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ROLE AND REGULATION OF SPHINGOSINE 1-PHOSPHATE IN ERYTHROCYTE 

  

Kaiqi Sun 

Advisory Professor: Yang Xia, M.D, Ph.D. 

Sphingosine 1-phosphate (S1P) is a bioactive signaling sphingolipid 

produced in every mammalian cell. It plays a variety of important roles both in 

and outside of cells. S1P is highly enriched in mature erythrocytes because of 

the high enzymatic activity of the S1P-generating enzyme Sphingosine Kinase 

1 (Sphk1) and the absence of S1P degrading enzymes. Erythrocytes are 

considered only a major reservoir for S1P because they supply S1P to the 

circulation for the regulation of various physiological processes which include 

but are not limited to immune cell trafficking, endothelial integrity and 

hematopoietic stem cell mobilization. However, if S1P plays a role in the 

oxygen delivery ability of erythrocyte is unknown. Recent studies using 

unsupervised metabolomics screening revealed significantly higher S1P levels 

in Sickle Cell Disease mice. Moreover, the ac tivity of erythrocyte Sphk1 was 

also higher in SCD and was further increased by hypoxia. Elevated erythrocyte 

Sphk1 and S1P contribute to sickling and SCD progression, though by an 

unknown mechanism. Here in this thesis, I provide answers to three key 

questions regarding S1P and Sphk1 in erythrocytes: i) the regulation of 

erythrocyte Sphk1 activation; ii) the function of erythrocyte Sphk1/S1P in 

hypoxia adaptation; iii) the mechanism underlying the detrimental role of 
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erythrocyte Sphk1/S1P in SCD. Elevated adenosine, a signaling molecule 

induced by hypoxia, increases erythrocyte Sphk1 activity in normal and sickle 

erythrocytes by activating the A2B adenosine receptor (ADORA2B) which then 

leads to activation of protein kinase A (PKA) and Extracellular Signal 

Regulated Kinase 1/2 (ERK1/2) signaling pathways. Activated erythrocyte 

Sphk1 and elevated S1P are beneficial to hypoxia adaptation by promoting 

erythrocyte glycolysis to increase oxygen release. In SCD, erythrocyte 

Sphk1/S1P mediated elevation of glycolysis is detrimental because of the 

increased sickling and oxidative stress induced. The discoveries reported in 

this thesis not only extend human knowledge in understanding erythrocyte 

physiology and pathology, but also reveal several innovative mechanism-based 

therapeutic targets that can be harnessed to develop treatments for  hypoxia 

and SCD. 
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I. Introduction  

Sphingosine 1-phosphate (S1P) is a lipid mediator derived from sphingosine, 

named after the Greek mythological creature Sphinx [1]. Since its discovery, important 

functions of S1P has been found in a variety of physiological and pathophysiological 

processes in mammalian cells, as well as in in plants, worms, flies, mold and yeast [1], 

suggesting an evolutionally conserved role for S1P. In humans, S1P levels are 

generally low in other tissues but significantly higher in blood [2, 3]. Erythrocytes, the 

most abundant cells in circulation, are considered the major source of circulating S1P 

levels because they store and release large amount of S1P spontaneously [4]. However, 

little is known about the role and regulation of S1P in erythrocytes. 

Recently, through accurately measuring functional phenotypes that are the net 

results of genomic, transcriptomic and proteomic changes, metabolomics profiling has 

become a new tool to study mature erythrocytes, where gene expression profiling is not 

an option due to lack of a nucleus and de novo protein synthesis machinery. Substantial 

metabolic alterations in erythrocytes of humans [5, 6] and mice [7]  in various 

physiological and pathological conditions have been discovered which suggest multiple 

therapeutic possibilities. Interestingly, metabolomics screening revealed that erythrocyte 

S1P levels are elevated in patients and mice with Sickle Cell Disease (SCD)[5, 8], as 

well as in humans exposed to high-altitude hypoxia[9]. Here in this thesis, I report the 

role and regulation of S1P in normal and SCD erythrocytes.    
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1.1 Extracellular and Intracellular Roles of S1P 

S1P is a versatile bioactive lipid mediator both inside and outside of cells. It is the 

ligand of five G-protein coupled receptors (GPCRs) named S1P1-S1P5, each with high 

affinity and Kd at nanomolar (nM) range [1, 10]. Each S1P receptor has its own pattern 

of tissue distribution and function, though there is some overlapping among the five. For 

example, S1P1 plays a key role in immune cell trafficking and vascular integrity; S1P2 

has a role in vasoconstriction and hearing loss; S1P3 contributes to leukocyte rolling; 

S1P4 regulates thrombopoiesis during stress-induced accelerated platelet production; 

and S1P5 mediates the immune suppression of the human brain endothelial barrier [10]. 

Besides the extracellular signaling role, intracellular S1P regulates histone deacetylation 

[11], ubiquitin functions [12], mitochondrial assembly and the activity of β-site amyloid 

precursor protein cleaving enzyme-1 [10]. 

S1P levels are controlled by the balance of the two generating enzymes and 

three degrading enzymes-S1P lyase and S1P phosphatase 1 and 2. Due to the high 

activity of S1P degrading enzymes, S1P levels are generally low in peripheral tissues 

and in nucleated cells with values below 100nmole/g [13]. Contrary to low tissue S1P 

levels, the highest S1P concentration in the body is found in blood where concentrations 

reach approximately 200 nM in human and 700 nM in mouse plasma in normal 

conditions [14, 15]. The high S1P level in circulation and the concentration gradient 

between circulation and peripheral tissues is important for various physiological 

processes, including lymphocyte trafficking[16], vascular integrity[17], bone 

homeostasis[18], neovascularization[19], and antigen presentation[20], primarily 

because of activating the five S1P receptors. Mature erythrocytes contain Sphk1 but not 
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the S1P degrading enzymes, presumably due to the lack of nuclei and other organelles 

[4, 21]. Because of such unique features, erythrocytes produce and store large amounts 

of S1P [8] and accounts for nearly all embryonic S1P and approximately 75% of adult 

plasma S1P in mice [16, 22]. In mouse erythrocytes, S1P level is about 1~2 µM at 

normal condition but can reach 8~10 µM in SCD [8].  However, since the initial 

discovery of the enrichment of S1P in erythrocytes, it remains unknown how S1P 

production is regulated in erythrocytes and if S1P has a role in erythrocyte function.  

1.2 Role and Regulation of Sphingosine Kinase 1  

Sphingosine Kinase 1 (Sphk1) is one of the two isoenzymes that generate S1P 

by adding a phosphate to the sphingosine backbone with the consumption of one ATP 

molecule. The two Sphks have functional redundancy because mice with genetic 

deficiency of either one can survive and procreate successfully [23]. However, deletion 

of both enzymes causes embryonic lethality [23]. Although catalyzing the same reaction, 

the two Sphks originate from different genes and show different substrate specificities, 

tissue distributions, and subcellular localization patterns [24]. For example, unlike its 

isoenzyme Sphk2 that is localized to the nucleus, Sphk1 is mainly found in the cytosol, 

and migrates to the plasma membrane once activated by phosphorylation [25]. During 

mouse embryonic development, Sphk1 expression reaches the highest at embryonic 

day 7 and decreases thereafter, whereas Sphk2 expression increases gradually up to 

embryonic day 17[26, 27]. Moreover, highly active Sphk1 is found in blood and 

contributes to the high concentration of circulating S1P. It is also found in the spleen, 

lungs, brain and liver; whereas SphK2 was predominantly found in brain, liver, heart, 

and kidney [26-28].  
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Regulation of Sphk1 occurs at transcriptional, translational and post-translation-

modification stage. Because of the importance of its product, regulation of Sphk1 has 

been extensively studied in nucleated cells focusing primarily on transcriptional 

regulation. Upregulation of Sphk1 expression is found in different types of cancer, 

including solid tumors of the breast, colon, lung, ovary, stomach, uterus, kidney, and 

rectum, as well as in leukemia, and has been linked to tumor survival and growth, 

angiogenesis or lymphangiogenesis and to radiation or chemotherapy resistance [29]. 

Increased Sphk1 mRNA levels were detected in smooth muscle cells after hypoxia 

exposure [30]. In addition, at the post-translational level, early observations showed that 

a diverse range of growth factors, hormones, cytokines and other external stimuli such 

as tumor necrosis factor-alpha (TNF-), interleukin-1, PDGF, VEGF, ET-1 and phorbol 

esters could increase cellular Sphk1 activity rapidly and transiently [29, 31]. Many of 

these agonists induce extracellular signal regulated kinase (ERK)-dependent Sphk1 

phosphorylation at serine 225, leading to the translocation of Sphk1 from the cytosol to 

the plasma membrane where it can access the substrate sphingosine [32, 33]. However, 

all of these studies were performed in nucleated cells. Although erythrocytes possess 

high Sphk1 activity and are the major contributor to circulating S1P, factors that regulate 

erythrocyte Sphk1 activity remain unknown. 

