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ABSTRACT 

In this project, we focus on English Wikipedia, one of the main user-contributed 

content systems, and study the problem of predicting what users will become inactive and 

stop contributing to the encyclopedia. We propose a predictive model leveraging frequent 

patterns appearing in user’s editing behavior as features to predict active vs. inactive 

Wikipedia users. Our experiments show that our method can effectively predict inactive 

users with an AUROC of 0.97 and significantly beats competitors in the task of early 

prediction of inactive users. Moreover, we study differences in editing behavior of 

inactive vs. active users to explain why some users are leaving and provide some rules 

explaining our predictive model. 
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CAPTER ONE: INTRODUCTION 

Overview 

Nowadays, a huge part of the information present on the Web is delivered through 

user-contributed content (UCC) systems, such as Yahoo! Answers, Wikipedia, YouTube, 

Flickr, Slashdot.org, Stack Overflow, Amazon product reviews, and many more. Here, 

many users create, manipulate, and consume content every day. For example, English 

Wikipedia contains over 5 million articles that have been written collaboratively by 

volunteers around the world, and almost all of its articles can be edited by anyone who 

can access the Wikipedia website. About 300K editors, from expert scholars to casual 

readers, edit Wikipedia every month. However, just a small part of them keep actively 

contributing. For instance, in 2016, over 3,000 new editors had made more than 100 edits 

every month [6]. 

Many studies have examined this user-contributed content phenomenon and, in 

particular, the reasons that motivate users to become contributors, to continue 

contributing, and to increase contribution [1], [2], [3]. However, many users stop 

contributing after a certain period of time [4], [5]. The exit of active contributors from a 

particular UCC community may affect quantity and quality of content provision not only 

on the specific community, but also on the Web in general. 

Other works have studied Wikipedia users’ editing behavior to check how long 

they will keep active [7], [8], what their roles are [9], [10], why they contribute [11], [12], 

[13], and to identify malicious users [14], [15]. 
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In 2011, Wikimedia Foundation, Kaggle, and IEEE ICDM organized a research 

competition [16] called Wikipedia Par- ticipation Challenge (WikiChallenge) where 

participants were asked to build a predictive model that accurately predicts the number of 

edits a Wikipedia editor will make in the next months based on his or her edit history so 

far. 

However, very few studies attempted to uncover the reasons why many 

contributors become inactive. Jian and MacKie-Mason [4] formulated some hypotheses 

about the problem but did not validate them with any experiment, while Asadi et al. [5] 

performed a study on Persian Wikipedia to understand motivations and discouraging 

factors towards contribution on a very small case study (15 users). Thus, the problem of 

understanding the reasons why Wikipedia editors become inactive is still an open 

problem. Most importantly, be able to early predict which user will become inactive is 

very valuable for the community in order to perform engaging actions on time to keep 

these users contributing longer. 

In this project, we focus on English Wikipedia, one of the main UCC systems, 

and study the editing behavior of active and inactive editors on a large scale to (1) predict 

what users will become inactive and stop contributing to Wikipedia and (2) explain the 

reasons behind the quitting of so many users. Our contributions in the project are the 

following. 

 We propose a machine learning based model that leverages frequent patterns 

appearing in user’s editing behavior as features to predict active vs. inactive 

Wikipedia users. 
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 We experimentally show that our model reaches an excellent Area Under the 

ROC curve of 0.97 and a precision of 0.99 in predicting editors who will become 

inactive. Moreover, we show that the proposed model is able to early predict 

inactive editors much more effectively than competitors. For instance, by looking 

at the first 3 edits we can predict inactive users with an AUROC of 0.72 vs. 0.55 

for the competitor [7]. We think that the early prediction of inactive users is 

useful for Wikipedia administrators or other users to perform recovering actions 

on time to avoid the loss of contributors. 

 We further investigate differences in the editing behavior of active vs. inactive 

users according to users’ involvement in edit wars, reverted edits, meta-pages 

editing, and categories edited. We also show some rules we extracted that explain 

our proposed predictive model. 

Structure 

This project documentation is organized as follows. Chapter 2 discusses related 

work. Chapter 3 introduces the dataset we used in the project. Chapter 4 presents methods 

we use to solve this project. Chapter 5 describes our behavior-based approach for 

predicting inactive users. Chapter 6 reports on our experiments and compares our 

approach with the state of the art. Chapter 7 studies differences in editing behavior of 

inactive vs. active users to explain why some users are leaving. Finally, conclusions are 

drawn in Chapter 8. 
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CHAPTER TWO: RELATED WORK 

Jian and MacKie-Mason [4] discuss their hypothesis about why some editors stop 

contributing to Wikipedia. They considered editor roles such as creator, preserver, and 

destroyer, and variables like proportion of creations, proportion of re- versions, and 

proportion of damages as possible features that correlate with the leaving behavior. Based 

on two variables, namely Ontime (number of minutes that an edit persists and Deled 

(number of times an edit gets deleted), they hypothesize that the probability of leaving 

decreases according to the variation of Ontime (between the last week of edits and all 

other weeks), and, symmetrically, increases according to the variation of Deled. They 

also hypothesize that the higher the editor work intensity, the more likely they will leave. 

Based on the article stability, they hypothesize that the more stable the articles that an 

editor cares about, the more likely this editor will stop contributing. 

Asadi et al. [5] addressed a research about discovering motivations for writing 

and editing in Persian Wikipedia, discouraging factors towards contribution, and reasons 

for contributing or giving up contributing in Wikipedia. They concluded that to 

understand whether an editor is active or not, it is necessary to know how often they edit 

and how many edits they make as well as how recent their last contribution is. After they 

interviewed 15 Persian Wikipedia active editors, they found the following answers. They 

said that personal motivations such as knowledge and experience sharing, receiving help 

from other users, and becoming more familiar with the structure of Wikipedia are also 

important motivations for continuing to contribute. In addition, they mentioned that 
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cognitive motivations and personal satisfaction are important to maintain ongoing 

participation in Persian Wikipedia. Other encouraging factors they found in their study 

are enriching Persian web content, starting new topics and content production, as well as 

competition with Wikipedia in other languages. They also found that personal beliefs and 

concerns may be a motivation to start writing and editing, but it is also more likely to lead 

to edit wars and, as a result, frustration and discontinuation. The reasons they 

individuated for not continuing in Wikipedia are: (1) lack of time to contribute to 

Wikipedia, (2) finding other web-based entertainment, (3) being impatient and lacking 

tolerance for criticism. Note that this is only a case study on a small group of 15 members 

of the community. 

Lai and Yang [11] investigated the underlying reasons that drive individuals to 

edit Wikipedia content. They considered Wikipedia as a platform that allows individuals 

to show their expertise. Based on expectation-confirmation theory and expectancy-value 

theory for achievement motivations, they proposed an integrated model that incorporates 

psychological and contextual perspectives. They picked English-language Wikipedia for 

their survey. Analytical results, they indicated, confirmed that subjective task value, 

commitment, and procedural justice were significant to satisfaction of Wikipedia users, 

and satisfaction significantly influenced continuance intention to edit Wikipedia content. 

