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FRET-BASED INVESTIGATIONS OF THE STRUCTURE-FUNCTION 

RELATIONSHIPS IN THE NMDA RECEPTOR  

Abstract 

Drew Matthias Dolino, B.S.  

 

Advisory Professor: Vasanthi Jayaraman, Ph.D. 

 

 

The N-methyl-D-aspartate (NMDA) receptor is one member of a class of 

proteins known as the ionotropic glutamate receptors. Ionotropic glutamate 

receptors mediate the majority of excitatory neurotransmission in the central 

nervous system, with the NMDA receptor standing out among these 

receptors for its requirement of a co-agonist, its magnesium-block-based 

coincidence detection, its slow kinetics, its calcium permeability, its 

allosteric modulation, and its especially important functional roles in 

synaptic plasticity, excitotoxicity, and more. In recent years, a wealth of 

structural information has come about describing endpoint structures to 

high resolution, but such structures are unable to fully resolve the 

movements and dynamics necessary for appropriate function. The work in 

this dissertation uses single molecule Förster Resonance Energy Transfer 

(smFRET) as a means to address that gap. We have examined the question of 

partial agonism of the NMDA receptor, noting a mechanism of a dynamically 

graded cleft closure. We have pushed the bounds of the temporal resolution 
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of such methods and been able to resolve fast dynamics of the ligand -binding 

domain, noting the adherence of the domain to the conformational selection 

model, and the revelation of a novel conformation leading to activation 

hitherto unknown. Finally, we have also directly examined the 

conformational dynamics of the transmembrane domain of the NMDA 

receptor with regards to its gating motions, granting unprecedented insight 

into the movements of the ion channel domain and elucidating a novel 

mechanism of allosteric inhibition. Such biophysical characterization of the 

NMDA receptor is essential, not only simply to know how the receptor 

works, but also to develop effective therapeutics that do not impair the 

receptor’s important physiological roles.  

  



ix 

 

Table of Contents 

Approval Page ........................................................................................................................ i 

Title Page ............................................................................................................................. ii 

Copyright .............................................................................................................................. iii 

Dedication ............................................................................................................................ iv 

Acknowledgements ............................................................................................................... v 

Abstract ................................................................................................................................ vii 

Table of Contents ................................................................................................................. ix 

List of Illustrations ............................................................................................................. xiii 

List of Tables ....................................................................................................................... xv 

Abbreviations ..................................................................................................................... xvi 

Chapter 1: Introduction to NMDA Receptors and post-synaptic function........................ 1 

Summary of NMDA receptor functional significance .................................................... 2 

Chapter 2: Structure of NMDA Receptors .......................................................................... 6 

Amino-Terminal Domain ................................................................................................. 8 

Ligand-Binding Domain .................................................................................................. 10 

Transmembrane Domain ................................................................................................ 12 

Carboxyl-Terminal Domain ............................................................................................ 14 

Chapter 3: Single-molecule Förster Resonance Energy Transfer ..................................... 16 



x 

 

Chapter 4: Elucidating the Structural Mechanism of Partial Agonism of the NMDA 

Receptor ......................................................................................................................... 24 

Results .............................................................................................................................. 26 

Cysteine labeling versus unnatural amino acid labeling .......................................... 26 

smFRET investigations of the GluN1 LBD with full agonists, with partial agonists, 

and with antagonist ................................................................................................ 30 

Discussion ........................................................................................................................ 35 

Chapter 5: Probing NMDA Receptor Dynamics with Submillisecond Resolution ........ 38 

Results ............................................................................................................................... 41 

smFRET experimental design and construct validation............................................ 41 

Construction of smFRET histograms .......................................................................... 41 

Probability Distribution Analysis reveals three distinct conformations ................. 45 

Time window analysis reveals submillisecond dynamics......................................... 49 

Discussion ........................................................................................................................ 58 

Chapter 6: Investigation of the Gating Movements of the NMDA Receptor .................. 61 

Results and Discussion ................................................................................................... 63 

Functional characterization of the smFRET construct. ........................................... 63 

smFRET identified distinct and stable states. ........................................................... 66 

The conformational landscape associated with open and closed channel states. . 72 

Comparison of desensitized and inhibited NMDA Receptor. ................................. 76 



xi 

 

Dynamics of the NMDA receptor. ............................................................................. 78 

Transitions among the open and closed states. ........................................................ 84 

Energetics of the NMDA receptor. ............................................................................. 88 

Concluding remarks. ................................................................................................... 88 

Chapter 7: Conclusions and Future Directions ................................................................ 90 

Future Directions ............................................................................................................. 91 

Further investigations into the LBD ........................................................................... 91 

Dynamics of the Amino-Terminal Domain ............................................................... 92 

A closer look at the pore ............................................................................................. 92 

The Carboxyl-Terminal Domain ................................................................................ 94 

Better technologies to study membrane proteins..................................................... 94 

Final Thoughts ................................................................................................................ 95 

Appendix: Materials and Methods .................................................................................... 96 

Generation of site-directed isolated GluN1 LBD mutants ........................................... 96 

LBD protein expression .................................................................................................. 96 

LBD Protein purification ................................................................................................ 97 

Labeling of LBD for FRET .............................................................................................. 101 

Isothermal calorimetry .................................................................................................. 102 

Attached-smFRET LBD sample preparation (132) ....................................................... 102 

Measurements of attached-FRET LBD data ................................................................. 103 



xii 

 

Data analysis of attached-FRET LBD ........................................................................... 104 

Electrophysiology for testing the LBD mutants .......................................................... 105 

Accessible Volume (AV) simulations to estimate measured distance ...................... 106 

MFD for smFRET experiments ...................................................................................... 107 

MFD histograms and FRET lines ................................................................................. 108 

Quantum yields ............................................................................................................. 109 

κ2 = 2/3 Assumption, 〈κ2〉, and κ2 Distributions .......................................................... 110 

Probability distribution analysis (PDA) ........................................................................ 112 

Generation of smFRET constructs for TMD measurements........................................ 113 

Electrophysiology for TMD measurements ................................................................. 114 

Single molecule FRET sample preparation for TMD measurements ......................... 114 

Flow chamber preparation for TMD measurements .................................................... 115 

Protein preparation and attachment to coverslips for TMD measurements ............ 116 

smFRET data acquisition for TMD measurements ...................................................... 117 

Free energy calculations ................................................................................................. 117 

Bibliography ....................................................................................................................... 119 

Vita ...................................................................................................................................... 145 

 

  



xiii 

 

List of Illustrations 

Figure 1. Overview of NMDA Receptor structure ............................................................... 7 

Figure 2. Excitation and Emission spectra of a typical FRET fluorophore pair .............. 18 

Figure 3. Crystal structure of the GluN1 ligand-binding domain .................................... 27 

Figure 4. Labeling of wild-type proteins and mutant protein ......................................... 28 

Figure 5. Unnatural amino acids for use with single molecule FRET ............................. 29 

Figure 6. Denoised smFRET histograms showing the population distribution of the 

GluN1 ligand-binding domain in various liganded states .......................................... 31 

Figure 7. Comparison of the smFRET histograms ............................................................ 33 

Figure 8. Cleft closure versus activation ........................................................................... 36 

Figure 9. Experimental smFRET design and construct validation .................................. 40 

Figure 10. MFD histograms of labeled GluN1 LBD with multiple ligands ...................... 43 

Figure 11. Photobleaching and description of FD/FA histograms as modeled by PDA ... 47 

Figure 12. Time window and PDA comparison of FD/FA histograms of the LBD with the 

various ligands ............................................................................................................... 51 

Figure 13. κ2 distribution for LBD bound to: A, DCKA; B, Gly; C, D-Ser; D, L-Ala; and E, 

ACBC .............................................................................................................................. 54 

Figure 14. Redistribution of population fractions ............................................................ 57 

Figure 15. TMD smFRET constructs and characterization .............................................. 65 

Figure 16. Attached-FRET of full-length NMDA receptors shows specific pulldown ... 67 

Figure 17. Denoised smFRET histograms of the NMDA receptor ................................... 69 

Figure 18. Observed smFRET histograms of the NMDA receptor ................................... 71 



xiv 

 

Figure 19. Difference histograms clarify the changing conformational landscape of the 

NMDA receptor as it shifts between inactive and active conditions ........................ 75 

Figure 20. Dynamics of the NMDA receptor show differences in transitional behavior 

under different ligand conditions ................................................................................ 80 

Figure 21. The coefficient of variation (CV) of each smFRET efficiency trajectory versus 

that trajectory’s length .................................................................................................. 81 

Figure 22. Transition maps and free energy diagrams of the NMDA receptor smFRET 

data ................................................................................................................................ 87 

Figure 23. Characterization of the GluN1 agonist-binding domain after incorporation 

of p-acetyl-L-phenylalanine ........................................................................................ 100 

  



xv 

 

List of Tables 

Table 1. FRET Lines ............................................................................................................. 44 

Table 2. 〈RDA〉E determined by PDA analysis .................................................................... 52 

Table 3. FD/FA ratio for each given mean FRET distance ................................................. 53 

Table 4. Average steady state anisotropy (rss) per burst for the dyes on the ligand-

binding domain at the conditions ............................................................................... 54 

Table 5. Mean κ2 and estimated error ((RDA
(<κ2>)/RDA

(κ2=2/3))%) on distances by using 

the assumption of κ2 = 2/3 ........................................................................................... 55 

Table 6. Fastest relaxation time observed with PDA ....................................................... 55 

Table 7. Overall fractions of PDA analysis including the donor only (bleached fraction)

 ........................................................................................................................................ 58 

Table 8. Conformational states sampled by the NMDA receptor under various 

liganded conditions. ..................................................................................................... 70 

Table 9. Autocorrelation data under the various ligated conditions. ............................. 83 

Table 10. Quantum Yields were estimated as described in Appendix ........................... 110 

  



xvi 

 

Abbreviations 

ABD  Agonist-Binding Domain 

ACBC  1-Amino-1-CycloButyl Carboxylic Acid 

AcF  p-Acetyl-L-Phenylalanine 

AMPA  α-amino-5-methyl-3-hydroxy-4-isoxazole propionate 

ATD  Amino-Terminal Domain 

AV  Accessible Volume 

bAP  Back-propagating Action Potential 

CaMKII Calcium/Calmodulin-dependent Kinase II 

CHS  Cholesteryl HemiSuccinate 

CNS  Central Nervous System 

CTD  Carboxyl-Terminal Domain 

CV  Coefficient of Variation 

D1  Upper lobe of the LBD 

D2  Lower lobe of the LBD 

DCKA  5,7-DiChloroKynurenic Acid 

DDM  n-dodecyl-β-D-maltoside 

EM  Electron Microscopy 

FLIM-FRET Fluorescence Lifetime Imaging Microscopy-Förster Resonance Energy 

Transfer 

FRET  Förster Resonance Energy Transfer 

HF  High FRET 

iGluR  ionotropic Glutamate Receptor 



xvii 

 

LBD  Ligand-Binding Domain 

LF  Low FRET 

LRET  Luminescence Resonance Energy Transfer 

LTD  Long-Term Depression 

LTP  Long-Term Potentiation 

M1  First Membrane-spanning helix of the NMDA receptor 

M2  Re-entrant Membrane loop between M1 and M3 of the NMDA receptor 

M3  Second Membrane-spanning helix of the NMDA receptor 

M4  Third Membrane-spanning helix of the NMDA receptor 

MD  Molecular Dynamics 

MF  Medium FRET 

MFD  Multi-parameter Fluorescence Detection 

MK-801 Dizocilpine maleate 

MNG-3 Lauryl Maltose Neopentyl Glycol 

MSP  Membrane Scaffold Protein 

NMDA  N-Methyl-D-Aspartate 

NMR  Nuclear Magnetic Resonance 

PBS  Phosphate-Buffered Saline 

PEG  Poly-Ethylene Glycol 

PIE  Pulsed Interleaved Excitation 

R0  Förster Radius, the distance at which FRET is half-maximal 

R1  Regulatory Domain 1 (the upper lobe of the ATD) 

R2  Regulatory Domain 2 (the lower lobe of the ATD) 



xviii 

 

S1  Sequence of the LBD prior to M1 

S2  Sequence of the LBD after M3 

SiMPull Single-Molecule Pulldown 

SMA  Styrene-Maleic Acid 

smFRET single molecule Förster Resonance Energy Transfer 

STaSI  Step Transition and State Identification 

STDP  Spike Timing-Dependent Plasticity 

TCSPC  Time-Correlated Single Photon Counting 

TIRF  Total Internal Reflection Fluorescence 

TMD  TransMembrane Domain 

VDCC  Voltage-Dependent Calcium Channel 

w.res  Weighted Residuals 

  



1 

 

Chapter 1: Introduction to NMDA Receptors and post-synaptic function 

N-methyl-D-aspartate (NMDA) receptors are one member of a family of 

proteins known as the ionotropic glutamate receptors (iGluRs). These iGluRs, which 

also consist of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and 

kainate receptors, are ligand-gated ion channels that mediate the majority of fast 

excitatory neurotransmission in the central nervous system (1). Because of this 

important role, NMDA receptors are implicated in behavior, cognition, and neural 

development, as well as in learning and memory. Conversely, dysfunction of NMDA 

receptors is similarly implicated in various neurological disorders such as depression, 

stroke, schizophrenia, epilepsy, and Alzheimer’s disease (1-3). 

Over the last decade and a half, a number of high-resolution crystal and cryo-

EM structures have been published on the NMDA receptor, starting from the original 

studies of isolated domains (4-8) and eventually culminating in the structures of the 

‘full-length’ NMDA receptor (9-12). However, these structures, though they have 

verified and expanded upon decades of previous structure-function studies, still leave 

many questions unanswered, especially with regard to the dynamic motions of the 

proteins. To address this gap, the work presented in this dissertation aims to examine 

the dynamic movements and conformational changes undergone by functional NMDA 

receptors and to synthesize the spectroscopic, structural, functional, and biochemical 

data available to clarify the mechanisms by which NMDA receptors activate and gate. 
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Summary of NMDA receptor functional significance  

As mentioned above, the iGluRs are the main mediators of fast excitatory 

neurotransmission in the central nervous system (CNS). Briefly, when an excited 

neuron releases the neurotransmitter glutamate and the glutamate subsequently binds 

an iGluR, this binding event leads to a conformational change that results in the 

formation of a cation-permeable pore within the iGluR. Cations—typically sodium, 

potassium, and sometimes calcium (depending on the particular receptor)—flow 

down their electrochemical gradient through that pore, generating a net inward 

current (inward movement of cations, measured as negative amperes), a 

depolarization of the resting negative membrane potential toward zero and even 

toward positive millivolts, and the propagation of the excitatory signal (13). Other 

neurotransmitters exist, both excitatory and inhibitory, but glutamate remains the 

major excitatory receptor in the CNS, and thus glutamate’s importance, as well as the 

importance of the iGluRs, to neurophysiology and neuropathology remains 

paramount. 

Among the iGluRs, NMDA receptors hold a special role, such that the iGluR 

family is often divided into two classes: NMDA receptors and non-NMDA receptors 

(1). The features that distinguish NMDA receptors are myriad and include (i) voltage-

dependent pore-block by magnesium (14, 15), (ii) a much higher calcium permeability 

relative to other iGluRs (16), (iii) slower gating kinetics (17-19), and (iv) the 

requirement of a co-agonist such as glycine (20) or D-serine (21) in order to activate 

the channel. These special features speak to the particularly important role of NMDA 

receptors to several cellular models of learning and memory (1). 
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NMDA receptor-dependent long-term potentiation (LTP) and long-term 

depression (LTD) are two such examples of NMDA-receptor mediated synaptic 

plasticity as a means to describe memory (22). LTP is a phenomenon by which 

neurons remodel a specific synapse to strengthen the effect of a future stimulus. The 

release of neurotransmitters from a single action potential alone is unlikely to elicit a 

robust NMDA-mediated response. Though glutamate and its co-agonist bind to the 

NMDA receptor, ion permeation through the receptor is inhibited by magnesium ions 

held in the pore by negative membrane potentials (14, 15). Instead, non-NMDA 

receptors such as the AMPA receptor provide the bulk of the initial spike of 

depolarization. With strong or frequent stimulation, though, the depolarization from 

non-NMDA-receptor sources can build up, allowing for the ejection of magnesium 

from the NMDA receptor pore and the ability of the NMDA receptor to experience a 

robust opening upon binding of its agonists (14, 15). This requirement of concurrent 

depolarization and agonist binding has led to NMDA receptors being described as 

coincidence detectors (1). Subsequent entry of calcium through activated NMDA 

receptors can then signal a series of downstream processes that lead to synaptic 

remodeling. In one example pathway of NMDA-receptor-mediated LTP, the calcium-

triggered activation of kinases such as calcium/calmodulin-dependent kinase II 

(CaMKII) (23), among others (24-27), leads to phosphorylation of AMPA receptors, 

resulting in increased conductance and in increased transport to the synaptic 

membrane (28-30) in the early phase of LTP expression. Later phases, more 

dependent on downstream protein expression, manifest in such ways as spinal 

enlargement and increased spinal density (22). Conversely, weak or slow-frequency 
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stimulation of NMDA receptors leads to LTD and the weakening of the synapse. As 

LTP was largely kinase-mediated, LTD seems to prefer the activation of protein 

phosphatases such calcineurin and protein phosphatase 1, which have higher 

calcium/calmodulin affinity than CaMKII to allow for their activation despite the 

weaker calcium signal (22, 31-34). 

Experimentally, LTP and LTD can be reliably induced by tetanic high-

frequency stimulation (e.g. 100 Hz for 1 sec) and slow-frequency stimulation (e.g. 1 Hz 

for 10 min), respectively (22). Physiologically, spike timing-dependent plasticity 

(STDP) has gained ground as a more plausible model for LTP and LTD induction. 

