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Abstract—Two-way relaying networks (TWRNs) allow for
more bandwidth efficient use of the available spectrum since
they allow for simultaneous information exchange between two
users with the assistance of an intermediate relay node. However,
due to superposition of signals at the relay node, the received
signal at the user terminals is affected by multiple impairments,
i.e., channel gains, timing offsets, and carrier frequency offsets,
that need to be jointly estimated and compensated. This paper
presents the system model for amplify-and-forward (AF) TWRNs
in the presence of multiple impairments and proposes least
squares and differential evolution based algorithms for joint
estimation of these impairments. The Cramér-Rao lower bounds
(CRLBs) for the joint estimation of multiple impairments are
derived. A minimum mean-square error based receiver is then
proposed to compensate the effect of multiple impairments and
decode each user’s signal. Simulation results show that the
performance of the proposed estimators is very close to the
derived CRLBs at moderate-to-high signal-to-noise-ratios. It is
also shown that the bit-error rate performance of the overall
AF TWRN is close to a TWRN that is based on assumption of
perfect knowledge of the synchronization parameters.

I. INTRODUCTION

Relaying is a key technology to assist in the communication
between two user terminals, especially when there are large
transmission distances between them [/1]]. Unidirectional (one-
way) relaying supports communication from a source user
to a destination user and has been widely studied in the
literature [2]]. On the other hand, in two-way relaying networks
(TWRNS), the flow of information is bidirectional and the two
users exchange information simultaneously with the assistance
of an intermediate relay node [3|]. Thus, compared with one-
way half-duplex relaying, bidirectional relaying is a spectrally
more efficient relaying protocol [4]]. Both amplify-and-forward
(AF) and decode-and-forward (DF) protocols have been de-
veloped for TWRNS . In contrast to the DF protocol, the AF
protocol is widely adopted, as it requires minimal processing
at the relay node [5].

During the two phase communication in AF TWRNSs, the
two users first transmit their information to the relay node. The
relay broadcasts its received signal to both users in the second
phaseP_-] However, the two users’ signals at the relay node un-
dergo different propagation and may not be aligned in time and
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ITo ensure spectral efficiency, three or four phase communication protocols
for AF TWRN [6] are not considered in this paper.

frequency. Consequently, the superimposed signal broadcasted
from the relay node is affected by multiple impairments, e.g.,
channel gains, timing offsets, and carrier frequency offsets.
The existing literature does not take all these impairments
into account in studying the performance of AF TWRNs
[6]. Though, estimation and compensation algorithms have
been proposed to counter these impairments in unidirectional
relaying networks [7]-[9]], the proposed algorithms cannot be
directly applied to TWRNSs due to differences between the two
system models. Particularly, in TWRNSs, each user can exploit
the knowledge of the self transmitted signal during phase 1
in order to detect the signal from the other user during phase
2. Recently, the effect of channel estimation [5]], [[10]—[12]] or
joint channel and carrier frequency offset estimation [13]] on
the performance of TWRN is analyzed. However, to the best
of authors’ knowledge, an estimation and decoding scheme for
TWRNS in the presence of channel gains, timing offsets, and
carrier frequency offsets has not been proposed in the existing
literature.

In this paper, a complete synchronization approach, i.e.,
joint estimation and compensation of channel gains, timing
offsets, and carrier frequency offsets for AF TWRNs is pro-
posed. Upon reception of the superimposed signals broad-
casted from the relay node, the user nodes first jointly estimate
the impairments using known training signals and the pro-
posed least squares (LS) or differential evolution (DE) based
estimators [14]. Subsequently, the users employ the proposed
minimum mean-square error (MMSE) receiver in combination
with the estimated impairments to decode the received signal.
Each user uses knowledge of its transmitted data to cancel
out the self interference and decode the opposing user’s signal.
The contributions of this paper can be summarized as follows:

o A system model for achieving synchronization and ob-
taining the channel parameters in AF TWRN is devel-
oped.