This work discusses individuals’ interest in continuing edits of Wikipedia content, which 

is quite opposite to our problem. 

Takashi et al. [9] analyzed the editing patterns of Wikipedia contributors using 

dynamic social network analysis. They have developed a tool that converts the edit flow 

among contributors into a temporal social network. They used this approach to identify 
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the most creative Wikipedia editors among the few thousand contributors who make most 

of the edits among the millions of active Wikipedia editors. In particular, they identify the 

key category of “coolfarmers”, the prolific authors starting and building new articles of 

high quality. As a second category of editors they look at the “egoboosters”, i.e. people 

who use Wikipedia mostly to showcase themselves. They said that understanding these 

different patterns of behavior gives important insights about the cultural norms of online 

creators. 

Suin et al. [12], studied multilingualism by collecting and analyzing a large 

dataset of the content written by multilingual editors of the English, German, and Spanish 

editions of Wikipedia. This dataset contains over two million paragraphs edited by over 

15,000 multilingual users from July 8 to August 9, 2013. The authors analyzed these 

multilingual editors in terms of their engagement, interests, and language proficiency in 

their primary and non-primary (secondary) languages and found that the English edition 

of Wikipedia displays different dynamics from the Spanish and German editions. Users 

primarily editing the Spanish and German editions make more complex edits than users 

who edit these editions as a second language. In contrast, users editing the English edition 

as a second language make edits that are just as complex as the edits by users who 

primarily edit the English edition. In this way, English serves a special role in bringing 

together content written by multilinguals from many language editions. In addition, they 

found that multilinguals are less engaged and show lower levels of language proficiency 

in their second languages. They also examine the topical interests of multilingual editors 

and found that there is no significant difference between primary and non-primary editors 

in each language. The dataset they used for their study is also very small.  
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In 2011, Wikimedia Foundation, Kaggle, and IEEE ICDM organized a 

competition about developing a model to predict the number of edits an editor will make 

in the five months after the end date of the training dataset they provided (see the contest 

at [16]). The dataset, which was open for all contestants, was randomly sampled from 

English Wikipedia. The time period of this dataset was from January 2001 to August 

2010. The team prognoZit, who won the first prize in the WikiChallenge contest, 

developed their own algorithm to solve the problem. They used 13 features to predict the 

future editing activity: number of edits in 9 different periods, number of reverted edits in 

2 different time periods, and number of deltas in another 2 different time slots. Their 

Wikipedia page is available at [7]. Another team, zeditor, won third place in the contest 

[8]. They solved this problem by using features such as number of edits, number of edited 

articles, and the length of time between first edit and last edit in 10 different 

exponentially long time intervals with Gradient Boosted Trees as classifier. Their 

Wikipedia page is available at [17]. 
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CHAPTER THREE: DATASET 

To conduct our study, we used the UMDWikipedia dataset (available at [18]) that 

consists of edits made by both benign and vandal users. We considered benign users only. 

This dataset contains a list of 16K randomly selected benign users who registered 

between January 01, 2013 and July 31, 2014. For each user, their edit history is available 

for the given time period (up to 500 edits per users), for a total of 609K edits made by 

benign users. For each edit the available information includes author’s username, edit ID, 

edit timestamp, page title, page type (Wikipedia article or meta-page), page category, and 

if the edit was reverted and when. A meta-page is a page which is not a regular article, 

but it can be, for instance, a User page (where editors describe themselves) or an article 

Talk page (where editors discuss about the content of the associated Wikipedia article). 

The information about edit reversion is extracted by the edit reversion dataset provided 

by [19] which marks an edit as “reverted” if it has been reverted within the next 15 edits 

on the page. 

The UMDWikipedia dataset also provides a User Log Dataset that consists, for 

each user u, of the chronological sequence of each consecutive pair (𝑝1, 𝑝2) of pages 

edited by u. For each pair (𝑝1, 𝑝2), a description of the pair is provided by using the 

following features.  

 r/n: Whether  𝑝2 is a page that has already been edited by the user before (𝑝2 is a 

re-edit – r), or 𝑝2 is a page edited for the first time by user u (𝑝2 is a new edit – 

n). 
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 m/n: Whether 𝑝2 is a meta-page (m) or a normal page (n). 

 If  𝑝2 is a re-edit:  

o c/n: Whether 𝑝1 is equal to 𝑝2, i.e. these are two consecutive edits (c) on 

the same page or not (n).  

o r/n: Whether a previous edit of 𝑝2 by the user u has been reverted (r) by 

any other Wikipedia user or not (n).  

 Otherwise (𝑝2 is a new edit):  

o t/m/u: Hop distance between pages 𝑝1 and 𝑝2 in the Wikipedia hyperlink 

graph: at most 3 hops (t); more than 3 hops (m); or unknown distance (u). 

o z/o/u: Common categories between pages 𝑝1 and 𝑝2: zero categories in 

common (z), at least one category in common (o), or info unavailable (u). 

 v/f/s: Time difference between the two edits: less than 3 minutes (very fast edit - 

v), less than 15 minutes (fast edit - f), more than 15 minutes (slow edit - s). 

Given the benign users in the UMDWikipedia dataset, we divided them into 

active and inactive users by using the following rule: if a user does not make any edit for 

Γ months, then we considered this user as an inactive user, i.e. a user who performed 

some edits and then, at some point, stopped editing and left the community. If an inactive 

user started editing again after more than Γ months, then we considered this user as a new 

user. All other users who do not have a gap of more than Γ months in their edit history 

are considered active users. 

In our experiments, we set Γ = 2 months, which corresponds to a total of 16,191 

inactive and 305 active users. We also performed our experiments by setting Γ = 3 

months, which gave us a total of 16, 170 inactive and 326 active users. The experimental 
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results that we got with Γ = 2 months are relatively comparable to the results we got with 

Γ = 3 months.  
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CHAPTER FOUR: METHODS 

In this chapter we describe in detail the methods we use to solve the problem of 

predicting inactive users and giving reasons behind their leaving from the wiki 

community.  

Frequent Pattern Mining 

According to [19], frequent patterns are a set of items, subsequences, subgraphs, 

etc., that appear in a data set with frequency no less than a user-specified threshold. For 

instance, frequent itemset is, a set of items, such as bread and jam, that appear frequently 

together in a transaction data set. A subsequence, such as buying first a bike, then a bike 

locker, and then two lights, if it occurs frequently in a shopping history database, is a 

(frequent) sequential pattern. A substructure can refer to different structural forms, such 

as subtrees, sublattices, or subgraphs, which may be combined with itemsets or 

subsequences. If a substructure occurs frequently in a graph database, it is called a 

(frequent) structural pattern. Finding frequent patterns plays an important role in mining 

associations, correlations, causation, dependence and many other interesting relationships 

among data. Furthermore, it is helpful in data indexing, classification, clustering, and 

other data mining tasks as well. Thus, frequent pattern mining has become major data 

mining task and a focused topic in data mining research. 

A variety of pattern mining methods existed for frequent pattern mining. For 

example, sequential pattern mining, periodic pattern mining, high-utility pattern mining, 

etc., 
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Sequential Frequent Pattern Mining 

As per Wikipedia definition [20], sequential pattern mining is a topic of data 

mining concerned with finding statistically relevant patterns between data examples 

where the values are delivered in a sequence. Sequential pattern mining, which discovers 

frequent subsequences as patterns in a sequence database, is an important data mining 

problem with broad applications. 

The sequential pattern mining problem was first propsed by Agarwal and Srikant 

in [21] based on their study of customer purchase sequences, which was “Given a set of 

sequences, where each sequence consists of a list of elements and each element contains 

a set of items, and given a user-specified min_support threshold, sequential pattern 

mining is to find all frequent subsequences, i.e., the subsequences whose occurrence rate 

in the set of sequences is no less than min_support”. 

Let our running sequence database be D gave in Table 4.1 and min_support = 2. 

The set of items in the database is {p, q, r, s, t, u, v}. 

Table 4.1.  A Sequence Database 

Sequence _id Sequence 

1 (p (pqr) (pr) s (ru)) 

2 ((ps) r (qr) (pt)) 

3 ((tu) (pq) (su) (rq)) 

4 (tv (pu) rqr) 

 

A sequence (p (pqr) (pr) s (ru)) has five elements: (p), (pqr), (pr), (s) and (ru), 

where items p and r appear more than once respectively in different elements. It is a nine-
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sequence since there are nine instances appearing in that sequence. Item p happens three 

times in this sequence, so it contributes 3 to the length of the sequence. 

However, the whole sequence (p (pqr) (pr) s (ru)) contributes only one to the 

support of (p). Also, sequence (p (qr) su) is a subsequence of (p (pqr) (pr) s (ru)). Since 

both sequences 1 and 3 contain subsequence a = ((pq) r), a is a sequential pattern of 

length 3 (i.e., 3-pattern). From this example, Agarwal and Srikant who worked in this 

[21] say, one can see that sequential pattern mining problem can be stated as “given a 

sequence database and the min support threshold, sequential pattern mining is to find the 

complete set of sequential patterns in the database." 

More formally, a sequence database is a set of sequences where each sequence is 

a list of itemsets [22]. An itemset is an unordered set of distinct items. A sequential 

pattern is a sequence. Suppose consider a sequence  𝑆𝑀 = 𝑃1,  𝑃2, ...  𝑃𝑘, where  𝑃1, 𝑃2, 

...  𝑃𝑘 are itemsets. Then this sequence  𝑆𝑀 is said to occur in another sequence  𝑆𝑁 =  𝑄1, 

 𝑄2, ...  𝑄𝑚,  where  𝑄1,  𝑄2, ...  𝑄𝑚 are itemsets, if and only if there exist integers 1 <= i1 

< i2... < ik <= m such that  𝑃1 ⊆  𝑄𝑖1,  𝑃2 ⊆  𝑄𝑖2, ...  𝑃𝑘 ⊆  𝑄𝑖𝑘 [23]. The support of a 

sequential pattern is defined as follows.  The number of sequences where the pattern 

occurs divided by the total number of sequences in the database. If the support of a 

sequential pattern is no less than the min_sup parameter, which will be provided by the 

user, then that sequential pattern is a frequent sequential pattern. 

Commonly used algorithms for this sequential frequent pattern mining include 

FreeSpan, PrefixSpan, GSP, SPADE, etc.,We picked PrefixSpan algorithm [24] to find 

out frequent patterns to help in our problem. We used the PrefixSpan implementation, 
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provided by the SPMF open-source frequent pattern mining Java library [25]. We used 

min_sup = 0.1 or 10% and maximum pattern length equal to 5. 

Clustering Time Series Data 

Clustering 

As per the definition given by Liao and T. Warren in their work [26], clustering is 

to identify structure in an unlabeled data set by objectively organizing data into 

homogeneous groups where the within-group-object similarity is minimized and the 

between-group-object dissimilarity is maximized.  

K-Means Clustering 

The algorithm starts with k initial centroids. In practice, these centroids are 

randomly chosen instances from the dataset. These initial instances form the initial set of 

k clusters. Then, we assign each instance to one of these clusters based on its distance to 

the centroid of each cluster. The calculation of distances from instances to centroids 

depends on the choice of distance measure. Euclidean distance is the most widely used 

distance measure. 

After distributing all instances to a cluster, the centroids, are computed again by 

taking the average (mean) of all instances within the clusters (therefore, the name k-

means). This method of computation is repeated using the newly calculated centroids. 

Note that this method of procedure is repeated till convergence. The most basic criterion 

to decide convergence is to check whether centroids are no longer changing. 
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Figure 4.3 K-means Output on a sample dataset. K-means is run with k = 6, and 

the clusters found are visualized using different symbols.  

The steps discussed above to apply K-means algorithm and the above image are 

form the textbook [27].  

Time Series Clustering 

To compute the clustering of time series, each value in a time series is normalized 

by computing its corresponding z-score, i.e. the number of standard deviations the 

number is away from the mean of all points series. Then, classical k-means algorithm is 

applied on the normalized time series. We used a number of clusters k = 5.  

Features 

We consider the following features extracted from our dataset for time series 

clustering: reverts percentage, meta-page percentage, unique meta-page percentage, edit-

wars, and common categories. The description of these features is provided in Chapter 7. 
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Time Series 

For each user and for each of the five features we extract from the dataset, we 

compute the value of feature over the time, where time is divided into equal time 

intervals (two weeks). Then we cluster series with common shape features together. This 

constitutes identifying common trends occurring at different times or similar sub patterns 

in the data. We perform time series clustering for active and inactive users separately and 

studied differences in their editing behavior.  

Analysis  

We did not notice significant differences between active and inactive users 

according to the temporal clustering of these features. However, we show the time series 

clustering obtained in Appendix C for completeness. 
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CHAPTER FIVE: PREDICTING INACTIVE USERS 

We propose an editing behavior-based approach to predict which user will 

become inactive and leave the community. In order to find a set of features that 

differentiate the editing behavior of active vs. inactive users, we mined a set of features 

as follows [14]. 

First, we mined frequent patterns on the User Log Dataset for both active user 

logs and inactive logs by using the Prefix Span [28] algorithm. Each pattern represents a 

sub-sequence of a user’s edit log and contains a sequence of pairs of pages consecutively 

edited by the user where each pair is described by using the features in Appendix. 

Second, for each frequent pattern f we mined, we computed the frequency of f for 

both the classes of active and inactive users. We found patterns that appear in both 

classes of users, while other patterns are exclusive for active users. We did not find any 

pattern that appears for the class of inactive users only. 

Third, we ordered frequent patterns by descending frequency absolute difference 

between the two classes. Then, we selected as set of features for classification the set of 

top k patterns of length l that appear for both active and inactive users and for active 

users only. We used k = 13 and l ∈ {1,2,3}. The result was a total of 78 features. The 

value of each feature is a Boolean value indicating whether or not that pattern appears in 

the edit history of the user. 