With STDP, the synchrony of the synaptic input and post-synaptic action potential 

generation determine the propensity of the synapse to undergo either LTP or LTD, 

with pre-synaptic stimulation about 5-20 ms prior to post-synaptic action potential 

generation tending toward induction of LTP (35-37). Mechanistically, this pre-leading-

post spike order allows for calcium-entry from back-propagating action potential 

(bAP)-activated voltage-dependent calcium channels (VDCCs) to combine 

supralinearly with NMDA receptor-mediated calcium entry, whose peak is delayed 

from the pre-synaptic signal due to the slow kinetics of magnesium unbinding (38) 

and the aforementioned slow kinetics of activation and deactivation (1). A post-

leading-pre spike order, conversely, will lack this synergistic calcium response and 

may even result in a lower-than-baseline calcium signal due to calcium-dependent 

inactivation (see below) of the NMDA receptors from bAP-mediated VDCC activation 

(39). Consistent stimulation of the postsynaptic neurons in this order thus tends to 

lead to NMDA-receptor dependent LTD (35-37). 
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Though the above introduction focuses mainly on their post-synaptic effects, 

NMDA receptors are also located pre-synaptically (40, 41), extra-synaptically (42-45), 

and non-neuronally (46), where they serve a variety of roles, from pre-synaptic 

expression of plasticity (47), neuronal synchrony (48), and excitotoxicity (44, 49), to 

vasodilation (50, 51), glomerular filtration (52, 53), gustatory sensation (54, 55), and 

more (46). These roles underlie the importance of understanding the structural and 

biophysical mechanisms of NMDA receptor function as from this understanding, 

better treatments targeting pathologically aberrant dysfunction whilst maintaining 

NMDA receptor physiological roles can be developed (56). 
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Chapter 2: Structure of NMDA Receptors 

NMDA receptors are obligate hetero-tetramers consisting of two glycine- (or D-

serine-) binding GluN1 subunits and two other subunits, typically either glutamate-

binding GluN2 (spanning GluN2A through GluN2D) or, less often, glycine- (or D-

serine-) binding GluN3 (GluN3A and GluN3B) (17, 57). Though tetrameric, NMDA 

receptors and other iGluRs arrange in a 1-2-1-2 organization as a dimer of 

heterodimers and thus show pseudo-two-fold symmetry (58) (Figure 1). Each 

individual subunit has a modular architecture with distinct structural and functional 

domains: the extracellular amino-terminal domain (ATD), the extracellular ligand-

binding domain (LBD) (also called the agonist-binding domain, ABD), the 

transmembrane domain (TMD), and the intracellular carboxyl-terminal domain 

(CTD) (1). Interestingly, subunit dimer pairing is not consistent throughout the length 

of the protein—the NMDA receptor and the other iGluRs undergo domain swapping, 

wherein a subunit will dimerize with one neighbor at the level of the LBD, and the 

opposite neighbor at level of the ATD (9, 10). Between each domain within a subunit, 

there are linkers connecting the distal and proximal domains, which seem to serve as 

sites through which tension induced from conformational changes in one domain is 

transmitted to the others (59-63). The structure and function of each domain will be 

further discussed below. 

  



7 

 

 

Figure 1. Overview of NMDA Receptor structure 

The NMDA receptor is an obligate heterotetramer, typically consisting of two 

GluN1 (yellow and blue) and two GluN2 (red and green) subunits. Each subunit has a 

modular arrangement, with distinct functional and structural domains (labeled). The 

carboxyl-terminal domain has yet to be structurally elucidated. 
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Amino-Terminal Domain 

The ATD layer of the NMDA receptor is the more distal of the two extracellular 

domain layers (Figure 1). It is typically the largest domain of each subtype and among 

the most diverse (1). Further, the ATD confers many of the subunit-specific properties 

among different NMDA receptor subunits. Chimera-swapping experiments in which 

individual domains of GluN2 subtypes were switched for the equivalent domain in a 

different subtype largely exhibit the property of the subtype to which the ATD, and 

especially the ATD-LBD linker, belonged (64, 65). However, these same studies also 

use GluN2 ATD-deletion mutations to show that the GluN2 ATD is not essential to 

form functional receptors in recombinant systems (64, 65). Conversely, the GluN1 

ATD does seem to be essential to tetramer assembly (66) and function. ATDs from all 

subunits, though, do participate in regulation and allosteric modulation of the NMDA 

receptor and may also participate in the binding of extracellular proteins (67, 68). 

Overall, the NMDA receptor ATD is organized into a bi-lobed clamshell-like 

structure (7), similar to the LBDs (discussed below). When describing the domain, it is 

often subdivided into the two lobes that comprise it: the upper lobe, known as 

regulatory domain 1 (R1); and the lower lobe, known as regulatory domain 2 (R2) (69). 

As these names imply, these domains play important roles in regulation and allosteric 

modulation of the NMDA receptor. This is in stark contrast to the AMPA receptor, in 

which the ATD seems to play mainly a structural and organizational role (1). This 

ability of the ATD to affect function may be a result of increased interaction and inter-

digitation seen between the ATD and LBD layers of the NMDA receptor as compared 

to that of the AMPA receptor (9, 10, 70). Both positive and negative allosteric 
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modulation of the NMDA receptor is facilitated by ATD interactions and, as will be 

discussed below with the LBD, this modulation is intimately tied to the closure or 

opening of the ATD clamshell cleft (71-73). 

As mentioned previously, the GluN2 ATD plays a large role in the properties of 

the receptor as a whole, with chimeras swapping the ATD and its linker also swapping 

receptor open probability (Po), response time course, and agonist potency (64, 65, 

74). The differing effects of the ATDs on receptor function may be partially explained 

by the resting conformations of the ATDs: GluN2A, which has a more open ATD, 

allows for a larger open probability (around 0.5) than GluN2B, which has a more 

closed ATD (open probability around 0.1) (71, 73, 74). Such a relationship occurs 

because closure of the ATD cleft, via a raising of the lower lobe R2, results in an 

increase in tension in the linker connecting it to the LBD, destabilizing the LBD dimer 

interface that maintains an open channel (see below). Different allosteric modulators 

of the NMDA receptor also exploit this relationship by inducing or reducing ATD cleft 

closure to regulate channel activity. Zinc cations are endogenous modulators (75) that 

bind to a series of histidine residues between the upper and lower lobes of the ATD 

(76-78). Two additional histidine residues in particular play an important role in 

coordinating the high-affinity nanomolar binding of zinc to GluN2A, which may 

explain why the other GluN2 subunits show lower affinity micromolar binding (76, 77, 

79, 80). The positioning of these coordinating histidines within and toward the outer 

end of the ATD domain cleft (7) was expected, given the ability of zinc to induce ATD 

cleft closure (71), but interestingly, the synthetic antagonist ifenprodil, which via 

homology to bacterial periplasmic binding proteins as well as by functional studies 
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(81) was predicted to also bind within the GluN2B ATD cleft, instead binds to the 

interface of the GluN1 and GluN2B ATD subunits (8). Despite this surprising 

localization, ifenprodil also induces ATD cleft closure, as first shown by Luminescence 

Resonance Energy Transfer (LRET) experiments (73), and subsequently confirmed by 

cryo-EM microscopy (11). 

As ATD-mediated inhibition proceeds via a closure of the ATD cleft, ATD-

mediated potentiation of NMDA receptors was hypothesized to proceed by an ATD 

cleft opening. Indeed, spermine is an endogenous polyamine that potentiates GluN2B-

containing NDMA receptors (82, 83). Similar to ifenprodil, spermine binds at the 

interface between GluN1 and GluN2B ATD subunits (84), but in this case induces an 

opening of the ATD cleft (72). This potentiation by spermine and other polyamines is 

absent in NMDA receptors with GluN1 splice variants containing the polybasic exon 5, 

indicating that it is an electrostatic interaction between the polycationic spermine or 

exon 5 with the anionic lower R2 lobes of the NMDA receptor ATDs that pulls those 

lower lobes together to potentiate the channel. 

 

Ligand-Binding Domain 

The ligand-binding domain layer is the more proximal of the two extracellular 

domain layers of the NMDA receptor (Figure 1). As the name suggests, the LBD binds 

ligands, more specifically the agonists required to activate the channel (hence the 

LBD’s other name—the agonist-binding domain). The GluN2 subunits bind 

glutamate, meriting the NMDA receptor’s place among the glutamate receptors. The 

GluN1 and GluN3 subunits, however, bind a different co-agonist that is also required 
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for channel activation. The first full agonist known to activate these subunits was 

glycine (20), but since then D-serine has also been identified as another 

physiologically relevant full agonist (85, 86). The physiological relevance and 

distinction between the two full agonists has been debated, but it is now generally 

believed that D-serine is the main synaptic co-agonist while glycine acts more as an 

extrasynaptic agonist for NMDA receptors (87). This distinction is not universal, 

however, and glycine does remain the synaptic neurotransmitter at certain synapses 

(88). With this in mind, glycine, as the first identified co-agonist as well as the 

cheaper of the two GluN1 full agonists, has been the preferred co-agonist of choice for 

the GluN1 subunit for biophysical characterization, and GluN1 and its binding site will 

be hereafter described as glycine-binding. 

As with the ATD, the LBD also folds as a bi-lobed clamshell-like structure (4-

6). Unlike the ATD, the sequence encoding the NMDA receptor LBD is interrupted by 

two membrane-spanning helices (M1 and M3), as well as a re-entrant membrane loop 

(M2) (1, 9, 10). Thus, the LBD has been subdivided in two ways: by primary sequence 

(S1 and S2—sequence before and after the transmembrane sequences, respectively), 

and by tertiary folding (D1 and D2—upper and lower lobe, respectively). Much of the 

early work on the NMDA receptor LBDs has been performed on the isolated LBD, 

where S1 and S2 have been joined by a short glycine-threonine dipeptide linker (4-6, 

89-91). These studies, as well as LRET studies on full-length receptors (92) have 

confirmed that the LBDs undergo a cleft-closure conformational change upon 

introduction of full agonists. Similarly, locking the LBD cleft closed via formation of 

disulfide bridges can also activate the channel in the absence of agonist (93). Cleft 
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closure is mediated by the raising of the D2 lobes, inducing a tension on the linkers 

between the LBD and TMD, which eventually pulls the channel open (59). During this 

process, the LBD heterodimers stay intact through the D1 lobes, but under prolonged 

tension, the heterodimeric interface breaks, the dimer ruptures, and the receptor 

desensitizes (94). 

Though full agonists have been shown to activate NMDA receptors by fully 

closing the LBD cleft, until the work of this dissertation the mechanism of how partial 

agonists partially activate the NMDA receptor has been unclear. Studies on the AMPA 

receptor produced a strong correlation between the degree of AMPA receptor LBD 

cleft closure and extent of AMPA receptor activation with the structures of partial 

agonists showing the cleft in an intermediate conformation of partial cleft closure (95-

97). With the NMDA receptor, especially with the GluN1 glycine-binding domain, this 

relationship was not seen. Crystal structures of both full and partial agonists 

crystallized in the same conformation (4, 6). Experiments using ensemble LRET 

measurements were able to identify a state of partial cleft closure at the glutamate-

binding GluN2 LBD, but again no resolvable difference in the GluN1 LBD could be 

distinguished (92). The exploration of this question and the mechanism of partial 

agonism at the GluN1 subunit will be the subject of Chapters 4 and 5. 

 

Transmembrane Domain 

Though the ATD and LBD control the timing of channel activation, it is 

through the transmembrane domain of the NMDA receptor that the ions actually flow 

in order to give the receptor most of its functional significance. The overall structure 
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of the TMD shows pseudo-fourfold symmetry and is arranged similar to an inverted 

potassium channel (98), although NMDA receptors have an extra M4 membrane-

spanning helix which interacts with the neighboring M1 (9, 10). At the extracellular 

entrance to the pore, forming the linker between the C-terminal end of the pore-lining 

M3 helix of the GluN1 subunit and the LBD, is a DRPEER motif (63), which seems to 

confer an electronegative patch that facilitates calcium influx and conductance by 

attracting calcium to the area. Just proximal to the DRPEER motif is the Lurcher motif 

SYTANLAAF, forming the extracellular side of the M3 helix. Mutations in this helix 

have been shown to produce constitutively active channels; correspondingly, the 

elucidation of full-length structures has shown this motif to form the first and 

narrowest constriction in the ion channel (9, 10). Below this constriction is a water-

filled central vestibule, followed by another constriction formed by the apex of the M2 

pore loop (9, 10). This apex, which in GluA2 AMPA receptors harbors the Q/R editing 

site in GluA2 AMPA receptors that is responsible for calcium impermeability (99, 

100), contains an asparagine in NMDA receptors whose identity is crucial for 

maintaining calcium permeability as well as magnesium block (101). 

Importantly, the structural studies of the transmembrane domain have 

revealed only closed-pore conformations (9-12). Single channel electrophysiology data 

has indicated that there seem to be five closed and up to four open components, based 

on dwell times (102), but how those components relate to structural changes is 

unknown. Using cryo-EM microscopy, Tajima, et al. were able to identify a class of 

conformations that, based on the extracellular domains, they suggested to be the 

active conformation of the NMDA receptor (11). However, these data comprised only 
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17% of the identified particles, and their reconstruction was unable to resolve the 

TMD to any high degree. Nevertheless, the low resolution map that can be seen 

indicates that there are some large, backbone-changing conformational movements in 

the TMD present during channel activation. The mapping of the conformational 

changes of the NMDA receptor TMD is the subject of Chapter 6. 

 

Carboxyl-Terminal Domain 

The carboxyl-terminal domain is the least structurally clarified domain of the 

NMDA receptor. Believed to be intrinsically disordered, the CTD is not essential to 

function and has been removed from all the constructs used for high-resolution 

structural determination (9-12). Nevertheless, the CTD plays a number of roles, 

including membrane targeting, stabilization, and degradation (1). It contains a 

number of phosphorylation sites that control use-dependent desensitization (103) and 

trafficking (104, 105). Moreover, the CTD undergoes palmitoylation (106), and also, 

through interaction with calcium/calmodulin, mediates calcium-dependent 

inactivation (107-109). 

Perhaps most interestingly, as well as controversially, the CTD is also 

responsible for metabotropic function of the NMDA receptor (110, 111). While NMDA 

receptors, as well as calcium, are necessary for induction of both LTP and LTD, 

blocking of NMDA receptor ion flux by either a pore blocker or by a GluN1 

competitive antagonist does not prevent LTD induction (112). This finding was both 

refuted (113) and confirmed (114), by independent groups, highlighting the controversy 

in the area. Given the length of the NMDA receptor CTD, there would be precedent 
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for a non-ionotropic mechanism mediated by intracellular conformational changes, 

and indeed FLIM-FRET experiments with GluN1 subunits tagged with GFP and 

mCherry show conformational changes even when ion flux is blocked (115). To date, 

the CTD has been the least studied domain of the NMDA receptor, but these studies 

show that there is still a wealth of information to be discovered about its functions. 
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Chapter 3: Single-molecule Förster Resonance Energy Transfer 

This chapter is based in part upon Dolino, D. M., S. S. Ramaswamy, and V. 

Jayaraman. 2014. Luminescence Resonance Energy Transfer to Study Conformational 

Changes in Membrane Proteins Expressed in Mammalian Cells. e51895. The full article 

may be found at http://www.jove.com/video/51895/luminescence-resonance-energy-

transfer-to-study-conformational. 

The preceding two chapters have highlighted the importance of NMDA 

receptor function and have illustrated some of the gaps present in the literature 

regarding the structure-function relationships that govern NMDA receptor activity. 

The high-resolution structural information of the outermost three domains has 

provided great insight into the endpoints of conformational activity, but information 

about the movements and dynamics of the receptor in between those endpoints is 

lacking. In order to address this gap, we have used single-molecule Förster Resonance 

Energy Transfer as a means to directly assess conformational changes during changes 

in NMDA receptor function. 

Förster Resonance Energy Transfer, or FRET, is a technique that can be used as 

a molecular ruler to measure distances and distance changes between donor and 

acceptor fluorophores within the range of 10-100 Å (116, 117). In this range, if the 

emission spectrum of the directly-excited, donor fluorophore overlaps with the 

absorption spectrum of the acceptor fluorophore (Figure 2), resonance energy 

transfer can occur where the donor transfers its energy non-radiatively to the 

acceptor. The efficiency of this transfer is highly distance-dependent and can be 

described by the following equation: 
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𝐸 =

𝑅0
6

𝑅6 + 𝑅0
6 (1) 

where R is the distance between the two fluorophores, E is the efficiency of transfer, 

and R0, defined below, is the Förster radius for the fluorophore pair, i.e. the distance at 

which efficiency of transfer is half-maximal. From this equation, one can see that 

efficiency is related to the magnitude of the distance raised to the sixth power, and it 

is this sixth power dependence that allows for FRET measurements to be exquisitely 

sensitive to even small distance changes when near the R0 of the FRET pair. 
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Figure 2. Excitation and Emission spectra of a typical FRET fluorophore pair 

Excitation spectra are shown in dashed lines, and emission spectra are shown 

in solid lines. Donor spectra are shown in blue, and acceptor spectra are shown in red. 

FRET can occur when the emission spectrum of the donor overlaps with the excitation 

spectrum of the acceptor (highlighted), and results in a highly distance-dependent 

non-radiative energy transfer. The area of overlap is known as the overlap integral, 

and is an important factor in characterizing the R0 for a fluorophore pair. 
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FRET efficiency E is defined as the ratio of the rate of energy transfer, kFRET, 

divided by the total rate of decay, kFRET + Σkother for the donor fluorophore: 

 
𝐸 ≡

𝑘𝐹𝑅𝐸𝑇
𝑘𝐹𝑅𝐸𝑇 + ∑𝑘𝑜𝑡ℎ𝑒𝑟

 (2) 

Taking the relationship of lifetime being the inverse of the rate, this equation can be 

rewritten: 

 𝐸 =
τ𝐷 −τ𝐷𝐴

τ𝐷

 (3) 

where τD is the lifetime of the donor fluorophore alone (representative of the rate of 

decay for all other processes), and τDA is the lifetime of the donor when participating 

in energy transfer with the acceptor (representative of the sum of kFRET + Σkother)(118). 

When measuring donor lifetime, care must be taken to account for background 

donor-only lifetimes in cases where there is incomplete labeling or photobleaching of 

the acceptor. To circumvent this complication, LRET experiments using lanthanide 

cations acting as donor fluorophores measure the lifetime of sensitized acceptor 

emission, i.e. acceptor emission resulting from excitation via donor energy transfer 

rather than direct acceptor excitation. Because the lifetime of the organic acceptor 

fluorophore is so short compared to the lifetime of even a FRETting lanthanide (nsec 

vs μsec), the acceptor lifetime can be considered instantaneous and thus be used as a 

good reporter of FRET donor lifetime (119). 

Fluorophore lifetime measurements of single molecules can also be achieved 

using time-correlated single photon counting (TCSPC) technology or by frequency 

modulation; however, given the expense of the equipment needed for these 

techniques, intensity-based FRET measurements can be taken, integrating the 
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fluorescence over the course of 10 - 100 msec. In this case, a proximity ratio, PR, can 

be taken as the ratio of acceptor fluorescence to total fluorescence: 

 
𝑃𝑅 =

I𝐴
I𝐷 + 𝐼𝐴

= (1 +
𝐼𝐷
𝐼𝐴
)
−1

 (4) 

where IA is the intensity of acceptor emission and ID is the intensity of donor emission. 

To relate this proximity ratio to actual FRET efficiency, background signal, 

spectral cross-talk, and direct acceptor excitation must be subtracted from the raw 

signal, such that 

 𝐼𝐷 = 𝑆𝐷 − 〈𝐵𝐷〉 − 𝛽(𝐼𝐴 + 𝑓𝑑𝑖𝑟) 

𝐼𝐴 = 𝑆𝐴 − 〈𝐵𝐴〉 − 𝛼𝐼𝐷 − 𝑓𝑑𝑖𝑟 
(5) 

where Si is the raw signal from either donor (D) or acceptor (A) prior to any 

correction; <Bi> is the mean background signal, taken either between bursts or from 

each spot after photobleaching; β is the spectral cross-talk parameter of acceptor 

emission detected in the donor channel; α is the spectral cross-talk parameter of donor 

emission detected in the acceptor channel, and fdir is direct excitation of the acceptor by 

the donor laser. The spectral cross-talk parameters can be obtained by directly exciting 

singly-labeled samples and taking the appropriate ratio of background-corrected signal; 

whereas fdir is simply measured as the background-corrected acceptor signal upon 

excitation with the donor laser. 