1.3 Erythrocyte: production and destruction 

Erythrocytes are the most abundant host cells in most vertebrate animals with 

numbers in the trillions. They are pivotal to the development and survival of all stages in 

human life: embryonic, fetal, neonatal, adolescent, and adult. In adults, erythrocytes are 

terminally-differentiated cells with no nuclei or other cellular organelles and are 
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specifically evolved for oxygen (O2) delivery. In the embryo stage, erythrocytes come 

from fetal liver and are nucleated and carry the fetal hemoglobin; whereas in adult stage, 

erythrocytes are produced mainly in the bone marrows and express the adult 

hemoglobin and become enucleated before entering the circulation. Erythrocytes in the 

embryos, also named primitive erythrocytes, are relatively larger than the adult 

erythrocytes. The primitive cells express embryonic globins (εy, βh1, and ζ in the mouse; 

ε, γ, and ζ in man) and form a variety of distinguishable hemoglobin tetramers in man 

(ζ2ε2, α2ε2, ζ2γ2, ζ2β2)[34]. At mouse embryo day 11.5 (E11.5), newly emigrating 

erythro-myeloid progenitors differentiate in the fetal liver to produce the first definitive 

erythrocytes with an immediate switch to fetal/adult globins. In humans, a specific fetal 

β-like globin (γ-globin) is expressed of and forms HbF. These hemoglobins enable the 

developing fetus to extract oxygen more efficiently from the maternal blood. Mammalian 

definitive erythrocytes expel their nucleus before they enter the circulation and are 

smaller in size than primitive erythrocytes [35]. Shortly before birth, the site of 

erythropoiesis switches to the bone marrow and the spleen. Humans rely mainly on the 

bone marrow for steady-state adult erythropoiesis, but in mice the spleen remains an 

important erythropoietic organ during adult life. Under erythroid stress conditions, for 

example, low oxygen pressure or anemia, the spleen of both mouse and man is used to 

produce erythrocytes[36]. In adult, fetal globin gene is silenced. Hemoglobin tetramers 

composed of α- and β-globin (α2β2, HbA1) account for ∼97% of all hemoglobin in adult 

erythrocytes, HbA2 (α2δ2) and HbF account, respectively, for ∼2% and ∼1% of total 

hemoglobin in most adults. However, in conditions when the β-globin expression is 

inhibited, fetal globin gene can be re-activated[37]. Hydroxyurea, the only FDA-
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approved drug for treating SCD, induces the expression of fetal globin and decreases 

the concentration of the mutated sickle Hb in erythrocytes, and thereby decreases 

sickling.  

In general, human blood contains about 5 million erythrocytes per µl (normal 

range 4.7 million to 6.1 million for males and 4.2 million to 5.4 million for females).  The 

average life span of erythrocytes is 120 days in humans and 55 days in mice. Under 

steady-state conditions, ∼1% of the erythrocytes are cleared every day and replaced by 

new cells. Erythrocytes that are at the end of their lifespan or have sustained damage 

beyond repair will be cleared in the spleen by residential macrophages[38]. Aged 

erythrocytes are characterized with a decline in metabolic activity and progressive 

membrane remodeling, mostly due to oxidative stress and vesiculation. The 

programmed death of erythrocytes is termed “eryptosis”[39]. Signals that indicate the 

readiness of aged and damaged erythrocytes for clearance include the increased 

binding of natural occurring antibodies with erythrocyte membrane protein Band3, 

expose of the inner membrane phosphatidylserine on erythrocyte surface, decreased 

expression of the immunoreceptor signal regulatory protein alpha (namely CD47), and 

the activation of complement receptor 1 on erythrocyte membrane [40]. The tightly 

regulated erythropoiesis and eryptosis collectively maintain the stability and dynamics of 

erythrocyte number under various physiological and pathological conditions.   

1.4 Erythrocyte: metabolism and function 

Erythrocyte is only cell type capable of carrying oxygen from the lungs to the 

other organs and tissues. In real life, the body faces various challenges that require 

constant and swift modulation of erythrocyte O2 delivery. Currently, there are three 
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factors known to regulate O2 delivery: temperature; pH; and the levels of 2,3-

Bisphosphoglyerate (2,3-BPG) in erythrocyte. In most circumstances, body temperature 

and pH are strictly controlled to maintain normal functions of the vital organs such as 

the brain and heart. However, levels of 2,3-BPG fluctuate more in response to changes 

of O2 availability [41]. 2,3-BPG is the only known allosteric modulator of hemoglobin 

(Hb)-O2 binding affinity. With a much higher affinity to deoxygenated-hemoglobin 

(deoxyHb), it binds to the deoxyHb tetramer and cause conformational change. This 

stabilizes the deoxyHb and shifts the oxy-deoxyHb equilibrium towards deoxyHb and 

thereby enables increased oxygen release[42]. Concentrations of 2,3-BPG is at 

millimolar with a nearly one-to-one ratio to the Hb tetramers in normal conditions; in 

response to hypoxia challenges, 2,3-BPG concentrations can be doubled[41].  

In erythrocytes, 2,3-BPG is generated in the Rapport-Luebering shunt of the 

glycolysis pathway of glucose metabolism. Glucose can be metabolized either through 

the glycolysis or the pentose phosphate pathway (PPP). Due to lack of mitochondria, 

erythrocytes rely solely on the glycolysis pathway to generate the energy currency 

adenosine triphosphate (ATP) from glucose. However, highly overloaded oxygen 

molecules are useless to erythrocytes and cause severe oxidative stress which requires 

the production of large amount of anti-oxidant through the pentose phosphate pathway 

of glucose metabolism. Therefore, erythrocytes maintain a delicate balance between 

glycolysis, which generates ATP and 2,3-BPG, and PPP, which produces neutralizing 

anti-oxidant. Studies over the past two decades have revealed an oxygen-linked 

mechanism that modulates erythrocyte glucose metabolism[43]. In normoxia, the 

glycolytic enzymes in erythrocytes were found mostly on the membrane where they bind 
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to the most abundant membrane protein Band3. In low oxygen conditions, deoxyHb 

increases and binds to Band3, which causes the release of glycolytic enzymes, such as 

the Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), to the cytosol where they 

become fully active and catalyze glycolysis. Although this machinery is well-accepted, 

how it is regulated is unknown. 

1.5 Response and Adaptation to Hypoxia 

Hypoxia is defined as inadequate O2 supply to the whole body or a region of the 

body. Hypoxia frequently occurs in healthy individuals exposed to a low-O2-content 

environment, such as high altitude [44, 45]. At any point 1-5 days following ascent to 

altitudes higher than 2500 m, individuals are at risk of developing one of three forms of 

acute altitude illness: acute mountain sickness, high-altitude cerebral edema and high-

altitude pulmonary edema, all of which can be fatal if not recognized and treated 

promptly[46]. Humans differ in the ability to adapt to high-altitude hypoxia [45, 47-49]. 

Failure to quickly adapt can result in pulmonary edema, stroke, cardiovascular 

dysfunction and even death [44, 50, 51].  Hypoxia is also commonly seen in patients 

with cardiovascular [50, 52, 53], respiratory [54, 55] and hemolytic diseases[56], which 

frequently promote multiple end-organ damage and failure.  Thus, it is imperative to 

understand how human body responds and adapts to hypoxia. A myriad of studies on 

hypoxic responses have focused on the transcriptional and translational machineries 

centered around the transcription factors hypoxia-inducible factors (HIF), which are 

master regulators of hypoxic responses at the organ level such as heart and lung 

function, to the cellular level such as increased erythropoiesis and immune responses, 

to the molecular level including altered metabolic pathways[57]. In addition, over the last 
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century, a large body of clinical, genetic and demographic evidence collected in humans 

that colonize multiple high-altitude locales, including the Tibetan Plateau, the Andean 

Altiplano, and the Semien Plateau of Ethiopia [58], have shed light on the adaptation to 

high-altitude hypoxia.  However, most of these studies focused largely on nucleated 

cells. Mature erythrocytes, as the only cell type capable of delivering oxygen yet without 

active transcriptional and translational machineries, have been neglected. There is an 

enormous gap in our understanding of the specific factors and signaling pathways 

involved in the role of erythrocytes in hypoxia adaptation and an even larger one in 

identifying strategies to reduce hypoxia-induced tissue damage by targeting erythrocyte 

oxygen release capability.  

Erythrocytes quickly respond to hypoxia by increasing O2 release, but detailed 

molecular mechanisms underlying such quick response remains largely obscure.  A 

previous study from our lab revealed that erythrocyte Sphk1 activity is elevated in both 

patients and mice with SCD, the most prevalent hemolytic genetic disease affecting 

millions worldwide[8].  Intriguingly, hypoxia also significantly induces erythrocyte Sphk1 

activity in SCD mice and in human sickle erythrocytes [8]. Thus, it is likely that sickle 

cells have a higher Sphk1 activity than normal erythrocytes in both human and mice 

with SCD because they constantly face hypoxia and Sphk1 activity is further increased 

in response to hypoxia conditions. Adenosine, a potent signaling molecule induced by 

hypoxia, increases in the circulation of SCD human and mice and plays detrimental 

effects[7]. As a building block and a critical intermediate of nucleic acids and energy 

metabolism, adenosine is produced and metabolized in and out of almost every cell 

type. Out of the cells, adenosine can be generated from ATP through two consecutive 
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enzymatic reactions that requires ecto-nucleoside triphosphate  diphosphohydrolases 

CD39, which converts ATP to ADP/AMP and ecto-5'-nucleotidase CD73, which converts 

AMP to adenosine[59]; inside the cells, adenosine is a byproduct of the Methionine 

Cycle. Because adenosine is the ligand of four G-protein coupled receptors that 

regulate various important cellular functions, extracellular adenosine levels are finely 

regulated by the generating enzymes, degrading enzymes and the transporters[60]. 

Adenosine can be deaminized to inosine by the critical enzyme-Adenosine Deaminase 

(ADA), the genetic deficiency of which causes lethal immunodeficiency[61]. In addition, 

extracellular adenosine can be up-taken through a family of equilibrative nucleoside 

transporters (ENTs). Therefore, it is interesting to investigate if elevated erythrocyte 

Sphk1 and S1P is regulated by adenosine signaling. More intriguingly, the function of 

elevated S1P in erythrocytes exposed to hypoxia remains a big puzzle. 

