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Computationally connecting organic photovoltaic performance to atomistic
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(15 September 2016)

Rationally designing roll-to-roll printed organic photovoltaics requires a fundamental understanding of
active layer morphologies optimized for charge separation and transport, and which ingredients can be
used to self-assemble those morphologies. In this review article we discuss advances in three areas of
computational modeling that provide insight into active layer morphology and the charge transport
properties that result. We explain the computational bottlenecks prohibiting atomistically-detailed sim-
ulations of device-scale active layers and the coarse-graining and hardware acceleration strategies for
overcoming them. We review coarse-grained simulations of organic photovoltaic active layers and show
that high throughput simulations of experimentally-relevant length scales are now accessible. We de-
scribe a new Python package diffractometer that permits grazing-incidence X-ray scattering patterns
of simulated active layers to be compared against experiments. We explain the accurate calculation of
charge-carrier mobilities from coarse-grained active layer morphologies by using atomistic backmapping,
quantum chemical calculations, and kinetic Monte Carlo simulations. We employ these simulations to
show that ordering of poly(3-hexylthiophene-2,5-diyl) explains a factor of 1000 improvement in charge
mobility. In concert, we present a suite of computational tools enabling large-scale electronic properties
of organic photovoltaics to be studied and screened for by molecular simulations.

1. Introduction

Organic photovoltaics (OPVs) offer a potentially low-cost, scalable, sustainable power generation
solution that could realistically meet projected global energy demands if their efficiency can be
improved[1, 2]. OPV devices convert sunlight into electrical current through a cascade of physical
processes that depends on the morphology of the active layer[2–7]. The active layer is typically
a mixture of electron-donating molecules and electron-accepting molecules whose miscibility leads
to the formation of ordered, disordered, and mixed morphologies to varying degrees. Many fac-
tors determine the overall power conversion efficiency (PCE) of an OPV device, but engineering
the nanostructured morphology of the active layer represents an opportunity to vastly improve
PCE because fundamental understanding of how to reliably manufacture optimal morphologies is
lacking. Precisely placing the quadrillions of active layer molecules in yet-undiscovered optimal ar-
rangements can only be practically realized through molecular self-assembly. In order to harness the
active layer’s morphology to maximize the performance of organic electronic devices, it is also vital
to identify the links between the orientations and conformations of the molecules and the device-
scale bulk performance. The tasks of understanding which active layer ingredients self-assemble
favorable morphologies and understanding which morphologies are optimal for OPV performance
can be advanced through the use of computer simulations. Computer simulations have become
an essential tool for predicting morphologies of materials systems, providing an understanding of
how custom-tailored physical properties can be determined through nanostructural engineering[8].
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Computational chemistry allows the electronic properties of an active layer to be calculated by
way of the electronic structure calculations of each constituent molecule[9–14]. Combining com-
putational chemistry with modeled morphologies offers a feasible path to inform the design of
low-cost, high-efficiency OPVs.

The low-cost of OPVs derives from their mass-manufacturability, wherein solvated active layer
ingredients are spread continuously onto a substrate. This roll-to-roll processing can be done at low
temperatures and can incorporate electronic circuitry with recent advances in printing technology
[1, 15, 16]. During roll-to-roll manufacturing, thermodynamic free energy minimization drives the
molecular self-assembly of active layer ingredients into a nanostructured morphology responsible
for converting light into electricity. This morphology matters for overall PCE, because the bound
electron-hole pairs (excitons) created when light is absorbed by electron-donating species must
contact an electron-accepting species shortly after being created before the charge pair recombines
and the absorbed photon’s potential contribution to current is lost. Once charges are separated at
the donor-acceptor interface, there must exist conducting paths from the interface to each electrode
in order for the charges to escape the active layer and contribute to generated current. Therefore,
high PCE OPVs require active layer morphologies optimized for the separation of excitons into
distinct charges and the subsequent transport of these charges out of the active layer via high
charge mobility.

Optimal morphologies for high PCE are hypothesized to have features including low mixed amor-
phous regions of donors and acceptors[17] or hierarchically structured mixed regions[18], but are
still not known for certain. In devices made with donor poly(3-hexylthiophene-2,5-diyl) (P3HT) and
acceptor [6, 6]-phenyl C61-butyric acid methyl ester (PCBM) it is shown that 4-fold enhancement
in PCE results from 10-30nm domains of phase-separated P3HT and PCBM on a CuI surface
compared to devices less-ordered films prepared on PEDOT:PSS surfaces[19]. Thermal and sol-
vent annealing of OPV films has also demonstrated increased ordering correlating with increased
PCE[20, 21]. This evidence suggests that thermodynamic self-assembly can be used to engineer the
structure of OPV active layers, contingent on finding ingredients and conditions that are suited to
assemble morphologies optimized for high PCE.

In this work we review the advances to computationally predicting the morphology of OPV ac-
tive layers, the difficulties associated with understanding experimental and simulated active layer
morphologies, the processes for mapping between molecular models with varying detail, and the
computation of charge mobility from device-scale morphologies. These components comprise a
framework of computational tools that can now be leveraged to advance fundamental understand-
ing of active layer engineering. Charge mobility calculations permit the fundamental barriers to
efficient charge transport to be elucidated for specific active layer mixtures, and for the mobili-
ties of a set of morphologies to be directly compared. Coarse-grained molecular dynamics (MD)
simulations permit device-scale morphologies to be efficiently predicted over broad regions of pa-
rameter space, allowing for the screening of active layer ingredients and conditions optimized to
self-assemble target morphologies. Fine-graining methods that map coarse-grained morphologies
back to atomistically-detailed representations permit charge mobility calculations to be applied to
device-scale morphologies. Computational calculations of scattering patterns used to characterize
OPV active layers permits simulated morphologies to be directly compared against experimental
observations and provide insight into the molecular arrangements of realized OPV active layers. In
concert, these computational capabilities hold promise to inform the engineering of low-cost, high
PCE OPV’s.

2. Predicting morphology

Simulations of materials with complexity comparable to OPVs are now routine, including systems
of self-assembling surfactants, folding proteins, and sintering oxides[22–25]. Using molecular dy-

2

kimberlyholling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at Molecular Simulation, published by Taylor and Francis. Copyright restrictions may apply. doi: 10.1080/08927022.2017.1296958



namics (MD) and Monte Carlo (MC) techniques, the changing coordinates of the atoms comprising
these systems can be evaluated to picometer (1× 10−12 m) resolution. Simulations allow practical
questions including “How does surface hydrophobicity influence nucleotide attraction?”[26], and
simulations are essential to answering theoretical questions including “What is the densest packing
of perfectly hard tetrahedra?”[27, 28].

Whether exploring the morphological possibilities for a particular mixture of ingredients or
reverse-engineering which ingredients and processing conditions will self-assemble a target mor-
phology, the utility of molecular simulations depend on their predictive capabilities. At the present
time, molecular simulations are best suited to provide insights into the phase behavior of molecular
mixtures as thermodynamic free energy minimization causes structures to evolve over time. These
insights have been instrumental in painting a broad understanding of how self-assembly can be used
to engineer active layer morphology, but additional advances are needed to fully characterize the
nonequilibrium processes, boundary effects, and full time- and length-scales relevant to roll-to-roll
OPV manufacturing. There are two key reasons modeling techniques need to to be improved to
provide perfect information to OPV manufacturers: (1) It is prohibitively expensive to simulate
the time-scales needed to observe atomistically-detailed self-assembly in 100-nm thick active layer
films. (2) Nonequilibrium solvent evaporation, temperature gradients, and fluid flows that occurs
during manufacturing are difficult to faithfully model with equilibrium simulation tools. In this
work we focus discussion on MD simulations as the tool of choice for OPV morphology prediction,
as MD better represents morphologies evolving over time compared to MC simulations that provide
better insight into equilibrium properties at the cost employing unphysical atomic movements.