Furthermore, the signal detected from a given quantity of excited molecules 

will be dependent on the detection efficiency at that wavelength and the molecule’s 

quantum yield, and so the differences in those values between the donor and acceptor 

must be accounted for in accurate efficiency determination. These two factors are 

combined into the single correction factor γ, where 
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𝐸 = (1 + 𝛾

𝐼𝐷
𝐼𝐴
)
−1

 (6) 

And   

 
𝛾 =

𝜂𝐴𝛷𝐴
𝜂𝐷𝛷𝐷

 (7) 

with ηA and ηD being the detector efficiency of acceptor and donor emission, 

respectively, and ΦA and ΦD being the quantum yield of the acceptor and donor 

fluorophores, respectively. These values can be measured empirically, or γ can also be 

measured as the magnitude of the ratio of the change in signal after acceptor 

photobleaching (120) as a means to normalize the change in measured signal to the 

same corrected emission: 

 
𝛾 = |

∆𝐼𝐴
∆𝐼𝐷
| (8) 

where ΔIA is the change in measured acceptor signal after acceptor photobleaching, 

and ΔID is the change in measured donor signal after acceptor photobleaching. 

After calculating the FRET efficiency, the distance between the fluorophores 

can then be calculated with equation 1, given the R0 value of the FRET pair. If the R0 

value is unknown for the pair of fluorophores, it can be calculated via the following 

equation: 

 
𝑅0 = (

8.785 × 105 ×κ2 × ϕ𝐷 × 𝐽

𝑛4
)

1/6

 (9) 

where, R0 is the Förster radius in angstroms, κ2 is the orientation factor between the 

two dyes usually assumed to be 2/3, ϕD is the quantum yield of the donor, n is the 

refractive index of the medium, and J is the spectral overlap integral between the 

donor's emission spectrum and the acceptor's absorbance spectrum in M-1cm-1nm4 
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(Figure 2). J is defined in equation 10 

 
𝐽 = ∫𝑓𝐷̅̅̅(𝜆)휀𝐴(𝜆)𝜆

4 𝑑𝜆 
(10) 

where 𝑓𝐷̅̅̅ is the donor emission spectrum normalized to an area of 1, ϵA is the molar 

absorbance coefficient of the acceptor at the given wavelength in M-1cm-1, and λ is the 

wavelength in nm (116-118). 

The κ2 value given in equation 9 is the orientation factor. Fluorescence and 

energy transfer, being dipole interactions, are dependent on the relative orientation of 

those dipoles. If the dipoles are oriented in parallel, the orientation factor will be at its 

maximum of 4. If the dipoles are orthogonal to each other, they will be at a minimum 

value of 0. In practice, the long linkers attached to the fluorophore dyes allow for free 

rotation of the dyes and an average κ2 value of experimental measurements to be close 

to the theoretical average of 2/3 (121). An uncertainty of 10% in the R0 can be assumed 

with confidence, while gathering anisotropy data directly can lower this uncertainty to 

2.5% or lower (91). Keeping this in mind, by affixing FRET fluorophore pairs onto 

proteins via site-directed labeling, single molecule and even ensemble FRET can be 

used to make high-precision measurements of protein conformational changes and 

structure (121, 122). 

Isolation of single molecules for smFRET can be done in two main ways. In the 

first, very dilute and highly pure FRET-labeled samples are simply dropped onto a 

clean glass slide, with the labeled samples allowed to diffuse around. Using a confocal 

microscope, the experimenter can focus onto a small, femtoliter-size confocal volume 

in the middle of the sample solution. As labeled sample diffuses into and out of the 

confocal volume, they will give off bursts of fluorescence emission that will then be 



23 

 

detected as single molecule FRET data (91, 123). In the second method of isolation, 

labeled samples are physically attached to microscope slides. These slides must be 

extremely clean and passivated, typically using PEG, to prevent any non-specific 

binding of proteins or other contaminants. To capture protein, the layer of PEG can be 

doped with biotinylated PEG, which will then irreversibly bind streptavidin. 

Biotinylated antibodies can then pull down proteins or other samples of interest (89, 

90, 120). 

Each method of single molecule isolation has its pros and cons. With diffusing-

FRET, the sample must be very pure—many contaminants fluoresce and thus it may 

be difficult to distinguish contaminant signal from actual sample signal. Assuming 

that the slide is clean and the antibodies specific, attached-FRET allows for the 

washing away of contaminants, but the assumption of clean slides and specific 

antibodies is not always a safe one. Attached-FRET allows for the tracking of single 

molecules over a period of seconds, limited only by photobleaching times. Diffusing-

FRET can only capture FRET traces for as long as a molecule stays within the confocal 

volume, though efforts have been made to capture proteins within lipid vesicles to 

lengthen the dwell time. Finally, the confocal-based microscopy combined with time-

correlated single photon counting (TCSPC) measurements can allow for the capture of 

fast dynamics, even faster than the up-to-80 MHz pulse rate of the laser (see Chapter 

5), whereas the best cameras for TIRF-based attached FRET go to around 30 msec 

resolution. Confocal microscopy and TCSPC data collection can also be used with 

attached-FRET, but this comes at a cost of throughput (120, 123). Analysis of the 

smFRET data is similar and will be discussed in the relevant chapters below.  
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Chapter 4: Elucidating the Structural Mechanism of Partial Agonism of the 

NMDA Receptor 

This chapter is based upon research originally published in The Journal of 

Biological Chemistry. Dolino, D. M., D. Cooper, S. Ramaswamy, H. Jaurich, C. F. 

Landes, and V. Jayaraman. Structural Dynamics of the Glycine-binding Domain of the 

N-Methyl-D-Aspartate Receptor. Journal of Biological Chemistry. 2015; 290: 797-804. 

© the American Society for Biochemistry and Molecular Biology. 

As discussed in Chapter 2, one of the central questions concerning the NMDA 

receptor prior to the work of this dissertation was how agonist binding leads to 

channel activation. Insight into iGluR structure and function had previously been 

dominated by studies on the AMPA receptor and has shown that the LBD folds into a 

clamshell-like shape that can close upon its ligands, inducing conformational changes 

that result in channel opening. Crystal structures of the AMPA receptor LBD showed 

that the extent of this cleft closure correlates with the efficacy of the ligand, with weak 

agonists inducing partial closure, and full agonists inducing full cleft closure and full 

channel activation (95-97, 124-126). Such a relationship between LBD cleft closure and 

ion channel activation provided an elegant means of explaining the link between 

conformational changes at the LBD and opening of the channel pore (127). Moreover, 

smFRET experiments as well as NMR experiments on the AMPA receptor showed that, 

in addition to the inherent ability of a ligand to induce cleft closure, the dynamics of 

the LBD also play an important role in dictating activation (128-133). 

With the NMDA receptor, while at the glutamate-binding site of the NMDA 

receptor the extent of cleft closure at the LBD does appear to correlate to activation, 
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such a graded cleft closure was not observed, either by crystal structures or by 

ensemble LRET measurements, for the glycine-binding domain (4, 6, 92, 134). Based 

on the crystal structures of the isolated LBDs, it has been suggested that the glycine-

binding GluN1 subunit could follow a mechanism of conformational selection wherein 

the apo state probes both the closed- and open-cleft conformations. In this 

mechanism, agonist efficacy is governed by the stabilization of the closed 

conformation rather than the formation of intermediate states as was noted with the 

AMPA receptor LBD. Consistent with this hypothesis and with the distinction from 

AMPA receptors, theoretical investigations of the apo state of GluN1 revealed a 

narrowly distributed closed-cleft population in addition to an expected broad open-

cleft population (135). While the theoretical studies shed light on the apo- and 

glycine-bound states of the NMDA receptor, experimental evidence for the 

mechanism of partial agonism at the LBD still remained largely unknown. 

To address this question, we used smFRET to allow us to examine the 

conformational landscape that the isolated glycine-binding GluN1 LBD (GluN1 S1S2) 

probes in the presence of full agonists, partial agonists, or an antagonist. Additionally, 

in order to specifically label the protein at desired sites, we incorporated the unnatural 

amino acid p-acetyl-L-phenylalanine into the protein (136). The unique ketone group 

of p-acetyl-L-phenylalanine can be coupled to hydrazide-conjugated fluorescent dyes 

for the smFRET studies. Although smFRET on glutamate receptors has been done 

before through the labeling of cysteine residues (132, 133), this new procedure allows 

us to investigate the protein without concern of labeling or mutating out native 

cysteine residues. We found that there is significant overlap between the different 
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liganded states with the antagonist-bound protein samples exhibiting both the closed- 

and open-cleft conformations, similar to what has been predicted with the molecular 

dynamics simulations (135). Interestingly, we also found that the partial agonist-

bound proteins show greater rigidity in its population distribution, which was 

different from what has previously been observed in the AMPA receptors (133).  

 

Results 

Cysteine labeling versus unnatural amino acid labeling 

Previous protocols to study single molecule dynamics typically make use of 

cysteine residues to enable site-specific labeling (132, 133). An important first step for 

such approaches is to remove endogenous cysteines that may be undesirably labeled. 

In the GluN1 LBD there is one non-disulfide-bonded cysteine at position 459 (Figure 

3). The C459S mutant S1S2 protein could not be expressed well in Escherichia coli. 

Further, smFRET investigations of wild-type protein labeled with thiol-reactive dyes 

shows signal at the donor emission frequency but not at the acceptor frequency (FRET 

signal) relative to the blank slide studied under the same conditions (Figure 4a and 

Figure 4b). This result indicates that the single cysteine is accessible under these 

labeling conditions, while the disulfide bonded cysteines are not labeled. This is 

further confirmed by the double cysteine mutant at positions S507 and T701 which 

shows signal in both the donor and acceptor frequencies (Figure 4c). 
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Figure 3. Crystal structure of the GluN1 ligand-binding domain 

Sites 507 and 701 were chosen to probe the dynamics of the GluN1 LBD and are 

shown here in stick form with AcF side chains. Native cysteines involved in disulfide 

bridges are shown in magenta, with the free cysteine shown in yellow. 
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Figure 4. Labeling of wild-type proteins and mutant protein 

Blue and red images show the donor and the acceptor channel response, 

respectively, for the same areas. A,D, Blank slides without any protein bound. B, Purified 

wild-type protein labeled with 1:1 ratio of maleimide derivatives of Alexa 555 and Alexa 

647 showing labeling of the C459. C, Purified protein with cysteines at positions 507 and 

701, labeled with 1:1 ratio of maleimide derivatives of Alexa 555 and Alexa 647. E, Purified 

wild-type protein labeled with 1:1 ratio of hydrazide derivatives of Alexa 555 and Alexa 

647. F, Purified protein with AcF inserted at positions 507 and 701 labeled with 1:1 ratio of 

hydrazide derivatives of Alexa 555 and Alexa 647. 
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These considerations made it difficult to use cysteines for analyzing dynamic 

data. To address this issue, we introduced the unnatural amino acid p-acetyl-L-

phenylalanine (AcF) by mutating to an amber stop codon at site 507 in Domain 1 and 

at site 701 in Domain 2 (Figure 3, Figure 5). 

 

 

 

 

 

Figure 5. Unnatural amino acids for use with single molecule FRET 

A, The unnatural amino acid used for these experiments was p-acetyl-L-

phenylalanine (AcF). B, Overview of the reaction between the AcF side chain and the 

hydrazide functional group. The ketone of AcF reacts with the hydrazide to form a 

covalent hydrazone bond. 

 

 

 

 

In contrast to the experiments with the thiol reactive fluorophores, the wild-

type protein shows no signal even after overnight treatment with ketone-reactive dyes, 

similar to the blank control (Figure 4d and Figure 4e), indicating that none of the 

a b
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natural amino acids are reactive to the ketone-reactive dyes. Additionally, the mutant 

protein with AcF at positions 507 and 701 showed signal at both the donor and 

acceptor frequencies showing that the dyes specifically label only the introduced AcF 

(Figure 4f). 

 

smFRET investigations of the GluN1 LBD with full agonists, with partial agonists, and 

with antagonist 

The GluN1 LBD was examined by smFRET in the presence of the full agonists 

glycine and D-serine, the partial agonists L-alanine and 1-amino-1-cyclobutane 

carboxylic acid (ACBC), and the antagonist 5,7-dichlorokynurenic acid (DCKA) 

(Figure 6a-e). Donor and acceptor photon counts of excited proteins were measured 

with millisecond resolution, collected into 10 ms bins for efficiency determination, 

denoised using wavelet decomposition, and then plotted as separate histograms as 

described previously (132, 133, 137). 
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Figure 6. Denoised smFRET histograms showing the population distribution of 

the GluN1 ligand-binding domain in various liganded states 

Distribution of FRET values for the GluN1 LBD when bound to A, full agonist 

glycine (85 molecules), B, full agonist D-serine (28 molecules), C, partial agonist L-alanine 

(38 molecules), D, partial agonist ACBC (166 molecules), and E, antagonist DCKA (121 

molecules). 

  

a b c

d e
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The smFRET histograms of the different ligand-bound states show FRET 

efficiencies that range from 1 to 0.5 with a peak at 0.95. The FRET efficiency of 0.95 

corresponds to a distance of 31 Å. This distance is similar to the 34 Å measured in the 

crystal structure between the Cα of residue 507 and the Cα of residue 701, which is in 

good agreement with the FRET data, given that the FRET distances are measured 

between the fluorophores (4). A smaller peak appears around an efficiency of 0.72, 

corresponding to a distance of 44 Å. This distance is comparable to the 41 Å distance 

measured in the apo crystal structure. The fact that the different liganded states show 

occupancy covering this entire range suggests that the protein probes both the 

“closed’ and “open” cleft conformational states (135). The small fraction of occupancies 

(summing to less than 10%) at efficiencies below 0.6 reflect hyperextended open-cleft 

conformations that are most likely accessible due to the isolated nature of the LBD 

and the absence of the membrane and amino-terminal domain. 
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Figure 7. Comparison of the smFRET histograms 

A, Comparison of the smFRET histogram for the LBD when bound to antagonist 

DCKA (dark red) or with the full agonist glycine (green). B, Comparison of the smFRET 

histograms for the GluN1 LBD when bound to full agonist glycine (green) or partial 

agonist ACBC (orange). 

  

a b
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A shift toward lower efficiency states is seen when comparing the smFRET data 

of full agonists to that of the antagonist DCKA (Figure 7a). Specifically, the DCKA-

bound form of the protein has a reduced number of occurrences at 0.96 or higher 

efficiencies and a much larger fraction at 0.88 efficiency (37 Å) relative to the forms 

bound to the full agonists glycine or D-serine. This trend to lower efficiencies is again 

consistent with the crystal structures which show an open-cleft conformation for the 

antagonist-bound protein (4). Interestingly, the common 0.95 peak underlies the 

significant overlap in the smFRET data between the antagonist- and agonist-bound 

forms of the GluN1 LBD. This data is consistent with theoretical calculations of the 

apo state of the glycine-binding domains of the NMDA receptor, which show that the 

protein probes both open- and closed-cleft conformations (135). The smFRET data, 

however, do not show a clear appearance of a new, distinct population between the 

two liganded forms, but only a shift in the population from a more closed-cleft 

conformation in the full-agonist-bound state to a more open-cleft conformation in the 

antagonist-bound state (Figure 7a). 

The histograms for the GluN1 LBD when bound to the partial agonists ACBC or 

L-alanine also show a peak FRET efficiency at 0.95, which corresponds to a distance of 

31 Å (Figure 6). This distance is in agreement with the distance of 32 Å measured in 

the crystal structure of the ACBC-bound LBD between the Cα of residue 507 and the 

Cα of residue 701 (6). The LBD in complex with L-alanine has not been crystallized. 

The peak efficiency seen in the partial agonist-bound forms of the LBD is similar to 

that found in the glycine-bound state of the protein, again consistent with the crystal 

structures that show a similar closed-cleft conformation with all activating agonists. 
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Crucially, both of the partial agonist-bound forms of the LBD probe smaller ranges of 

conformations and are thus more rigid compared to the glycine-bound state of the 

protein (Figure 7b). Moreover, between the two partial agonists, the ACBC-bound 

form seems even more rigid than L-alanine, in line with ACBC being a less effective 

partial agonist than the latter (6, 138). This finding seems to be in direct contrast to 

the AMPA receptor, which shows a broader range of closed-cleft conformations when 

comparing partial agonist-bound forms to full agonist-bound forms (133). 

 

Discussion 

Here, we have shown that the mechanisms of agonist action at GluN1 are 

different from those of AMPA receptors due to the fact that the protein tends to 

occupy a much narrower spread of states in the full agonist-, partial agonist-, and 

antagonist-bound forms. The differences are more evident in the partial agonist- and 

antagonist-bound forms, as a decrease in agonism for the AMPA receptors is reflected 

by a large increase in the spread of cleft-closure states. In the GluN1 LBD the shifts are 

much less dramatic. The decreased spread in the cleft-closure states probed by the 

GluN1 LBD could be one of the reasons that no significant changes were observed in 

the extent of cleft closure in the crystal structures between the partial agonist- and full 

agonist-bound forms. 

While the two receptors show differences in terms of dynamics of the LBD 

between the various ligand-bound states, there is still a linear dependence for the 

GluN1 LBD between activation and the fraction of protein exhibiting FRET efficiencies 

greater than 0.96 (Figure 8). This result is similar to what was observed in the AMPA 
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receptors where a similar linear dependence between the fraction of receptors in high-

efficiency states versus activation was observed (133). Thus, while the dynamics are 

different for the two subtypes, the underlying mechanism wherein the extent of cleft 

closure controls extent of receptor activation still seems to be preserved. 

 

 

 

Figure 8. Cleft closure versus activation 

Plot of the fraction of the LBD of the GluN1 subunit that exhibits FRET efficiencies 

higher than 0.96 versus normalized mean currents (6, 138) obtained with the 

corresponding ligands in full-length GluN1/GluN2B receptors.  
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Apart from the characterization of the GluN1 LBD dynamics, the studies 

performed here show that unnatural amino acids can be used as a means to label 

proteins for smFRET. The ability to introduce amino acids with a unique ketone 

functional group allows for labeling of proteins with high specificity. Avoiding the 

conventional thiol-maleimide chemistry allows investigators to disregard any 

problems with cysteines native to the protein, as well as alleviating worries about the 

formation of disulfide bridges with the introduced cysteines. The commercial 

availability of p-acetyl-L-phenylalanine, as well as the commercial availability of 

various hydrazide-conjugated fluorescent labels, allows for the use of a wide variety of 

FRET fluorophore pairs with various distance ranges. 

In conclusion, we have demonstrated here the use of ketone-containing 

unnatural amino acids for smFRET measurements to analyze the conformational 

dynamics of the GluN1 LBD in complex with the full agonists glycine and D-serine, the 

partial agonists L-alanine and ACBC, and the antagonist DCKA. The use of unnatural 

amino acids allows for the specific labeling of proteins and has the flexibility of being 

used with a wide variety of fluorophores. The smFRET histograms of the GluN1 LBD 

show a common high-efficiency peak, corresponding to a closed-cleft conformation 

accessible to all examined liganded forms of the protein. These data are consistent 

with previous theoretical results where the closed conformation was seen in both apo- 

and glycine-bound forms of GluN1. Additionally, the difference in efficacy appears to 

be correlated with the ability of the ligand to select specifically for the closed 

conformation. 
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Chapter 5: Probing NMDA Receptor Dynamics with Submillisecond Resolution 

This chapter is based upon research originally published in The Journal of 

Biological Chemistry. Dolino, D. M., S. Rezaei Adariani, S. A. Shaikh, V. Jayaraman, 

and H. Sanabria. Conformational Selection and Submillisecond Dynamics of the 

Ligand-binding Domain of the N-Methyl-D-aspartate Receptor. Journal of Biological 

Chemistry. 2016; 291: 16175-16185. © the American Society for Biochemistry and 

Molecular Biology. 

The previous chapter dealt with a first look at understanding the mechanism of 

partial agonism. To do so we used attached smFRET with cutting edge unnatural 

amino acid technology to provide the first experimental evidence of a partial agonist-

dependent change in the conformational equilibrium of the GluN1 LBD; however, the 

time resolution for those experiments was limited to 10 ms. With the kinetic 

movements of the GluN1 LBD occurring faster than this resolution (139) and the lack 

of a clear conformational model, more robust experimental methods were needed to 

clarify this mechanism of partial agonism. 

To probe the conformational landscape of the GluN1 LBD at faster time scales 

than previously studied, we used smFRET and multi-parameter fluorescence detection 

(MFD) to obtain a complete experimental investigation of the dynamics and 

conformational equilibrium of the GluN1 LBD. MFD experiments can be used as 

another method of obtaining smFRET data, but in contrast to obtaining the intensity-

based FRET efficiency of individual molecules over a period of seconds, MFD 

experiments simultaneously measure a number of fluorescence parameters, including 

intensity, lifetime, and anisotropy of molecules, as they diffuse one at a time through a 
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small confocal volume. The use of time-correlated single-photon counting (TCSPC) 

allows for the exploration of dynamic motions in a broad range of time scales, down to 

picoseconds (123), making this method particularly well suited for observing the 

mechanism of partial agonism of the GluN1 LBD. The isolated GluN1 LBD was purified, 

and site-directed labeling with fluorescent dyes was performed to probe the distance 

across the LBD cleft (Figure 9) (90). The results presented here show that the GluN1 

LBD exhibits a common closed cleft, active arrangement among a variety of agonists, 

with partial agonists showing less stability of the closed conformation and more 

dynamic conversions to the open conformations. Moreover, we find among the FRET 

states one conformation, which resembles within 2.8 Å the published crystallographic 

structure for the glycine-bound configuration, and another state that differs only by 

1.6 Å from the DCKA-bound structure (4). 
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Figure 9. Experimental smFRET design and construct validation 

A, Schematic representation of the glycine-bound (PDB code 1PB7, orange) and 

DCKA-bound (PDB code 1PBQ, blue) conformations of the GluN1 ligand-binding 

domain of the NMDA receptor. The accessible volume (AV) simulations were 

calculated to determine the available space that the fluorescent marker will occupy 

with the donor (Alexa 488) at Ser-507 and acceptor (Alexa 647) at Thr-701. The green 

“AV-cloud” represents all the locations the donor dye can access, and the green and 

red spheres represent the mean positions of the dyes for donor and acceptor, 

respectively, for each structure. The distance between the mean position at each 

conformation is Rmp = 44.8 and 51.3 Å for glycine and DCKA bound, respectively. Their 

corresponding expected mean FRET efficiency distances are 〈RDA〉E = 48.7 and 54.2 Å. 

B and C, whole cell electrophysiological recordings were performed to confirm 

retained functionality and efficacy of ligands with GluN1 S507C/T701C. B, a 

representative trace shows the reduced efficacy of the two partial agonists, ACBC and 

L-alanine, relative to the two full agonists, glycine and D-serine, as well as the 

antagonist DCKA. C, group data showing the relative efficacy of each ligand with 

respect to glycine. Glycine: 100%, D-serine: 94 ± 1%, L-alanine: 84 ± 6%, ACBC: 25 ± 

4%, DCKA: 0.3 ± 0.1%.  

https://www-ncbi-nlm-nih-gov.ezproxyhost.library.tmc.edu/pmc/articles/PMC4965566/figure/F1/
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Results 

smFRET experimental design and construct validation 

The GluN1 LBD was mutated to cysteines at Ser-507 and Thr-701 (full-length 

sequence) on opposite sides of the cleft as has previously been described (89, 90), and 

then labeled using the FRET pair Alexa 488 and Alexa 647, with an R0 of 52 Å. Based 

on crystallographic studies of the glycine-bound (PDB code 1PB7, orange) and DCKA-

bound (PDB code 1PBQ, blue) conformations of the LBD, we performed in silico 

labeling and determined the expected mean FRET efficiency distance 〈RDA〉E = 48.7 

and 54.2 Å, for both structures, respectively (Figure 9a). With this construct, one 

should be able to observe the clamshell closure due to the binding of different ligands. 

To verify that these mutations (GluN1 S507C/T701C) do not abolish the 

functionality and efficacy of ligands in the full receptor, we obtained whole cell 

electrophysiological recordings (Figure 9b). Ligand efficacy was determined by 

normalizing to the maximum amplitude in presence of the full agonist glycine. As 

expected, D-serine, also a full agonist, has similar efficacy to glycine, followed by L-

alanine and ACBC. The last two are considered partial agonists (Figure 9c). 

 

Construction of smFRET histograms 

For single molecule experiments, we used pulsed interleaved excitation (PIE) of 

donor and acceptor fluorophores to excite the doubly labeled LBD. The emitted 

fluorescence photons were collected to measure various FRET efficiency indicators of 

single molecules of the LBD when in complex with different ligands (glycine, 1 mM; D-

serine, 1 mM; L-alanine, 15 mM; ACBC, 10 mM; or DCKA 100 μM). FRET efficiency was 
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measured simultaneously through both intensity measurements and donor lifetime 

measurements in the presence of the acceptor (Figure 10). The resulting single-

molecule events or burst histograms are presented in a multidimensional 

representation, where each event was preselected according to a 1:1 donor to acceptor 

stoichiometry. The cleaned FRET signal is shown as contours on two-dimensional 

histograms and as filled histograms over the one-dimensional 〈τD(A)〉f and FD/FA 

projections. The green sigmoidal line over the two-dimensional histogram represents 

the static FRET line (Equation 13 (see Appendix), Table 1), which is the theoretical 

relationship between the two FRET indicators: the donor fluorescence average lifetime 

〈τD(A)〉f and the ratio of donor-to-acceptor fluorescence (FD/FA). Populations that lie on 

the line indicate FRET states that are “static” (123), i.e. populations with dynamic 

interconversion rates that are slower than the burst duration. 

  

https://www-ncbi-nlm-nih-gov.ezproxyhost.library.tmc.edu/pmc/articles/PMC4965566/#FD3
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Figure 10. MFD histograms of labeled GluN1 LBD with multiple ligands 

Two-dimensional single molecule FRET histograms using burst analysis of 

FD/FA distribution versus fluorescence averaged lifetime (〈τD(A)〉f). The green line is the 

static FRET line, which describes the relationship between FD/FA and fluorescence 

averaged lifetime (〈τD(A)〉f). The GluN1 LBD of the NMDA receptor was diluted to 

picomolar concentrations in the present of various ligands. A, 0.1 mM DCKA; B, 1 mM 

glycine; C, 1 mM D-serine; D, 15 mM L-alanine; and E, 10 mM ACBC. The following 

parameters were used: 〈BG〉 Gly = 0.93, 〈BR〉 Gly = 0.51, 〈BG〉 D-Ser = 0.93, 〈BR〉 D-Ser = 

0.532, 〈BG〉 L-Ala = 0.842, 〈BR〉 L-Ala = 0.502, 〈BG〉 ACBC = 0.955, 〈BR〉 ACBC = 0.518, 

〈BG〉 DCKA = 0.94 〈BR〉 DCKA = 0.522, β = 0.02 (fraction of direct excitation of 

acceptor with donor excitation laser), α = 0.017, and gG/gR = 3.7.  
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Table 1. FRET Lines 

Equation 13 was used for each different experiment. 

Sample Static FRET Line 

Gly 
(0.7732/0.4240)/((3.8660/((-0.0405*τD(A)f

3)+ 

(0.2914*τD(A)f
2)+0.4891*τD(A)f -0.0422))-1) 

D-Ser 
(0.8286/0.4290)/((4.1430/((-0.0348*τD(A)f

3)+ 

(0.2676*τD(A)f
2)+0.4977*τD(A)f -0.0443))-1) 

L-Ala 
(0.8426/0.4130)/((4.2130/((-0.0335*τD(A)f

3)+ 

(0.2622*τD(A)f
2)+0.4998*τD(A)f -0.0448))-1) 

ACBC 
(0.7990/0.3810)/((3.9950/((-0.0377*τD(A)f

3)+ 

(0.2799*τD(A)f
2)+0.4932*τD(A)f -0.0432))-1) 

DCKA 
(0.8498/0.3960)/((4.2490/((-0.0329*τD(A)f

3)+ 

(0.2594*τD(A)f
2)+0.5008*τD(A)f -0.0451))-1) 

 

 

 

 

These MFD histograms show clear differences in the conformational 

landscapes probed by the GluN1 LBD in complex with various ligands. As expected, 

with the antagonist DCKA, mostly medium to low FRET states are explored, with a 

longer donor fluorescence lifetime and a larger donor-to-acceptor fluorescence ratio 

(FD/FA= 3.3) (Figure 10a). This is consistent with the stabilization of an open cleft 

conformation. When in complex to the full agonist glycine, the FRET states shift 

toward higher FRET efficiencies, indicated by lower donor fluorescence lifetimes and 

smaller donor to acceptor fluorescence ratios (Figure 10b). This is also consistent 
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with the stabilization of the closed cleft conformation. A second full agonist, D-serine, 

shows a similar trend (Figure 10c), although not as pronounced. To assess the LBD 

conformational space and dynamics across a variety of activation states we examined 

two partial agonists (L-alanine and ACBC). Between the two, the more effective partial 

agonist L-alanine (Figure 10d) resembled more the two full agonists, and the less 

effective partial agonist ACBC (Figure 10e) resembled more the antagonist histogram, 

similarly to the whole cell recordings (Figure 9b). Of note, the histograms for the two 

partial agonists seemed to spread across a wider variety of conformational states, 

though these states must be to some extent static because they lie along the green 

FRET line. Altogether, it is then evident that none of the ligands trap a single state of 

the LBD, but rather ligand binding redistributes the population of the conformational 

states consistent with the mechanism of conformational selection. 

 

Probability Distribution Analysis reveals three distinct conformations 

To quantitatively analyze the conformational space and dynamic effects 

induced by ligand binding, we used probability distribution analysis (PDA) (140, 141). 

We used various models to fit the one-dimensional fluorescence ratio histograms with 

multiple time windows (Δt = 5, 2, and 0.5 ms). In addition, we use PDA to identify the 

mean FRET efficiency distance (〈RD(A)〉E) between the donor and acceptor for each 

limiting state. For each conformational state, we use Gaussian distributions that 

represent the interdye donor-acceptor distance distributions. In PDA analysis, the 

width (hwDA) of each distribution is given by acceptor photophysics (142). To identify 

the model that best represents the experimental data, we carry out a systematic 
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approach of identifying the minimum number of shot-noise limited states (no 

Gaussian distribution of states). We reached a reasonable convergence with three 

different FRET states based on visual inspection of the weighted residuals (w. res) and 

the figure of merit χ2. To improve the fit, we added the contribution of the donor-only 

population due to acceptor bleaching. Although we have burst selection with 1:1 

donor-to-acceptor stoichiometry, the presence of donor-only population indicates 

that a significant fraction of the acceptor is photobleached within the duration of the 

time window. To identify and remove this artifact further, we used the ratio of the 

prompt signal corresponding to the TCSPC channels of donor excitation (Sprompt) and 

total uncorrected signal of donor and acceptor emission over all TCSPC channels 

(STotal) (donor and acceptor excitation in PIE experiments) (Figure 11a). It is worth 

mentioning that the stoichiometry parameter is corrected for quantum yield and 

detection efficiencies; however, the raw detected signal (S) does not require additional 

corrections. Therefore, this selection serves as an additional identification of events 

that smear toward the donor only population due to photobleaching. We ruled out the 

possibility of a very low FRET state due to very long interdye distances because after 

the Sprompt/STotal (Figure 11a) selection there were no remaining bursts with high 

enough FD/FA ratio and 1:1 stoichiometry. 
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Figure 11. Photobleaching and description of FD/FA histograms as modeled by 

PDA 

A, Removing all acceptor photobleaching due to incorrect signal of prompt 

channel over all data (0.5 < SPrompt/STotal < 0.8). B, Experimental and PDA-modeled 

FD/FA histogram distributions at Δt = 5 ms for the LBD in the presence of glycine. 

Three limiting states were depicted as Gaussian distributions, each with a different 

color (high FRET, orange, medium FRET, navy, and low FRET, wine). The mean FD/FA 

value of each distribution is shown as a vertical line with the same color code. Each 

line correlates to the experimentally determined interdye distance per state or 〈RDA〉E. 

One dynamic transition is shown as Gaussian (dashed dark yellow line). 
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After identifying the minimum number of FRET-related conformations, we 

increased the level of complexity in the fitting model. For example, we know that 

intensity-based FRET parameters are determined by fluctuations on the integrated 

acquisition time. PDA is particularly susceptible for capturing the blinking behavior of 

dyes, which produces additional broadening of the distribution beyond the shot noise 

limit. This behavior has been well characterized (142). It is known that broadening is 

caused mostly due to acceptor blinking and it follows a monotonic relationship with 

respect to the interdye separation distance (142). Thus, each FRET-related 

conformational state will have its own distribution of distances with a particular width 

(hwDA) and mean interdye distance 〈RDA〉E. Note that Rmp and 〈RDA〉E represent 

different distances (see accessible volume in Appendix). Benchmark studies (121, 143) 

have shown that 6% of the interdye distance 〈RDA〉E is a typical effective width per 

state. Thus, we fixed the distribution width to 6% of each 〈RDA〉E. Broadening beyond 

this limit would be considered to emerge from dynamic processes. 

To exemplify this representation, we show in Figure 11b the experimental and 

PDA modeled FD/FA histogram distributions at Δt = 5 ms for the LBD in presence of 

glycine. Here, we identify three limiting states depicted as Gaussian distributions, 

each with different color (high FRET orange, medium FRET navy, and low FRET wine). 

The mean FD/FA value of each distribution is shown as a vertical line with the same 

color code. Each line correlates to the experimentally determined interdye distance 

per state or 〈RDA〉E. In addition to three limiting states, one dynamic transition, also 

shown as Gaussian (dark yellow), is added to statistically improve the fitting quality. 

For example, in this case χ2 decreases from 4.7 to 1.15, when dynamics is included at 
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Δt= 5 ms. Weighted residuals (w. res.) are shown on top layer for visual representation 

of the goodness of the fit. In a simplified representation it is possible to only show the 

model distribution as compared with the experimental histogram and the vertical lines 

for representing the mean FD/FA value per state. Hereafter, this simplified 

representation will be used. 

 

Time window analysis reveals submillisecond dynamics 

To study if there were any dynamic processes involved in the submillisecond to 

millisecond time scale between states, the experimental FD/FA distributions were 

globally fit using three time windows (Δt = 5, 2, and 0.5 ms). If all states were static 

within the time window, the static model would roughly fit all time windows equally 

well and the probability distribution would not change. This was the case for the LBD 

bound to DCKA and ACBC, suggesting slow kinetics with those ligands (Figure 12 for 

DCKA and ACBC). The figure of merit χ2 and the modeled FD/FA distribution are 

shown in red when the states are treated as static and it is shown in green when the 

model includes a dynamic transition. If during the selected time window, a molecule 

switches multiple times between states, the fluorescence bursts of the interconverting 

molecules will show different degrees of mixing between states; thus changing the 

probability distribution. This is only true if the dynamic interconversion occurs at 

time scales that are smaller or comparable to the selected time window. The need for a 

dynamic state was noticeable for the glycine, D-serine, and L-alanine bound states 

(Figure 12), whereas for DCKA and ACBC χ2 increases with the addition of a dynamic 

state.  
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Figure 12. Time window and PDA comparison of FD/FA histograms of the LBD 

with the various ligands 

Time window (Δt) analysis for 0.5, 2, and 5 ms (A–C, respectively). The same 

FD/FA correction parameters are used as described in the legend to Figure 10. The 

dynamic PDA model consists of three static FRET states (HF, MF, and LF) plus a single 

two-state kinetic transition between HF and MF. Fractions are renormalized to 

consider only FRET populations. We observe that glycine has a faster relaxation time 

compared with L-alanine as glycine equilibrates within the selected time windows. A 

similar result is seen with D-serine. Splitting of populations occur in the case of 

L-alanine. Relaxation times are shown in Table 2. Vertical lines correspond to the 

mean FRET efficiency distance of the three limiting states (HF, orange; MF, blue; and 

LF, magenta; Table 2). Donor only or acceptor photobleaching region has a dark gray 

background. Tables 2, 3, 6, and 7 summarize the results from PDA. 
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The larger differences comparing multiple time windows in the distribution for 

L-alanine are indicative of intermediate kinetics in the millisecond to submillisecond 

time scales. It is obvious in this case that there is a split of states with an increase in 

population of the higher FRET states. Faster kinetics equilibrates the distribution at 

shorter time windows as seen in the case of glycine because there is no split of states. 

However, there is evidence of population redistribution toward higher FRET 

efficiencies or lower FD/FA ratios. Therefore, the static model use of three FRET states 

is no longer valid. To include the dynamic component we tested the addition of a 

single two-state transition between any FRET states. Remember that the mean FD/FA 

value of each state is shown as a vertical line with the same color code and the 

relationship to distance can be readily determined (Tables 2 and 3). 