1.6 Sickle Cell Disease  

Sickle Cell Disease (SCD) is a devastating genetic disorder affecting millions of 

people worldwide. In the United States alone, about one out of every 500 African-

American children and one in every 36,000 Hispanic-American children are affected by 

SCD[62]. At the genetic level, SCD is caused by a point mutation at the sixth codon of 

the β-Hb chain that replaces glutamate with valine. This single amino acid change 

causes polymerization of the sickle Hb (HbS) in deoxygenated conditions. The HbS 

polymer then leads to erythrocyte sickling, hemolysis and vaso-occlusion, which 

underlie the other life-threatening complications including stroke and acute chest 

syndrome. Although SCD was discovered more than a century ago and identified as the 

“first molecular disease” in 1949 [63], and the genetic and molecular principle behind 
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this devastating disease has been revealed for decades, it is extremely disappointing 

that hydroxyurea is currently the only FDA-approved treatment. Notably, increased 

oxidative stress is also found in sickle erythrocytes and linked with hemolysis and 

disease progression [64].  Therefore, identifying specific factors and signaling pathways 

that contribute to sickling and oxidative stress is essential to advance our understanding 

of this pathogenic process and to develop novel strategies for the treatment.  Using 

metabolomics profiling in SCD transgenic mice, our lab has revealed that both humans 

and mice with SCD contain significantly elevated intra-erythrocyte and circulating S1P 

levels [8].  Further studies using pharmacological and siRNA inhibition of Sphk1 

demonstrated that elevated intracellular S1P due to increased SphK1 activity directly 

contributes to sickling, a central pathogenesis of the disease[8], and disease 

progression as well. However, the exact underlying mechanism remains unknown.  

 

In a view of the above findings, I sought to identify: 1) specific factors and 

signaling pathways related to hypoxia that contribute to increased SphK1 activity in 

sickle and normal erythrocytes; 2) roles and mechanisms of S1P in the normal 

erythrocyte in response to hypoxia; 3) mechanisms underlying the pathologic effects of 

elevated Sphk1 and S1P in SCD erythrocytes.  

Here, I report that elevated adenosine, a signaling molecule induced by hypoxia, 

induces erythrocyte Sphk1 activity in normal and sickle erythrocytes by activating the 

A2B adenosine receptor and the downstream PKA and ERK1/2 signaling pathways. 

Also, metabolomics profiling and functional analyses of erythrocytes of blood samples 
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collected from 21 young and healthy lowland individuals at sea level and at 5260 meters 

for up to 16 days, showed that erythrocyte S1P levels were elevated in all lowland 

volunteers when brought to 5260 m high altitude. Translating results from the human 

high-altitude study to a mouse model of hypoxia, I demonstrate that elevated 

erythrocyte Sphk1 activity underlies increased S1P production within erythrocytes in 

high altitude hypoxia conditions and that elevated erythrocyte S1P counteracts tissue 

hypoxia independent of S1P receptors. Mechanistically, I further revealed that 

erythrocyte S1P is an important hypoxia-responsive biolipid functioning intracellularly to 

promote erythrocyte glycolysis and trigger O2 delivery. One step further, I demonstrated 

the functional and metabolic mechanisms underlying why the beneficial adaptation to 

high altitude in healthy individuals via the induction of S1P in normal erythrocytes is 

detrimental in sickle erythrocytes.  Genetic deletion of Sphk1 in SCD has potent anti-

sickling and anti-hemolysis effects by correcting pathogenic metabolic reprogramming, 

channeling glucose to the pentose phosphosphate pathway relative to glycolysis, 

lowering 2,3-BPG production and rewiring NADPH/glutathione-mediated detoxification. 

Moreover, the atomic level details of S1P binding to Hb were also revealed in 

collaboration with a group at the Virginia Commonwealth University which showed that 

S1P binds to the surface of deoxyHb in the presence of 2,3-BPG and induces further 

oxygen release and conformational change. These findings significantly enrich our 

understanding of the role of erythrocytes in hypoxia and the molecular regulation behind. 

They also open new promising scenarios in the development of innovative mechanism-

based therapies for hypoxic conditions and SCD. 
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II. Methods 

2.1 Human subjects 

Individuals with sickle cell disease were identified by hematologists on the faculty 

of The University of Texas Medical School at Houston. Subjects participating in this 

study had no blood transfusion for at least 6 months before blood samples were 

collected. Normal human subjects were of African descent and were free of 

hematological disease. The research protocol, which included informed consent from 

the subjects, was approved by The University of Texas Health Science Center at 

Houston Committee for the Protection of Human Subjects. 

The human high-altitude study was conducted as part of the AltitudeOmics 

project examining the integrative physiology of human responses to hypoxia [65]. In 

brief, all procedures conformed to the Declaration of Helsink and were approved by the 

Universities of Colorado and Oregon Institutional Review Boards and the US 

Department of Defense Human Research Protection office. After written informed 

consent recreationally active sea-level habitants participated in the study. The 

participants were non-smokers, free from cardiorespiratory disease, born and raised at 

<1500 m, and had not travelled to elevations >1000 m in the 3 months prior to 

investigation. 

2.2 Mice  

Adenosine deaminase (ADA) deficient mice (Ada-/-) were generated and 

genotyped as previously described [61, 66]. Control mice, designated Ada+/-, were 

littermates that were heterozygotes for the null Ada allele. Ada-/-/Adora2b-/- mice were 
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generated by crossing Ada-/- mice with Adora2b-/- mice [67]. Mice on a mixed 

129sV/C57BL/6J background were backcrossed at least 10 generations on the C57BL/6 

background. Four adenosine receptor deficient mice were initially transferred from Dr. 

Michael R. Blackburn and later bred in our lab. Berkley SCD transgenic mice expressing 

exclusively human sickle hemoglobin (HbS) were purchased from The Jackson 

Laboratory [68].   Eight to ten-week-old male and female C57BL/6 wild-type (WT) mice 

were purchased from Harlan Laboratories (Indianapolis, IN). Sphingosine Kinase 1-

deficient mice were initially acquired from Dr. Richard L. Proia at the National Institute of 

Diabetes and Digestive and Kidney Diseases, NIH (Bethesda, MD) and bred in the 

University of Texas Health Science Center at Houston. 

All phenotypic comparisons were performed using littermates.  Animal care was 

in accordance with National Institutes of Health guidelines and the Animal Wellfare 

Committee at The University of Texas Health Science Center at Houston. 

2.3 Polyethylene glycol-modified ADA (PEG-ADA) treatment  

PEG–ADA was generated by the covalent modification of purified bovine ADA 

with activated polyethylene glycol as described previously [69-71]. Different dosages of 

PEG–ADA were delivered weekly by intra-peritoneal injection to reduce adenosine 

levels. Specifically, the Ada-/- mice were maintained on enzyme therapy at 5 U/week for 

8 weeks to allow for normal development. After 8 weeks, the mice were either stopped 

or continued given PEG-ADA for 2 weeks. For the rescue group, the enzyme therapy 

were paused for 11 days and then 5 units PEG-ADA were given back three days before 

the mice were sacrificed. 
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2.4 Blood collection and preparation from humans and mice 

Approximately 4 ml blood was withdrawn from forearm veins of normal 

individuals and patients with SCD and collected in Sodium Heparin or 

Ethylenediaminetetraacetic acid- potassium salt (K2EDTA) coated tubes. For mouse, 1 

ml blood was collected in a 1.5-ml tube with in Sodium Heparin or K2EDTA. For mouse 

blood collected for adenosine analysis (see below), blood was collected in 1.5 ml tubes 

containing 17 units of Sodium Heparin, 10 μM dipyridamole, 10 μM α,β-methylene ADP 

and 10 μM 5’-deoxycoformycin (DCF); plasma was immediately separated and placed 

in liquid nitrogen and stored at -80º C. RBCs were then purified via Percoll density 

purification (Sigma) to remove white blood cells. 

2.5 Plasma adenosine analysis  

Adenosine concentration in plasma was measured by High Performance Liquid 

Chromatography (HPLC) as previously described[72]. In brief, 200 μl plasma was added 

to 200 μl 0.6 M cold perchloric acid on ice, vortexed and centrifuged at 20,000 x g for 10 

min at 4 ºC. The supernatant (about 220 μl) was transferred to a new tube and 

neutralized with 16.5 μl 3 M KHCO3/3.6 N KOH. Phenol red (1 μl of 0.2 mg/ml) was 

added as indicator. The sample was acidified with 2.3 μl 1.8 M ammonium dihydrogen 

phosphate (pH 5.1) and 5.5 μl phosphoric acid (30%). Finally, the sample was 

centrifuged at 20,000 x g for 5 min and the supernatant was transferred to a new tube 

and stored at -20 ºC. Before HPLC assay, the sample was thawed on ice, and 

centrifuged at 20,000 x g for 10 min. The supernatant was transferred to a new tube for 

HPLC analysis as described previously [66, 73]. 
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2.6 Isolation of total erythrocytes and treatment of human and mouse 

erythrocytes in vitro 

Blood collected in heparin as an anti-coagulant was centrifuged at 240 x g for 10 

min at room temperature, followed by aspiration of plasma and buffy coat. Packed 

erythrocytes were washed 3 times with culture media (F-10 nutrients mix, Life 

Technology) and re-suspended to 4% hematocrit (HCT). One ml of pelleted 

erythrocytes were added to each well of a 12-well plate and treated with different 

compounds including 5’-(N-ethyl-carboxamido) adenosine (NECA, R&D system), 

ADORA2B antagonist MRS 1754, PKA inhibitor H89, PKA activator Forskolin, ERK1/2 

inhibitor PD 98059 (R&D system), S1P (Sigma, USA) at the concentrations indicated in 

respective experiments. 