It is worth noting that, in predicting inactive users, we did not consider the 

duration of a user’s edit history, from the first edit to their most recent edit, as this feature 
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is biased towards inactive users who are short-lived because they stop editing Wikipedia. 

Moreover, our editing behavior-based features do not look at edited content and, 

therefore, our resulting system has the advantage of being general and applicable not only 

for English, but also for different other language versions of Wikipedia. 

The complete list of 78 features is shown in Appendix A (Table A.1). In the 

following, we discuss the top 10 features that turned out to be the most important for the 

classification task. 

Most Important Features 

To compute the most important features, we used forests of 250 randomized trees. 

The relative importance (for the classification task) of a feature f in a set of features is 

 
Figure 5.1  Top 10 most important features 

given by the depth of f when it is used as a decision node in a tree. Features used at the 

top of the tree contribute to the final prediction decision of a larger fraction of the input 

samples. The expected fraction of the samples they contribute to can thus be used as an 
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estimate of the relative importance of the features. Figure 5.1 shows the importance of the 

top 10 features for the classification task. The green bars in the plot show the feature 

importance using the whole forest, while the blue bars represent the variability across the 

trees. 

 
 

Figure 5.2 Frequency of top 10 most important features for active (blue) vs. 

inactive (red) users.  

Figure 5.2 shows the frequency of the top 10 most important features for the class 

of active (blue) and inactive (red) users. There is a significant gap in the frequency of 

these patterns for the two different classes of users. All the patterns are highly frequent 

for active users and less frequent for inactive users. As we will see in Chapter 6, our 

pattern-based features extracted from users’ editing behavior will allow us to differentiate 

between active and inactive users with an area under the ROC curve of 0.975. 

The top 10 most important features are explained in detail here below. 

rnnnv: there exists a pair of edits (𝑝1, 𝑝2) s.t. 𝑝2 is a is a re-edit of a non-meta 

page, non-consecutively (𝑝1 ≠ 𝑝2), not due to reversion, and very fast (𝑝2 is edited within 
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less than 3 mins from the edit on 𝑝1). This pattern is frequent for 93% of active users vs. 

12% of inactive users. 

rnnnf: same as the feature above but the pages are edited within less than 15 mins 

(fast) one from the other. This pattern is frequent for 94% of active users vs. 14% of 

inactive users. 

nnuof: there exits of a pair of edits (𝑝1, 𝑝2) s.t. 𝑝2 has never been edited before by 

the user u, 𝑝2 is an article page (non-meta), a path doesn’t exist between 𝑝1 and 𝑝2 in the 

hyperlink graph, the pages have at least one category in common, and 𝑝2 is edited within 

less than 15 mins from the edit on 𝑝1. This pattern is frequent for 96% of active users vs. 

22% of inactive users.  

nnuov: same as the feature above but the pages are edited within less than 3 mins 

(very fast), one from the other. This pattern is frequent for 90% of active users vs. 15% of 

inactive users. 

rmnnv: this pattern means that the user is re-editing a meta-page, non-

consecutively (𝑝1 ≠ 𝑝2), not due to reversion, and very fast. This pattern is frequent for 

85% of active users vs. 17% of inactive users. 

rnnnf, rncnv: there exists a pair of edits as in pattern 2 (rnnnf) followed by 

another pair of edits (𝑝1, 𝑝2) s.t. 𝑝2 is a is a re-edit of a non-meta page, consecutively (𝑝1 

= 𝑝2), not due to reversion, and the re-edit happens very fast, i.e. within 3 mins (rncnv). 

This pattern is frequent for 74% of active users vs. 6% of inactive users. 

rncnf: this pattern means that the user is re-editing an article page, consecutively, 

not due to reversion, and the re-edit happens fast (within 15 mins). This pattern is 

frequent for 95% of active users vs. 29% of inactive users. 
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nmuov: there exists a pair of edits (𝑝1, 𝑝2) s.t. 𝑝2 has been never edited before by 

the user u, 𝑝2 is a meta- page, a path does not exist between 𝑝1 and 𝑝2 in the hyperlink 

graph, the two pages have at least one category in common, and 𝑝2 is edited within less 

than 3 mins from the edit on 𝑝1. This pattern is frequent for 75% of active users vs. 9% of 

inactive users. 

nmuof: same as the feature above but the pages are edited within less than 15 

mins (fast), one from the other. This pattern is frequent for 82% of active users vs. 12% 

of inactive users. 

rnnns: there exists a pair of edits (𝑝1, 𝑝2) s.t. 𝑝2 is a re-edit of a non-meta page, 

non-consecutively (𝑝1 = 𝑝2), not due to reversion, and the edit on 𝑝2 happens slowly with 

respect to the edit on 𝑝1 (more than 15 mins after). This pattern is frequent for 93% of 

active users vs. 21% of inactive users. 
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CHAPTER SIX: EXPERIMENTAL RESULTS 

To test the features that we constructed, we are proposing for the classification 

task, we considered different classifiers, namely Support Vector Machine (SVM), 

Logistic Regression, and Random Forest. To deal with class unbalance, we used class 

weighting. To evaluate the performances, we performed 10-fold cross validation and 

measured the results according to Area Under the ROC curve (AUROC), precision, and 

recall. 

Table 6.1 Performances of our features and comparison with prognoZit 

according to precision, recall, and Area Under the ROC curve (AUROC) metrics 

Our Features Precision 

(Active 

Users) 

Precision 

(Inactive 

Users) 

Recall 

(Active 

Users)  

Recall 

(Inactive 

Users) 

AUROC 

SVM 0.286 0.998 0.902 0.957 0.975 

Logistic Regression 0.257 0.998 0.901 0.950 0.973 

Random Forest 0.599 0.987 0.318 0.996 0.968 

 

prognoZit Precision 

(Active 

Users)  

Precision 

(Inactive 

Users) 

Recall 

(Active 

Users) 

Recall 

(Inactive 

Users) 

AUROC 

SVM 0.730 0.987 0.358 0.981 0.941 

Logistic Regression 0.487 0.998 0.943 0.980 0.959 

Random Forest 0.631 0.993 0.647 0.989 0.963 
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The first three rows in Table 6.1 show classification performances for our features 

when we consider the whole user’s edit history. The best performing classifier is SVM 

with an AUROC of 0.975. Precision and recall for the class of inactive users are also very 

high: 0.998 precision and 0.957 recall (a better recall result of 0.996 is obtained with 

Random Forest). The best recall for active users is also obtained with SVM (0.902) while 

the corresponding precision is 0.286 and a better one can obtained with Random Forest. 