 

 

 

 

Table 2. 〈RDA〉E determined by PDA analysis 

Sample 
High-FRET 

(HF) [Å] 

Medium-FRET 

(MF) [Å] 

Low-FRET 

(LF) [Å] 

All 33.9 45.8 55.8 
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Table 3. FD/FA ratio for each given mean FRET distance 

Sample High-FRET (HF) Medium-FRET (MF) Low-FRET states (LF) 

Gly 0.14 0.86 2.8 

D-Ser 0.15 0.9 2.9 

L-Ala 0.16 1.0 3.1 

ACBC 0.16 1.0 3.2 

DCKA 0.16 1. 0 3.2 

FD/FA = (Quantum Yield Donor/Quantum Yield Acceptor)* (RDA/R0)6          (R0=52 Å) 

 

 

 

 

We observed that the single two-state kinetic state (HF ⇌ MF) was needed to 

significantly improve our figure of merit (χ2) across time windows for the LBD bound 

to the full agonists and to the partial agonist L-alanine. In summary, for all cases, we 

identified three FRET states with the following interdye distances: the high FRET (HF) 

(〈RDA〉E = 33.9 Å), medium FRET (MF) (〈RDA〉E = 45.8 Å), and low FRET states (LF) 

(〈RDA〉E = 55.8 Å) (Table 2). 

These distances were determined with the assumption that κ2 = 2/3. To 

validate this assumption, the κ2 distribution for these conditions was determined 

using the wobble in a cone model (Figure 13). For this, we assume that the residual 

anisotropies can be approximated in the worst case scenario to the average steady 

state anisotropy per burst, or 〈rss〉 ≅ r∞, for D-only (donor), A (acceptor), and A(D) 
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(the sensitized by FRET emission of acceptor) from single molecule experiments 

(Table 4). As the observed κ2 value will be dynamically averaged among all possible 

values within this distribution, we then use the mean value, <κ2>, to calculate distance 

and observe that the maximum error introduced by this assumption is 2.5% (Table 5), 

thus, validating our assumption. 

 

Table 4. Average steady state anisotropy (rss) per burst for the dyes on the 

ligand-binding domain at the conditions 

rss Gly D-Ser L-Ala ACBC DCKA 

D-only 0.15 0.13 0.1 0.15 0.11 

A 0.36 0.06 0.04 0.06 0.07 

D(A) 0.18 0.18 0.13 0.18 0.15 

A(D) 0.03 0.04 0.03 0.04 0.05 

 

 

Figure 13. κ2 distribution for LBD bound to: A, DCKA; B, Gly; C, D-Ser; D, L-Ala; 

and E, ACBC 

The line for κ2 = 2/3 is shown in red for each distribution. Mean κ2 is shown in 

blue.  
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Table 5. Mean κ2 and estimated error (
𝑹𝑫𝑨
〈𝜿𝟐〉

𝑹𝑫𝑨
〈𝜿𝟐=𝟐/𝟑〉

%) on distances by using the 

assumption of κ2 = 2/3 
 

Sample κ2
 

% 
Error 

Gly 0.636 2.2 

D-Ser 0.631 2.5 

L-Ala 0.637 1.8 

ACBC 0.634 2.5 

DCKA 0.641 2.0 

 

 

 

The addition of a two-state kinetic transition (HF ⇌ MF) occurring in the 

submillisecond time scales indicate that D-serine exerted the fastest exchange 

dynamics (tR = 3.5 μs; Table 6), followed by glycine (tR= 7.6 μs) and L-alanine 

exhibited slower kinetics with tR = 50 μs (Table 6). 

 

 

Table 6. Fastest relaxation time observed with PDA 

Sample tR [ms] 

Gly 0.0076 

D-Ser 0.0035 

L-Ala 0.050 
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The dynamic analysis overall suggests that the full agonists glycine and D-

serine have rapid dynamic motions specifically associated with the LBD rapidly 

fluctuating between the MF and HF states, whereas the partial agonist L-alanine has 

slower dynamics with occasional visits to the HF state. ACBC and DCKA appear static 

in the millisecond time scale as shown in Figure 14. ACBC has a slightly higher 

fraction in the HF state relative to DCKA. Note that static populations represent slow 

exchange at time scales longer than the burst duration, or trapped states. These data, 

when correlated to the activation profile, suggest that the visits of the LBD to the HF 

states are critical for the agonist to activate the channel. This is also consistent with 

the previously published single channel recordings where it has been shown that 

partial agonists tend to have longer closed times, which would be consistent with the 

slower kinetics observed for the partial agonists (139). In addition, when combining 

the contribution of the static populations and the two-state kinetics between the HF 

and MF states, we observe that L-alanine is found more often exchanging over these 

two states more than the two full agonists glycine and D-serine and thus spends less 

time in the active state. The summary of all population analysis is presented in Table 

7. 
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Figure 14. Redistribution of population fractions 

A, The population of the static contribution of FRET states. B, A single two-

state kinetic state (HF ⇌ MF) was used to model the additional dynamics observed. 

The bar plot shows the distribution of populations of the HF and MF states. The 

derived distances for high FRET, medium FRET, and low FRET states are 

〈RDA〉E = 33.9 Å (HF), 〈RDA〉E = 45.8 Å (MF), and 〈RDA〉E = 55.8 Å (LF) and are shown by 

orange, blue, and purple, respectively (Table 2). Dynamics fractions were obtained by 

globally fitting 3 time windows (Δt = 0.5, 2.0, and 5 ms). DCKA and ACBC do not have 

dynamic contributions. C, separation of static and dynamic populations that 

contribute to the overall scheme. L-Alanine is found more often exchanging at 

submillisecond time scales. 
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Table 7. Overall fractions of PDA analysis including the donor only (bleached 

fraction) 

Sample 
High-FRET 

(HF) 

Medium-FRET 

(MF) 

Low-FRET 

(LF) 

Donor only/ 

Acceptor 

bleaching 

Gly 59.4 14.4 5.5 20.7 

D-Ser 9.7 37 11.1 42.2 

L-Ala 13.6 22.8 0.0 63.6 

ACBD 3.40 18 30.2 48.4 

DCKA 2.0 21.4 40.8 35.8 

 

 

 

 

Discussion 

To investigate the mechanism of partial agonism in the GluN1 subunit of the 

NMDA receptor, we have measured the cleft opening and closing motion of the LBD 

of the NMDA receptor in the presence of the full agonists glycine and D-serine, the 

partial agonists L-alanine and ACBC, and the antagonist DCKA. The presence of the 

ligands redistributed the state populations, indicative of the conformational selection 

and preferred state. Even in the presence of ligands the LBD showed dynamic 

sampling of at least three different FRET conformations that could be separated with 

our FRET measurements. To quantify the dynamics, we used PDA and time window 

analysis to provide population analysis and relaxation times of exchange rates between 
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the MF and HF populations. These results show that the LBD when bound to an 

antagonist spends much of its time in the open-cleft conformation leading to a closed 

channel. Although there is a significant fraction of the MF state shared in all ligands, it 

seems that this conformation does not directly lead to activation of the channel. 

When comparing the measured FRET distance with the expected distances computed 

from the AV modeling using the crystallographic structure (PDB code 1PB7) we obtain 

the experimentally determined MF distances as 〈RDA〉E = 45.8 Å, whereas the AV 

expected distance is 〈RDA〉E = 48.7 Å. Thus, we can clearly see that the MF population 

resembles within 2.8 Å the crystallographic structure in the presence of ligand. For the 

DCKA state (PDB code 1PBQ) we experimentally determined a LF distance 〈RDA〉E = 

55.8 Å compared with the expected distance of 〈RDA〉E=54.2 Å from AV simulations. 

Again, excellent agreement is found with a 1.6 Å difference. 

Moreover, in Figure 14 one could also observe that, although there are 

significant changes between various partial agonists and the full agonists, faster 

kinetics are observed for the full-agonist bound LBD. The relaxation time (tR) of the 

glycine-bound LBD is almost an order of magnitude faster than the tR observed when 

the LBD is bound to the partial agonist L-alanine. These findings are in good 

agreement with single-channel recordings that showed longer closed times when 

bound to partial agonists (139), and faster kinetics is observed for the receptor in the 

presence of glycine than in the presence of L-alanine. Additionally, the primary three 

closed states seen in single channel recordings appear to correlate with the three 

states observed in the smFRET data here, with the HF state being the one more likely 

leading to channel activation. Thus, the data presented here nicely joins the 
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experimental structural data seen in x-ray crystallography with the experimental 

functional data of single-channel electrophysiological recordings to create a unified 

explanation of the mechanism of partial agonism at the GluN1 LBD. 
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Chapter 6: Investigation of the Gating Movements of the NMDA Receptor 

The previous two chapters discussed the conformational change that occur at 

the ligand-binding domain that eventually result in channel opening; however, what, 

if any, are the conformational movements that actually occur at the channel segment 

itself? For over 30 years, single ion channel recordings have suggested that channel 

proteins exist in multiple closed and open conformations. As electrophysiological 

techniques have advanced, the set of ion channel states and our ability to distinguish 

them have grown to encompass a multitude of long-lived and short-lived shut states 

(144, 145). Despite the advances in single channel recording approaches, the ability to 

distinguish transitions between shut states is limited by the fact that these shut states 

are all electrophysiologically silent. The multiplicity of closed states is not restricted 

only to single-channel data but has also become increasingly prominent with the rise 

of cryo-electron microscopy. States previously assumed to be homogenous are 

increasingly revealed to reflect a variety of underlying conformations (11, 146). 

Single molecule FRET of surface-immobilized molecules is uniquely suited to 

probing of the conformational heterogeneity associated with these predicted closed 

and open states. NMDA receptors are an ideal candidate for such smFRET studies as 

they have a rich history of single channel studies with several sound reaction 

mechanisms involving discrete shut states across multiple time scales (139, 147, 148). 

Further, there exist a number of full-length structures of NMDA receptors in apo 

(unliganded), antagonist-bound, and allosteric modulator-bound states (9-12, 149), 

and NMDA receptor channel gating is relatively slow and thus approaches the 

temporal resolution of smFRET (120, 150). 
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Though the available structural information provides excellent insight into the 

structure-function relationships within the extracellular domains of the NMDA 

receptor; the transmembrane segments which comprise the ion channel pore itself are 

less well-resolved, especially in the open-channel configuration. Consequently, 

structure-function analysis of this region has been more challenging. Past functional 

studies probing the transmembrane segments have focused primarily on 

conformational changes between the apo and open states (59, 62), and implicate the 

disordered linker region connecting the LBD and transmembrane segments as being 

crucial for coupling. Still unclear though, is whether desensitization or allosteric 

inhibition themselves induce any conformational rearrangements in the 

transmembrane segments, or how such conformational changes might be driven by 

the binding of extracellular agonists and allosteric ligands. Furthermore, most 

functional studies using macroscopic recordings have, out of necessity, treated the 

apo, desensitized, and inhibited states as discrete conformations, while single channel 

analysis reveals each of these classes to be a collection of interconverting states (94, 

139, 151). To explore these issues, we have performed smFRET on full-length 

GluN1/GluN2A NMDA receptors labeled at residue 554 of the GluN1 linker region 

proximal to the first transmembrane segment, and examined this site in resting (apo), 

agonist-bound (open and desensitized), and zinc-bound (allosterically inhibited) 

conditions. This method revealed conformational changes in the transmembrane 

domain that are associated with channel opening. In addition, we also observed that 

the receptor occupies multiple closed states that have different kinetic and structural 

properties under apo, desensitized, and inhibited conditions. These data provide the 
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first experimental evidence for the range of transmembrane conformations that the 

receptor adopts and moreover shed light on the structural landscape associated with 

the functional data. The data also provide the first evidence for differences in the 

closed channel conformations adopted by apo, agonist-bound, and allosterically 

inhibited receptors. 

 

Results and Discussion 

Functional characterization of the smFRET construct.  

To investigate the conformational changes of the NMDA receptor 

transmembrane domain in various functional states using smFRET, we introduced a 

fluorophore-labeling site using the mutation F554C in GluN1. Residue 554, found 

within the linker region connecting the LBD to the first transmembrane segment of 

the transmembrane domain, was chosen for its accessibility to labeling as well as for 

minimal expected perturbation of receptor function (Figure 15a). To minimize non-

specific labelling by donor and acceptor fluorophores (Alexa 555 maleimide and Alexa 

647 maleimide, respectively) the accessible cysteines Cys15 and Cys22 in GluN1 and 

Cys231, Cys399, and Cys460 in GluN2A were mutated to serines, and the resulting 

background constructs are referred to hereafter as GluN1* and GluN2A*(71-73, 92). 

Electrophysiological characterization of labeled GluN1*F554C/GluN2A* receptors 

show that activation, desensitization, and inhibition (Figure 15b) are all preserved. 

Specifically, responses to a 1-ms pulse of 1 mM glutamate with constant glycine in 

outside-out patches deactivated with a weighted time constant of 43 ± 6 ms (n = 11, 

Figure 15b, left). In response to a 5-second long 1 mM glutamate application, the 
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smFRET construct showed rapid activation (10-90% rise-time, 7 ± 1 ms, n = 11) and 

desensitized to 20. ± 3% of the peak response with a weighted time constant of 110 ± 

20 ms (n = 11, Figure 15b, left). Furthermore, the channel block by both MK-801 (1 

µM, 93 ± 2% steady-state inhibition, n = 8, Figure 15b, middle) and inhibition by Zn2+ 

(10 µM, 83 ± 5% steady-state-inhibition, n = 5, Figure 15b, right) were intact in whole 

cell recordings. 
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Figure 15. TMD smFRET constructs and characterization 

A, GluN1*F554C/GluN2A* NMDA receptors were labeled with donor and 

acceptor fluorophores at site 554 of GluN1, proximal to the first transmembrane 

segment of GluN1 (mean fluorophore positions shown as green or red hard spheres 

surrounded by a fluorophore cloud). B, Representative electrophysiological responses 

from the smFRET construct showing deactivation (gray) and desensitization (black) 

(left), inhibition by 1 µM MK-801 (middle), and by 10 µM Zn2+ (right, recorded at +50 

mV).  
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smFRET identified distinct and stable states. 

For smFRET experiments, GluN1*F554C/GluN2A* receptors were 

recombinantly expressed in HEK cells, labelled with donor and acceptor fluorophores, 

and purified using in situ immunopurification on prepared coverslips (152) (see 

Appendix). As with prior experiments using soluble iGluR domains (89, 90, 132, 133), 

sample scanning confocal microscopy showed clearly resolved single spots on these 

coverslips which were not present when unmutated GluN1*/GluN2A* was used 

(Figure 16). Single molecule FRET trajectories were collected from these full-length 

labelled GluN1*F554C/GluN2A* receptors under various liganded conditions, and the 

resulting ensemble-averaged denoised FRET efficiency histograms are shown in 

Figure 17. The raw trajectories were denoised using wavelet decomposition and 

specific states were identified using Step Transition and State Identification (STaSI) 

analysis (89, 153, 154) (Table 8, Figure 17 insets). STaSI analysis was performed 

independently per ligand dataset, and the discrete states identified through STaSI 

were supported by fitting the ensemble observed FRET efficiencies to a sum of 

Gaussians corresponding to those states (89)(Figure 18).   
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Figure 16. Attached-FRET of full-length NMDA receptors shows specific 

pulldown 

Control slides showing minimal fluorescent protein when labeling cells 

expressing background NMDA receptors (top panel) and with FRETting single 

molecules with the F554C construct. 
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Figure 17. Denoised smFRET histograms of the NMDA receptor 

smFRET data of the NMDA receptor were obtained under varying ligand 

conditions, denoised via wavelet decomposition (154, 155), and used to generate 

smFRET efficiency histograms. STaSI analysis was performed to reveal the underlying 

conformational states. Peaks corresponding to each STaSI state are labeled with the 

state efficiency. The STaSI states represented by Gaussian noise fitting to the observed 

FRET histogram can be seen in Figure 18. Shown in an inset above each histogram is a 

representative observed efficiency trace, the denoised trace (lighter shade), and the 

STaSI fit (black). The different conditions studied were A, the apo, unliganded 

receptor B, the agonist-bound (Glu-Gly) receptor C, the agonist-bound receptor in the 

presence of the open-channel blocker MK-801, and D, the agonist-bound receptor 

inhibited by the allosteric inhibitor zinc. The high-efficiency state seen in A indicates a 

closed-channel conformation for an apo receptor not seen with the agonist-bound 

receptor. The increased populations of the low efficiency states in C identify those 

states as representing open-channel conformations. The reappearance of the high-

efficiency state in D implies that zinc modulation proceeds not simply by stabilizing 

desensitized conformations, but by decoupling the cleft-closure of the agonist-binding 

domain to conformational changes of the transmembrane segments. 
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Table 8. Conformational states sampled by the NMDA receptor under various liganded conditions.  

Conformational states were identified using Step Transition and State Identification analysis (89, 153). Distances for the 

states were calculated with an R0 of 51 Å. There is a high degree of similarity among the states seen, as may be expected of a 

conformational selection model sampling the same states at different populations. 

Functional 
Assignment 

Apo Glutamate-Glycine Glutamate-Glycine/MK-801 Glutamate-Glycine/Zn2+ 

States 
Percent 
Occur-
rence 

FRET 
distance 

(Å) 
States 

Percent 
Occur-
rence 

FRET 
distance 

(Å) 
States 

Percent 
Occur-
rence 

FRET 
distance 

(Å) 
States 

Percent 
Occur-
rence 

FRET 
distance 

(Å) 

Open    
0.46 ± 
0.02 

7.1 52 ± 1 
0.48 ± 
0.02 

23.6 52 ± 1    

Open       
0.56 ± 
0.02 

24.8 49 ± 1    

Open 
0.58 ± 
0.02 

1.6 48 ± 1 
0.60 ± 
0.02 

9.2 48 ± 1 
0.62 ± 
0.02 

26.0 47 ± 1 
0.60 ± 
0.02 

4.3 48 ± 1 

Closed 
0.74 ± 
0.02 

14.6 43 ± 1 
0.70 ± 
0.02 

18.4 44 ± 1 
0.72 ± 
0.02 

8.0 44 ± 1 
0.74 ± 
0.02 

5.6 43 ± 1 

Closed  
0.86 ± 
0.02 

17.4 38 ± 1 
0.82 ± 
0.02 

53.4 40 ± 1 
0.80 ± 
0.02 

11.3 40 ± 1 
0.82 ± 
0.02 

20.5 40 ± 1 

Closed 
0.92 ± 
0.02 

50.3 34 ± 2 
0.90 ± 
0.02 

11.8 35 ± 1 
0.92 ± 
0.02 

6.4 34 ± 2 
0.90 ± 
0.02 

45.9 35 ± 1 

Closed 
0.98 ± 
0.02 

16.0 27 ± 5       
0.96 ± 
0.02 

23.7 30 ± 3 



 

71 
 

 

Figure 18. Observed smFRET histograms of the NMDA receptor 

Ensemble histograms of the observed data are shown. The STaSI states are 

shown here, represented as Gaussian noise, whose sum fits well with the observed 

histogram. A, Apo receptor B, agonist-bound receptor C, agonist-bound receptor with 

MK-801, D, zinc-inhibited receptor. 
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The conformational landscape associated with open and closed channel states.  

To evaluate the difference between closed and open channels, we compared 

the histogram obtained in apo conditions with the histogram obtained under 

saturating concentrations of agonist (1 mM glutamate and 1 mM glycine, Figure 19a 

and b). The histogram of the apo NMDA receptor (Figure 17a) shows five discrete 

states, with the predominant state (50.3% occupancy) at a FRET efficiency of 0.92 ± 

0.02. The glutamate-glycine bound histogram (Figure 17b) also shows five states; 

however, the receptor occupancy distribution is shifted toward the lower efficiency 

states. In particular, the glutamate-glycine states with FRET efficiencies of 0.46 ± 0.02 

and the 0.60 ± 0.02 states are rarely observed with the apo receptor (1.6% occupancy 

at 0.58 ± 0.02 with no observed population corresponding to the 0.46 ± 0.02 state). 

This shift toward lower efficiencies when glutamate-glycine are bound suggests that 

channel opening is accompanied by a widening of the top of the transmembrane 

domain. Given that unliganded, apo receptors show no spontaneous channel opening 

in the absence of ligands, we assigned the FRET efficiency states at 0.46 ± 0.02 and 

0.60 ± 0.02 to open channel conformations with the rest of the states corresponding 

to closed conformations. To validate this assignment, we employed MK-801, an open-

channel blocker that binds to and stabilizes the channel’s open conformation (156). 

Inclusion of MK-801 along with glutamate and glycine should increase the relative 

proportion of the open-channel conformational states and reduce the relative 

proportion of the closed-channel conformational states. Consistent with this, the 

ensemble smFRET histograms show a notable shift toward lower FRET efficiencies 

(Figure 17c, Figure 19c-f, Table 8). STaSI analysis of the data revealed six states with 
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MK-801, five of which align with the states for the glutamate-glycine bound receptor 

(Table 8). Of these five states, the 0.48 ± 0.02 and the 0.62 ± 0.02 states seen with 

MK-801 have higher relative occupancies compared to their counterparts in the 

glutamate-glycine-bound receptor. MK-801 also stabilizes an additional state at 0.56 ± 

0.02, which is unexplored or highly transient in its absence. This smFRET-based 

assignment of states as functionally open is reinforced further by the agreement 

between the smFRET ‘open’ state occupancy (16.3% in the liganded condition, Table 

8) and the residual steady-state current after desensitization (20 ± 3% of peak 

response, n = 11) in our electrophysiological measurements of the smFRET construct 

(Figure 15b). 
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Figure 19. Difference histograms clarify the changing conformational landscape 

of the NMDA receptor as it shifts between inactive and active conditions 

Parent denoised FRET efficiency distribution histograms were paired and 

subtracted from one another to generate difference histograms. The positive/negative 

value of the difference histogram signifies higher/lower relative abundance of one 

condition as compared to the other. Shown are the parent and difference histograms 

for A,B, apo vs. glutamate-glycine-bound receptor, C,D, apo vs. glutamate-glycine with 

MK-801, E,F, glutamate-glycine vs. glutamate-glycine with MK-801, G,H, glutamate-

glycine vs. glutamate-glycine with zinc, and I,J, and Apo vs. glutamate-glycine with 

zinc. 
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Consequently, the three higher-efficiency states explored by the glutamate-

glycine-bound receptor (0.70 ± 0.02, 0.82 ± 0.02, 0.90 ± 0.02) can be assigned to 

closed-channel conformations. Their distances of 44.3 ± 0.7 Å, 39.6 ± 0.9 Å, and 35 ± 1 

Å, respectively, between the fluorophores are in good agreement with the X-ray and 

EM-based structures of the closed-channel receptor, which show a Cα-Cα distance of 

30 Å. Additionally, the distance change of 17 ± 1 Å between the most closed state (0.90 

± 0.02) and the more open state (0.46 ± 0.02 efficiency, 52.4 ± 0.7 Å) is similar to the 

22 Å change at the M3 helix between the closed-channel EM structure and the low-

resolution EM structure thought to represent the open receptor(11). 

The apo receptor additionally explores an additional high-efficiency state at 

0.98 ± 0.02 (27 ± 5 Å) (Figure 17a, Table 8). This closed state has no corresponding 

equivalent in the glutamate-glycine bound receptor or with the glutamate-glycine 

receptor with MK-801, but rather this state is unique to the apo, unliganded state. 

Because cleft closure of the LBD leads to channel opening at the transmembrane 

domain via the linker between them (59), this high-efficiency state of the apo receptor 

most likely arises from a lack of tension at that linker due to the absence of ligand in 

the agonist-binding cleft. That this state is not the predominantly populated closed 

state is reflective of the ability of LBD to dynamically sample closed-cleft 

conformations in apo and even antagonist-bound conditions (90, 91, 135). 

 

Comparison of desensitized and inhibited NMDA Receptor. 

To obtain a fuller understanding of the gating motions of the NMDA receptor, 

we also examined the accessible conformational states of the transmembrane domain 
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in the presence of the divalent cation zinc, which acts as an allosteric inhibitor (71, 73, 

151). Like other allosteric inhibitors, zinc binds to the amino-terminal domain of 

GluN2 subunits, inducing cleft closure and a reduction in channel activity (11, 12, 71, 

73, 149, 151, 157), though the precise nature of the conformational changes that occur 

at the transmembrane segments upon zinc binding are still unknown. Figure 17d 

shows the ensemble histogram of the denoised FRET data, which are primarily shifted 

toward more closed states as compared to the state of the agonist-bound receptor 

alone (Figure 19g and h). However, in addition to stabilizing the agonist-bound 

closed states, another high-efficiency, more closed state is observed at 0.96 ± 0.02 

(Figure 17d, Table 8), which is structurally distinct from the closed states probed 

with glutamate and glycine. The efficiency of this more closed state in the presence of 

zinc is similar to the 0.98 ± 0.02 state observed in the apo form of the receptor 

(Figure 17a, Table 8), and in fact their histograms are remarkably similar (Figure 19i 

and j). Thus, rather than simply shifting the conformational equilibrium of the 

glutamate-glycine-bound receptor toward its closed states, as has been previously 

suggested, the binding of zinc results in the more compact “apo-like” state of the 

receptor’s transmembrane segments. These data suggest that allosteric inhibition by 

zinc may occur through a mechanism in which amino-terminal domain cleft closure 

allows for the decoupling of the extracellular domains from the transmembrane 

segments, permitting the transmembrane segments to move to more closed 

conformations. 
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Dynamics of the NMDA receptor. 

Beyond providing the conformational landscape that the NMDA receptor 

probes, our smFRET data also provide insight into the dynamics of the receptor. The 

smFRET traces under apo conditions were relatively static (Figure 17a, inset), 

whereas the traces of the liganded receptor were much more dynamic (Figure 17b, 

inset). To quantify the differences in transition frequency, we first examined the 

average number of transitions occurring in time-windows of varying length for each 

condition (Figure 20a), which confirm that the apo condition indeed exhibited a 

much lower average number of transitions than receptors in other conditions. 

Interestingly, the allosterically inhibited zinc-bound form of the receptor exhibits a 

comparable number of transitions to the other liganded conditions, despite being 

electrically less active and with an overall histogram reminiscent of the apo condition. 

These transitions of the inhibited receptor, however, are primarily between the 

highest-efficiency closed states, as discussed later. Such behavior is reminiscent of 

single-channel recordings, which display long-lived shut states interspersed with 

clusters of electrical activity (158). As a second measure of conformational fluctuation, 

the cumulative probability plot of the coefficient of variation (CV) of each single 

molecule trajectory is shown in Figure 20b. Static, stable traces exhibit low CV, 

whereas dynamic traces exhibit a higher CV. As with the average transitions over time, 

apo receptors show much less variation and the cumulative probability rises quickly at 

a low CV value. In contrast, a much larger portion of the agonist-bound and MK-801-

bound traces show higher variation and so the rise is slower. Zinc-inhibited receptors, 

on the other hand, though they undergo as many transitions as do the other liganded 
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receptors (Figure 20a), show a steeper rise, intermediate between the glutamate-

glycine and the apo receptors. As described below, this behavior is consistent with the 

zinc-bound receptors exhibiting transitions between a smaller range of states, 

fluctuating mainly among the closed states, and rarely visiting open states. 
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Figure 20. Dynamics of the NMDA receptor show differences in transitional 

behavior under different ligand conditions 

A, The average number of transitions seen per time window show that 

unliganded apo receptors exhibit notably fewer transitions than any of the liganded 

receptors. B, The cumulative probability plot of the coefficient of variation shows that 

the apo receptor is the most unvarying of the receptors, with few transitions. Zinc-

inhibited receptors show a higher level of variation, while the uninhibited glutamate-

glycine bound receptors show a high degree of variation. Figure 21 shows that this 

relationship is not due to effects of the length of the individual traces. C, 

Autocorrelation of the single molecule data fit to three-term exponential decay. The 

thickness of the lines represents the fitting errors (zoomed in for visibility in inset). 

The lifetimes show that uninhibited glutamate-glycine bound receptors have a higher 

amplitude of the longest-lived component, as well as a longer weighted average 

lifetime, as compared to the apo and inhibited receptors, indicating increased 

transitions for uninhibited receptors and increased rigidity for the apo and inhibited 

receptors.   
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Figure 21. The coefficient of variation (CV) of each smFRET efficiency trajectory 

versus that trajectory’s length 

Having various lengths of the smFRET trajectories does not affect the CV-

ligand condition relationship. 
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As a final measure to examine the transmembrane domain rigidity, the 

autocorrelation of each of the smFRET trajectories was calculated to generate an 

average autocorrelation curve for each set of ligand conditions. The average 

autocorrelation curves were fit to a three-term exponential decay, and the exponential 

fits yielded three different fluctuation timescales for each receptor condition: short 

(τ1), intermediate (τ2), and long (τ3) (Figure 20c and Table 9). Short autocorrelation 

decay times indicate a more rigid nature of the molecules, whereas longer decay times 

indicate the opposite (132). The process associated with the longest timescale (τ3) can 

be attributed to conformational transitions or protein fluctuation events (159). As 

expected, apo and inhibited receptors have smaller amplitudes for this timescale, 

whereas agonist-bound NMDA receptors have the greatest amplitude for this 

timescale. Furthermore, the trend in overall weighted average fluctuation timescales 

indicates that the liganded receptors exhibit a longer overall decay compared to the 

apo and inhibited receptors, again reflecting the greater stability of electrically 

inactive receptors under these conditions. 
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Table 9. Autocorrelation data under the various ligated conditions. 

The average autocorrelation decay of the single molecule FRET data was fit to a 

three-term exponential decay, resulting in short, intermediate and long timescale 

decays for each condition. The longest timescale decay was most prevalent for 

uninhibited liganded receptors, and was least prevalent for the apo and inhibited 

receptor. These data indicate that uninhibited receptors exhibit the most transitions, 

indicative of a shallow energy barrier into channel opening, whereas apo and inhibited 

receptors are the most rigid, with a high energy barrier preventing transitions into 

channel opening. 

Ligand 

Short 
timescale 

τ
1 
(ms) 

Amplitude 
(%) 

Interme-
diate 

timescale 
τ

2 (ms) 

Amplitude 
(%) 

Long 
timescale 

τ
3
 (ms) 

Amplitude 
(%) 

Weighted 
average 

lifetime τ 
(ms) 

Apo 8 ± 1 46.4 ± 0.7 170 ± 10 30 ± 1 860 ± 60 23 ± 2 250 ± 20 

Glu-Gly 9 ± 3 37 ± 1 82 ± 6 24.3 ± 0.9 650 ± 10 38.9 ± 0.7 275 ± 6 

Glu-Gly/ 
MK-801 

9 ± 1 309 ± 2 65 ± 5 34 ± 2 740 ± 20 35.9 ± 0.6 292 ± 9 

Gly-Gly/ 
Zn2+ 

13 ± 1 39 ± 1 150 ± 10 34 ± 2 640 ± 40 26 ± 2 220 ± 20 
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Transitions among the open and closed states. 

The smFRET trajectories further allow us to determine the transitions between 

and among the closed and open states. Transition maps showing the relative number 

of transitions from one state to the other are shown in Figure 22a-d. The data show 

that transitions primarily occur between states of nearest FRET efficiency, whereas 

transitions between non-adjacent states are less common. More importantly, the 

transition maps for the receptors that show significant open-channel states (Figure 

22b and 22c) suggest that channel opening occurs from a single closed state—a pre-

open state—which has the lowest FRET efficiency among the closed states. The two 

other closed states, which have a higher FRET efficiency and thus more closed 

transmembrane segments, do not show significant direct transitions into an open 

channel state. Thus, a linear mechanism connecting the three closed states to the two 

open states best describes the observed transition maps. Such a mechanism has a 

striking similarity to the mechanism proposed based on single channel analysis which 

show several closed states interconverting, but a single closed state transitioning to an 

open state (151). Based on the present results, we can say that this ‘pre-open’ closed 

state is structurally more open than the other closed states. Additionally, due to the 

dynamics and the fact that both glutamate and glycine are present, the two other 

closed states for the glutamate-glycine bound receptor can be assigned to the slower 

closed states observed in single-channel recordings (151). Thus our data are able to 

provide the first direct correlation between structural changes in the transmembrane 

segments and functional changes previously reported using single-channel methods. 

Furthermore, our results allow us to place these states along a plausible structural 
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reaction coordinate corresponding to the functionally relevant distinction between 

open and closed. 
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87 
 

Figure 22. Transition maps and free energy diagrams of the NMDA receptor 

smFRET data 

Examination of the individual single molecule traces show primarily transitions 

between adjacent states, portrayed here in terms of the normalized number of 

transitions for A, apo, B, glutamate-glycine bound, C, glutamate-glycine-bound with 

MK-801, and D, glutamate-glycine-bound zinc-inhibited NMDA receptors. This 

pattern indicates an ordered movement from closed to open conformations. E-H, Data 

from these transition maps were used to generate free energy diagrams. These energy 

diagrams explain the kinetic behavior we see in the receptor, with stabilization of the 

open states for agonist-bound receptors and a high activation energy barrier for apo 

receptors. 
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Energetics of the NMDA receptor. 

Based on the distribution of states (Figure 17a-d, Table 8) and the transition 

maps (Figure 22a-d), the relative free energies of open and closed states along with 

the relative free energy barriers for transitions between pairs of states were calculated 

(160) (Figure 22e-h). These smFRET-derived data are again strikingly similar to the 

free energy profiles proposed based on functional single-channel recordings (151), 

though with our data showing a higher free energy for the open states of the agonist-

bound receptor, consistent with the desensitization profile of our smFRET construct 

(Figure 15b). These energy profiles support our conclusion that the resting apo 

receptor remains primarily in closed conformational states with a high activation 

energy between states and thus fewer transitions. The zinc-inhibited receptor also 

occupies primarily closed states, but the relative lower activation energy between the 

states allows the zinc-inhibited receptor to exhibit more transitions than apo. The 

ability of uninhibited agonist-bound receptors to activate the ion channel can be seen 

by the lower activation energies between the pre-open closed states and the open 

states, facilitating transitions between them. 

 

Concluding remarks. 

Here we have used single molecule FRET to examine the conformational 

landscape of full-length intact NMDA receptors under various liganded conditions. 

Our analysis revealed a multiplicity of FRET states in each dataset. The smFRET data 

show similar efficiencies between different liganded conditions but with different 

occupancies, consistent both with functional studies using single channel recordings 
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and with the model of conformational selection at the level of the transmembrane 

domain. Agonist binding lowers the energy barrier preventing the transitions of the 

apo receptor, allowing the glutamate-glycine bound receptor to explore the open-state 

conformations whilst destabilizing the tightest closed-state arrangement. Our studies 

also show for the first time that the binding of the allosteric modulator zinc inhibits 

the NMDA receptor by lowering the energy barrier of the glutamate-glycine bound 

receptor leading into the apo-like tightest closed-state arrangement, essentially 

decoupling the closed-cleft tension of the LBDs from the transmembrane segments. 
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Chapter 7: Conclusions and Future Directions 

The work presented in this dissertation has made great strides toward 

understanding the mechanisms of action of the NMDA receptor. Prior to this work, 

the mechanism of partial agonism of the NMDA receptor glycine-binding domain was 

unknown. Here, we combined cutting edge unnatural amino acid technology along 

with single molecule FRET in order to reveal a variant of the graded cleft closure seen 

with AMPA receptors (90). Due to the lower temporal resolution of the attached-

FRET technique used, we pushed the boundary even further to achieve submillisecond 

resolution of the dynamics of the glycine-binding domain (91). The data we obtained 

are highly consistent with work from other groups, showing broad energy wells for the 

apo LBD (135) and higher energy barriers relative to glycine for partial agonists (139). 

Moreover, we were able to confirm a conformational selection-based mechanism of 

the GluN1 LBD wherein the LBD can choose among three distinct conformational 

states, with two of these states being consistent with crystal structures (4). Where our 

work has stood out, though, is the revelation of the third state, hitherto unknown, 

that we propose would lead directly into channel activation. Similarly, we have made 

unprecedented advances in exploring the conformational dynamics of the 

transmembrane domain of the NMDA receptor. Again, our data shows great 

consistency with previous work (151), but the insight revealed by our studies has 

allowed us to put forth a new mechanism by which NMDA receptors are allosterically 

regulated. 

This type of biophysical understanding of the NMDA receptor is of critical 

importance. As discussed in Chapter 1, NMDA receptors play a whole host of roles 
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within, and even outside of, the central nervous system. Physiological function is tied 

to almost every cognitive process, and pathological dysfunction can be seen in a whole 

host of disorders. In order to treat these disorders, a complete biophysical 

understanding of these receptors is necessary for the development of better therapies 

that can target aberrant receptors whilst minimally affecting those that are properly 

functioning. Work from our lab has already made some ground toward this goal (161), 

as has the work of others (56). With the knowledge gained from the studies presented 

in this dissertation, such progress can be made again. 

 

Future Directions 

Despite the great progress made here, there is still much more work to do. The 

NMDA receptor still hides many mysteries, and the abilities and techniques of our lab 

are uniquely poised to address and answer some of the most critical among them. 

 

Further investigations into the LBD 

The works performed here on the LBD were performed on isolated domains; 

however, recent technological advancements in the field and in our own lab have 

made single molecule investigations of full-length proteins an achievable goal. As 

discussed in their chapters, the flexibility seen in an isolated domain may not be 

realized in the context of a full-length receptor, and so the dynamics observed for the 

LBD may be quite different when approached in this manner. Indeed many LBD 

interactions and properties depend on the presence of the rest of the protein, such as 

desensitization, allosteric modulation, and intersubunit cooperativity (162). With our 
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new ability to study the full-length receptor, the dynamics of the ligand-binding 

domain must be revisited to see how the domain changes and reacts to a variety of 

different conditions. 