¢ New Cramér-Rao lower bounds (CRLBs) for joint estima-
tion of multiple impairments at the user nodes are derived.
These bounds can be applied to assess the performance
of synchronization and channel estimatiors in AF TWRN
networks.

e An LS based estimator for joint estimation of multiple
impairments is derived. A DE based algorithm is pro-
posed as an alternative to the LS estimator to significantly
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Fig. 1: System Model for AF two-way relay network.

reduce the computational complexity associated with syn-
chronization in AF TWRNs. Simulation results show that
the mean square error (MSE) performances of both LS
and DE estimators are close to the CRLB at moderate-
to-high signal-to-noise-ratios (SNRs).

o An MMSE receiver for compensating the effect of impair-
ments and detecting the signal from the opposing user is
derived.

o Extensive simulations are carried out to investigate the
estimated MSE and bit-error rate (BER) performances
of the proposed transceiver structure. These results show
that the BER performance of an AF TWRN can be sig-
nificantly improved in the presence of practical synchro-
nization errors. In fact, the application of the proposed
transceiver results in an overall network performance that
is very close to that of an ideal network based on the
assumption of perfect knowledge of synchronization and
channel parameters.

The remainder of the paper is organized as follows: Section
presents the system model while the new CRLBs for the
joint estimation problem are derived in Section In Section
the LS and DE based estimators for joint estimation
of multiple impairments at the user nodes are presented. In
Section [V} the proposed MMSE receiver is derived, while
Section |VI| presents the simulation results.

Notation: Superscripts (), (-)*, and (-)¥ denote the trans-
pose, the conjugate, and the conjugate transpose operators,
respectively. E,{-} denotes the expectation operator with re-
spect to the variable x. The operator, & represents the estimated
value of z. R{-} and J{-} denote the real and imaginary
parts of a complex quantity. CA'(u, 02) denotes the complex
Gaussian distributions with mean £ and variance 0. Boldface
small letters, x and boldface capital letters, X are used for
vectors matrices, respectively. [X],,, represents the entry in
row x and column y of X. I'x denotes X x X identity matrix,
||x|| represents the ¢ norm of a vector x, and diag(x) is used
to denote a diagonal matrix, where its diagonal elements are
given by the vector x.

II. SYSTEM MODEL

We consider a half-duplex AF TWRN with two user termi-
nals, Ty and T, and a relay node, R, as shown in Fig. .
All nodes are equipped with a single omnidirectional antenna.
The channel gain, timing offset, and carrier frequency offset
between the kth user terminal and the relay node are denoted
by hy, T, and vy, respectively, for £ = 1,2, where the
superscripts, ()7 and ()], are used for the parameters

from user terminal to relay node and from relay node to
user terminal, respectively. The timing and carrier frequency
offsets are modeled as unknown deterministic parameters over
the frame length, which is similar to the approach adopted in
[15] and [[16]. Quasi-static and frequency flat fading channels
are considered, i.e., the channel gains do not change over the
length of a frame but change from frame to frame according to
a complex Gaussian distribution, CN'(0, 07). The use of such
channels is motivated by the prior research in this field [10],
[[L1].

The transmission frame from each user is comprised of
training and data symbols. The exchange of data among the
two user terminals is completed in two phases.

1) During the first phase, the transmission frame, [ty, d],
is transmitted from the kth user, £k = 1,2, to an
intermediate relay node, where t; and dj denote the
kth user’s training and data signal, respectively. This is
illustrated in Fig. |I} The signal from the two users is
superimposed at the relay node.

2) During the second phase, the relay node amplifies the
superimposed signal and broadcasts it back to the users.
The users use the training part of the received signal,
yECTP] to jointly estimate the multiple impairments, i.e,
channel gains, timing offsets, and carrier frequency
offsets. The effect of these impairments is compensated
and the received signal, y[DTP ], is decoded at the kth
user’s terminal.

Note that the superscripts (-)[™"! and (-)I°™" denote the
signals in training and data transmission periods, respectively
and Fig. |I| shows the transmitted frames at the first user
terminal, T;. A similar structure is followed for the second
user terminal, T5.