2.1. Length vs. time trade-off

One recent strategy for mitigating the computational cost of molecular simulations is to use com-
puter hardware with the ability to perform expensive computations in parallel. Supercomputers
are the standard way to leverage many processing units for parallelizeable computations including
potential energy and force summations in a fraction of the time of a single processor. Recent ad-
vances in consumer gaming hardware has made available graphics processing units (GPUs) that act
as small supercomputers, and have been leveraged to accelerate MD simulations to great success
[29–36]. The speedups of MD packages including HOOMD-Blue, LAMMPS, and AMBER vary
from 2x to 10x, depending on the routines parallelized and implemented on GPUs and the systems
used to perform benchmarks[29, 30, 33, 37]. Regardless of package used, the ability to increase by
a factor of 2 to 10 the timescales accessible to a simulation by virtue of using GPU accelerators
is expanding the utility of MD simulations for the study of OPVs and other materials. Due to
these speedups and acceleration of other parallelizeable computations, GPUs or other massively
multithreaded architectures are now an integral part of most supercomputer clusters.

Compounding the exponential computational cost of increasing system size is the fact that larger
systems take longer to equilibrate, resulting in longer simulation times and limited accessibility of
the equilibrium ensemble distribution of states. A striking example of the diminishing simulation
timescales accessible in large simulations is apparent in the 2013 work of Carrillo et. al., which used
the then-fastest GPU-accelerated supercomputer in the world (Titan) to simulate evolving mor-
phology in P3HT:PCBM active layers[38]. Simulating nearly 4 million particles, this work accessed
the 100nm length-scales needed to model the full height of an active layer and accessed 400ns of
simulation time, a significant achievement in scientific computing. However, if morphological evo-
lution on the timescale of seconds is required to understand OPV active layers then the cost of a
evaluating a single time step in this model needs to be lowered by a factor of 25 million. In the
case of this 400ns simulation the potential energy had not converged to a stable average, indicating
the equilibrium distribution of states had not been reached. The problem gets even worse when
sampling equilibrium ensembles is desired. After a simulation has relaxed to equilibrium, the num-
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ber of timesteps between statistically independent snapshots also increases with system size. Using
correlations in potential energy as a proxy for correlations in structure, it is not unusual to find that
around ten million time steps must be evaluated to obtain two statistically independent molecular
configurations in N = 50, 000 models[39, 40]. It is therefore crucial to identify the largest system
size possible, given existing computational resources, that will permit the necessary timescales for
sampling to be accessed.

2.2. Nonequilibrium processing challenges

Faithfully representing the nonequilibrium processes that occur during the manufacturing of a
printed OPV active layer is important for making predictive models, but is challenging because MD
simulations generally employ inherently equilibrium-focused techniques. Considerable theoretical
and computational effort has gone into the development of MD integration schemes, thermostats,
and barostats for sampling thermodynamic ensembles of surface-free atomic configurations with
numerical stability[41–43]. Consequently, there are logistical and theoretical challenges to modeling
solvent evaporation, fluid flows, and temperature gradients over the course of a MD simulation on
the scales needed to capture all the physics of roll-to-roll manufacturing. Imposing temperature
gradients is the most accessible of these, as the methods of Müller-Plathe or Ikeshoji et. al. could
be adapted to a variety of geometries [44, 45]. In the case of fluid flows, imposing more than
1D shear fields is not straightforward using the unphysical momentum transfer methods used by
Müller-Plathe to calculate shear viscosity[46]. Most difficult is modeling the evaporation of solvent
from an active layer during processing, as this imposes both concentration gradients and changing
particle numbers that are not straightforward to handle. For example, removing a solvent molecule
from a MD simulation introduces voids in the simulation volume over timescales that are unphysical
compared to the (currently) intractable problem of simulating the film as it equilibrates in contact
with an atmospheric blend of oxygen, nitrogen, and argon.

2.3. Large-scale morphology predictions

Despite the inability to fully capture all the length, time, and nonequilibrium considerations of
active layer processing, MD simulations have proved useful in providing insight into large-scale
active layer morphology. These simulations have accessed experimentally relevant length scales
and time scales by using simplified coarse-grained models that significantly reduce computational
cost. Coarse-grained models represent collections of connected atoms with coarse-grained simu-
lation elements (equivalently termed “beads” or “particles”) that reproduce the net interactions
of those atoms with other coarse particles[47–51]. Accurate coarse-grained force fields require the
potentials of mean force to be thoughtfully calculated from more detailed simulations if the coarse
models are to be predictive over broad regions of state space[50, 52–54]. Alternatively, qualitative
coarse-grained potentials permit the properties of a material system to be probed in response to
assumptions about the underlying physics[38–40, 55–57].

Work by Jankowski, Marsh, and Jayaraman [39, 40] used a coarse-grained model of P3HT and
PCBM inspired by the models of Do, Huang, and Faller[55–57] to study the phase behavior of P3HT
derivatives mixed with fullerene derivatives. These simulations demonstrated agreement with ex-
perimental characterization of the neat polymer and polymer:PCBM mixtures, efficient sampling
of parameter spaces, and identification of new structures that could enhance charge transport.
Solvents were handled implicitly in these works, their effects captured by effective attractions
modulated by Lennard-Jones ε values describing the relative attractions between side-chain beads,
backbone beads, and acceptor beads. The simulations were performed using HOOMD-Blue[33],
which permitted around 200 combinations of chain architectures, solvent types, temperatures, and
acceptor fractions to be equilibrated over 4 months using NVIDIA c2050 GPUs. These simula-
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tions probed morphologies on the scale of 10nm, sampled for up to 2µs, permitted self-assembled
morphologies to be directly compared against experimental data (Figure 1). With the help of com-
putational diffraction techniques described in detail in the next section, it was shown that the
architecture of polymer side chains (whether they alternate or are aligned) determines the thermo-
dynamic stability of layered structures vs. cylinders, in agreement with experiments[58]. The ability
to screen multiple polymer types over a broad parameter space efficiently was essential to this work
because the disorder-order transition temperatures for each molecule were not known a priori and
simulations of fewer than 100ns were generally not sufficient to identify thermodynamically stable
structures.

Figure 1. Coarse-grained simulations of neat P3HT and PDHBT access the length scales and timescales needed to repro-
duce experimental measurements. a) Imperfect lamellar structure assembled by model P3HT oligomers (left), corresponding

diffraction pattern (center), and GIXS data from annealed P3HT (right). b) Hexagonally packed cylinders at assembled by

model PDHBT (left), corresponding diffraction pattern (center), and GIXS data from annealed PDHBT (right). Reprinted
with permission from Ref. [39]. Copyright 2013 American Chemical Society.

The utility of efficient screening of experimentally-relevant volumes was further demonstrated
in Ref. [40], where the phase diagram of structure as a function of polymers of side chain type was
elucidated (‘a’ = short length and strong attraction, ‘b’ = long length and strong attraction, ‘c’ =
short length and weak attraction, ‘d’ = long length and weak attraction) (Figure 2)[40]. This work
demonstrated that variations on chain length were sufficient to alter not only the disorder-order
transition temperatures for the neat polymers, but also that lamellar, cylindrical, perforated lamel-
lar, and ordered ribbon structures can all be tuned by the type of side chain. It also demonstrated
that increasing side chain length increases the melting temperature of these polymers, in agreement
with experiments performed in Ref. [59]. The ability to systematically vary side chain length and
attraction strength without side effects was the key advantage in these exploratory simulations
over atomistically-detailed models.

Once coarse-grained models are validated through comparisons with theory and experimental re-
sults, the ability to explore how changes in molecular geometry and miscibility influence morphology
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Figure 2. Sampling broad parameter spaces permits the role of side-chain length to be identified with coarse-grained models.
a) Phase diagram of thermodynamically stable morphologies for for oligomer architectures P1, P2, P3, and P4 with side chain

types a, b, c, and d. Representative diffraction patterns with snapshots inset for b) D = disordered, c) L = lamellar, d) P =
perforated lamellar, e) C = cylindrical and f) R = ribbons. Reprinted with permission from Ref. [40]. Copyright 2014 American

Chemical Society.

provides insight into design rules for guiding experiments. The simulations of model polythiophene
derivatives mixed with fullerene derivatives in Ref. [39] were validated by both comparing neat
P3HT and poly(3,4-dihexyl-2,2’-bithiophene) PDHBT morphology against experiments (Figure 1)
and by comparing P3HT:PCBM and poly(2,2’:5’,2”-3,3”-dihexylterthiophene) (PTTT):PCBM
mixture morphology against experimental and theoretical predictions from Ref. [60]. In the former
case, lamellar spacing and chain spacing of P3HT and the hexagonal packing of PDHBT was facili-
tated with simulated diffraction analysis. In the latter case, the intercalation of fullerenes in PTTT
but not P3HT was shown to depend on the side-chain spacing. Having validated this coarse-grained
model, Jankowski, Marsh, and Jayaraman performed simulations exploring how acceptor miscibil-
ity influenced the morphology of the mixtures (Figure 3 and Figure 4). A design rule resulting
from this work was that the attraction between polymer backbones and fullerenes can be used to
tune the thermodynamic stability of complex structures with high interfacial surface area between
donors and acceptors. These structures include a kagome lattice of polymer backbones with ac-
ceptors aggregating at the triangular sites (Figure 4a) and cylinders of fullerenes surrounded by a
sheath of polymer backbone (Figure 4c).

Using both GPU accelerators and coarse-grained models of OPV active layer ingredients, it is
now possible to predict thermodynamically stable mixture morphologies efficiently. The morpholo-
gies resulting from these high-throughput simulations provide structural information that provides
insight into detailed molecular arrangements and provides design rules for subsequent experiments.
In the next section we discuss the details of simulated diffraction experiments that makes it possible
to connect the predicted morphologies against experimental structures while helping to interpret
experimental measurements.
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Figure 3. Phase diagram of thermodynamically stable morphologies for P3HT (P1), PTTT (P2) and PDHBT (P3) mixed

with fullerene acceptors: A1 - strongly separates from the polymers, A2 - weakly miscible with polymers, and A3 - strongly
miscible with polymers. Reprinted with permission from Ref. [39]. Copyright 2013 American Chemical Society.

3. Characterizing morphology

Given the growing importance of materials simulation, it may therefore come as a surprise that
comparing simulated morphologies against their experimental counterparts is still not straight-
forward to do. The comparison challenge with OPV morphologies is caused by the nature of the
indirect experimental scattering techniques used to probe active layer structure. These techniques
measure the intensity of radiation scattered by a material as a function of the radiation’s incident
angle allowing determination of structural correlations within the material. The shortcoming of
scattering techniques is that the scattering intensities are not unique—multiple arrangements of
atoms can result in the same scattering pattern[61]. This is true whether the incident radiation is
scattered by electron clouds (e.g., X-rays) or atomic nuclei (neutrons). The scattered intensities
provide insight into the length scales of spatial correlations in a material, but these correlations are
averaged over relatively large sample volumes, often masking non-negligible structural features[62].
Unfortunately, because of the scattering uniqueness problem, it is not generally possible to decon-
volve a scattering pattern into atomic coordinates without additional information[61]. Therefore,
the ability compare simulated structures against experimental ones depends on the ability to trans-
form atomic coordinates into scattering patterns.

The challenges with inferring structure from scattering patterns are compounded in soft mat-
ter systems, where amorphous structures lacking symmetry or periodicity are both common and
important. In the case of thin films made from organic polymers and fullerenes, complex morpholo-
gies that include multiple phases and varying degrees of order within one sample are commonly
synthesized. Characterizing these films with grazing incidence X-ray scattering (GIXS) provides
insight into structural correlations and their symmetries (if any), but insufficiently resolves the
details of molecular packings in all but the most ordered structures[62]. In order to build a fun-
damental understanding of how the components and preparation of these films determines their
morphology we require simulations that can reproduce experimentally realized morphologies that
provide additional detail into their atomic arrangements. Consequently, we require the ability to
generate scattering intensities of soft matter systems that can be compared with experiments.

Openly available code for performing scattering analysis exists for a variety of platforms. The
MATLAB code accompanying Schmidt-Rohr’s work permits scattering densities to be transformed
into scattered intensities [63]. The ISAACS package by Le Roux and Petkov provides calculation
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Figure 4. Exploratory simulations of fullerenes with strong attraction to the polymer backbone identify new structures with

features that could enhance charge transport. Structural features of simulated OPV oligomers mixed with a fullerene derivative
strongly attracted to the oligomer backbones. a) Kagome lattice of oligomers with fullerenes at triangular sites. b) Square lattice
of oligomers intercalated in fullerene layers, c) Hexagonally-packed cylinders of fullerenes sheathed in oligomer backbones. d)

Layers of fullerenes sheathed in oligomer backbones. e) Fullerene-backbone radial distribution functions quantifying increased
acceptor-backbone correlations with increasing attraction. f) Phase diagram of strongly-attractive fullerene acceptor A5 with

P3HT (P1), PTTT (P2) and PDHBT (P3). Reprinted with permission from Ref. [39]. Copyright 2013 American Chemical

Society.

of structure factors with a variety of different techniques [64]. While the core mathematics to do
so exists in both of these packages, neither provides a way to generate simulated GIXS patterns of
arbitrary orientations of periodic simulation volumes easily.

Here we describe an open-source software package diffractometer for generating scatter-
ing patterns with a focus on soft matter systems. We review the scattering theory informing
diffractometer, validate its correctness with scattering patterns of cubic crystals, and demon-
strate its utility analyzing simulations of OPV films.
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3.1. Scattering theory

The scattered intensity I(~q) corresponding to a set of particle positions ~x depends on the density of
scatterers in space ρ(~x). Specifically, the Fourier transform of the scattering density autocorrelation
function Rρ(~x) gives the scattered intensity[63]

I(~q) = FT[Rρ(~x)]. (1)

The Fourier transform is defined by

FT[Rρ(~x)] =

∫ ∞
−∞

Rρ(~x)e−2πi~x~qd~x, (2)

and the Inverse Fourier transform:

IFT[I(~q)] =

∫ ∞
−∞

I(~q)e2πi~q~xd~q. (3)

Autocorrelation functions such as Rρ(~x) are convenient to calculate using Fourier transforms as
well:

Rρ(~x) = IFT [FT [ρ(~x)] FT∗ [ρ(~x)]] , (4)

where FT∗[ρ(~x)] denotes the complex conjugate of the Fourier transform of ρ(~x). Substituting
Equation 4 into Equation 1, the scattered intensity simplifies to

I(~q) = FT [ρ(~x)] FT∗ [ρ(~x)] = |FT[ρ(~x)]|2 . (5)

The result of Equation 5 provides the foundation for simulating scattering experiments: Given the
scattering density ρ(~x) it is straightforward to calculate the scattered intensity I(~q) via Fourier
transforms.

In order to generate the scattering density ρ(~x), upon which all these calculations depend, two
components are needed. First, the positions of each scatterer in space p(~x). Second, the shape and
orientation of each scatterer’s scattering density s(~x). In the simple case of a system composed of
identical scatterers, the scattering density can be calculated with

ρ(~x) = s(~x) ∗ p(~x) (6)

where ∗ is the convolution operator[63]. A consequence of Equation 6 and a Fourier transform
property is that scattered intensities are efficient to calculate for systems of identical particles:

I(~q) = |FT[s(~x) ∗ p(~x)]|2 (7)

I(~q) = |FT[s(~x)]FT [p(~x)]|2 (8)

Equation 8 permits high-efficiency calculations, because the multiplication of two matrices (here,
performed in Fourier space) scales as the number of elements O(N), whereas the convolution
operation scales O(N2). In aggregate, using fast Fourier transforms that scale O(N log(N)) followed
by the O(N) multiplication is faster than doing the O(N2) convolution followed by the O(N log(N))
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transformation. Another form of Equation 8 for isotropic systems is

I(~q) = FT[δ(r) + g(r)] |FT [ρP (~x)]|2 = S(~q)P (~q), (9)

where ρP is the density distribution of a spherical particle and g(r) is the radial pair distribution
function. This factorization is a convolution of the structure factor S(~q) = 1 + ρFT [g(r)− 1] and
the form factor P (~q) = |FT [ρP (~x)]|2. For isotropic fluids, the structure factor can be written

S(~q) = 1 + 4πρ

∫ ∞
0

(g(r)− 1)r2 sin qr

qr
dr (10)

and this form is frequently employed throughout the simulation literature. The problem with using
Equation 10 in practice is that it will be inaccurate for anisotropic structures and the of different
ways of replacing the upper infinite limit can give rise to a variety of artifacts[65].

It is preferable to use Equation 8 to directly calculate scattering intensities over Equation 10
because of its accuracy and also because it is increasingly straightforward to do so using numerical
Fourier transforms made accessible through software including the Python numpy package. In the
work of Schmidt-Rohr, calculation of the full 3D I(~q) is performed, which can subsequently be re-
duced to 2D GIXS or 1D structure factor representations[63]. One shortcoming of this approach is
the large memory footprint of both the discretized 3D density distribution ρ(~x) and the correspond-
ing intensity I(~q) field of a single configuration, which reach gigabytes each for typical systems.
Another shortcoming is that it is difficult to efficiently implement the channel-sharing needed to
generate 2D or 1D scattering intensities from the full 3D FFT. Here we demonstrate generation
of 2D scattering intensities corresponding to GIXS patterns using discrete Fourier transforms of
arbitrarily oriented periodic simulation volumes that overcomes the challenges of using a full 3D
implementation.

3.2. Computer implementation

In order to determine the GIXS pattern corresponding to a scattering experiment from simulation
data, two things are needed: (1) The scattering density throughout the periodic simulation volume,
and (2) The orientation of the simulation volume with respect to the incident radiation. The latter is
important because different orientations of an anisotropic simulation volume will generate different
scattered intensities and require careful handling of periodic boundary conditions.

To explain the process of generating 2D GIXS patterns from simulation data, we consider an
example case of a 4x4x4 simple cubic lattice (Figure 5a) in a cubic simulation volume with box
length L = 4. The configuration shown in Figure 5b is an example orientation of the cubic lattice
for which the diffraction pattern is desired by applying arbitrary rotation matrix R to the periodic
volume. Applying Equation 8 to generate a GIXS pattern from the coordinates in Figure 5b,
the projected 2D particle positions p(~xxy) and 2D single-particle scattering density s(~xxy) are
needed as input to the 2D discrete Fourier transform. Here, s(~xxy) is taken to be a 2D Gaussian,
which is its own Fourier transform pair. The positions p(~xxy) are obtained trivially from p(~x) by
neglecting the z-coordinates of each particle in the rotated periodic cell. The projected coordinates
require two transformations before the discrete Fourier transform can be applied: First, the x and
y coordinates must be wrapped into a periodic area that tiles the plane. Second, that periodic area
must be transformed (sheared) into a unit square so that particle positions may be discretized into
a data structure that can be efficiently transformed into Fourier space. Any of the orthorhombically
projected faces of the rotated unit cell will suffice as a periodic area in which to wrap projected
coordinates. Here we use the largest of the three choices of face (front and back faces are equivalent,
as are left and right, and top and bottom), shaded gray in Figure 5b. After applying periodic
boundary conditions, the atoms outside the shaded gray area from Figure 5b are wrapped into
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it (Figure 5c). The shear matrix M needed to transform the periodic area from Figure 5c to a
unit square is determined by the inverse of the 2x2 matrix made from rotated box axes a and b
bounding the shaded periodic area in Figure 5b:

M =

[
ax ay
bx by

]−1

. (11)

The normalized coordinates p∗(~xxy) (see Figure 5d) are obtained using M :

p∗(~xxy) = p(~xxy) ·MT (12)

where each row of matrix p stores the x and y coordinates of the rotated atoms. Atom counts are
then binned in an N ×N matrix that serves as input to the discrete Fourier transform. Figure 5d
shows N = 16, and we find N = 512 to be adequate for general-purpose use. After applying the
uniform scattering density (here, a Gaussian blur) and resolving the intensity spectrum in Fourier
space (Equation 8), the inverse shear matrix M−1 is applied to the resulting diffraction pattern
and the log10 of the bin intensities is calculated to give the final GIXS data (Figure 5e). The larger
length-scale features can be “zoomed in” on by using fewer N/z × N/z discrete bins and then
interpolating the N ×N diffraction pattern from the final GIXS data. Physical wave vector q axes
are added to the final GIXS data (Figure 5f) using

q(dp) =
2πdp
Lz

(13)

where dp is the distance in pixels of a GIXS bin from the origin and L is the periodic box length. The
code implementing these transformations is available online at http://bitbucket.com/cmelab/

cme_utils. Validation and verification details for our GIXS calculations are included in the sup-
plementary information (SI section §1).

4. Fine-Graining

We refer to the process of mapping atomistic coordinates into a coarse-grained model as “fine-
graining”, which is has found extensive use in the investigation of complex proteins[66–68], as well
as other molecular systems[69–73]. Here, we use fine-graining to inform electronic property calcu-
lations, which complement the aforementioned structural analysis. Quantum chemical calculations
(QCCs), such as density functional theory, can be used to to calculate important electronic prop-
erties for a molecular system such as the ground-state electronic structure and molecular orbital
energies[9–14]. These calculations are therefore a prerequisite for quantifying the charge transport
characteristics of a system. Unfortunately, in coarse-grained simulations, much of the electronic
information is abstracted away, and so there exists no quantum chemical methodology that can
operate on, or predict the electronic structure of, an arbitrarily coarse-grained molecule. As such,
most studies that attempt to elucidate the links between the molecular morphology and bulk de-
vice performance are limited to atomistic representations of molecules, restricting the system size
and relaxation timescales that can be simulated[56, 74–76]. Some recent investigations, however,
have leveraged the computational efficiency of course-graining, combined with a ‘fine-graining’ or
‘backmapping’ process to return molecules to their atomistic representations for subsequent elec-
tronic structure calculations[66, 77–80].

Fine-graining can be implemented in several ways, but generally follows the same fundamental
procedure, as depicted in Figure 6. The process of fine-graining maps atomistic coordinates onto
coarse-grained simulation sites by taking one configuration (microstate) and projecting the atoms
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a) b)

e)d)

c)

f)

pbc

shear

FFT

shear
back

Figure 5. Example generation of an arbitrarily oriented simple cubic lattice diffraction pattern. a) 100 view of a 4x4x4 simple
cubic lattice of 1Å diameter spheres in a periodic simulation volume. b) An arbitrary orientation of the simple cubic lattice

with the largest periodic face shaded gray. Only sphere centers are rendered for clarity. c) The resulting particle positions on

the shaded gray periodic rhombus from (b) after all particles are projected onto the plane and periodic boundary conditions are
applied. d) A shear transformation is applied to (c) to map the periodic rhombus onto a unit square. This square is discretized

(16x16 shown, 512x512 used in practice) and the intensity value of a cell is incremented for each atomic center within it. e) The

raw diffraction pattern corresponding to (d), generated after discrete Fourier transform application, normalization, and inverse
shear transformation with the origin centered in the middle of the image. f) GIXS pattern with wave vector axes added.
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Figure 6. A scheme showing the three, basic requirements of a suitable fine-graining methodology, along with examples of the
techniques frequently used to achieve each stage.

represented by each coarse-grained “bead”. This mapping is constrained so the center-of-mass of the
group of atoms is identical to the center-of-mass of the coarse-grained site. Subsequent relaxation
of bonded constriants is required for each molecule to find a realistic atomistic morphology [69, 71],
unless an internal coordiante system is maintained to permit constrains such as the expected tor-
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sional rotation of a thiophene ring or a phenyl group [70, 80] to be enforced during fine-graining.
In some cases, it can be useful to treat each group as a rigid body, keeping constant the relative
positions and orientations of atoms within the group according to a geometrically-relaxed template
[81, 82]. After the initial projection has been completed, there may be several unphysical molecular
conformations - particularly for long, flexible polymer chains where backbones may wrap around
and result in overlapping atoms. The atomic positions are therefore adjusted to make the con-
formation of the molecule more realistic, by energetically relaxing the molecules over very short
timescales. This can be performed on a molecule-by-molecule basis in isolation [67, 68], or in situ
using energetic minimization methodologies [69–71], or even full molecular dynamics simulations
[72]. In some cases, particularly when polymer chains with high conformational disorder are being
simulated, it is useful to apply additional geometrical constraints during the fine-graining process
to maintain the original centers-of-mass of each group according to the fully equilibrated, corase-
grained morphology generation. This can be achieved by simulating harmonic bonds with strong
spring constants and small equilibrium lengths between the average positions of the atoms and
the corresponding coarse-grained site position [72], anchoring the functional group in place. Such
constraints can also help to simulate non-equilibrium effects such as a significant shear force [83]. A
final relaxation stage is frequently performed with a longer molecular dynamics simulation, in order
to fully relax the chains in the simulation volume and ensure that there are no atomic overlaps
between molecules [69–72]. When a physically realistic, atomistic conformation for the molecule
has been achieved, it can be used by QCCs to determine the electronic structure.

d)

c)a) b)

P2

Figure 7. a) The coarse-grained model used to simulate P3HT. The sites P1, P2 and P3 are located at the centers-of-mass
of the thiophene ring, first three methyl group of the hexyl sidechain and the second three methyl groups respectively. b) The
first rotation required to complete the fine-graining process of the P3HT morphologies, which flips the thiophene ring into the
correct head-to-tail orientation to preserve regioregularity. c) The second rotation, which uses the locations of nearby monomers

to determine the optimal ring planarity. d) The resultant conformation of a correctly rotated polythiophene backbone (P3HT
without sidechains).

Determining a physical conformation for the initial projection of atoms is a non-trivial problem,
due to the loss of rotational information during the process of coarse-graining into a single spher-
ical bead. For instance, Figure 7a shows a commonly used, 3-site coarse-graining scheme for the
example case of P3HT[39, 40, 56, 80]. The 24-atom monomer is mapped onto three coarse-grained
beads, P1, P2, and P3, which represent the thiophene ring, and the first and second halves of the
hexyl sidechain respectively. Given a particular center-of-mass for the site P1, there are an infinite
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number of possible orientations for the plane of the thiophene ring it represents. However, due to
the constraints caused by nearby bonded and non-bonded atoms, only a small quantity of these
orientations are physically appropriate for the ring. These physical conformations can be estimated
by considering the positions of nearby atoms – for example, by rotating the ring to minimize the
distance between the center of mass of the bonded alkyl sidechain and the connecting carbon atom
in the ring, as shown in Figure 7b. This has the effect of flipping the ring into the correct head-
to-tail orientation to maintain the original regioregularity of the chain. Minimizing this distance is
an approximation designed to select an appropriate in-plane rotation of the ring, however, it does
not take into account the bending of the sidechain due to the rotation of the ring along the chain’s
backbone axis, so the resultant conformation may not be energetically minimized. Therefore, this
approximation can be improved by also considering the adjacent, bonded thiophene rings along
the chain backbone.

One such minimal energy conformation along the backbone can be realized if the in-plane vector
of a ring describes the vector between the two neighboring rings, as shown in figure Figure 7c. For
instance, the plane of ring 2 in Figure 7c can be matched to the vector b, which describes the
relative positions of rings 1 and 3. This can be achieved by mapping the current normal vector of
the ring, ~a, to a desired target vector ~b, by applying the shortest-possible-rotation matrix, R, to
each atom’s position:

R = I + [v]× + [v]2×
1− (~a ·~b)
(|~a×~b|)2

, (14)

where I is the three-dimensional identity matrix, and [v]× is the skew-symmetric cross-product

matrix of v = ~a×~b = (vx, vy, vz):

[v]× ≡

 0 −vz vy
vz 0 −vx
−vy vx 0

 . (15)

The shortest-possible-rotation ensures that the ring’s head-to-tail orientation is not modified, main-
taining the regioregularity of the chain selected by the algorithm depicted in Figure 7b. In the event
that there are not three adjacently bonded thiophene rings (i.e. at the end of the chain as for thio-
phene ring 1 in Figure 7c), then the plane of the ring can be estimated as the vector to the single
bonded neighbor (ring 2, described by the vector a).

Although this can suitably orient the thiophene rings in the backbone (as shown in Figure 7d),
the orientation of the alkyl sidechain has not yet been selected. Determining the conformation of
the sidechain based purely on the positions of the three coarse-grained sites in each monomer is
difficult because the sidechain can compress and extend significantly according to the carbon-to-
carbon bonds along the sidechain’s length. Additionally, as each molecule is fine-grained effectively
in isolation with no consideration of nearby chains, the final simulation morphology is likely to
contain a large number of overlapping atoms, which would prevent QCCs from producing accurate
electronic structure results. Previous investigations have shown that the solubilizing sidechains
do not affect the electronic structure of the molecule itself, instead only affecting the molecules
conformation during the molecular dynamics relaxation process[84–86]. As the sidechains are in-
cluded in the coarse-grained simulations, where they influenced the final conformation of the chain
backbone, they can safely be omitted from the fine-graining process and the subsequent electronic
structure calculations. This therefore treats the electronic structure of P3HT as identical to that
of polythiophene. While this can provide good qualitative agreement with experimental mobility
trends, it could contribute to the significant quantitative discrepancy sometimes observed[80]. An
additional restriction is that this technique is strongly dependent on the molecule simulated, mak-
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ing it unsuitable for fine-graining other materials, where it may not be sufficient or appropriate to
obtain rotation information based solely on the positions of the bonded coarse-grained sites.

A more robust method of fine-graining, which is transferable to other materials systems and
can predict more accurate charge transport characteristics, leverages atomistic molecular dynam-
ics simulations, optimized to run on GPUs, to find an acceptable relaxed conformation for all the
molecules in the system simultaneously. The initial atomistic projection is done by crudely placing
the moieties over the coarse-grained centers-of-mass with arbitrary rotations. In the example of
P3HT, this results in a wide array of unphysical conformations, with elongated bonds between
atoms, thiophene rings twisted and many atoms overlapping within the simulation volume, as
shown in Figure 8a. Canonical NVT molecular dynamics simulations can then be performed on
the entire system, permitting each molecule to relax according to the bond, angle and dihedral
constraints outlined in the widely-used OPLS-AA forcefield, while still constraining the moieties
to the coarse-grained centers-of-mass[51]. As a first pass, the non-bonded pair interaction poten-
tials are initially disabled, and only the intra-molecular constraints affect the conformation of the
molecules, effectively relaxing each in isolation. This first molecular dynamics phase has the result
of straightening out the molecules, flipping the incorrectly oriented thiophene rings round to an
energetically favorable rotation, and permitting the alkyl side-chains to flex and bend realistically
based on the two coarse-grained sites (Figure 8b). However, with no repulsive potentials activated
between non-bonded pairs, a significant number of atoms within the morphology overlap with those
belonging to neighboring molecules.

a) b)

c)

Figure 8. A representative example molecule of P3HT after the various molecular dynamics simulation phases discussed
in the text for the fine-graining process: a) the initial projection of the molecule, b) the molecule relaxed according to the

intra-chain potentials, c) the final, atomistic conformation of the molecule after considering pairwise potentials arising from

nearby molecules. Blue atoms are carbon, white are hydrogen and yellow atoms represent sulfur. Red beads represent the
centers-of-mass from the coarse-grained simulations.

Activating a hard non-bonded pair interaction, such as the commonly used Lennard-Jones (LJ)
potential, can often lead to extremely large repulsive forces in situations where atoms overlap sig-
nificantly. These forces cause numerical instabilities, strongly disrupting the molecule’s equilibrium
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formation determined by the coarse-grained molecular dynamics. It is therefore not uncommon to
use a “soft”, repulsive pair potential such as the dissipative particle dynamics (DPD) forcefield,
which is finite and well-defined at short separations, to gradually spread apart atoms, while still
permitting them to overlap[72]. Some flavors of this potential include random fluctuations to the
inter-atomic force, providing thermal ‘kicks’ or damping[87], however in this investigation, the DPD
forcefield is not being used to obtain the final molecular conformations and is instead used as a
tool to reduce overlap, so these fluctuations are unnecessary. After the overlap has been sufficiently
reduced throughout the morphology, a harder LJ potential can be included in the molecular dynam-
ics simulations to locate atoms correctly in the potential well that describes the balance between
atomic repulsion and van der Waals attraction.

The example molecule’s final conformation is shown in Figure 8c. This fine-graining methodology
results in a morphology with complete molecules (sidechains included) in a geometrically optimized
conformation with respect to themselves and their neighbors, while maintaining the center-of-
mass positions determined by the coarse-grained molecular dynamics relaxation. Furthermore, this
procedure is fully transferable to any other molecule with defined OPLS-AA forcefield parameters,
providing that the coarse-graining scheme is fully described.

5. Charge Mobility

When an atomistic morphology has been obtained, the carrier mobility, µ, within the system can
be determined, which is a measure of how quickly free charges can move through the active layer.
Charge transport within organic electronic devices proceeds through a series of quantum tunnel-
ing events, occurring between many ‘hopping sites’ throughout the morphology. The initial and
destination hopping sites (i and j respectively) are the frontier molecular orbitals of nearby chro-
mophores - the highest occupied molecular orbital (HOMO) for holes and the lowest unoccupied
molecular orbital (LUMO) for electrons. Each chromophore is a region over which a hole’s (elec-
tron’s) wavefunction at the HOMO (LUMO) energy is assumed to be fully delocalized. The extent
and spatial locations of chromophores can be determined using QCCs. For some materials, such
as polycyclic aromatic hydrocarbons, the molecules are small enough that a carrier’s wavefunction
has non-negligible probability density across the entirety of the molecule[88]. In larger, or more
complex semiconductors, a single molecule may well have several strongly localized frontier molec-
ular orbitals[89]. In the example case of P3HT, electronic structure calculations have predicted that
each chromophore corresponds to a region spanning approximately 7 monomers along the chain
backbone[90, 91].

The rate at which hopping can occur between chromophores, ki→j is often given by the semi-
classical Marcus expression[92]:

ki→j =
|Tij |2

~

√
π

λijkBT
exp

[
−(∆Eij − λij)2

4λijkBT

]
, (16)

where the prefactor depends on the electronic transfer integral between the initial and final chro-
mophores, Tij , and the reorganization energy, λij . The exponential term contains the free-energy
difference between the initial and final hopping states, ∆Eij = Ej − Ei, and therefore represents
a penalty associated with hops across energies with magnitudes significantly greater than λij . The
majority of other investigations that employ this semi-classical Marcus treatment use a lattice-based
model of a complete active layer, the morphology of which can be inferred from MD simulations[93],
or by numerical methods such as modified Cahn-Hilliard[94–97] or Ising model techniques[98–100].
In these cases, the free energy, ∆Eij , takes into account any local variation in the energy lev-
els (which is often selected from a density of state (DoS) distribution), the Coulomb interactions
between nearby charge carriers and their images, as well as any contributions from the applied

16

kimberlyholling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at Molecular Simulation, published by Taylor and Francis. Copyright restrictions may apply. doi: 10.1080/08927022.2017.1296958



electric field across the morphology[96, 97, 101, 102]. For the current investigation, we consider
the zero-field, time-of-flight hole mobility (which characteristically occurs at low charge densities)
in the bulk with no electrical contacts (and therefore no image charges). The sole contributor to
∆Eij is therefore the density of available states for the charge carriers. Previous studies have shown
reasonable agreement between the distribution of HOMO energies for each chromophore and the
experimentally observed DoS, and so for this investigation, ∆Eij is taken to be the difference in
HOMO levels between chromophores i and j[80].
Tij is a measure of the orbital overlap between chromophores. If the initial and destination sites

are spatially proximal, then there is increased overlap between the frontier molecular orbitals and
it becomes easier for charge carriers to hop between them, giving a faster rate, ki→j . Generally,
transfer integrals are approximated by using the energy splitting in dimer method[74, 103, 104],
based on the framework of the Marcus-Hush two-state model[105, 106]. For the charge transport of
holes, this operates on the assumption that, as a pair of chromophores are brought closer together
from isolation, the HOMO level of the dimer splits, producing new HOMO and HOMO-1 energy
levels. The magnitude of that splitting, when compared to the HOMO levels of each chromophore
in isolation, can be directly related to the transfer integral by:

|Tij | =
1

2

√
(EHOMO − EHOMO-1)2 − (∆Eij)2, (17)

where (EHOMO − EHOMO-1) denotes the HOMO splitting energy. It is important to note that
many studies predict a more broad density-of-states for the chromophores than is expected
experimentally[80, 107–110]. Therefore, some studies have successfully utilized Koopman’s approx-
imation, which effectively maps the density-of-states to a single narrow peak by assuming that
each chromophore is identical with ∆Eij = 0[104, 111, 112]. In order to map the transfer integrals
for an entire morphology, which may contain many tens of thousands of chromophore pairs, a
high throughput technique is required to determine the molecular orbital energies with high com-
putational efficiency. The semi-empirical, ZINDO/S (Zerner’s intermediate neglect of differential
overlap) method can be used to quickly determine the required orbital energies, taking of the order
seconds for each chromophore pair[113, 114]. These and similar calculations have shown to provide
order-of-magnitude agreement with more rigorous density functional theory techniques[115, 116].
Due to the large number of independent calculations to be performed for each morphology, it is
useful to leverage high performance computing clusters here, splitting the ZINDO/S calculations
to run simultaneously over several cores, increasing the throughput.

The reorganization energy, λij , describes the energy required to polarize and depolarize a chro-
mophore as a charge carrier hops onto and subsequently off a particular site. It consists of two
contributions, the ‘internal’ (λint) and ‘external’ (λext) energies, which correspond to the nor-
mal frequency modes of the molecule and the contribution due to the reorientation of nearby
molecules responding to the presence of the charge respectively[117]. While both contributions
are material dependent, density functional theory and alternative theoretical treatments predict
that λext is independent of chromophore length, whereas λint decreases monotonically for longer
chromophores[117–119]. Some investigations have had success from approximating the reorgani-
zation energy to be twice the charge carrier polaron energy, which can be tuned to match the
simulated material[100, 120, 121], rather than explicitly calculating λij through QCCs or molecu-
lar dynamics[122, 123].

The Marcus theory used in this investigation is known to have a specific domain of validity,
based on the magnitudes of ∆Eij , Tij and λij . While the complete justification of the application
of Marcus theory is beyond the scope of the techniques and results of this section, we provide a
discussion of the validity of our implementation of the theory in the supplementary information
(SI Section §2).

