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Abstract 
 

MOLECULAR MECHANISMS OF INWARD AND OUTWARD 
BUDDING FROM MULTIVESICULAR ENDOSOMES 

 

Monica Gireud Goss, M.S. 

 
Advisory Professor: Andrew Bean, Ph.D. 

 
 

 Regulating the residence time of membrane proteins (e.g. transporters, ion 

channels, receptors) on the cell surface can modify their response to extracellular 

cues and allow for cellular adaptation to environmental conditions. The fate of 

membrane proteins that are internalized from the plasma membrane and arrive at 

the limiting membrane of the late endosome/multivesicular body (MVB) is dictated by 

whether they remain on the limiting membrane, bud into internal MVB vesicles, or 

bud outwardly from the membrane. The molecular details underlying the disposition 

of membrane proteins that transit this pathway and the mechanisms regulating these 

trafficking events are unclear. We established a cell-free system that reconstitutes 

budding of membrane protein cargo into internal MVB vesicles and onto vesicles 

that bud outwardly from the MVB membrane. Both budding reactions are cytosol-

dependent and supported by Saccharomyces cerevisiae (yeast) or Drosophila 

melanogaster (fly) cytosol, providing a system amenable to genetic manipulation. 

We observed that inward and outward budding are mechanistically distinct but may 

be linked, such that inhibition of inward budding enhances outward budding.  
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Chapter 1. Introduction 
 

1.1 Endocytosis of membrane proteins  

 Membrane proteins (e.g. receptors, ion channels, and transporters) reside on 

the plasma membrane and respond to signals from the extracellular environment 

that affect global cellular processes such as growth, proliferation, and differentiation. 

The removal of membrane proteins from the cellular surface tunes environmental 

signaling by preventing their continued activation by extracellular molecules, 

although the termination of their signaling activity may not occur until their lysosomal 

degradation (Gruenberg, 2001; Sorkin and von Zastrow, 2009; Sun et al., 2010). 

 The canonical endocytic pathway for cell surface transmembrane proteins 

begins with their internalization into vesicles that bud from the plasma membrane 

and fuse with each other or with early endosomes (Fig. 1.1) (Gruenberg, 2001; 

Sorkin and von Zastrow, 2009). Early endosomes may mature into late endosomes 

and subsequently into multivesicular bodies (MVBs).  MVBs are formed when the 

endosomal limiting membrane invaginates producing vesicles that separate from the 

limiting membrane resulting in an organelle containing internal vesicles (Eden et al., 

2012; Futter et al., 1996; Gruenberg, 2001; Lemmon and Traub, 2000; Sorkin and 

von Zastrow, 2009; Sun et al., 2010). The fate of membrane proteins that move 

through this pathway depends on whether they enter the internal vesicles or remain 

on the limiting MVB membrane (Fig. 1.1) (Eden et al., 2012; Felder et al., 1990; 

Futter et al., 1996; Sirisaengtaksin et al., 2014). Membrane proteins that move from 

the limiting membrane into internal vesicles of MVBs are degraded upon MVB-

lysosome fusion or are secreted into the extracellular space as exosomes upon 
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MVB-plasma membrane fusion (Corrado et al., 2013; Hurley and Odorizzi, 2012; 

Kowal et al., 2014). Membrane proteins that are not sorted into internal MVB 

vesicles can remain on the limiting membrane and become incorporated into the 

lysosomal membrane upon MVB-lysosome fusion (Fig. 1.1) (Eden et al., 2012; 

Futter et al., 1996; Katzmann et al., 2002; Piper and Luzio, 2001; Raymond et al., 

1992a) or may bud from the limiting endosomal membrane for recycling to various 

cellular compartments (e.g. the plasma membrane, Golgi apparatus, endoplasmic 

reticulum) (Felder et al., 1990; Gruenberg, 2001; Sun et al., 2010). Coordination of 

membrane protein degradation and recycling regulates cell surface protein 

composition and signaling (Grant and Donaldson, 2009).  

 

1.2. Epidermal Growth Factor Receptor Trafficking 

The Epidermal Growth Factor Receptor (EGFR), is a type I transmembrane 

protein that is a prototypical cell-surface signaling receptor (Cohen, 1962; Goh and 

Sorkin, 2013; Tomas et al., 2014). The EGFR contains an extracellular ligand-

binding domain, a single membrane-spanning domain, and a cytoplasmic tyrosine 

kinase-containing domain (Olayioye et al., 2000; Riese and Stern, 1998). Binding of 

EGFR to its ligand promotes its dimerization and auto-phosphorylation of the 

tyrosine residues on the cytoplasmic tail (Chung et al., 2010). The auto-

phosphorylation activates the downstream signal transduction pathways (Olayioye et 

al., 2000; Riese and Stern, 1998). EGFR activation results in its internalization via 

clathrin-mediated endocytosis and subsequent movement through the endocytic 

pathway resulting in lysosomal degradation.  An alternative pathway for EGFR 
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following internalization allows escape from lysosomal trafficking and recycling back 

to the plasma membrane for further signaling. 

 Alterations in membrane protein trafficking can alter cellular responses to 

ligand activation.  For example, a truncated EGFR mutant, EGFRvIII, is expressed in 

50% of glioblastoma tumors (Frederick et al., 2000; Furnari et al., 2007; Gan et al., 

2009; Heimberger et al., 2005; Sugawa et al., 1990). EGFRvIII lacks the receptor 

ectodomain, and is internalized independent of ligand binding and moves through 

the endocytic pathway (Grandal et al., 2007).  It follows the same itinerary as wild-

type EGFR, but constitutively recycles to the plasma membrane (Grandal et al., 

2007). The enhanced recycling of EGFRvIII results in increased surface expression, 

and uncontrolled cell proliferation and signaling, behaviors that may underlie 

glioblastoma pathogenesis (Grandal et al., 2007). The mechanisms regulating the 

intracellular trafficking of EGFRvIII are unclear.  
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Figure 1.1: The Endocytic Pathway. Internalized membrane proteins are initially 

transported to early endosomes.  From the early or sorting endosomes, protein 

cargo can be recycled and/or transported to multi-vesicular bodies (MVBs). At the 

MVB, a membrane protein may bud outwardly for recycling to other cellular 

compartments (e.g. plasma membrane), or inwardly forming the internal vesicles of 

the MVB whose contents will be degraded upon MVB-lysosome fusion, or secreted 

into the extracellular space (exosomes) upon MVB-plasma membrane fusion.  
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1.3. Mechanisms of Membrane Budding Events. 

 Vesicle-mediated trafficking is a process in which cargo and membrane are 

transported in membrane-bounded compartments and requires the generation of 

membrane transport vesicles that bud from a donor compartment and fuse with an 

acceptor membrane. Ultimately, vesicle budding allows for the selective 

incorporation of cargo proteins into newly synthesized vesicles (Bonifacino and 

Glick, 2004). Understanding the requirements for proteins that regulate membrane 

budding events have largely been advanced using reconstitution experiments 

(Bremser et al., 1999; Matsuoka et al., 1998; Wollert and Hurley, 2010). Vesicle 

budding can occur with or without the aid of coat proteins, however little is known 

about non-coated vesicle transport. Three classical coat complexes have been 

identified that are composed of cytosolic proteins that associate with budding 

membranes. Clathrin is a coat that binds indirectly to the donor membrane through 

adapter proteins that bind directly to cargo (Farsad and De Camilli, 2003; Honing et 

al., 2005), whereas some other coats bind directly to donor membranes to facilitate 

cargo clustering and membrane deformation (Bonifacino and Glick, 2004; Harter et 

al., 1996; Hurley et al., 2010). I will briefly summarize the current view of coated-

vesicle membrane trafficking mechanisms. 

1.3.1. Cargo selection and membrane deformation  

 Cargo selection and membrane deformation must act in concert if the budded 

vesicles are carrying cargo.  Thus, the mechanism of membrane budding requires, 

recognition and clustering of selected cargo for incorporation into regions of the 

membrane that will vesiculate (Bonifacino and Glick, 2004). The best understood 
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mechanism of cargo selection and membrane deformation occurs in clathrin-

containing vesicle (CCV) budding where the adaptor protein-2 complex (AP-2), 

directly binds to activated receptors and the plasma membrane phospholipid, 

phosphatidylinositol-4,5-bi-sphosphate (PtdIns(4,5)P2) (Honing et al., 2005).  After 

binding of AP-2, the bin-amphiphysin-rvs (BAR) domain superfamily scaffolding 

proteins, amphiphysin, endophilin, and epsin, are recruited (Blood and Voth, 2006; 

Castillo et al., 2002; Farsad and De Camilli, 2003; Hurley et al., 2010; Takei et al., 

1999). BAR-domain containing proteins possess intrinsic curvature sensing and 

producing properties (Cui et al., 2013; Madsen et al., 2010).  Membrane budding is 

an energetically unfavorable event (Farsad and De Camilli, 2003; Hurley et al., 

2010) and thus the BAR domain family proteins are required for membrane bending, 

curvature, and scission (Farsad and De Camilli, 2003). The BAR domain proteins 

bind to PtdIns(4,5)P2 (Lemmon, 2008) and initiate convex curvature and bending of 

the membrane to provide a platform for recruitment of the clathrin coat. 

1.3.2. Coat Proteins.   

 Clathrin is a soluble protein that does not bind cargo or membranes and is not 

sufficient to generate membrane curvature and bending (Dell'Angelica, 2001; 

Nossal, 2001). Therefore, after binding of adaptor proteins that can simultaneously 

bind membrane and cargo, clathrin is recruited to the membrane. Polymerizing 

clathrin forms a lattice around the forming pits and stabilizes the membrane 

curvature that ultimately regulates vesicle size (60-100nm) (McMahon and Boucrot, 

2011).  Regulatory proteins can alter the polymerization rate of clathrin to keep up 

with cellular demand. In contrast to clathrin, that is necessary but not sufficient for 
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budding, COP coats directly bind to membranes and, along with associated 

GTPases, are both necessary and sufficient to mediate vesicle budding (see section 

1.3.4 for a detailed description) (Bethune et al., 2006). Upon coat protein binding, 

the vesicles are ready for detachment from donor membranes.   

1.3.3. Vesicle Scission.   

The final step of vesicle budding requires vesicle fission, the detachment of 

vesicles from donor membranes. In CCV, the vesicle fission step is mediated by the 

large GTPase dynamin (Sweitzer and Hinshaw, 1998; Yoshida et al., 2004).  As the 

CCV vesicle invaginates, amphiphysin recruits dynamin, (Yoshida et al., 2004). 

Dynamin assembles around the neck of the budding vesicle and GTP hydrolysis 

induces a conformational change in dynamin that results in membrane fission and 

vesicle release (Ferguson and De Camilli, 2012; Sweitzer and Hinshaw, 1998). 

Following vesicle release, an ATPase, heat shock cognate 70 (Hsc70), and its 

cofactor, auxilin, remove the clathrin coat before the vesicle is able to fuse with an 

acceptor membrane (Eisenberg and Greene, 2007). Transport vesicle fusion with 

acceptor membranes is regulated by the Soluble NSF Attachment Protein Receptor 

(SNARE) proteins, as vesicle-SNARES on transport vesicles bind to target-SNAREs 

on target organelles (Sollner et al., 1993). In CCV, the SNARE proteins together with 

the small GTPase Rab5 are required for membrane fusion (Bucci et al., 1992; 

Gorvel et al., 1991).  
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1.3.4. Distinct coats mediate different trafficking steps. 

 Clathrin coated-vesicles (CCV) are involved in budding transport vesicles 

from the plasma membrane (Kirchhausen, 2000). The Coatomer (Coat protein 

complex I (COPI)) complex plays a role in budding retrogradly-directed transport 

vesicles from the Golgi to the Endoplasmic Reticulum (ER), while the COPII complex 

is involved in the budding of anterogradly-directed transport vesicles from the Golgi 

that are involved in retrograde trafficking to the ER (Kirchhausen, 2000).  Thus, in 

contrast to the clathrin-mediated process described above, retrograde transport in 

the secretory pathway requires the Coatomer (COPI).  The Coatomer complex 

consists of 7 subunits (α, β, β’, γ, δ, ε, and ζ-COP) and additional cofactors.  COP-

mediated trafficking differs from the clathrin-dependent process described above 

(Bonifacino and Lippincott-Schwartz, 2003).  Initially, the small GTPase ADP-

ribosylation factor (ARF) is recruited to the membrane. Activated ARF provides the 

link between cargo binding and coat protein recruitment. ARF recruits the intact 

coatomer complex from the cytosol and the GTPase activating protein, ARFGAP1. 

The Coatomer complex is preassembled in the cytoplasm into a heptameric complex 

consisting of two layers. One layer forms the base of the coat (similar to AP-2 in 

CCV) and further binds to membrane through γ-COP (Harter et al., 1996). The 

second layer is a cage-like trimeric subcomplex (Yu et al. 2012) that is responsible 

for determining vesicle size and initiates polymerization of the coat, leading to 

deformation of the membrane. Deactivation of ARF by ARFGAP1 along with 

regulatory proteins that enhance ARFGAP1 function are required for vesicle fission 

(Goldberg; Hsu and Yang, 2009; Lanoix et al., 2001; Yang et al., 2005). Following 
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vesicle fission, ARF deactivation destabilizes the coatomer and leads to vesicle 

uncoating before vesicles are competent to fuse with the ER (Spang, 2013). 

 

1.4. The ESCRT Machinery regulates inward budding at MVBs.   

 The molecular mechanisms underlying membrane protein trafficking have 

been illuminated with the help of genetic and cell-free model systems. Studies using 

the yeast, Saccharomyces cerevisiae, enabled isolation of proteins required for 

inward budding of membrane proteins into the vacuole, the yeast degradative 

organelle (Babst et al., 2011; Babst et al., 2002b; Bilodeau et al., 2003; Bowers et 

al., 2004; Hurley and Emr, 2006; Katzmann et al., 2001; Piper and Luzio, 2001; 

Raymond et al., 1992b; Schmidt and Teis, 2012; Teis et al., 2010). A study by 

Rothman et al, (Rothman et al., 1989), revealed the identification of at least 40 

genes, the Vacuolar protein sorting (Vps) genes, that when mutated were defective 

for the sorting of proteins to the vacuole (Rothman et al., 1989). However it was not 

until 1992, when Raymond et al identified a subset of the Vps proteins, known as the 

class E Vps proteins, that when mutated accumulated a large, prevacuolar 

endosomal compartment and were defective in the formation of MVB internal 

vesicles (Raymond et al., 1992a). Characterization of the Class E Vps genes 

resulted in identification of the Endosomal Sorting Complexes Required for 

Transport (ESCRTs) (Babst et al., 2011; Babst et al., 2002a; Babst et al., 2002b; 

Bilodeau et al., 2003; Bowers et al., 2004; Hurley and Emr, 2006; Katzmann et al., 

2001; Katzmann et al., 2003; Kostelansky et al., 2006; Lemmon and Traub, 2000; 

Malerod et al.; Piper et al., 1995; Piper and Luzio, 2001; Teis et al., 2010). The 

ESCRTs are four cytosolic protein complexes that are recruited to endosomal 
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membranes and enable the sorting of membrane proteins into internal vesicles 

(Futter et al.; Hurley and Emr; Katzmann et al., 2001; Lemmon and Traub; Raiborg 

and Stenmark, 2009; Wegner et al., 2010). However, we lack a complete 

biochemical and molecular understanding of mechanisms that underlie regulation of 

ESCRT function, membrane protein movement, and vesicle formation/budding from 

the limiting MVB membrane.  