The received signal at the relay node during the training
period, 7TP!(¢), is given by

[srl

[TP]( )= Z h[sr]6727r bt Z ti(n)g(t —nT — T}:nT)
k=1
+n(t), (1)
where the timing and carrier frequency offsets, 71" and v},

are normalized by the symbol duration T, L is the length of
training signal ¢, g(¢) stands for the root-raised cosine pulse
function, and n(t) denotes zero-mean complex additive white
Gaussian noise (AWGN) at the relay receiver, i.e., n(t) ~
CN(0,02). To avoid amplifier saturation at the relay, the relay
node amplifies the received signal, r!™(t), with the power

constraint factor, { = 5 1+ , and broadcasts the amplified
O'h O'

signal to the users. The received signal at the user terminal,
T, during the training period, y!™(¢) is given by

i)

[
o TP

= ¢hle STy L (t), ()

where w1 (t) denotes the zero-mean complex AWGN at the
receiver of Ty, i.e., wi(t) ~ CN(0,02). Substituting (I) into
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@), y'™(t) is given by

[r~]

2
ygTP](t) h[r5]6]2ﬂ' t Z (h%r] . B 5"‘T))
k=1
X Z tr(n)g(t — nT — T,Esr]T . Tl[rs]T)>
n=0

V[lrS]
+ CMe T It — 7™T) +wn () (3)

Note that unlike [T5]], the developed system model in (3) takes
into account both the timing errors, from users to the relay
node, T[Sr] k = 1,2, and from relay node back to user terminal
T, 7'1 . The received signal in (@), y[TP] (t), is sampled with
the sampling time T = T/ and the sampled received signal,

yi™I(3), is given by

[TP' Z apel?mvri/Q Z tx(n)g(iTs — nT — 7,T)
+ Ch[f“eﬂ””l YO (i) +wi (i) (4)
where
o oy, 2 ChTRMe =277 is the combined channel gain

from T{-R-T; and T»-R-T; for k£ =
respectively,

o vp 2 P 4+ U™ s the sum of carrier frequency offset
from ’]T1 R-T; and T5-R-T; for k¥ = 1 and &k =
respectively, 1" = —I™! because same oscillators are
used during transmission from user T; to the relay node

and from relay node back to user T, thus, v; = uﬁ“] +
[rs]
Vl = O’

1 and £ = 2,

o« T 2 T][:r] + Tl[rs] is the resultant timing offset from T;-
R-T; and T3-R-T; for £ =1 and k = 2, respectively,

Q@ is the sampling facto n=201...,.L —1and : =
0,1,...,LQ — 1 are used to denote T-spaced and Ts-spaced
samples respectively, and n(¢) has been used in place of

n(iTs —7I™T), since n(t) denotes the AWGN and its statistics
are not affected by time delays. Upon reception of signal
broadcasted from the relay, it is assumed that the users
first employ coarse frame synchronization to ensure that the
superimposed signals are within one symbol duration from
each other i.e., 71 — 2 < 1, and 71,72 € (—0.5,0.5). This
assumption is inline with prior research in this field [[15].

Eq. @) can be written in vector form as

y[1TP] =a1G1t] + Ao Goty + Ch[fS]A[rS]n +wi )

where

e Gy is the LQ x L matrix of the samples of the pulse
shaping filter such that [Gy]; ,, 2 e (1T, _nT—T};d]T),

2Qversampling is needed to correctly estimate the timing offsets in the
presence of pulse shaping.

e Ay £ diag ([e/2=2(O/N
L@ x LQ matrix,
o A"l £ diag [eJ'QWV["S](U)/N, N

LQ x L matrix

ej27r1/2(LQ—1)/ND is an

eJ'ZTrV[”](LQfl)/N]) is an

. y[lm < [yETP]( ),---7y[1TP]( - DF

o tr = [k(0), s t(L = DY,

e n= [n(O) (LQ —1)]%, and

e W1 — [wl (0) ., Wy (LQ — 1)]T.
The received s1gna1 during the data transmission period,
yllDTP], can be similarly expressed as (5), where training tj,

is replaced by the data dy = [dy(0),...,dr(L — 1)]7. Note
that as anticipated, the data length L is different and larger
than the training length L as discussed in Section [V1]

Next, without loss in generality, we derive the CRLB and
estimators for joint estimation of channel gains, timing offsets,
and carrier frequency offsets at the user terminal T;. Note
that the system model in this section and the derived CRLB,
estimation, and detection schemes in the following sections
can be easily manipulated to detect d; at the user terminal
Ty. These details are not included to avoid repetition.

III. CRAMER-RAO LOWER BOUND

In this section, the CRLB for joint estimation of multiple
impairments at T; are derived. The signal model in () can
be rewritten as

[TP] _

yi  =Qa+u, (6)

where Q £ [G1t1 A3Goty] is an LQ x 2 matrix, a =
[a1,a2]”, and u Ch™AISIn + w,. Based on the as-
sumptions and proposed system model in Section [[I the
received signal vector, y1 , is a circularly symmetric complex
Gaussian random variable, y[TP] ~ CN(p,X), with mean p
and covariance matrix 3, given by

and (7a)

(7b)

p = Qo
Y =E{uu”} = (ool + 02)1Lg = 02110,

respectively. To determine the CRLB, we have to first for-
mulate the parameter vector of interest. The user T; has to
estimate the channel gains, «, timing offsets 7 2 [ry, 72]7,
and the carrier frequency offset 5. There is no need to
estimate vy as this is found to be 0 as explained below (@).
As a result, the parameter vector of interest, A, is given by

A2 [?R{a}T, %{a}T, Vo, TT]T (8)

In the following, we derive Fisher’s information matrix (FIM)
for the estimation of A.

Theorem 1: Based on the proposed system model, the FIM,
denoted by F, for the estimation of A is given by (9), at the
bottom of this page, where

R{QH Q) —3{QH0}
2 I{QA0} R{QTQ}
o2 | S{tfe"DQ} R{t{dYDO}
R{HATHQ} —S{HATHQ)}

_3{QHDt,) R{QHTH)
R{QH DBt} S{QHTH)
R{tV$"D2®t,)  S{tSYDrH) ©)
_S{HYTHD®"t,) R{HTYTH)
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o T'2 [Rit; AsRots] is an LQ x 2 matrix, Ry, £ %%: is
an L(Q) x 2 matrix,

e D £ 27 x diag{0,...,LQ — 1} is an LQ x LQ matrix,

o &£ ayA5G, is an LQ x L matrix, and

e H 2 diag{ay,az} is a 2 x 2 matrix.

Proof: See Appendix [A]
Finally, the CRLB for the estimation of A is given by the
diagonal elements of the inverse of F. Note that the CRLB
for channel estimation is the sum of the CRLBs for real and
imaginary parts of the channel estimation [17].

IV. JOINT PARAMETER ESTIMATION

In this section, the LS estimator for joint estimation of
multiple impairments in AF TWRN is derived. Subsequently,
the DE based estimator is applied to reduce the computational
complexity for obtaining these impairments.

A. LS Estimation

Based on the signal model in @, the LS estimates of the
parameters, o, 7, and v, can be determined by minimizing
the cost function, J, according to

TP 2

Ja,T,10) = Hy[1 1 QaH . (10)

Given 7 and rs, it is straightforward to show that the LS

estimate of a, denoted by &, can be determined as

&= (Q7Q) " afyl™, (11)

Substituting in (I0), the estimates of 71,72, and vy are

obtained via

[TP] " HO\ ! oH.,ITP]
_(Y1 ) Q(Q Q) Q yi 5

7A'1,7A'2,I>2 = arg min
T1,72,V2

éX(‘Fh‘l’z:l’z)

(12)
where argmin denotes the arguments, 71,72, and vs, that
minimize the expression x (71, 72,12) and y[lTP] is defined
in @ The channel estimates, &; and &g, are obtained by
substituting 71, 72, and 7, back into (LIJ.

The minimization in (I2) requires a 3-dimensional exhaus-
tive search over the discretized set of possible timing and
frequency offset values, which is inherently very computation-
ally complex. Furthermore, to reach the CRLB (see Fig. [2|in
Section [VI), the exhaustive search in (I2)) needs to be carried
out with very high resolutio which significantly increases
the sets of possible values for both timing and frequency
offsets and in turn, further increases the complexity of the
proposed LS estimator. In the following subsection, DE is
employed as a computationally efficient algorithm to carry out
the minimization in (12) [14].

3Step sizes of 1072 and 10~* for MTOs and MCFOs, respectively.

B. Differential Evolution based Estimation

DE and genetic algorithms are considered as a subclass
of evolutionary algorithms since they attempt to evolve the
solution for a problem through recombination, mutation, and
survival of the fittest. More specifically, DE is an optimization
algorithm, where a number of parameter vectors are generated
and updated at each iteration in order to reach the solution
[14]. Following the detailed steps and parameterization of the
DE algorithm outlined in [9] and changing the estimation
vector length to 3 parameters, 71, 72, and o, the minimization
in is achieved. Substituting these estimates in also
generates the desired channel estimates.

Remark 1: The computational requirements of the LS
and the DE algorithms are quantified using CPU execution
time [18]. The execution time is observed by setting training
length L = 80, when an Intel Core i7-2670QM CPU @
2.20 GHz processor with 8 GB of RAM is used. It has
been observed that comparing to the LS estimator, the DE
algorithm is capable of estimating the multiple impairments
approximately 10* times more quickly.

The computational complexity of the LS and the DE al-
gorithms can also be compared by calculating the number of
additions plus multiplications. By following the steps outlined
in [9, (20)-(21)], we find that an LS algorithm requires
1.84 x 1013 multiplications and additions, however the DE
algorithm needs 1.66 x 10° multiplications and additions in
order to estimate the multiple impairments. This method of
computational complexity also verifies that DE algorithm is
capable of estimating the multiple impairments approximately
10* times more quickly.

Note that a large number of additions and multiplications
are not the point of concern here. This is because the proposed
LS and DE estimation methods are applied for initialization
only once at system start-up. Afterwards, the estimates of
previously transmitted frames may be used to update the new
estimates since timing and carrier frequency offsets do not
rapidly change from frame to frame. This is due to the fact
that oscillator properties are mainly affected by temperature
and other physical phenomena that do not rapidly fluctuate
with time [[19]].

V. MMSE RECEIVER AND DATA DETECTION

In this section, an MMSE receiver for compensating the
effect of impairments and detecting the signal from user T is
derived. Following (3)), the received signal at user T; during
the data transmission period, y[lDTP], is given by

yllDTP] = 0[1G1d1 +C¥2A2G2d2 +Ch[1rS]A[rS]n+W1 (13)
The user T; has to decode the signal d, using the received
signal y[lD TP], the estimated impairments, &, 7, V5, and its own
data d;. Let us define an LQ x 1 vector z £ yllDTPI —a1G1d;.
Using y[lDTP], dy, 71, &1, user T can estimate the vector z as

z= YEDTP] - dléldl

= OéQAQGQdQ +u (14)

where G| = Gi|;—+ and u 2 Ch[fSJA[‘S]n 4+ w is defined
in (6). Applying MMSE based detection, the signal from user
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Fig. 2: CRLBs and MSE for LS & DE based estimation of
channel gains, timing offsets, and carrier frequency offsets.

T5 can be decoded as

dy = (7 + 021,)8"3 (15)
where ‘i’ £ @QAQGQ, AQ = A2|u2:927 and GQ = G2|7—2:-f—2.
In order to benchmark the decoding performance of the overall
AF TWRN, the benchmark data detection d[2B M], that is based
on the perfect knowledge of multiple impairments, is given by

dPM = (27 ® + 021,) 2" 2 (16)
where ® £ asA5Go.

VI. SIMULATION RESULTS

In this section, we present simulation results to evaluate
the estimation and BER performance of the AF TWRN. The
training length is set to L = 80 and data transmission length is
set to L = 400, which results in the synchronization overhead
of 16.6%. Without loss of generality, it is assumed that during
the training period, linearly independent, unit-amplitude phase
shift keying (PSK) training signals are transmitted from two
users. Such TSs have also been considered previously, e.g.,
in [IS]H During the data transmission period, quadrature
phase-shift keying (QPSK) modulation is employed for data
transmission. The oversampling factor is set to () = 2 and
the noise variances, 02 = 02 = 1/SNR. The synchronization
parameters, 7y, To, and vo, are assumed to be uniformly dis-
tributed over the range (—0.5,0.5). All the channel gains are
modeled as independent and identically distributed complex
Gaussian random variables with CA/(0,1). In the following,
the MSE and BER simulation results are averaged out over
600 frames with 400 data symbols per frame, where random
realization of Rayleigh fading channel gains is generated every
frame.

Fig. [2] plots the CRLBs, derived in Section and es-
timation MSE for joint estimation of multiple impairments.
Without loss of generality, the CRLBs and the MSE estimation

4The design of the optimal training sequences is outside the scope of this
paper.

10 : : :
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-1 N
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Fig. 3: BER of the proposed AF TWRN with DE based
estimation and perfect estimation.

performance for oy, 7, and vo are presented only, where
similar results to that of oy and 7; are observed for as and
To, respectively. Fig. [2| shows that the mean-square estimation
error of the proposed LS and DE estimators is very close to the
derived CRLBs at moderate-to-high SNRs. Note that the mean
square estimation error of LS estimator is close to the derived
CRLBs for whole considered range of SNR (0-45 dB). On the
other hand, for the DE based estimation, MSE for frequency
offset estimation gets close to the CRLB after 25 dB. This is
because, unlike LS estimator, the DE estimator is not based on
the exhaustive search criteria and is computationally efficient
than LS estimator.

Fig. illustrates the BER performance of overall AF
TWRN, that employs the DE based estimator and MMSE
receiver to decode the received signal. The DE based estimator
is employed because LS estimator is computationally very
complex (see Remark [T]in Section [[V). The BER performance
of the proposed estimation and decoding schemes (dy in

) is compared with the the benchmark decoding scheme
(dlzB M in (T6))), which assumes perfect knowledge of multiple
impairments. Fig. [3] shows that the BER performance of the
proposed overall AF TWRN is close to the performance of a
TWRN that is based on the assumption of perfect knowledge
of synchronization parameters, i.e., there is a performance
gap of just 2-3 dB only at moderate-to-high SNRs. To the
best of our knowledge, our algorithm is the first complete
solution for the joint estimation and compensation of channel
gains, timing offsets, and carrier frequency offsets. Hence, the
performance of the proposed algorithm cannot be compared
with any existing algorithm. For example, the algorithm in
[11], which estimate and compensate the effect of channel
parameters in AF TWRN, fail to decode the received signal
and show very poor BER performance in the presence of
multiple impairments.

VII. CONCLUSIONS

This paper has proposed the system model for AF TWRN
in the presence of multiple impairments, i.e., channel gains,
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timing offsets, and carrier frequency offsets. In order to extract
the user’s information from the received signal, each user
jointly estimates the multiple impairments and compensates
their effect from the received signal. CRLBs for joint estima-
tion of multiple impairments are derived and simulation results
show that the mean-square estimation error of the applied LS
and DE estimators is very close to the derived CRLBs. Next,
MMSE based received is derived to compensate the effect
of multiple impairments and decode the user’s information.
The BER performance of overall AF TWRN, employing the
proposed estimation and decoding schemes, is close to the
lower bound BER (performance gap of 2-3 dB only), that
assumes perfect knowledge of multiple impairments.

APPENDIX A
DERIVATION OF F

The (¢, q)™ element of the 7 x 7 FIM is given by [17]

H
[F(6)],, = 2% {a"zla"} T <21322132) .

06, = o6, 29, ~ o0,
(A.1)
Accordingly, derivatives in (A1) can be derived as
ou . Op
8§R{ak} Ja%{ak} ka k> ( )
O _ AxRytrag, Op _ JDAGatras, (A.3)
87’k 8y2

where Ry £ 0Gy /07, and A; = Ir. Since, X is not a
function of A, we have

o 3 »

vy Oy OR{ar} O0%{ar}

After substituting the derivatives in (A.2), (A.3), and (A.4)
into (A.I) and carrying out straightforward algebraic manipu-
lations, the FIM, F', can be obtained as shown in (]EI)

0. (A4)
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