



151

tion problem, where GAX was the only operator that yielded good solutions. This result

might indicate that good filters could be generated for this type of problem by cascading,

interleaving, or parallel-recombining parent genomes.

Overall, the system performed quite well on all problems except for a subset of rel-

atively hard problems. The problem difficulty was due to many reasons, including the

following:

1. The noise degraded the training image, and reversing it was impossible.

2. A large data window size was required.

3. Nonlinear functions were needed.

Per the diversity of generated filters, we may conclude that the system features an ac-

ceptable level of autonomous adaptation. The EHW system used the genetic operators

throughout the evolution process to improve populations. Altogether, the system utilized

all genetic operations efficiently, where 70% of the generated solutions were using GAX,

18% using GAM, and 12% using GAC selection. This may indicate that we could in-

crease the crossover rate and decrease the randomization rate. Another observation was

that the system was utilizing GAM and GAX (and not GAC selection) for many of the

hard problems, which suggests that genome-aware mutating, cascading, interleaving, and

parallel-recombining genomes are effective for hard problems. Another finding was that

for real-world applications, the MAE fitness function might not be an adequate function

and more sophisticated or multi-objective fitness functions might be needed.



152

6.3 Implementation Analysis

The proposed HexArray platform was implemented on a ZedBoard kit, a development

board manufactured by Avnet that contains Xilinx Zynq-7000 All-Programmable SoC

XC7Z020 [176]. The SoC consists of a processing system (PS) and a programmable logic

(PL). The PS is a dual ARM Cortex-A9 MPCore running at 667 MHz with a dedicated 512

MB of DDR3. The PL is an Artix-7 FPGA with 53,200 LUTs, 106,400 Flip-Flops, 4.9

MB of block RAM, and 220 DSP slices. The FPGA typically operates at a 100 MHz clock

speed, but can be increased to 250 MHz.

For the chosen image processing application, an 8×8 HexArray was adequate for evolv-

ing many filters. The hardware modules of the designed 8×8 HexArray hardware core were

written in HDL, synthesized, placed, and routed using the Vivado 2015.2 IDE tool. The

implemented modules are as follows:

1. A data window controller

2. A genome register

3. 31 AICs

4. 31 AOCs

5. 64 HexCells

6. Supporting modules, including AXI interconnects and general-purpose inputs/out-

puts (GPIOs).

The data window controller incorporates a DMA operating in a scatter/gather mode

with a data width of 4 bytes. The DMA feeds into an AXI4-Stream data FIFO with a depth

of 2048, which is connected to a converter with a 4-to-8-byte data width. The resulting 8



153

bytes form one slice of the 8×5 sliding window of the array input data. At any time, the

module provides 5×8=40 bytes of data (pixels in our case). These pixels are available for

the AIC modules to select from. However, the data are not valid until the ready signal is

asserted. This allow the user to control (using AXI) the process using the start and speed

signals. Providing a sliding window for the boundary pixels of an image involves some

complexity. However, by preprocessing the data by the PS before sending it through the

DMA and by utilizing the ready signal, complexity was avoided.

A genome register consists of an I GENOME and an A GENOME. The I GENOME includes

the configuration for 31 AICs. Each AIC needs to select a pixel out of 5×8 pixels, which

means that 6 bits are needed. Therefore, the I GENOME size is 186 bits (6 32-bit words were

used). Conversely, the A GENOME is needed to hold the chromosome data of the cells. In

fact, the Sel f is not needed as the encoded information is utilized by the PS to initiate DPR

transactions through PCAP. Therefore, the A GENOME size is 384 bits (12 32-bit words were

used). These 18 32-bit are programmed by AXI transactions.

AIC is simply a 40×1 multiplexer with an 8-bit bandwidth. The selection signal of the

multiplexer is encoded by 6 bits in the I GENOME.

Every array output feeds into an AOC. This module is responsible for calculating the

fitness value, which is the MAE. The MAE is the accumulation of the absolute difference

between the generated output pixel and the reference one for all pixels in the image. This

requires the AOC to be aware of the first and last pixels of the data, which is achieved by

including a pixel counter and “expected count” register assigned by the user using AXI

transactions. The expected count is the total number of pixels in the used image, which is

256×256 in our case. When the pixel counter reaches the expected count, meaning the last

pixel in an image, the AOC pushes the accumulator value (i.e., MAE value) to an FIFO that

is accessible by the PS.



154

The main component of the reconfigurable hardware core is the systolic array; here,

it is an 8×8 HexArray. The array includes static and dynamic partitions. The static

circuitry for one HexCell consists of three 4×1 8-bit-wide multiplexers for the output

ports and three input buffers with different sizes based on equations 5.1, 5.2, and 5.3.

The dynamic partitions involved two challenges. The first one was that ideally 64 PEs

need 64 reconfigurable regions, but because the smallest reconfigurable region, which is

200 CLBs for the selected device, is three times larger than the largest functional unit, we

had to combine every three functional units to be programmed into one region, resulting in

22 regions. The other challenge was that the IDE tool, Vivado, did not support bitstream

relocation where a single partial bitstream can be used to program multiple reconfigurable

regions. Solving the shortening of this tool was not the focus of this research, especially

because this feature was supported by the previous IDE tool (ISE) and there are some

techniques to enable it, such as that proposed by Oomen et al. [177]. To overcome

this challenge and still be able to practice DPR, we merged all functions into a single

functional unit that become controlled by the A GENOME5 to select the intended function.

Consequently, the required partial bitstreams were 22 files. All files were stored in the PS

memory, where each file was 55.3 KB in size. To program the bitstream, Zynq supports

two methods: ICAP and PCAP [178]. PCAP was chosen for two reasons. It does not need

any hardware instantiations in the PL, and it is relatively fast.

The GAGA program was written in the C/C++ programming language, which ran on the

PS. The executable binary was built using Xilinx SDK 2015.2 with a size less than 2 MB for

the bare metal application6 and 1.2 MB for the partial bitstreams. A high-level monitoring

5Note that this requires the A GENOME to include the Sel f , resulting in expanding the A GENOME size by an
additional 8 32-bit words, as P= 4.

6Bare metal application is an application that runs directly in hardware and does not need an operating
system.



155

dashboard, written in Python, (shown in figure 6.31) was created to communicate with the

PS using USB. Using this dashboard, users can select the image set, adjust the evolution

parameters, control the evolution process, and obtain the evolution results in real time.

Since the reconfigurable hardware core (in the PL) and GAGA (in the PS) are independent,

GAGA can perform genetic operations in parallel with the array evaluating a genome.

Figure 6.31: High-level dashboard for monitoring evolution is created. It allows the user
to customize inputs and visualize the results.

In the following subsections, resource utilization and time analysis will be discussed.



156

6.3.1 Resource Utilization

The resource utilization for the full system was 76.8% of the LUTs and 78.4% on the

flip-flops, as shown in table 6.10. In general, reducing the resource utilization was not

targeted during system implementation as there was no need for it in the selected case study.

However, optimizing the resource utilization is achievable. In addition to simply optimizing

the modules themselves, one major technique for optimizing resource utilization is to

exploit the 48-bit DSP blocks in the FPGA. For example, for the AOCs, which are the

top resource utilizers, we could use 31 DSP slices rather than using LUTs to build the

subtractors/accumulators needed.

Table 6.10: Resource utilization reported by Vivado for 8×8 HexArray.

Module LUTs (53200) Slice Registers (106400) BRAM (140)
Data Window Controller 2586 (4.8%) 4162 (3.9%) 4 (2.9%)

Array Input Controllers 3416 (6.4%) 670 (0.6%) 0

Array Output Controllers 15522 (29.2%) 41099 (38.6%) 0

Reconfigurable Partitions 17600 (33.1%) 35200 (33.1%) 0

Genome Register 884 (1.7%) 1333 (1.3%) 0

GPIOs 118 (0.2%) 197 (0.2%) 0

Others 715 (1.3%) 745 (0.7%) 0

Total 40841 (76.8%) 83406 (78.4%) 4 (2.9%)

6.3.2 Time Analysis

The time consumed for evolution is the time for generating genomes, which is performed by

the GAGA, and the time for evaluating genomes, performed by the reconfigurable hardware

core. All PS-PL interfaces used in the implemented system are shown in figure 6.32.

The time consumed for evaluating a genome is the summation of times spent for setting

up the HexArray, reconfiguring HexCells, sending the image data, and executing the data.



157

DDR

processing_system7_0

ZYNQ7 Processing System

PTP_ETHERNET_0

DDR

FIXED_IO

USBIND_0

S_AXI_HP0_FIFO_CTRL

M_AXI_GP0

S_AXI_HP0
FIXED_IO

DataWindowController

S00_AXI

S00_AXI1

S_AXI_LITE

M_AXI_SG

M_AXI_MM2S

axi_mem_intercon

AXI Interconnect

S00_AXI
M00_AXI

S01_AXI

GenomeRegister

Genome_v1.0 (Pre-Production)

S00_AXI

processing_system7_0_axi_periph

AXI Interconnect

S00_AXI

M00_AXI

M01_AXI

M02_AXI

M03_AXI

M04_AXI

M05_AXI

ArrayOutputControllers

outputAccumulator_v1.0 (Pre-Production)

S00_AXI

GPIO

AXI GPIO

S_AXI
GPIO

GPIO2

Figure 6.32: DMA and AXI interfaces between the PS and HexArray, generated by
Vivado.

The time for setting up the HexArray includes AXI transactions for updating the genome

register (≈ 0.62µ seconds) and resetting other modules (≈ 0.12µ seconds). Reconfiguring

HexCells includes DMA transactions (≈ 1.2µ seconds each), while the reconfiguration

itself took 139µ seconds to program a single dynamic region using a 100 MHz clock. This

means that reconfiguring 22 partitions took 3.1 milliseconds.

Sending the data to the array occurs automatically when data are delivered to the data

window controller, and the controller sends data every two clock cycles. Because a 100

MHz clock was used and propagating 256×256 = 65,536 pixels required 1.3 milliseconds

plus some overhead due to the extra pixels needed for the sliding window of boundary

pixels, getting the PS to handle the interrupt and read the fitness data from the AOCs FIFOs

took 3.7µseconds. In summary, executing a genome with all other subprocesses can take

4.4 milliseconds, where 70% of that time is used for DPR, and 29.5% went for processing

the data and 0.5% as overhead.