2.7 Sphk1 activity assay 

Erythrocyte Sphk1 activity was measured using previously described methods 

[74, 75] with a few modifications. Briefly, RBCs were lysed in a pH7.4 Tris-HCl buffer 

containing 1mM EDTA, 1mM β-Mercaptoethanol, 0.3% Triton X-100, 50% glycerol and 

protease and phosphatase inhibitors. Then, the lysates were assayed using 250 µM D-

erythro-sphingosine in bovine serum albumin (0.4%) and [γ-32P]ATP (10 μCi, 20 mM) 

containing 200 mM MgCl2. Lipids were extracted and then resolved by TLC on silica gel 

G60 with 1-butanol/methanol/acetic acid/water (80:20:10:20, v/v). The plates were then 

exposed to phosphor-imaging screening (Bio-Rad) and scanned for radioactive signals 

as indications of the amount of S132P synthesized.  
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2.8 Erythrocyte membrane isolation and western blot 

Pelleted erythrocytes were frozen and thawed in a 20-fold volume of 5mM 

phosphate buffer containing 150mM NaCl, protease inhibitor cocktails (Roche) and 

phosphatase inhibitor cocktails (Sigma), and then centrifuged with 20,000g for 20 min. 

Supernatant were removed and pellets were washed four times before dissolving in the 

same buffer with 1% Triton X-100. Protein concentration was quantified using Pierce 

BCA protein concentration assay (Thermo Scientific). 50µg of membrane protein were 

loaded for western blot detection of membrane bound Sphk1 and Sering225-

phosphorylated Sphk1 with anti-Sphk1 antibody (LifeSpan) and anti-Ser225 p-Sphk1 

antibody (ECM Bioscience).  

2.9 Metabolomics profiling 

Metabolomics extraction.  Erythrocytes (100µl) and plasma samples (20µl) were 

immediately extracted in ice-cold lysis/extraction buffer (methanol:acetonitrile:water 

5:3:2) at 1:9 and 1:25 dilutions, respectively. Samples were agitated at 4ºC for 30 min, 

and then centrifuged at 10,000g for 15 min at 4°C. Protein pellets were discarded, and 

supernatants were stored at -80°C prior to metabolomics analyses[76]. 

Metabolomics analysis. Ten µl of erythrocyte extracts were injected into a 

UHPLC system (Ultimate 3000, Thermo, San Jose, CA, USA) and run on a Kinetex XB-

C18 column (150 x 2.1mm, 1.7 µm particle size - Phenomenex, Torrance, CA, USA) 

using a 3 min isocratic flow (5% acetonitrile, 95% water, 0.1% formic acid) at 250 µl/min 

or a 9 min linear gradient (5-95% acetonitrile with 0.1% formic acid at 400 µl/min). The 

UHPLC system was coupled online with a Q Exactive mass spectrometer (Thermo, 

Bremen, Germany), scanning in Full MS mode (2 µscans) at 70,000 resolution in the 
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60-900 m/z range, 4 kV spray voltage, 15 sheath gas and auxiliary gas, operated in 

negative and then positive ion mode (separate runs). Calibration was performed before 

each analysis using positive and negative ion mode calibration mixes (Pierce, Rockford, 

IL, USA) to ensure sub ppm error of the intact mass. Metabolite identifications were 

assigned using the software Maven (Princeton, NJ, USA), upon conversion of raw files 

into mzXML format through MassMatrix (Cleveland, OH, USA). The software allows for 

peak picking, feature detection and metabolite assignment against the KEGG pathway 

database. Assignments were further confirmed against chemical formula determination 

(as gleaned from isotopic patterns and accurate intact mass), and retention times 

against a >750 standard compound library (Sigma-Aldrich, St. Louis, MO, USA; IROA 

Tech, Bolton, MA, USA)[76]. 

2.10 S1P quantification  

Validation and quantitative analyses for S1P were performed using a Thermo 

Vanquish HPLC system coupled to a Thermo Q Exactive mass spectrometer and 

determined against commercial standard compounds S1P (>95% pure - no. S9666, 

Sigma Aldrich, St. Louis, MO, USA) and S1P-d7 (>99% pure - no. 860659P – Avanti 

Polar Lipids Inc, Alabaster, AL, USA) within the linear range, as determined through 

external calibration curves across 7 orders of magnitude. Samples were diluted 1:10 

with methanol:acetonitrile:water (5:3:2) containing 100nmole∙l-1  S1P-d7, then agitated 

and centrifuged as described above. Supernatant (10µl per injection) was analyzed 

using a 4 minute gradient of 50-95% acetonitrile containing 0.1% formic acid (400µl/min) 

and a Kinetex C18 column (150 x 2.1 mm, 1.7 µm – Phenomenex) held at 35 oC. The 
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mass spectrometer was operated in positive ion mode at 70,000 resolution, scan range 

of 90-1350 m/z, sheath gas 25, auxiliary gas 5. 

Quantification was performed by exporting integrated peak area values for 

endogenous and heavy S1P. Absolute quantitation was determined according to the 

formula: [light] = Peak Area (Light)/(Heavy)*[Heavy]*dilution factor (10 for red blood cells, 

10 for plasma). 

2.11 Metabolic flux analysis 

Erythrocytes were cultured in HEPES buffer with 6 mmole∙l-1 D-Glucose-1,2,3-

13C3 (Sigma Aldrich)[77, 78] and extracted and processed as described above. Packed 

mature erythrocytes were washed 3 times with HEPES buffer and re-suspended to 4% 

hematocrit (HCT). One ml of erythrocytes were added to each well of a 12-well plate 

and pretreated with for 30 min before sample collection started. Flux analysis was 

performed by determining the integrated peak areas of isotopologues +2.0068 and 

+3.0102 Da of lactate, glucose, and Glyceraldehyde 3-phosphate in negative ion mode 

through the software Maven (Princeton University). 

2.12 HypoxyprobeTM detection in multiple tissues in vivo 

Tissue hypoxia levels were assessed by HypoxyprobeTM immunofluorescence as 

described before [79, 80]. Briefly, animals were administered HypoxyprobeTM 

(Pimonidazole HCl) (Hypoxyprobe, Inc.) via intraperitoneal injection (60 mg/kg body 

weight). In hypoxia (pO2 < 10 mmHg), Pimonidazole HCl forms adducts with thiol 

groups in proteins, peptides and amino acids in a way that all atoms of the ring and 

side-chain of the 2-nitroimidazole are retained. Thirty min after injection, tissues were 
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harvested, fixed overnight in 4% buffered formalin, and embedded in paraffin. Tissue 

sections were deparaffined, rehydrogenated and incubated with anti-HypoxyprobeTM 

(rabbit anti-PAb2627AP, 1:200 dilution Hypoxyprobe, Inc.) overnight at 40C. Hypoxia 

signaling was detected by applying Alexa Fluor® 488-conjugated donkey anti-rabbit IgG 

antibody (1:1000 dilution, Life technologies). Quantification of the fluorescent signaling 

was performed using the Image-Pro Plus software (Media Cybernetics, Bethesda, MD). 

The density of the fluorescence was measured. The average densities of 20 areas per 

samples were determined and the SEM is indicated. 

2.13 2,3-BPG analysis and erythrocyte oxygen release capacity (P50) 

measurement 

2,3-BPG in 20 μl erythrocyte pellet was isolated with 100 μl 0.6 M cold perchloric 

acid on ice, vortexed, and subsequently sonicated for 10 seconds with output 6 (W-

220F, Heat systems-ultrasonic, Inc). The homogenate was centrifuged at 20,000 x g for 

10 min). 80 μl supernatant was transferred to a new tube and neutralized with 10 μl 2.5 

M K2CO3, then centrifuged at 20,000 x g for 5 min. 20 μl supernatant was used to  

quantify 2,3-BPG using a commercially available kit (Roche, Nutley, NJ) [72, 81] [72, 81]. 

For human samples, arterial blood gases were measured and the Hill equation was 

used to calculate P50[82]. For mouse samples, 10 μl of whole blood aliquot were mixed 

with 4.5ml Hemox Buffer (TCS Scientific Corporation, PA), 10 μl anti-foaming reagent 

[(TCS Scientific Corporation, PA) and 20 μl 22% BSA in PBS. The mixture was then 

injected in the Hemox Analyzer (TCS Scientific Corporation, PA)] for measurement of 

oxygen equilibrium curve at the temperature of 370C. 
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2.14 Irradiation and bone marrow transplant 

The day before irradiation, recipient mice (8 to 10 weeks of age) were treated 

with neomycin at 2 μg/ml in drinking water, as described previously[8].  The next day, 

mice were exposed to 5 Gy irradiation by RS X-ray irradiator (Rad Source Technologies, 

Suwanee, GA). Four hours later, the mice were exposed to the same dose of irradiation. 

Bone marrow cells were isolated from femur of donor mice and injected retro-orbitally 

into irradiated recipient mice (1 × 106 bone marrow cells per mouse). After transplant, 

the mice were treated with 2 μg/ml neomycin in drinking water for 2 weeks. Mice were 

used 8–10 weeks later for experiments. 

2.15 Isolation of erythrocyte cytoplasm and measurement of Glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) activity 

Erythrocytes were lysed by freeze and thaw in 10 volume of 5mmole∙l-1 cold 

phosphate buffer (pH 8.0) and vortexed. Erythrocyte membrane was removed by 

centrifuged at 20,000g for 20 minutes at 40C. The supernatant was saved and used to 

measure cytosolic GAPDH activity by KDalert GAPDH assay kit (Life technologies)[83]. 

2.16 Immunofluorescent staining of GAPDH in erythrocytes  

Mouse erythrocytes were fixed with 100% ice-cold methanol for 10 minutes. The 

fixed cells were washed two times with Phosphate-buffered saline (PBS), blocked by 1% 

BSA in PBS (Blocking buffer, pH 7.4.) for one hour at room temperature. Cells were 

incubated with monoclonal anti-GAPDH antibody (Sigma-aldrich, 1:100 in blocking 

buffer) at 4ºC for overnight. The cells were washed three times with PBS, incubated with 

Alexa fluor 594 donkey anti-mouse IgG(H+L) (1:1000 dilution) or Alexa fluor 488 donkey 

anti-rabbit IgG(H+L) (1:1000 dilution) ( Life technologies) for one hour at room 
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temperature in dark, then washed 3 times and re-suspended in PBS. Cell-smear were 

made and dried in dark. The slides were mounted with cover glass by mounting medium 

(VECTASHIELD H-1400, Vector, CA). Pictures were taken under Zeiss LSM 780 

confocal microscope (Carl Zeiss Inc, Jena, Germany). 

2.17 S1P beads interaction assay 

Two µg of total erythrocyte lysate from normal individual was adjusted to 100µL 

using lysis buffer [20mM PIPES, 150 mmole∙l-1 NaCl, 1 mmole∙l-1  EGTA, 1% V/V Triton-

X-100, 1.5 mmole∙l-1  MgCl2 and 1 mmole∙l-1  Naorthovanidate, 0.1% SDS, 1X protease 

inhibitors (Roche Applied), pH7.4]. Approximately 100µl of various lipids conjugated to 

agarose beads including S1P-agarose beads, lysophosphatic acid-beads or 

sphingosine-beads (Echelon Biosciences Inc, Salt Lake City, UT) were washed twice 

with lysis buffer. The lysates were incubated with beads overnight at 40C with constant 

gentle rotation. Protein-bound beads were washed by wash buffer (10 mmole∙l-1  

HEPES pH 7.4, 150 mmole∙l-1  NaCL, 0.25% NP-40) for 6 times. Washed beads were 

added 50µL of 2 x Laemmli buffer (Sigma-Aldrich) and heated at 1000C for 5 minutes.  

Beads were centrifuged at 5000g for 5 minutes and supernatants (eluted proteins) were 

separated by SDS-PAGE, trans-blotted to nitrocellulose membrane. Hemoglobin was 

probed with anti-human hemoglobin antibody (Santa Cruz, CA). Immuno-reactive bands 

were visualized by ECL using secondary antibodies conjugated with horseradish 

peroxidase and Super-signal West Pico chemiluminesence substrate (Piere). 

2.18 In vitro reconstitution of ghost membrane  

Nonporous silicon beads with 3.15 µm diameter (Bangs Laboratories, IN) were 

pretreated with 6ml specific buffer (30% H2O2/30 % NH4OH/H2O: 1/1/5) and sonicated 
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for 5 minutes, incubated at 600C for 30 minutes. The beads are washed with pH5.5 

millipore water for 5 times and washed with 5 mM PS for 3 times. Human or mouse 

ghost cells were prepared as follows: heparin-blood was centrifuged at 2,400g for 5 

minutes. The plasma and buffy coat were removed. The pellet was washed twice with 

PBS. The cells were lysed in 5mmole∙l-1 phosphate buffer (pH8.0), centrifuged at 

18,000g for 15 minutes. The supernatant was removed and the pellet was washed in 

phosphate buffer for 7 times to obtain ghost cells. The beads were coated by ghost cells 

to produce inside-out membrane (IOM). The IOM was washed 6 times with 5mmole∙l-1 

phosphate buffer (PB, pH 8.0). Packed 5x109 IOM beads were added 100 μl 5mmole∙l-1 

PB (pH7.4) with 100 μM hemoglobin, varied concentrations of S1P. Beads were 

incubated at 370C for 10 minutes, centrifuged at room temperature for 1 minute at 500g. 

The supernatant was transferred to new tube for GAPDH activity assay. Pellet beads 

were washed 6 times with PB (pH7.4). Beads were added to 100 µl of concentrated 

formic acid (Sigma-Aldrich), vortexed for 5 minutes. The beads were centrifuged at 

2000rpm for 2 minutes. 80 µl of the supernatant was transferred to a new 1.5 ml tube 

and added 400µl 5M NaOH. The heme concentration was determined at 398 nm 

wavelength as described[84] and normalized to protein concentration. Human Hb A was 

used as standards for heme assay. For hypoxia condition, PB was bubbled by 8% 

oxygen, 92% nitrogen for 10 minutes, then beads and PB were transferred to glove box. 

All the steps were performed in glove box until beads were ready for heme assay. 

2.19 Morphology study of erythrocytes  

Blood smears were made using 1% glutaradehyde fixed human blood or mouse 

tail blood from bone marrow transplanted mice. Blood smears were stained by WG16-
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500ml kit (Sigma-Aldrich. Blood smears were observed using the 40x objective of an 

Olympus BX60 microscope. Areas where red blood cells do not overlap were randomly 

picked, at least 10 fields were observed and 1000 red blood cells including sickle cells 

were counted. The percentages of sickle cells in red blood cells were calculated.  

2.20 Hemolytic analysis  

The hemoglobin in mouse plasma was quantified by ELISA kits following 

instructions provided by the vendor (BioAssay Systems, Hayword, CA). 

2.21 Mouse organ isolation and histological analysis  

Mice were anesthetized and organs were isolated and fixed with 10% 

paraformaldehyde in PBS overnight at 4°C. Fixed tissues were rinsed in PBS, 

dehydrated through graded ethanol washes, and embedded in paraffin. 5μm sections 

were collected on slides and stained with hematoxylin and eosin (H&E).  

2.22 Measurement of life span of erythrocytes in SCD Tg mice  

Erythrocytes were labeled in vivo by using N-hydroxysuccinimide (NHS) biotin 

and the life span of circulating red blood cells was measured as described[8]. 

Specifically, 50 mg/kg of NHS biotin was injected into the retro-orbital plexus of SCD 

mice (prepared in 100μl sterile saline just prior to injection; initially dissolved at 50 

mg/mL in dimethyl sulfoxide). Blood samples (5 μl) were collected the first day after 

biotin-injection from tail vein by venipuncture to determine the percentage of 

erythrocytes labeled with biotin. Subsequently, 5μl of blood were obtained by tail vein 

venipuncture on day 1, 3, 5 and 7 for measurement of biotinylated erythrocytes. The 

percentage of biotinylated erythrocytes was calculated by determining the fraction of 
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peripheral blood cells labeled with Ter-119 (to identify erythrocytes) that were also 

labeled with a streptavidin-conjugated fluorochrome by flow cytometry with a Gallios 

Flow Cytometer and analyzed with Kaluza software (Beckman-Coulter) at Dr. Dorothy 

Lewis’s lab. 

2.23 Measurement of Nicotinamide adenine dinucleotide phosphate-reduced 

(NADPH) 

Erythrocyte NADPH was quantified by a commercially available kit (Sigma-

Aldrich). Briefly, 10µl erythrocytes were used for each assay. NADPH was extracted 

with 800µl of NADP/NADPH Extraction Buffer and placed on ice for 10 minutes, then 

centrifuged the samples at 10,000 g for 10 minutes to remove insoluble material. Then, 

10KDa molecular weight cut-off columns were used to filter out enzymes in the lysate. 

The filtered solution was then applied to the measurement of NAPDH through a chain 

colorimetric reaction and the read-outs were detected by spectrophotometer.  

2.24 Reactive oxygen species detection 

One ul RBC pellet was added to 1.73 uM Dichlorodihydrofluorescein Diacetate 

(H2DCFDA) in 100 ul PBS, (Thermo Scientific) and incubated for 30~60 min in dark at 

37ºC. After incubation, cells were washed 3 times with 1 ml PBS each time. Afterwards, 

supernatant was removed and cells were re-suspended in 200 ul PBS for flow 

cytometry [Gallios Flow Cytometer with Kaluza software (Beckman-Coulter)] detection 

and analysis of fluorescent signals at 488nm. 
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2.25 Crystal structural studies  

Freshly prepared solution of S1P in methanol was incubated with deoxygenated 

Hb (40 mg/mL deoxyHb) with and without freshly prepared solution of 2,3-BPG in water 

for 60 minutes at Hb tetramer: 2,3-BPG:S1P molar ratio of 1:5:5 or Hb tetramer:S1P 

molar ratio of 1:5. The binary (deoxyHb-S1P) and ternary (deoxyHb-S1P-2,3-BPG) 

complex solutions were then crystallized with 0.2 M sodium acetate trihydrate, 

0.1mole∙l-1 sodium cacodylate trihydrate, pH 6.5 and 30% PEG 8000 using the batch 

method as previously described[85]. Crystals were cryo-protected with mother liquor 

and glycerol (3:1 ratio) prior to diffraction data collection at 100 K with a Rigaku IV ++ 

image plate detector using a CuK X-rays ( = 1.54 Å) from a MicroMax-007 source 

fitted with Varimax Confocal optics (Rigaku, The Woodlands, TX). The two complexes 

crystalized in orthorhombic space group P21212, each with one tetramer per asymmetric 

unit. The datasets were processed with the d*trek software (Rigaku) and the CCP4 suite 

of programs[86]. 

The deoxyHb-S1P structure was first determined using molecular replacement 

method with Phenix v.1.8 [87], with the native deoxyHb structure, deoxyHb (2DN2)[88] 

and refined with both Phenix[87] and the CNS programs[89]. Model building and 

correction were carried out using the graphic programs COOT[90]. The refined-S1P 

structure was then used as a starting model to refine the deoxyHb-S1P-BPG complex 

structure. The deoxyHb-S1P refines to Rfactor/Rfree of 22.4/27.9% at 2.4 Å, while 

deoxyHb-S1P-2,3-BPG refines to 18.2/21.1% at 1.8 Å. A significant number of the low-

resolution reflections in the ternary deoxyHb-S1P-BPG complex were characterized by 

high mosaicity, which could have contributed to the large difference in the Rfactor and 
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Rfree. The atomic coordinate and structure factor files have been deposited in the 

RCSB Protein Data Bank with accession codes 5KSJ for deoxyHb-S1P and 5KSI for 

deoxyHb-S1P-2,3-BPG. Detailed crystallographic and structural analysis parameters 

are reported in Table 2. 

2.26 Statistical analysis 

All data were presented as mean ± SEM (standard error of mean) and analyzed 

statistically using GraphPad Prism 5 software (GraphPad Software). The significance of 

differences among two groups was assessed using Two-tailed Student’s t-test (paired 

or unpaired as appropriate). Differences between the means of multiple groups were 

compared by one-way analysis of variance (ANOVA) or two way ANOVA, followed by a 

Turkey’s multiple comparisons test. A P value of less than 0.05 was considered 

significant. 
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III. Results 

3.1 Chapter 1: Regulation of Erythrocyte Sphk1 activity 

This chapter is based upon: Sun K, Zhang Y, Bogdanov MV, Wu H, Song A, Li J, 

Dowhan W, Idowu M, Juneja HS, Molina JG, Blackburn MR, Kellems RE, Xia Y: Elevated 

adenosine signaling via adenosine A2B receptor induces normal and sickle erythrocyte 

sphingosine kinase 1 activity. Blood 2015, 125(10):1643-1652. [91], with permission from the 

journal Blood for the usage in thesis.  

The highest level of extracellular S1P is found in plasma where it reaches close 

to the micromolar range. Even higher levels of S1P are found in erythrocytes at about 

2µM under normal condition but can reach 8 µM in SCD. Erythrocytes were considered 

to be merely an S1P reservoir before recent studies indicating potentially important 

functions of S1P in inducing sickling of SCD erythrocytes. Although regulation of Sphk1 

at both translational and post-translational levels has been studied in nucleated cells, 

the question remains regarding how Sphk1 is regulated in mature erythrocytes.     

3.1.1 Adenosine induces Sphk1 activity in normal and sickle erythrocyte from 

both humans and mice   

To identify specific molecules that can induce Sphk1 activity in erythrocytes, I 

screened a series of molecules known to regulate Sphk1 in other cell types, including 

angiotensin II[92] ,tumor necrosis factor-TNF-[93, 94], endothelin 1 (ET-1)[95, 96] 

and even S1P[97], the product of Sphk1. However, none of them activated Sphk1 in 

wild type (WT) mouse erythrocytes (Figure 1a).  Next, I decided to focus on hypoxia-

induced molecules since erythrocytes Sphk1 activity is further increased in response to 

hypoxia[8] in SCD.  Of note, early non-biased metabolomic screening showed the 
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accumulation of the potent hypoxia signaling molecule adenosine in the circulation of 

SCD mice. Like S1P, adenosine also contributes to sickling[72]. Therefore, I 

hypothesized that adenosine can induce erythrocyte Sphk1 activity. To test this 

hypothesis, I treated WT mouse erythrocytes with the potent non-metabolizable 

adenosine analog 5’-N-ethylcarboxamidoadenosine (NECA). NECA significantly 

increased Sphk1 activity, indicating that adenosine can directly induce Sphk1 activity in 

normal mouse erythrocytes in a time (Figure 1b) and dose (Figure 1c) dependent 

manner.  

 

Figure 1. Test of potential molecules capable of inducing erythrocyte Sphk1 activity.  
(A) Sphk1 activity in primary erythrocytes from WT mice treated with endothelin-1 (100nM), angiotensin 

II (100nM), tumor necrosis factor-α (50 ng/ml), sphingosine 1-phosphate (100nM) and NECA (10μM). (B) 

Induction of erythrocyte Sphk1 activity by NECA in a time-dependent manner. (C) Dose-dependent 

erythrocyte Sphk1 activation by NECA treatment for 30 min. Values shown represents the mean ± SEM 

(n=3~5 for each group). 

To determine if adenosine can induce Sphk1 activity in normal human 

erythrocytes, I treated normal human erythrocytes with NECA and found that NECA 

significantly induced Sphk1 activities in normal human erythrocytes (Figure 2a). 

Extending to sickle human and mouse erythrocytes, similarly, I observed that the 

adenosine analog, NECA, can induce Sphk1 activity in both mouse and human sickle 
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erythrocytes (Figure 2b-c). Together, these data suggest that adenosine is a common 

signaling molecule responsible for increased Sphk1 activity in normal and sickle 

erythrocytes from both humans and mice. 

 

Figure 2. Adenosine directly increases erythrocyte Sphk1 activity. 

Sphk1 activity in primary erythrocytes from normal human subjects (A) , SCD transgenic mice (B) and 

SCD patients (C) after NECA (10μM) treatment for 30 min. Values shown represent the mean ± SEM 

(n=5 for SCD patients and normal human subjects; n=6 for SCD transgenic mice and WT mice). *P < 

0.05 NECA versus control. 

 

3.1.2 Genetic deletion of adenosine deaminase leads to excess plasma 

adenosine and elevated erythrocyte Sphk1 activity in vivo 

Although the in vitro data showed that adenosine induces Sphk1 activity in 

normal and sickle erythrocytes, I sought to extend to in vivo using adenosine 

deaminase-deficient mice (Ada-/-). Adenosine deaminase (ADA) catalyzes the 

irreversible deamination of adenosine to inosine. ADA deficiency mice accumulate high 

levels of adenosine in the circulation and in all tissues examined [61]. Though a lethal 
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condition in human and mice, with regularly injected exogenous polyethylene glycol-

modified adenosine deaminase (PEG-ADA) enzyme, Ada-/- mice and humans can 

maintain a low plasma adenosine level and prolong life indefinitely. Once stopping the 

injection, Ada-/- mice accumulate large amount of plasma adenosine within days [61].  

Thus, using PEG-ADA enzyme therapy to regulate adenosine levels in Ada-/- mice is a 

powerful experimental strategy to investigate the role of adenosine on erythrocyte 

Sphk1 activity in vivo.  Specifically, first, Ada-/- mice were treated with PEG-ADA till 8-

week-old to ensure normal development.  Then, the mice were divided into four groups 

as showing in Figure 3a: Group 1-control-Ada-/+ mice; Group 2-prevention group with 

continuous PEG-ADA treatment; Group 3-phenotye group with PEG-ADA treatment 

withdrawn for two weeks to allow adenosine accumulation; Group 4-rescued group with 

PEG-ADA treatment suspended for 11 days and then resumed with an additional 

injection before sacrifice. As expected, with PEG-ADA treatment withdrawn, Ada-/- mice 

(phenotype group) accumulated dramatically higher plasma adenosine compared to the 

control Ada-/+ (Figure 3b).   

Interestingly, significantly increased erythrocyte Sphk1 activity was also seen in 

the phenotype group (Figure 3c). In contrast, elevation of plasma adenosine was not 

seen in the Ada-/- mice (prevention group) that were continuously treated with PEG-ADA 

(Figure 3b). As such, Sphk1 activity was not induced in the erythrocytes of the 

prevention group (Figure 3c).  Moreover, when the plasma adenosine level in rescued 

group was decreased by re-administrating PEG-ADA (Figure 3b), the erythrocyte Sphk1 

activity was also reduced (Figure 3c).  Therefore, these data provided solid genetic 

evidence that increased plasma adenosine levels causes erythrocyte Sphk1 activation 
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in vivo and that PEG-ADA is a safe and effective drug to regulate adenosine levels and 

subsequently control erythrocyte Sphk1 activity. 

 

Figure 3. Elevated plasma adenosine induce erythrocyte Sphk1 activity increase in vivo.  

(A) Schematic representation of mouse treatment strategy. (B-C) Plasma adenosine (B) and erythrocyte 

SphK1 activity (C) in Ada+/-, Ada-/- with PEG-ADA treatment, Ada-/- without PEG-ADA treatment and 

Ada-/- rescue. Values shown represent the mean ± SEM (n=6 for each group). *P < 0.05 Ada+/- versus 

Ada+/-+ PEGADA;**P < 0.05 Ada+/- versus Ada+/- rescue. 
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3.1.3 Adenosine-induced Sphk1 activity in normal and sickle erythrocytes is 

dependent on adenosine receptor A2B (ADORA2B)  

As a signaling molecule, adenosine executes its many functions primarily by 

activating its four G protein–coupled receptors-ADORA1, ADORA2A, ADORA2B and 

ADORA3—each with a distinct affinity for the ligand and a distinct cellular and tissue 

distribution[98-100]. To determine which of the four adenosine receptors regulates 

erythrocyte Sphk1 activity, I isolated erythrocytes from wild type mice and four 

adenosine receptor deficient mice and treated them with NECA.  NECA induced Sphk1 

activity in erythrocytes from Adora1-/-, Adora2a-/- and Adora3-/- mice similar to WT mice 

but not in erythrocytes isolated from Adora2b-/- mice (Figure 4a), indicating that 

ADORA2B is essential for adenosine-induced Sphk1 activity in normal mouse 

erythrocytes.  

Next, to extend our genetic studies, I also tested the effects of pharmacologically 

blocking ADOAR2B signaling with specific antagonist MRS1754[101].  MRS1754 

completely blunted the induction of erythrocyte Sphk1 activity by NECA (Figure 4b-c). 

Thus, genetic and pharmacological studies combined demonstrate that ADORA2B 

signaling underlies adenosine-induced erythrocyte Sphk1 activity in normal mouse and 

human erythrocytes. In addition, pharmacological studies in sickle erythrocytes isolated 

from patients and mice were also conducted and revealed similar effects of MRS1754 in 

blocking NECA induced Sphk1 activation (Figure 4d-e).  Altogether, I have provided 

both human and mouse evidence that ADORA2B is required for adenosine-induced 

Sphk1 activity in normal and sickle erythrocytes and that blocking ADORA2B signaling 

effectively inhibits adenosine-induced erythrocyte Sphk1 activity. 
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Figure 4. Adenosine signaling through ADORA2B to induce erythrocyte Sphk1 activity increase. 

 (A) Sphk1 activity in primary erythrocytes from four adenosine receptor deficient mice after NECA 

(10μM) treatment for 30 min. (B~E) Sphk1 activity in cultures of primary erythrocytes from WT mice (B), 

normal human subjects (C), SCD transgenic mice (D) and SCD patients (E) after NECA (10μM) 

treatment with and without AODRA2B antagonist MRS1754 (10μM). Values shown represent the mean 

± SEM (n=5 for SCD patients and normal human subjects; n=6 for SCD transgenic mice and WT mice). 

*P <0.05 NECA or NECA + MRS 1754 versus NECA versus control. 
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3.1.4 Genetic deletion of ADORA2B abolishes excess plasma adenosine-

induced erythrocyte Sphk1 activity in vivo 

The in vitro studies demonstrated ADORA2B is required for adenosine induced 

erythrocyte Sphk1 activity. To confirm the results in vivo, I used ADA and ADORA2B-

double deficient mice (Ada-/-/Adora2b-/-)[67].    Similarly, PEG-ADA enzyme therapy was 

used to regulate adenosine levels in these mice.  As shown in Figure 5a, I treated both 

Ada-/-/Adora2b-/- and Ada-/-/Adora2b+/+ mice with PEG-ADA till 8-week old. Some of the 

mice were continuously treated with PEG-ADA while the others were terminated two 

weeks before sacrifice. After stopping PEG-ADA treatment for two weeks, plasma 

adenosine significantly increased in both Ada-/-/Adora2b-/- and Ada-/-/Adora2b+/+ mice 

compared to the treated groups (Figure 5b and d).  When both on PEG-ADA enzyme 

therapy, Ada-/-/Adora2b+/+ and Ada-/-/Adora2b-/- mice had similar level of erythrocyte 

Sphk1 activity (Figure 5c and e). However, two weeks after the enzyme therapy 

withdrawn, although adenosine levels went up in both mice (Figure 5b and d), only Ada-

/-/Adora2b+/+  showed significantly increased erythrocyte Sphk1 activity while the Sphk1 

activity in Ada-/-/Adora2b-/- mice erythrocyte remained unchanged (Figure 5c and e). 

These results validated our in vitro studies and provided strong in vivo genetic evidence 

that ADORA2B is required for adenosine mediated induction of erythrocyte Sphk1 

activity in Ada-/- mice. 
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Figure 5. Elevated plasma adenosine increases erythrocyte Sphk1 activity through ADORA2B. 

 (A) Schematic representation of mouse treatment strategy. (B, C) Plasma adenosine levels (B) and 

erythrocyte Sphk1 activity (C) in Ada-/- Adora2b+/+ mice before (+PEG-ADA) and after PEG-ADA 

treatment withdrawn (-PEG-ADA). (D, E) Plasma adenosine levels (D) and erythrocyte Sphk1 activity (E) 

in Ada-/- Adora2b-/- mice before (+PEG-ADA) and after PEG-ADA treatment withdraw (-PEG-ADA). 

Values shown represent the mean ± SEM (n=6 for each group). *P < 0.05 -PEG-ADA versus +PEG-ADA. 
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3.1.5 PKA mediated ERK1/2 activation functions downstream of ADORA2B 

and underlies adenosine-induced Sphk1 activity in normal and sickle 

erythrocytes from both human and mice  

The Gs-coupled ADORA2B signaling involves many downstream components 

including PKA[102] and the extracellular-signal regulated kinase 1 and 2 (ERK1/2) [103]. 

Previous study showed  PKA underlies adenosine-ADORA2B mediated induction of 2, 

3-bisphosphoglycerate in erythrocyte[72]. Also, ERK1/2 can directly phosphorylate and 

activate Sphk1 [32]. Therefore, I sought to test if PKA and ERK1/2 are important 

intracellular signaling molecules functioning downstream of ADORA2B responsible for 

adenosine-induced Sphk1 activity in erythrocytes. First, I treated erythrocytes isolated 

from normal human and mice with or without NECA in the presence or absence of 

specific PKA inhibitor, H89 or ERK1/2 inhibitor, PD98059.  NECA-induced Sphk1 

activity was significantly reduced by either H89 or PD98059 as MRS1754, a specific 

ADORA2B inhibitor (Figure 6a-b). PKA and ERK inhibitors each prevented NECA-

mediated induction of erythrocyte Sphk1 activity, suggesting that PKA and ERK1/2 work 

in an upstream and downstream manner.  To further test this intriguing possibility, I 

treated normal human and mouse erythrocytes with forskolin, a potent and specific PKA 

agonist, in the presence or absence of PD98059.  Forskolin treatment directly induced 

Sphk1 activity and PD98059 significantly attenuated forskolin-induced Sphk1 activity in 

normal human and mouse erythrocytes (Figure 6a-b).  

It is known that Sphk1 in the cytosol moves to the plasma membrane once 

phosphorylated [32]. Therefore, it is not surprising to see that NECA and forskolin 

treatment increased phosphorylation and membrane localization of Sphk1 in normal 
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human and mouse erythrocytes, and these inductions can be blunted by ADORA2B 

antagonist, PKA inhibitor and ERK1/2 inhibitor (Figure 6 c-d).  These results indicate 

that ADORA2B-mediated PKA activation signals via ERK1/2 in the adenosine-induced 

signaling pathway to activate Sphk1 activity in normal human and mouse erythrocytes.  

Thus, PKA and ERK1/2 function in a linear sequence rather than parallel pathways 

downstream from of adenosine induced ADORA2B signaling. 

 

Figure 6. PKA-mediated activation of ERK1/2 underlies adenosine-ADORA2B mediated erythrocyte 

Sphk1 activation in WT mice and normal human individuals. 

Sphk1 activity, membrane bound total and phosphorylated Sphk1 in primary erythrocytes from WT mice 

(A and C), normal human subjects (B), SCD transgenic mice (C) and SCD patients ( and D) after 

treatment of N (10μM NECA), N+M (10μM NECA + 10μM MRS1754), N+H (10μM NECA + 10μM 

H89), N+P (10μM NECA + 20μM PD98059), F (10μM Forskolin) and F+P (10μM Forskolin+ 20μM 

PD98059) for 30 min. Values shown represent the mean ± SEM (n=5 for normal human subjects and n=4 

for WT mice). *P <0.05 N or F versus control; **P < 0.05 N+M, N+H, N+P versus N; ***P < 0.05 F+P 

versus F. 
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Next, I extend the study to sickle erythrocytes.  Similarly, NECA-induced Sphk1 

activities (Figure 18), membrane bound Sphk1 and phosphorylated Sphk1 (Figure 19) 

were significantly reduced by H89 or PD98059 in sickle erythrocytes from both patients 

and mice. Moreover, forskolin directly induced erythrocyte Sphk1 activation, 

phosphorylation and membrane translocation, and PD98059 blocked forskolin-mediated 

the activation of Sphk1 (Figure 7). Thus, the data suggest that ADORA2B-mediated 

activation of PKA responsible for induced Sphk1 activity in an ERK1/2-dependent 

manner in both normal and sickle erythrocytes.   

 

Figure 7. PKA-mediated activation of ERK1/2 underlies adenosine-ADORA2B mediated erythrocyte 

Sphk1 activation in SCD Tg mice and SCD patients. 

Sphk1 activity, membrane bound total and phosphorylated Sphk1 in primary erythrocytes from SCD 

transgenic mice (A and C) and SCD patients (B and D) after treatment of N (10μM NECA), N+M (10μM 

NECA + 10μM MRS1754), N+H (10μM NECA + 10μM H89), N+P (10μM NECA + 20μM PD98059), F 

(10μM Forskolin) and F+P (10μM Forskolin+ 20μM PD98059) for 30 min. Values shown represent the 
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mean ± SEM (n=3 for SCD patients and n=5 for normal human subjects; n=3 for SCD transgenic mice 

and n= 4 for WT mice). *P <0.05 N or F versus control; **P < 0.05 N+M, N+H, N+P versus N; ***P < 

0.05 F+P versus F. 

To summarize, I have identified that adenosine-ADORA2B is a previously 

unrecognized signaling pathway that activates Sphk1 in normal and sickle erythrocytes. 

I also provided in vivo evidence that excess plasma adenosine induces erythrocyte 

Sphk1 activity in ADA-deficient mice. ADA enzyme therapy or genetic deletion of 

ADORA2B completely abolishes excess adenosine-induced erythrocyte Sphk1 activity 

in ADA-deficient mice. Finally, I demonstrated that ADORA2B activation-mediated PKA 

signaling is responsible for adenosine-induced Sphk1 activity in an ERK1/2-dependent 

manner in both normal and sickle erythrocytes. Taken together, I have revealed the 

novel role of adenosine signaling in erythrocyte physiology and pathology by regulating 

Sphk1 activity and thereby identified a new means to regulate Sphk1 activity in normal 

and SCD. 
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3.2 Chapter 2: Erythrocyte S1P Promotes Hypoxia Adaptation 

This chapter is based upon: Sun K, Zhang Y, D'Alessandro A, Nemkov T, Song A, Wu H, 

Liu H, Adebiyi M, Huang A, Wen YE, Bogdanov MV, Vila A, O'Brien J, Kellems RE, Dowhan 

W, Subudhi AW, Jameson-Van Houten S, Julian CG, Lovering AT, Safo M, Hansen KC, Roach 

RC, Xia Y: Sphingosine-1-phosphate promotes erythrocyte glycolysis and oxygen release 

for adaptation to high-altitude hypoxia. Nat Commun 2016, 7:12086.[9], with permission from 

the journal for usage in thesis. 

After discovering that erythrocyte Sphk1 can be activated by hypoxia-induced 

adenosine signaling in both normal and sickle cell disease, the next question is the 

function of elevated Sphk1 and S1P. Erythrocytes used to be considered as a reservoir 

to supply S1P to the circulation before a recent study recognized that elevated S1P 

induces sickling in SCD erythrocytes. However, the role of S1P in normal erythrocytes 

remains a mystery. Because the most important function of erythrocytes is to deliver O2, 

which increases significantly in response to hypoxia, I hypothesize that elevated S1P in 

hypoxia regulates erythrocyte O2 delivery capacity.  

3.2.1 Altitude induces S1P level and Sphk1 activity in human RBCs 

To determine how human erythrocytes respond to hypoxia, a multinational 

collaborative project was conducted in which 21 young and healthy lowland individuals 

were brought to high altitude at 5260 meters for a total of 16 days.  Nonbiased 

metabolomic profiling was performed on the erythrocytes isolated from these volunteers 

at sea level (SL), and after 12 hours (HA1), 7 days (HA7) and 16 days (HA16) at 5260m 

altitude. Additionally, their erythrocyte O2 releasing capacity were monitored by 
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measuring P50, the partial O2 pressure required to reach 50% Hb-O2 saturation, from 

human subjects at SL and at high altitude[104] (illustration in Figure 8a).   

 

Figure 8. Concurrent increase of erythrocyte Sphk1 activity, S1P production and O2 delivery ability in 

human high-altitude study.  

(a) Schematic representation of human high-altitude study: nonbiased metabolomic profiling coupled 

with erythrocyte function analysis was performed on the erythrocytes isolated from 21 human volunteers 

at sea level (SL), and after 12 hours (HA1), 7 days (HA7) and 16 days (HA16) at 5260m altitude. (b) 

Erythrocyte O2 release capacity was measured as P50.  2,3-BPG level (c) and S1P level (d) were 
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quantified in human high-altitude samples. (e) Erythrocyte Sphk1 activity in human high-altitude samples. 

(f) Schematic representation showing concurrent increase of erythrocyte S1P metabolism with O2 delivery 

identified in human high-altitude study. Mean ± s.e.m; n = 16–21 per group; *P < 0.05 versus SL, **P < 

0.01 versus HA1, ***P < 0.01 versus HA7, two way ANOVA.   

Consistent with previous high altitude studies[105], erythrocyte O2 releasing 

capacity (P50) was significantly increased by approximately  20% as rapidly as 12 hours 

at high altitude, and continued increasing to  day 16 in human volunteers (Figure 8b).  

Moreover, among 233 erythrocyte metabolites identified by metabolomic profiling, the 

levels of erythrocyte 2,3-bisphosphoglycerate (2,3-BPG), a specific allosteric modulator 

promoting O2 release from hemoglobin, increased in response to high-altitude hypoxia 

on  day 1 and was maintained at high level until day 16, as quantified by 

spectrophotometric assays (Figure 8c).  Notably, erythrocyte S1P levels rapidly  

increased within 12 hours at high altitude and further increased to approximately two 

fold on day 7 and three fold on day 16, consistent with trends observed for 2,3-BPG and 

P50 (Figure 8d). Sphk1 is the major enzyme responsible for the production of S1P in 

erythrocytes[22]. Reassuringly, I found that erythrocyte Sphk1 activity was significantly 

induced at high altitude as well (Figure 8e). Consistent to the notion that erythrocyte is 

the major cell source of circulating S1P[106], plasma S1P levels were also increased in 

humans after 16-day stay in high-altitude (Figure 9a).  Thus, we demonstrated that 

Sphk1 activity and S1P levels are induced in mature human erythrocytes by high 

altitude (Figure 8f). 
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Figure 9. Plasma S1P concentration increases in human and mice under hypoxia.  

(a) Plasma S1P concentration in human volunteers at sea level and after 16-day at high-altitude. (b) 

Plasma S1P concentration in WT and Sphk1
-/-

 mice under normoxia and hypoxia at different time points. 

Mean ± s.e.m; N=16~21 for human samples; n=5 for mouse samples, *p<0.05 versus SL or 6h, **p<0.05 

versus 24h, Student’s t-test and one way ANOVA 

3.2.2 Sphk1 promotes O2 release from mouse erythrocytes to offset hypoxia  

Since 2,3-BPG is one the most important regulators of erythrocyte O2 release 

capacity[105],  the above findings raise an intriguing possibility that elevated erythrocyte 

Sphk1-mediated increase in S1P production could induce erythrocyte 2,3-BPG 

production and thereby increase O2 release to adapt to high altitude hypoxia. To further 

investigate this possibility in vivo, I exposed wild-type (WT) and Sphk1-deficient (Sphk1-

/-)[107] mice to hypoxic environment (10% oxygen, close to oxygen level at 5260m 

altitude) for up to 72 hours. Similar to the human high-altitude studies, erythrocyte 

Sphk1 activity and S1P levels increased in a time dependent manner (Figure 10a). 

Moreover, erythrocyte 2,3-BPG levels and P50 were significantly elevated in WT mice 

similar to the human studies (Figure 10b). By contrast, Sphk1 activity is undetectable 

and erythrocyte S1P levels are only approximately 1/50 that of WT mice in Sphk1-/- mice.  
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Moreover, hypoxia-mediated increase of erythrocyte S1P, 2,3-BPG and P50 were 

significantly impaired in Sphk1-/- mice (Figure 10a-d). Similar to the human data, plasma 

S1P levels were induced by hypoxia in WT mice in a time-dependent manner but 

blunted in Sphk1-/- mice (Figure 9b). These results indicate that elevated Sphk1-

mediated S1P production is required for hypoxia-induced elevation of mouse 

erythrocyte 2,3-BPG levels and subsequent O2 releasing capacity.  
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Figure 10. Hypoxia-induced Sphk1 and S1P increase regulate 2,3-BPG level, O2 delivery ability and 

tissue hypoxia in mice. Erythrocyte Sphk1 activity.  

(a), S1P level (b), 2,3-BPG level (c) and P50 (d)  in WT and Sphk1
-/-

 mice in normoxia and hypoxia for 

different treatment time. (e) Tissue hypoxia signals measured by Hypoxyprobe
TM

 in renal cortex and heart 

in WT and Sphk1
-/-

 mice in normoxia and hypoxia for 72h. Quantification of hypoxia signals in renal 

cortex (f) and heart (g). Mean ± s.e.m; n = 6–8 per treatment time point; *P < 0.05 versus 6h or normoxia, 

**P < 0.05 versus 24h, # P < 0.05 versus WT, Student’s t-test and one way ANOVA. 

Next, I assessed the severity of hypoxia at tissue level using HypoxyprobeTM to 

examine the kidneys and heart since these are the most susceptible organs to 

hypoxia[53, 108].  No HypoxyprobeTM signals were detected in the tissue sections of 

WT or Sphk1-/- mice in normoxia (Figure 10e). However, in hypoxia, immune-

fluorescence (IF) analysis of the HypoxyprobeTM signals showed elevated staining in 

kidneys and hearts after 72 hours in hypoxia compared to normoxia in WT mice (Figure 

10e). In contrast, much more severe hypoxia in kidney and heart was observed in 

Sphk1-/- mice after 72 hours in hypoxia (Figure 10e). Image quantification analysis 

demonstrated that the intensity of HypoxyprobeTM signals in the kidney and heart of 

Sphk1-/- mice was more than two fold of that of WT mice (Figure 10f and g). Since 

differences in pulmonary function in hypoxia could also affect O2 availability and thereby 

tissue hypoxia, I measured arterial Hb-O2 saturation (SaO2) to assess lung function in 

WT and Sphk1-/- mice in normoxia and hypoxia. Although a significant decrease of SaO2 

in both WT and Sphk1-/- mice in hypoxia was observed, there were no significant 

differences between WT and Sphk1-/- mice under either normoxia or hypoxia for up to 

72 hours (Figure 11), indicating that the increased HypoxyprobeTM signals in the kidney 

and heart of Sphk1-/- mice were not due to decreased lung uptake of O2 under hypoxia.  
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Figure 11. Arterial hemoglobin oxygen saturation (SaO
2
) in WT and Sphk1

-/-

 mice under normoxia and 

hypoxia up to 72 hours. 

Mean ± s.e.m; N=3~5 for each time point; No significant difference, Student’s t-test. 

 

Erythrocytes are derived from hematopoietic stem cells in the bone marrow and 

the vast majority of BM-derived cells in the circulation are erythrocytes.  To rule out the 

effect of tissue Sphk1, I conducted reciprocal bone-marrow transplantation (BMT) 

between WT and Sphk1-/- mice. Specifically, three groups of mice were generated: 1) 

‘WT-to-Sphk1-/-’  group was designed to critically determine if Sphk1 expressed only in 

hematopoietic derived cells could rescue severe tissue hypoxia in Sphk1-/- mice 

transplanted with WT mouse BM; 2) ‘Sphk1-/--to-WT’ group was generated by 

transplanting BM of Sphk1-/- mice to WT mice to examine if Sphk1 deficiency only in 

BM-derived cells is sufficient to cause severe tissue hypoxia; 3) ‘WT-to-WT’ group is 

WT mouse BM transplanted to WT mice (Figure 12a).  Eight weeks after BMT, Sphk1 

activity in mature erythrocytes was detected as an indicator of chimerism (Figure 13). 

Three groups of mice with more than 95% chimerism were subjected to hypoxia 
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challenge for 72 hours, respectively (Figure 12a). As expected, the basal levels of 

erythrocyte Sphk1 activity in the ‘WT-to-Sphk1-/-‘ group were similar to the ‘WT-to-WT’ 

mice, while it was undetectable in ‘Sphk1-/--to-WT’ mice as in the global Sphk1-/- mice 

under normoxia condition, indicating successful BMT (Figure 12b). Similarly, erythrocyte 

S1P levels in the ‘WT-to-Sphk1-/’- group were no different compared to the ‘WT-to-WT’ 

mice, while it was 20-fold higher than that in ