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STATISTICAL METHODS FOR TWO PROBLEMS IN CANCER RESEARCH: 

ANALYSIS OF RNA-SEQ DATA FROM ARCHIVAL SAMPLES AND 

CHARACTERIZATION OF ONSET OF MULTIPLE PRIMARY CANCERS  

 

Jialu Li, M.S. 

Advisory Professor: Wenyi Wang, Ph.D. 

 

My dissertation is focused on quantitative methodology development and application 

for two important topics in translational and clinical cancer research. 

The first topic was motivated by the challenge of applying transcriptome sequencing 

(RNA-seq) to formalin-fixation and paraffin-embedding (FFPE) tumor samples for 

reliable diagnostic development. We designed a biospecimen study to directly compare 

gene expression results from different protocols to prepare libraries for RNA-seq from 

human breast cancer tissues, with randomization to fresh-frozen (FF) or FFPE conditions. 

To comprehensively evaluate the FFPE RNA-seq data quality for expression profiling, 

we developed multiple computational methods for assessment, such as the uniformity and 

continuity of coverage, the variance and correlation of overall gene expression, patterns 

of measuring coding sequence expression, phenotypic patterns of gene expression, and 

measurements from representative multi-gene signatures. Our results showed that the 

principle determinant of variance from these protocols was use of exon capture probes, 

followed by the conditions of preservation (FF versus FFPE), then phenotypic differences 

between breast cancers. We also successfully identified one protocol, with RNase H-

based ribosomal RNA (rRNA) depletion, exhibited least variability of gene expression 



! ! v 

measurements, strongest correlation between FF and FFPE samples, and was generally 

representative of the transcriptome.   

In the second topic, we focused on TP53 penetrance estimation for multiple primary 

cancers (MPC). The study was motivated by the high proportion of MPC patients 

observed in Li-Fraumeni syndrome (LFS) families, but no MPC risk estimates so far have 

been provided for a better clinical management of LFS. To this end, we proposed a 

Bayesian recurrent event model based on a non-homogeneous Poisson process in order to 

estimate a set of penetrance for MPC related to LFS. Toward the associated inference, we 

employed the familywise likelihood that allows for utilizing genetic information inherited 

through the family. The ascertainment bias, which is inevitable in rare disease studies, 

was also properly adjusted by inverse probability weighting scheme. We applied the 

proposed method to the LFS data, a family cohort collected through pediatric sarcoma 

patients at MD Anderson Cancer Center from 1944 to 1982. Both internal and external 

validation studies show that the proposed model provides reliable penetrance estimates 

for MPC in LFS, which, to the best of our knowledge, have never been reported in the 

LFS literatures yet.  

   The research I conducted during my PhD study will be useful to translational 

scientists who want to obtain accurate gene expression by applying RNA-seq technology 

to FFPE tumor tissue samples. This research will also be helpful to genetic counselors or 

genetic epidemiologists who need high-resolution penetrance estimates for primary 

cancer risk assessment.  



!

Table of Contents 

APPROVAL SHEET……………………………………………………….……….…… i 

TITLE PAGE……………………………………………………………….……….…….ii 

ACKNOWLEDGEMENTS………………………………………………………………iii 

ABSTRACT……………………………………………………………………………...iv 

LIST OF FIGURES………………………………………………………………………vi 

LIST OF TABLES……………………………………………………………………...viii 

ABBREVIATIONS……………………………………………………………………...ix 

1. Introduction…………………………………………………………………………….1 

1.1 Quality evaluation of formalin-fixed and paraffin-embedding tumor biopsies 

RNA sequencing data …………………………………………………………………….1 

1.1.1 Using RNA sequencing for expression profiling …………………………1 

1.1.2 RNA-seq data analysis……………………………………………..……...1 

1.1.3 Effects of tumor sample preservation in the clinic on RNA………………2 

1.1.4 Limitations of previous studies on FFPE samples RNA-seq expression 

profiling quality evaluation ………………………………………………………………4 

1.2 Characterization of the onset of multiple primary cancers ………………………5 

1.2.1 The Li-Fraumeni syndrome data …………………………………………..5 

1.2.2 Multiple primary cancers and the penetrance ……………………………..6 

1.2.3 Challenges of estimating MPC penetrance using LFS data ……………….7 

1.3 Dissertation organization ………………………………………………………...9 

2. Protocols for transcriptome sequencing of formalin-fixed tumor biopsies that best 

represent high quality frozen tissue ...………………………………………………..….11 



!

2.1 Introduction ……………………………………………………………………..11 

2.2 Methods ………………………………………………………………………..13 

 2.2.1 Tumor tissue samples …………………………………………………...13 

 2.2.2 RNA-seq library construction and sequencing …………………………15 

 2.2.3 Sequence alignment, post-alignment statistics and expression 

quantification ……………………………………………………………………………17 

 2.2.4 Data analysis ……………………………………………………………20 

 2.2.5 Quantification of CDS-expression pattern dissimilarity ………………..22 

2.3 Results ……………………………………………………………………….....23 

 2.3.1 Post-alignment statistics …………………………………………………23 

 2.3.2 Uniformity and continuity of read coverage of transcripts ……………...26 

 2.3.3 Pre-analytical sources of variance ………………………………………29 

 2.3.4 Protocols that target mRNA or deplete rRNA ………………………......30 

 2.3.5 Protocol with subsequent exon capture ………………………………. ...40 

 2.3.6 Pattern dissimilarity in measurement of coding sequence ………….…...46 

 2.3.7 Gene expression patterns associated with tumor phenotype ….…….…...48 

 2.3.8 Representative gene signatures of prognosis ……………………………55 

2.4 Discussion ………………………………………………………………………56  

3. A Bayesian estimation of semiparametric recurrent event model with applications to 

the penetrance estimation of multiple primary cancers in Li-Fraumeni 

Syndrome …………………………………………………………………...…………...60 

3.1 Introduction …………………………………………………………………......60 

3.2 The motivating data ………………………………………………………….....60 



!

3.3 Preliminary Analysis of the LFS Data ……………………………………….....62 

3.4 The model  ……………………………………………………………………..64 

 3.4.1 MPC-specific age-at-onset penetrance ………………………………....64 

 3.4.2 Semiparametric Recurrent Event Model for MPC ………………..…....65 

3.5 Computing likelihood ………………………………………………………….68 

3.5.1 Individual likelihood …………………………………………………....68 

3.5.2 Familywise likelihood …………………………………………………..69 

3.5.3 Ascertainment bias correction …………………………………………..70 

3.6 Posterior Sampling through MCMC …………………………………….……..72 

3.7 Case study………………………………………………………………………72 

 3.7.1 Model fitting………………………………………...…………………..72 

 3.7.2 Cancer risk prediction …………………………………………………..73 

 3.7.3 The MPC penetrance estimates ………………………………………...77 

 3.7.4 Comparison with penetrance estimates from literature…………………81 

3.8 Discussion………………………………………………………………………82 

4. Conclusions and Future Research 

4.1 Conclusions …………………………………………………………………....85 

4.2 Future Research ………………………………………………………………..87 

Appendix ……………………………………………………………………………….89    

Bibliography …………………………………………………………………………....93 

VITA …………………………………………………………………………………...105 

 



vi#

LIST OF FIGURES 

Figure 1.1: Overview of pre-analytical and analytical factors. …………………… 4 

Figure 2.1: Workflows of RNA-seq library preparation. …………………………. 13 

Figure 2.2: Overview of main RNA-seq data analysis. …………………………… 18 

Figure 2.3: Summary of concordant pair alignment rate. …………………………. 24 

Figure 2.4: Summary of exonic, intronic and intergenic region alignment rate of all 

mapped reads. ………………………………….………………………….………. 25 

Figure 2.5: Summary of rRNA alignment rate. ………………………………….... 25 

Figure 2.6: Summary of number of genes with TPM values greater than 0.1.  …… 26 

Figure 2.7: An illustration of mean read coverage.………………………………... 27 

Figure 2.8: Summary of mean coefficient of variation. …………………………… 28 

Figure 2.9: Summary of the percentage of gaps. …………………………………. 29 

Figure 2.10: Illustration of adjustment of mean-variance dependence. …………… 30 

Figure 2.11: Scatter plot of the first three principal components for CPM-normalized and 

variance stabilizing transformed counts. ...…………………………………………30  

Figure 2.12: Hierarchical clustering results.………….…………………………… 31 

Figure 2.13: Illustration of technical reproducibility. ……………………………. 32 

Figure 2.14-2.17: Illustration of MA plot for overall gene expression. ………….. 33 

Figure 2.18-2.20: Summary of between-protocol correlation coefficients. ………. 37 

Figure 2.21-2.23: MA-plot for FF.CR protocol as compared to other FF 

references. .………….……………………….……….…………………………… 41 

Figure 2.24-2.25: Number of false positives identified by FFPE RNA-seq data. … 44 

Figure 2.26-2.27: Pattern similarity of coding DNA sequencing. ………………… 46 



##vii 

Figure 2.28-2.32: Phenotypic differential expression analysis. …………………… 50 

Figure 3.1: Kaplan-Meier estimates of survival distribution for the first or the second gap 

times after removing data from probands.…………………………………………. 64 

Figure 3.2. ROC of 5-year risk of developing next primary cancer assessed by 10-fold 

cross-validation. …………………………………………………………………... 74 

Figure 3.3: Comparison of validation performance between our multiple primary cancer-

specific penetrance and those estimated from Kaplan-Meier (KM) method in predicting 

the first or the second primary cancer occurrence using the MD Anderson prospective 

data. …………………………………………………………………...…………… 77 

Figure 3.4: Age-at-onset penetrance for females or males without a history of cancer. The 

shaded area is the 95% credible bands. …………………………………………… 79 

Figure 3.5: Penetrance estimates of the second primary cancer since the first primary 

cancer diagnosis time, stratified by the first primary cancer diagnosis time, genotype and 

gender. ……………………………………………………………………………. 80 

Figure 3.6: Age-at-onset penetrance when with or without a history of 

cancer. ……………………………………………………………………………. 82 

Figure Appendix B: A hypothetical pedigree for illustrating likelihood calculation using 

the Elston- Stewart algorithm. …………………………………………………….. 92 

 

 

 



!

viii!

LIST OF TABLES 

Table 2.1: Summary of starting RNA materials and the related cost for the RNA-seq 

data generated in this study. ………………………………………………………. 14 

Table 2.2: Histopathology annotation, extracted RNA integrity and sample fixation 

and storage time for FFPE condition of the nine breast tumors. ………………….. 15 

Table 2.3: Summary of the median correlation coefficients. ……………………… 40 

Table 2.4: Summary of the median of mean dissimilarity scores across nine tumor 

samples. …………………………………………………………………………… 48 

Table 2.5: Summary of median AUC values of between tumor phenotype differential 

expression. ………………………………………………………………………… 49 

Table 2.6: Summary of the median spearman correlation coefficients across nine tumor 

samples for five signature gene sets. ………………………………………. 56 

Table 3.1: Summary of number of families of LFS data. …………………………  61 

Table 3.2: Number of primary cancer patients in LFS data. ……………………… 62  

Table 3.3: Number of primary cancer patients by the TP53 mutation status and gender 

in MD Anderson prospective data. ………………………………………………... 75 

Table 3.4 Summary of BIC for model selection. ………………………………….. 78 

Table 3.5 Summary of posterior estimates. ………………………………………...78 

Table 3.6: Median second primary cancer-free times since the first primary cancer 

diagnosis age and their 95% confidence intervals. ………………………………... 80 

 

  



! ix 

ABBREVIATIONS 

AUC Area under the curve 

BIC Bayesian information criteria 

CDS Coding region sequences 

CI Confidence interval 

CPM Count per million 

CR Coding region targeted protocol 

CV Coefficient of variation 

deM De-methylation/ de-modification 

DE Differential expression 

DV200 Percentage of RNA fragments longer than 200bp 

ER Estrogen receptors 

FF fresh frozen 

FFPE Formalin-fixation and paraffin-embedding 

FP False positive 

FPR False positive rate 

FPKM Fragments per kilobase of exon per million reads mapped 

GLM Generalized linear model 

HR Hormone receptors 

I.TotalRNA Total RNA library protocol with bead-based ribosomal 

RNA depletion method 

IPCW Inverse probability of censoring weight 

KM Kaplan-Meier method 



! x 

K.TotalRNA Total RNA library protocol with enzyme-based ribosomal 

RNA depletion method 

LFS Li-Fraumeni syndrome 

lowess Locally weighted scatterplot smoothing   

MCMC Markov chain Monte Carlo 

mRNA Messenger RNA 

MPC Multiple primary cancers 

NHPP Non-homogeneous Poisson process 

PCA Principal component analysis 

PCR Polymerase chain reaction 

PR Progesterone receptors 

qRT-PCR Quantitative reverse transcription PCR 

RIN RNA integrity number 

RLE relative log expression 

RNA-seq RNA sequencing 

rRNA ribosomal RNA 

ROC Receiver operating characteristics 

SPC Single primary cancer 

sRNA Sense RNA 

TP True positive 

TPR True positive rate 

TPM Transcript per million 

TN Triple receptor-negative 



! xi 

TMM Trimmed mean of M values 

UQ Upper-quartile 

vst Variance stabilizing transformation 

 

 



! ! 1 

1. Introduction 

1.1 Quality evaluation of formalin-fixed and paraffin-embedding tumor biopsies 

RNA sequencing data 

1.1.1 Using RNA sequencing for expression profiling 

The development of gene expression biomarkers for cancer tissues typically relies on 

high-dimensional technologies to discover transcripts from fresh frozen (FF) samples 

with high quality nucleic acids. Biomarkers that measure strong signals from a few 

transcripts generally translate with customized PCR or hybridization assays, but other 

biomarker indications may require more complicated algorithms involving many 

transcripts from a large set of samples with mature clinical annotations(1). RNA 

sequencing (RNA-seq) is a powerful tool that has been successfully implemented for the 

quantification of whole transcriptome abundance using FF samples(2-4). Compared to 

traditional RNA measurement methods, such as quantitative reverse transcription PCR 

(qRT-PCR) and microarray, RNA-seq can interrogate both pre-defined and novel RNA 

species at a greater dynamic range, allowing a more comprehensive exploration for non-

coding RNA biomarkers. Many previous studies have shown that RNA-seq can generate 

accurate expression profiling comparable to that of microarray, preserve biological 

variability(5), and have performance that is reproducible across laboratories and robust to 

the variation of pre-analytical factors(2, 6-9). These also make RNA-seq a promising 

platform for multigene mRNA signature-based assays with clinical validity(10).  