Note that the time discussed thus far does not include the time consumed by the GAGA.

Although the GAGA was designed to perform most of the processing while the array is

processing data, there was a variable time overhead of approximately 1.1 milliseconds.



158

Additionally, a processing time is needed after every generation, e.g., for selecting parents,

calculating the DV and boundboxes, and shifting them. This time is almost fixed regardless

of the population size, meaning a slow down for evolution with a smaller population. The

time was in the range of 250 milliseconds, which means an overhead of 0.25 milliseconds

per genome if the population size was 1000, while it is 5 milliseconds if the population

size was 50 genomes. The reason for this slow down on small populations can be ex-

plained as follows. Early in the system design phase, “the use of large populations” was

an assumption that was made based on a hypothesis that this would allow more diverse

genetic operations. Since for every generation, all genetic operators work on the same

set of parents, preprocessing some of the common operations (e.g., traversing and shifting

genomes) on these parents would reduce redundant operations and eventually the time per

genome. As smaller populations are desired per Experiment 5, a change to the algorithm

may be recommended to avoid any time penalties. Essentially, the algorithm should not

preprocess parents and should just process per request.

Finally, the average overall time for generating and evaluating one genome was 5.75

milliseconds when the population size was 1000 and 10.5 milliseconds when the population

size was 50. This means that 32,200 genomes (or 1,000,000 evaluations for an 8×8

HexArray) can take approximately three minutes. Figure 6.33 shows evolution traces for

100 independent runs of 50K genomes using small and large populations. These traces

exhibit the normalized fitness at a given time; note that the time is on a log10 scale. The

data show that the best evolved filter can be (equivalent to, better than, or significantly

better than) the median filter after approximately (2 seconds, 12 seconds, or 130 seconds)

of evolution for a small population size and approximately (5 seconds, 5 seconds, and 40

seconds) for a large population size. Conversely, based on the average of evolved filters,

more than 50% of the evolved filters perform better than the median filter after 250 seconds



159

3 4 5 6 7 8 9
0.1

2 3 4 5 6 7 8 9
1

2 3 4 5 6 7 8 9
10

2 3 4 5 6 7 8 9
100

2 3 4 5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Logarithmic Time (seconds)

N
or

m
al

iz
ed

 F
it

n
es

s

Median Filter
Average Fitness

3 4 5 6 7 8 9
0.1

2 3 4 5 6 7 8 9
1

2 3 4 5 6 7 8 9
10

2 3 4 5 6 7 8 9
100

2 3 4 5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Evolution Traces for 100 Independent Runs with 50K Genomes Each 

N
or

m
al

iz
ed

 F
it

n
es

s

Median Filter
Average Fitness

1000 Generations
50 Population

50 Generations
1000 Population

Figure 6.33: Evolution traces for 100 independent runs using (top) 1000 generations
and 50 population size or (bottom) 50 generations and 1000 population size. Note that
evaluating 50K of genomes using larger populations takes less time. In 2 to 5 seconds,
filters comparable to the median filter are evolved. In approximately 250 to 300 seconds,
most of the evolved filters outperform the median filter.



160

for a small population size and 300 seconds for a large population size.

6.4 Summary

This chapter discussed the results of the implemented design. The first part includes a set

of experiments that study the system from the perspective of evolution speed. The second

part is dedicated to analyzing the implementation details, including resource utilization and

timing analysis.

The findings of the seven experiments that were conducted on HexArray are as follows:

• Experiment 1: HexArray converges faster than the state-of-the-art systolic array; this

may be a result of many reasons, including improved parallelism, routing flexibility,

and improved data propagation. The state-of-the-art systolic array performs signifi-

cantly better if parallelism is added and slightly better if routing flexibility is added.

HexArray outperforms all enhanced versions of the state-of-the-art systolic array.

• Experiment 2: Genomes generated by GAC selection perform better than those

generated with no constraints because the search space is reduced.

• Experiment 3: Seven-bit mutation appears to be the best option for traditional mu-

tation in an 8×8 HexArray, whereas it is 4-bit mutation for GAM. Comparing these

together, GAM significantly improves the quality of the generated solutions since it

concentrates on active chromosomes.

• Experiment 4: GAX running in any of the proposed modes outperforms the tradi-

tional crossover. GAX-Cascade performs the best on problems where small improve-

ments are the only improvements possible (e.g., images with a high SNR). GAX-

Interleave performs the best on feature extraction tasks where “off/on” chromosomes



161

(e.g., GRT and DIF) are used since they are swappable. GAX-Parallel performs the

best on problems that can be divided into smaller tasks (e.g., impulsive noise).

• Experiment 5: Evolution using small populations (many generations) simulates a

depth-search in a subset of the solution space, which results in a slow but consis-

tent improvement. Using large populations (few generations), however, simulate a

breadth-search, which results in occasionally finding exceptionally good solutions

due to genetic operations operating on a diverse pool of parents.

• Experiment 6: In contrast to traditional filters, evolved filters consistently adapt to

the targeted noise level. Evolved filters significantly outperform the median filter for

images with a high SNR. The median filter slightly outperforms evolved filters for

images with a small SNR. HexArray evolved some noise-level-independent filters

using a moderate SNR.

• Experiment 7: HexArray performed well on most of the cases. Poor performances

in some problems were justified as some of the noise was irreversible, a wider data

window was needed, or the functions needed were more complex than those that

HexArray was using. HexArray showed an desirable level of autonomous adaptation.

All genetic operators were used efficiently.

The HexArray platform (reconfigurable hardware and the GAGA) was implemented

in Zynq-7000 SoC, which has a PL and PS. An 8×8 array consumed 77% of the LUTs,

where the majority of the utilized resources were used for the systolic array and the AOCs.

PCAP was chosen to perform the DPR because it does not need any hardware instantiations

and the reconfiguration performance is adequate for the selected application. The GAGA

is implemented as a bare metal application on the PS. The communication between the



162

PS and PL is through AXI, DMA, and PCAP transactions, whereas the communication

between the PS and a high-level monitoring dashboard is through USB and serial ports.

Programming all functional units of the designed system takes 3.1 milliseconds. Processing

a 256×256 image takes 1.3 milliseconds. The PS overhead for generating and executing

a genome is approximately 1.1 milliseconds. Depending on the population size, there is

a variable overhead for conducting some of the inter-generation processing. This can be

0.25 milliseconds per genome for large populations or 5 milliseconds per genome for small

populations. Consequently, generating and evaluating a genome costs 5.75 milliseconds to

10.25 milliseconds. Overall, HexArray required approximately 3.5 seconds, 8.5 seconds,

or 85 seconds to generate filters equivalent to, better than, or significantly better than,

respectively, the median filter.



163

CHAPTER 7

CONCLUSION

Currently, system design is a challenging task for human designers even with the help of

software tools. In many practical applications, the only known specifications about the

targeted design are its desired behavior. Another challenge is to keep the designed system

operating in an unpredicted environment or even when it itself is degraded. Evolvable

hardware emerged to solve these challenges. EHW is the means to automate system design

and/or allow it to autonomously adapt to changes.

EHW is a hardware system driven by an evolutionary algorithm. The algorithm sug-

gests solutions that are evaluated and assessed by the hardware. Based on their fitnesses,

solutions are selected to be mutated or recombined to generate better offspring. However,

why can not a software model be used instead of the hardware system?

Using a software model is not practical for many evolution applications. Evaluating a

solution in software is slow, e.g., in seconds, and since a large number of solutions, e.g.,

millions, need to be tested, the performance will be impractical, e.g., months. For example,

experiment 3 took 6 days in hardware, but it would take more than 11 years1 to run on the

simulator.

In this dissertation, an evolvable hardware system is proposed – the HexArray platform.

HexArray is a modular, scalable, architecture and domain independent, and single-chip

platform. The system was successfully implemented using a commercial SoC that in-

110K genomes × 5 image groups × 18 mutation bits × 100 iterations × 4 seconds per genome



164

tegrates an FPGA. The case study used was an image processing application where the

system generated adaptive filters.

The robustness of the hardware part of the proposed EHW was proven to be better than

that of the state-of-the-art (in experiment 1) even when we boosted the later with some

enhancements. The GAGA, the EA part of HexArray, utilizes a variety of genome-aware

operators that accelerate evolution. These are GAC selection, GAM and GAX, and all of

them were proven to improve (i.e., accelerate) evolution, and some of them were effective

on specific problems. These operators are not restricted to HexArray and can be applied to

systolic arrays in general. Certain evolution parameters were selected by experiments, e.g.,

MGAM, population, and so forth. The claimed adaptability of the developed system was

proven experimentally. The system adapted to the noise levels and performed consistently

well, unlike off-the-shelf solutions. The autonomous behavior of the system was explored

by evolving a variety of filters. The system performed quite well considering what was

possible with the given function set and data window. In one of the image groups, the noise

in an image was 2-pixel-wide dark horizontal stripes, which caused us to predict that any

evolved filter had to use the pixel location to be able to cancel the noise. This was not the

case, however. The system was able to evolve a simpler filter. The filter was a single-cell

solution, using the “maximum” function. It used a vertical 3-pixel-wide slice of the data

window, and since the noise is dark (low pixel value) and the slice is guaranteed to have at

least one noise-free pixel (as the noise was every other two rows), the filter was possible. It

was an example of simple solutions that may be overlooked by (human) designers.

Although HexArray is domain independent, the function set and fitness function are ap-

plication specific. Selection of the function set is a critical task in constructing an efficient

EHW system. A poorly designed function set can cause evolution to diverge, slow down,

or be biased. However, this may not be fatal for the system since the system has an intrinsic



165

adaptation. A practical example of this was encountered during the implementation of the

case study. The function set consists of 16 functions, where one of them was defective2.

This did not break the system. Evolution was slow, but filters were evolved. This issue

was uncovered when we observed that the system avoided the defective function, while it

should be a popular choice.

Designing the fitness function is the greatest challenge for using EHW systems in an

application. The purpose of using EHW to solve complicated design problems is defeated

if the design of the fitness function itself is more complex. In our case study, the fitness

function used the reference image to calculate the MAE. Note that the system did not

require the reference image; rather, the fitness function did. The fitness function can be

redesigned to avoid using the reference image, which may not be available. Designing

such a fitness function is possible when the application is specified. Consider an example

where HexArray is used to enhance images taken by a smartphone camera. The fitness

function can be formed by a weighted sum of subfunctions that describe certain properties

of the evolved image. These properties describe the quality of the image, such as histogram,

exposure, color temperature, and white balance. The challenge in this approach is that the

functions need to be computed at high speed, which may require some custom hardware

blocks or the use of fitness estimation methods.

HexArray is a powerful computation system. In fact, our image processing system –

while it is not optimized – can process a full-HD3 stream in real time.

In some applications, distinct cells of an array need to execute fixed functions, not ran-

domly selected functions. Typically, since systolic arrays are homogeneous systems, they

do not allow this case. However, these applications are natively supported by HexArray

2The AVRG function had a timing violation, resulting in 0x00 for most of the operations
3In 1080p24 standard (1920x1080 pixels in 24 frame/sec)



166

using GLOBAL RULES. These are rules and constraints on cells’ functions and output ports

that all GAGA operators follow without violating. This concept can broaden the range of

applications of HexArray. Consider the example of using HexArray for letter classification

(a pattern recognition application). In this application, the input data and output data are

not the same type of data. The input data may be bits/pixels of the original image. The

output data may be a classification (i.e., a letter). In this sense, the rules can constrain cells

on the array boundary to be classifiers.

7.1 Future Work

Future work can be directed toward making further improvements to the HexArray im-

plementation proposed in this work or to exploring other general observations. They are

outlined as follows:

• HexArray can be optimized for speed. For instance, the PL clock can be boosted

from 100 MHz to 250 MHz to obtain a 2.5× speedup. Moreover, performing pre-

processing operations per generation for small population sizes is not time efficient;

therefore, changing it to be performed per genome as needed would reduce time

overhead as the number of genomes is small.

• HexArray can be optimized for space. AOCs are the largest resource consumers, and

implementing them using the DSP units, offered in the FPGA, would significantly

reduce the resources.

• The evolution speed for the selected image processing application can be accelerated

if a tile of the training image is used rather than the entire image. This technique was

used to accelerate the simulator and proven to be efficient. One finding was that the



167

tile has to be constructed by sparse pixels (not neighboring pixels) to improve fitness

estimations; for example, a (32×32)-pixel tile was created by selecting a pixel every

8 pixels.

• An observation on experiment 5 was that large populations occasionally yield some

exceptionally good solutions, whereas small populations allow slow but consistent

improvements. In this sense, we predict that evolution can be improved if it uses

a dynamic population size where the population size starts as large and shirks with

time.

• One idea to explore is virtual resizing of HexArray, which is achieved by starting

evolution using a small array size and increasing it as necessary. This technique can

result in an early intensive search in relatively small search spaces, which can be

beneficial to evolve shorter solutions that can be optimized for power.

• The shift operation in GAGA is built with the assumption that array inputs have the

same significance and hold the same type of data; therefore, shifting a genome does

not require shifting the array inputs. For the selected case study where inputs are

pixels in a data window, this may be a reasonable assumption. However, for other

applications where inputs might have totally different data, GAP should be used to

shift a genome along with its array inputs.

• A technique that can improve the quality of generated genomes is by broadcasting

genomes. A genome may occupy a subset of cells in the HexArray. The cells that

are on the genome boundaries will have some ports that are not used in the active

datapath, but they are feeding into the non-used cells of the array. The broadcast

operation is performed by altering the selection of these ports to match the ports in



168

the active datapath such that the ports are copying that same data being propagated

through the active datapath.

• A different use case of HexArray is using it in optical character recognition (OCR)

application. In this application the EHW system converts an image of typed, hand-

written, or printed character to a digital-encoded text (e.g., ASCII code).

We assume that the input data is the character image which consists of an 8×8 matrix

of bits (i.e., 64 white or black bits). Since the bandwidth of the HexCells’ functional

units is 1 byte, the input data of the HexArray are slices of the character image as

shown in figure 7.1.

Input Data

Horizontal slices Vertical slices

one-byte

Figure 7.1: Every character is represented by an 8×8 bit matrix (i.e., input data). Vertical
or horizontal slices of the input data are fed into the HexArray’s AICs.

To enable HexArray for OCR, a function set and a fitness function need to be defined.

A suggested function set is presented in table 7.1 where 16 application-specific

functions are identified. Each function works on all or some of the HexCell inputs as

described by dependency field.

Each output of HexArray is an 8-bit number which is the classification of the input

data; in other words, the given character will be classified as one of 256 classifica-



169

Table 7.1: Function set for an OCR application.

Func.
Index Function Name Function Description Depend.

A, B, C
f0 Bitwise OR OR:=A|B|C 1, 1, 1
f1 Bitwise AND AND:=A&B&C 1, 1, 1
f2 Bitwise XOR XOR:=A⊕B⊕C 1, 1, 1
f3 Bitwise XNOR XNR:=∼(A⊕B⊕C) 1, 1, 1
f4 Bitwise NOT NOT:=∼A 1, 0, 0
f5 Any One ANY1:=B?0xFF:0x00 0, 1, 0
f6 Reduction XOR rXOR:= (⊕C)?0xFF:0x00 0, 0, 1
f7 Align Right ALNR:=Shift right A till A[0]6=0 1, 0, 0
f8 Align Left ALNL:=Shift left A till A[7]6=0 1, 0, 0
f9 Maximum MAX:=max(A,B,C) 1, 1, 1
f10 Minimum MIN:=min(A,B,C) 1, 1, 1
f11 Count Ones CNT1:=countOnes(A, B, C) 1, 1, 1
f12 Mix Low MIXL:=A[0],B[0],A[1],B[1],...,B[3] 1, 1, 0
f13 Mix High MIXH:=A[4],B[4],A[5],B[5],...,B[7] 1, 1, 0
f14 MUX MUX:=C[7]?A:B 1, 1, 1
f15 Median MDIN:=median(A,B,C) 1, 1, 1

tions. A character set is a collection of many images for one character. The target is

to minimize the number of different character sets classified as a single class. Ideally,

the best solution will classify each character set as a single class. An acceptable

solution is where one class is classifying one character. In this case, one character can

be classified as multiple classes. An undesired solution is where a class represents

more than one character. To satisfy all previous requirements, the fitness function is

defined as follows:

FitnessOCR =
255

∑
i=0

CharacterCounter2
i ,

where CharacterCounteri is the count of how many different character sets are classi-

fied as class i. Clearly the lower the fitness value is, the fitter the solution is. To guide



170

HexArray to avoid the solutions where multiple characters classified as a single class,

CharacterCounteri is raised to the power 2 which increases the fitness exponentially

on these undesired cases. An example of the suggested fitness function is shown in

figure 7.2 where the fitness is (1)2 +(1)2 +(0)2 +(1)2 +(1)2 +(1)2 +(0)2 +(1)2 +

...+(0)2 +(2)2.

char cntr

Set A

: : :

...

...

...

...

< class 0 >

< class 1 >

< class 2 >

< class 3 >

< class 4 >

< class 5 >

< class 6 >

< class 7 >

    .

    .

    .

<class 254>

<class 255>

1

0

1

1

1

0

1

0

2

1
Training sets classified as

Set B

Set C

Set Z

Figure 7.2: Example of characters get classified to one or more classes. The class is the
output of HexArray which can hold the value of 0 to 255. An undesired case is when the
characters “C” and “B” are classified as class 255.



171

REFERENCES

[1] G. W. Greenwood and A. M. Tyrrell, Introduction to Evolvable Hardware: a
Practical Guide for Designing Self-Adaptive Systems. John Wiley & Sons, 2006,
vol. 5.

[2] C. Lambert, T. Kalganova, and E. Stomeo, “FPGA-Based Systems for Evolvable
Hardware,” World Academy of Science, Engineering and Technology, International
Journal of Electrical, Computer, Energetic, Electronic and Communication Engi-
neering, vol. 1, no. 12, pp. 1890–1896, 2007.

[3] J. Mora, A. Otero, E. d. l. Torre, and T. Riesgo, “Fast and Compact Evolv-
able Systolic Arrays on Dynamically Reconfigurable FPGAs,” in Reconfigurable
Communication-Centric Systems-on-Chip (ReCoSoC), 2015 10th International
Symposium on, 2015, Conference Proceedings, pp. 1–7.

[4] M. Ferdjallah, Introduction to Digital Systems: Modeling, Synthesis, and Simulation
Using VHDL. John Wiley & Sons, 2011.

[5] R. H. Katz, Contemporary Logic Design, 2nd ed. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2000.

[6] Z. Navabi, Digital Design and Implementation with Field Programmable Devices.
Springer Science & Business Media, 2004.

[7] Altera, “MAX V Device Handbook,” Altera Inc., San Jose, CA, Tech. Rep., 2011.

[8] Xilinx, “7 Series FPGAs Configurable Logic Block,” Xilinx, Inc., San Jose, CA,
Catalog, 2016. [Online]. Available: https://www.xilinx.com

[9] P. M. Heysters and G. J. Smit, “Mapping of DSP Algorithms on the MONTIUM Ar-
chitecture,” in Parallel and Distributed Processing Symposium, 2003. Proceedings.
International. IEEE, 2003, Conference Proceedings, p. 6 pp.

[10] G. Mermoud, A. Upegui, C.-A. Pea, and E. Sanchez, “A Dynamically-
Reconfigurable FPGA Platform for Evolving Fuzzy Systems,” in International
Work-Conference on Artificial Neural Networks. Springer, 2005, Conference
Proceedings, pp. 572–581.



172

[11] R. Bittner, P. M. Athanas, and M. Musgrove, “Colt: an Experiment in Wormhole
Run-Time Reconfiguration,” in Photonics East’96. International Society for Optics
and Photonics, 1996, Conference Proceedings, pp. 187–194.

[12] J. R. Hauser and J. Wawrzynek, “Garp: a MIPS Processor with a Reconfigurable
Coprocessor,” in Field-Programmable Custom Computing Machines, 1997. Pro-
ceedings., The 5th Annual IEEE Symposium on, 1997, Conference Proceedings, pp.
12–21.

[13] M. Trefzer and A. Tyrrell, Evolvable Hardware: from Practice to Application.
Springer Berlin Heidelberg, 2015. [Online]. Available: https://books.google.com/
books?id=-Y2QCgAAQBAJ

[14] A. Abnous, H. Zhang, M. Wan, G. Varghese, V. Prabhu, and J. Rabaey, “The Pleiades
Architecture,” The Application of Programmable DSPs in Mobile Communications,
pp. 327–360, 2002.

[15] A. M. Tyrrell, E. Sanchez, D. Floreano, G. Tempesti, D. Mange, J.-M. Moreno,
J. Rosenberg, and A. E. Villa, “Poetic Tissue: an Integrated Architecture for Bio-
Inspired Hardware,” in International Conference on Evolvable Systems. Springer,
2003, pp. 129–140.

[16] J. F. Miller, Cartesian Genetic Programming. Springer, 2011, pp. 17–34.

[17] H.-T. Kung, “Why Systolic Architectures?” IEEE computer, vol. 15, no. 1, pp.
37–46, 1982.

[18] H. Kung and C. E. Leiserson, “Systolic arrays (for VLSI),” in Sparse Matrix Pro-
ceedings 1978, vol. 1. Society for Industrial and Applied Mathematics, 1979, pp.
256–282.

[19] A. P. Engelbrecht, Computational Intelligence: an Introduction. John Wiley &
Sons, 2007.

[20] W. Nantian, Q. Yanling, L. Yue, Z. Qingqi, and L. Tingpeng, “Survey on Evolvable
Hardware and Embryonic Hardware,” in Electronic Measurement & Instruments
(ICEMI), 2013 IEEE 11th International Conference on, vol. 2, 2013, Conference
Proceedings, pp. 1021–1026.

[21] T. Higuchi, M. Iwata, I. Kajitani, H. Iba, Y. Hirao, T. Furuya, and B. Manderick,
Evolvable Hardware and its Application to Pattern Recognition and Fault-Tolerant
Systems. Springer, 1996, pp. 118–135.

[22] R. Tessier, K. Pocek, and A. DeHon, “Reconfigurable Computing Architectures,”
Proceedings of the IEEE, vol. 103, no. 3, pp. 332–354, 2015.



173

[23] B. Dunham, D. Fridshal, R. Fridshal, and J. H. North, “Design by Natural Selection,”
Synthese, vol. 15, no. 1, pp. 254 – 259, 1963.

[24] T. Kalganova, J. F. Miller, and T. C. Fogarty, Some Aspects of an Evolvable
Hardware Approach for Multiple-Valued Combinational Circuit Design. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1998, pp. 78–89. [Online]. Available:
http://dx.doi.org/10.1007/BFb0057609

[25] J. D. Lohn and G. S. Hornby, “Evolvable Hardware: Using Evolutionary Computa-
tion to Design and Optimize Hardware Systems,” IEEE Computational Intelligence
Magazine, vol. 1, no. 1, pp. 19–27, 2006.

[26] N. Singh, Poonam, H. Chaturvedi, and K. Honey, “Computational Intelligence in
Circuit Synthesis through Evolutionary Algorithms and Particle Swarm Optimiza-
tion,” International Journal of Advances in Engineering & Technology, vol. 1, no. 2,
pp. 198–205, 2011.

[27] Y. Zhang, S. L. Smith, and A. M. Tyrrell, “Digital Circuit Design using Intrinsic
Evolvable Hardware,” in Evolvable Hardware, 2004. Proceedings. 2004 NASA/DoD
Conference on. IEEE, 2004, Conference Proceedings, pp. 55–62.

[28] H. de Garis, “Evolvable Hardware Genetic Programming of a Darwin Machine,” in
Artificial Neural Nets and Genetic Algorithms. Springer, 1993, pp. 441–449.

[29] P. C. Haddow and G. Tufte, “An Evolvable Hardware FPGA for Adaptive Hard-
ware,” in Evolutionary Computation, 2000. Proceedings of the 2000 Congress on,
vol. 1, 2000, Conference Proceedings, pp. 553–560 vol.1.

[30] R. Salvador, A. Otero, J. Mora, E. de la Torre, T. Riesgo, and L. Sekanina, “Self-
Reconfigurable Evolvable Hardware System for Adaptive Image Processing,” IEEE
Transactions on Computers, vol. 62, no. 8, pp. 1481–1493, 2013.

[31] B. K. Hall, Evolution: Principles and Processes. Jones & Bartlett Publishers, 2011.

[32] J. Felsenstein, “Inbreeding and Variance Effective Numbers in Populations with
Overlapping Generations,” Genetics, vol. 68, no. 4, p. 581, 1971.

[33] H. Kitano, Morphogenesis for Evolvable Systems. Springer, 1996, pp. 99–117.

[34] A. Thompson, “Silicon Evolution,” in Proceedings of the 1st Annual Conference on
Genetic Programming. MIT press, 1996, Conference Proceedings, pp. 444–452.

[35] A. Stoica, R. Zebulum, and D. Keymeulen, “Mixtrinsic Evolution,” in International
Conference on Evolvable Systems. Springer, 2000, Conference Proceedings, pp.
208–217.



174

[36] A. J. Greensted and A. M. Tyrrell, “Extrinsic Evolvable Hardware on the RISA
Architecture,” in International Conference on Evolvable Systems. Springer, 2007,
Conference Proceedings, pp. 244–255.

[37] T. Kalganova, “An Extrinsic Function-Level Evolvable Hardware Approach,” in
European Conference on Genetic Programming. Springer, 2000, Conference
Proceedings, pp. 60–75.

[38] T. Kalganova and J. Miller, “Evolving More Efficient Digital Circuits by Allowing
Circuit Layout Evolution and Multi-Objective Fitness,” in Evolvable Hardware,
1999. Proceedings of the First NASA/DoD Workshop on. IEEE, 1999, Conference
Proceedings, pp. 54–63.

[39] A. Thompson, Hardware Evolution: Automatic Design of Electronic Circuits in
Reconfigurable Hardware by Artificial Evolution. Springer Science & Business
Media, 2012.

[40] S. Ando and H. Iba, “Analog Circuit Design with a Variable Length Chromosome,”
in Evolutionary Computation, 2000. Proceedings of the 2000 Congress on, vol. 2.
IEEE, 2000, Conference Proceedings, pp. 994–1001.

[41] T. Higuchi, M. Iwata, D. Keymeulen, H. Sakanashi, M. Murakawa, I. Kajitani,
E. Takahashi, K. Toda, N. Salami, and N. Kajihara, “Real-World Applications
of Analog and Digital Evolvable Hardware,” IEEE transactions on evolutionary
computation, vol. 3, no. 3, pp. 220–235, 1999.

[42] K.-J. Kim and S.-B. Cho, “Automated Synthesis of Multiple Analog Circuits Using
Evolutionary Computation for Redundancy-Based Fault-Tolerance,” Applied Soft
Computing, vol. 12, no. 4, pp. 1309–1321, 2012.

[43] J. R. Koza, “Human-Competitive Results Produced by Genetic Programming,” Ge-
netic Programming and Evolvable Machines, vol. 11, no. 3-4, pp. 251–284, 2010.

[44] A. Stoica, D. Keymeulen, R. Zebulum, A. Thakoor, T. Daud, Y. Klimeck, R. Tawel,
and V. Duong, “Evolution of Analog Circuits on Field Programmable Transistor Ar-
rays,” in Evolvable Hardware, 2000. Proceedings. The Second NASA/DoD Workshop
on. IEEE, 2000, Conference Proceedings, pp. 99–108.

[45] F. Cancare, M. D. Santambrogio, and D. Sciuto, “A Direct Bitstream Manipulation
Approach for Virtex4-Based Evolvable Systems,” in Proceedings of 2010 IEEE
International Symposium on Circuits and Systems, 2010, Conference Proceedings,
pp. 853–856.



175

[46] V. Coimbra and M. V. Lamar, “Design and Optimization of Digital Circuits by Arti-
ficial Evolution Using Hybrid Multi Chromosome Cartesian Genetic Programming,”
in International Symposium on Applied Reconfigurable Computing. Springer, 2016,
pp. 195–206.

[47] L. Huelsbergen, E. Rietman, and R. Slous, “Evolving Oscillators in Silico,” IEEE
Transactions on Evolutionary Computation, vol. 3, no. 3, pp. 197–204, 1999.

[48] D. Levi and S. A. Guccione, “GeneticFPGA: Evolving Stable Circuits on Main-
stream FPGA Devices,” in Evolvable Hardware, 1999. Proceedings of the First
NASA/DoD Workshop on. IEEE, 1999, Conference Proceedings, pp. 12–17.

[49] E. Stomeo, T. Kalganova, and C. Lambert, “Generalized Disjunction Decomposition
for Evolvable Hardware,” IEEE Trans Syst Man Cybern B Cybern, vol. 36, no. 5,
pp. 1024–1043, 2006. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/
17036810

[50] A. Thompson, “On the Automatic Design of Robust Electronics Through Artificial
Evolution,” in International Conference on Evolvable Systems. Springer, 1998,
Conference Proceedings, pp. 13–24.

[51] A. Upegui and E. Sanchez, “Evolving Hardware with Self-Reconfigurable Connec-
tivity in Xilinx FPGAs,” in First NASA/ESA Conference on Adaptive Hardware and
Systems (AHS’06). IEEE, 2006, Conference Proceedings, pp. 153–162.

[52] Z. Vasicek, L. Sekanina, and M. Bidlo, “A Method for Design of Impulse Bursts
Noise Filters Optimized for FPGA Implementations,” in Proceedings of the Confer-
ence on Design, Automation and Test in Europe. European Design and Automation
Association, 2010, Conference Proceedings, pp. 1731–1736.

[53] K. Glette, J. Torresen, and M. Hovin, “Intermediate Level FPGA Reconfiguration for
an Online EHW Pattern Recognition System,” in Adaptive Hardware and Systems,
2009. AHS 2009. NASA/ESA Conference on. IEEE, 2009, Conference Proceedings,
pp. 19–26.

[54] K. Glette, J. Torresen, M. Yasunaga, and Y. Yamaguchi, “On-Chip Evolution Using a
Soft Processor Core Applied to Image Recognition,” in First NASA/ESA Conference
on Adaptive Hardware and Systems (AHS’06). IEEE, 2006, Conference Proceed-
ings, pp. 373–380.

[55] J. Torresen, G. A. Senland, and K. Glette, “Partial Reconfiguration Applied in an
On-Line Evolvable Pattern Recognition System,” in NORCHIP, 2008. IEEE, 2008,
Conference Proceedings, pp. 61–64.



176

[56] R. S. Oreifej, R. N. Al-Haddad, H. Tan, and R. F. DeMara, “Layered Approach
to Intrinsic Evolvable Hardware Using Direct Bitstream Manipulation of Virtex II
Pro Devices,” in 2007 International Conference on Field Programmable Logic and
Applications. IEEE, 2007, Conference Proceedings, pp. 299–304.

[57] L. Sekanina, “Evolutionary Functional Recovery in Virtual Reconfigurable Cir-
cuits,” ACM Journal on Emerging Technologies in Computing Systems (JETC),
vol. 3, no. 2, p. 8, 2007.

[58] A. M. Tyrrell, G. Hollingworth, and S. L. Smith, “Evolutionary Strategies and
Intrinsic Fault Tolerance,” in Evolvable Hardware, 2001. Proceedings. The Third
NASA/DoD Workshop on. IEEE, 2001, Conference Proceedings, pp. 98–106.

[59] G. Hollingworth, S. Smith, and A. Tyrrell, “The Intrinsic Evolution of Virtex
Devices Through Internet Reconfigurable Logic,” in International Conference on
Evolvable Systems. Springer, 2000, Conference Proceedings, pp. 72–79.

[60] E. Yadegari and S. M. Fakhraie, “Implementation of Image Processing Applications
with Evolutionary Fault Recovery Scheme,” in 2014 22nd Iranian Conference on
Electrical Engineering (ICEE), 2014, Conference Proceedings, pp. 458–462.

[61] L. Sterpone, M. Porrmann, and J. Hagemeyer, “A Novel Fault Tolerant and Runtime
Reconfigurable Platform for Satellite Payload Processing,” IEEE Transactions on
Computers, vol. 62, no. 8, pp. 1508–1525, 2013.

[62] D. Dasgupta and Z. Michalewicz, Evolutionary Algorithms in Engineering Applica-
tions. Springer Science & Business Media, 2013.

[63] R. Dunkley, “Supporting a Wide Variety of Communication Protocols Using Par-
tial Dynamic Reconfiguration,” in 2012 IEEE AUTOTESTCON Proceedings, 2012,
Conference Proceedings, pp. 120–125.

[64] D. S. Linden, “Optimizing Signal Strength In-Situ Using an Evolvable Antenna
System,” in Evolvable Hardware, 2002. Proceedings. NASA/DoD Conference on.
IEEE, 2002, pp. 147–151.

[65] R. A. Sutton, V. P. Srini, and J. M. Rabaey, “A Multiprocessor DSP System us-
ing PADDI-2,” in Proceedings of the 35th annual Design Automation Conference.
ACM, 1998, Conference Proceedings, pp. 62–65.

[66] A. K. W. Yeung and J. M. Rabaey, “A Reconfigurable Data-Driven Multiprocessor
Architecture for Rapid Prototyping of High Throughput DSP Algorithms,” in System
Sciences, 1993, Proceeding of the Twenty-Sixth Hawaii International Conference on,
vol. i, 1993, Conference Proceedings, pp. 169–178 vol.1.



177

[67] F. Gruau, Neural Network Synthesis Using Cellular Encoding and the Genetic
Algorithm. Université de Lyon 1, 1994. [Online]. Available: https://books.google.
com/books?id=PTn5rQEACAAJ

[68] M. Murakawa, S. Yoshizawa, I. Kajitani, and T. Higuchi, “Evolvable Hardware for
Generalized Neural Networks,” in Proceedings of the Fifteenth International Joint
Conference on Artifical Intelligence-Volume 2. Morgan Kaufmann Publishers Inc.,
1997, Conference Proceedings, pp. 1146–1151.

[69] A. Upegui, Y. Thoma, H. F. Satizbal, F. Mondada, P. Rtornaz, Y. Graf, A. Perez-
Uribe, and E. Sanchez, “Ubichip, Ubidule, and Marxbot: a Hardware Platform
for the Simulation of Complex Systems,” in International Conference on Evolvable
Systems. Springer, 2010, Conference Proceedings, pp. 286–298.

[70] X. Yao, “Evolutionary Artificial Neural Networks,” International journal of
neural systems, vol. 4, no. 03, pp. 203–222, 1993. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/8293227

[71] X. Yao and Y. Liu, “A New Evolutionary System for Evolving Artificial Neural
Networks,” IEEE Transactions on Neural Networks, vol. 8, no. 3, pp. 694–713, May
1997.

[72] I. Kajitani, T. Hoshino, N. Kajihara, M. Iwata, and T. Higuchi, “An Evolvable
Hardware Chip and Its Application As a Multi-Function Prosthetic Hand Controller,”
in Proceedings of the Sixteenth National Conference on Artificial Intelligence and
the Eleventh Innovative Applications of Artificial Intelligence Conference Innovative
Applications of Artificial Intelligence. American Association for Artificial Intelli-
gence, 1999, Conference Proceedings, pp. 182–187.

[73] D. Keymeulen, M. Iwata, Y. Kuniyoshi, and T. Higuchi, “Online Evolution for a
Self-Adapting Robotic Navigation System Using Evolvable Hardware,” Artificial
Life, vol. 4, no. 4, pp. 359–393, 1998.

[74] T. Murali, S. Perumal, R. Mohan, and P. Palanisamy, “Design and Synthesis of Six
Legged Walking Robot Using Single Degree of Freedom Linkage,” Imperial Journal
of Interdisciplinary Research, vol. 2, no. 3, 2016.

[75] A. F. Winfield and J. Timmis, Evolvable Robot Hardware. Springer, 2015, pp.
331–348.

[76] K. Glette, J. Torresen, P. Kaufmann, and M. Platzner, “A Comparison of Evolvable
Hardware Architectures for Classification Tasks,” in International Conference on
Evolvable Systems. Springer, 2008, Conference Proceedings, pp. 22–33.



178

[77] P. Kaufmann, K. Glette, T. Gruber, M. Platzner, J. Torresen, and B. Sick, “Classifica-
tion of Electromyographic Signals: Comparing Evolvable Hardware to Conventional
Classifiers,” IEEE Transactions On Evolutionary Computation, vol. 17, no. 1, pp.
46–63, 2013.

[78] H. Sakanashi, M. Salami, M. Iwata, S. Nakaya, T. Yamauchi, T. Inuo, N. Kajihara,
and T. Higuchi, “Evolvable Hardware Chip for High Precision Printer Image Com-
pression,” in AAAI/IAAI, 1998, Conference Proceedings, pp. 486–491.

[79] M. Salami, M. Murakawa, and T. Higuchi, “Data Compression Based on Evolvable
Hardware,” in International Conference on Evolvable Systems. Springer, 1996,
Conference Proceedings, pp. 167–179.

[80] N. Nedjah and L. de Macedo Mourelle, “Secure Evolvable Hardware for Public-Key
Cryptosystems,” New Generation Computing, vol. 23, no. 3, pp. 259–275, 2005.

[81] S. Picek, “Evolutionary Computation and Cryptology,” in Proceedings of the 2016
on Genetic and Evolutionary Computation Conference Companion. ACM, 2016,
Conference Proceedings, pp. 883–909.

[82] S. Picek, D. Sisejkovic, V. Rozic, B. Yang, D. Jakobovic, and N. Mentens, “Evolving
Cryptographic Pseudorandom Number Generators,” in International Conference on
Parallel Problem Solving from Nature. Springer, 2016, Conference Proceedings,
pp. 613–622.

[83] M. A. Lones and S. L. Smith, Medical Applications of Evolvable Hardware.
Springer, 2015, pp. 253–271.

[84] R. Dobai and L. Sekanina, “Low-Level Flexible Architecture with Hybrid Reconfig-
uration for Evolvable Hardware,” ACM Transactions on Reconfigurable Technology
and Systems, vol. 8, no. 3, pp. 1–24, 2015.

[85] B. Hutchings, B. Nelson, and M. J. Wirthlin, “Designing and Debugging Custom
Computing Applications,” IEEE Design & Test of Computers, vol. 17, no. 1, pp.
20–28, 2000.

[86] N. Steiner, A. Wood, H. Shojaei, J. Couch, P. Athanas, and M. French, “Torc:
Towards an Open-Source Tool Flow,” in Proceedings of the 19th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays. ACM, 2011, pp.
41–44.

[87] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and B. Hutchings,
“Rapidsmith: Do-It-Yourself CAD Tools for Xilinx FPGAs,” in 2011 21st Interna-
tional Conference on Field Programmable Logic and Applications. IEEE, 2011,
Conference Proceedings, pp. 349–355.



179

[88] T. M. Mitchell, Machine Learning. McGraw-Hill, Inc., 1997.

[89] B. Osterloh, H. Michalik, S. A. Habinc, and B. Fiethe, “Dynamic Partial Reconfigu-
ration in Space Applications,” in Adaptive Hardware and Systems, 2009. AHS 2009.
NASA/ESA Conference on, 2009, Conference Proceedings, pp. 336–343.

[90] A. Otero, R. Salvador, J. Mora, E. d. l. Torre, T. Riesgo, and L. Sekanina, “A Fast
Reconfigurable 2D HW Core Architecture on FPGAs for Evolvable Self-Adaptive
Systems,” in Adaptive Hardware and Systems (AHS), 2011 NASA/ESA Conference
on, 2011, Conference Proceedings, pp. 336–343.

[91] C. Rossmeissl, A. Sreeramareddy, and A. Akoglu, “Partial Bitstream 2-D Core
Relocation for Reconfigurable Architectures,” in Adaptive Hardware and Systems,
2009. AHS 2009. NASA/ESA Conference on. IEEE, 2009, pp. 98–105.

[92] I. Monolithic Memories, “Monolithic Memories Announces: a Revolution in Logic
Design,” Electronic Design, vol. 26, pp. 148B–148C, March, 18, 1978 1978.

[93] K. Vipin and S. A. Fahmy, “ZyCAP: Efficient Partial Reconfiguration Management
on the Xilinx Zynq,” IEEE Embedded Systems Letters, vol. 6, no. 3, pp. 41–44, 2014.

[94] H. Amano, “A Survey on Dynamically Reconfigurable Processors,” IEICE transac-
tions on Communications, vol. 89, no. 12, pp. 3179–3187, 2006.

[95] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, and B. Hutchings, “A Re-
configurable Arithmetic Array for Multimedia Applications,” in Proceedings of the
1999 ACM/SIGDA Seventh International Symposium on Field Programmable Gate
Arrays. ACM, 1999, Conference Proceedings, pp. 135–143.

[96] N. Voros, A. Rosti, and M. Hübner, Dynamic System Reconfiguration in Hetero-
geneous Platforms: The MORPHEUS Approach. Springer Science & Business
Media, 2009, vol. 40.

[97] B. Plunkett and J. Watson, “Adapt2400 ACM Architecture Overview, QuickSilver
Technology Inc,” San Jose, Jan, 2004.

[98] S. Azizi, F. Safaei, and N. Hashemi, “On the Topological Properties of HyperX,”
The Journal of Supercomputing, vol. 66, no. 1, pp. 572–593, 2013.

[99] P. Q. S. Guide, “Updated: 14, dec, 2013 “http://www.adapteva.com/wp-content/
uploads/Parallella-Quick-Start-Guide rev3.pdf”,” Last access, vol. 15, 2015.

[100] D. Dye, “Partial Reconfiguration of Xilinx FPGAs Using ISE Design Suite,” White
Paper, 2012.



180

[101] L. H. Crockett, R. A. Elliot, M. A. Enderwitz, and R. W. Stewart, The Zynq
Book: Embedded Processing with the ARM Cortex-A9 on the Xilinx Zynq-7000 All
Programmable SoC. UK: Strathclyde Academic Media, 2014.

[102] K. Vipin and S. A. Fahmy, “Mapping Adaptive Hardware Systems with Partial
Reconfiguration Using CoPR for Zynq,” in Adaptive Hardware and Systems (AHS),
2015 NASA/ESA Conference on, 2015, Conference Proceedings, pp. 1–8.

[103] M. A. Kadi, P. Rudolph, D. Gohringer, and M. Hubner, “Dynamic and Partial
Reconfiguration of Zynq 7000 under Linux,” in 2013 International Conference on
Reconfigurable Computing and FPGAs (ReConFig), 2013, Conference Proceedings,
pp. 1–5.

[104] M. Gokhale, W. Holmes, A. Kopser, S. Lucas, R. Minnich, D. Sweely, and D. Lo-
presti, “Building and Using a Highly Parallel Programmable Logic Array,” Com-
puter, vol. 24, no. 1, pp. 81–89, 1991.

[105] J. Becker, T. Pionteck, and M. Glesner, DReAM: A Dynamically Reconfigurable
Architecture for Future Mobile Communication Applications. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2000, pp. 312–321. [Online]. Available: http:
//dx.doi.org/10.1007/3-540-44614-1 34

[106] X. Wang and S. G. Ziavras, “A MultiprocessoronaProgrammableChip Reconfig-
urable System for Matrix Operations with PowerGrid Case Studies,” International
Journal of Computational Science and Engineering, vol. 10, no. 1-2, pp. 181–191,
2015.

[107] C. Ebeling, D. C. Cronquist, and P. Franklin, “RaPiD-Reconfigurable Pipelined Dat-
apath,” in International Workshop on Field Programmable Logic and Applications.
Springer, 1996, Conference Proceedings, pp. 126–135.

[108] E. Mirsky and A. DeHon, “MATRIX: a Reconfigurable Computing Architecture
with Configurable Instruction Distribution and Deployable Resources,” in FPGAs
for Custom Computing Machines, 1996. Proceedings. IEEE Symposium on, 1996,
Conference Proceedings, pp. 157–166.

[109] N. J. Macias, “The PIG Paradigm: the Design and Use of a Massively Parallel Fine
Grained Self-Reconfigurable Infinitely Scalable Architecture,” in Evolvable Hard-
ware, 1999. Proceedings of the First NASA/DoD Workshop on, 1999, Conference
Proceedings, pp. 175–180.

[110] R. W. Hartenstein, M. Herz, T. Hoffmann, and U. Nageldinger, “Using the Kres-
sArray for Reconfigurable Computing,” in Photonics East (ISAM, VVDC, IEMB).
International Society for Optics and Photonics, 1998, pp. 150–161.



181

[111] R. Hartenstein, M. Herz, T. Hoffmann, and U. Nageldinger, “KressArray Xplorer: a
New CAD Environment to Optimize Reconfigurable Datapath Array Architectures,”
in Design Automation Conference, 2000. Proceedings of the ASP-DAC 2000. Asia
and South Pacific, 2000, Conference Proceedings, pp. 163–168.

[112] M. Herz, T. Hoffmann, U. Nageldinger, and C. Schreiber, “Interfacing the MoM-
PDA to an Internet-Based Development System,” in Systems Sciences, 1999. HICSS-
32. Proceedings of the 32nd Annual Hawaii International Conference on, vol.
Track3, 1999, Conference Proceedings, p. 7 pp.

[113] D. C. Chen, “Programmable arithmetic devices for high speed digital signal
processing,” Ph.D. dissertation, EECS Department, University of California,
Berkeley, 1992. [Online]. Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/
1992/2033.html

[114] D. Alnajjar, H. Konoura, Y. Ko, Y. Mitsuyama, M. Hashimoto, and T. Onoye, “Im-
plementing Flexible Reliability in a Coarse-Grained Reconfigurable Architecture,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 12,
pp. 2165–2178, 2013.

[115] J. A. Walker, M. A. Trefzer, S. J. Bale, and A. M. Tyrrell, “PAnDA: A Reconfigurable
Architecture that Adapts to Physical Substrate Variations,” IEEE Transactions on
Computers, vol. 62, no. 8, pp. 1584–1596, 2013.

[116] K. DeJong, “An Analysis of the Behavior of a Class of Genetic Adaptive Systems,”
Ph. D. Thesis, University of Michigan, 1975.

[117] L. B. Booker, “Intelligent Behavior As an Adaptation to the Task Environ-
ment,” Ph.D. dissertation, University of Michigan, Ann Arbor, MI, USA, 1982,
aAI8214966.

[118] D. E. Goldberg and K. Deb, “A Comparative Analysis of Selection Schemes Used
in Genetic Algorithms,” Foundations of genetic algorithms, vol. 1, pp. 69–93, 1991.

[119] M. Srinivas and L. M. Patnaik, “Adaptive Probabilities of Crossover and Mutation in
Genetic Algorithms,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 24,
no. 4, pp. 656–667, 1994.

[120] J. Cervantes and C. R. Stephens, ““Optimal” Mutation Rates for Genetic Search,”
in Proceedings of the 8th Annual Conference on Genetic and Evolutionary
Computation, ser. GECCO ’06. New York, NY, USA: ACM, 2006, pp. 1313–1320.
[Online]. Available: http://doi.acm.org/10.1145/1143997.1144201

[121] H. Mühlenbein, “How Genetic Algorithms Really Work: Mutation and Hillclimb-
ing,” in PPSN, vol. 92, 1992, Conference Proceedings, pp. 15–26.



182

[122] M. Srinivas and L. M. Patnaik, “Genetic Algorithms: a Survey,” Computer, vol. 27,
no. 6, pp. 17–26, 1994.

[123] S. Tsutsui, M. Yamamura, and T. Higuchi, “Multi-Parent Recombination with
Simplex Crossover in Real Coded Genetic Algorithms,” in Proceedings of the 1st
Annual Conference on Genetic and Evolutionary Computation-Volume 1. Morgan
Kaufmann Publishers Inc., 1999, Conference Proceedings, pp. 657–664.

[124] G. Syswerda, “Uniform Crossover in Genetic Algorithms,” in Proceedings of
the 3rd International Conference on Genetic Algorithms. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1989, pp. 2–9. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645512.657265

[125] W. M. Spears, “Adapting Crossover in Evolutionary Algorithms,” in Evolutionary
Programming, 1995, Conference Proceedings, pp. 367–384.

[126] J. Vasconcelos, J. A. Ramirez, R. Takahashi, and R. Saldanha, “Improvements in
Genetic Algorithms,” IEEE Transactions on magnetics, vol. 37, no. 5, pp. 3414–
3417, 2001.

[127] Y. Jin, “A Comprehensive Survey of Fitness Approximation in Evolutionary Com-
putation,” Soft computing, vol. 9, no. 1, pp. 3–12, 2005.

[128] A. I. Esparcia-Alcázar and J. Moravec, “Fitness Approximation for Bot Evolution
in Genetic Programming,” Soft Computing, vol. 17, no. 8, pp. 1479–1487, 2013.
[Online]. Available: http://dx.doi.org/10.1007/s00500-012-0965-7

[129] M. Colby, T. Duchow-Pressley, J. J. Chung, and K. Tumer, “Local Approximation of
Difference Evaluation Functions,” in Proceedings of the 2016 International Confer-
ence on Autonomous Agents & Multiagent Systems. International Foundation for
Autonomous Agents and Multiagent Systems, 2016, pp. 521–529.

[130] P. Yan and H. Takagi, “Comparative Study on Fitness Landscape Approximation
with Fourier Transform,” in 2012 Sixth International Conference on Genetic and
Evolutionary Computing, Aug 2012, pp. 400–403.

[131] T. Kuyucu, M. Trefzer, A. Greensted, J. Miller, and A. Tyrrell, “Fitness Functions
for the Unconstrained Evolution of Digital Circuits,” in 2008 IEEE Congress on
Evolutionary Computation (IEEE World Congress on Computational Intelligence),
June 2008, pp. 2584–2591.

[132] J. H. Holland, “Genetic Algorithms,” Scientific american, vol. 267, no. 1, pp. 66–72,
1992.



183

[133] H.-G. Beyer and H.-P. Schwefel, “Evolution Strategies – A Comprehensive Intro-
duction,” Natural computing, vol. 1, no. 1, pp. 3–52, 2002.

[134] J. R. Koza, Genetic Programming: on the Programming of Computers by Means of
Natural Selection. MIT press, 1992, vol. 1.

[135] R. Storn and K. Price, “Differential Evolution–A Simple and Efficient Heuristic
for Global Optimization Over Continuous Spaces,” Journal of global optimization,
vol. 11, no. 4, pp. 341–359, 1997.

[136] D. Floreano, P. Dürr, and C. Mattiussi, “Neuroevolution: from Architectures to
Learning,” Evolutionary Intelligence, vol. 1, no. 1, pp. 47–62, 2008.

[137] P. L. Lanzi, W. Stolzmann, and S. W. Wilson, Learning Classifier Systems: from
Foundations to Applications. Springer, 2003.

[138] T. BDack, F. Hoffmeister, and H. Schwefel, “A Survey of Evolution Strategies,” in
Proceedings of the 4th International Conference on Genetic Algorithms, 1991, pp.
2–9.

[139] J. R. Koza, Genetic Programming III: Darwinian Invention and Problem Solving.
Morgan Kaufmann, 1999, vol. 3.

[140] J. F. Miller, “An Empirical Study of the Efficiency of Learning Boolean Functions
Using a Cartesian Genetic Programming Approach,” in Proceedings of the 1st
Annual Conference on Genetic and Evolutionary Computation-Volume 2. Morgan
Kaufmann Publishers Inc., 1999, pp. 1135–1142.

[141] S. L. Harding, J. F. Miller, and W. Banzhaf, “Self-Modifying Cartesian Genetic
Programming,” in Cartesian Genetic Programming. Springer, 2011, pp. 101–124.

[142] J. Miller and A. Turner, “Cartesian Genetic Programming,” in Proceedings of the
Companion Publication of the 2015 Annual Conference on Genetic and Evolution-
ary Computation. ACM, 2015, pp. 179–198.

[143] A. J. Turner and J. F. Miller, “Recurrent Cartesian Genetic Programming,” in Inter-
national Conference on Parallel Problem Solving from Nature. Springer, 2014, pp.
476–486.

[144] P. Winston, Artificial Intelligence, ser. A-W Series in Computerscience.
Addison-Wesley Publishing Company, 1992. [Online]. Available: https://books.
google.com/books?id=b4owngEACAAJ

[145] R. Shonkwiler, “Parallel Genetic Algorithms.” in ICGA. Citeseer, 1993, pp. 199–
205.



184

[146] R. Hinterding, Z. Michalewicz, and T. C. Peachey, “Self-Adaptive Genetic Algo-
rithm for Numeric Functions,” in International Conference on Parallel Problem
Solving from Nature. Springer, 1996, pp. 420–429.

[147] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist Multiobjective
Genetic Algorithm: NSGA-II,” IEEE transactions on evolutionary computation,
vol. 6, no. 2, pp. 182–197, 2002.

[148] D. Goldberg, K. Deb, and B. Korb, “Messy Genetic Algorithms: Motivation, Anal-
ysis, and First Results,” Complex systems, vol. 3, no. 3, pp. 493–530, 1989.

[149] G. R. Harik, “Learning Gene Linkage to Efficiently Solve Problems of Bounded
Difficulty Using Genetic Algorithms,” Ph.D. dissertation, PhD thesis, University of
Michigan, Ann Arbor, Ann Arbor, MI, USA, 1997, uMI Order No. GAX97-32090.

[150] H. Kargupta, “Gene Expression: the Missing Link in Evolutionary Computation,”
Los Alamos National Lab., NM (United States), Tech. Rep., 1997.

[151] T. Higuchi, M. Iwata, I. Kajitani, H. Yamada, B. Manderick, Y. Hirao, M. Murakawa,
S. Yoshizawa, and T. Furuya, “Evolvable Hardware with Genetic Learning,” in
Circuits and Systems, 1996. ISCAS ’96., Connecting the World., 1996 IEEE Interna-
tional Symposium on, vol. 4, 1996, Conference Proceedings, pp. 29–32 vol.4.

[152] M. Murakawa, S. Yoshizawa, I. Kajitani, T. Furuya, M. Iwata, and T. Higuchi,
Hardware Evolution at Function Level. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1996, pp. 62–71. [Online]. Available: http://dx.doi.org/10.1007/
3-540-61723-X 970

[153] J. C. Gallagher, S. Vigraham, and G. Kramer, “A Family of Compact Genetic
Algorithms for Intrinsic Evolvable Hardware,” IEEE Transactions on Evolutionary
Computation, vol. 8, no. 2, pp. 111–126, 2004.

[154] E. Stomeo, T. Kalganova, and C. Lambert, “A Novel Genetic Algorithm for Evolv-
able Hardware,” in 2006 IEEE International Conference on Evolutionary Computa-
tion. IEEE, 2006, Conference Proceedings, pp. 134–141.

[155] R. Huan-Huan, P. Xu-Dong, and T. Jun-Lin, “Research on Evolvable Hardware
Based on Population Hybridization Monkey-King Genetic Algorithm,” in 2015
IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE
12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl
Conf on Scalable Computing and Communications and Its Associated Workshops
(UIC-ATC-ScalCom), 2015, Conference Proceedings, pp. 665–668.



185

[156] K. Li, A. Fialho, S. Kwong, and Q. Zhang, “Adaptive Operator Selection with
Bandits for a Multiobjective Evolutionary Algorithm Based on Decomposition,”
IEEE Transactions on Evolutionary Computation, vol. 18, no. 1, pp. 114–130, 2014.

[157] A. Thompson, P. Layzell, and R. S. Zebulum, “Explorations in Design Space: Un-
conventional Electronics Design Through Artificial Evolution,” IEEE Transactions
on Evolutionary Computation, vol. 3, no. 3, pp. 167–196, 1999.

[158] J. Torresen, “Increased Complexity Evolution Applied to Evolvable Hardware,” in
Smart Engineering System Design: Neural Networks, Fuzzy Logic, Evolutionary
Programming, Data Mining, and Complex Systems, Proceedings of ANNIE, vol. 99,
1999.

[159] T. Kalganova, “Bidirectional Incremental Evolution in Extrinsic Evolvable Hard-
ware,” in Evolvable Hardware, 2000. Proceedings. The Second NASA/DoD Work-
shop on. IEEE, 2000, pp. 65–74.

[160] F. Cancare, S. Bhandari, D. B. Bartolini, M. Carminati, and M. D. Santambrogio, “A
bird’s eye view of FPGA-based Evolvable Hardware,” in Adaptive Hardware and
Systems (AHS), 2011 NASA/ESA Conference on, 2011, Conference Proceedings, pp.
169–175.

[161] J. Huang, M. Parris, J. Lee, and R. F. Demara, “Scalable FPGA-Based Architecture
for DCT Computation using Dynamic Partial Reconfiguration,” ACM Transactions
on Embedded Computing Systems (TECS), vol. 9, no. 1, p. 9, 2009.

[162] W. Lie and W. Feng-Yan, “Dynamic Partial Reconfiguration in FPGAs,” in Third
International Symposium on Intelligent Information Technology Application, vol. 2,
2009, Conference Proceedings, pp. 445–448.

[163] K. S. Prasada Kumari, “Self-Adaptive Image Processing Using Blind Image
Quality Assessment Technique,” Perspectives in Science, vol. 8, pp. 639–
641, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S2213020916301823

[164] D. Vernekar, G. Malhotra, and V. Colaco, “Reconfigurable FPGA Using Genetic
Algorithm,” in Proceedings of the International Conference and Workshop on
Emerging Trends in Technology. ACM, 2010, pp. 493–497.

[165] W. M. Gentleman and H. Kung, “Matrix Triangularization by Systolic Arrays,” in
25th Annual Technical Symposium. International Society for Optics and Photonics,
1982, pp. 19–26.



186

[166] H. Kung and P. L. Lehman, “Systolic (VLSI) Arrays for Relational Database Op-
erations,” in Proceedings of the 1980 ACM SIGMOD International Conference on
Management of Data. ACM, 1980, pp. 105–116.

[167] J. D. Crisman and J. A. Webb, “The Warp Machine on Navlab,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 13, no. 5, pp. 451–465, 1991.

[168] G. M. Megson and I. M. Bland, “Generic Systolic Array for Genetic Algorithms,”
IEE Proceedings - Computers and Digital Techniques, vol. 144, no. 2, p. 107, 1997.

[169] R. Salvador, A. Otero, J. Mora, E. d. l. Torre, T. Riesgo, and L. Sekanina, “Evolvable
2D Computing Matrix Model for Intrinsic Evolution in Commercial FPGAs with
Native Reconfiguration Support,” in Adaptive Hardware and Systems (AHS), 2011
NASA/ESA Conference on, 2011, Conference Proceedings, pp. 184–191.

[170] J. L. A. van de Snepscheut and J. B. Swenker, “On the Design of Some Systolic
Algorithms,” Journal of the ACM, vol. 36, no. 4, pp. 826–840, 1989. [Online].
Available: http://dl.acm.org/citation.cfm?doid=76359.76365

[171] R. Salvador, A. Otero, J. Mora, E. d. l. Torre, L. Sekanina, and T. Riesgo, “Fault
Tolerance Analysis and Self-Healing Strategy of Autonomous, Evolvable Hardware
Systems,” in 2011 International Conference on Reconfigurable Computing and
FPGAs, 2011, Conference Proceedings, pp. 164–169.

[172] R. Salvador, A. Otero, J. Mora, E. d. l. Torre, T. Riesgo, and L. Sekanina, “Im-
plementation Techniques for Evolvable HW Systems: Virtual vs. Dynamic Recon-
figuration,” in 22nd International Conference on Field Programmable Logic and
Applications (FPL), 2012, Conference Proceedings, pp. 547–550.

[173] A. Gallego, J. Mora, A. Otero, E. de la Torre, and T. Riesgo, “A Scalable Evolvable
Hardware Processing Array,” in 2013 International Conference on Reconfigurable
Computing and FPGAs (ReConFig), 2013, Conference Proceedings, pp. 1–7.

[174] R. McGill, J. W. Tukey, and W. A. Larsen, “Variations of Box Plots,” The
American Statistician, vol. 32, no. 1, pp. 12–16, 1978. [Online]. Available:
http://amstat.tandfonline.com/doi/abs/10.1080/00031305.1978.10479236

[175] D. Whitley, “A Genetic Algorithm Tutorial,” Statistics and computing, vol. 4, no. 2,
pp. 65–85, 1994.

[176] L. H. Crockett, R. A. Elliot, M. A. Enderwitz, and R. W. Stewart, The Zynq
Book: Embedded Processing with the ARM Cortex-A9 on the Xilinx Zynq-7000 All
Programmable SoC. Strathclyde Academic Media, 2014.



187

[177] R. Oomen, T. Nguyen, A. Kumar, and H. Corporaal, “An Automated Technique
to Generate Relocatable Partial Bitstreams for Xilinx FPGAs,” in 2015 25th Inter-
national Conference on Field Programmable Logic and Applications (FPL), 2015,
Conference Proceedings, pp. 1–4.

[178] C. Kohn, “Partial Reconfiguration of a Hardware Accelerator on Zynq-7000 All
Programmable SoC Devices,” Xilinx, XAPP1159 (v1. 0), 2013.



188

APPENDIX A

IMAGE PROCESSING



189

A.1 Introduction

This appendix is dedicated for providing details for all image groups used in the experi-

ments. Each image group consists of a pair of images; a training image used as an input to

the EHW system and a reference image required by the fitness function (MAE function).

These images were selected from a commonly used image processing library1. All images

are gray-scale with size of 256×256 pixels .

A.2 Image Groups:

S&P 25% and S&P 10%

This image group consists of a noise-free reference image and a noisy training image. The

intention here is to evolve a filter that cleans noise in the training image. The training image

has a 25% (or 10%) impulsive noise. Impulsive noise (also called fat-tail distribution or

Salt and Pepper) is modeled by giving the minimum or maximum pixel values to randomly

selected pixels; in other words, the image consists of random black and white pixels. The

initial fitness (i.e., training image fitness), fitness per pixel, and the peak SNR are presented

in table A.1.

Table A.1: Properties of 10% and 25% Salt and Pepper noise images.

Image group Fitness (MAE) Fitness/pixel PSNR (dB)
S&P 25% 2102943 32.1 11.1

S&P 10% 837642 12.8 15.2

1http://www.imageprocessingplace.com/root_files_V3/image_databases.htm



190

(a) Reference image (Lena) (b) Training image (with S&P 25%) (c) Training image (with S&P 10%)

Figure A.1: S&P 25% and S&P 10% image groups.

EdgeDetect

This image group consists of a noise-free training image and a reference image that repre-

sents the detected edge. Edge detection is the feature extraction method of detecting sharp

changes in neighboring pixels.

(a) Reference image with edge detec-
tion

(b) Training image

Figure A.2: EdgeDetect image group.



191

Thresholding

Binary image is created by a thresholding method, where pixels are converted to black or

white based on a threshold typically midway (e.g., 128 in gray-scale). In other words, if

the pixel value is higher than 128 then it is assigned to the value 255 and to 0 otherwise.

(a) Reference image with threshold-
ing at 128

(b) Training image

(c) Reference image (d) Training image Gaussian noise

Figure A.3: (Top) Thresholding image group. (Bottom) Gaussian image group.

Gaussian

Gaussian image group consists of a noisy training image and a noise-free reference image.

Gaussian noise is the noise where it is Gaussian-distributed. The used training image has a



192

high SNR.

Table A.2: Properties of EdgaDetect, Thresholding, and Gaussian image groups.

Image group Fitness Fitness/pixel PSNR (dB)
EdgaDetect 7881392 120.3 N/A

Thresholding 5576351 85.1 N/A

Gaussian 493012 7.5 28.6

Image groups with different impulsive noise levels

In experiment 6 (section 6.2.6), 18 images were used. Half of them were different noise

levels for one image (Lena) and the other half was for another image (Cameraman), called

S&P X% and S&P2 X% respectively. These image groups properites are summarized in

table A.3 and table A.4. The images are shown in figure A.4 and figure A.5.

Table A.3: Properties of Lena image with different levels of impulsive noise.

Image group Fitness Fitness/pixel PSNR (dB)
S&P 2.5% 215519 3.3 21.4

S&P 5% 423036 6.5 18.1

S&P 7.5% 639059 9.8 16.4

S&P 10% 837642 12.8 15.2

S&P 15% 1267799 19.3 13.4

S&P 20% 1667570 25.4 12.2

S&P 30% 2524533 38.5 10.3

S&P 40% 3349595 51.1 9.1

S&P 50% 4167287 63.6 8.2



193

(a) Training image (with S&P 2.5%) (b) Training image (with S&P 5%) (c) Training image (with S&P 7.5%)

(d) Training image (with S&P 10%) (e) Training image (with S&P 15%) (f) Training image (with S&P 20%)

(g) Training image (with S&P 30%) (h) Training image (with S&P 40%) (i) Training image (with S&P 50%)

Figure A.4: Lena image with different levels of impulsive noise.



194

(a) Training image (with S&P2
2.5%)

(b) Training image (with S&P2 5%) (c) Training image (with S&P2
7.5%)

(d) Training image (with S&P2 10%)(e) Training image (with S&P2 15%)(f) Training image (with S&P2 20%)

(g) Training image (with S&P2 30%)(h) Training image (with S&P2 40%)(i) Training image (with S&P2 50%)

Figure A.5: Cameraman image with different levels of impulsive noise.



195

Table A.4: Properties of Cameraman image with different levels of impulsive noise.

Image group Fitness Fitness/pixel PSNR (dB)
S&P2 2.5% 215905 3.3 20.9

S&P2 5% 412825 6.3 18.2

S&P2 7.5% 657073 10.0 16.1

S&P2 10% 843664 12.9 15

S&P2 15% 1259571 19.2 13.3

S&P2 20% 1683935 25.7 12

S&P2 30% 2496520 38.1 10.3

S&P2 40% 3324956 50.7 9.1

S&P2 50% 4207501 64.2 8.1



196

Experiment 7 image groups

To explore the proposed system, variety of image groups have been used in experiment 7.

These 16 image groups are summarized in table A.5. The image groups are shown in figure

A.6 to A.21.

(a) Reference image (blurred) (b) Training image

Figure A.6: Blurring image group.

(a) Reference image (b) Training image

Figure A.7: Deblurring image group.



197

Table A.5: Properties of experiment 7 image groups.

Image group Fitness Fitness/pixel Noise or feature type
Blurring 1119057 17.1 Gaussian blur filter with σ=6

Deblurring 1119057 17.1 Gaussian blur filter with σ=6

Edge detection (Roberts) 5579355 85.1
Edge detection using Roberts
cross operator

Edge detection (Canny) 7867293 120.0
Edge detection using Canny
with threshold=255, 1;
Gaussian=1

Edge detection (Sobel) 7781534 118.7
Edge detection using Sobel
operator

Gradient adjustment 1776295 27.1
Gradient vertically, light on
the top and dark on the
bottom

Periodic dark rows 1338242 20.4
Periodic dark horizontal 2-
pixel lines

Histogram equalization 2807804 42.8
Bright pixels are brighter and
dark pixels are darker

Morphological (erosion) 1836910 28.0
Erosion with a square struc-
turing element = 9

White balancing 6027898 92.0 Bright image

Blob detection (Laplacian) 3672245 56.0 Laplacian filter (4-connected)

Contrast adjustment 3747206 57.2 Poor contrast image

Darkness equalization 2344732 35.8 Dark image

Brightness equalization 6633420 101.2 Bright image

Depixelate 766329 11.7
Image constructed by resolv-
ing every 4×4 pixels to one
pixel

Periodic dark columns 686973 10.5
Periodic vertical lines dark-
ened by Fourier Transform
with a period of eight pixels.



(a) Reference image (b) Training image

Figure A.8: Edge detection (Roberts) image group.

(a) Reference image (b) Training image

Figure A.9: Edge detection (Canny) image group.

julieweigt
Typewritten Text

julieweigt
Typewritten Text

julieweigt
Typewritten Text
198



199

(a) Reference image (b) Training image

Figure A.10: Edge detection (Sobel) image group.

(a) Reference image (b) Training image

Figure A.11: Gradient adjustment image group.



200

(a) Reference image (b) Training image

Figure A.12: Periodic dark rows image group.

(a) Reference image (b) Training image

Figure A.13: Histogram equalization image group.



201

(a) Reference image (b) Training image

Figure A.14: Morphological (erosion) image group.

(a) Reference image (b) Training image

Figure A.15: White balancing image group.



202

(a) Reference image (b) Training image

Figure A.16: Blob detection (Laplacian) image group.

(a) Reference image (b) Training image

Figure A.17: Contrast adjustment image group.



203

(a) Reference image (b) Training image

Figure A.18: Darkness equalization image group.

(a) Reference image (b) Training image

Figure A.19: Brightness equalization image group.



204

(a) Reference image (b) Training image

Figure A.20: De-pixelate image group.

(a) Reference image (b) Training image

Figure A.21: Periodic dark columns image group.