An event-driven treatment is required to convert the carrier hopping rate in Equation 16 into
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mobility data for a given morphology. Arguably, some of the most successful and ubiquitous event-
driven techniques are Kinetic Monte Carlo (KMC) simulations, which employ a classical represen-
tation of charge within organic electronic devices. Carriers and excitons are represented as physical
particles, each localized to a particular chromophore or lattice site. The various permitted behav-
iors of each particle can be determined by a series of rate coefficients, k, for the physical, kinetic
processes that occur within the device. These are not just limited to carrier hopping - for example,
many KMC studies have also considered photo and electrical injection, exciton transport and disso-
ciation, and carrier recombination in order to simulate a complete electronic device[95, 97, 98, 100].
Generally, the simulations proceed as follows. The ‘wait time’ for each event to occur, τ , is calcu-
lated using the Monte Carlo algorithm:

τ = − lnx

k
, (18)

where 0 ≤ x < 1 is a uniformly distributed random number. A queue is formed in ascending τ for
each event that has been considered, with the first event in the queue representing the behavior that
will occur next chronologically. The code then steps through the queue, executing the first event
and increasing the total simulation time by τ . All subsequent event times in the queue are then
decreased by τ . The particle which has just been acted upon then has its new behavior calculated.
If the executed event produced any new particles (as is the case for photo or electrical injection
events) then the possible events for these particles are also calculated and then inserted into the
queue in the appropriate, chronological position. The algorithm repeats until certain simulation
termination criteria have been met, such as a carrier hopping for a particular distance[80] or when
the flux of charge carriers hopping out of the active layer through the electrical contacts has
converged to a particular value, after a certain number of photoinjections have taken place within
the device[95, 121].

There are two main KMC methodologies, here termed ‘mesoscale’ and ‘molecular’. In mesoscale
KMC, the simulation volume consists of a regular, 3D cubic lattice, with dimensions comparable
to the thickness of the thin-film active layer (∼100 nm), split into sites with side ∼1 nm. These
simulations are therefore capable of obtaining device characteristics for a given input morphology,
which is usually generated using Cahn-Hilliard[95–97] or Ising[98, 124] theory. The ability to obtain
device-scale characteristics, such as the power conversion efficiency or the J-V curve, comes at the
price of abstracting out much of molecular interaction behavior that occurs on lengthscales <1 nm.
Instead, the disordered energetic landscape resulting from these sub-lattice interactions is estimated
using alternative methods[125, 126]. Commonly, a Gaussian Disorder Model is used, which applies
a perturbation to a site’s energy, selected randomly from a Gaussian distribution with a typical
standard deviation of σ = 100 meV[127, 128], inspired by explicit QCCs of charge carrier densities
within the material[129, 130]. This is, therefore, an approximate technique that implicitly assumes
some degree of averaging of the electronic couplings in the morphology, while still going some way
to consider the effects of molecular conformation on the bulk device performance.

Molecular KMC simulations attempt to explicitly consider these molecular effects on the charge
and energy transport mechanisms of a device. To accomplish this, they operate at a higher resolu-
tion than their mesoscale counterparts, on the Angström lengthscale, therefore simulating regions
of a morphology of side up to ∼10 nm[80]. This makes molecular KMC less suited to exploring
full device performance, but rather obtaining charge transport characteristics, such as the carrier
mobility, within the representative bulk or at pre-constructed interfaces between materials.

The charge carrier mobility can be obtained for a molecular morphology by calculating ki→j
for every pair of chromophores within the system, according to Equation 16, as outlined above.
A charge carrier can then be injected onto a random chromophore within the morphology. The
Monte Carlo algorithm (Equation 18) can then be used to determine the timescales with which each
possible hop from the initial chromophore can take place. The event with the shortest hop-time
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can then be selected as the most probable hop for the carrier, and the carrier can be moved to its
destination, increasing the simulation time by τ . Any hop that takes the carrier over the periodic
boundary wraps it back into the system on the opposite side, in an attempt to account for the
small simulation volumes compared to the active layer thickness. After many hops, the carrier will
have moved through the system for a total time, t. The mean squared displacement for the carrier
(〈x2〉) can be calculated, the results averaged over ∼10,000 carriers, and repeated for several values
of t. There is an increasing, linear trend between 〈x2〉 and t, the gradient of which corresponds to
the 3D diffusion coefficient, D. One can relate D to the zero-field mobility µ0 by using the Einstein
relation:

µ0 =
qD

6kBT
, (19)

where kB is the Boltzmann constant and T is the temperature of the system. Here, the factor of
1/6 is to account for dimensionality in the calculation, due to diffusive motion in 6 directions[131].
It is important to note that, while the carriers are hopping, no molecular motion is considered and
the atoms within the morphology are frozen, instrinsically assuming that structural decorrelation
occurs on timescales significantly longer than carrier propagation, and therefore any fluctuations
in the local energetic structure of the morphology are negligible for the duration of the KMC
simulations. A discussion of the appropriate timescales and the justification of this assumption
is given in the supplementary information (SI Section §2.1). This mobility calculation is more
similar to time-of-flight experiments, where low excitation fluence, charge density, and active layer
thickness are required[132, 133], than field-effect transistor measurements on complete devices,
which tend to report mobilities several orders of magnitude greater[134–136].

Figure 9. (top) The coarse-grained P3HT morphologies used in this investigation to emulate the bulk structure of the organic

thin-film from Ref. [39]. Red beads depict the polymer backbone (site P1 in Figure 7a), and the blue elements depict sidechains
(sites P2 and P3 ). The simulation temperatures are also shown for each system, along with each corresponding atomistic

representation after the fine-graining process outlined above (bottom, with sidechain atoms omitted for clarity). In the atomistic

morphologies, blue and yellow atoms represent the carbons and sulfur of each thiophene ring respectively.

To test the charge mobility calculation pipleline outlined above, we use a selection of coarse-
grained P3HT morphologies that are expected to be representative of the bulk structure of a
pristine thin film. The morphologies are depicted in Figure 9, where each simulation volume is
a cube of side ∼2 nm, containing 250 oligomers of length 15 monomers. Each system has been
annealed at ∼490K, before being cooled by a series of consecutive quenches to a final simulation

19

kimberlyholling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at Molecular Simulation, published by Taylor and Francis. Copyright restrictions may apply. doi: 10.1080/08927022.2017.1296958



temperature, T , as described in Jankowski, Marsh, and Jayaraman[39]. The morphology exhibits an
order-disorder transition at a critical temperature, 290K ≤ Tc < 340K, and so there is one ordered
morphology where the chains have π-stacked into lamellae, and four amorphous systems with
little to no long-range order. The atomistic representations shown in Figure 9 have been obtained
using the robust, molecular dynamics-based fine-graining methodology outlined in the previous
section. For the charge transport calculation, each chromophore consisted of a single monomer,
rather than the average carrier delocalization of 7 monomers as determined experimentally[90, 91].
Previous investigations of this type have found it challenging to determine a computationally
efficient methodology to calculate chromophore locations along a contorted chain that retains
good quantitative agreement with carrier mobilities[80]. This, coupled with the short length of the
simulated chains, suggests that a more basic chromophore identification regime would be better
suited to this investigation. As such, the mobility calculations are performed on chromophores of
length 15 monomers (the entirety of each molecule, effectively assuming instantaneous intra-chain
transport) and chromophores of length 1 monomer. While intra-chain transport is assumed to
be significantly faster than inter-chain hopping, the assumption that transport along the chain
backbone is instantaneous for these molecules is found to result in unrealistically high mobilities.
Indeed, first-principles investigations of Gaussian and worm-like chains have suggested that intra-
chain hopping occurs on timescales only one or two orders of magnitude faster than inter-chain
transport[131]. Chromophores consisting of a single monomer however, were found to well replicate
the ratio between inter- and intra-chain transport, resulting in realistic mobilities for the systems.
As such, we proceed considering only the single-monomer chromophore case. Carrier hopping rates
between monomers are calculated using Equation 16, with λij = 300 meV[118].

Figure 10. Charge mobility results for the test P3HT morphologies studied in this investigation. a) An example of the linear
trend between mean squared displacement and time. The blue line describes the data obtained from the Kinetic Monte Carlo

simulations, and the red line shows the line of best fit. b) The calculated hole mobilities of the pristine P3HT thin films explored

(solid lines). Error bars were calculated from multiple runs of morphologies generated with the same statepoint, but statistically
independent structures. The red and blue regions denote disordered and ordered regimes respectively. The dashed lines show
example experimental mobilities for comparable systems from literature references: [A][137], [B][138], [C][110], [D][108, 110],

[E][110], [F][108, 110, 138]

An example mean squared displacement trend is shown in Figure 10a, for the ordered morphol-
ogy, with an r2 correlation coefficient of 0.995 in calculating the diffusion coefficient. The calculated
zero-field hole mobilities for each of the investigated systems are shown in Figure 10b. The expected
qualitative trend in mobility has been replicated; the mobility of the ordered morphology is signifi-
cantly greater than the mobility within the disordered morphologies. Furthermore, the pipeline has
quantitatively predicted that the improvement in mobility is around three orders of magnitude,
in reasonable agreement with experimental investigations which have demonstrated a 1-2 order of
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magnitude increase in time-of-flight and field-effect mobilities depending on processing conditions,
crystallinity and morphological structure[139–142]. Additionally, the absolute values of the mobili-
ties reported here are in good quantitative agreement with experimental results. In the amorphous
and semi-crystalline phases, P3HT tends to exhibit a time-of-flight hole mobility of between 1×10−5

- 1×10−3 cm2 V−1 s−1depending on the processing conditions[108, 110, 137, 138]. This is in excel-
lent agreement with the disordered mobilities obtained in Figure 10b, for which 1×10−4 ≤ µ0 <
3×10−4 cm2 V−1 s−1. For the ordered morphology, µ0 ∼ 0.1 cm2 V−1 s−1 may seem unrealisti-
cally high for time-of-flight mobility measurements at low charge densities, but it matches well
the expected field-effect transistor measurements obtained experimentally[143, 144]. We emphasize
that the near-perfectly ordered P3HT morphology studied here lacks the grain boundaries and
defects present in experimental samples of P3HT assembled by chains with hundreds or thousands
of monomers. It stands to reason that these simulated oligomer morphologies should have enhanced
carrier mobility relative to experimental observations of polycrystalline and paracrystalline films.

In addition to the new results from this investigation, similar combinations of simulation tech-
niques to those outlined here have been used successfully in the literature to faithfully recre-
ate trends observed experimentally. For instance, many literature investigations have successfully
studied the effect of modifying the relative size, position and orientation of chromophores on vari-
ations in the electronic structure of organic semiconducting materials, including the density of
states[107, 108, 110], transfer integrals[74, 104, 145] and reorganization energies[122, 123, 146].
Although several studies report excellent agreement with other literature sources for many of the
components required to calculate the charge transport characteristics of a particular system, it is
common for investigations to omit reporting a final mobility value[104, 147, 148]. A possible reason
for this could be that, while qualitative agreement with experiment is common, quantitative agree-
ment can vary significantly depending on the system studied. In general, calculated mobility values
are often more accurate in small molecule systems where transfer integrals are averaged over, or
an initial configuration is assumed[141, 149, 150]. Otherwise, these computational methods tend
to overpredict the time-of-flight mobilities of material systems by two to six orders of magnitude,
with more noticeable discrepancies for larger or more complex molecules with a greater quantity
of physical conformations, such as polymer chains[75, 80, 151, 152].

The fine-graining and charge-transport calculations outlined in this article attempt to address
some of the issues associated with linking molecular morphology to charge transport. Specifically,
for complex molecules such as oligomers or polymer chains, employing molecular dynamics simula-
tions allows realistic conformations to be obtained within a large, coarse-grained, pre-relaxed mor-
phology. Additionally, removing assumptions about the differences between inter- and intra-chain
transport and carrier delocalization by instead using QCCs to determine the electronic couplings
between small chromophores in-situ, the quantitative discrepancy between these investigations
and experimental data appears to be reduced. Coupling charge transport studies with structural
analysis of the electrical network[122, 153, 154] or crystal packing[80, 123], can help predict the
morphological features that provide the best device performance. Extending the scope of the KMC
simulations beyond the bulk, pristine domain to molecular and electrical interfaces for different
materials allows for the prediction of full device performance characteristics such as power conver-
sion efficiencies and J-V curves. With these data, a set of design rules may be obtained, which can
suggest the best molecules and processing conditions to optimize the efficiency of many organic
electronic devices.

6. Conclusions

Using a combination of coarse-grained models, GPU-accelerated molecular dynamics, careful fine-
graining, and quantum chemical calculations it is now possible to infer the charge mobility charac-
teristics of OPV active layer morphologies generated from computer experiments. These capabilities
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are the first step towards determining which morphologies have the best charge transport properties
for a given chemistry and the factors that govern high charge mobility. Further, this framework will
enable the high-throughput screening of active layer ingredients for those with highest self-assembly
propensity for efficient OPV morphologies.

Additional advances are needed to complement and extend this work to realize the goal of pre-
dicting which ingredients and manufacturing protocols will produce the highest-efficiency OPVs.
Modeling the temperature gradients, solvent evaporation, and fluid flows in roll-to-roll manufac-
turing processes will require sophisticated add-ons to existing MD software or new nonequilibrium
simulation techniques. There are also opportunities to study morphology at the anode and cathode
interfaces of the active layer, where details of morphology are harder to probe and the transport
of charges is especially important to overall power conversion efficiency. Which electrode materials
have the best electronic properties for each combination of active layer ingredients? How do those
surfaces influence the morphology of active layer ingredients nearby? Answering these questions
will depend on the development of validated interaction potentials describing organic and inorganic
force fields and access to even longer simulatoin timescales. These opportunities to contribute to
the fundamental understanding and engineering of OPVs will not only advance the ability to engi-
neer low-cost sustainable power sources, but also improve the predictive capabilities of molecular
simulations used to study biomolecular systems, nanoparticle self-assembly, complex fluids, and
nonequilibrium systems of energetically-driven particles.
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Energy-Transfer Processes in π-Conjugated Oligomers and Polymers: A Molecular Picture. Chem.
Rev., 104(11):4971–5004, nov 2004.

[104] Yi-kang Lan and Ching-i Huang. A Theoretical Study of the Charge Transfer Behavior of the Highly
Regioregular Poly-3-hexylthiophene in the Ordered State. J. Phys. Chem. B, 112(47):14857–14862,
nov 2008.

[105] R. a. Marcus. On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer. I. J.
Chem. Phys., 24(5):966, 1956.

[106] N. S. Hush. Adiabatic Rate Processes at Electrodes. I. Energy-Charge Relationships. J. Chem. Phys.,
28(5):962, 1958.

[107] Attila J Mozer and Niyazi Serdar Sariciftci. Negative Electric Field Dependence of Charge Carrier
Drift Mobility in Conjugated, Semiconducting Polymers. Chem. Phys. Lett., 389(4-6):438–442, may
2004.

[108] Amy M. Ballantyne, Lichun Chen, Justin Dane, Thomas Hammant, Felix M Braun, Martin Heeney,
Warren Duffy, Iain McCulloch, Donal D C Bradley, and Jenny Nelson. The Effect of Poly(3-
hexylthiophene) Molecular Weight on Charge Transport and the Performance of Polymer:Fullerene
Solar Cells. Adv. Funct. Mater., 18(16):2373–2380, aug 2008.

[109] Nenad Vukmirovic and Lin-Wang Wang. Electronic Structure of Disordered Conjugated Polymers:
Polythiophenes. J. Phys. Chem. B, 113(2):409–415, jan 2009.

[110] Ralf Mauer, Marcel Kastler, and Frédéric Laquai. The Impact of Polymer Regioregularity on Charge
Transport and Efficiency of P3HT:PCBM Photovoltaic Devices. Adv. Funct. Mater., 20(13):2085–2092,
may 2010.
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