 

1.1.2 RNA-seq data analysis 
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There are many variations of pipelines for RNA-seq data analysis for expression profiling, 

but no optimal pipeline exists for all RNA experiments(11). The best practices of RNA-

seq data analysis depend on the scientific questions of interest, as well as pre-analytical 

and analytical factors involved in the study. For the comparative analysis of feature 

expression between formalin-fixation and paraffin embedding (FFPE) and FF samples, 

the factors that could influence the choice of RNA-seq data analysis are summarized in 

Figure 1.1. In general, the major steps of RNA-seq data analysis involve read alignment, 

quality control, quantification of feature counts and expression data normalization(11-13). 

For read alignment, different algorithms have been developed so that raw reads can be 

either mapped to the genome reference(14) or transcriptome reference(15). Multiple 

quality checks have been proposed to evaluate the quality of raw reads or of the after-

alignment read coverage(16, 17). The feature counts quantified from read alignment file 

are a biased measurement of the true abundance because of differences in library size and 

feature length. Hence, proper count data normalization is required before performing 

expression-based statistical analysis. Common within-samples normalization methods for 

RNA-seq data include count per million (CPM), fragments per kilobase of exon per 

million reads mapped (FPKM) and transcript per million (TPM) (2, 18, 19). TPM is 

reported as a preferred method as it can adjust for both library size and feature length 

effects, and it is more invariant to the change of mean expressed transcript length(15, 19).      

 

1.1.3 Effects of tumor sample preservation in the clinic on RNA 

In diagnostic pathology, FFPE is the standard method for preserving and storing 

tissue samples. FFPE samples are commonly used for analyzing protein, cell 
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morphology(20), and even DNA(21), but are incompatible for the analysis of RNA, as 

RNA is fragmented and chemically modified caused by FFPE. Multiple factors in FFPE 

procedure can influence the RNA integrity(22). For example, the formalin fixation 

process cross-links nucleic acids and proteins, and modifies the RNA by adding the 

mono-methylol to all four bases(23). The high temperature required for paraffin to 

penetrate the tissue during embedding step, as well as the storage at room temperature, 

facilitate this chemical modification, which leads to RNA degradation over time(22). As 

a result, the RNA extracted from FFPE samples has much lower yield and shorter 

fragment length compared to the high quality RNA extracted from FF samples. 

  Increasing number of studies support that RNA-seq can be used to reliably profile 

FFPE specimens, despite that the RNA derived from FFPE samples is fragmented and 

variably chemically modified. For example, Sinicropi et.al used 5-12 year old FFPE 

tumor sample RNA-seq data to successfully re-discover breast cancer recurrence risk 

RNA biomarkers that were developed based on RT-PCR(24). Adiconis et.al, Li et.al, Liu 

et.al and Graw et.al showed that overall gene expression is highly correlated (r>0.8) 

between FFPE and matched FF RNA-seq data using different types of tumor samples(25-

27). Lin et.al applied RNA-seq to FFPE bladder tumor samples to identify a gene 

signature that can predict the risk of developing non-muscle invasive versus muscle 

invasive tumors for patients with high-grade T1 bladder cancer(28).  
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Figure 1.1: Overview of pre-analytical and analytical factors relevant to the evaluation of 

FFPE sample RNA-seq data quality for expression profiling.  

 

1.1.4 Limitations of previous studies on FFPE samples RNA-seq expression profiling 

quality evaluation  

One major limitation of previous FFPE RNA-seq expression data quality evaluation 

studies is on the experimental design. For example, the reference standards or the “gold-

standards” used for the comparative analysis are usually those generated by mRNA 

sequencing or total RNA sequencing from matched FF samples(24-27). The variation and 

concordance within those FF RNA-seq data generated by different library preparation 

protocols have not been thoroughly evaluated. On the other hand, several library 

preparation protocols designed for FFPE samples, such as rRNA depletion, template 

!
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RNA random amplification, capture sequencing and chemical de-modification, have 

already been tested(10). But none of previous studies has evaluated all of these protocols 

together in one study.    

Another limitation of previous studies is the scope of evaluation metrics used for 

comparative analysis. To be analytically valid, FFPE RNA-seq data must demonstrate 

both reproducibility and accuracy in uncovering intelligent expression signals. For 

example, we expect valid FFPE RNA-seq data not only have high expression 

concordance with match FF references for both genes and coding sequences, but also 

allow us to re-discover true differential expressed genes that we have identified from the 

FF “gold-standards”. We’re also interested in whether we can use FFPE RNA-seq data to 

correctly cluster the tumor sample phenotypes or what are the dominant factors causing 

differences between FFPE and FF RNA-seq data. However, previous studies have no 

comprehensive evaluations based on these criteria.      

 

1.2 Characterization of the onset of multiple primary cancers  

1.2.1 The Li-Fraumeni syndrome data 

Li-Fraumeni syndrome (LFS) is a hereditary cancer syndrome first recognized by 

two physicians, Frederick Pei Li and Joseph F. Fraumeni Jr., after evaluating the medical 

records and death certificates from pediatric sarcoma patients(29). Individuals with LFS 

are characterized with high risk of developing early-onset, multiple and multiple types of 

primary cancers throughout his/her lifetime(30). The syndrome is associated with 

germline mutation in TP53 tumor suppressor gene, and follows an autosomal dominant 

inheritance rule(31, 32). Recent studies have shown that cancer risk in LFS patients is 
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also associated with gender(33) and the interaction effect between TP53 genotype and 

gender(34). 

The data that motivated our study is a family cohort of LFS collected through 

probands with pediatric sarcoma treated at MD Anderson Cancer Center from January 

1944 to December 1982 and their extended relatives. The data was collected based on 

probands with sarcoma diagnosed before age 16 and with at least 3 years after-diagnosis 

survival. The data collection was extended to the probands’ blood relatives, which 

includes the probands’ grandparents, parents, parental siblings, siblings and offspring. 

For each individual, the gender and the diagnoses of any malignant cancer except the 

non-melanoma skin cancer were recorded from the date of birth until the data of death or 

the study termination date, whichever came first. All cancer diagnoses were confirmed by 

medical records and death certificates. The primary cancer diagnoses were determined 

based on the histology and site information recorded for each cancer event. More details 

on inclusion criteria and cancer diagnosis confirmation can be found elsewhere (31, 35). 

We define mutation carrier in this study as someone with missense or truncation 

mutations in exons 2-11 of the TP53 gene tested from peripheral-blood samples. All 

probands were tested for the TP53 mutation status, and once positive, all of their first-

degree relatives and any other family members with a high risk of being mutation carrier 

were also tested. More information about mutation testing can be found elsewhere(33).  

 

1.2.2 Multiple primary cancers and the penetrance 

A primary cancer develops independently at different sites and histology from 

original cancer, which is not caused by extension, recurrence or metastasis(36). Multiple 
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primary cancers (MPC) refer to the case when primary cancers occur more than once per 

subject over the follow-up time. The MPC cases are getting increasingly common due to 

advances of the cancer treatment and related medical technologies. The National Cancer 

Institute estimates that there are around eleven million cancer survivors in the US as of 

2005, which is more than three times than that in 1970(37). Furthermore, surviving a 

cancer does not necessarily suggest a decreasing risk of developing another cancer. For 

example, Eggermond et.al reported that the risk for a second primary among Hodgkin 

lymphoma survivors is 4.7-fold increased compared with that in the general 

population(38). The risk of developing MPC varies by genetic susceptibility factors as 

well. For example, LFS is associated with germline mutation in TP53(39, 40). 

Penetrance is defined as the proportion of individuals with the genetic variants 

(genotype) that cause a particular trait and who have clinical symptoms of the trait 

(phenotype). It plays a crucial role in many genetic epidemiology studies to characterize 

the association of germline mutation with disease outcomes(41). For example, penetrance 

is an essential quantity for disease risk assessment, which is clinically important to 

identify at-risk individuals and to provide prompt disease prevention strategies. To be 

more specific, popular risk assessment models often require the penetrance estimates as 

inputs(42, 43).  

 

1.2.3 Challenges of estimating MPC penetrance using LFS data 

The goal of this study is to estimate MPC-specific penetrance in LFS, which is 

defined as Pr(developing the next primary cancer by age t | Genotype & (Cancer history, 

Gender). It shall therefore lead to more accurate cancer risk assessment in LFS for both 
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cancer survivors and no-cancer-history individuals by utilizing more detailed individual 

cancer histories with MPC.  

Few attempts have been made for taking into account MPC in the penetrance 

estimation. Wang et.al used Bayes' rule to calculate multiple primary Melanoma (MPM)-

specific penetrance, based on penetrance estimates for carriers, the ratio of MPM patients 

for carriers and non-carriers, and the ratio of MPM and single primary Melanoma (SPM) 

patients for carriers(44). However, they do not account for age and other factors that may 

contribute to variations observed in SPM and MPM patients, and rely on previous 

population estimates of penetrance and relative risk. To the best of our knowledge, this is 

the only work that has tried to estimate MPC-specific penetrance. 

We remark that MPC can naturally be regarded as recurrent events which have been 

extensively studied in statistics(45). However, the MPC-specific penetrance estimation 

from the LFS data is more challenging than the conventional recurrent event model due 

to the following reasons.  

First, the majority of individuals (74%) has unknown TP53 genotype in the LFS 

family data. Since the genotypes within a family are highly correlated through the rule of 

Mendelian inheritance, we cannot simply ignore the missing information. Instead, we 

need to consider all possible genotypes for untested individuals, with the probability of 

each inferred genotype calculated based on family structure.  

Second, the rate of cancer occurrence is time-varying and we need to take into 

account for time-dependent covariates like cancer status. To tackle this issue, we exploit 

the non-homogeneous Poisson process (NHPP) with time-varying occurrence rate(45-47). 

One may suggest Andersen-Gill model that extends Cox regression to the recurrent event 
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data context(48, 49). However, it cannot be directly applied to our case since there is no 

clear way to extend the partial likelihood to the family data in which the complicated 

pedigree structure should be taken into account for the estimation.  

Finally, the LFS data are collected through high-risk probands with pediatric 

sarcoma and hence are not random samples. This is often referred to as the ascertainment 

bias, which commonly occurs in rare diseases studies and should be properly corrected 

for an unbiased estimation. 

 

1.3 Dissertation organization 

This dissertation focuses on addressing the two challenges described in above 

sections. In chapter 2, we developed multiple evaluation criteria, accounting for different 

read alignment algorithms and count data normalization methods, to assess the expression 

profiling quality using FFPE tissue samples RNA-seq data, as compared to high quality 

FF references. In this study, we applied RNA-seq, following 6 different RNA-seq library 

preparation protocols, to identical pairs of breast cancer tissue that were randomized to 

FF or FFPE conditions. The parameters we used for evaluation covers post-alignment 

quality checks, read coverage quality, overall data variation, correlation, differential test 

and expression pattern similarity in coding sequences. We identified one RNA-seq library 

preparation protocol with consistent good transcript coverage uniformity and continuity, 

most concordant expression for overall and specific signature genes, and least differential 

expression when compared to the different non-capture sequenced FF samples.   

In chapter 3, we developed a novel statistical model that can estimate the MPC 

penetrance using genotype-incomplete LFS family data. In brief, we consider the MPC 
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occurrence in a randomly selected individual as a Poisson process and build the model 

with the following two major components: 1) Recurrent events modeling, which is 

devised to estimate the time varying hazard that fully characterizes the primary cancer 

occurrence process. We used a proportional hazard function where the baseline is a 

function of current age and the exponential component can incorporate covariates of 

interest. The model can thus consider effects from current age, cancer history or genetic 

factors when estimating the risk for next primary cancer development. 2) Missing 

genotype imputation via the Elston-Stewart algorithm(50), which significantly increases 

the statistical power for parameter estimation using incomplete real data. This approach 

improves computational efficiency by exploiting the Mendelian inheritance property 

when inferring the missing genotype and recursively partitioning the original family into 

nuclear ones. We also correct the ascertainment bias in the model and finally make 

inference on model parameters via the Markov Chain Monte Carlo method. Our method 

shows reasonable cancer risk prediction performance in both internal and external 

validations. 

In chapter 4, we conclude the dissertation with discussion and future research. 
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2. Protocols for transcriptome sequencing of formalin-fixed tumor biopsies that best 

represent high quality frozen tissue   

2.1 Introduction 

While it is generally best to identify gene expression biomarkers from cancer tissues 

using the highest quality of ribonucleic acids (RNA) purified from fresh frozen (FF) 

samples, any subsequent development toward diagnostic testing will require its 

translation for use with formalin-fixed paraffin-embedded (FFPE) tissue samples. 

However, the variably fragmented and chemically modified RNA derived from FFPE 

samples presents a challenge for accurate measurement of gene-expression(23, 51).  

In a different context, there is great interest to perform transcriptome sequencing 

(RNA-seq) for biomarker discovery research using large cohorts of precious archival 

FFPE samples from completed clinical trials. However, an unfavorable signal-to-noise 

ratio from FFPE samples could reduce the accuracy of biomarker discovery. Therefore, it 

is essential to select a protocol for FFPE RNA-seq libraries that yields data that is 

comparable with a “gold standard” result from FF samples. But there is more than one 

standard protocol for RNA-seq of high-quality RNA from FF tumor samples.  

We have summarized different approaches for RNA-seq library preparation in Figure 

2.1. Those include: 1) selection of messenger RNA by targeting the poly(A) 3’ tail 

(mRNA protocol), 2) depletion of more abundant ribosomal RNA (rRNA depletion) 

using bead-based method (I.TotalRNA protocol) or enzymic method (K.TotalRNA 

protocol), and 3) exon capture probes for known coding region sequence (CDS) from an 

RNA-seq library prepared (CR protocol). Data generated from the popular mRNA 

protocol using FF tissue samples (FF.mRNA library) are highly concordant with 
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microarray data in tumor gene expression signature study (8). But this protocol is not 

appropriate for degraded mRNAs from FFPE samples (52). On the other hand, total RNA 

library protocols do not restrict enrichment to poly(A)+ tailed mRNA, allowing less 

biased quantification of isoform abundance (52, 53).  

Corresponding protocols for RNA-seq from FFPE tumor samples include an 

adaptation of the mRNA protocol that combines random and poly(A) primers (sRNA 

protocol) was optimized for gene expression microarrays (SensationPlus kit, Affymetrix, 

CA); or are unchanged for the I.TotalRNA, K.TotalRNA and CR protocols (Figure 2.1). 

Total RNA protocols have achieved Pearson correlations with FF counterparts of >0.9 

(26, 52, 54). Exon capture using the CR protocol has potential for stronger correlation, 

but involves selected coverage(55). Finally, since pre-treatment heat and methyl 

saturation have been claimed to reduce methylol adducts on FFPE RNA, we evaluated 

pre-analytical demethylation (deM) of total RNA prior to library preparation using the 

CR protocol and the sRNA protocols (Figure 2.1).  

Consequently, this study was designed to directly compare the results from RNA-seq 

library protocols between optimally matched sample pairs (FF and FFPE) from 

representative breast cancers, in order to address three scenarios in translational research: 

1) biomarker discovery from FF samples phase with intention to translate for FFPE 

samples in future studies for validation and diagnostic development, 2) biomarker 

discovery from FFPE samples that is intended to be representative had high quality FF 

samples been available, and 3) translation of existing biomarkers, developed using a 

different method (such as microarrays or RNA-seq using mRNA protocol), for use with 

RNA-seq data from FFPE samples.  
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Figure 2.1: Workflows of RNA-seq library preparation. The red color indicates steps only 

applied to FF samples, while the blue indicates steps only applied to FFPE samples. The 

grey shaded boxes contain the names for each protocol. The * indicates different rRNA 

depletion methods that result in two different TotalRNA protocols, that is, RiboZero for 

I.TotalRNA and Rnase H for K.TotalRNA protocol. 

 

 

2.2 Methods 

2.2.1 Tumor tissue samples 

In order to minimize any impact from intratumoral heterogeneity, we collected fresh 

tissue, diced it into pieces of 1-2!! diameter, stirred, and then randomly assigned half to 

RNAlater solution or 10% neutral buffered formalin. The tissue in RNAlater was frozen 
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and stored at -80°C freezer (FF). The tissue in formalin was processed as a FFPE tissue 

block within the Histology and Tissue Processing Facility in MD Anderson Cancer 

Center. The phenotypes of the nine breast cancers, defined by pathologic status of 

hormone receptors (HR) and HER2 receptor were: HR+/HER2- in five, HR+/HER2+ in 

one, and triple receptor-negative (TN) in three (Table 2.1, 2.2). 

 

 

 

 

 

 

 

 

Table 2.1: Summary of starting RNA materials and the related cost for the RNA-seq data 

generated in this study. 

 

 

!

 
Histopathology 

annotation RIN 
 

DV200 
Duration 

of fixation 
(days) 

Cut slides 
Storage 

time (days) 
Tumor ID ER PR HER2 FF FFPE FFPE FFPE FFPE 

C + + - 6.7 1.7 65 2 8 
E + + - 6.7 1.7 79 1 264 
F + + - 6.9 1.6 80 3 242 
N + + - 9.3 1.3 77 3 239 
T + + - 8.2 1.2 80 1 197 
R + + + 6.8 1.9 78 1 155 
G - - - 9.3 2.2 85 1 123 

L - - - 6.9 2.2 76 1 81 
S - - - 7.6 2.0 79 1 66 

Chemistry Procedure Sample 
Size 

Starting 
RNA(!") 

Cost 
($) 

Time 
(days) 

FF.mRNA 18 500 75 2 
FF.CR 9 10 160 3 

FF.I.TotalRNA 9 100 120 2 
FF.K.TotalRNA 9 100 105 2 

FFPE.K.TotalRNA 9 100 105 2 
FFPE.I.TotalRNA 9 100 120 2 

FFPE.sRNA 18 100 170 3 
FFPE.CR 9 20 160 3 

FFPE.deM.CR 9 20 160 3 
FFPE.deM.sRNA.CR 9 100 170 3 
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Table 2.2: Histopathology annotation, extracted RNA integrity and sample fixation and 

storage time for FFPE condition of the nine breast tumors. All slides were cut right after 

the block was prepared. All the cut slides were stored at 4°C in sealed cases until they 

were used for RNA extraction.    

 

2.2.2 RNA-seq library construction and sequencing 

The FF RNA was purified from the sample in RNAlater using the RNeasy Mini Kit 

(Qiagen, Valencia, CA), while the FFPE RNA was purified from 10!" freshly-cut 

sections using High Pure FFPE RNA Isolation Kit (Roche, Indianapolis, IN). A DNase-I 

treatment step was included in both the FF and FFPE RNA isolation protocols. RNA 

concentration was quantified using Nanodrop (Nanodrop Technologies, Wilmington, DE), 

and its integrity was assessed using a Bioanalyzer 2100 and an RNA Chip assay (Agilent 

Technologies, Wilmington, DE). 

The mRNA protocol began with poly(A)+ mRNA enrichment on 500!" of total 

RNA using oligo-dT beads followed by standard procedures of TruSeq RNA Sample 

Prep Kit v2 (Illumina, San Diego, CA). Briefly, the poly(A)+ mRNA was fragmented, 

then double-stranded cDNA was synthesized using random primers. After end repair and 

ligation of dsDNA adapters, the library was amplified with 10 cycles of PCR.  

The I.TotalRNA protocol used Ribo-ZeroTM Magnetic Gold Kit to deplete ribosomal 

RNA (rRNA) from 100!" of total RNA, followed by library preparation using the 

Truseq Stranded Total RNA Sample Prep Kit (Illumina, San Diego, CA).  
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The K.TotalRNA protocol used an RNase H-based method to deplete rRNA from 

100!" of total RNA, followed by library preparation using KAPA Stranded RNA-Seq 

Kit with RiboErase (Kapa Biosystems, Wilmington, MA)  

The sRNA protocol began with whole-transcriptome amplification on 100!" of total 

RNA using SensationPlus™ Amplification Kit (Affymetrix, Santa Clara, CA). The 

protocol used the same methods to amplify the RNA template as for gene expression 

microarrays. In brief, the template RNA was reverse-transcribed into the first-strand 

cDNA using random and oligo-dT primers, then the sense RNA (sRNA) was synthesized 

by in vitro transcription. Next, 4.5!" of sRNA was subjected to rRNA depletion using 

the Ribo-ZeroTM Magnetic Gold Kit and then 50!" of rRNA-depleted sRNA was used as 

input for library construction using Truseq RNA Sample Prep Kit v2 as described in 

mRNA protocol, bypassing the poly(A)+ mRNA purification step. 

The Coding-Region (CR) protocol was performed using Truseq Access RNAseq kit 

(Illumina, San Diego, CA) following manufacturer's instruction. In brief, cDNA was 

generated using random primers from the 10!" of RNA from FF, or 20!" of RNA from 

FFPE samples. Next, sequencing adapters were ligated to the resulting cDNA followed 

by the 1st round PCR amplification (15 cycles). After validation, a 4-plex pool of 

libraries was made and the coding regions of the transcriptome were enriched by two 

cycles of hybridization and capture to ensure high specificity. Finally, the 2nd round of 

PCR (10cycles) was performed to further amplify the enriched library for sequencing.  

We also developed a de-modification (deM) protocol to leach methyl adducts from 

FFPE-derived RNA by heating it at 70°C for 30 min in a de-modification solution (1x TE 

buffer containing 20µM NH4Cl, pH7.0) (56)(57). This deM proved effective in restoring 
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the template activity of RNA in RT-PCR (unpublished data). Starting with de-modified 

RNA, we tested three additional FFPE library preparation methods: FFPE.deM.CR, 

FFPE.deM.sRNA.CR, FFPE.deM.sRNA. These methods followed the same main 

protocols mentioned above, with same amount of de-modified FFPE RNA as input. 

In each protocol, the FF RNA was subjected to fragmentation prior to reverse 

transcription and cDNA generation, but no fragmentation was performed on FFPE RNA, 

except in the K.TotalRNA protocol where the FFPE RNA was fragmented at 85°C for 3 

min according to manufacturer’s instructions. For the mRNA and sRNA protocols, the 

libraries were prepared with two technical replicates to test reproducibility.  

The size distribution of RNA-seq libraries was measured to be in the range of 200–

600 bp and peaked around 270 bp using Agilent High Sensitivity DNA kit on a 

Bioanalyzer Libraries were quantified using KAPA Library Quantification Kits (Kapa 

Biosystems, Wilmington, MA) and then paired-end sequenced on Illumina Hi-Seq 2000 

Sequencing System with two or four libraries pooled in one lane. All libraries were 

randomly assigned to a lane (4 per lane) of the Hi-Seq 2000 following a rule that no 

technical replicates could share the same lane. We generated 100 base-paired reads for 

sample C and 50 base-paired reads for the other eight samples for the FF.mRNA and 

FFPE.sRNA protocols. All remaining libraries had 75 base-paired reads.  

 

2.2.3 Sequence alignment, post-alignment statistics and expression quantification 

The computational analysis of RNA-seq data performed in this study can be 

summarized in Figure 2.2. We mapped reads to the human reference genome hg19 using 

Tophat2(14) (v.2.0.4, default parameters and supplying the -G option with GTF 
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annotation file downloaded from UCSC genome browser). The concordant pair alignment 

rate was obtained from the Tophat2 output. For rRNA alignment, we mapped reads to 

manually merged human rRNA references using BWA(58) in paired-end mode as 

previously described(26). Gene-level expression was quantified by htseq-count(59) in the 

"union" mode and using same GTF annotation file for mapping. To quantitate CDS-level 

expression, we first modified the GTF annotation file by adding a new feature ID 

"exon_id" into the attribute. The exon_id concatenates the feature type, start and end 

position and gene id for each row. The number of reads mapped to coding sequence was 

counted by htseq-count ("intersection-nonempty" mode, supplying the -t option with 

"CDS" and the -i option with "exon_id"). 
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Figure 2.2: Overview of main RNA-seq data analysis performed in this study.  

 

We used RNA-SeQC (16) (v.1.1.8 and same genome reference and GTF annotation 

file as that used for Tophat2 alignment), with genomic coordinate-sorted alignment file as 

the input, to calculate the mapping rate for exonic, intronic and intergenic regions, the 

coefficient of variation and the number of gaps in reads coverage. To calculate the 

coefficient of variation, the transcript length was normalized to 100 quantiles and the 

mean coverage signal for each quantile was calculated. The coefficient of variation of a 

transcript was calculated by dividing the standard deviation with the mean read coverage 

for that transcript. A smaller value of coefficient of variation indicates a greater 

uniformity of read coverage. The percentage of gaps (defined as >5 consecutive bases 

without coverage) was calculated by dividing the cumulative gap length by the 

cumulative transcript length. A smaller value of gap percentage indicates a greater 

continuity of read coverage.           

We also mapped reads to the human reference transcriptome using RSEM(15) 

(v.1.2.11, Bowtie v.1.0.0 with default setting, and supplying the rsem-prepare-reference 

with UCSC knownGene transcriptome fasta file, and the rsem-calculate-expression with 

paired end mode). In contrast to Tophat2, RSEM avoids dealing directly with the splicing 

junction problem, by aligning the reads to the transcript reference and making inference 

on the relative abundance of each isoform from a mixture model built based on the RNA-

seq data generative process(15, 18). The relative abundance was further adjusted by the 

effective length of isoform as an expression measure named fragments per kilobase of 

exon per million reads mapped (FPKM). An alternative expression measure, named 
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transcripts per million (TPM), was calculated by normalizing FPKM with the sum of per-

nucleotide relative abundance over all isoforms. TPM is preferred to FPKM in some 

previous studies as it is more invariant to the change of mean expressed transcript 

length(18, 19). 