 

Dynamics of the Amino-Terminal Domain 

The amino-terminal domain is unique among the iGluRs for its rich allosteric 

potential, and the recent full-length structures have given insight into why, with its 

extensive interface with the LBD (9, 10). Our work has already begun on this, with the 

revelation of a zinc-mediated decoupling of the LBD to the TMD, but now a more 

targeted look at the ATDs is essential. Does ifenprodil act in the same way? And how 

does spermine potentiate—if the inhibitors decouple, what would be the opposite of 

that? Moreover, even beyond allosteric ligands, the ATDs themselves impart different 

properties on the receptor. A look at the dynamics of chimeric receptors would reveal 

a great number of insights into how these domains exert their effects. 

 

A closer look at the pore 

The work presented here was a great leap forward, but now many smaller steps 

need to be taken. Probing the TMD via the GluN2 subunits is a logical next step, as is 

looking at the movements from the intracellular side. To really make the greatest 

progress forward, however, two future goals should be strived for. The first is single 

molecule patch-clamp FRET microscopy, and the second is single-molecule FRET 

guided molecular dynamics. With single molecule patch-clamp FRET microscopy, 

entailing the simultaneous acquisition of electrophysiology and single molecule FRET 
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data, the distinct conformational states that we saw in Chapter 6 can now mapped to 

the different functional kinetic states. Temporal resolution of the attached-FRET 

studies performed in that chapter have been the limiting factor, but the ability to 

probe submillisecond ranges as described in Chapter 5 show that this is not an 

insurmountable barrier. Certain technological advances and innovations may need to 

be developed before such a union can be reliably called upon, the gain that will be 

obtained from it will be immense. 

Molecular dynamics and single-molecule FRET seem to me to be a natural 

marriage of two techniques. Single molecule FRET can provide experimental 

verification and guidance, while molecular dynamics will be able to provide atomic-

level insight into the motions of the protein. Such a marriage becomes especially with 

proteins such as the NMDA receptor because, due to its sheer size, modeling of the 

entire receptor would be a great computational burden. Single molecule FRET data 

can thus provide constraints and an idea of the forces needed to direct a protein to 

undergo a particular transition the experimenter wants to see. Conversely, the 

necessity of labeling makes visualizing certain areas quite difficult via smFRET, e.g. the 

inner lining of the pore. By combining our single molecule FRET data with steered 

MD, I suspect a visualization of the permeation pathway, as well as the molecular 

determinants of conductance, permeability, uncompetitive blocking, etc., are not far 

off. 
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The Carboxyl-Terminal Domain 

The CTD is like the red-headed stepchild of the iGluR domains. It is the least 

well-studied structurally, but despite that, or perhaps even because of it, the CTD in 

recent years has come to be known to harbor many surprising and unexpected secrets. 

CTD-mediated metabotropic activity of the NMDA receptor is an exciting, if 

controversial, field that needs to be explored much more thoroughly. The intrinsically 

disordered nature of the domain may provide problems for crystallographers and 

cry0-EM microscopists, but it fits right into the wheelhouse of smFRET. Indeed, FRET 

has already been used to explore these CTD motions (115), albeit with lower precision 

due to the use of fluorescent proteins rather than dyes. Insights from single-molecule 

studies can greatly clear up the mechanism of CTD-mediated non-ionotropic function. 

 

Better technologies to study membrane proteins 

Membrane proteins like the NMDA receptor make up about 30% of the 

proteome and over 50% of drug targets, but structural and biophysical 

characterization of these proteins are often hindered by that very membrane that 

makes them so important. Current purification methods of membrane proteins 

typically consist of ripping those proteins from the membrane and transferring them 

into an unstable detergent micelle. Even if purified protein is subsequently 

reconstituted into a lipid vesicle or a membrane scaffold protein (MSP) nanodisc, 

there is often no guarantee that the lipids the protein is reconstituted in is 

representative of the lipids in which the protein natively. Recently, styrene-maleic acid 

copolymers have come into use as a means by which to solubilize membrane proteins. 
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Rather than simply removing the lipids from the protein, these SMA copolymers 

extract nanodiscs from lipid bilayers, taking any embedded membrane proteins along 

with them (163). The advantage of these “native nanodiscs” over MSP-based nanodiscs 

would be that the native annular lipids that surround the protein would be intact. 

Because the proteins have not been ripped away from lipids, proteins in these native 

nanodiscs are more thermostable (164, 165) and retain function (164, 166). Not only 

can individual proteins be purified, but complexes as well (167). Finally, a crystal 

structure of an SMA-solubilized protein has recently been published, proving the 

ability of SMA copolymers in the use structural work. The authors note no obvious 

differences between the SMA-solubilized and traditional detergent-solubilized 

structures, but take care to state that the use of SMA may obviate the necessity for 

detergent screening and may facilitate working with more difficult membrane proteins 

(168). In all, the advent of the SMA copolymer has made this is an exciting time for 

membrane proteins and those who study them. 

 

Final Thoughts 

NMDA receptors are fascinating proteins that play pivotal roles in cognitive 

function. The work presented in this dissertation has made great headway into 

understanding the structure-function relationships of this protein, but much more 

remains to be done. Fortunately, new technological advances and approaches are 

coming out every day to help us delve into the mysteries that underlie, not only the 

NMDA receptor, but life itself. 
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Appendix: Materials and Methods 

Parts of this section are based upon research originally published in The 

Journal of Biological Chemistry. Dolino, D. M., D. Cooper, S. Ramaswamy, H. Jaurich, 

C. F. Landes, and V. Jayaraman. Structural Dynamics of the Glycine-binding Domain 

of the N-Methyl-D-Aspartate Receptor. Journal of Biological Chemistry. 2015; 290: 797-

804. © the American Society for Biochemistry and Molecular Biology. and Dolino, D. 

M., S. Rezaei Adariani, S. A. Shaikh, V. Jayaraman, and H. Sanabria. Conformational 

Selection and Submillisecond Dynamics of the Ligand-binding Domain of the N-

Methyl-D-aspartate Receptor. Journal of Biological Chemistry. 2016; 291: 16175-16185. © 

the American Society for Biochemistry and Molecular Biology. 

 

Generation of site-directed isolated GluN1 LBD mutants 

A pET22B vector encoding the rat GluN1 isolated LBD was provided by Eric 

Gouaux (Oregon Health and Science University, OR) (4). Sites were chosen based on 

accessibility and distance across the cleft. S507 and T701 (Figure 3) were mutated to 

cysteines or to amber TAG codons using standard site-directed mutagenesis with Pfu 

Turbo (Agilent). The original stop codon of this construct was also mutated from the 

amber stop codon to encode an opal stop codon (UAA) to allow for successful 

translation termination. 

 

LBD protein expression 

Mutant plasmid was co-transformed into Origami B (DE3) cells (Novagen) 

along with the pEVOL plasmid containing the genes for the suppressor tRNA and 
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aminoacyl-tRNA synthetase needed to incorporate p-acetyl-L-phenylalanine (pEVOL 

plasmid was provided by Peter Schulz, Scripps Research Institute, CA) (136). 1-liter 

liquid cultures were grown in LB broth, Miller (Fisher) supplemented with 50 μg/ml 

ampicillin (Sigma), 15 μg/ml kanamycin (Fisher), 12.5 μg/ml tetracycline 

(CalBioChem), and 50 μg/ml chloramphenicol (Acros) until they reached an OD600 of 

0.8. Then, protein expression was induced by adding IPTG (Fisher) to a final 

concentration of 0.5 mM. If needed, the unnatural amino acid machinery was 

simultaneously induced by adding 0.02% arabinose (Sigma) and 1 mM AcF (RSP 

Amino Acids). Induction was carried out at 20°C for 20-24 hours. The cultures were 

then pelleted down, and the pellets were stored at -80°C until use. 

 

LBD Protein purification 

Pellets were thawed and lysed with a cell disruption vessel (Parr Instruments). 

Then, cell debris was pelleted by spinning at 185,000 × g for 1 hr at 4°C. For large scale 

purification with cysteine mutants, the GluN1 S1S2 in the supernatant was loaded onto 

an immobilized metal affinity chromatography column that had been previously 

charged with nickel sulfate (HiTrap HP, GE Healthcare) using fast protein liquid 

chromatography (AKTA, GE Healthcare). Purified GluN1 S1S2 was then eluted using a 

linear gradient of imidazole (Sigma). With smaller scale purification of the double 

unnatural amino acid constructs, the supernatant was collected and purified by 

binding with 1 ml of Ni-NTA agarose resin (Qiagen). Protein was then eluted with 200 

mM imidazole (Sigma), concentrated down, and then brought to 500 μl in PBS, pH 7, 

supplemented with 1 mM glycine (Fisher). Western blots of the purified mutant 
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protein confirm expression of the full 35 kDa His-tagged LBD only upon induction of 

the unnatural amino acid machinery, showing successful incorporation and utilization 

of the unnatural amino acid (Figure 23a). 
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Figure 23. Characterization of the GluN1 agonist-binding domain after 

incorporation of p-acetyl-L-phenylalanine 

A, Western blots showing lysates from 1L cultures probed with an antibody 

against domain 2 of the GluN1 agonist-binding domain of wild-type protein and S507 

and T701 double-mutant protein with or without induction of unnatural amino acid 

machinery (UAA). Wild-type protein was diluted ten times to prevent oversaturation 

of the blot. B, Isothermal titration calorimetry data from the GluN1 agonist-binding 

domain having incorporated p-acetyl-L-phenylalanine. The Kd for binding MDL 

105,519 is 7 ± 3 x 10-8 M, similar to the Kd determined previously with wild-type 

agonist-binding domain (4). 

  



 

101 
 

Labeling of LBD for FRET 

Fluorescent dyes were added to the above protein sample. Alexa 555 and Alexa 

647 (Invitrogen) were used as the donor and acceptor, respectively, for attached-FRET 

experiments, whereas Alexa 488 was used as the donor for diffusing-FRET. For 

cysteine labeling the maleimide derivatives were used. To label the unnatural amino 

acids, we used ketone-reactive, hydrazide-conjugated fluorescent dyes (Figure 4). 

Donor and acceptor dyes were pre-mixed, then added such that dye:protein molar 

ratios were 1:1 for donor and 4:1 for acceptor, in order to minimize proteins labeled 

with only donor fluorophores. Unnatural amino acid protein was labeled overnight at 

4°C. The following day, excess dye was removed from the protein by dialysis in 2L of 

PBS for 6 hours, changing the dialysis buffer every 2 hours. Glycine was added to the 

dialysis buffer up to 1 mM for the glycine samples. With cysteine mutations, labeling 

was performed for only 30 minutes before removing excess label by purifying the 

protein onto a nickel affinity column (nickel-nitrilotriacetic acid-agarose, Qiagen). 

Imidazole was used for elution and it was removed using a PD-10 desalting column 

equilibrated with PBS buffer (GE Healthcare). For samples liganded to D-serine (Acros 

Organics), L-alanine (Acros Organics), ACBC (Aldrich), or DCKA (abcam), the 

appropriate ligand was added to the sample before and after each exchange if dialysis 

was performed (1 mM, 15 mM, 10 mM and 1 mM, respectively, based on differential 

affinities for each ligand). This type of ligand substitution was also performed for 

glycine. No significant changes were noted and the glycine data was pooled for final 

analysis. For attached smFRET experiments, 1 μg of biotin-conjugated anti-His epitope 

antibody (Rockland) was added to a 500 μl sample. 
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Isothermal calorimetry 

The functionality of the GluN1 LBD protein with unnatural amino acids tagged 

with fluorophores was determined using isothermal calorimetry (Figure 23b). For 

these experiments the protein was extensively dialyzed to the apo state in buffer 

containing 20 mM HEPES (pH 7), 150 mM NaCl, 1 mM EDTA, and 10% glycerol. 

Calorimetric titrations were performed with VP-ITC (MicroCal) using 1 µM protein 

with twenty 10 µL injections of 15 µM (E)-4,6-dichloro-3-(2-phenyl-2-

carboxyethenyl)indole-2-carboxylic acid (MDL 105,519) (Sigma) at 23°C. Data analysis 

was performed using Origin (OriginLab). 

 

Attached-smFRET LBD sample preparation (132) 

For all single molecule measurements in this study, plasma-cleaned 22x22 mm 

micro glass coverslips (VWR) were immersed in a VECTABOND-acetone solution (1% 

w/v, Vector Laboratories, Burlingame, CA) for 5 minutes, rinsed with molecular-

biology grade water, dried with nitrogen, and stored under vacuum to prevent 

contamination. A silicon template was placed on the VECTABOND-functionalized 

slide to allow filling of the future chamber area with PEG solution (5 kDa biotin-

terminated PEG (2.5% w/w in MB water, NOF Corporation) and sodium bicarbonate 

(Sigma)) and the filled slide was allowed to dry in the dark for 4-6 hours. Excess PEG 

was washed off with 10-12 ml MB water and, after nitrogen-drying the slide, a custom 

HybriWell chamber (Grace Bio-Labs) fitted with an inlet and outlet port (press-fit 

tubing connectors, Grace Bio-Labs) was arranged precisely over the PEGylated area. 
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After filling the chamber with PBS buffer, a control image was taken to ensure a clean 

sample, followed by insertion of 0.2 mg/ml streptavidin (Invitrogen) in PBS buffer. 

Biotin-streptavidin binding was allowed to progress for 10 minutes. The protein of 

interest, with the biotin-conjugated anti-His-antibody for streptavidin association, 

was added to the chamber at an approximate concentration of 20 nM and incubated 

for 20 min. Unbound protein was washed out by flushing the chamber with an excess 

of PBS buffer. 

 

Measurements of attached-FRET LBD data 

The sample chamber was secured to a closed-loop x-y-z piezo stage (P-517.3CL; 

Physik Instrumente) with 100 x 100 x 20 μm travel range and 1 nm specificity (SPM 

1000, RHK Technology) to allow for precise movement of the sample area. In order to 

extend the lifetimes of the fluorophores, an oxygen scavenging buffer solution of 33% 

w/w β-D-(+)-glucose (Sigma), 1% w/w glucose oxidase, 0.1% v/v catalase (Sigma), 1 

mM methyl viologen (Sigma), and 1 mM ascorbic acid (Sigma) in PBS was 

continuously pumped through the chamber using a syringe-pump flow system at a 

rate of 1 μl/min (169). Additionally, the above concentrations of the specific LBD 

ligand, depending on the experimental conditions, was included in the buffer solution. 

The custom-built confocal microscope (Zeiss Axiovert 200 M) described previously 

was used for all smFRET measurements (137, 170). A 532 nm diode-pumped solid-state 

laser (Coherent, Compass 315M-100 SL) focused through a FLUAR 100x 1.3 NA oil 

immersion microscope objective lens (Carl Zeiss, GmbH) to a power density of 50 

W/cm2 at the sample was used to excite the sample. Emitted light was collected back 
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through the same objective and was passed through a notch filter (zet532nf, Chroma 

Technology) and towards the detector box. The fluorescence emission light was 

separated by a 640 nm high-pass dichroic mirror (Chroma 640 DCXR) and collected 

by two corresponding avalanche photodiode detectors (SPCM AQR-15, Perkin Elmer) 

set to 570 nm and 670 nm using band-pass filters (NHPF-532.0, Kaiser Optical and 

ET585, Chroma Technology) for donor and acceptor signal collection. An area of 10x10 

μm was raster scanned to locate individual molecules. After a single molecule was 

chosen for observation, the stage was moved to focus the laser on the particular 

molecule and then the donor and acceptor fluorescence signals were collected until 

photobleaching of the fluorophores occurred. 

 

Data analysis of attached-FRET LBD 

A 1 ms time resolution was used to record the emission intensity trajectories 

and then binned up to 10 ms frames during data processing to improve the signal-to-

noise ratio. The data analysis was performed by an in house script using Matlab 

(R2009b, Mathworks) which processed the signals via the wavelet denoising 

technique (154, 155). The denoised signal was then used to calculate the FRET 

efficiency at each time point, using Equation 6 (Chapter 3). (132, 133). From this FRET 

efficiency, the distance was determined through Equation 1, the Förster equation. The 

Förster radius is 51 Å for the Alexa 555-Alexa 647 fluorophore pair used for these 

experiments. Error in FRET efficiencies was set at 0.03 based on measurements under 

the same conditions performed with a rigid DNA double strand. The standard error of 

the mean for the fraction of proteins with FRET efficiencies higher than 0.96 was 
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calculated using the above error in FRET efficiency and determining the fractions at 

the two extremes in error and by dividing by the square root of the number of 

molecules studied for each ligand-bound state. 

After processing the data, the traces were further filtered for single molecule 

verification and excluded if they showed criteria of multistep bleaching or 

exceptionally high background adapted from a normal distribution. 

 

Electrophysiology for testing the LBD mutants 

HEK-293T cells were transfected using jetPRIME® Polyplus with GluN1 

S507C/T701C, wild-type GluN2A, and enhanced GFP at a microgram ratio of 1:3:1, 

respectively, with 5 μg of total DNA/10 ml of medium. After a 10–12-h incubation with 

transfection reagents, cells were plated at low density onto tissue culture dishes. 300 

μM DL-APV and 30 μM DCKA were present in the medium during and after 

transfection. Whole cell patch clamp recordings were performed 24–48 h after 

transfection using borosilicate glass pipettes with 3–5 megohm resistance, coated with 

dental wax, fire-polished, and filled with the following solution: 135 mM CsF, 33 mM 

CsOH, 2 mM MgCl2, 1 mM CaCl2, 11 mM EGTA, and 10 mM HEPES, pH 7.4. The external 

solution was: 140 mM NaCl, 2.8 mM KCl, 1 mM CaCl2, 10 mM HEPES, pH 7.4. Solutions 

were locally applied to isolated cells using a stepper motor system (SF-77B; Warner 

Instruments) with triple barrel tubing. External solution alone was applied as a 

control, and the cells were then pulsed with glutamate (1 mM) and with a GluN1 ligand 

for 5 s with a 3-s interval between pulses. The GluN1 ligands tested were glycine, 1 mM; 

D-serine, 1 mM; L-alanine, 15 mM; ACBC, 10 mM; and DCKA, 100 μM to match the MFD 
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experiments. Cells were held at −60 mV. All recordings were performed using an 

Axopatch 200B amplifier (Molecular Devices), acquired at 10 kHz using pCLAMP10 

software (Molecular Devices) and filtered online at 5 kHz. All experiments were 

performed at room temperature. 

 

Accessible Volume (AV) simulations to estimate measured distance 

The accessible volume considers the dyes as hard sphere models connected to 

the protein via flexible linkers (modeled as a flexible cylindrical pipe) (121, 143, 171, 

172). The overall dimension (width and length) of the linker is based on their chemical 

structures. For Alexa 488 the five-carbon linker length was set to 20 Å, the width of 

the linker is 4.5 Å, and three dye radii 5.0, 4.0, and 1.5 Å. Similarly, for Alexa 647 the 

dimensions used were: length = 22 Å, width = 4.5 Å and the three dye radii 11.0, 3.0, 

and 1.5 Å. 

To account for dye linker mobility we generated AVs for donor and acceptor 

dyes attached to the LBD by in silico labeling at Ser-507 and Thr-701. For this pair of 

AVs, we calculated the distance between dye mean positions (Rmp), 

 

𝑅𝑚𝑝 = |〈𝑅𝐷(𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗〉 − 〈𝑅𝐴(𝑗)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗〉| = |
1

𝑛
∑𝑅𝐷

(𝑖)⃗⃗ ⃗⃗ ⃗⃗  
𝑛

𝑖=1

−
1

𝑚
∑𝑅𝐴

(𝑗)⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑚

𝑗=1

| (11) 

where  and  are all the possible positions that the donor and acceptor 

fluorophores can take. However, in intensity based measurements, the mean donor-

acceptor distance is determined by the integration time and Rmp cannot be 

experimentally determined; thus, the effective and experimentally determined 

distance becomes, 

)(i
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)( j
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(12) 

the relationship between Rmp and 〈RDA〉E can be derived empirically following a third 

order polynomial from many different simulations. 

 

MFD for smFRET experiments 

MFD for confocal smFRET studies of single molecules was done using PIE (173) 

with two diode lasers (model LDH-D-C-485 at 485 nm and laser LDH-D-C-640 at 640 

nm; PicoQuant, Germany) operating at 40 MHz with 25-ns interleaved time. The 

power at objective was set for 120 microwatts for the 485-nm laser line and 39 

microwatts for the 640 nm excitation. Freely diffusing doubly labeled LBD molecules 

are excited as they pass through the focal point of a ×60, 1.2 NA collar (0.17) corrected 

Olympus objective. The emitted fluorescence signal was collected through the same 

objective and spatially filtered using a 70-μm pinhole to define an effective confocal 

detection volume. The emitted fluorescence was divided into parallel and 

perpendicular polarization components at two different spectral windows (“green” and 

“red”) through band pass filters, ET525/50 and ET720/150, for green and red, 

respectively (Chroma Technology Co.). In total, four photon detectors are used: two 

for green (PMA hybrid model 40 PicoQuant) and two for red channels (PMA hybrid 

model 50, PicoQuant). A TCSPC module (HydraHarp 400, PicoQuant) with time-

tagged time-resolved mode and 4 synchronized input channels were used for data 

registration. 
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For smFRET measurements donor-acceptor (DA)-labeled LBD samples were 

diluted to a picomolar concentration in PBS buffer (50 mM sodium phosphate, pH 7.5, 

150 mM NaCl), which had been charcoal filtered to remove residual impurities. At 

picomolar concentrations we assure that we observe ∼1 molecule/s. To prevent 

adsorption artifacts, NUNC chambers (Lab-Tek, Thermo Scientific, Germany) were 

pre-coated with a solution of 0.01% Tween 20 (Thermo Scientific) in water for 30 min 

and then rinsed with ddH2O. Collection time varied from several minutes up to 2 h. 

Standard controls consisted of measuring water to determine the instrument response 

function, buffer for background subtraction and the nanomolar concentration of 

green and red standard dyes (Rhodamine 110, Rhodamine 101, and Alexa 647) in water 

solutions for calibration of green and red channels, respectively. To calibrate the 

detection efficiencies we used a mixture solution of double labeled DNA 

oligonucleotides with known distance separation between donor and acceptor dyes. 

Ligands used were glycine, 1 mM; D-serine, 1 mM; L-alanine, 15 mM; ACBC, 10 mM; or 

DCKA 100 μM. 

 

MFD histograms and FRET lines 

Bursts were selected by 2σ criteria out of the mean background value with cut-

off times that vary from sample to sample with a minimum of 60 photons for each 

burst (174). Each burst was then processed and fitted using a maximum likelihood 

algorithm and previously developed programs (LabVIEW, National Instruments Co.) 

(175). Bursts were selected according to the following rules: the difference in burst 

duration on green channels given donor excitation (TGX) and burst duration on red 
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channels given direct acceptor excitation (TRR) was −1.5 ms <TGX − TRR < 1.5 ms; and 

bursts satisfy the FRET stoichiometry (SPIE) parameter of 0.13 < SPIE < 0.6, which 

selects for bursts with both fluorophores present. Fluorescent bursts were plotted in 

two-dimensional histograms (Origin 8.6, OriginLab Co.). 

The relationship between the ratio of the donor fluorescence over the acceptor 

fluorescence FD/FA and the fluorescence-weighted lifetime obtained in burst analysis 

〈τD(A)〉f depends on specific experimental parameters such as fluorescence quantum 

yields of the dyes (ΦFD(0) and ΦFA for donor and acceptor, respectively), background 

(〈BG〉 and 〈BR〉 for green and red channels, respectively), detection efficiencies (gG and 

gR for green and red, respectively), and cross-talk (α). The parametric line that relates 

two FRET indicators (FD/FA and 〈τD(A)〉f) was introduced by Seidel's group and is 

defined as, 

 
(
𝐹𝐷
𝐹𝐴
)
𝑠𝑡𝑎𝑡𝑖𝑐

=
𝛷𝐹𝐷(0)

𝛷𝐹𝐴
∙ (

𝜏𝐷(0)

∑ 𝐴𝑖(〈𝜏𝐷(𝐴)〉𝑓,𝐿)
𝑖3

𝑖=0

− 1)

−1

 
(13) 

Where Ai are the coefficients of an empirical polynomial function that takes into 

account the intrinsic linker dynamics of the dyes. FRET lines are used to identify static 

or slowly exchanged limiting populations. 

 

Quantum yields 

The donor and acceptor quantum yields were corrected due to the presence of 

different ligands and need to be corrected accordingly. We assumed that only 

dynamic quenching takes place and that ΦFD(0), ΦFA are proportional to the species-

averaged fluorescence lifetime 〈τD(A)〉x of donor or acceptor, respectively. As reference 

samples we used Alexa 488-labeled DNA 〈τD(0)〉x = 4.0 ns, ΦFD(0) = 0.8 and for the 
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acceptor we used Cy5-labeled DNA with 〈τA〉x = 1.17 ns and ΦFA = 0.32 (176). The 

obtained donor and acceptor quantum yields are presented in Table 10. This FRET 

pair has a reduced Förster distance of 52 Å where we assumed isotropic reorientation 

of the dyes using κ2 = 2/3 due to the long linkers. 

 

 

 

Table 10. Quantum Yields were estimated as described in Appendix 

Sample ΦFD(0) ΦFA 

Gly 0.773 0.42 

D-Ser 0.828 0.43 

L-Ala 0.843 0.41 

ACBC 0.799 0.38 

DCKA 0.850 0.40 

 

 

 

κ2 = 2/3 Assumption, 〈κ2〉, and κ2 Distributions 

Experimentally, one can test whether assuming κ2 = 2/3 is justifiable or not. 

Considering that fluorophores follow the “wobble in a cone” model (177), it is possible 

to calculate a distribution of all possible values of κ2. For that, we determined the 

residual anisotropies (r∞) (D only, donor; A, acceptor, and A(D), the sensitized by 
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FRET emission of acceptor) from single molecule experiments. We consider the 

extreme limit when 〈rss〉 ≅ r∞. Then, all κ2 values will follow (143), 

 
 𝜅2 =

2

3
+
2

3
𝑆𝐷
(2)
𝑆(2)(𝛽1) +

2

3
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𝑆(2)(𝛽2)

+
2

3
𝑆𝐷
(2)
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(
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(2)(𝛽2)

−9 cos 𝛽1 cos 𝛽2 cos 𝛿

)
 

(14) 

where, β1 and β2 are the angles between the symmetry axes of the dyes rotations, 

and δ is the angle between the symmetry. The necessary second-rank order 

parameters S(2) are defined by, 

 
𝑆(2)(𝛿) =

1

2
(3 cos2 𝛿 − 1) =

𝑟𝑠𝑠,𝐴(𝐷)
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(2)𝑆𝐴
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1

2
(3 cos2 𝛽1 − 1) 

𝑆(2)(𝛽2) =
1

2
(3 cos2 𝛽2 − 1) 

(15) 

where r0 is the fundamental anisotropy of the dyes whose values were 0.38 and 0.39 

for the donor and acceptor fluorophores, respectively. The dye motions are 

characterized by the second-rank order parameters SD
(2) and SA

(2) by Equation 16 

Donor 

Acceptor 

1

2
cos2 𝜃𝑑𝑖𝑠𝑘 = √

𝑟𝑠𝑠,𝐷−𝑜𝑛𝑙𝑦
𝑟0

= −𝑆𝐷
(2) 

1

2
cos 𝜃𝑐𝑜𝑛𝑒(1 + cos 𝜃𝑐𝑜𝑛𝑒) = √

𝑟𝑠𝑠,𝐴
𝑟0

= 𝑆𝐴
(2)

 

(16) 

From all possible orientations and combinations a κ2- distribution and its 

corresponding arithmetic mean (〈κ2〉) can be determined and compared with the 

assumed to κ2 = 2/3. 
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Probability distribution analysis (PDA) 

To model the shape of the FD/FA distributions we use probability distribution 

analysis or PDA (140, 178). In short, the measured fluorescence signal (S), consisting of 

fluorescence (F), and background (B) photons are expressed in photon count numbers 

per time window (Δt) of a fixed length. In multiparameter fluorescence detection the 

signal is split into two spectral windows termed “green” and “red” each with two 

polarization components (parallel “‖” and perpendicular “⊥”). The probability of 

observing a certain combination of photon counts in two detection channels 1 and 2 

(e.g. 1 = green and 2 = red) and measured by two or more single-photon counting 

detectors, P(S1,S2), is given by a product of independent probabilities, 

 𝑃(𝑆1, 𝑆2) = ∑ 𝑃(𝐹)

𝐹1+𝐵1=𝑆1;𝐹2+𝐵2=𝑆2

𝑃(𝐹1, 𝐹2|𝐹)𝑃(𝐵1)𝑃(𝐵2) 

 

(17) 

P(F) describes the fluorescence intensity distribution, i.e. the probability of observing 

exactly F fluorescence photons per time window (Δt). P(B1) and P(B2) represent the 

background intensity distributions. P(F1,F2|F) is the conditional probability of 

observing a particular combination of F1 and F2, provided the total number of 

fluorescence photons is F. This can be expressed as, 

 
𝑃(𝐹1, 𝐹2|𝐹) =

𝐹!

𝐹1! 𝐹2!
𝑝1
𝐹1𝑝2

𝐹2 =
𝐹!

𝐹1! (𝐹 − 𝐹1)!
𝑝1
𝐹1(1 − 𝑝1)

𝐹−𝐹1 

 

 

(18) 

where p1 stands for the probability of a detected photon to be registered by the first 

detector (e.g. green in a FRET experiment). For smFRET, p1 is unambiguously related 

to the FRET efficiency E according to, 
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𝑝1 = (1 + 𝛼 +

𝐸𝛷𝐹𝐴
(1 − 𝐸)𝐺𝛷𝐹𝐷(0)

)

−1

 

𝑝2 = 1 − 𝑝1 

 

(19) 

here, G stands for the ratio of the detection efficiencies in the spectral windows (G = 

gG/gR). The quantum yields (ΦFD(0) and ΦFA) were previously defined, and α is the 

spectral cross-talk. 

The distribution P(F) in Equation 17 is not directly measurable; instead, the 

total signal intensity distribution P(S) is measured, which is given by, 

 𝑃(𝑆) = 𝑃(𝐹)⊗ 𝑃(𝐵) (20) 

where P(B) is the distribution probability of background counts. Details on the 

deconvolution procedure are described elsewhere (140). Finally, Equation 19 can be 

extended for multiple species with the brightness correction used in this work (179). 

Each species distribution has a half-width (hwDA), which depends mostly in shot noise 

and photophysical properties of the acceptor fluorophore, and it was fixed to 6% of 

the 〈RDA〉E. 

 

Generation of smFRET constructs for TMD measurements 

Wild-type GluN1-1a and GluN2A plasmids in pcDNA3.1 were kindly provided 

by Shigetada Nakanishi (Osaka Bioscience Institute, Osaka, Japan). All mutations were 

introduced using standard PCR-based mutagenesis methods. To create the 

background constructs, non-disulfide-bonded cysteines at sites 15 and 22 in GluN1 and 

231, 399, and 460 in GluN2A were mutated to serines, resulting in GluN1* and 

GluN2A*. In order to label these receptors, a reactive cysteine was mutated to replace 

the native phenylalanine at site 554 in GluN1*.  
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Electrophysiology for TMD measurements 

HEK293T cells were plated into 30 mm dishes and transfected (jetPrime, 

PolyPlus) with GluN1*F554C and GluN2A* constructs at a mass ratio of 1.5:4.5 μg per 

20 ml of media. 300 μM DL-AP5 (abcam) and 30 μM DCKA (abcam) were present in 

the media and recordings were performed 24 to 48 hours post-transfection. Prior to 

recording, cells were incubated in 150 nM Alexa 555 maleimide (ThermoFisher) and 

600 nM Alexa 647 maleimide (ThermoFisher) for at least 1 hour to mimic smFRET 

labelling conditions. Outside-out patches were excised and piezo-driven solution 

exchange was performed as outlined elsewhere (180). The external solution was (in 

mM) 150 NaCl, 20 HEPES, 10 Tricine, 1 CaCl2, and 0.1 glycine, pH 7.4 (NaOH). The 

pipette solution was 135 CsF, 33 CsOH, 11 EGTA, 10 HEPES, 2 MgCl2 and 1 CaCl2, pH 

7.4. Lifted whole cell recordings were performed as described elsewhere(122) using the 

same solutions as above with the addition of 2.5 mM KCl to the external solution. 

 

Single molecule FRET sample preparation for TMD measurements 

HEK293T cells were transiently transfected with GluN1*F554C and GluN2A* 

DNA at a mass ratio of 2.5:7.5 μg per 10 cm dish. 300 μM DL-AP5 (abcam) and 30 μM 

DCKA (abcam) were present during transfection to limit excitotoxicity. One day post-

transfection, cells from two 10-cm dishes were harvested and labeled for 1 hour at 

room temperature with 150 nM of donor fluorophore Alexa 555 maleimide 

(ThermoFisher) and 600 nM of acceptor fluorophore Alexa 647 maleimide 

(ThermoFisher) in 3 mL extracellular buffer. After washing, labeled cells were then 
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solubilized for 1 hour at 4°C in buffer containing phosphate-buffered saline, 1% lauryl 

maltose neopentyl glycol (Anatrace), 2 mM cholesteryl hydrogen succinate (MP 

Biomedicals), and protease inhibitor (Pierce). Unsolubilized debris were then spun 

down for 1 hour at 100,000 × g at 4°C, and the supernatant used as the smFRET 

sample. 

 

Flow chamber preparation for TMD measurements 

Plasma cleaned glass coverslips (22 × 22 mm No. 1) were aminosilanized 

through Vectabond treatment (Vectabond in acetone 2% v/v; Vector Laboratories, 

Burlingame, CA). Silicone templates (Grace bio-Labs) were used to treat a small 

section of the coverslips with a PEG solution containing 5kDa biotin-terminated PEG 

(2.5% w/w in molecular biology grade (MB) water, NOF Corp.), and 5kDa mPEG 

succinimidyl carbonate (25% w/w in MB water, Laysan Bio Inc.) in 0.1M sodium 

bicarbonate (Sigma-Aldrich). The coverslips were then left to incubate in a dark and 

moist environment overnight. On the day of the experiment, the coverslips were 

treated with another round of PEGylation with a short chain 333 Da NHS-ester PEG 

(Thermo Scientific) and incubated for 2-3 hrs. After washing off excess PEG, the 

coverslips were dried with a mild flow of nitrogen. Custom hybriwell chambers (Grace 

bio-Labs) with dual silicon press-fit tubing connectors (Grace bio-Labs) were placed 

atop the coverslips to construct a flow chamber. 
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Protein preparation and attachment to coverslips for TMD measurements 

Streptavidin in buffer solution containing Phosphate Buffered Saline (PBS), 

1mM DDM (n-dodecyl-β-D-maltoside) and 0.2 mM CHS (cholesteryl hemisuccinate), 

were introduced through the flow chamber and incubated for 10 minutes. 10 nM of 

biotinylated goat Anti-Mouse IgG (H+L) secondary antibody (Jackson Immuno 

Research Laboratories, Inc.) was then flowed into the chamber and incubated for 20-

30 minutes. Next, 10 nM of anti-NMDAR mouse monoclonal primary antibody 

(Abcam Inc.) was flowed in. After each antibody addition, the chamber was flushed 

with buffer to get rid of the unbound antibodies. All dilutions were made in PBS buffer 

with 1 mg/mL Bovine serum albumin (Sigma-Aldrich). 

Meanwhile, whole cells expressing NMDA receptors were labeled with donor 

and acceptor fluorophores for 1 hour at room temperature. The cells were then lysed 

and the membrane proteins solubilized with 1% MNG-3. Intact NMDA receptors were 

then attached to a glass slide for FRET data acquisition using in situ 

immunopreciption (SiMPull (152)) by passing the solubilized protein through the 

chamber in three 60 μL shots and incubating for 20-30 minutes before flushing the 

chamber with buffer containing Phosphate Buffered Saline (PBS), 1mM DDM (n-

dodecyl-β-D-maltoside) and 0.2 mM CHS (cholesteryl hemisuccinate). 

Control slides using unmutated GluN1*/GluN2A* receptors showed minimal 

background labeling, while slides prepared with GluN1*F554C/GluN2A* showed 

isolatable single molecules exhibiting fluorescence and energy transfer (Figure 16).  
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smFRET data acquisition for TMD measurements 

Acquisition was performed as above; however, ligands—1 mM glutamate, 1 mM 

glycine, 1 μM MK-801, and/or 10 μM Zn2+—were added to the ROXS to achieve the 

liganded conditions necessary for each TMD experiment. Additionally, 10 mM tricine 

was included to chelate any unbound zinc ions under the apo, desensitized, and open-

stabilized conditions. Step Transition and State Identification (STaSI) analysis (89, 

153) was run for each sample to obtain an unbiased determination of number and the 

identification of discrete conformational states within each sample(89, 90, 132, 133, 

137, 152, 153). 

 
Free energy calculations 

For each liganded condition, the free energy of the most populated STaSI-

identified state was set to 0 kBT. The STaSI determined occupancies were then used to 

calculate the equilibrium constant Keq between each pair of states, and the free energy 

of every state relative to the most populated state was determined via the equation: 

 ∆𝐺0 = −𝑘𝑏𝑇𝑙𝑛𝐾𝑒𝑞 
(21) 

The transition probabilities between each pair of states, given our 10 ms bin time, was 

used to determine the reaction rate for each transition, and the heights of the energy 

of activation barriers were calculated assuming a first-order reaction rate and the 

Arrhenius equation: 

 𝑟𝑎𝑡𝑒 = 𝑘[𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑒] 

𝑘 = 𝐴𝑒−𝐸𝑎 𝑘𝐵𝑇⁄

 

(22) 
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Concentration of the starting state was taken as the STaSI-derived fractional 

occupancy of that state, and the value of the pre-exponential was chosen to be (10 

ms)-1. Forward and reverse energies of activation were averaged in the final figure. 
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