 The sorting of membrane proteins into the internal vesicles of the MVB 

requires their ubiquitination to enable engagement with the sorting machinery 

(Bache et al., 2003; Katzmann et al., 2001; Saksena et al., 2007; Sirisaengtaksin et 

al., 2014). A protein lacking ubiquitin remains on the limiting membrane and may 

remain on the limiting membrane for incorporation into the lysosomal membrane 

upon MVB-lysosome fusion or be recycled to the plasma membrane. Membrane 

protein cargo that has been ubiquitinated can be recognized by the ESCRT proteins 

and sorted into internal vesicles that will be degraded upon MVB-lysosome fusion 

(Fig. 1.2a). ESCRT complex formation occurs sequentially such that Vps27 is the 

first ESCRT component recruited to endosomal membranes through its second 

coiled-coil domain (Raiborg et al., 2001) and its membrane-lipid targeting domain, 

FYVE (Fab1, YGL023, Vps27, EEA1) (Gaullier et al., 1998; Gillooly et al., 2000; 

Raiborg et al, 2001; Urbe et al, 2000) which binds to the membrane phospholipid, 

phosphatidylinositol 3-phosphate (PI3P) (Gaullier et al., 1998; Gillooly et al., 2000; 

Raiborg et al, 2001; Urbe et al, 2000; Williams and Urbe, 2007; Katzmann et al, 

2001).  After recruitment to endosomal membranes, Vps27 binds to cargo via its 

ubiquitin-interacting motif (UIM) (Bilodeau et al., 2002; Shih et al., 2002). Vps27 acts 
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as a scaffold to recruit Hse1 to form the initial ESCRT complex (ESCRT-0) and in 

turn, sequester cargo into clusters. After formation of ESCRT-0, Vps27 binds to 

Vps23, a component of ESCRT-I that also binds ubiquitinated cargo (Babst et al., 

2002a; Bache et al., 2003; Hurley and Emr, 2006; Katzmann et al., 2001; Katzmann 

et al., 2003). Vps23 recruits the remaining ESCRT-I components (Vps28, Vps37, 

and Mvb12a) from the cytoplasm to the endosome. ESCRT-I initiates ESCRT-II 

formation (Vps36, Snf8, Vps25) (Babst et al., 2002a; Schmidt and Teis). The 

function of the ESCRT-II complex is not well defined but it is believed that ESCRT-II 

initiates oligomerization of small coiled-coiled proteins to form ESCRT-III  (Vps20, 

Snf7, Vps24, and Did4) (Babst et al., 2002a; Hurley and Emr, 2006; Schmidt and 

Teis, 2012). The composition of ESCRT-III is not clearly defined, though it is thought 

to be composed of two major complexes, Vps20/Snf7 and Vps24/Did4 that act to 

concentrate cargo and initiate MVB vesicle formation (Babst et al., 2002a; Hurley 

and Emr, 2006; Hurley and Hanson, 2010). Vps20 couples ESCRT-II to ESCRT-III, 

binds to the endosomal membranes and triggers oligomerization of Snf7. The 

oligomerization of Snf7 is capped by the Vps24/Did4 complex. The ESCRT-III 

machinery may be responsible for the fission of invaginated endosomal membrane 

that becomes internal MVB vesicles (Fig. 1.2) (Hurley and Emr, 2006; Schmidt and 

Teis, 2012). Finally, the AAA ATPase Vps4, acts to hydrolyze ATP and disassemble 

the ESCRT machinery (Babst et al., 1998).   

 The function of the ESCRT components in MVB biogenesis is highly 

conserved across multiple organisms, including yeast, flies, worms, and humans. 

The importance of the ESCRT machinery was revealed when mutations in the 
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ESCRT components rendered a phenotype characterized by enlarged endosomal 

compartments (vacuoles/MVBs) and failed transportation of proteins into the internal 

vesicles of the vacuole (Bilodeau et al., 2002; Hurley and Hanson, 2010; Schmidt 

and Teis). Deletion of some of the class E Vps genes (Vps27, Vps23, and Vps4) 

result in impaired MVB biogenesis. The functions of these genes appear to be highly 

conserved in mammalian cells (Gruenberg, 2001; Rieder et al., 1996). The depletion 

of the mammalian homologs of Vps27, Hse, and Vps4 (Hepatocyte growth factor-

regulated tyrosine kinase substrate (Hrs), Signal-transducing adaptor molecule 

(Madsen et al.), and Vps4 respectively) significantly decreased the number of MVB 

internal vesicles formed (Bilodeau et al., 2002; Katzmann et al., 2001; 

Sirisaengtaksin et al., 2014; Sun et al., 2010).  Additionally, many ESCRT mutations 

(Vps27, Hse, Snf7, Vps23) are embryonically lethal in mice (Kanazawa et al., 2003; 

Komada and Soriano, 1999; Lloyd et al., 2002; Raymond et al., 1992a), highlighting 

the essential nature of the ESCRT machinery.  

 Two competing models describe the roles of the ESCRT complexes in cargo 

sorting.  The conveyor belt model, suggests that cargo molecules are handed off 

sequentially from one ESCRT complex to the next in a linear manner and is based 

on sequential ESCRT protein interactions (Fig. 1.2a) (Hurley and Emr, 2006). The 

concentric ring model suggests that a supercomplex of ESCRT-0, ESCRT-I, and 

ESCRT-II complexes simultaneously form, cluster, and bind multiple ubiquitinated 

cargoes (Fig. 1.2b) (Nickerson et al., 2007). Evidence exists to support both theories 

and both models agree that the ESCRT-0 proteins, Hrs and STAM, bind to 

ubiquitinated cargo and initiate ESCRT complex formation (Hurley and Emr, 2006; 
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Nickerson et al., 2007). A major point of divergence between the two competing 

models is how ESCRT complexes bind to ubiquitinated cargo proteins. In contrast to 

the conveyor belt model, the concentric ring model assumes that multiple ESCRT 

components bind ubiquitinated cargo simultaneously (Nickerson et al., 2007). 

However the assumption that ESCRT complexes simultaneously bind ubiquitinated 

cargo has not been tested. If the concentric ring model is correct, disruption of an 

ESCRT component, or the ubiquitin binding site in an individual ESCRT component, 

should reduce, but not completely inhibit MVB internal vesicle formation (Nickerson 

et al., 2007).  Another point of divergence between the two models is the reliance on 

linear formation of ESCRT complexes. In this regard, there is evidence that ESCRT-

II is not required for MVB internal vesicle formation, at least under some conditions, 

arguing against a strict sequential order of ESCRT complex engagement (Bowers et 

al., 2006).  However, it is possible that the ESCRTs proteins may have redundant 

functions allowing for enough flexibility to overcome disruptions in ESCRT-cargo 

engagement (Nickerson et al., 2007). Understanding whether all ESCRT complexes 

are generally required for cargo sorting and how the ESCRT complexes assemble 

on endosomes would aid in clarifying whether either of these models is correct.   

 The ESCRT machinery regulates two other key processes: viral budding and 

cytokinetic abscission (Fig. 1.3). ESCRT-I (TSG101, Vps28, Vps37, and Mvb12a) 

and ESCRT-III (Snf7, Did4, Vps24), along with Vps4 and the ESCRT-associated 

protein, Apoptosis-Linked Gene 2-Interacting Protein X (Alix), are required for the 

release of enveloped retroviruses, including HIV-1 and Ebola, at the plasma 

membrane (Hurley and Hanson, 2010; McDonald and Martin-Serrano, 2009). The 
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viral HIV-1 GAG protein can assemble and drive vesicle formation, but not scission 

in the absence of the ESCRT machinery (Jouvenet et al., 2009). The ESCRT-I 

component, TSG101, and Alix are recruited to the plasma membrane by binding to 

the HIV-1 Gag protein L-Domain (Demirov et al., 2002; Garrus et al., 2001; Martin-

Serrano et al., 2001; VerPlank et al., 2001). The L-domain is a 4 amino acid motif in 

the HIV-1 Gag protein, that when mutated results in inhibited release of viral proteins 

from the plasma membrane (Gottlinger et al., 1991; Huang et al., 1995). Upon 

binding to the Gag protein L-domain, Tsg101 then recruits Vps28, Vps37, and 

MVB12a while Alix binds to Snf7 and recruits Did4, Vps24 and lastly Vps4. Binding 

of the ESCRT components triggers membrane scission and release of viral proteins 

into the extracellular environment (Fisher et al., 2007; Martin-Serrano et al., 2003; 

McCullough et al., 2008; Strack et al., 2003; Usami et al., 2007; von Schwedler et 

al., 2003; Zhai et al., 2008). In similar fashion, ESCRT-I (TSG101, Vps28, Vps37, 

and Mvb12a) and ESCRT-III (Snf7, Did4, Vps24), along with Vps4 and Alix are 

required for abscission during cytokinesis, the final step of the cell cycle following 

mitosis (Carlton and Martin-Serrano, 2007; McDonald and Martin-Serrano, 2009). 

The ESCRT machinery is recruited to the membrane neck/midbody between diving 

cells by the binding of Alix and Tsg101 to the midbody component, centrosome 

protein 55 kDA (Cep55). Disruption of this interaction results in cytokinesis failure 

(Carlton and Martin-Serrano, 2007). Tsg101 recruits the ESCRT-I components 

(Vps28, Vps37, and Mvb12a) while Alix binds to the ESCRT-III component, Snf7, for 

the recruitment of additional ESCRT-III components (Did4 and Vps24) and Vps4 

(Carlton et al., 2008; Carlton and Martin-Serrano, 2007; Morita et al., 2007). The 
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recruitment of ESCRT-III to the midbody area results in abscission and release of 

the daughter cells (Carlton et al., 2008; Carlton and Martin-Serrano, 2007; Morita et 

al., 2007). These data suggest a unique ability for ESCRT-I and ESCRT-III proteins 

to drive membrane budding and scission events in the absence of ESCRT-0 and 

ESCRT-II. 
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Figure 1.2: ESCRT function. a) Conveyor belt model of ESCRT function. According 

to this model, ESCRT complexes are recruited sequentially to the endosome and 

recognize ubiquitinated transmembrane proteins, passing cargo from one complex 

to the next to facilitate sorting to MVB vesicles. b) Concentric circle model of ESCRT 

function. ESCRT-0, -I and -II mediate cargo recognition, lipid binding and complex 

assembly, resulting in formation of an ESCRT-0/I/II supercomplex on the endosomal 

membrane with MVB cargo proteins concentrated beneath. Subunits of ESCRT-III 

assemble to form a perimeter and promote dissembly by Vps4. Dissociation of the 

ESCRT- 0/I/II core precedes vesicle formation, making sequestered MVB cargoes 

available for deubiquitination before vesicle scission. a,b) Adapted from Nickerson, 

D.P., M.R. Russell, and G. Odorizzi. 2007. A concentric circle model of 

multivesicular body cargo sorting. EMBO Rep. 8:644-650.  (Nickerson et al., 2007). 
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 Figure 1.3. The ESCRT machinery regulates multiple budding events. The 

ESCRT machinery regulates the formation of internal vesicles within multivesicular 

bodies (MVBs), viral budding and abscission during cytokinesis. Adapted from 

McDonald, B., and J. Martin-Serrano. 2009. No strings attached: the ESCRT 

machinery in viral budding and cytokinesis. Journal of cell science. 122:2167-2177. 

(McDonald and Martin-Serrano, 2009). 

 

 

  



	 18	

1.5. The Mechanism of Outward Vesicle Budding from Endosomes. 

 Endosomes are dynamic organelles that deliver material to other cellular 

compartments via membrane budding (Grant and Donaldson, 2009; Gruenberg, 

2001; Maxfield and McGraw, 2004; Tanowitz and von Zastrow; Thompson et al., 

2007; Weigert et al., 2004). The separation and sorting of cargo proteins on 

endosomal membranes allows for the selective incorporation of membrane proteins 

into newly formed vesicles (Bonifacino and Glick, 2004). Membrane budding into the 

cytosol usually requires coat proteins (Kirchhausen, 2000), however the role of coat 

proteins in outward budding from late endosomes is unclear. The cytosolic GTPases 

are known to regulate outward vesicle budding from early endosomes and the trans-

Golgi (Stenmark, 2009). A non-hydrolysable analogue of GTP, GTPγS, inhibits 

budding of cargo between the golgi cisternae (Melancon et al., 1987), from the ER to 

Golgi (Baker et al., 1990; Beckers and Balch, 1989; Ruohola et al., 1988), and from 

the trans-Golgi network (Tooze et al., 1990). These results led to the identification of 

the Ras related proteins in brain (Rab) and suggested that GTPases are regulators 

of membrane budding in the endocytic pathway (Segev et al., 1988; Stenmark, 

2009). Subsequently, multiple types of GTPases, both small (Rab family) and large 

(dynamin) have been implicated in membrane budding events (Pryer et al., 1992; 

Robinson, 1994; Salminen and Novick, 1987; Zerial and Stenmark, 1993).  

 Rab GTPases are the largest family of small GTPases and were originally 

implied to regulate vesicle docking and fusion (Gorvel et al., 1991), uncoating 

(Semerdjieva et al., 2008) and organelle identity (Stenmark, 2009; Zerial and 

McBride, 2001). Rab GTPases regulate vesicle formation (Plutner et al., 1991; Ren 
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et al., 1998) and transport between organelles (Chavrier et al., 1990). Inactivation of 

Rab homologs results in enlargement of the Golgi, but not in accumulation of Golgi-

derived vesicles (Benli et al., 1996; Jedd et al., 1997). Thus, Rab proteins regulate 

many membrane trafficking stages (Pfeffer, 2001). Like most GTPases, Rab proteins 

function between two alternate conformational states: the active GTP-bound “on” 

state and the inactive GDP-bound “off” state (Bourne et al., 1990). For membrane 

trafficking events the GTP-bound Rabs are often membrane associated by virtue of 

their ability to bind receptors when GTP-bound (Stenmark, 2009; Pfeffer, 2001).   

Active Rab proteins are required for transport vesicle formation however; it is still 

unclear how Rab proteins regulate vesicle budding events.  

 Similar to small GTPAses, the large GTPase, dynamin is known to regulate 

membrane budding events.  Dynamin was initially implicated in vesicle budding due 

to its role in vesicle scission of newly formed vesicles via its GTP hydrolysis 

capability, both at the plasma membrane and at the Golgi (Urrutia et al., 1997). 

Expression of a dominant negative form of Dynamin (DynaminK44A) impaired 

vesicle release from the plasma membrane and from endosomes to the Golgi 

(Robinson, 1994). Therefore, understanding the role of GTPases in vesicle budding 

events is key to understanding membrane trafficking pathways. 

 GTPases regulate most of the outward budding pathways from endosomes. 

There are three main outward budding routes from early endosomes: a direct “fast” 

route, an indirect, “slow” route, and an endosome to Trans Golgi network route (Fig. 

1.4) (Grant and Donaldson, 2009; Maxfield and McGraw, 2004; Thompson et al., 

2007; Weigert et al., 2004). The fast route is dependent on the small GTPases Rab4 
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and Rab5 and can occur prior to fusion of internalized vesicles with the early 

endosomes, or through the perinuclear and tubular vesicles that bud off from early 

endosomes to form the endosomal recycling compartment (ERC) (Grant and 

Donaldson, 2009; van der Sluijs et al., 1992; Xie et al., 2016). In this regard, 

overexpression of a dominant negative Rab4, Rab4S22N, results in vesicle 

accumulation in the perinuclear area of early endosomes (McCaffrey et al., 2001). 

The slow route requires the small GTPase Rab11, and movement through the ERC 

(Grant and Donaldson, 2009). The ERC plays a key role in the recycling of the 

Transferrin receptor (TfR) back to the plasma membrane for reuse (Ullrich et al., 

1996). Expression of a dominant negative form of Rab11, Rab11S25N, inhibits the 

movement of TfR from early/sorting endosomes to the ERC (Ren et al., 1998). 

Lastly, the non-GTPase retromer protein complex regulates trafficking of the 

mannose-6-phosphate (M6PR) receptor from endosomes to the trans-Golgi network 

(Arighi et al., 2004). Depletion of the retromer components, Vps26 or Vps35, 

decreases recycling and enhances degradation of M6PR (Arighi et al., 2004). 

Therefore, regulation of outward budding from early endosomes is dependent on 

Rab GTPases and retromer components. If a receptor does not bud out through one 

of the three routes described above, it will be transported to late endosomes, 

although the mechanisms of outward budding from late endosomes is not well 

understood.  

 There are two outward budding routes from the late endosomes (Fig. 1.4). 

One trafficking route depends on the small GTPase, Rab9 and the large GTPase, 

Dynamin. Rab9 and Dynamin regulate the trafficking of M6PR from endosomes to 
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the trans-Golgi network (Lombardi et al., 1993; Nicoziani et al., 2000; Riederer et al., 

1994). Lack of Rab9 impairs transport of M6PR between endosomes and the trans-

Golgi network by inhibiting vesicle budding (Lombardi et al., 1993). Similarly, 

dynamin is required for transport of M6PR. Dynamin plays a role in vesicle fission 

and thus expression of a dominant negative mutant form of Dynamin, 

DynaminK44A, impairs the release of vesicles containing M6PR from endosomes to 

the trans-Golgi network (Nicoziani et al., 2000). Lastly, transport vesicles can bud 

from MVBs prior to MVB-lysosome fusion and may carry cargo to the plasma 

membrane for reuse (Felder et al., 1990). Ultrastructural studies of an EGFR mutant 

lacking kinase activity, EGFRK721A, revealed that EGFRK721A is found on the limiting 

membranes of MVBs prior to budding outwardly into vesicles destined for the 

plasma membrane (Felder et al., 1990). The increased recycling of the EGFRK721A 

results in an increase in cell-surface expression (Felder et al., 1990). However, the 

molecular mechanisms underlying this outward vesicle budding from the MVB is not 

well understood and is the focus of this study.      
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Figure 1.4. Membrane Protein Trafficking through the Endocytic Pathway. 

Internalized cargo is transported to early endosomes.  From the early or sorting 

endosomes, cargo can be recycled through two different pathways. The ‘Fast’ 

recycling pathway requires the activity of Rab4 and Rab5, and the ‘slow’ recycling 

pathway is dependent on the activity of Rab11. If a membrane protein is not recycled 

at the early endosome, it is transported to late endosomes/multivesicular bodies 
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(MVBs). At the MVB, a membrane protein may bud outwardly for recycling to other 

cellular compartments in a Rab9 dependent manner (e.g. plasma membrane or 

Golgi), or it will be internalized into the internal vesicles of the MVB for eventual 

degradation upon MVB-lysosome fusion, or for secretion into the extracellular space 

as exosomes upon MVB-plasma membrane fusion. To facilitate sorting of proteins 

into the internal vesicles of the MVB, most protein cargo must be ubiquitinated to 

enable binding by the endosomal sorting complexes required for transport (ESCRTs) 

that enable protein sorting. 
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1.6. Cell-Free Sorting Assay 

 The purpose of this study was to identify the molecular machinery that 

regulates outward budding from the MVB and determine whether the machinery is 

distinct from the inward budding machinery. We hypothesize that distinct 

molecular mechanisms mediate inward versus outward budding from the 

endosomal membrane. We used a cell-free assay that reconstitutes both 

morphological formation of internalized and budded vesicles (using ultrastructural 

methods) and quantitatively measures the amount of membrane protein cargo 

sorted into the endosomal lumen or present on vesicles that bud from that 

membrane (using biochemical methods) (Fig. 1.5).  To measure cargo 

internalization, an intracellular epitope of a transmembrane cargo protein is detected 

using an epitope-specific antibody (Fig. 1.5) (Sirisaengtaksin et al., 2014; Sun et al., 

2010). If the intracellular domain of the transmembrane protein is sorted into internal 

MVB vesicles, it will no longer be accessible to exogenously added trypsin and is 

protected from digestion, (Fig. 1.5) (Sirisaengtaksin et al., 2014; Sun et al., 2010). 

Both the protease protection of a transmembrane cargo protein and the formation of 

internal endosomal vesicles are dependent on cytosol, ATP, temperature, and an 

intact proton gradient (Sirisaengtaksin et al., 2014; Sun et al., 2010). During the cell-

free reaction, the number of internal vesicles formed, quantified by electron 

microscopy, and protease protection of a membrane protein cargo (EGFR) are 

correlated, suggesting that this assay measures endosomal cargo sorting and MVB 

formation (Sun et al., 2010). I have modified this protease protection assay in two 

important ways. First, I have shown that cytosol isolated from yeast and fly strains 
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are sufficient to support the inward budding of EGFR, thus enabling the use of 

genetics to examine the factors in cytosol that are required to support membrane 

protein sorting and MVB formation (Chapters 3-4). Second, I have modified the 

assay to capture membranes that may bud outwardly from the donor membranes 

(endosomes) during the reactions (Chapter 5-7). To isolate the outwardly budded 

vesicles, differential centrifugation of reaction supernatant following the 3-hour 

incubation enabled me to obtain outwardly budded vesicles. Using this approach, I 

have identified molecules regulating both inward and outward budding from the 

MVB.  
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Figure 1.5. Cell-free Reconstitution of MVB Sorting. Serum-starved cells are 

stimulated to induce internalization of a membrane protein receptor from the plasma 

membrane (e.g. EGFR), resulting in movement of ligand-receptor complex into 

endosomes. Isolation of partially purified endosomes (1) that contain the receptor 

can be detected by immunoblotting using an intracellular epitope-specific antibody. 

Incubation of these endosomes with trypsin (2) removes the C-terminal epitope of 

the receptor that protrudes from the plasma membrane, resulting in a loss of signal 

for that epitope on an immunoblot. Incubation of endosomes with ATP and cytosol, 
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at 37°C results in formation of internal vesicles and protection of the C-terminal 

EGFR epitope from subsequent trypsin cleavage (3). Incubation of endosomes with 

ATP and cytosol for 3 hours at 37°C [as in (3)] followed by centrifugation results in 

separation of MVBs (in pellet) and outwardly budded vesicles (in supernatant). The 

MVB pellet (4) is subsequently digested with trypsin while supernatant (5) is 

centrifuged again to concentrate budded vesicles for collection. 
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Chapter 2. Materials and Methods 

2.1. Materials 

Materials— Antibodies were purchased from the following commercial sources: 

EGFR (Invitrogen), V5-tag (Invitrogen), c-Myc (9E10, Santa Cruz Biotechnologies), 

EEA1 (Thermo Fisher), LAMP1 (H4A3 clone, Developmental Studies Hybridoma 

Bank), Rab11 (Millipore), Rab 7 (Invitrogen), Transferrin Receptor (TfR) (Abcam). 

Reagents were purchased form the following commercial sources: Methyl-β-

Cyclodextrin (MβCD, Sigma), Monensin (Sigma), and soluble cholesterol (Sigma). 

 

Constructs— The pCMV-AT1R-Myc construct was kindly provided by Dr. Guangwei 

Du (UTHealth). The pcDNA3.1-hisB-V5-R4-FGFR4Gly388 construct was kindly 

provided by Dr. Michael Ittmann (Baylor College of Medicine). The pcDNA-DEST40 

V5-tagged Kv4 construct was kindly provided by Dr. Susan Tsunoda (Colorado State 

University). The pcDNA6a myc-tagged EGFRK721A construct was kindly provided by 

Dr. Mien-Chie Hung (M.D. Anderson). The PCMV-intron myc Rab11 S25N construct 

was purchased from Addgene.  

 

Cell Culture— HeLa cells (ATCC) were cultured as a monolayer in 10-cm plastic 

plates in Dulbecco’s Modified Eagle Medium (DMEM, Mediatech) containing 10% 

Fetal Bovine Serum (FBS, Sigma) under 5% CO2 at 37°C. Before each experiment, 

cells were split by removing them from the plate using 0.25% 

trypsin/ethylenediaminetetraacetic acid (EDTA) and seeded into 10-cm tissue culture 

plates. SH-SY5Y cells were cultured as a monolayer in 10-cm plastic plates in 
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Roswell Park Memorial Institute (RPMI, Mediatech) containing 10% FBS and 5% L-

glutamine under 5% CO2 at 37°C. Before each experiment, cells were split by 

removing them from the plate using 0.25% trypsin/EDTA and seeded into 10-cm 

tissue culture plates. U87 cells were cultured as a monolayer in 10-cm plastic plates 

in Modified Eagle Medium (MEM, Mediatech) containing 10% FBS and 5% Non-

essential amino acids (Sigma) under 5% CO2 at 37°C. Before each experiment, cells 

were split by removing them from the plate using 0.05% trypsin/EDTA and seeded 

into 10-cm tissue culture plates. 

 

Recombinant proteins— Hrs and STAM were produced in insect cells as previously 

described (Sirisaengtaksin et al., 2014; Tsujimoto et al., 1999).  Recombinantly 

produced Dynamin 1 protein was kindly provided by Dr. Sandra L. Schmid. 

 

2.2 Cytosol preparation 

Mammalian: HeLa cells were placed on ice, washed with ice-cold PBS (2x with 5 

mL), scraped from the plate, and centrifuged (2000 x g for 15 min) at 4 °C. The cell 

pellet was resuspended in 100 µL of homogenization buffer (HB) (20 mM HEPES pH 

7.4, 0.25 M sucrose, 2 mM EGTA, 2 mM EDTA, and 0.1 mM DTT) containing a 

protease inhibitor cocktail (112 µM PMSF, 3 µM aprotinin, 112 µM leupeptin, 17 µM 

pepstatin). Cells were sonicated 5 times (5 pulses of 1 second at output control 3) 

(Branson Sonifier 250, VWR Scientific). The lysate was centrifuged (2000 x g for 10 

min) at 4°C, and the supernatant was further centrifuged (100,000 x g for 1 hour) at 
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4°C. The supernatant was collected and protein concentration was calculated using 

a Bradford assay (Sirisaengtaksin et al., 2014).  

Saccharomyces cerevisiae: Saccharomyces cerevisiae strains were plated on YPD 

plates (500 mL ddH20 containing: 10 g bactopeptone, 5 g yeast extract, 8 g agar, 25 

mL 40% dextrose) and incubated for 48 hours on a shaker at 30°C. YPD media (5 

mL) was inoculated with various Saccharomyces cerevisiae strains and incubated 

overnight on a shaker at 30 °C. Cultures were transferred into a secondary culture of 

YPD media (50 mL) and were grown until OD600 reached 0.8-1.0. Cells were 

collected (3000 x g for 3 min) and washed twice, first with 500 µL of ddH2O followed 

by 500 µL TP buffer (20 mM Tris, pH 7.9; 0.5 mM EDTA; 10% glycerol; 50 mM NaCl, 

112 µM leupeptin, 3 µM aproptinin, 112 µM PMSF, and 17 µM pepstatin). The cells 

were recollected (3000 x g for 3 min) and resuspended into 130 µL of TP buffer.  

Acid-washed beads (50 µL) were added to the cells and the cells were lysed (1 min 

vortex-1 min incubation on ice, 5X). Cells were centrifuged (3000 x g for 10 min) and 

the supernatant was collected. Protein concentration was calculated using a 

Bradford assay. The supernatant was divided into 70 µg aliquots and stored at -80 

°C. For Saccharomyces cerevisiae deletion strains (Table 1), we inoculated strains 

in YPD media containing G418 (500 µg/mL). 

Drosophila melanogaster: Frozen whole head homogenates of approximately 1000 

fly heads were centrifuged (100,000 x g for 60 min) to pellet total membranes and 

the supernatant was collected. Protein concentration was calculated using a 

Bradford assay. Supernatants were stored in 25 µg aliquots at -80°C. 
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2.3 Cell Transfection 

Cell Transfection—Plasmid DNA was prepared (Qiagen), and HeLa cells were 

transiently transfected using Lipofectamine 2000 transfection reagent according to 

the manufacturer’s protocol. The constructs used in each transfection are as 

indicated. Briefly, cells were plated in 6-well plates and grown until they reached 80-

90% confluence. In each well of the plate, DNA (3 µg) was added to Opti-MEM 

reduced serum medium (250 µL), mixed, and incubated for 5 min at room 

temperature. Lipofectamine 2000 reagent (3.5 µL) was added to Opti-MEM reduced 

serum medium (250 µL), mixed, and incubated for 5 min at room temperature. The 

tubes were combined, mixed gently, and incubated for 20 min at room temperature 

before adding 500 µL to each well. After 48 hours, the cells were used in the cell-

free sorting assay described below.  

 

2.4 Cell-Free Sorting Assay 

Cell-free reconstitution of inward budding from MVB membranes— The 

reconstitution of inward budding was performed as described (Gireud et al., 2015; 

Sirisaengtaksin et al., 2014; Sun et al., 2010). In experiments where EGFR was the 

membrane protein cargo, HeLa cells were grown to 75-80% confluence. Before 

harvesting, cells were serum starved (2 hours at 37°C) and stimulated with EGF 

(100 ng/mL; 10 min at 37°C or 2ng/mL; 10 min at 37°C). Endosomal membranes 

were isolated as previously described (Sirisaengtaksin et al., 2014; Sun et al., 2010) 

and resuspended in HB buffer (volume dependent on number of reactions; 10 µL for 
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control reactions and 15 µL per experimental reaction), and used for reconstitution 

reactions.  

Endosomal membranes (starting material) were either incubated on ice or 

were trypsin-treated (6 µL of 0.27 µg/µL trypsin; 4°C for 30 minutes). For reactions 

containing mammalian cytosol, a standard reaction (50 µL) contained 15 µL 

endosomal membranes, 6 µL ATP regeneration system (2 mM MgATP, 50 µg/mL 

creatine kinase, 8 mM phosphocreatine and 1 mM DTT of final concentrations), 25 

µg of Hela cytosol and HB to a total reaction volume of 50 µL. For the 

Saccharomyces cerevisiae cytosol reactions, a standard reaction (50 µL) contained 

15 µL membranes, 6 µL ATP regeneration system, 70 µg of Saccharomyces 

cerevisiae cytosol and HB to a total reaction volume of 50 µL. For the Drosophila 

melanogaster cytosol reactions, a standard reaction (50 µL) contained 15 µL 

membranes, 6 µL ATP regeneration system, 25 µg of Drosophila melanogaster (fly) 

cytosol, and HB to a total reaction volume of 50 µL.  

All experimental reactions were incubated for 3 hours at 37°C, followed by 

trypsin-treatment (6 µl of 0.27 µg/µL trypsin; 30 min at 4°C). Experimental reactions 

were centrifuged (20,000 x g; 30 min at 4°C) while control reactions remained on ice. 

Control reactions were resuspended in sample buffer for SDS-PAGE. For 

experimental reactions, supernatant was aspirated and pellet was resuspended in 

sample buffer for biochemical examination by SDS-PAGE. Resultant blots were 

probed with an antibody that recognizes amino acids1190-1210 (C-terminal epitope) 

of EGFR (1:200 dilution in 5% nonfat milk with PBS, overnight at 4 °C).  
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To examine the dependence of cargo sorting on the presence of ESCRT 

proteins, yeast cytosol was prepared from strains listed in Table 1 and used in place 

of wild-type yeast cytosol. All reactions were normalized to wild-type controls. For 

the FGFR4 experiments, transfected cells were serum-starved in media containing 

cycloheximide (30 µg/mL) for 2 hours and stimulated with bFGF (50 ng/mL) for 5 

hours. Following the bFGF stimulation, subsequent experimental conditions were as 

described for EGFR. The resulting blots were probed with an antibody that 

recognized the intracellular V5-tag of FGFR4 (1:5000 dilution in 5% nonfat milk with 

PBS-Tween, overnight at 4°C). For the AT1R experiments, transfected cells were 

starved in serum-free media (2 hours at 37°C) and stimulated with angiotensin II (1 

mg/mL) (30 minutes at 37°C). Following the angiotensin II stimulation, subsequent 

experimental conditions were as described for EGFR. The blots were probed with an 

antibody that recognized the intracellular Myc-tag of AT1R (1:500 dilution in 5% 

nonfat milk with PBS-Tween, overnight at 4°C). For the Kv4 experiments, 

transfected cells were not serum-starved or stimulated. Instead, transfected cells 

were collected and partially purified endosomes isolated.  Experimental conditions 

were then performed as described for EGFR experiments. The blots were probed 

with an antibody that recognizes the V5-tag that was fused to the COOH-terminus of 

the Kv4 clone used in these studies (1:5000 dilution in 5% nonfat milk with PBS-

Tween, overnight at 4°C). For the EGFRK721A experiments, transfected cells were 

starved in serum-free media (2 hours at 37°C) and stimulated with EGF (100 ng/mL) 

(10 minutes at 37°C). Experimental conditions were then performed as described for 

EGFR experiments. The blots were probed with an antibody that recognized the 
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intracellular Myc-tag that was fused to the COOH-terminus of the EGFRK721A clone 

used in these studies EGFRK721A (1:500 dilution in 5% nonfat milk with PBS-Tween, 

overnight at 4°C). For the EGFRvIII experiments, HeLa transfected cells, or U87 cells 

stably expressing EGFRvIII, were serum-starved (2 hours at 37°C) and stimulated 

with EGF (100 ng/mL) (10 minutes at 37°C). Experimental conditions were then 

performed as described for EGFR. The resulting blots were probed with an antibody 

that recognized the intracellular V5-tag that was fused to the COOH-terminus of the 

EGFRvIII clone used in these studies (1:5000 dilution in 5% nonfat milk with PBS-

Tween, overnight at 4°C). 

 

Isolation of outwardly budding vesicles from cell-free reactions—Experimental 

conditions were performed as in EGFR inward budding experiments described 

above, including 70 µg of Saccharomyces cerevisiae, ATP, and the 3-hour reaction 

incubation. Following the 3-hour incubation, experimental reactions were centrifuged 

(20,000 x g for 30 min at 4°C). The supernatant was collected and further 

centrifuged (150,000 x g for 1 hour at 4°C). After ultracentrifugation, the resulting 

pellet was either resuspended in sample buffer for SDS-PAGE, or subjected to 

Nanosight Tracking Analysis.  

 

Pharmacological treatments—To examine the role of cholesterol in EGFR sorting, 

crude endosomal membranes were treated with 15 mM MβCD for 15 min at 37°C. 

Treated endosomal membranes were collected by centrifugation (15 min at 1500 x 

G) and added into inward budding reactions (described above). Soluble cholesterol 
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was added (50 µg/mL) to some reactions that also contained MβCD-treated 

membranes, and incubated as described. For all drug experiments, membranes 

were collected after 3 hours of incubation in assay, and analyzed as described. The 

effect of monensin, a sodium ionophore that interferes with pH changes in the 

endosome {Ju et al, 2004; Mesbah et al, 2011; Mora-Montes et al, 2008}, was 

examined by adding either 10 µM or 60 µM monensin into experimental reactions. 

Control reactions were performed using equal concentrations of the monensin 

diluent, methanol. 

 

2.5. Nanosight Tracking Analysis 

NanoSight Tracking Analysis (NTA)— NTA measurements were performed on 

membranes isolated from cell-free reactions in which the reaction supernatant had 

been centrifuged to isolate outwardly budded vesicles using a NanoSight NS300 

instrument following the manufacturer’s instructions. NTA is performed by measuring 

the rate of Brownian motion of particles in a low volume light scattering system 

(NanoSight Ltd., Amesbury, United Kingdom). Results are presented as mean size 

of vesicles (x-axis) and concentration of particles per mL of solution (y-axis). 

Samples were examined in triplicate. 

 

2.6. Electron Microscopy 

Electron Microscopy (EM)— Vesicle size was visualized using TEM on membranes 

isolated from supernatant obtained from MVB sorting reactions. 5 µL of vesicles 

were placed on glow discharged carbon formvar grids (TedPella) for approximately 5 
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min. Grids were rinsed 3x with 5 µL of water, using blotting paper to wick away 

excess liquid between rinses. Finally, grids were rinsed quickly with 50% mixture of 

NanoW (Nanoprobes) stain, wicked, and then stained for approximately 30 min 

before wicking excess liquid and allowing grids to dry for at least 30 min prior to 

imaging. Micrographs were collected on a JOEL 1400 electron microscope operated 

at 120 kV using a Gatan ultrascan camera.  

 

2.7. Mass Spectrometry 

Mass spectrometry (MS)— Membranes isolated from supernatant obtained from 

MVB sorting reactions were isolated for biochemical examination by SDS-PAGE as 

described above.  Following gel electrophoresis, gels were stained with coomassie 

blue.  Gel slices were submitted to the Taplin Mass Spectrometry Facility at Harvard 

Medical School for analysis.  

 

2.8. OptiPrep Gradient 

OptiPrep Gradient— After HeLa cells were serum-starved and stimulated (100 

ng/mL EGF; 20 min at 37°C), post-nuclear supernatant was isolated and loaded on 

top of a continuous Opti-prep gradient (Sigma, 10-20%) and centrifuged (150,000 x 

g for 10 hours at 4°C) in a swinging bucket rotor (TLS 55, Beckman). Fractions (200 

µL) were collected and diluted in of HB (200 µL) followed by centrifugation (150,000 

x g for 1 hour at 4°C). The resulting pellet was resuspended in sample buffer for 

biochemical examination. If the fractions were to be used in the cell-free assay, 

fractions 3 & 4 containing late endosomal membranes were collected and fractions 8 



	 37	

& 9 containing early endosomal membranes were collected and diluted in HB (400 

uL) followed by centrifugation (150,000 x g for 1 hour at 4°C). The resulting pellets 

were resuspended in HB and membranes were used in cell-free reactions.  

 

2.9. Generation of yeast double knock out strains 

Generation of Saccharomyces cerevisiae heterozygous double knock out strains—  

Conversion of snf7::KANMX6 and did4::KANMX6 strains: snf7::KANMX6  

(Dharmacon:  MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 snf7Δ::KANMX6) and 

did4::KANMX6 (Dharmacon:  MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 

did4Δ::KANMX6) strains were transformed as previously described (Gietz and 

Woods) with SalI-ClaI digested plasmid pAG32 (HPHMX6) (Goldstein and 

McCusker, 1999). Briefly, cells were grown in 5 mL of YPD and incubated (overnight 

at 30°C). The next day, cells were re-inoculated in 20 mL of YPD at a starting OD600 

of 0.2. Once cells had reached a final OD600 of 0.8, they were collected (1000 x g for 

5 minutes) and washed in 500 µL of 100 mM LiAc. The cell suspension was then 

collected (1000 x g for 5 minutes) and resuspended in transformation solution (50% 

PEG, 0.1M LiAc, 10 µg carrier DNA, ddH2O) and 1 µg of digested pAG32. Cells 

were incubated for 30 minutes at 30 °C followed by incubation at 42 °C for 20 

minutes. Next, cells were collected (3300 x g for 15 seconds), resuspended in 100 

µL of ddH20 and plated on YPD plates containing 500 µg/mL Hygromycin B. 

Tranformants were selected based on sensitivity to G418 and resistance to 

Hygromycin B. The resulting strains were yMG1 and yMG2 (see Table 1). 
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Creation of heterozygous double knock out strains: To create the snf7 vps20 and 

did4 vps24 strains, the yMG1 and yMG2 strains were crossed with the vsp20Δ and 

vps24Δ strains, respectively. G418R Hygromycin BR heterozygous diploid knock out 

strains were selected for further studies. 

 

2.10. Statistical Analysis 

Statistical Analysis— Statistical significance was determined using either a Paired t-

test or one-way ANOVA for independent samples and post-hoc analysis (Tukey 

test). All data were tested for normality using the Shapiro-Wilk test prior to analysis. 

A p-value of <0.05 was considered statistically significant with an n=>3. 
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Chapter 3. Mechanisms of Inward Budding 

Rationale: Membrane proteins that move from the limiting membrane into internal 

vesicles of MVBs may be degraded upon MVB-lysosome fusion. The process of 

protein movement into internal vesicles is thought to involve protein aggregation on 

the membrane to sort the proteins to be internalized into a domain of the membrane, 

followed by invagination of that part of the membrane and fission of the invaginated 

membrane resulting in formation of an internal vesicle. Using our cell free assay 

(described in Chapter 1 and Figure 1.6), I can measure internal vesicle formation 

and movement of cargo proteins from the limiting endosomal membrane into internal 

vesicles.  

3.1. Saccharomyces cerevisiae (yeast) and Drosophila melanogaster (fly) cytosol 

are sufficient to support the mammalian endosomal sorting of the EGFR. 

To determine whether yeast or fly cytosol could substitute for cytosol obtained 

from mammalian sources in our cell-free assay (Fig. 1.3) (Sirisaengtaksin et al., 

2014; Sun et al., 2010), reactions were incubated with mammalian, yeast, or fly 

cytosol. The efficiency of the cell-free reactions as judged by the EGFR protected 

from protease cleavage after the cell-free reactions using yeast and fly cytosol was 

24+/-7% and 32+/-1%, respectively, compared to what I observed with mammalian 

cytosol, 48+/-9% (Fig. 3.1a). These data suggest that while quantitative differences 

exist between the mammalian, yeast, and fly systems, all three systems contain 

essential proteins required for the inward budding event.  
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Figure 3.1 Cytosol isolated from HeLa cells, Saccharomyces cerevisiae, 

and Drosophila melanogaster support the protease protection of EGFR. 

Partially purified HeLa endosomal membranes containing EGFR were isolated. (a-c) 

Endosomal membranes (5 µL, lane 1) and endosomal membranes (5 µL) digested 

with trypsin to remove the C-terminal epitope of the receptor (lane 2), as well as 

partially purified HeLa endosomal membranes (15 µL) that had been incubated in 

reactions containing ATP and cytosol derived from: HeLa cells (25 µg, a), 

Saccharomyces cerevisiae (70 µg, b), or Drosophila melanogaster (25 µg, c), at 

37°C prior to trypsin treatment (lane 3) are shown. Data represents the mean +/- 

S.E. (n=3) normalized to membrane control.  
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3.2 The protease protection of EGFR, or inward budding, is dependent on ESCRT 

proteins. 

To examine whether ESCRT proteins (Bache et al., 2003; Futter et al., 1996; 

Hurley and Emr, 2006; Katzmann et al.; Lemmon and Traub; Saksena et al., 2007; 

Sun et al., 2010) are required for inward budding, measured by protease protection 

of the EGFR intracellular epitope, cytosol derived from yeast strains deleted of 

ESCRT proteins (Table 1) was used in cell-free reactions in place of wild-type yeast 

cytosol. Reactions containing cytosol derived from ESCRT-0 deficient yeast strains 

(vps27Δ, hse1Δ) decreased EGFR epitope protease protection (Fig. 3.2a). If I added 

recombinant mammalian ESCRT-0 homologs (Hrs and STAM, 8µg) into reactions 

that include cytosol isolated from vps27Δ or hse1Δ strains, the inhibition of inward 

budding was rescued (Fig. 3.2b, 3.2c). Thus, deletion of individual ESCRT-0 

components decreased inward budding of EGFR into internal endosomal vesicles, 

an effect that was rescued by addition of exogenous orthologous mammalian 

recombinant proteins. 

 Deletion of ESCRT-I, ESCRT-II, or ESCRT-III decrease MVB internal vesicle 

formation and result in impaired MVB biogenesis (Bilodeau et al., 2002; Hurley and 

Hanson, 2010; Schmidt and Teis).  To determine whether we are able to reproduce 

the ESCRT-dependence of inward endosomal budding and cargo sorting in our 

assay, cytosol isolated from yeast strains deleted of ESCRT genes (Table 1) was 

used in place of cytosol isolated from the parental strain. Cytosol derived from 

ESCRT-I deficient yeast strains (vps23Δ, vps28Δ, vps37Δ, or mvb12Δ) or ESCRT-II 

deficient yeast strains (vps36Δ, snf8Δ, vps25Δ) significantly decreased the protease 
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protection of the EGFR epitope (Fig. 3.3a and Fig. 3.3b respectively), suggesting 

that ESCRT-I and ESCRT-II components are required for inward endosomal 

membrane budding. 

I observed that protease protection of the EGFR is dependent on Vps4 as 

well as the ESCRT-III components Snf7 and Vps24 (Fig. 3.3c, lanes 4, 5, 7). 

However, cytosol derived from yeast strains deficient in the ESCRT-III genes, 

VPS20 and DID4, did not significantly impair protease protection of the EGFR (Fig. 

3.3c, lanes 3, 6). Haplo-insufficient yeast strains of the two major ESCRT-III 

complexes (Snf7/Vps20 and Vps24/DID4, yMG3 and yMG4, respectively) were 

generated to determine whether the components of these complexes might have 

overlapping or redundant roles (Table 1). Cytosol derived from yMG3 and yMG4 

yeast strains significantly decreased the protease protection of the EGFR epitope 

compared to cytosol isolated from parental strains (Fig. 3.3c, lanes 8-9 compared to 

lane 1). However, the effect of yMG3 (47+/-5%) compared to the Snf7 single deletion 

strains (44+/-12%), or yMG4 (55+/-1%) compared to the Vps24 single deletion 

strains (51+/-12%), on the protease protection of the EGFR epitope was not 

significantly different (Fig. 3.3c, Lane 8 compared to lane 4, and lane 9 compared to 

lane 5). The cytosol isolated from ESCRT-III double deletion strains appears 

additive, suggesting that Vps20 and Did4 are not required for inward budding and 

that Snf7 and Vps24 are sufficient to support inward budding of the EGFR.  

. 
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Name Genotype Source or 
Reference 

vps27Δ MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 
vps27::KANMX6 Dharmacon 

hse1Δ MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 
hse::KANMX6 Dharmacon 

vps23Δ MATa his3Δ1 leu2Δ0 ura3Δ0 lys2Δ0 
vps23::KANMX6 Dharmacon 

vps28Δ MATa his3Δ1 leu2Δ0 ura3Δ0 lys2Δ0 
vps28::KANMX6 Dharmacon 

vps37Δ MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 
vps37::KANMX6 Dharmacon 

mvb12aΔ MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 
mvb12a::KANMX6 Dharmacon 

vps36Δ MATa his3Δ1 leu2Δ0 ura3Δ0 lys2Δ0 
vps36::KANMX6 Dharmacon 

snf8Δ MATa his3Δ1 leu2Δ0 ura3Δ0 lys2Δ0 
snf8::KANMX6 Dharmacon 

vps25Δ MATa his3Δ1 leu2Δ0 ura3Δ0 lys2Δ0 
vps25::KANMX6 Dharmacon 

snf7Δ MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 
snf7::KANMX6 Dharmacon 

did4Δ MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 
did4::KANMX6 Dharmacon 

vps20Δ MATa his3Δ1 leu2Δ0 ura3Δ0 lys2Δ0 
vps20::KANMX6 Dharmacon 

vps24Δ MATa his3Δ1 leu2Δ0 ura3Δ0 lys2Δ0 
vps24::KANMX6 Dharmacon 

yMG1 MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 
snf7::HPHMX6 This study 

yMG2 MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 
did4::HPHMX6 This study 

yMG3 
MATa/MATα his3Δ1/ his3Δ1 leu2Δ0/leu2Δ0  
ura3Δ0/ura3Δ0 MET15/met15Δ0 LYS2/lys2Δ0 
SNF7/snf7::HPHMX6 VPS20/vps20::KANMX6 

This study 

yMG4 
MATa/MATα his3Δ1/ his3Δ1 leu2Δ0/leu2Δ0   
ura3Δ0/ura3Δ0 MET15/met15Δ0 LYS2/lys2Δ0 
DID4/did4::HPHMX6 VPS24/vps24::KANMX6 

This study 

 

Table 1: Saccharomyces cerevisiae strains used in this study. Yeast 

strains were kindly provided by Dr. Kevin Morano but are commercially available.  

Yeast strains yMG1-yMG4 were generated for use in this study.  
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Figure 3.2. ESCRT-0 proteins are required for inward budding of EGFR. 

Partially purified HeLa endosomal membranes were isolated as described in Fig. 

1.6. a) Reactions incubated with cytosol isolated from ESCRT-0 deficient yeast 

strains (vps27Δ, hse1Δ) significantly decrease protease protection of EGFR 

compared to cytosol isolated from a parental strain (Lane 2 and 3 compared to lane 

1). b) Recombinant human Hrs rescues the inhibition of EGFR protease protection 

(b, lane 3). c) Recombinant human STAM rescues the inhibition of EGFR protease 

protection (c, lane 3). Data represents the mean +/- S.E (n=3) normalized to the 

wild-type control. *Denotes P<0.05.  
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Figure 3.3: ESCRT proteins are required for inward budding of EGFR. Partially 

purified HeLa endosomal membranes were isolated as described in Fig. 1.6. a) 

Reactions incubated with cytosol isolated from ESCRT-I deficient yeast strains 

(vps23Δ, vps28Δ, vps37Δ, mvb12Δ) significantly inhibit EGFR protease protection 

(lanes 2-5) compared to cytosol isolated from a parental strain (lane 1). b) Reactions 

incubated with cytosol isolated from ESCRT-II deficient yeast strains (vps25Δ, 

snf8Δ, vps36Δ) significantly inhibit EGFR protease protection (lanes 2-4) compared 

to cytosol isolated from a parental strain (lane 1). c) Reactions incubated with 

cytosol isolated from yeast strains deleted of the ESCRT-III genes (snf7Δ, vps24Δ) 

or the AAA ATPase VPS4 gene (vps4Δ) significantly inhibit EGFR protease 
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protection (lanes 4, 5, 7), compared to cytosol isolated from a parental strain (lane 

1). Reactions incubated with cytosol isolated from vps20Δ or did4Δ strains prior to 

trypsin treatment, did not alter EGFR protease protection (lane 3, 6), compared to 

cytosol isolated from a parental strain (lane 1). Cytosol isolated from the yeast strain 

deficient of HSE1 was used as a control in these experiments (lane 2). Reactions 

incubated with cytosol isolated from ESCRT-III haplo-insufficient yeast strains 

(yMG3 and yMG4) significantly inhibit EGFR protease protection compared to 

cytosol isolated from a parental strain (lanes 8-9). However, the EGFR protected 

was not significantly different from the single deletion strains (lane 4-5). Data 

represents the mean +/- S.E (n=3) normalized to the wild-type control. *Denotes 

P<0.05 (t-test for a, d-f; Anova for b,c).   
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3.3. Vps1 and Vps21 do not affect EGFR sorting. 

Control experiments were performed using cytosol derived from yeast strains 

in which non-ESCRT cytosolic proteins were deleted. Cytosol from yeast strains in 

which Vps1, a dynamin-like yeast homolog, or Vps21, the yeast homolog of Rab5, 

were deleted and were examined in our cell-free assay. Neither Vps1 nor Vps21 

have been implicated in MVB biogenesis and cytosol from yeast strains in which 

Vps1 or Vps21 were deleted resulted in no significant alteration in protease 

protection of the EGFR (Fig 3.4).  
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Figure 3.4: Deletion of VPS1 and VPS21 genes does not impair EGFR sorting. 

Partially purified HeLa endosomal membranes were isolated as described in Fig. 

1.6.  a) Endosomes incubated with cytosol derived from yeast strains that are 

deficient of the genes VPS1 or VPS21 did not alter the protease protection of EGFR 

compared to cytosol isolated from a parental strain (lanes 2 and 3 compared to lane 

1). Cytosol isolated from hse1Δ strains was used as a control in these experiments 

(lane 4). Data represents the mean +/- S.E (n=3) normalized to control. *denotes p < 

0.05. 
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3.4. Cholesterol is required for inward budding of EGFR at MVBs. 

Cholesterol is enriched in lipid rafts and lipid rafts have been implicated in 

various membrane budding events (Babst, 2011; Bissig and Gruenberg, 2013). 

Moreover, cholesterol is concentrated on internal MVB vesicles (Mobius et al., 2003) 

suggesting that cholesterol may play a role in inward budding events at the MVB. To 

determine whether cholesterol is required for MVB sorting of transmembrane cargo, 

endosomes were depleted of cholesterol using Methly-β CycloDextrin (MβCD).  

Endosomal membranes treated with 15 mM MβCD had significantly decreased 

sorting of EGFR into internal vesicles compared with vehicle treated cells (Fig. 3.5, 

lane 2 compared to lane 1). The inhibition of EGFR protease protection in MβCD-

treated endosomes was rescued by the addition of soluble cholesterol (Fig. 3.5, lane 

3), whereas soluble cholesterol had no effect on EGFR protease protection (Fig 3.5, 

lane 4). These data suggest that cholesterol is required for protease protection of 

EGFR and imply that inward vesicle budding is dependent on the availability of 

cholesterol in the endosomal membrane. 
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Figure 3.5: Cholesterol is required for EGFR sorting at the MVB. Partially 

purified HeLa endosomal membranes were isolated as described in Fig. 1.6. 

Endosomal treatment with MβCD decreased protease protection of EGFR (lanes 2) 

compared to vehicle control (lane 1). Soluble cholesterol rescues the inhibition of 

EGFR protease protection (lane 3).  Soluble cholesterol had no effect on its own 

(lane 4). Data represents the mean +/- S.E (n=3) normalized to the control. *denotes 

P<0.05. These experiments were performed by Sahily Reyes and used with 

permission. 
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3.5. Inward budding of EGFR is dependent on pH at MVBs. 

Previous studies from our laboratory reported that when the ionophore 

nigericin was incubated in cell-free reactions protease protection of the EGFR was 

inhibited, suggesting that intra-endosomal pH is an important factor in inward 

budding (Sun et al., 2010). We examined whether the ionophore monensin would 

inhibit protease protection of the EGFR. Partially purified endosomes were isolated 

and incubated with either vehicle or Monensin (10 µM or 60 µM), ATP and cytosol 

for 3 hours at 37°C. Significant inhibition of EGFR protease protection was observed 

in reactions incubated with 60 µM Monensin (Fig. 3.6, lane 3 compared to lane 1 and 

lane 4) compared to vehicle control. A lower concentration of Monensin, 10 µM, had 

no significant effect on EGFR sorting (lane 2 compared to lane 1 and lane 4). These 

data suggest that intra-endosomal pH regulates endosomal sorting. 
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Figure 3.6.  EGFR sorting into internal vesicles is dependent on pH. Partially 

purified HeLa endosomal membranes were isolated as described in Fig. 1.6. 

Endosomes incubated with 60 µM Monensin decreased protease protection of 

EGFR (lane 3) compared to vehicle controls (lane 1 and 4). Endosomes incubated 

with 10 µM Monensin (lane 2) had no effect on protease protection of EGFR 

compared to vehicle controls (lane 1 and 4). Data represents the mean +/- S.E (n=3) 

normalized to the control. *denotes P<0.05. These experiments were performed by  

Sahily Reyes and used with permission.  
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Chapter 4. Different types of cargo proteins are 

internalized into MVBs in an ESCRT-dependent manner 

 
Rationale: For the majority of my experiments, EGFR was used as a proxy for 

transmembrane cargo proteins that are internalized and pass through the endocytic 

pathway prior to degradation in the lysosome. I considered the possibility that our 

reaction conditions are specific for EGFR movement from the endosomal membrane 

but may not reflect a variety of membrane proteins thought to transit this pathway en 

route to lysosomes. To determine whether our assay may be generally applicable to 

understanding trafficking of membrane proteins in the late endocytic pathway I 

examined the movement of other types of membrane proteins from the endosomal 

membrane. 

 

4.1. FGFR4 is sorted into MVBs in an ESCRT-dependent manner. 

To determine whether other single pass transmembrane proteins can be 

examined using our approach, we determined whether protease protection of the 

Fibroblast Growth Factor Receptor 4 (FGFR4) would occur during our cell-free 

reaction. I observed that under our assay conditions, the intracellular epitope of 

FGFR4 was protected from protease cleavage, suggesting that during the cell-free 

reactions FGFR4 budded inwardly into internal vesicles of MVBs (Fig. 4.1a). Cytosol 

derived from a yeast strain deficient in the ESCRT-0 component, HSE1, significantly 

decreased the FGFR4 protease protection compared to reactions containing 

parental yeast cytosol (Fig. 4.1b, lane 1). These data suggest that FGFR4 
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undergoes ESCRT-dependent transport into MVB internal vesicles and imply that 

FGFR4 follows the canonical MVB degradation pathway to the lysosome.   

 

 

 

Figure 4.1. FGFR4 is sorted into MVBs in an ESCRT-dependent manner. HeLa 

cells were transfected with an FGFR4 construct containing a C-terminal V5 epitope 

tag. Partially purified HeLa endosomal membranes were isolated as described in 

Fig. 1.6.  a) FGFR4 containing endosomes incubated with mammalian cytosol (25 

µg) result in the protease protection of the FGFR4. b) Endosomes incubated with 

cytosol isolated from hse1Δ strains significantly decrease protease protection of 

FGFR4 (lane 2) compared to cytosol isolated from a parental strain (lane 1). Data 

represents the mean +/- S.E (n=3) normalized to the control. *denotes P<0.05. 

 

 
  



	 55	

4.2. AT1R is sorted into MVBs in an ESCRT-dependent manner. 

I next examined whether the endosomal internalization of a G-protein coupled 

receptor, the Angiotensin II Type 1 Receptor (AT1R) could be measured in the 

protease protection assay. AT1R is thought to enter MVBs prior to lysosomal 

degradation (Hunyady et al., 2002). An intracellular epitope of AT1R was protected 

from protease cleavage during our cell-free reaction suggesting that during the 

reaction the AT1R buds inwardly into internal vesicles of MVBs (Fig. 4.2a). Cytosol 

derived from a yeast strain deficient in HSE1 significantly decreased protease 

protection of the AT1R compared to reactions containing parental yeast cytosol (Fig. 

4.2b). These data suggest that the AT1R requires ESCRT protein sorting on 

endosomal membranes and can be internalized into MVB luminal vesicles.  
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Figure 4.2. AT1R is sorted into MVBs in an ESCRT-dependent manner. HeLa 

cells were transfected with an AT1R construct containing a C-terminal myc epitope 

tag. Partially purified HeLa endosomal membranes were isolated as described in 

Fig. 1.6.a) AT1R containing endosomes incubated with mammalian cytosol (25 µg) 

result in the protease protection of the AT1R. b) Endosomes incubated with cytosol 

isolated from hse1Δ strains significantly decrease protease protection of AT1R (lane 

2) compared to cytosol isolated from a parental strain (lane 1). Data represents the 

mean +/- S.E (n=3) normalized to the control. *denotes p < 0.05 (t-test). These 

experiments were performed in part by Kimiya Memarzadeh and used with 

permission. 
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4.3. Kv4 is sorted into MVBs. 

 Ion channels are another category of membrane protein that signal when 

present on the plasma membrane and are degraded in the lysosome (Abriel and 

Staub, 2005; Staub et al., 1997). To examine the endosomal trafficking of the 

neuronal A-type potassium channel Kv4 (Ping et al., 2015) SH-SY5Y neuronal cells 

were transfected with V5 epitope-tagged Kv4.  The intracellular epitope of Kv4 is 

protected from protease cleavage during the cell-free reaction, suggesting that Kv4 

can bud inwardly into MVB internal vesicles (Fig. 4.3).  These data suggest that the 

Kv4 channel transits through the MVB during its endosomal trafficking route and that 

endosomal trafficking of multiple categories of membrane proteins can be examined 

under cell-free conditions. 
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Figure 4.3. Kv4 is sorted into MVBs. SH-SY5Y cells were transfected with Kv4 

constructs containing a C-terminal V5 epitope tag. Partially purified SH-SY5Y 

endosomal membranes were isolated as described in Fig. 1.6. Kv4 containing 

endosomes incubated with mammalian cytosol (25 µg) result in the protease 

protection of the Kv4. Data represents the mean +/- S.E (n=3) normalized to the 

control. 
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Chapter 5. Characterization of outwardly budded vesicles 

from MVBs 

 

Rationale: Cargo that is not sorted into regions of the endosomal membrane that 

invaginate and bud inwardly forming internal MVB vesicles can remain on the 

limiting endosomal membrane for incorporation into the lysosomal membrane upon 

MVB-lysosome fusion.  Alternatively, membrane proteins may bud outwardly on 

vesicles that would enable transport to other cellular compartments, a mechanism 

that could limit cargo accumulation on the MVB limiting membrane (Adell and Teis; 

Babst, 2011; Baumgart et al., 2007; Hurley and Hanson, 2010), and ensure 

consistent MVB size (Babst, 2011; Hurley and Hanson, 2010). However, these 

hypothesized transport vesicles have never been isolated and therefore 

requirements for this budding reaction are unknown. I modified our cell-free assay to 

attempt to isolate vesicles that may bud outwardly from MVBs to characterize these 

vesicles and elucidate the requirements for this budding step. 

5.1. Isolation and characterization of vesicles that bud outwardly from the MVB 

compartment. 

To isolate the outwardly budded vesicles, partially purified endosomes were 

isolated as previously described in Figure 1.6 (Gireud et al., 2015; Sun et al., 2010; 

Sirisaengtaksin et al., 2014) and incubated with ATP and Saccharomyces cerevisiae 

(70 µg) cytosol for 3 hours at 37°C. Following the 3-hour incubation, experimental 

reactions were centrifuged and the resulting supernatant was collected for additional 
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high speed centrifugation to obtain outwardly budded vesicles. I isolated vesicles 

that are liberated from the endosomal membrane during our cell-free reactions (Fig. 

5.1). The outward budding of vesicles in our reactions is dependent on cytosolic 

factors (Fig. 5.1c, lane 2 compared to lane 1).  I characterized this vesicle population 

using light scattering and Brownian motion analysis (Nanosight Tracking Analysis), 

electron microscopy, immunoblotting and mass spectrometry. NTA analysis revealed 

that vesicles recovered from cell-free reaction supernatant were found in a major 

peak with a hydrodynamic diameter of 118+/-13.6 nm (Fig. 5.1a). When the isolated 

vesicles were visualized using electron microscopy they were approximately 100 nm 

in size (Fig. 5.1b). In addition, the isolated vesicles were immunoreactive for EGFR 

(Fig 5.1c). The percentage of total EGFR recovered in the outwardly budded 

vesicles is 6.5+/-1.5% (Fig. 5.1c) compared to 39+/-7% of total EGFR that is 

protected from protease cleavage (inwardly budded) (Fig. 5.1c). The intracellular 

epitope of the EGFR was cleaved from isolated outwardly budded vesicles by trypsin 

incubation (Fig. 5.1d, lane 2 compared to lane 1), confirming that the tail domain of 

the EGFR is present on the outside of isolated vesicles as would be expected from 

vesicles that have budded outwardly from the endosomal limiting membrane. Mass 

Spectrometry analysis of proteins found on the isolated outwardly budded vesicles 

revealed proteins associated with these vesicles that have previously been 

implicated in protein trafficking (see Table 2), including adaptor proteins, Rab 

proteins, coat proteins, retromer proteins, SNAREs, sorting nexins, and large 

GTPases (see Table 2). My studies are the first to isolate and identify the cargo 
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constituents of the transport vesicles from the MVB, and will enable identification of 

the molecular mechanisms regulating outward budding from the MVB. 

5.2. A subset of the outwardly budding vesicles may be targeted to the plasma 

membrane.   

An EGFR mutant lacking kinase activity, EGFRK721A, is internalized from the 

plasma membrane and is transported to the limiting membranes of MVBs prior to 

budding outwardly into vesicles, some of which reach the plasma membrane (Felder 

et al., 1990). I examined whether EGFRK721A is found in outwardly budded vesicles 

isolated from our cell-free assay. I found that 5+/-1.3% of the total EGFR K721A is 

recovered in the isolated vesicles (Fig. 5.2) and 19+/-4.8% of total EGFR K721A is 

protected from trypsin digestion (inwardly budded) (Fig. 5.2). These data suggest 

that some of the outwardly budding vesicles I isolate from the cell-free reactions may 

be targeted to the plasma membrane. 

5.3.  Differential amounts of EGF do not alter EGFR trafficking. 

The trafficking of EGFR can vary under different ligand stimulation conditions 

(Harris et al., 2003; Henriksen et al., 2013; Sigismund et al., 2008; Wilson et al., 

2012). For example, low EGF stimulation results in internalization through clathrin-

mediated endocytosis and decreased degradation of EGFR whereas high EGF 

stimulation results in internalization through clathrin-mediated endocytosis or 

clathrin-independent endocytosis and enhances EGFR degradation (Sigismund et 

al., 2008). I examined whether the amount of EGFR found in inwardly and outwardly 

budded vesicles was different under different stimulation conditions (Fig. 5.3). When 

stimulated with low EGF concentrations (2ng/ml) conditions, 2+/-0.2% of EGFR is 
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found in the outwardly budded vesicles (Fig. 5.3, lane 1) and 20+/-6.3% of EGFR is 

protected from trypsin digestion (inwardly budding) (Fig. 5.3, lane 3). Following high 

EGF stimulation (100ng) conditions, approximately 6+/-1.7% of EGFR is found in the 

outwardly budded vesicles (lane 2) and 35+/-4.3% of EGFR is protected from 

protease cleavage (inwardly budded) (lane 4). While there was a trend towards an 

increase in the outward budding:inward budding ratio, there is no significant 

difference between EGFR disposition under low or high EGF stimulation conditions 

(9.7% and 16.2%), respectively. These data suggest that the trafficking of EGFR at 

the MVB is similar under different stimulation conditions and perhaps the differences 

in internalization of EGFR may affect EGFR trafficking during early parts of the 

endocytic pathway. 
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Figure 5.1: Isolation and characterization of outwardly budded vesicles from 

endosomal membranes. Outwardly budded vesicles were isolated as described in 

Fig. 1.6. a) Nanosight tracking analysis revealed the vesicles were 118+/-13.6 nm in 

size. b) Vesicles visualized using electron microscopy were approximately 100 nm in 

size. Scale bar = 100 nm. c) The amount of EGFR found in the budded vesicles is 

6.5+/-1.5% of the total added into the reactions (c, lane 1). The percentage of EGFR 

that is protease protected (internalized) is 39+/-7% (c, lane 3). Both outward budding 
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and inward budding are dependent on cytosolic components (c, lane 2 compared to 

lane 1, and lane 4 compared to lane 3). d) The intracellular epitope of the EGFR was 

cleaved from isolated outwardly budded vesicles by trypsin incubation. Data 

represents the mean +/- S.E (n=3) normalized to the control. *denotes P<0.05.  NTA 

analysis was performed in part by Shinji Yamashita and used with permission. The 

EM experiments were performed in part by Madeline Farley and used with 

permission. 
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Protein 
Class Gene 

symbol Protein 
Uniqu

e Total Reference 

Molecular 
weight 
(kDa) Average 

Adaptor 
Proteins 

AP1B1 

Adaptor Related 
Protein Complex 1 
Beta 1 Subunit 11 11 

Q10567_AP1
B1_HUMAN 104.57 2.8713 

AP1G1 

Adaptor Related 
Protein Complex 1 
Gamma 1 Subunit 3 3 

O43747_AP1
G1_HUMAN 91.29 2.7409 

AP1M1 

Adaptor Related 
Protein Complex 1 
Mu 1 Subunit 2 2 

Q9BXS5_AP
1M1_HUMAN 48.56 2.7235 

AP1S1 

Adaptor Related 
Protein Complex 1 
Sigma 1 Subunit 2 2 

P61966_AP1
S1_HUMAN 18.72 3.6144 

AP1S2 

Adaptor Related 
Protein Complex 1 
Sigma 2 Subunit 1 1 

P56377_AP1
S2_HUMAN 18.6 4.4323 

AP2A1 

Adaptor Related 
Protein Complex 2 
Alpha 1 Subunit 12 12 

O95782_AP2
A1_HUMAN 107.48 2.6643 

AP2A2 

Adaptor Related 
Protein Complex 2 
Alpha 2 Subunit 2 2 

O94973_AP2
A2_HUMAN 103.89 3.2007 

AP2B1 

Adaptor Related 
Protein Complex 2 
Beta 1 Subunit 8 8 

P63010_AP2
B1_HUMAN 104.49 2.9398 

AP2M1 

Adaptor Related 
Protein Complex 2 
Mu 1 Subunit 4 4 

 
Q96CW1_AP
2M1_HUMAN 49.62 2.9861 

 ARF1 
ADP Ribosylation 
Factor 1 4 4 

P84077_ARF
1_HUMAN 20.68 2.413 

ARF 
Proteins ARF4 

ADP Ribosylation 
Factor 4 2 2 

P18085_ARF
4_HUMAN 20.5 2.5135 

 ARF5 
ADP Ribosylation 
Factor 5 2 2 

P84085_ARF
5_HUMAN 20.52 2.8499 

Rab 
Proteins 

RAB1A 

RAB1A, Member 
RAS Oncogene 
Family 3 3 

P62820_RAB
1A_HUMAN 22.66 3.3149 

RAB5A 

RAB5A, Member 
RAS Oncogene 
Family 2 2 

P20339_RAB
5A_HUMAN 23.64 2.7698 

RAB5C 

RAB5C, Member 
RAS Oncogene 
Family 2 2 

P51148_RAB
5C_HUMAN 23.47 2.7439 

RAB6A 

RAB6A, Member 
RAS Oncogene 
Family 1 1 

P20340_RAB
6A_HUMAN 23.58 2.7129 

RAB7A 

RAB7A, Member 
RAS Oncogene 
Family 6 7 

P51149_RAB
7A_HUMAN 23.47 3.0881 

RAB8A 

RAB8A, Member 
RAS Oncogene 
Family 2 2 

P61006_RAB
8A_HUMAN 23.65 3.5539 

RAB11A 

RAB11A, Member 
RAS Oncogene 
Family 9 9 

P62491_RB1
1A_HUMAN 24.38 3.1934 

RAB11B 

RAB11B, Member 
RAS Oncogene 
Family 1 1 

Q15907_RB1
1B_HUMAN 24.47 5.614 

RAB14 RAB14, Member 3 3 P61106_RAB 23.88 2.121 
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RAS Oncogene 
Family 

14_HUMAN 

RAB32 

RAB32, Member 
RAS Oncogene 
Family 1 1 

Q13637_RAB
32_HUMAN 24.98 2.3859 

CLTC 
Clathrin Heavy 
Chain 31 31 

Q00610_CLH
1_HUMAN 191.49 3.4423 

COPA 

Coatomer Protein 
Complex Subunit 
Alpha 1 1 

P53621_COP
A_HUMAN 138.26 2.5796 

COPB1 

Coatomer Protein 
Complex Subunit 
Beta 1 3 3 

P53618_COP
B_HUMAN 107.07 2.6352 

Coat 
Proteins 

COPB2 

Coatomer Protein 
Complex Subunit 
Beta 2 2 3 

P35606_COP
B2_HUMAN 102.42 2.4587 

COPG1 

Coatomer Protein 
Complex Subunit 
Gamma 1 2 2 

Q9Y678_CO
PG1_HUMAN 97.66 2.8014 

COPZ1 

Coatomer Protein 
Complex Subunit 
Zeta 1 2 2 

P61923_COP
Z1_HUMAN 20.19 3.5031 

SEC23A 

Sec23 Homolog 
A, Coat Complex 
II Component 5 5 

Q15436_SC2
3A_HUMAN 86.11 2.7646 

SEC24C 

SEC24 Homolog 
C, COPII Coat 
Complex 
Component 5 5 

P53992_SC2
4C_HUMAN 118.25 2.7165 

SNX2 Sorting Nexin 2 1 1 
O60749_SNX

2_HUMAN 58.43 2.3274 

VPS29 

VPS29 Retromer 
Complex 
Component 1 1 

Q9UBQ0_VP
S29_HUMAN 20.49 3.1522 

VPS35 

VPS35 Retromer 
Complex 
Component 5 5 

Q96QK1_VP
S35_HUMAN 91.65 3.0096 

Retromer 
proteins 

SEC22B 

SEC22 Homolog 
B, Vesicle 
Trafficking Protein 2 2 

O75396_SC2
2B_HUMAN 24.58 3.7099 

SNAP91 

Synaptosome 
Associated 
Protein 91kDa 2 2 

O60641_AP1
80_HUMAN 92.44 3.1687 

VAMP2 

Vesicle 
Associated 
Membrane Protein 
2 3 3 

P63027_VAM
P2_HUMAN 12.65 4.0905 

SNARE 
proteins 

VAMP3 

Vesicle 
Associated 
Membrane Protein 
3 1 1 

Q15836_VAM
P3_HUMAN 11.3 4.41 

SNX3 Sorting Nexin 3 3 3 
O60493_SNX

3_HUMAN 18.75 2.3169 

SNX12 Sorting Nexin 12 3 3 
Q9UMY4_SN
X12_HUMAN 19.72 2.7626 

DNM2 Dynamin 2 1 1 
P50570_DYN

2_HUMAN 98 2.3105 

Sorting 
Nexin 
Proteins 

A2M 
Alpha-2-
Macroglobulin 2 3 

P01023_A2M
G_HUMAN 163.19 2.0934 

ACTA2 
Actin, Alpha 2, 
Smooth Muscle, 23 26 

P62736_ACT
A_HUMAN 41.98 2.512 



	 67	

Aorta 
Large 
GTPase ACTN1 Actinin Alpha 1 11 11 

P12814_ACT
N1_HUMAN 102.99 3.5522 

Other 
Proteins 

ACTN4 Actinin Alpha 4 14 14 
O43707_ACT
N4_HUMAN 104.79 3.0338 

ANXA1 Annexin A1 9 9 
P04083_ANX
A1_HUMAN 38.69 3.7527 

ANXA2 Annexin A2 35 37 
P07355_ANX
A2_HUMAN 38.58 3.1317 

ANXA3 Annexin A3 5 5 
P12429_ANX
A3_HUMAN 36.35 2.5467 

ANXA5 Annexin A5 13 13 
P08758_ANX
A5_HUMAN 35.91 2.9349 

CLIC1 

Chloride 
Intracellular 
Channel 1 4 4 

O00299_CLI
C1_HUMAN 26.91 2.6256 

LAMTOR
1 

Late 
Endosomal/Lysos
omal Adaptor, 
MAPK And MTOR 
Activator 1 1 1 

Q6IAA8_LTO
R1_HUMAN 17.73 4.6145 

M6PR 

Mannose-6-
Phosphate 
Receptor, Cation 
Dependent 1 1 

P20645_MPR
D_HUMAN 30.97 3.9622 

TFRC 
Transferrin 
Receptor 14 15 

P02786_TFR
1_HUMAN 84.82 3.5202 

UBE2D2 

Ubiquitin 
Conjugating 
Enzyme E2 D2 1 1 

P62837_UB2
D2_HUMAN 16.72 2.8667 

UBE2V1 

Ubiquitin 
Conjugating 
Enzyme E2 V1 5 5 

Q13404_UB2
V1_HUMAN 16.48 2.3619 

VCP 
Valosin 
Containing Protein 45 59 

P55072_TER
A_HUMAN 89.27 2.9445 

 

Table 2: Analysis of Outwardly Budded Endosomal Vesicles. Mass 

Spectrometry analysis reveals multiple types of protein classes associated with 

outwardly budded vesicles. Gene name, protein name, reference, molecular weight, 

and average are listed (n=2).  
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Fig. 5.2. A subset of outwardly budded endosomal vesicles may target the 

plasma membrane. HeLa cells were transfected with EGFRK721A containing a C-

terminal myc epitope tag. Outwardly budded vesicles were isolated as described in 

Fig. 1.6. Outwardly budding vesicles containing EGFRK721A were 5+/-1.3% of total 

EGFRK721A isolated following the cell-free reaction (e, lane 1) whereas 19+/-4.8% of 

total EGFR K721A is protected from trypsin digestion (e, lane 2). Data represents the 

mean +/- S.E (n=3) normalized to the control. *denotes p < 0.05 (t-test). 
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Figure 5.3. Varying EGF stimulation does not alter endosomal EGFR 

trafficking. Outwardly budded vesicles were isolated as described in Fig. 1.6. a) 

Stimulation with low concentrations of EGF (2ng/ml) revealed that 2+/-0.2% of EGFR 

is found in outwardly budded vesicles (lane 1) while 20+/-6.3% of EGFR is protected 

from protease digestion (lane 3). Stimulation with high concentrations of EGF 

(100ng/ml) revealed that 6+/-1.7% % of EGFR is found in outwardly budded vesicles 

(lane 2) while 35+/-4.3% of EGFR is protected from trypsin digestion (inwardly 

budded) (lane 4). b) The ratio between outwardly and inwardly budded vesicles 

under different stimulation conditions is not significantly different. Data represents 

the mean +/- S.E (n=3) normalized to the control. *denotes p < 0.05. 
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Chapter 6. Mechanisms of outward vesicle budding from 

MVBs. 

	
Rationale: My results show that outward budding from MVBs is dependent on 

cytosolic components (Fig. 5.1c). However, the cytosolic molecules that regulate 

outward budding from MVBs have not been elucidated. I have taken both candidate 

and genetic approaches to discover cytosolic factors required for this budding event.  

6.1. Distinct molecular machineries regulate outward vesicle budding and inward 

vesicle budding. 

 To identify factors that may play a role in outward budding, I isolated cytosol 

from yeast strains lacking various genes.  To examine whether ESCRT proteins may 

play a role in outward vesicle budding, cytosol derived from a yeast strain lacking 

HSE1 (hse1Δ) was used in place of cytosol isolated from a parental yeast strain in 

our cell-free assay. Interestingly, EGFR immunoreactivity is significantly increased in 

outwardly budded vesicles that were isolated from hse1Δ reaction supernatant 

compared to cytosol isolated from the parental strain (Fig. 6.1a, lane 2 compared to 

lane 1). The EGFR was less protected from protease cleavage in reactions 

containing hse1Δ cytosol compared to its protease protection in reactions containing 

cytosol isolated from parental strains (Fig. 6.1b, lane 2 compared to lane 1). Thus, 

while the ESCRT proteins do not appear to be required for outward vesicle budding, 

inhibition of inward budding by deleting HSE1 results in increased outward budding, 

suggesting that inward and outward budding are linked processes. 
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 To interrogate the cytosol further, I screened cytosol isolated from yeast 

deletion mutants for its ability to support outward budding.  Interestingly, cytosol 

derived from a yeast strain deficient in a dynamin-like yeast ortholog, VPS1 (vps1Δ 

cytosol), inhibited the amount of EGFR-immunoreactivity in isolated vesicles 

compared to cytosol isolated from the parental strain (Fig. 6.2a, lane 2 compared to 

lane 1). Vps1Δ cytosol had no significant effect on the protease protection of EGFR 

(Fig. 6.2b) suggesting that inward budding was not altered in the absence of VPS1. 

Rescue experiments in which I added recombinant mammalian Dynamin1 to 

reactions containing vps1Δ cytosol, rescued the inhibition of outward budding (Fig. 

6.2a, lane 3 compared to lane 2). These data suggest that dynamin is required for 

outward budding of EGFR, but not inward budding into internal MVB vesicles.   

 Aside from dynamin, I identified multiple GTPases that are associated with 

outwardly budded vesicles isolated from our cell-free reaction supernatant (Table 2).  

GTPases have been implicated in multiple membrane budding events (Nicoziani and 

van Deurs, 2000; Stenmark 2009; Traub, 2010; Grant and Donaldson, 2009; 

Maxfield and McGraw, 2004; Thompson et al., 2007; Weigert et al., 2004; 

Kobayashi, 2013; McCaffrey and Bucci, 2001; Yamashiro and Maxfield, 1984; 

Hopkins and Trowbridge, 1994; Ghosh and Maxfield, 1995).  In this regard, the 

GTPase, Rab11 regulates outward budding from early endosomes (Kobayashi and 

Fukuda, 2013; van Dam and Stoorvogel, 2002).  However, Rab11 or Transferrin 

Receptor (TfR, which is known to traffic in Rab11 compartments) were not detected 

on vesicles isolated from our reaction supernatant suggesting that Rab11 does not 

play a role in outward budding from MVBs. Nevertheless, I expressed dominant-
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negative Rab11 (Rab11S25N) (Fig. 6.3c) in cells and examined whether its 

expression would affect outward vesicle budding from MVBs. EGFR immunopositive 

outwardly budded vesicles were isolated from reactions and there was no significant 

difference in EGFR levels observed in reaction supernatant when cells expressed 

Rab11S25N (Fig 6.3a, lane 1), suggesting that Rab11 is not required for EGFR-

positive outwardly budded vesicles. As I previously observed (Fig. 6.1) reactions 

containing cytosol isolated from an ESCRT-0 deficient yeast strain (hse1Δ) 

produced significantly higher levels of EGFR-immunoreactivitiy in the reaction 

supernatant compared to cytosol isolated from a parental yeast strain (Fig. 6.3a, 

lane 2 compared to lane 1). By contrast, decreased EGFR-immunoreactivity in 

reaction supernatant (outwardly budded vesicles) was observed in reactions 

containing dynamin-deficient (vps1Δ) cytosol (Fig. 6.3b, lane 3 compared to lane 1) 

compared to control in cells expressing Rab11S25N.  
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Figure 6.1. Deletion of ESCRT machinery increases outward vesicle budding. 

Outwardly budded vesicles were isolated as in Figure 1.6. a) Vesicles isolated from 

hse1Δ reaction supernatant significantly increase EGFR immunoreactivity compared 

to cytosol isolated from a parental strain (lane 2, compared to lane 1). b) Reactions 

incubated with cytosol isolated from hse1Δ strains significantly inhibit protease 

protection of EGFR compared to cytosol isolated from parental strains (lane 2 

compared to 1). Data represents the mean +/- S.E (n=3) normalized to the control. 

*denotes p < 0.05. 
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Figure 6.2. Dynamin is required for outward vesicle budding. Outwardly budded 

vesicles were isolated as in Figure 1.6. a) Vesicles isolated from vps1Δ reaction 

supernatant significantly decrease EGFR immunoreactivity compared to cytosol 

isolated from a parental strain (lane 2 compared to lane 1). Recombinant human 

dynamin1 (1µm) rescues the inhibition of EGFR immunoreactivity (lane 3 compared 

to lane 1). b) Reactions incubated with cytosol isolated from vps1Δ strains or vps1Δ 

strains plus dynamin1 did not alter protease protection of EGFR compared to cytosol 

isolated from a parental strain (lane 2 and 3 compared to lane 1). Data represents 

the mean +/- S.E (n=3) normalized to the control. *denotes p < 0.05 (t-test for a,b; 

ANOVA for c,d). 
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Figure 6.3. EGFR buds outwardly from endosomal membranes in a Rab11 

independent manner. HeLa cells were transfected with a dominant negative Rab11 

(Rab11S25N) construct containing a C-terminal myc epitope tag. Outwardly budded 

vesicles were isolated as in Figure 1b. a) Vesicles isolated from hse1Δ reaction 

supernatant significantly increase EGFR immunoreactivity compared to cytosol 

isolated from a parental strain (lane 2, compared to lane 1). Vesicles isolated from 

vps1Δ reaction supernatant significantly decrease EGFR immunoreactivity 

compared to cytosol isolated from a parental strain (lane 2 compared to lane 1). b) 

Reactions incubated with cytosol isolated from hse1Δ strains significantly inhibit 

protease protection of EGFR compared to cytosol isolated from parental strains 

(lane 2 compared to 1). Reactions incubated with cytosol isolated from vps1Δ strains 

or vps1Δ strains plus dynamin1 did not alter protease protection of EGFR compared 

to cytosol isolated from a parental strain (lane 2 and 3 compared to lane 1). c) HeLa 
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cells express Rab11S25N. Data represents the mean +/- S.E (n=3) normalized to 

the control. *denotes p < 0.05. 
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6.2. EGFR buds outwardly from late endosomal compartments.  

 My previous experiments were performed using endosomes that contain a 

mixture of early and late endosomal populations. While early endosomes are 

thought to mature into late endosomes by acquiring and discarding peripheral 

membrane proteins, it is not clear when endosomes are competent to sort 

membrane proteins and invaginate their limiting membranes to produce MVBs.  To 

determine whether early and late endosomal populations can bud EGFR-containing 

vesicles, I separated these populations for use in our cell-free reactions. Post 

nuclear supernatant from lysed cells was separated using Optiprep gradients and 

gradient fractions were examined for the presence of markers for endosomal 

compartments (EEA1 for early endosomes, LAMP1/Rab7 for late endosomes, 

RAB11 for recycling endosomes) as well as EGFR and TfR (Fig 6.4b).  Early 

endosomal membranes (fractions 8 and 9) and late endosomal membranes 

(fractions 3 and 4) were collected and incubated in separate reactions containing 

ATP and yeast cytosol. I observed that inward and outward budding of EGFR-

immunoreactivity occurred from both endosomal populations (Fig. 6.4c and Fig. 

6.4d). Reactions containing cytosol isolated from the hse1Δ yeast strain produced 

significantly increased EGFR immunoreactivity in supernatant from reactions 

containing late endosomal membranes compared with cytosol isolated from the 

parental yeast strain, suggesting that ESCRT-0 deletion increased outward budding 

from late endosomes. In contrast, there was no increase in EGFR-immunoreactivity 

in supernatant from reactions containing early endosomal reactions and incubated 

with hse1Δ cytosol compared to the parental yeast strain, suggesting that outward 
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budding from the early endosome is not altered by ESCRT-0 protein deletion (Fig. 