Comparison with Related Work 

We compare our results with the first prize winner, the prognoZit team [7] of the 

WikiChallenge competition [16]. prognoZit used features based on number of edits and 

number of reverted edits on different time periods to predict the future user’s number of 

edits. This task is very close to our problem, since predicting that a user will do zero or 

very few edits in the future is like saying that they will become an inactive user. As 

prognoZit extracted features according to the dates of the dataset provided in the 

WikiChallenge (which are from January 2001 to September 2010), we scaled the time 

periods to be in our dataset period, i.e. from January 2013 to July 2014. 

  As prognoZit extracted features according to the dates of the dataset provided in 

the WikiChallenge (which are from January 2001 to September 2010), we scaled the time 

periods to be in our dataset period, i.e. from January 2013 to July 2014. The features we 

used are as follows.  

 No of Reverted Edits (re1) from 2013-01-01 to 2014-05-31 (73 weeks). 

 No of Reverted Edits (re2) from 2014-05-31 to 2014-07-31 (8 weeks). 

 No of Edits (e1) from 2013-01-01 to 2013-10-01 (39 weeks). 

 No of Edits (e2) from 2013-10-01 to 2014-03-15 (23 weeks). 
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 No of Edits (e3) from 2014-03-15 to 2014-06-01 (11 weeks). 

 No of Edits (e4) from 2014-06-01 to 2014-06-15 (2 weeks). 

 No of Edits (e5) from 2014-06-15 to 2014-07-01 (2 weeks). 

 No of Edits (e6) from 2014-07-01 to 2014-07-10 (1 week). 

 No of Edits (e7) from 2014-07-10 to 2014-07-20 (1 week). 

 No of Edits (e8) from 2014-07-20 to 2014-07-25 (4 days). 

 No of Edits (e9) from 2014-07-25 to 2014-07-31 (5 days). 

The second three rows in Table 6.1 show classification performances of prognoZit 

according to three different classification algorithms and when we consider the whole 

users’ edit history. In this case, the best performing classifier is Random Forest with an 

AUROC of 0.963, which is very close to our AUROC (0.975). Results obtained for 

precision and recall are also comparable to ours. In general, we can say that our approach 

is comparable to the one proposed by the prognoZit team when we consider the whole 

edit history of the users. However, the next experiment shows that our approach is much 

better in the early prediction of inactive users. 

Early Prediction of Inactive Users  

In this experiment, we compared our performances with prognoZit in the task of 

early predicting inactive users. More specifically, we computed the average AUROC on 

10-fold cross validation of our method and the competitor by using the first k user’s edits 

only. We varied k from 3 to 500. 

Results are shown in Figure 6.1 and Table 6.2. As we can see, by considering the 

first 3 edits only, we are able to differentiate between inactive and active users with an 

AUROC of 0.72, while the corresponding AUROC for prognoZit is 0.55. Moreover, we 
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need to look at the first 9 edits to have an AUROC of 0.81, while prognoZit needs 18 

edits to reach the same result. In general, our curve is much higher than the competitor’s.  

Moreover, we note that the features built by prognoZit have a bias towards the 

length of a user’s edit history. In fact, before beginning to edit and after leaving the 

community, many features will be zero because the time periods used for the features are 

based in the global dataset dates. Considering edit history length is not helpful if we want 

to early predict inactive users in order to perform actions to keep them contributing 

longer in the Wikipedia community. 

 
Figure 6.1 Average AUROC for early prediction of inactive users. The blue line 

represents our features + SVM and the red one represents prognoZit features + 

Random Forest  
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Table 6.2 Average AUROC for Our vs prognoZit features for first 21 edits 

No of 

Edits 

3 6 9 12 15 18 21 

Our 

Features 

0.72 0.79 0.81 0.82 0.83 0.84 0.84 

prognoZit 0.55 0.69 0.76 0.78 0.79 0.81 0.81 

 

Other Experiments 

Along with the experiments show in this chapter, we did other experiments 

(reported in Appendix D and E) where we tried other methods to construct features for 

prediction and compared the results with related work.  

Appendix D shows the results of an alternative experiment where we learned the 

features following the method proposed in this chapter, but where only the first k edits 

are considered for a user. By comparing these results with the ones listed in Table 6.2, the 

average AUROC is less for first 6 edits though it is comparable with first 3 and 9 edits.  

Appendix E reports on an experiment where we mined frequent patterns from the 

User Log Dataset according to the same method proposed in this chapter, but by 

considering only if two consecutive edits are executed very fast, fast, or slow. Results 

achieved with these time-based features are in favor of prognoZit in the early prediction, 

while they are comparable when we consider the whole edit history. When we consider 

the whole edit history, and  we add the time-based features to the 78 ones considered in 

this chapter, results are comparable to the ones reported in Tables 6.1 and 6.2.  
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CHAPTER SEVEN: WHY LEAVE WIKIPEDIA? 

In this section, we study the differences in the editing behavior of active vs. 

inactive users according to users’ involvement in edit wars, reverted edits, meta-pages 

editing, and categories edited. Finally, we show some rules we extracted that explain our 

proposed predictive model. 

Involvement in Edit Wars 

Edit warring occurs when other users do not agree on the content of a page or 

revision made by another user [29]. We define an edit war as one user making a revision 

to a page, followed by other users reverting that revision, and this pattern happens at least 

2 consecutive times. We say that a user is involved in an edit war if their edit is reverted 

within an edit war. 

By comparing how active vs. inactive users are involved in edit wars, we see that 

active users are highly involved in edit wars (85.9% of them are involved in at least one 

edit war), while the percentage is much smaller for inactive users (20.6%). The average 

number of edit wars a user is involved in is 4.28 for active users vs. 0.33 for inactive 

ones. 

Moreover, we studied the number of edit wars a user is involved in over time. 

Figure 7.1 shows the clustering of all inactive users’ time series so that users having a 

common shape are shown together in the same plot computed according to the method 

described in Chapter 4. We observe that, within 10 weeks before contribution stops, there 

is a significant peak (a rapid increment followed by a rapid decrement) in the number of  
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(a) Cluster 0 (124 users)    (b) Cluster 1 (242 users) 

 

      (c)  Cluster 2 (112 users)    (d) Cluster 3 (162 users) 

 
 

(e) Cluster 4 (1630) 

 

 

Figure 7.1 Time Series clustering of inactive users’ involvement in edit wars 
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edit wars an inactive user is involved in for 68% inactive users involved in at least one 

edit war. We also observe that active users have these kinds of peaks in their edit history 

(check Appendix B), but this seems not to affect their willingness to contribute. In 

particular, for 9.8% of active users we observe the unique pattern of an increasing 

involvement in edit wars, meaning that they positively accept critiques from other people 

in the community. 

Reverted Edits 

Regarding reverted edits, we observe that the edits made by inactive users are 

reverted more, compared to active users. On average, the percentage of reverted edits is 

9.12% for inactive users vs. 5.25% for active ones. 

Editing Meta-pages 

There are two different types of pages on Wikipedia: regular article pages and 

meta-pages. Examples of meta-pages are User pages (where editors describe them- 

selves), article Talk pages (where editors discuss the content of the associated Wikipedia 

article), User Talk pages (talk pages associated with user pages), and Wikipedia Project 

pages. 