 

2.2.4 Data analysis 

Genes or CDS targeted by the CR protocol were identified using the manifest file for 

the Nextera Rapid Capture Exome preparation kit (Illumina, San Diego, CA), which 

cover same genes as the Truseq Access RNAseq kit. The poly(A)+ genes were kept by 

filtering out poly(A)- genes as previously reported(60). The resultant 20,381 coding-

region targeted and ploy(A)+ genes were then included for further analysis whenever the 

mRNA and CR protocols are involved. For reproducibility and correlation analysis, the 

gene expression data were normalized to X by either CPM or FPKM or TPM and log 

transformed using the formula !! = !"#!(! + 1).  

A variance stabilizing transformation was applied to the CPM-normalized count data 

based on the empirically estimated functional relation between variance and mean as 

previously described(61). Principal component analysis (PCA) was performed on the 

transformed data using the 'prcomp' function in R after the gene variables were centered 

to zero and scaled to unit variance. A total of 17,395 Poly(A)+ genes targeted by CR and 

with at least 1 normalized counts in five or more samples were included for the analysis. 

A total of 3543 genes with variance greater than 1 across all libraries were included for 

the hierarchical clustering analysis, where Euclidean distance and average linkage criteria 

were used. The ‘pvclust’ R package(62) was used to perform 1000 bootstrap resamples 
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on the clustering, and the bootstrap probability (bp) or the frequency that a cluster 

appears in bootstrap replicates was calculated as a measure of cluster uncertainty.   

For differential gene expression analysis on distinct biological groups, the raw gene-

expression data were normalized by two representative methods, (i) upper-quartile 

(UQ)(63): a global scaling method by the top quantile of the per-sample count 

distribution; and (ii) the trimmed mean of M values (TMM)(64): a global scaling method 

using an empirical estimate of relative RNA production of two samples. The TMM is 

based on the assumption that the majority of genes are not differentially expressed 

between groups. It doubly trims the noisy genes whose expression contributes to the bias 

of log-fold-changes (M values), and normalizes the raw gene count data with the 

weighted mean of adjusted M values, where the weight is the inverse of variance of the M 

values. Only genes with at least 5 reads in two or more samples prepared by one library 

construction method were retained for normalization. This resulted in an average of 

16,810 (sd = 265) genes for further analysis. The relative log expression (RLE) is defined, 

for each gene, as the log ratio of read counts to the median count across all samples. The 

normalized counts were fit into negative binomial GLM for differential expression 

analysis using edgeR(65), with tag-wise dispersion. For receiver operating characteristic 

curves (ROC), either one of FF measures (FF.mRNA, FF.I.TotalRNA, FF.K.TotalRNA 

or FF.CR) was used as the gold standard to define truly differentially expressed genes. 

True positives are defined as genes measured as differentially expressed in both the gold 

standard and any one of other protocols, and the true positive rate (TPR) is defined as the 

number of true positives divided by the number of differentially expressed genes 

identified by the gold standard at a specific threshold. The false positive rate (FPR) is 
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analogously defined as the number of false positives divided by the number of non-

differentially expressed genes according to the gold standard. The genes identifiable in 

every library preparation group were included for ROC. The most strongly differentially 

expressed genes were removed by filtering out genes with adjusted p-values smaller than 

0.01. This resulted in a total ~15,000 genes for the ROC.  

For library preparation method-based differential expression analysis, we used the 

paired design in edgeR to identify genes differentially expressed in response to library 

preparation method compared to the reference group for all nine tumors, adjusting for 

baseline difference between tumors. Only genes with at least 5 reads in five or more 

samples out of all 90 libraries were retained for normalization. This resulted in a total of 

18,177 CR-targeted and poly(A)+ genes for further analysis. All analysis and data 

visualization are performed using R (http://www.r-project.org). 

 

2.2.5 Quantification of CDS-expression pattern dissimilarity 

Let !!"# be the CPM-normalized counts for !th CDS of !th gene in !th sample. We 

define the within-gene relative expression of !th CDS as 

!!"# = !
!!"#
!!"#!

!

where ! = 1,… ! ,!! !; ! = 1,… ! , ! ; ! = 1,… ! ,!. The pattern dissimilarity score used to 

measure pattern dissimilarity of !th gene between any two samples (i.e. ! = 1 or 2) is 

defined as 

!! = !
|!!"! − !!!"!|

!!!
!

The mean dissimilarity score between the two samples is then 
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! = !
!!"! − !!!"!

!!!!

! !

In our study, we only consider CR-targeted poly(A)+ genes with two or more non-zero 

expressed CDS. This results in an average of 15,670 (!" = 134) genes.  

 

2.3 Results 

RNA extracted from FFPE samples was severely degraded, with RNA integrity 

number (RIN) of 1.2-2.2, versus 6.7-9.3 from FF samples (Table 2.2). All libraries 

generated >49 million raw reads (mean= 113 million, sd= 27 million). 

 

2.3.1 Post-alignment statistics 

We calculated the alignment rate for exonic, intronic, intergenic and all genomic 

regions for all libraries (Figure 2.3 and 2.4). Libraries from protocols that did not include 

exon capture probes (I.TotalRNA, K.TotalRNA, sRNA) had different mapping rates from 

FFPE samples than from FF samples, with the following mean differences: lower for 

exonic (overall mean difference= 0.335, ! < 10!!"), higher for intronic (overall mean 

difference= 0.309, ! < !10!!"), and comparable for intergenic sequence reads. The CR 

protocol (that used exon capture probes) had highly concordant mapping between FF and 

FFPE. Efficiency of rRNA depletion was highest for the CR protocol, followed by 

FFPE.K.TotalR (Figure 2.5). Additionally, the FFPE.sRNA protocol had lowest mapping 

rate for concordant pairs of reads, and least efficient rRNA depletion. Overall, The 

number of genes with read coverage (TPM > 0.1) was slightly higher in FFPE samples 
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than in FF samples for both non-CR and CR protocols (Figure 2.6), consistent with 

another report (27). 

 

Figure 2.3: Summary of concordant pair alignment rate. Each box contains the mapping 

rate from nine tumor samples. The concordant pairs are those aligned with proper 

orientation and distance between the pair. 
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Figure 2.4: Summary of exonic, intronic and intergenic region alignment rate of all 

mapped reads. Each box contains the mapping rate from nine tumor samples. 
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Figure 2.5: Summary of rRNA alignment rate. Each box contains the mapping rate from 

nine tumor samples. 

 
Figure 2.6: Summary of number of genes with TPM values greater than 0.1.   
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2.3.2 Uniformity and continuity of read coverage of transcripts  

The uniformity of read coverage, as illustrated in Figure 2.7, was measured by the 

mean coefficient of variation (CV) across the top 1000 highly expressed transcripts, and 

coverage continuity was evaluated through the percentage of gaps without read coverage 

(Figure 2.8 and 2.9). FFPE.I.TotalRNA and FFPE.K.TotalRNA libraries demonstrated 

the most uniform and continuous coverage among protocols for FFPE samples, and were 

equivalent to protocols for FF samples. In contrast, the CR protocol produced non-

uniform coverage, with high percentage of gaps, in both FF and FFPE libraries. The 

FFPE.sRNA protocol also introduced non-uniformity. 

 

Figure 2.7: An illustration of mean read coverage for each normalized base position from 

top 1000 highly expressed transcripts for two libraries from FF sample G. The transcript 
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length is normalized to 100 quantiles and the mean coverage signal for each quantile is 

calculated. The coefficient of variation (in parenthesis) of a sample is the standard 

deviation divided by the mean of mean read coverage for that sample.       

 

 

Figure 2.8: Summary of mean coefficient of variation (cv) of top 1000 highly expressed 

transcripts for all samples. Each box summarizes the mean cv from nine samples for one 

library preparation protocol. A lower cv value indicates better uniformity of read 

coverage.   
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Figure 2.9: Summary of the percentage of gaps of top 1000 highly expressed transcripts 

for all samples. Each box summarizes the percentage from nine samples for one library 

preparation protocol.  
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(average bootstrap probability= 0.93), showed that the major tumor phenotypes (HR+ vs. 

HR-) and the source tumor, clustered together with FFPE samples (Figure 2.12).    

 

 

Figure 2.10: Scatter plot of per-gene standard deviation across all 90 libraries, against the 

rank of the mean expression level when with or without between sample normalization 

methods. Both log transformation and the variance stabilizing transformation (vst) can 

approximate variance-mean independence or homoscedasticity. Note that in the figure the 

standard deviation was added with one and then log transformed.    

    

 

Figure 2.11 Scatter plot of the first three principal components for CPM-normalized and 

variance stabilizing transformed counts of 20,381 CR-targeted poly(A)+ genes. Each 

●

●

● ●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

● ●

●

●

● ●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−100 −50 0 50

−5
0

0
50

10
0

PC1

PC
2

●

●

W CR
W/O CR

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

−50 0 50 100

−1
00

−5
0

0
50

10
0

PC2

PC
3

●

FFPE
ER+/PR+/HER2−
ER+/PR+/HER2+
ER−/PR−/HER2−

●

FF
ER+/PR+/HER2−
ER+/PR+/HER2+
ER−/PR−/HER2−

A� B�



! ! 31 

point corresponds to one of 90 libraries. A) the gray color indicates samples prepared 

with CR and the black for those without CR treatment. A 38.8% of total variation comes 

from CR treatment. B) the gray color indicates FF samples and the black for FFPE 

samples. The symbol shape indicates the different biological group. The biological 

differences and FFPE effects are captured, which accounts for 20.6% of total variation. 

 

2.3.4 Protocols that target mRNA or deplete rRNA 

We performed technical replicates from source RNA for the FF.mRNA and 

FFPE.sRNA protocols in all 9 tumors, with replicate library preparation occurring on 

different days. The raw expression values were scale-normalized by total count and 

transformed to log2 count per million (CPM). Technical replicates were highly correlated 

(Spearman rho ≥ 0.992) for all samples (Figure 2.13).  
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Figure 2.12: Hierarchical clustering of all 90 samples. The bootstrap probability (bp) or 

the frequency that a cluster appears in bootstrap replicates is annotated in blue.  
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Figure 2.13: Summary of spearman’s rho between two replicates using FF.mRNA or 

FFPE.sRNA protocols as a measure of technical reproducibility. 
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FFPE.K.TotalRNA were still centered around zero at different mean expression levels. 

However, the log ratio values of FFPE.CR to the FF reference deviated from zero at both 

low and high expression levels. The same patterns were observed for all other tumor 

samples (Figure 2.15-2.17). These observations suggest that the TotalRNA protocols 

produced high-quality FFPE RNA-seq data that was comparable to the FF RNA-seq data.  

The FFPE.K.TotalRNA and FF.K.TotalRNA libraries were highly correlated 

(median rank correlation 0.973 using the TPM measure), significantly higher than 

FF.K.TotalRNA with FF.CR (mean difference = 0.066, ! < 10!!), or any other FFPE 

protocol (lowest mean difference = 0.019, ! = 0.031) (Figure 2.18). Results were similar 

using CPM and FPKM measures (Figure 2.19-2.20). The FFPE.K.TotalRNA also had the 

highest median rank correlation with FF.mRNA and FF.I.TotalRNA, in spite of 

normalization methods used (Figure 2.18-2.20). We did note consistently low correlation 

between FF and FFPE for sample N across all the protocols.  

 

 

Figure 2.14: MA-plot of 20,381 CR targeted poly(A)+ genes for tumor sample C when 

using FF.K.TotalRNA sample C library as the reference. A) MA plot for tumor C 

between FF.K.TotalRNA and FF.I.TotalRNA; B) MA plot for tumor C between 

FF.K.TotalRNA and FFPE.K.TotalRNA; C) MA plot for tumor C between 

A� B� C�
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FF.K.TotalRNA and FFPE.CR. M is the log2-transformed expression of a gene from first 

library divided by that from the second library, while the A is the mean log2-transformed 

expression of the gene. The red curve indicates the locally weighted scatterplot smoother 

(lowess) fitted to the data. 

 

  

 

 

Figure 2.15: MA-plot for FF.I.TotalRNA protocol as compared to FF.K.TotalRNA for 

nine breast tumors. The red curve indicates the lowess smoother fitted to the data.  
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Figure 2.16: MA-plot for FFPE.K.TotalRNA protocol as compared to FF.K.TotalRNA 

for nine breast tumors. The red curve indicates the lowess smoother fitted to the data.  
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Figure 2.17: MA-plot for FFPE.CR protocol as compared to FF.K.TotalRNA for nine 

breast tumors. The red curve indicates the lowess smoother fitted to the data. 
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Figure 2.18. Summary of between-protocol correlation coefficients based on TPM. The 

main title of each figure is the reference protocol used for comparison. Each dot is the 

Spearman rho estimate calculated between the reference library and the library showing 

on the x axis. Each box summarizes the Spearman rho estimates from nine breast tumor 

samples. The gray dot indicates the tumor sample N. 
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Figure 2.19: Summary of between-protocol correlation coefficients based on CPM. The 

main title of each figure is the reference protocol used for comparison. Each dot is the 

Spearman’s rho estimate calculated between the reference library and the library showing 

on the x axis. Each box summarizes the Spearman’s rho estimates from nine breast tumor 

samples. The gray dot indicates the tumor sample N.  
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Figure 2.20: Summary of between-protocol correlation coefficients based on FPKM. The 

main title of each figure is the reference protocol used for comparison. Each dot is the 

Spearman’s rho estimate calculated between the reference library and the library showing 

on the x axis. Each box summarizes the Spearman’s rho estimates from nine breast tumor 

samples. The gray dot indicates the tumor sample N.  
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2.3.5 Protocol with subsequent exon capture  

Subsequent use of exon capture probes after TotalRNA library preparation (CR 

protocol) resulted in a median rank correlation of 0.980 between FF and FFPE, but the 

FF.CR had much lower correlation with non-CR libraries (lowest mean difference = 

0.063, ! < 10!! using TPM) (Figure 2.18 and Table 2.3). Comparing the log ratio values 

across all protocols for FF samples, the CR protocol tended to overly enrich the highly 

expressed genes, and was more likely to not capture low expressed genes (Figure 2.14 

and Figure 2.21-2.23). Pre-analytical approaches to de-modification (deM) of methyol 

adducts from FFPE tissue-derived RNA using heat and amines, or random and dT 

primers for mRNA (sRNA protocol) had little effect on the FFPE.CR protocol (Figure 

2.18 and Table 2.3). Addition of the deM method (FFPE.deM.CR) slightly increased 

concordance of expression but was not statistically significant. Similarly, the sRNA 

method (FFPE.deM.sRNA.CR) slightly increased the concordance of expression but was 

not statistically significant.  

 

!

 

          Reference 
Case 

 
FF.mRNA 

 
FF.I.TotalRNA 

 
FF.K.TotalRNA 

 
FF.CR 

FF.mRNA - - - - 
FF.I.TotalRNA 0.979 / 0.970  - - - 
FF.K.TotalRNA 0.977 / 0.967 0.991 / 0.988 - - 

FF.CR 0.917 / 0.897 0.931 / 0.915 0.923 / 0.908 - 
FFPE.I.TotalRNA 0.940 / 0.927 0.969 / 0.963 0.963 / 0.959 0.933 / 0.911 
FFPE.K.TotalRNA 0.947 / 0.928 0.974 / 0.964 0.980 / 0.973 0.911 / 0.880 

FFPE.sRNA 0.946 / 0.900 0.968 / 0.939 0.968 / 0.942 0.910 / 0.856 
FFPE.deM.CR 0.883 / 0.867 0.908 / 0.891 0.899 / 0.884 0.983 / 0.979 

FFPE.CR 0.888 / 0.872 0.912 / 0.894 0.903 / 0.887 0.983 / 0.980 
FFPE.deM.sRNA.CR 0.897 / 0.871 0.915 / 0.889 0.911 / 0.892 0.974 / 0.965 
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Table 2.3: Summary of the median correlation coefficients using either CPM (left) or 

TPM (right). The highest median for FFPE protocols are highlighted in bold.  

 

 

Figure 2.21: MA-plot for FF.CR protocol as compared to FF.mRNA for nine breast 

tumors. The red curve indicates the lowess smoother fitted to the data.  
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Figure 2.22: MA-plot for FF.CR protocol as compared to FF.I.TotalRNA for nine breast 

tumors. The red curve indicates the lowess smoother fitted to the data.  
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Figure 2.23: MA-plot for FF.CR protocol as compared to FF.K.TotalRNA for nine breast 

tumors. The red curve indicates the lowess smoother fitted to the data.  

 

Further investigating these protocol-induced biases, we looked at the number of 

genes that would be considered as “differentially expressed” or “false positive” (FP), 

when we compared data from different library protocols with those from the FF reference 

standards (Figure 2.24 and 2.25). Fewer FP genes would suggest fewer artifacts 
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introduced by a protocol. FFPE.K.TotalRNA RNA-seq data, among all FFPE data, gave 

the fewest genes with significant expression differences at various p-value thresholds 

using different data normalization methods. In contrast, FF.CR, rather than a FFPE 

protocol, was the most biased method, with 84.2% of all genes identified as significantly 

different in expression from FF.mRNA at an adjusted p-value cutoff of 0.01. Also, there 

were fewer FP genes from FFPE.CR data when compared to FF.CR data, but not when 

either library used a non-CR protocol.  
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Figure 2.24: Number of genes identified to be differentially expressed between a 

reference FF protocol, as shown in the main title for each plot, and one of the other 

library preparation methods. A gene is considered as differentially expressed if its 

adjusted p-value from a test of differential expression is lower than the selected cutoff. 

The data is normalized by UQ method.    

 

 

Figure 2.25: Number of genes identified to be differentially expressed between a 

reference FF protocol, as shown in the main title for each plot, and one of the other 

library preparation methods. A gene is considered as differentially expressed if its 
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adjusted p-value from a test of differential expression is lower than the selected cutoff. 

The data is normalized by TMM method.    

 

2.3.6 Pattern dissimilarity in measurement of coding sequence  

 We used a pattern dissimilarity score to measure the differences in expression 

patterns of CDS between library protocols, allowing direct comparison of non-CR and 

CR protocols. A smaller value of the score indicates higher similarity between a protocol 

and a FF reference. The distributions of dissimilarity scores across all genes were similar 

within each protocol, but varied across protocols (Figure 2.26). FFPE.K.TotalRNA had 

the lowest mean dissimilarity score when using FF non-CR libraries as the reference 

(Figure 2.27 and Table 2.4).  
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Figure 2.26: Distribution of dissimilarity score d values for all genes in each sample. 

Tumor samples processed by the same library preparation method are shown in the same 

color. 

 

 

Figure 2.27: Boxplot of mean dissimilarity scores for CR-targeted poly(A)+ genes with 

two or more expressed cds. Each point is the mean dissimilarity score calculated between 

a reference FF protocol, as shown in the main plot title, and one of the other library 

preparation methods. 
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Table 2.4: Summary of the median of mean dissimilarity scores across nine tumor 

samples. The lowest median scores for FFPE protocols are highlighted in bold.  

 

2.3.7 Gene expression patterns associated with tumor phenotype  

We analyzed differential expression (DE) of genes comparing HR+/HER2- and TN 

breast cancers within each protocol. Overall, the normalized data were distributed around 

zero relative log expression, and were clustered by tumor phenotypes in the first two 

principal components. The p-value from DE analysis followed the ideal uniform 

distribution for non-DE genes, with a spike close to zero for the DE genes (Figure 2.28). 

ROC curves represented the sensitivity and specificity of the DE analyses using each FF 

reference as the gold standard. FFPE.K.TotalRNA achieved high and stable area under 

the curve (AUC) (0.921 - 0.933) at different cutoffs set for each FF gold standard, even 

after the strongest DE genes in the gold standards had been filtered out (Figure 2.29-2.32 

and Table 2.5). The best agreement between FFPE protocols and each FF standards was 

as follows: FFPE.sRNA with FF.mRNA, FFPE.K.TotalRNA with both FF.I.TotalRNA 

and FF.K.TotalRNA, and FFPE.CR with FF.CR (Table 2.5).   

!

 

          Reference 
Case 

 
FF.mRNA 

 
FF.I.TotalRNA 

 
FF.K.TotalRNA 

 
FF.CR 

FF.mRNA - - - - 
FF.I.TotalRNA 0.055 - - - 
FF.K.TotalRNA 0.059 0.05 - - 

FF.CR 0.093 0.092 0.095 - 
FFPE.I.TotalRNA 0.074 0.068 0.071 0.09 
FFPE.K.TotalRNA 0.071 0.061 0.058 0.097 

FFPE.sRNA 0.077 0.075 0.077 0.094 
FFPE.deM.CR 0.097 0.095 0.097 0.063 

FFPE.CR 0.096 0.094 0.096 0.062 
FFPE.deM.sRNA.CR 0.104 0.103 0.104 0.077 
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Table 2.5: Summary of median AUC values of between tumor phenotype differential 

expression using either UQ (left) or TMM (right) normalization. The highest median 

AUC values for FFPE protocols are highlighted in bold.  
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      Reference 
Case  

 
FF.mRNA 

 
FF.I.TotalRNA 

 
FF.K.TotalRNA 

 
FF.CR 

FF.mRNA - - - - 
FF.I.TotalRNA 0.977 / 0.975 - - - 
FF.K.TotalRNA 0.977 / 0.976 0.987 / 0.987 - - 

FF.CR 0.963 / 0.962 0.967 / 0.966 0.968 / 0.966 - 
FFPE.I.TotalRNA 0.919 / 0.917 0.929 / 0.923 0.931 / 0.929 0.917 / 0.913 
FFPE.K.TotalRNA 0.921 / 0.918 0.932 / 0.925 0.933 / 0.930 0.910 / 0.907 

FFPE.sRNA 0.926 / 0.923 0.928 / 0.922 0.933 / 0.929 0.904 / 0.901 
FFPE.deM.CR 0.920 / 0.919 0.924 / 0.918 0.929 / 0.925 0.923 / 0.921 

FFPE.CR 0.921 / 0.919 0.924 / 0.918 0.928 / 0.924 0.928 / 0.925 
FFPE.deM.sRNA.CR 0.911 / 0.910 0.912 / 0.907 0.921 / 0.918 0.913 / 0.911 
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Figure 2.28: Relative log expression boxplot, principal component analysis, and p-value 

distribution for ER&PR positive (tumor ID: C, E, F, N, T) and triple negative (tumor ID: 

G, L, S) tumors for each library preparation group. The data were normalized by UQ 

method.  
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Figure 2.29: Between-tumor phenotype differential expression analysis results with 

FF.mRNA as the reference. First row: differential expression analysis results based on 

data normalized by UQ; Second row: differential expression analysis results based on 

data normalized by TMM; Left column: ROC curve for the differential expression 

analysis between ER+/PR+/HER2- and ER-/PR-/HER2- tumor samples. The adjusted p-

value cutoff is 0.10 for gold standard, which is the FF.mRNA measures. AUC for each 

curve is included in the parenthesis in the figure legend. Abbreviations: TPR, true 

positive rate; FPR, false positive rate; Right column: Plot of AUC as a function of cutoff 

values for gold standard. Genes with adjusted p-value smaller than 0.01 in FF.mRNA 

group were removed.  
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Figure 2.30: Between-tumor phenotype differential expression analysis results with 

FF.I.TotalRNA as the reference. First row: differential expression analysis results based 

on data normalized by UQ; Second row: differential expression analysis results based on 

data normalized by TMM; Left column: ROC curve for the differential expression 

analysis between ER+/PR+/HER2- and ER-/PR-/HER2- tumor samples. The adjusted p-

value cutoff is 0.10 for gold standard, which is the FF.I.TotalRNA measures. AUC for 

each curve is included in the parenthesis in the figure legend. Abbreviations: TPR, true 

positive rate; FPR, false positive rate; Right column: Plot of AUC as a function of cutoff 
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values for gold standard. Genes with adjusted p-value smaller than 0.01 in 

FF.I.TotalRNA group were removed.  

 

 

 

Figure 2.31: Between-tumor phenotype differential expression analysis results with 

FF.K.TotalRNA as the reference. First row: differential expression analysis results based 

on data normalized by UQ; Second row: differential expression analysis results based on 

data normalized by TMM; Left column: ROC curve for the differential expression 
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analysis between ER+/PR+/HER2- and ER-/PR-/HER2- tumor samples. The adjusted p-

value cutoff is 0.10 for gold standard, which is the FF.K.TotalRNA measures. AUC for 

each curve is included in the parenthesis in the figure legend. Abbreviations: TPR, true 

positive rate; FPR, false positive rate; Right column: Plot of AUC as a function of cutoff 

values for gold standard. Genes with adjusted p-value smaller than 0.01 in 

FF.K.TotalRNA group were removed. 
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Figure 2.32: Between-tumor phenotype differential expression analysis results with 

FF.CR as the reference. First row: differential expression analysis results based on data 

normalized by UQ; Second row: differential expression analysis results based on data 

normalized by TMM; Left column: ROC curve for the differential expression analysis 

between ER+/PR+/HER2- and ER-/PR-/HER2- tumor samples. The adjusted p-value 

cutoff is 0.10 for gold standard, which is the FF.CR measures. AUC for each curve is 

included in the parenthesis in the figure legend. Abbreviations: TPR, true positive rate; 

FPR, false positive rate; Right column: Plot of AUC as a function of cutoff values for 

gold standard. Genes with adjusted p-value smaller than 0.01 in FF.CR group were 

removed.     

 

2.3.8 Representative gene signatures of prognosis 

We compared 5 published breast cancer gene expression signatures (recurrence score 

(Oncotype DX), PAM50, sensitivity to endocrine therapy (SET) index, mammaprint and 

PI3-kinase index (PI3K)) across the 3 FFPE protocols (I.TotalRNA, K.TotalRNA and 

sRNA) and 3 FF protocols as standards (mRNA, I.totalRNA and K.TotalRNA) (10, 67-

71). Best correlations using FFPE protocols with FF.mRNA (range 0.911 - 0.934) were 

not as strong as with FF.I.TotalRNA (range 0.952 - 0.975) or FF.K.TotalRNA (range 

0.956 - 0.986) protocols (Table 2.6). The FFPE.K.TotalRNA protocol had the highest 

observed Spearman correlation coefficient in 13 of these 15 comparisons.  
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Table 2.6: Summary of the median spearman correlation coefficients across nine tumor 

samples for five signature gene sets. The highest median scores for FFPE protocols are 

highlighted in bold.  

 

2.4 Discussion 

Overall, FFPE RNA-seq data reliably captured transcriptional profiles and 

differences in tumor phenotype-based expression in breast cancer samples, just not quite 

as well as FF RNA-seq data. Principle component analyses demonstrated the following 

order of variables influencing gene expression measurements from RNA-sequencing: i) 

whether the library preparation protocol used exon capture for coding region (CR); ii) 

whether the samples was from FF tissue or FFPE tissue; and iii) the biological phenotype 

of the breast cancer based on hormone receptors and HER2 receptor status (Figure 2.2). 

Generally, we observed small differences in performance between non-CR protocols. 

However, even small differences can have important effects on large-scale genomic data 

for biomarker discovery, validation or subsequent diagnostic development. Nevertheless, 

we identified one protocol, FFPE.K.TotalRNA, with consistently good transcript 

coverage uniformity and continuity; most concordant expression; and least differential 

expression when compared to the different non-CR protocols with fresh tissue. This 

!

 

FF reference mRNA I.TotalRNA K.TotalRNA 

FFPE protocol 
I.Total

RNA 

K.Total

RNA 

sRNA I.Total

RNA 

K.Total

RNA 

sRNA I.Total

RNA 

K.Total

RNA 

sRNA 

Oncotype DX 0.909 0.93 0.934 0.97 0.975 0.96 0.969 0.986 0.974 

PAM50 0.901 0.911 0.901 0.953 0.953 0.937 0.957 0.972 0.954 

SET 0.898 0.911 0.898 0.94 0.96 0.942 0.936 0.968 0.95 

Mammaprint  0.905 0.924 0.921 0.947 0.952 0.95 0.932 0.956 0.936 

PI3K  0.926 0.909 0.912 0.956 0.961 0.953 0.955 0.971 0.954 
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protocol utilized RNase H-based rRNA depletion method and outperformed another 

similar TotalRNA-seq method, which used RiboZero to remove rRNA. It had a 

reasonable requirement of total RNA input (100!") for FFPE samples, which is crucial 

for studies using tumor biopsy samples.  

The first translational research scenario that we posed, in the Background section, 

considered the best pairing of protocols that would enable discovery using FF samples 

with intention to later translate for use with FFPE samples. Overall, we favor the 

K.TotalRNA as consistently best, or close to best performance with FFPE protocols, 

when compared to FF.mRNA, FF.I.TotalRNA or FF.K.TotalRNA as reference FF 

protocols. This interpretation was supported by most parameters that we studied – 

including the quality of read coverage, pattern of coding sequence expression, translation 

of overall or phenotype-related gene expression profiles and prognostic signatures. 

The CR protocols yielded concordant results, but very different from all other (non-

CR) protocols. So a CR protocol used for discovery (FF) would preclude other protocols 

for later translation to FFPE samples (Figures 2, 4). Hence, future application of 

customized assays might also be biased. Also, changes to the population of exon capture 

probes within a commercial kit over time could be a potential risk to this approach. 

The most generalizable results from FFPE samples were obtained using the 

Total.RNA protocols without exon capture. Although similar, the FFPE.K.TotalRNA 

protocol produced slightly stronger results than the FFPE.I.TotalRNA protocol. So for 

our second scenario, we prefer the K.TotalRNA protocol for best representation of the 

transcriptome in FFPE samples utilized for discovery research – aiming to represent the 

transcriptional information that FF samples would have provided.  
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Our third translational research scenario involves the translation of an existing gene 

expression signature that was previously developed using a different method (e.g. 

microarray) or a particular RNA-seq protocol. Again, the FFPE.K.TotalRNA protocol 

had the best performance for total transcriptional profile, coding sequence, phenotypic 

discrimination, and for specific gene expression signatures.  

The formalin fixation process is known to cause cross-linkage between nucleic acids 

and proteins, and mono-methyl addition to the RNA bases(23). Although we tested a 

method of chemical de-modification of total RNA, our results showed negligible effect, 

and argue against the incorporation of this method for RNA-seq of FFPE samples (Figure 

4). However, due to limited tumor sample total RNAs, we did not test the performance of 

potential protocols combining de-modification with sRNA alone or TotalRNA methods.  

The inclusion of random and dT primers (sRNA protocol) to simulate the FF.mRNA 

protocol produced good concordance overall, but introduced non-uniformity and 

discontinuity of read coverage across the transcriptome. So there seems to be no 

advantage to incorporating these innovations for RNA-seq of FFPE samples.  

Limitations to our study include small sample size (although cancers were selected to 

represent biologic diversity), optimally short time to fixation of tissues, and lack of 

generalizability (single institution conditions of tissue processing). Also, the effects of 

long-term storage of FFPE samples could not be tested – but would be expected from a 

completed clinical trial. Also, several of the cases had prolonged storage of cut FFPE 

sections (at 4°C) until RNA purification. This could have compromised the FFPE library 

protocols for this comparison, but can also be viewed as stress-testing the FFPE-derived 

RNA. Notwithstanding these limitations, we believe that the results from this study will 
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be helpful to translational researchers as they consider how to obtain accurate gene 

expression by applying RNA-seq methods to FFPE tumor samples.   
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3. A Bayesian estimation of semiparametric recurrent event model with applications 

to the penetrance estimation of multiple primary cancers in Li-Fraumeni Syndrome  

3.1 Introduction 

In this chapter, we propose a Bayesian semiparametric recurrent event model based 

on NHPP. We define and exploit what we call a familywise likelihood in order to 

maximally utilize the genetic information shared by individuals within the same family. 

In particular, we apply the peeling algorithm(50) to evaluate the familywise likelihood 

with large amount of missing genotype information. The ascertainment-corrected joint 

model(72, 73) is used to correct the ascertainment bias.  

The rest of this paper is organized as follows. In Section 3.2, we introduce the LFS 

family data that motivate this study. In Section 3.3, we provide an explorative analysis for 

the data to give a justification of our approach. In Section 3.4, we propose a 

semiparametric recurrent event model for MPC based on NHPP. In Section 3.5, we 

describe how to construct the familywise likelihood including the acsertainment basis 

correction in a great detail, and the posterior updating scheme via MCMC is given in 

Section 3.6. In Section 3.7, we apply the proposed method to the LFS data and the 

estimated age-at-onset MPC-specific penetrances then follow. We also carry out both 

internal and external validation analysis. Final discussions follow in Section 3.8. 

 

3.2 The Motivating Data 

The pediatric sarcoma cohort data consists of 189 unrelated families, with 17 of them 

being TP53 positive families in which there is at least one TP53 mutation carrier within 

the family (Table 3.1). The TP53 status was determined by PCR of TP53 exonic regions, 
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and once a mutation was identified from the proband, all of his/her first-degree relatives 

and any family members at risk of carrying the mutation were also tested. Among a total 

of 3,706 individuals, 964 (26.0%) of them had TP53 mutation status testing results. The 

age at the diagnosis of each invasive primary tumor for each individual was recorded. 

The follow-up periods for each family ranges from 22-62 years starting from the 

acertainment date of probands. Among 570 (15.4%) individuals with a history of cancer, 

a total of 52 (1.4%) had been diagnosed with more than one primary cancer (Table 3.2). 

In the data, we have approximately equal number of cancer patients or healthy 

individuals for the two genders. Further details on data collection and germline mutation 

testing can be found elsewhere(33, 74).  

 

 

 

 

 

 

 

 

 

Table 3.1: Summary of number of families of LFS data 

 

 

 

 

 

 

 With carriers W/O carriers Total 

Number of families 17 172 189 

Number of individuals 2,409 1,297 3,706 

Average family size 141.71 7.54 19.61 
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Table 3.2: Number of primary cancer patients in LFS data  

  

3.3 Preliminary Analysis of the LFS Data  

Let !!, ! = 1,2,⋯ ,! denotes the age of the !th primary cancer-onset (i.e., the age 

of diagnosis of !th primary cancer), and !! = !!! − !!!! denote the !th gap time 

between two adjacent primary cancers with !! = 0. A common issue in serial gap time 

analysis is that the censoring time, although independent of !!, is depenent of !! if gap 

times are associated with each other(75). The dependent censoring makes it inappropriate 

to fit marginal models for !th gap times !!(! ≥ 2). For example, Cook et.al shows that 

ignoring dependent censoring can lead to underestimation of the survival functions of 

second and subsequent gap times(45). We therefore use the inverse probability of 

censoring weighted (IPCW) estimates of Kendall’s ! to assess the association between 

!! and !! in the LFS data after adjusting the induced dependent censoring issue(76). 

Number of primaries Gender Wildtype Mutation Unknown 
0 Male 295 9 1276 
 Female 341 8 1207 
1 Male 105 25 139 
 Female 121 23 105 
2 Male 3 9 8 
 Female 3 12 5 
3 Male 0 3 0 
 Female 0 2 2 
4 Male 0 2 0 
 Female 0 1 0 
5 Male 0 0 0 
 Female 0 1 0 
7 Male 0 0 0 
 Female 0 1 0 

Total number of individuals  868 96 2742 
Total number of cancer patients  232 79 259 
Total number of MPC patients  6 31 15 



! ! 64 

We compute the Kendall’s ! using data without those from probands as these individuals 

are not randomly selected for genotype testing (detailed computation can be found in 

Appendix A). The estimated IPCW Kendall’s ! = −0.017 (Jackknife se= 0.005), which 

indicates a very weak negative but statistically significant correlation between the two 

gap times within subjects.  

Figure 3.1 shows Kaplan-Meier estimates of survival functions !! ! = !Pr!(!! > !) 

and !! ! = !Pr!(!! > !), stratified by genotype. The risk set used for calculating !! !  

considers only single and multiple primary patients starting from the first cancer, while 

!! !  includes all individuals. For both of the TP53 mutation carriers and non-carriers or 

untested individuals, the lengths of the first and the second gap time are not identically 

distributed, with the first gap time significantly longer than the second one. This suggests 

a time trend in the process where the rate of event occurrence would increase with aging. 

Moreover, the mutation carriers appear to have different length distribution from 

wildtype and untested individuals. This empirical difference in successive survival again 

suggests the importance of providing subgroup-specifc and MPC-specific penetrance.  
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Figure 3.1: Kaplan-Meier estimates of survival distribution for the first (!!) or the 

second (!!) gap times after removing data from probands. The dashed lines are the 95% 

confidence bounds of the estimated survival function. Log rank test gave a p-value of < 

10−7 either comparing the first and second gap time distribution for individuals with no 

mutations or unknown genotype of TP53 (Others group), or comparing the first and 

second gap time distribution for individuals with a mutation in TP53 (Mutation group).  

 

3.4 The Model 

3.4.1 MPC-specific age-at-onset penetrance 

The MPC-specific age-at-onset penetrance can be written as  
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(3.4.1)     

!"!(!! ≤ !!|!!!!!,!) 

where ! denotes a vector of covariates. In particular, we set !! = (!, !,!×!,!,!×!), 

where ! and ! denotes individual’s genotype (0 for wildtype, 1 for TP53 mutation), 

gender (0 for female, 1 for male), respectively, and ! is one’s cancer status at a specific 

age. Notice that ! is a periodically fixed covariate during follow-up of an individual as its 

value will change at the age of cancer diagnosis. For example, let !! and ! denote the 

observed age of the first cancer onset and censoring time, respectively, then ! is given by 

    ! = 0, ! ∈ [0, !!)
!!!!1, ! ∈ [!!, !)  

 

3.4.2 Semiparametric Recurrent Event Model for MPC 

There are two canonical approaches in modeling recurrent events: one approach 

models the event counts via counting process and another approach models gap times via 

renewal process. We will use NHPP for our modeling because of its flexibility in dealing 

with our primary cancer data.  

The NHPP-based approach directly models the number of primary cancers occurred 

by age ! denoted by !(!). The rate function of !(!) that characterizes the counting 

process !{! ! , ! ≥ 0}  is the probability of events occurring at time !, and is defined as  

(4.2)  

! ! = ! lim
∆!→!

!" ! ! + ∆t − ! ! > 0
∆t  

Note that under Poisson process, the rate function is equivalent to the intensity function 

defined as  
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(4.3) 

! ! = ! lim
∆!→!

!" ! ! + ∆t − ! ! > 0|!!(!)
∆t  

where !(!) is the event history up to time ! (45, 77). In particular, the NHPP assumes 

that N (t) for a given t follows a Poisson distribution:  

(4.4) 

!" ! ! = ! = !!(!)!!! !!!(!),      ! = 0,1,2,⋯ 

where Λ(!) is a cumulative rate function defined as  

Λ ! = ! ! !"
!

!
 

Notice that if ! ! = !!, NHPP becomes the homogeneous Poisson process.  

Incorporating the covariates !, we consider the following multiplicative model for 

the conditional rate function given ! denoted by ! !|! :  

(4.5) 

! !|! = !!! ! exp!(!!!) 

where !! !  is a baseline rate function, ! denotes the regression coefficient parameter 

vector associated with the covariate !.  

We assume that !! ∈ ! [0,1] without loss of generality. Toward modeling the baseline 

rate function !! ! , we propose a nonparametric model for the cumulative baseline rate 

function Λ! ! = !! ! !"!
!  via Bernstein polynomials. To be more precise, we 

approximate Λ! !  by Bernstein polynomials of degree ! (78-80) as follows:  

(4.6) 

Λ! ! ≈ !!
!
!

!

!!!
!!(1− !)!!! 
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where !! = Λ! !
!  and !! !≤ !⋯ !≤ !!! to ensure Λ! !  monotone increasing. 

 Introducing the following transformation of !! = !! and !! = !! − !!!!! for 

! = 2,⋯ ,!, (4.6) can be equivalently rewritten as a linear function of !! = !!,⋯ , !!  

(4.7) 

Λ! ! ≈ !!!!!(!) 

subject to !! ≥ 0, ! = 1,⋯ ,!. Here !! ! = (!! !, 1 ,⋯ ,!! !,! ! denotes the 

beta distribution function with parameters ! and ! −! + 1 evaluated at t (81). The 

baseline rate function !! !  is then given by  

(4.8) 

λ ! ≈ !!!!!(!) 

where !!(!)! = (!!! !, 1 ,⋯ , !!!(!,!)) denotes the beta density with parameters ! 

and ! −!+1 evaluated at t. Finally, we have  

(4.9) 

! !|! = !!!!!!(!)exp!(!!!) 

For the value of !, a large ! provides more flexibility to model the shape of baseline 

rate function, but at the cost of increasing computations. We set ! = 5 as this works well 

in most studies(82).  

Finally, the MPC-specific age-at-onset penetrance (4.1) is obtained by 

(4.10) 

Pr !! ≤ !! !!!! = !!!!,!) = 1− exp! − !!!!!(!)exp!(!!!)!"
!!!!!!

!!!!
 

since Pr !! > !! !!!! = !!!!,!) = exp! − λ !|! !"!!!!!!
!!!!  
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3.5 Computing Likelihood  

In this work, computing likelihood is not trivial due to a large number of missing 

genotypes and and the ascertainment bias. In this section we define a familywise 

likelihood and propose a way to correct the ascertainment bias.  

Let !!" and !!" denote the censoring time and the total number of primary cancers 

developed for individual ! = 1,⋯ ,!! from family ! = 1,⋯ , !, respectively. Suppose we 

are given a set of data (!!", !!" ,!!") where !!"! = (!!",!:!! = 1,⋯ ,!!"), and !!"! =

(!!" , !!" ,!!"×!!" , !!" ,!!"×!!")!are observed covariates for !th individual. Note that 

!!",! = !!! if the individual has not developed a primary cancer when being censored.  

 

3.5.1 Individual likelihood  

Let !!",! = 0 and !!" ≥ !!",!!", the likelihood contribution of the !th event since (! − 1)th 

event is  

(5.1)  

! !!",! exp! − λ ! !"
!!",!

!!",!!!
 

where !(∙) in the integrand denotes the rate function with fixed covariates !!",! for any 

time points in [!!",!!!, !!",!), during which the covariate !!" is time-invariant. Note the 

!(∙) is still time-varying within this time interval. See Cook et.al for more details on the 

derivation(45). We show that the likelihood of the !th individual of the !th family with 

primary cancer events at !!", denoted by !!"(!), is given by  

(5.2) 
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!!" ! ∝ !(!!",!)
!!"

!!!
!"# − !(!)!"

!!",!

!!",!!!

!!"

!!!
!"# − !!!"(!)!"

!!"

!!",�!"
 

where the covariate !!" in !!!"(∙) is the cancer status within the time interval [!!",!!" , !!"). 

In our model, the full likelihood is extended by considering each event for each 

individual as one term of the likelihood in order to incorporate the periodically fixed 

covariates.  

 

3.5.2 Familywise Likelihood  

Assume data from different processes are independent given covariates, the likelihood for 

the !th family is given by  

(5.3)  

!! ! = !!"
!!

!!!
(!) 

This likelihood construction assumes that the covariates !!" are observed for every 

individual. However, in LFS data, most individuals have their TP53 mutation status 

untested. Let !! = !!,!"#,!!,!"#  and ℎ! denotes the TP53 genotype vector and cancer 

phenotype data (eg: cancer status and age of cancer diagnosis), respectively, for the !th 

family. For simplicity, we denote the ith family likelihood !!(!) as !!(!!|!!). By the law 

of total probability, the likelihood for the observed data is  

(5.4)  

!! !! !!,!"# = Pr! !!,!!,!"#|!!,!"#
!!,!"#∈!
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where ! is a set of all possible values of genotypes !!,!"# conditional on !!,!"#. Because 

the set ! increases exponentially with the number of individuals with missing genotype, 

we use Elston-Stewart’s peeling algorithm to recursively calculate !! !! !!,!"#  (50, 83, 

84). The algorithm proceeds by “peeling” out nuclear families from the whole family and 

its computational complexity is approximately linear in the number of individuals with 

unknown genotype. A simple example of how the algorithm can improve the efficiency 

of likelihood calculation is given in the Appendix B. The likelihood for ! independent 

families is then  

(5.5) 

! ! = !! !!|!!,!"#
!

!!!
 

 

3.5.3 Ascertainment bias correction  

The ascertainment bias exists in rare disease studies like LFS study because the data were 

collected from a high-risk population. The familywise likelihood (5.5) we construct is 

then a biased one for the LFS data. To estimate penetrances for a general population, we 

will need to correct for the ascertainment bias.  

 

Let indicator variable !! = 1 denotes that the !th family is ascertained, and !! = 0 

otherwise. !! is a subset variable of ℎ!. When !" !! = 1  is independent of family 

history, we can assume no ascertainment bias. However, in the dataset with ascertainment 

bias, we estimate !" !! = 1|!!,!  from the data. We use ascertainment-corrected joint 
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model to correct the bias(72, 73). Ascertainment bias of !th familywise likelihood is 

corrected by inverse weighting of the probability that !th family is ascertained  

(5.6) 

!" !!|!! = 1,!!,!!,! ∝ !" !!|!!,!!,!
!" !! = 1|!!!,!

 

Assuming j = 1 in each family is the proband, the weight can be calculated as,  

(5.7) 

!" !! = 1|!!!,! = ! !" !! = 1|!!!" !" !!"|!!!,!
!!!

 

Because in the LFS data, we ascertained a family by the fact the proband was diagnosed 

with a primary cancer. The weight can be rewritten as,  

(5.8) 

!" !! = 1|!!!,! = ! !" ℎ!!|!!!,!!,! !" !!"
!!!∈{!,!}

 

where !" ℎ!!|!!!,!!,!  is the data likelihood for the proband. The prob- ability of 

genotype !" !!!  can be calculated based on the mutated al- lele frequency !!. In the 

case of autosomal dominant inheritance disease, !" !!! = 0 = (1− !!)! and 

!" !!! = 1 = (1− !!)!. The ascertainment bias-corrected familywise likelihood in our 

study is then given by  

(5.9) 
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! ! = !! !!|!!,!"#,!!,!
!" !! = 1|!!!,!

!

!!!
! 

 

3.6 Posterior Sampling through MCMC  

Let !" !  denotes the prior distribution of !, our goal is to estimate ! from the posterior 

distribution, which is given by  

(6.1) 

!" !|! ∝ !" ! !" !|!  

We set an independent normal prior for ! where !~!!(0,!!), and ! = 100 for vague 

priors. We assign noninformative flat priors for !. We use a random-walk Metropolis-

Hastings algorithm within Gibbs to generate 50,000 posterior estimates in total with first 

5,000 as burn-in.  

 

3.7 Case Study  

We applied our method to the LFS data (Section 3.2, 3.3) and estimated the parameters 

using the MCMC algorithm as described in Section 3.6. We performed a cross-validation, 

in which we compared our prediction of a 5-year risk for developing the next cancer 

given cancer history and genotype information for an individual with the observed 

outcome, based on our penetrance estimates. We also compared our penetrance results 

with population estimates and previous studies on TP53 penetrance.  

3.7.1 Model fitting 

We fit our model to the LFS data up to the second cancer event due to limited number of 

individuals with third or more cancers in this dataset (Table 3.2). Our model contains 
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three relevant covariates including genotype (!), gender (!) and cancer status (!). We 

also include two interaction effects on genotype. The mutated allele frequency !! is set 

as !! = 0.0001 in this study. Sensitivity prior analysis of the Bayesian estimation shows 

that the posterior parameter estimates are insensitive to the setting of ! prior distributions 

or hyper-parameters.  

 

3.7.2 Cancer risk prediction 

3.7.2.1 Internal validation 

We assessed our model in cancer risk prediction using a 10-fold cross-validation. We 

randomly split the 189 families into 10 portions. Our model was repeatedly fit to the 9 

portions of all families to estimate the penetrance, based on which we made prediction 

using remaining 1 portion of the data. The individuals used for prediction are those who 

have known genotype information. We removed the probands because they were not 

randomly selected for genotype testing. We rolled back five years from the age of 

diagnosis of cancer or the censoring age. Based on the rolled-back time, we then 

calculated a 5-year cumulative cancer risk. We made two types of risk prediction that are 

of clinical interests. In the first scenario, we predicted the 5-year risk of developing a 

cancer given that the individual has no history of cancer (affected versus unaffected). In 

the second scenario, we predicted the risk of developing next cancer when the individual 

already developed a cancer before (MPC versus SPC). We combined the results from 

these 10-fold of cross-validation together and evaluated them using the receiver operating 

characteristic (ROC) curves. To assess the variation of prediction caused by data partition, 

we performed 25 times of the random splits for cross-validation. Figure 3.2 shows the 
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results on risk prediction from each random split. The median area under the curve (AUC) 

is 0.810 for predicting the status of being affected by cancer over healthy status, given 

that the individual has no cancer before. The median AUC is 0.706 for predicting the 

status of next cancer when the subject has a history of cancer. The validation performance 

is robust to random splits.  

 

Figure 3.2. ROC of 5-year risk of developing next primary cancer assessed by 10-fold 

cross-validation. The dotted lines are the ROC curves generated from 25 times of random 

splits of the data for cross-validation, and the solid line is the one with median AUC 

value. Sample size: n(Affected)=123, n(Unaffected)=643, n(MPC)=21, n(SPC)=33. 

Abbreviation: se, standard error. 
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3.7.2.2 External validation 

We used the MD Anderson prospective data, collected independently from the model 

training data, for model prediction performance validation. These data have the same 

inclusion criteria, cancer diagnosis confirmation, mutation testing method as that for MD 

Anderson pediatric data. The number of primary cancers in this data is summarized in 

Table 3.3. We only used the individuals with available genotype information for 

validation purpose. 

 

 

 

 

 

Table 3.3: Number of primary cancer patients by the TP53 mutation status and gender in 

MD Anderson prospective data. Abbreviations: SPC, single primary cancer patients; 

MPC, multiple primary cancer patients.    

 

We evaluated the model prediction performance on primary cancer risk using the 

average annual risk computed using our penetrance estimates. The risk was calculated as 

the cumulative probability of developing next primary cancer divided by the follow-up 

time. The receiver operating characteristic (ROC) curve was used to evaluate the 

sensitivity and specificity of predicting a primary cancer incidence using the estimated 

risk probability at various cutoffs. Such model discrimination evaluation method has also 

been used for pancreatic cancer risk prediction in a previous study(85). For Kaplan-Meier 

  Wildtype Mutation 
Healthy individuals Male 95 27 

 Female 115 21 
SPC Male 56 30 

 Female 116 62 
MPC Male 35 35 

 Female 112 70 
Total number of individuals  529 245 
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(KM) method-based risk prediction, we obtained KM survival functions for the time from 

date of birth to first primary cancer, and the time from first primary cancer diagnosis age 

to second primary cancer diagnosis age, respectively. These survival probabilities were 

then converted to penetrance estimate to compute the average annual risk. We used 

Jackknife to compute the standard error of prediction performance(86, 87). In brief, each 

subsample was generated by omitting the !th family and the AUC was calculated for this 

subsample as previously described. The standard error (se) was calculated using the 

Jackknife technique  

!"!"#$$%&'( = !
! − 1
! !"#! − !"# !

!

!
 

where ! is the number of families, and !"# is the mean estimate of AUC values among 

all Jackknife subsamples. As shown in Figure 3.3, our model achieves better performance 

compared to that of KM method for predicting either the first primary cancer (AUC: 

0.754 vs. 0.698) or the second primary cancer (AUC: 0.731 vs. 0.658).     
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Figure 3.3: Comparison of validation performance between our multiple primary cancer-

specific penetrance and those estimated from Kaplan-Meier (KM) method in predicting 

the first or the second primary cancer occurrence using the MD Anderson prospective 

data. Sample size: n(Affected)=98, n(Unaffected)=248, n(MPC)=38, n(SPC)=60. 

Standard error: se(Affected vs. Unaffected)= 0.028, se(Affected vs. Unaffected (KM) )= 

0.032, se(MPC vs. SPC)= 0.046, se(MPC vs. SPC(KM))= 0.055.     

 

3.7.3 The MPC penetrance estimates  

We applied the proposed method to the entire pediatric sarcoma cohort dataset to obtain 

penetrance estimates for single and multiple primary cancers given mutation status in 

TP53. We used Bayesian information criterion (BIC) for model selection. Table 3.3 
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shows that two models have best goodness-of-fit to the data. We decided to use the model 

with the interaction effect on gender !×! as it has been reported that gender has different 

effects on cancer risk for mutation carriers and non-carriers(33). All posterior estimates 

of the model generated from MCMC converged well and had reasonable acceptance 

ratios. The summary of posterior estimates is shown in Table 3.4. The genotype has 

dominant effects on increasing cancer risk, both through main effect and interaction with 

the cancer history, as expected from the exploratory analysis (Section 3.3). Figure 3.4 

illustrates the age-at-onset penetrance for a female and male individual over all ages with 

specified cancer history and mutation status. 

 
 
 
 
 
 
 
 
 
 
Table 3.4 Summary of BIC for model selection 
 
 

 
Table 3.5 Summary of posterior estimates. Abbreviations: sd, standard deviation; AR, 
acceptance ratio.  
 

Model BIC 
{!, !,!} 2807 

{!, !,!,!×!} 2805 
{!, !,!,!×!} 2800 

{!, !,!,!×!,!×!} 2800 
{!, !,!,!×!,!×!, !×!} 2807 

Coefficient Median sd 95% CI AR 
!!  3.016 3.016 (2.618, 3.391) 3.016 
!! 0.298 0.298 (0.024, 0.573) 0.298 
!!×! -0.721 -0.721 (-1.220, -0.183) -0.721 
!!  -1.765 -1.765 (-2.949, -0.713) -1.765 
!!×!   2.117 2.117 (1.006, 3.340) 2.117 
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Figure 3.4: Age-at-onset penetrance for females or males without a history of cancer. The 

shaded area is the 95% credible bands.  

 

 For the second primary cancer risk, our penetrance estimates show that having a 

primary cancer developed before could have a positive effect on increasing cancer 

occurrence rate for mutation carriers but not for non-carriers (Table 3.5), with a hazard 

ratio of !"#!.!!" = 8.3. The second primary cancer risk is also associated with the age of 

first primary cancer diagnosis, with a higher cancer risk for older first primary cancer 

diagnosis age (Figure 3.5 and Table 3.6).   
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Figure 3.5: Penetrance estimates of the second primary cancer since the first primary 

cancer diagnosis time, stratified by the first primary cancer diagnosis time and gender, for 

A) TP53 mutation carriers and B) non-carriers. Each curve represents the median 

penetrance estimates among all penetrance estimates in the first primary cancer diagnosis 

time group. The figures only show penetrance estimates up to age 80. Note that the two 

figures have different y-axis scales.  

 

 

 

 

 

Table 3.6: Median second primary cancer-free times since the first primary cancer 

diagnosis age and their 95% confidence intervals (in parenthesis) estimated for TP53 

mutation carriers, stratified by gender and first primary cancer diagnosis age.    
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3.7.4 Comparison with penetrance estimates from literature  

Figure 3.4 compares penetrance estimates at different ages for females and males, 

stratified by genotype, respectively. As expected, TP53 mutation has a clear effect on the 

increase of cancer risk, especially when the individual has a recent history of cancer. For 

a wildtype subject, a history of cancer does not have positive effect on increasing the risk 

of developing a subsequent cancer.  

Wu et.al estimated TP53 penetrance from six pediatric sarcoma families for both 

mutation carriers and non-carriers(34). This estimate can be considered as a weighted 

average of probability for SPC and MPC patients. Figure 3.4 shows that, for mutation 

carriers, this age-at-onset TP53 penetrance estimate lies between those from cancer 

survivors and non- cancer survivors, as it should be. For non-carriers, the previous 

estimates are very slightly lower than our estimates for individuals without cancer history, 

but higher than those with early age at first diagnosis. When comparing with population 

estimates from Surveillance, Epidemiology, and End (SEER) Results program(88), our 

estimates for non-carriers overlap with the SEER estimate.  
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Figure 3.6: Age-at-onset penetrance when with or without a history of cancer for (a) 

female mutation carriers, (b) male mutation carriers, (c) female mutation non-carriers and 

(d) male mutation non-carriers. The shaded area is the 95% credible bands. 

 

3.8 Discussions  

To our knowledge, this is the first attempt to estimate MPC-specific penetrance for 

germline mutation in TP53 with a large amount of missing genotype information in 

individuals that are genetically related. We developed a novel NHPP incorporated with 
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Fig 4. Age-at-onset penetrance when with or without a history of cancer for (a) female
mutation carriers, (b) male mutation carriers, (c) female mutation non-carriers and (d)
male mutation non-carriers. The shaded area is the 95% credible bands.
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familywise likelihood so that it can model MPC events in the family context, while 

properly accounting for age effect and time-varying cancer status. A Bayesian framework 

was applied to estimate unknown parameters in the model. We also adjusted for 

ascertainment bias in the likelihood calculation so our penetrance estimates can be 

compared to those generated from the general population. Our new method provides a 

flexible framework for the penetrance estimation of MPC data, and shows reasonable 

predictive performance of cancer risk. As the number of multiple primary cancer patients 

becomes increasing in the general population, our method will be useful for prediction 

and clinical management of such diseases.  

We are still left with a few possible extensions. First, we restricted our analysis up to 

the second primary cancer because of limited power in LFS data for the wildtype and 

untested groups. This makes our penetrance estimation unsuitable for individuals with a 

history of two or more cancers. It is straightforward to extend our model to account for 

three or more cancers if we have such cases for each subpopulation.  

Second, the occurrence of primary cancers may be dependent on other factors such 

as cancer treatment. For example, radiotherapy can damage normal cells in tumor 

adjacent area and is associated with excess incidence of solid cancers(89). Our model can 

include additional covariates, as we set for cancer history, to adjust for such dependency 

between successive events.  

Third, because the correlation between first two gap times in the real data is very 

small, the recurrent events model we used in this study does not explicitly consider such 

association. For future datasets that do exhibit a stronger level of correlation between gap 

times, it would be expected the prediction performance of second or subsequent primary 
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cancers can be improved by properly utilizing such correlation information. We note that 

Bayesian parametric copula models have been developed for sequential gap time 

analyses(90). It will be interesting to incorporate such methods into our Bayesian 

framework to deal with missing genotype and ascertainment bias for a more flexible and 

accurate penetrance estimation. However, this is beyond the scope of this study.  

Finally, in MPC studies, there usually exist multiple types of cancers. For example, 

the LFS is characterized by several cancer types such as sarcoma, breast cancer and lung 

cancer. MPC patients are then under the competing risk of multiple type of cancers. In 

our current model, we assume all cancers are of the same type and do not take into 

account of this nontrivial competing risk. Future work may focus on extending our 

methodology to provide a MPC-specific and cancer-specific penetrance estimation.  
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4. Conclusions and Future Research 

4.1 Conclusions 

In this dissertation, we developed statistics and bioinformatics methods to 

specifically solve two important problems in cancer research. The first problem is on 

assessing the accuracy of using FFPE RNA-seq data for gene expression profiling. To 

this end, we designed a FFPE breast tumor biopsies study, with matched high-quality FF 

samples as the reference standards for comparison. We devised multiple computational 

evaluation criteria, which cover almost all major parameters relevant to the discovery and 

translational application of mRNA expression biomarkers and take into account of the 

variation of analytical factors, to extensively investigate the concordance between FFPE 

and FF RNA-seq data, as well as the effects of pre-analytical factors of RNA-seq on such 

concordance (Figure 1.1). We found in this study that capture sequencing, rather than 

FFPE conditioning, is the dominant determinant for the variation of RNA-seq data. We 

also successfully identified one FFPE library preparation protocol that can generate 

RNA-seq data consistently highly concordant with and being least deviated from any 

types of non-capture sequenced FF references. The computational methods we applied in 

this study will be useful for other comparative analysis aiming to study the influences of 

pre-analytical factors of RNA-seq on mRNA expression data quality. 

In the second project, we were challenged by estimating second primary cancer-

specific penetrance of germline TP53 mutation from individuals with missing genotype 

information. Justified by careful preliminary analysis of the real data, we proposed a 

Bayesian semiparametric recurrent events model based on NHPP in order to reflect the 

age-dependent and time-varying nature of the cancer occurrence rate in LFS study. 
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Following the idea of Shin et. al(80), we defined the familywise likelihood by averaging 

individual likelihoods within the family over the missing genotypes. This is possible 

since the exact distribution of missing genotypes is available according to the Mendelian 

law of inheritance. The familywise likelihood can minimize the efficiency loss due to the 

missing genetic information by utilizing family structure. We therefore developed the 

ascertainment corrected familywise likelihood for the proposed NHPP model and 

estimated the penetrance parameters via the MCMC algorithm. The MPC-specific 

penetrance we provided here for LFS study is stratified not only by genotype and gender, 

but also by the interaction of previous primary cancer diagnosis and genotype, as well as 

the age of first primary cancer diagnosis. Our penetrance estimates have a reliable cancer 

risk prediction performance on an independent dataset when comparing to that of the 

penetrance estimated by KM method. To the best of our knowledge, this is the first time 

that a high-resolution MPC-specific penetrance is reported and its cancer risk prediction 

performance is thoroughly evaluated.   
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4.2 Future Research 

My dissertation is still left with a few possible extensions. For the FFPE RNA-seq 

project, we focused our comparative analysis on mRNA expression profiling. In future 

research, we may consider extending the analysis to other RNA species, like long non-

coding RNA and microRNA, as they play important regulatory role in human cancer and 

have potential utility as cancer prognosis biomarkers(91-96). Also, in future the analysis 

should cover other aspects of detecting aberrant transcription in human cancer, such as 

gene fusion and alternative splicing analysis, as increasing evidences suggest their utility 

in cancer diagnostics and prognosis(10). For example, the detection of RUNX1-RUNX1T1 

fusion has been suggested by World Health Organization as an alternative diagnostic 

method acute myeloid leukemia(97), and the TMPRSS2-ERG fusion has been shown 

associated with prostate cancer prognosis(98). Future work should be focused on 

incorporating these aspects of analysis to achieve a more comprehensive assessment of 

FFPE RNA-seq data quality.      

For the multiple primary cancers penetrance estimation, we limited our analysis up to the 

second cancer diagnosis, as there are no mutation non-carriers with more than two 

primary cancers during follow-up in the training data. Our model is flexible to generate 

penetrance for third or fourth primary cancer if in future we have sufficient number of 

individuals with a history of two or more cancers. Also, we can easily modify our model 

to incorporate the treatment information to account the effects of radiotherapy or tissue-

resection on future cancer occurrence rate. Finally, our model does not consider 

competing risk from different types of primary cancers, but in LFS MPC patients do 
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usually exhibit multiple types of cancers, such as sarcoma, leukemia and brain tumor. 

Future research should extend the current model to take into account this competing risk.       
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Appendix 

Appendix A: Computation of IPCW Kendall’s ! 

Let (!!, !!) and  (!!, !!) be two independent realizations of (!,!!), the first and the 

second gap time, and let !!" = !! !! − !! !! − !!! > 0 − !!!{ !! − !! !! − !!! <

0} indicate the concordance/discordant status of the pair, the Kendall’s ! (99) can be 

estimated from uncencored bivariate data { !! ,!! , ! = 1,⋯ ,!} by 

!
2

!!
!!"

!!!
 

In the presence of censoring events  (!!, !!) related to the two gap times, respectively, 

the estimation of ! can only be based on orderable pairs. Let one observation be denoted 

as (!,!, !! , !!), where ! = min !,!! , ! = min !,!! , !! = I!(X < !!) and 

!! = I!(Y < !!). Oakes et.al showed that the pair (!, !) is orderable if {!!" < !!!!" ,!!" <

!!!!"), where !!" = min!(!! ,!!), !!" = min!(!! ,!!), !!!" = min!(!!! ,!!!)� !!!" =

min!(!!! ,!!!) (100). Let !!" be the indicator of this event, and !!" be an estimator of the 

probability of being orderable !!" = Pr !! > !!"; !!! > !!" !!" ,!!"), Lakhal-Chaieb 

et.al proposed the weighted estimate as  

!! = ! !!"
!!"!!!

!!
!!"!!"
!!"!!!

 

To identify orderable pairs and estimate the corresponding !!", Lakhal-Chaieb et.al 

showed that !!" can be reduced to that !! and !! are uncensored, !!" is observed, and that 

{!!! > !! + !!!"; !!!! > !! + !!!"}. The conditional probability of a pair being orderable 

is then  
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!!" = Pr !!! > !! + !!"; !!!! > !! + !!"|!!! ,!! ,!!"
= !(!! + !!!")×!!(!! + !!!")

 

The probability is estimated by  

!!" = !(!! + !!!")×!!(!! + !!!") 

where ! ∙  is the Kaplan-Meier estimator of ! ∙  based on { !! + !! , 1− !!!! , ! =

1,⋯ ,!}. The standard error of the kendall’s ! is estimated by the Jackknife.  
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Appendix B: An example of using peeling algorithm to calculate familywise 

likelihood 

Figure 3.7 shows an example of a hypothetical family with three generations. Assume 

that the genotype is known for the 4th individual and unknown for all other members, or 

!!"#! = (!!,!!,!!,!!,!!,!!). Let !! = (ℎ!,⋯ , ℎ!) denotes the cancer phenotype for 

the family, we want to calculate the familywise likelihood by marginalizing out !!"#, 

! ! !! = ! ! !,!!"# !! = ! !(!|!!"#,!!)!(!!"#|!!)
!!"#!!"#

 

The Elston-Stewart algorithm exploits the family structure by Mendelian inheritance 

property and introduces a “peeling” method, which rewrites the likelihood as,  

= !(ℎ!|!!)

!(ℎ!|!!)!(!!|!!) !(ℎ!|!!)!(!!|!!,!!) !(ℎ!|!!)!(!!|!!,!!)
!!!!!!

!(ℎ!|!!)!(!!|!!) !(ℎ!|!!)!(!!|!!,!!) !(ℎ!|!!)!(!!|!!,!!)
!!!!!!

 

 

Note that in our example, the partial likelihood of upper part of the family (anterior) can 

be evaluated separately from that of the lower part of the family (posterior) given the 

genotype of the 4th individual (pivot element), or Anterior ⊥ Posterior | Pivot element. 

Also, within a nuclear family the likelihood for some members can be evaluated 

separately (e.g.: the 6th and 7th individual). This is based on the Mendelian inheritance 

property that a child’s genotype only depends on his parents’ genotypes. The computation 

complexity is then reduced by the algorithm from !!(3!) to !! !"#$(!)  if TP53 has 

three genotypes.  
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Figure Appendix B: A hypothetical pedigree for illustrating likelihood calculation using 

the Elston- Stewart algorithm. The family consists of three generations. The circle 

indicates the female member while the square indicates the male. In this example, the 

genotype is assumed unknown for every members except the 4th individual.  
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