6.4c, lane 2 compared to lane 1). The protease protection of the EGFR was 

significantly decreased in reactions containing either early or late endosomal 

membranes and incubated with hse1Δ cytosol (Fig. 6.4d, lane 2 compared to lane 1) 

suggesting that both membrane populations I isolated can invaginate and protect 

EGFR in an ESCRT-dependent manner. Reactions containing cytosol isolated from 

the vps1Δ yeast strain produced significantly decreased EGFR immunoreactivity in 

supernatant from reactions containing either early or late endosomal membranes, 

suggesting that dynamin deletion decreases outward budding from both membrane 

populations (Fig. 6.4c, lane 3 compared to lane 1). Vps1Δ cytosol had no significant 

effect on protease protection of EGFR in either population (Fig. 6.4d, lane 3 

compared to lane 1), suggesting it is not required for internal vesicle formation of 

MVBs. In summary, our results suggest dynamin facilitates outward budding from 

the late endosome/MVB. 
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Figure 6.4. EGFR buds outwardly from late endosomal membranes in a 

dynamin dependent manner. Post-nuclear supernatant was loaded onto a 

continuous 10-20% Optiprep gradient.  a) Fractions were collected and the refractive 
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index was measured. b) Fractions were immunoblotted for endosomal markers 

(EEA1 for early endosomes, LAMP1/Rab7 for late endosomes, RAB11 for recycling 

endosomes, EGFR, and TfR).  c) Early endosomes (fractions 8 and 9) incubated 

with cytosol isolated from hse1Δ strains did not alter EGFR immunoreactivity on 

vesicles isolated from reaction supernatant compared to cytosol isolated from a 

parental strain (lane 2 compared to lane 1). Late endosomes (fractions 3 and 4) 

incubated with cytosol isolated from hse1Δ strains significantly increase EGFR 

immunoreactivity on vesicles isolated from reaction supernatant compared to cytosol 

isolated from a parental strain (lane 2 compared to lane 1) (p=0.042). Vesicles 

isolated from reaction supernatant obtained from either early or late endosomes and 

incubated with cytosol isolated from vps1Δ strains significantly decrease EGFR 

immunoreactivity compared to cytosol isolated from a parental strain (lane 3, 

compared to lane 1). d) Early and late endosomes incubated with cytosol isolated 

from hse1Δ strains significantly decreased protease protection of EGFR compared 

to compared to cytosol isolated from a parental strain (lane 2 compared to 1). Early 

and late endosomes incubated with cytosol isolated from vps1Δ strains did not alter 

protease protection of EGFR compared to cytosol isolated from a parental strain 

(lane 3 compared to lane 1). Data represents the mean +/- S.E (n=3) normalized to 

the control. *denotes p < 0.05 (t-test).  
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Chapter 7. EGFRVIII inward and outward budding from the 

MVB 

Rationale: 

 Altered intracellular trafficking of membrane proteins may alter their cell 

surface expression, modulate their signaling, and can be a significant driver of 

disease. For example, an EGFR mutant, EGFRvIII, is internalized from the plasma 

membrane but is not efficiently degraded compared to the wild-type receptor. This 

pathogenic EGFR mutant constitutively recycles  resulting in increased surface 

expression, signaling, and proliferation, and is expressed in 50% of glioblastoma 

cases (Frederick et al., 2000; Furnari et al., 2007; Gan et al., 2009; Heimberger et 

al., 2005; Sugawa et al., 1990) where its presence correlates with aggressive 

disease (Shinojima et al., 2003).  Thus, elucidating the mechanism by which the 

endocytic itinerary of EGFRvIII differs from that of the wild-type EGFR may provide 

an understanding of a trafficking pathway important for disease.  

7.1. EGFRvIII is sorted into internal vesicles of MVBs. 

Although EGFRvIII is internalized from the plasma membrane, inhibition of its 

degradation rate may result from slowed movement through the endocytic pathway. 

This inhibited trafficking of EGFRvIII may occur at multiple steps during its movement 

to the lysosome (Fig. 1.5). EGFRvIII is found on endosomes (Grandal et al., 2007) 

suggesting that it passes through those organelles en route to lysosomes and may 

therefore take the canonical MVB pathway to the lysosome.  Initially, I determined 

that EGFRvIII is internalized into internal vesicles of MVBs (Fig. 7.1a) by examining 
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protease protection of an intracellular epitope as I had done previously for the wild-

type receptor.  I determined that in the absence of EGF stimulation, EGFRVIII is 

present on endosomes and a portion of the receptor is protected from digestion into 

internal vesicles of MVBs under basal conditions, suggesting that a pool of the 

EGFRvIII moves through the endocytic pathway (Fig. 7.1b, lanes 4-6) into internal 

MVB vesicles. In contrast, WT EGFR was not detected on endosomes in the 

absence of EGF stimulation (Fig. 7.1b, lanes 1-3). Upon EGF stimulation, the 

intracellular epitope of WT EGFR was protected from protease cleavage suggesting 

that the WT EGFR has entered endosomes (Fig. 7.1b, lanes 7-9). These data 

suggest that a pool of EGFRVIII can be sorted into internal vesicles of MVBs in a 

ligand-independent manner.  

 

7.2. Isolation of mutant EGFR outwardly budding vesicles. 

To determine whether EGFRvIII buds outwardly from endosomal membranes, 

partially purified endosomal membranes isolated from U87 cells expressing either 

WT-EGFR or EGFRvIII were incubated with ATP and Saccharomyces cerevisiae (70 

µg) cytosol for 3 hours at 37°C. Following incubation, reactions were centrifuged to 

obtain outwardly budded vesicles. Characterization of this vesicle population using 

light scattering and Brownian motion analysis (NTA) revealed that vesicles 

containing WT-EGFR were found in a major peak with a hydrodynamic diameter of 

107.8 +/- 12.4 nm (Fig. 7.2a). Similarly, NTA analysis revealed that vesicles 

recovered from EGFRvIII expressing cells were found in a major peak with a 

hydrodynamic diameter of 124+/-11.1 nm (Fig. 7.2b) suggesting that EGFRvIII 

vesicles can be isolated from cell-free reactions and that there is no significant 
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difference between the diameter of WT-EGFR and EGFRvIII outwardly budded 

vesicles.  

 

7.3. MVB Budding of EGFR and EGFRvIII is dynamin-dependent. 

 
My previous results suggest that dynamin is required for outward vesicle 

budding of EGFR from late endosomes (Fig. 6.2 and Fig. 6.4). To determine whether 

dynamin is required for endosomal budding of EGFRVIII, partially purified endosomal 

membranes isolated from U87 cells expressing either WT-EGFR or EGFRvIII were 

incubated with ATP and Saccharomyces cerevisiae (70 µg) cytosol for 3 hours at 

37°C. Following incubation, reactions were centrifuged and supernatant was 

collected for additional centrifugation to obtain outwardly budded vesicles. The 

budding of WT-EGFR and EGFRvIII was inhibited in vesicles isolated from reaction 

supernatant in reactions lacking dynamin (vps1Δ) compared to parental strains (Fig. 

7.3 a and c, lane 2 compared to lane 1). Protease protection of WT-EGFR or 

EGFRvIII, a measure of inward budding, was not affected by the lack of VPS1 (Fig. 

7.3 b and d, lane 2 compared to lane 1). Thus, both WT-EGFR and EGFRvIII are 

internalized into endosomes and can bud from endosomal membranes in a dynamin 

dependent manner, suggesting that EGFRVII can follow a similar endocytic trafficking 

pathway to the EGFR.  
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Figure 7.1. EGFRvIII can bud inwardly into internal vesicles of the MVB. a) HeLa 

cells were transfected with WT-EGFR or EGFRvIII constructs. b) Endosomal 

membranes (5 µL, lanes 1, 4, and 7) and endosomal membranes (5 µL) digested 

with trypsin to remove the C-terminal epitope of the receptor (lanes 2, 5, and 80 as 

well as partially purified endosomal membranes (15 µL) incubated in reactions 

containing ATP and mammalian cytosol (25 µg) (lanes 3, 6, and 9) were treated in 

the absence of EGF stimulation (lanes 1-6) or presence of EGF stimulation (lanes 7-

9). In absence of EGF stimulation, WT-EGFR is not present on endosomal 

membranes and is not sorted into internal vesicles (lanes 1-3). In contrast, EGFRvIII 

is sorted into internal vesicles in the absence of EGF stimulation (lanes 4-6). WT-

EGFR is sorted into internal vesicles when stimulated with EGF (lanes 7-9).  n=2 
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Figure 7.2. WT-EGFR and EGFRVIII outwardly budded vesicles are similar in 

size. Partially purified endosomal membranes isolated from U87 cells were isolated 

as described in Fig. 1.6. Following incubation, reactions were centrifuged and 

supernatant was collected for additional centrifugation to obtain outwardly budded 

vesicles. Nanosight tracking analysis was performed on isolated vesicles to measure 

mean vesicle size. a) WT-EGFR isolated vesicles are 108+/-12.4% nm in size. b) 

EGFRVIII isolated vesicles are 124+/-11.1 nm in size. There was no significant 

difference in vesicles size and distribution between WT-EGFR and EGFRVIII. N=3 

with representative analysis shown for both.  
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Figure 7.3. EGFR and EGFRvIII bud outwardly in a dynamin-dependent manner. 

Partially purified endosomal membranes isolated from U87 cells were isolated as 

described in Fig. 1.6. Following incubation, reactions were centrifuged and 

supernatant was collected for additional centrifugation to obtain outwardly budded 

vesicles. a) Vesicles isolated from vps1Δ reaction supernatant of WT EGFR 

endosomes, the amount of EGFR on outwardly budded vesicles was decreased 
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compared to a parental strain (lane 2 compared to lane 1). b) WT EGFR reactions 

incubated with cytosol isolated from vps1Δ strains did not alter the protease 

protection of EGFR compared to a parental strain (lane 2 compared to lane 1). c) 

Vesicles isolated from vps1Δ reaction supernatant of EGFRvIII endosomes, the 

amount of EGFRVIII on outwardly budded vesicles was decreased compared to a 

parental strain (lane 2 compared to lane 1). EGFRVIII reactions incubated with 

cytosol isolated from vps1Δ strains did not alter the protease protection of EGFRVIII 

compared to a parental strain (lane 2 compared to lane 1). Data represents the 

mean (n=2) normalized to the control. These experiments were performed in part by 

Natalie Sirisaengtaksin and used with permission. 
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Chapter 8. Discussion and Future Directions 

 The number of signaling membrane proteins on the cell surface, and the time 

they spend in an activated state, are critical determinants for cellular responses to 

extracellular cues that can regulate homeostasis, plasticity, growth, and 

differentiation (Maxfield and McGraw, 2004; Gruenberg and Stenmark, 2004; 

Katzmann, 2002; Tanowitz and von Zastrow, 2003; Donaldson and Dutta, 2016; 

Grant and Donaldson, 2009). Internalization and movement through the endocytic 

pathway is required to tune the signaling responses of various membrane proteins.  

After movement through multiple, morphologically defined, compartments of the 

endocytic pathway, membrane protein signaling is attenuated upon their lysosomal 

degradation (Gruenberg, 2001; Sorkin and von Zastrow, 2009; Sun et al., 2010; 

Yang et al., 2005). 

A membrane protein that transits the endocytic pathway and arrives at the 

limiting membrane of the MVB either buds inwardly into the internal vesicles for 

eventual degradation in the lysosome, remains on the limiting membrane for 

incorporation into lysosomal membranes upon MVB-lysosome fusion, or is 

transported into vesicles that bud outwardly from the MVB for movement to various 

cellular compartments (Grant and Donaldson, 2009; Gruenberg, 2001; Maxfield and 

McGraw, 2004; Tanowitz and von Zastrow; Thompson et al., 2007; Weigert et al., 

2004). While outward budding from the late endosome has been suggested (Felder 

et al., 1990), my data provides the first reported isolation of vesicles that bud 

outwardly from MVBs. These outwardly budding vesicles could provide a 

mechanism by which membrane proteins are transported out of the late endocytic 
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pathway to other cellular compartments (Felder et al., 1990). The ability to isolate 

outwardly budding vesicles allowed an examination of the molecular machinery 

regulating the budding event and to characterize these vesicles.  These studies also 

allowed comparison of the mechanisms underlying inward and outward budding 

from the same endosomal membrane and resulted in an appreciation of the 

differences in molecular machinery required for these unique budding events. 

Interestingly, while differences in the mechanisms of the budding events were 

evident, I also observed that the budding processes are linked such that inhibition of 

inward budding enhances outward budding. 

8.1. Mechanisms of inward budding at the MVB  

 Since both budding events I measured are dependent on cytosolic 

components, and cytosol isolated from yeast and fly are able to support these 

budding events, I used genetic approaches to interrogate the cytosol for molecules 

involved in the regulation of MVB budding. I found that ESCRT complex components 

are required for the protease protection of a cargo protein (EGFR), confirming that 

these molecules are involved in inward MVB budding in our reconstituted system. In 

this regard, cytosol isolated from yeast strains deleted of either of the ESCRT-0 

proteins impaired membrane protein budding into internal vesicles, an effect that 

was rescued by the addition of the soluble mammalian orthologous ESCRT proteins. 

While EGFR was used as a proxy for membrane protein cargo, I found that multiple 

types of membrane proteins follow the same internal budding pathway [e.g. tyrosine 

kinase receptors (Fig. 4.1), GPCRs (Fig. 4.2), ion channels (Fig. 4.3) in an ESCRT-

0-dependent manner. Thus, reconstitution of this budding event allows examination 
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of a variety of cargo proteins and the underlying mechanisms by which this budding 

event occurs. 

 Similar to ESCRT-0 components, deletion of ESCRT-I impaired EGFR 

budding into internal MVB vesicles. These data are consistent with previous studies 

reporting that ESCRT-I is required for membrane protein movement into internal 

vesicles (Bache et al., 2004; Doyotte et al., 2005).  However, the role of ESCRT-II in 

membrane protein movement into internal vesicles is controversial. Previous studies 

suggest that ESCRT-II is dispensable for inward budding of cargo including the 

EGFR and major histocompatibility complex class I (MHC-I) (Bowers et al., 2006; 

Malerod et al., 2007). However, others have found that ESCRT-II is required for 

EGFR and ferroportin degradation, and not required for MHC-I degradation 

(Langelier et al., 2006; Williams and Urbe, 2007). To address the controversy, I 

measured inward budding of the EGFR and used cytosol lacking ESCRT-II proteins, 

allowing a direct and unambiguous examination of the role of these molecules. Our 

results suggest that all components of that ESCRT-I and ESCRT-II are required for 

inward budding of the EGFR into internal MVB vesicles. 

 Interestingly, deletion of only two of the four ESCRT-III genes, SNF7 and 

VPS24 inhibit the movement of EGFR from the endosomal membrane into internal 

vesicles. These data are consistent with previous studies reporting that deletion of 

SNF7 or VPS24 inhibit degradation of EGFR (Bache et al., 2006; Shim et al., 2006). 

Somewhat surprisingly, deletion of the ESCRT-III genes VPS20 and DID4 failed to 

inhibit protease protection of the EGFR. To determine whether components of the 

two major ESCRT-III complexes (Vps20/Snf7 and Vps24/Did4) may have redundant 
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or overlapping roles (Babst et al., 2002a) I examined EGFR protease protection in 

reactions using cytosol from yeast strains in which double deletions were made in 

ECSRT III genes. Double deletions (Vps20/Snf7 or Did4/Vps24) did not inhibit the 

protease protection of EGFR significantly more than cytosol from single deletion 

(snf7Δ or vps24Δ) strains, suggesting that the ESCRT-III components Vps20 and 

Did4 are not required for the inward budding of EGFR-containing vesicles. The 

ESCRT-III complex has been suggested to drive membrane fission events that allow 

internal vesicle formation within MVBs, as well as viral budding events, and 

cytokinesis (Adell and Teis, 2011; Hurley and Hanson, 2010; McDonald and Martin-

Serrano, 2009).  It has been hypothesized that Vps20 binds to ESCRT-II and 

recruits Snf7, which in turn recruits the remaining ESCRT-III components for MVB 

budding (Adell and Teis, 2011; Hurley and Hanson, 2010). In cytokinesis and viral 

budding events Vps20 is dispensable and Snf7 binds to an ESCRT-associated 

protein, Bro1, which directly activates Snf7 and the remaining ESCRT-III 

components (Carlton and Martin-Serrano, 2007; Martin-Serrano et al., 2003; 

Wemmer et al., 2011). In a manner similar to cytokinesis and viral budding, my 

results show that Vps20 is not required for membrane protein budding into internal 

vesicles of MVBs, suggesting that Snf7 may be directly activated through binding of 

other proteins (e.g. Bro1). After formation of the Vps20/Snf7 complex, the 

Vps24/Did4 complex is thought to act as a cap for Snf7 (Adell and Teis, 2011; 

Hurley and Hanson, 2010). Previous studies suggested that Did4 is not required for 

membrane scission, but instead is required for disassembly of ESCRT complexes, 

by initiating the recruitment of Vps4 (Williams and Urbe, 2007; Wollert et al., 2009).  
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My results are consistent with the hypothesis that Did4 is not required for membrane 

protein sorting at the MVB. 

 
 The ESCRT machinery plays a role in cargo sorting and MVB vesicle 

formation however increasing evidence suggests that lipids may play a key role in 

regulating internal vesicle formation (Babst et al, 2010).  ESCRT-0 localizes to lipid 

rafts through binding of Hrs to phosphatidylinositol 3-phosphate (PI3P) (Gaullier et 

al., 1998; Petiot et al., 2003; Schmidt and Teis, 2012; Stenmark et al., 2002) and 

may therefore help to sort cargo into these lipid domains. Interestingly, ESCRT 

deletion inhibits cargo sorting but not internal vesicle formation (Babst; Sun et al., 

2010), suggesting that ESCRTs regulate cargo formation but lipids may play a larger 

role in regulating internal vesicle formation. Lipid clustering causes formation of lipid 

rafts that may help membrane deformation, ultimately leading to vesicle formation 

(Babst, 2011; Bissig and Gruenberg, 2013). Cholesterol is enriched in lipid rafts and 

is concentrated on internal MVB vesicles (Mobius et al., 2003), suggesting that 

cholesterol may be required for internal vesicle formation. We observed that 

cholesterol depletion inhibits protease protection of the EGFR implying that 

cholesterol is required for inward vesicle budding. Cholesterol is required for 

formation of highly curved structures such as synaptic vesicles (Mobius et al., 2003; 

Wang et al., 2007), suggesting that a similar cholesterol-dependent mechanism 

might underlie inward budding of similar sized endosomal vesicles.  

8.2. Characterization of outwardly budded vesicles from MVBs 

 Transport from MVBs to other cellular compartments, including the Golgi and 

plasma membrane, likely require an outward vesicle budding event to cluster cargo 
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and allow for targeted movement (Felder et al, 1990; Nicoziani and van Deurs, 

2000). I have isolated and characterized vesicles that bud outwardly from MVBs 

during our cell-free reactions. The vesicles are approximately 100nm in size and 

contain EGFR. To isolate these outwardly budding vesicles I used yeast cytosol (that 

does not contain detectable EGFR) in place of mammalian cytosol, to enable 

definitive measurement of the amount of EGFR that is transported from the 

endosome. Analysis of these vesicles by mass spectrometry identified many 

proteins known to be involved in protein trafficking steps (Table 2). Clarifying the role 

these proteins play in the outward budding step from MVBs may provide insight into 

the trafficking of these vesicles. For example, the SNARE proteins mediate vesicle 

fusion events (Sudhof and Rothman, 2009), and identification of 4 SNARE proteins 

(e.g. Vamp2, Vamp3, Sec22B, SNAP91) in our analysis provides clues to potential 

fusion mechanisms and destinations for these vesicles. Vamp2 regulates the fusion 

of intracellular vesicles with the plasma membrane through binding to the plasma 

membrane protein syntaxin1 (Salaun et al., 2004). Vamp3 mediates fusion of the 

Rab11 recycling compartment with the plasma membrane by binding to Syntaxin4 

and SNAP23 (Veale et al., 2010). SEC22B binds to syntaxin18, a resident SNARE 

on the Endoplasmic Reticulum (ER) (Hatsuzawa et al., 2009) and is required for 

Golgi-ER and ER-Golgi Transport (Chatre et al., 2005). SNAP91 binds to the clathrin 

coat protein and regulates clathrin-mediated endocytosis (McMahon and Boucrot, 

2011). Therefore, vesicles may be transported to the plasma membrane, ER or the 

Golgi. Similarly, the mass spectrometry results identified three retromer protein 

components (e.g. SNX2, Vps29, Vps35). The retromer complex regulates recycling 
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of receptors to the trans-Golgi and the plasma membrane (Arighi et al., 2004; 

Seaman, 2004; Steinberg et al., 2013) and consists of 5 components (e.g. VPS35, 

VPS29, VPS26, SNX1, and SNX2) (Carlton et al., 2004; Haft et al., 2000; Steinberg 

et al., 2013). Identification of retromer proteins suggests that a subset of vesicles 

may be transported to the plasma membrane or Golgi in a retromer-dependent 

manner.  Additional proteins identified in our analysis include coat proteins (e.g. 

Clathrin, COPs), adaptor proteins (e.g. AP1, AP2) and Dynamin2. Thus, the vesicle 

components identified by Mass spectrometry provide guidance for understanding the 

mechanisms and destination of the outwardly budded vesicles.  

 My studies isolated and identified the cargo constituents of outward budding 

vesicles, however the destination of these vesicles was still unclear.  Therefore, I 

took advantage of the known itinerary of an EGFR mutant lacking kinase activity, 

EGFRK721A, that traffics to the limiting membranes of MVBs prior to budding onto 

vesicles that ultimately fuse with the plasma membrane (Felder et al., 1990). I found 

EGFRK721A on the outwardly budding vesicles, suggesting that these vesicles were 

budding from the MVB and therefore, that at least some proportion of the outwardly 

budding vesicles I isolate are targeted to the plasma membrane. Interestingly, Felder 

et al, 1990 found 25% of the EGFRK721A on internal endosomal vesicles, 42% on 

recycling vesicles, and 33% on the limiting endosomal membrane (Felder et al., 

1990).  By comparison, I found a similar percentage of EGFRK721A present on 

internal vesicles, however I observed a lower percentage of EGFRK721A on outwardly 

budded vesicles perhaps due in part to a low recovery of outwardly budded vesicles 

in our biochemical assay. 
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8.3. Endosomal trafficking of EGFR in response to varying ligand concentration 

 Challenging tumor cells with high concentrations of EGF results in 

internalization of the ligand-receptor complex by both clathrin-mediated endocytosis 

and clathrin-independent pathways (Sigismund et al., 2008). In contrast, stimulation 

of the same cells with low EGF concentrations results in internalization only via 

clathrin-mediated endocytosis (Sigismund et al., 2008). Thus, engagement of 

different internalization pathways has been hypothesized to be necessary to tune 

cellular responses of enhanced levels of extracellular EGFR (Chandra et al., 2013; 

Sigismund et al., 2008). High extracellular EGFR concentrations increase cellular 

proliferation and signaling (Chandra et al., 2013; Sorkin, 2001) I observed that 

stimulation of tumor cells with either low or high EGF concentrations results in both 

inward and outward endosomal vesicle budding.  However, the ratio of inward to 

outward budding from the MVB membrane did not differ based on ligand 

concentration used for EGFR stimulation. My results are in agreement with a report 

suggesting that 25-30% of EGFR recycles and 40-50% of EGFR degrades when 

cells are treated with a range of EGF (5-200ng) (Sorkin et al., 1991) suggesting that 

any differences in internalization of EGFR may play a role in EGFR trafficking during 

early parts of the endocytic pathway (Fig. 1.1 and Fig. 1.4) but do not result in 

differences at the MVB membrane. 

8.4. Mechanisms of outward budding from MVBs 

 By reconstituting both inward and outward budding from the same endosomal 

membranes I was able to compare these budding events. As I observed for inward 

budding, I found that outward vesicle budding from MVBs was also dependent on 
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cytosolic components. To identify the specific cytosolic components that are required 

for the outward budding event I have taken multiple approaches.  Initially, I took a 

candidate approach and chose to examine selected GTPases as it has been 

appreciated for many years that these molecules are required for various vesicle 

budding steps (Baker et al., 1990; Beckers and Balch, 1989; Melancon et al., 1987; 

Ruohola et al., 1988; Tooze et al., 1990). In this regard, outward budding from early 

endosomes is dependent on the GTPases Rab4, Rab5, and Rab11 (Kobayashi and 

Fukuda, 2013; van Dam and Stoorvogel, 2002). Rab11 regulates the slow recycling 

pathway (Grant and Donaldson, 2009; Ren et al., 1998; Ullrich et al., 1996), and 

thus is more indicative of a mechanism that may regulate late endosomal outward 

budding. However, my results suggest that outward budding from the MVB is Rab11 

independent. This suggests a different molecular mechanism regulates MVB 

budding. I examined whether the ESCRTs were involved in outward budding in 

addition to an unbiased approach to examine proteins that may regulate outward 

budding from the MVB.  

 A relationship between inward MVB budding and recycling was suggested by   

Babst et al, (Babst et al., 2000) who found that deletion of ESCRT proteins resulted 

in an increase in EGFR recycling. In these experiments, EGFR was measured at the 

plasma membrane although the compartment from which it was recycled  (e.g. early 

or late endosomes) was unresolved (Babst et al., 2000). In the reconstituted system, 

I found that deletion of an ESCRT-0 component increased outward vesicle budding 

from the limiting membrane of the MVB, but not from early endosomes. My result is 

consistent with Babst et al (Babst et al., 2000) but identifies the MVB as an 
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endosomal compartment from which EGFR may originate for plasma membrane 

recycling.  

 The increased outward vesicle budding that occurs when inward budding is 

inhibited provides insight into the role cargo proteins may play in vesicle formation 

and the linkage between cargo proteins and the ESCRT machinery. One hypothesis 

(elevator hypothesis) (Robinson, 2004; Santini and Keen, 1996; White et al., 2006) 

suggests that vesicle formation/budding is dependent on the presence of membrane 

protein cargo, while another hypothesis (escalator hypothesis) (Santini and Keen, 

1996) posits that vesicles form/bud regardless of whether cargo is present 

(Robinson, 2004; Santini and Keen, 1996). Our data suggest that cargo plays a role 

in vesicle formation, because inhibition of inward budding enhances outward 

budding. If vesicle budding/formation occurs constitutively, one might expect that 

outward budding would not be affected by inhibition of inward budding events.   

 Lastly, I took an unbiased approach to screen for genes that are required for 

outward budding. I observed that cytosol isolated from a dynamin-deficient yeast 

strain (vps1Δ) inhibited outward budding in our cell-free assay, an effect that could 

be partially rescued by mammalian dynamin 1. The partial rescue may be a result of 

using the mammalian protein to rescue the yeast deletion or that other dynamin 

isoforms are required to fully rescue the inhibition of outward budding. In this regard, 

dynamin 1 and 2 have been speculated to have overlapping functions in endocytosis 

(Ferguson et al., 2009; Liu et al., 2008) and we identified dynamin 2 as a constituent 

of outwardly budded vesicles (Table 2). Dynamin has been localized on late 

endosomal membranes and regulates the late endosome-Golgi recycling of the 
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mannose-6-phosphate receptor (Nicoziani et al., 2000). Therefore, a subset of our 

isolated vesicles may be transported to the trans-Golgi network or dynamin may 

regulate outward vesicle budding from late endosomes to the plasma membrane. 

8.5. ESCRT assembly and cargo sorting may provide a clue to the link between 

inward and outward budding from MVBs 

My data also makes a contribution to understanding how ESCRT complexes 

enable cargo sorting at the endosomal membrane. The conveyor belt model (Hurley 

and Emr, 2006) suggests that cargo molecules are handed off sequentially from one 

ESCRT complex to the next in a linear fashion. The concentric ring model 

(Nickerson et al., 2007) suggests that multiple cargoes are clustered beneath an 

ESCRT supercomplex. Our data are in favor of the concentric ring model.  If 

membrane cargo is clustered as suggested by the concentric ring model and inward 

budding is inhibited, the cargo clusters would begin to accumulate on MVB 

membranes, leading to an increase in endosome size.  Therefore, to limit cargo 

accumulation on the MVB limiting membrane and ensure consistent MVB size, cargo 

clusters are transported to other cellular compartments, leading to an increase in 

outward budding from MVBs, consistent with what I have observed.  The linkage 

between inward and outward budding may be due in part, to the localization of cargo 

clusters and the machinery regulating inward and outward budding on the MVB 

membrane. The ESCRT-0 component, Hrs, is found clustered in areas that 

contained EGFR (Sachse et al., 2002; Tsujimoto et al.). Interestingly, coat proteins 

are known to regulate budding events, and one such coat protein, clathrin, is found 

in clusters adjacent to the Hrs clusters (Sachse et al., 2002), suggesting that ESCRT 
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and Clathrin clusters are adjacent but not overlapping on the endosomal membrane 

in membrane domains that may correspond those undergoing inward and outward 

budding. It is therefore possible that under conditions that inhibit inward budding, 

cargo is budded outwardly due to the close spatial arrangement of the machinery 

that regulates these distinct budding events.    

8.6. EGFRvIII can be internalized into internal vesicles of the MVB 

 Mutations in membrane proteins can result in aberrant trafficking that results 

in disease. For example, EGFRvIII is a pathogenic variant of EGFR found in a high 

percentage of glioblastoma tumors (Padfield et al., 2015), and results in aggressive 

disease.  Interestingly, increased EGFRvIII recycling that results in increased 

downstream signaling is thought to underlie glioblastoma tumorigenesis (Grandal et 

al., 2007). My results suggest that at least a portion of EGFRvIII can bud inwardly into 

internal vesicles of MVBs, suggesting that at least a pool of this mutant receptor can 

be degraded in the lysosome. However, I observed that EGFRvIII is also found on 

outwardly budding endosomal vesicles and that dynamin is required for the outward 

budding of EGFRVIII. Thus, EGFRvIII buds inwardly and outwardly from endosomal 

membranes suggesting that a therapeutic strategy might involve shifting the balance 

of degraded/recycled EGFRvIII. One caveat to this interpretation is that internalization 

of EGFRvIII into internal vesicles of the MVB does not always imply that the receptor 

will be degraded in the lysosome. MVBs can also fuse with the plasma membrane 

and release the internal vesicles into the extracellular space as “exosomes” 

(Corrado et al., 2013; Hurley and Odorizzi, 2012; Kowal et al., 2014).  In 

glioblastoma patients, EGFRvIII has been found on exosomes (Skog et al., 2008). 



	 100	

These results suggest that MVBs containing EGFRvIII may fuse with the plasma 

membrane instead of the lysosome. 

8.7. Future Directions 

1. To further characterize vesicles that bud outwardly from isolated late 

endosomal membranes. 

 Analysis of the outwardly budding vesicles by Mass Spectrometry revealed 

the identity of proteins known to be involved in protein trafficking steps. Future 

experiments will take advantage of this proteomic information to try to understand 

whether there are multiple populations of budding vesicles that may carry distinct 

cargo or may be targeted to different compartments.  For example, the SNARE 

proteins identified by Mass Spectrometry (e.g. Vamp2, Vamp3, Sec22B, SNAP91) 

could be used to define potential target membranes and future experiments could try 

to understand whether outwardly budded MVB vesicles with different SNAREs target 

different compartments.  Moreover, the cargo carried by different populations of 

vesicles could be identified.  The role of vesicle SNAREs in the fusion of recycling 

vesicles with plasma membrane and/or other cellular compartments could also be 

addressed.  

2. To identify cytosolic components that regulate MVB budding.  

 My studies took advantage of a yeast deletion library in a limited screen for 

genes that are required for outward budding. Future experiments could include a 

large-scale screen using yeast cytosol that could identify proteins that regulate 

inward and outward budding events.   
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3. To determine the mechanistic link between inward and outward budding 

from MVBs. 

 Inhibition of inward budding resulting from deletion of the ESCRT machinery 

increases outward vesicle budding from MVBs, suggesting that the two mechanisms 

of budding may be linked. It is possible that outward budding is a bulk-flow process 

that is enhanced when inward budding is inhibited.  Ubiquitination may trigger cargo 

clustering and assembly of ESCRT complexes, as suggested in the concentric ring 

model. In the absence of ESCRT recruitment, cargo that is ubiquitinated may 

become deubiquitinated, not able to enter inwardly budding vesicles, and be 

transported to other cellular compartments.  This hypothesis could be examined by 

determining whether inhibition of inward budding by blocking ubiquitination (or 

enhancing deubiquitination) results in increased outward budding.   

4. To determine the trafficking pathway of EGFRVIII. 

 Our results suggest that a percentage of EGFRVIII can bud inwardly into 

internal vesicles of MVBs. MVBs can fuse with the lysosome to degrade the contents 

of the internal vesicles, or they can fuse with the plasma membrane and release the 

internal vesicles as exosomes. The destination of EGFRvIII containing MVBs is 

unknown but the lack of considerable EGFRvIII degradation suggests that these 

MVBs may fuse with the plasma membrane. Comparing the cargo constituents of 

MVBs containing EGFRvIII with MVBs containing wild-type EGFR may allow 

understanding of differences in cargo and fusion machinery required for MVB-

lysosome versus MVB-plasma membrane fusion.   
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