In studying how users are editing meta-pages, we observe that, on average, 

inactive users write more on meta-pages than article pages (63.3% of all their edits), 

while active users write less on meta-pages (30.3%). Also, inactive users write on a more 

diverse set of meta-pages: the percentage of unique meta- pages among all meta-pages 

edited by a user is, on average, 29% for inactive users vs. 10.3% for active ones. 

Figure 7.2 shows the average number of meta-page edits by meta-page type. As 

we can see, both classes of users have the same trend: the most edited type of meta-pages 
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is, on average, User page, followed by Talk pages, User Talk pages, and Project pages. 

Inactive users edit, on average, many more User pages than active ones (77% vs. 36%). 

 
 

Figure 7.2 Average percentage of number of edits on different types of 

Wikipedia meta-pages for active (blue) vs. inactive (red) users.  

Categories of Edited Pages 

Active users edit many more pages from different categories than inactive users: 

the average number of different categories edited by active users during all their edit 

history is 868.5 vs. 48.9 for inactive users. 

When we look at pairs (𝑝1; 𝑝2) of consecutive edits, we have that, when 𝑝1 ≠  𝑝2, 

active users consecutively edit pages that have much more categories in common (48 on 

average), while the corresponding number of inactive users is 4, on average. Thus, active 

users consecutively edit pages that are much more similar (in terms of common 

categories) between them than inactive users. 

 



31 

 

 

Explaining Our Model 

The model we propose in this project to identify inactive users is based on a 

SVM, working with behavior-based features. SVM is a very complex model represented 

by an hyperplane which is not very intuitive and easy to understand by humans. Thus, 

this model does not give any easy explanation on why some users are predicted to leave 

the community. In order to understand why some users stop contributing on Wikipedia, 

we used the following technique to explain complex separators such as SVM, which 

consists of computing decision rules to explain the model produced by the SVM [30]. 

More specifically, the SVM is seen as a black box and it is used to generate an artificial 

dataset that is used by traditional rule learning methods (e.g. decision trees such as CART 

or C4.5) to extract rules from the artificial dataset. The artificial dataset consists of 

replacing the class of the points in the training set with the class predicted by the learned 

SVM. The extracted rules are much easier to understand and usually give a better picture 

in explaining the prediction done by the SVM. 

Table 7.1 reports the top 6 rules we extracted to explain our SVM-based model 

ordered by descending number of users classified by the rule. The body of each rule (left 

side) expresses a conjunction of patterns that must be present or not present (for patterns 

preceded by the negation symbol ¬) in order to conclude the prediction in the head of the 

rule (right side). For instance, the last rule in the table says that if a user does not have the 

pattern “rnnnf, rncnv” and has all the patterns “nnuos, rnnnf”, rnnnv, “nnuof, rncnv”, and 

“rnnnf, rncnf” in their edit history, then the user is active. 

“rnnnf, rncnv” means re-edit of a non meta-page, non consecutively, not due to 

reversion and fast (rnnnf) followed by a re-edit of a non meta-page, consecutively, not 



32 

 

 

due to reversion, and very fast (rncnv). 

“nnuos, rnnnf” means new edit of a non meta-page not having any path from the 

previous edit in the hyperlink graph, which has at least one category in common with the 

previous edit, and the edit happens within more than 15 mins from the previous one 

(nnuos), followed by a re-edit of a non meta-page, non consecutively, not due to 

reversion, and fast. 

rnnnv is re-edit of a non meta-page, non consecutively, not due to reversion, and 

very fast. 

“nnuof, rncnv” means new edit of a non meta-page not having any path from the 

previous edit in the hyperlink graph, which has at least one category in common with the 

previous edit, and fast (nnuof), followed by a re-edit of a non meta-page, consecutively, 

not due to reversion, and very fast (rncnv). 

“rnnnf, rncnf” means re-edit of a non meta-page, non consecutively, not due to 

reversion, and fast (rnnnf) followed by re-edit of a non meta-page, consecutively, not due 

to reversion, and fast (rncnf). 

The set of rules extracted gives an approximation of the SVM predictive model 

with a fidelity of 99.6% and explains more clearly why a user is predicted to be an active 

or inactive one. The fidelity is the number of users where the classification of rules agree 

with the classification of the SVM upon total number of users. 
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Table 7.1 Top-6 rules explaining our model. A negation (¬) before a pattern f 

means that f is not present in the edit history of the user. The last column reports 

the number of users covered by each rule. 

Rule No. of Users 

¬ “rnnnf,rncnv” ˄ ¬ rmnrf ˄ ¬ “nnuof,rncnv,rncnv” ˄ ¬ nmuov ˄ ¬ 

“rnnnf,rnnnf” ˄ ¬ “nnuof,rncnv” ˄ ¬ rmnrv ˄ ¬ “rnnnf,rncnf”’→ 

Inactive 

13160 

¬ “rncnv,rnnnf” ˄ ¬ rnnrf ˄ ¬ rmnrf ˄ ¬ “rncnf,nnuof” ˄ ¬ nnuuv ˄ ¬ 

nmuov ˄ ¬ “rnnnf,rnnnf” ˄ ¬ “nnuof,rncnv” ˄ ¬ rmnrv ˄ ¬ 

“rnnnf,rncnf” → Inactive 

607 

¬ “nnuof,rnnnv” ˄ ¬ nmuof ˄ ¬ “nnuof,rncnv,rnnns” ˄ ¬ nnuuv ˄ ¬ 

“rnnnf,rnnnf” ˄ ¬ nmuov ˄ ¬ “nnuof,rncnv” ˄ ¬ rmnrv ˄ ¬ 

“rnnnf,rncnf” → Inactive 

368 

¬ “nnuos,rncnv,rnnns” ˄ ¬ rnnrf ˄ ¬ “rnnnf,rncnv” ˄ ¬ rmnrf ˄ ¬ 

“nnuof,rncnv,rncnv” ˄ ¬ nmuov ˄ ¬ “rnnnf,rnnnf” ˄ ¬ “nnuof,rncnv” 

˄¬ rmnrv ˄ ¬ “rnnnf,rncnf” → Inactive 

220 

¬ rmcrf ˄ ¬ “nnuof,nnuos,rncnv” ˄ ¬ “rncnv,rnnnf ” ˄ ¬ “rnnnf,rnnns” 

˄ ¬  rmnrv ˄ ¬ nnuuv ˄ ¬ “rnnnf,rnnnf” ˄ ¬ “nnuof,rncnv” ˄ ¬ 

“rnnnf,rncnf” → Inactive 

203 

¬ “rnnnf,rncnv” ˄ ¬ “nnuos,rnnnf” ˄ ¬ rnnnv ˄ ¬ “nnuof,rncnv” ˄ ¬ 

“rnnnf,rncnf” → Active 

195 
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CHAPTER EIGHT: CONCLUSIONS 

In this project, we proposed a predictive model based on users’ editing behavior 

that is able to predict which editor will become inactive in the Wikipedia community with 

an AUROC of 0.97 and a precision of 0.99. Moreover, we showed that our model 

significantly beats competitors in the task of early prediction of inactive users. By 

comparing editing behavior of active vs. inactive users, we discovered that active users 

are more involved in edit wars and positively accept critiques, and edit much more 

different categories of pages. On the other hand, inactive users have more edits reverted 

and edit more meta-pages (and in particular User pages). 
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APPENDIX A 

Our Features 

The following table reports the list of the 78 editing patterns used as features in 

our model to predict inactive users and extracted as explained in Chapter 5. 

Table A.1  Complete list of features used in our model 

Feature0 – rnnnv Feature39 - "rncnf,nnuof" 

Feture1 – rnnnf Feature40 - "nnuos,rncnf,rnnns" 

Feature2 – nnuov Feature41 - "nnuos,rnnns,nnuos" 

Feature3 – nnuof Feature42 - "rncnv,nnuos,rnnns" 

Feature4 – rnnns Feature43 - "nnuos,nnuos,nnuof" 

Feature5 - "rncnv,rnnnf" Feature44 - "nnuos,nnuof,rncnv" 

Feature6 - "rncnv,rnnnv" Feature45 - rmcrf 

Feature7 - "nnuof,rncnf" Feature46 - rmnrv 

Feature8 - "rnnnf,rncnv" Feature47 - rncrs 

Feature9 - "nnuof,rnnns" Feature48 - rnnrf 

Feature10 - "nnuof,rncnv,nnuos" Feature49 - rnnrv 

Feature11 - "rncnv,nnuof,rncnv" Feature50 - "nnuos,rnnnv" 

Feature12 - "nnuof,nnuos,rncnv" Feature51 - "rnnnv,rncnv" 

Feature13 - "nnuof,rncnv,rncnv" Feature52 - "nnuof,rnnnv" 

Feature14 - "nnuof,nnuos,nnuos" Feature53 - "rnnnv,nnuos" 

Feature15 – nmuov Feature54 - "rnnnf,rnnns" 

Feature16 – nnuuv Feature55 - "nnuof,nnuof,nnuos" 
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Feature17 – rnnrs Feature56 - "nnuof,nnuof,rncnv" 

Feature18 – rncrf Feature57 - "rncnv,rncnv,rnnnv" 

Feature19 – rmcrv Feature58 - "rncnv,rncnv,rnnnf" 

Feature20 - "nnuof,rnnnf" Feature59 - "nnuof,rncnv,rncnf" 

Feature21 - "rnnnf,nnuos" Feature60 - rncrv 

Feature22 - "rnnnf,rnnnf" Feature61 - nnuos 

Feature23 - "rnnnf,rncnf" Feature62 - rmnnf 

Feature24 - "rncnf,rnnnv" Feature63 - "nnuof,nnuos" 

Feature25 - "rncnv,rnnnf,rncnv" Feature64 - "nnuof,rncnv” 

Feature26 - "rncnv,rnnns,nnuos" Feature65 - "nnuof,nnuof" 

Feature27 - "rncnv,nnuof,nnuos" Feature66 - "rncnv,rnnns,rncnv" 

Feature28 - "rnnns,nnuos,rncnv" Feature67 - "rncnf,nnuos,rncnf" 

Feature29 - "nnuof,rncnv,rnnns" Feature68 - "nnuos,rncnv,rnnns" 

Feature30 – nmuof Feature69 - rmcrs 

Feature31 – rmnnv Feature70 - rmnrf 

Feature32 – nmuos Feature71 - rmnrs 

Feature33 – rncnf Feature72-"rnnns,rnnnv" 

Feature34 – rncns Feature73-"rnnns,nnuof" 

Feature35 - "rnnns,nnuos" Feature74-"rnnnf,nnuof" 

Feature36 - "rncnf,rnnnf" Feature75-"nnuos,rncnv,nnuof" 

Feature37 - "nnuos,rnnnf" Feature76-"nnuof,rncnf,nnuos" 

Feature38 - "rncnv,nnuof" Feature77-"nnuof,rncnf,rncnv" 
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APPENDIX B 

Active User’s Involvement in Edit Wars 

 
              (a) Cluster 0 (43 users)                            (b) Cluster 1 (30 users) 

   
                (c) Cluster 2 (27 users)                            (d) Cluster 3 (42 users) 

 
       (a) Cluster 5 (73 users)  

 

Figure B.1 Time-series clustering of active user’s involvement in edit wars 
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APPENDIX C 

In this Appendix we report time-series clustering of both active and inactive users 

for features like reverted edits percentage, number of common categories, meta-page and 

unique-meta page percentage.  

Reverted Edits Percentage Feature 
 

 

 

   

 
                 

 

Figure C.1 Time series clustering of active user’s involvement in reverted edits 

percentage 
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Figure C.2 Time series clustering of inactive user’s involvement in reverted edits 

percentage 
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Meta Page Percentage Feature 

   

   

 
 

Figure C.3 Time series clustering of active user’s involvement in meta page 

percentage 
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Figure C.4 Time series clustering of inactive user’s involvement in meta page 

percentage 
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Unique-meta Page Percentage 

  

   

 
 

Figure C.5 Time series clustering of active user’s involvement in meta page 

percentage 
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Figure C.6 Time series clustering of inactive user’s involvement in meta page 

percentage 
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Number of Common Categories 

      

   

 
 

Figure C.7 Time series clustering of active user’s involvement in number of 

common categories 
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Figure C.8 Time series clustering of inactive user’s involvement in number of 

common categories 

 



49 

 

 

APPENDIX D 

Other Early Prediction Experiment 

We performed an alternative experiment where we learned the features following 

the method proposed in Chapter 5, but where only the first k edits are considered for a 

user. Results and comparisons with prognoZit are reported in the following. 

First 3 Edits 

Feature Extraction 

By considering only the first 3 edits of users among their all edits, we mined the 

frequent patterns and extracted the features in the same way as described in Chapter 5. 

We considered the 16 most frequent patterns as our features. These features are listed in 

the Table D.1.  

Table D.1 List of features constructed considering first 3 edits 

Feature0 - nnuos Feature8 - rncnv 

Feature1 - rncnf Feature9 - rncns 

Feature2 - rmcnv Feature10 - nmuos 

Feature3 - nnuov Feature11 - nnuos,nnuos 

Feature4 - nmuuf Feature12 - rmcnf 

Feature5 - rmcns Feature13 - nmuus 

Feature6 - nnuus Feature14 - nmuuv 

Feature7 - nnuos Feature15 - rncnv 
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Comparison with prognoZit 

With these new features and different types of classifiers, we computed AUROC 

average percentage and compared these scores with prize winner prognoZit scores. This 

comparison is reported in Table D.2.  

Table D.2 Average AUROC Our vs prognoZit for first 3 edits 

Classifier  Our Features  progoZit Features 

Random Forest 0.729 0.546 

SVM 0.733 0.552 

Logistic Regression 0.745 0.532 

  

Looking at the above table it is cleared that Logistic Regression is the best 

performing classifier with an AUROC of 0.745. 

First 6 Edits 

This experiment is the same as the previous one but is conducted by considering 

the first 6 user edits among all their edits. After mining frequent patterns, we ended up 

taking 32 patterns as our features in this experiment. These features are listed in Table 

D.3.  

Table D.3 List of features constructed considering first 6 edits 

Feature0 - rncnv Feature16 - nnuos 

Feature1 - rncnf Feature17 - nnuof 

Feature2 - rncns Feature18 - nnuos,nnuos 

Feature3 - rmcnv Feature19 - rncnv,rncnv 

Feature4 - nnuov Feature20 - nnuos,rncnv 

Feature5 - nnuus Feature21 - rncnf,rncnv 
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Feature6 - nmuus Feature22 - nnuof,nnuos 

Feature7 - nmuos Feature23 - rncnv,rncnf 

Feature8 – rncns Feature24 - rmcnv 

Feature9 - rncnv Feature25 - nmuus 

Feature10 - nnuof Feature26 - rmcns 

Feature11 - nnuos Feature27 - rmcnv,rmcnv 

Feature12 - rncnf Feature28 - nmuuv 

Feature13 - nnuus Feature29 - rmcnf,rmcnv 

Feature14 - nmuuf Feature30 - rmcnv,rmcnf 

Feature15 - rmcnf Feature31 - rmcnf,rmcnf 

 

Comparison with prognoZit 

The comparison between the features learned from first 6 edits and the ones of 

prognoZit is shown in Table D.4. 

Table D.4 Average AUROC Our vs prognoZit for first 6 edits 

Classifier  Our Features  progoZit Features 

Random Forest 0.593 0.693 

SVM 0.778 0.683 

Logistic Regression 0.788 0.668 

  

Looking at the above table, Logistic Regression is the best performing classifier 

with an AUROC of 0.78. 
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First 9 Edits 

In this case we considered the first 9 user edits among all their edits and ended up 

taking 48 patterns as our features in this experiment. These features are listed in Table 

D.5 

Table D.5 List of features constructed considering first 9 edits 

Feature0 - nnuos Feature24 - nnuos,nnuos 

Feature1 - rncnv Feature25 - rncnv,rncnv 

Feature2 - rncnf Feature26 - rncns 

Feature3 - nnuof Feature27 - nnuos,rncnv 

Feature4 - nnuov Feature28 - rncnf,rncnv 

Feature5 - rncnf,rncnf Feature29 - nnuos,rncnf 

Feature6 - rmcnv Feature30 - rncnv,nnuos 

Feature7 - nnuus Feature31 - rncnv,rncnf 

Feature8 – nmuos Feature32 - nnuof,nnuos 

Feature9 - nmuuf Feature33 - nnuof,nnuos 

Feature10 - rnnns Feature34 - nnuof,nnuof 

Feature11 - nmuus Feature35 - nnuos,nnuof 

Feature12 - nmuuv Feature36 - nmuus 

Feature13 - rncns Feature37 - nnuos 

Feature14 - rncnv Feature38 - rmcnv,rmcnv 

Feature15 - rncnf Feature39 - rmcnf,rmcnv 

Feature16 - rmnns Feature40 - rmcnv,rmcnf 

Feature17 - rncnv,rncnv Feature41 - rmcnf,rmcnf 
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Feature18 - nmuos Feature42 - nnuof 

Feature19 - nnuus Feature43 - rmcnv,rmcnv,rmcnv 

Feature20 - rmcns Feature44 - nmuus,rmcnv 

Feature21 - nmuuf Feature45 - rmcnv,rmcns 

Feature22 - rmcnf Feature46 - rmcns,rmcns 

Feature23 - rmcnv Feature47 - rmcns,rmcnv 

 

Comparison with prognoZit 

The comparison between the features learned from first 9 edits and the ones of 

prognoZit is shown in Table D.6. 

Table D.6 Average AUROC Our vs prognoZit for first 9 edits 

Classifier  Our Features  progoZit Features 

Random Forest 0.645 0.761 

SVM 0.812 0.761 

Logistic Regression 0.806 0.734 

   

Looking at the above table it is cleared that SVM classifier is best performing 

classifier with an AUROC of 0.81. 

Overall, the results obtained with this alternative methodology are comparable to 

the ones presented in Chapter 6. 
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APPENDIX E 

Time Factor Experiments 

In this experiment, we considered frequent patterns extracted by considering only 

the time elapsed between two consecutive edits. Results and comparisons with prognoZit 

are reported in the following. 

Feature Extraction 

We mined frequent patterns from the User Log Dataset according to the same 

method proposed in Chapter 5, but by considering only if two consecutive edits are 

executed very fast, fast, or slow. We extracted 18 patterns as features and did 

experiments with first 3, 6, 9 and all edits. Features we used are reported in Table E.1. 

Experimental results are shown in Table E.2. 

Table E.1 List of features constructed considering all edits 

Feature0 - f Feature9 – f,v 

Feature1 - v Feature10 – s,v 

Feature2 - s Feature11 –  f,s  

Feature3 – v,f Feature12 – s,f,v 

Feature4 – s,f Feature13 – f,s,v 

Feature5 – s,v Feature14 – s,v,v 

Feature6 – v,s,f Feature15 – f,s,v 

Feature7 – s,v,f Feature16 – s,v,v 

Feature8 – s,f,f  
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Table E.2 Time-based features comparision with prognoZit according to 

AUROC 

 

 

No of 

Edits 

 

SVM 

 

Random Forest 

 

Logistic Regression 

 

Our 

Features 

 

progonoZit 

 

Our 

Features 

 

pognoZit 

 

Our 

Features 

 

prognoZit 

3 Edits 0.500 0.552 0.510 0.546 0.491 0.532 

6 Edits 0.598 0.683 0.589 0.693 0.592 0.668 

9 Edits 0.662 0.761 0.649 0.761 0.674 0.734 

All 

Edits 

0.951 0.941 0.952 0.963 0.954 0.959 

 

As we can see from Table E.2, we are not able to beat prognoZit in the early 

prediction by considering time-based features only, and we are comparable when we 

consider the whole edit history.  

Table  E.3 shows what happens if we add the time-based features mined in this 

appendix to the ones computed in Chapter 5. Also in this case, results are comparable to 

the ones reported in Tables 6.1 and 6.2.  
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Table E.3 Features used in our model plus time-based features comparision with 

prognoZit according to AUROC 

 

 

No of 

Edits 

 

SVM 

 

Random Forest 

 

Logistic Regression 

 

Our 

Features 

 

progonoZit 

 

Our 

Features 

 

pognoZit 

 

Our 

Features 

 

prognoZit 

3 Edits 0.730 0.552 0.675 0.546 0.722 0.532 

6 Edits 0.788 0.683 0.526 0.693 0.775 0.668 

9 Edits 0.822 0.761 0.630 0.761 0.814 0.734 

All 

Edits 
0.980 0.941 0.978 0.963 0.980 0.959 
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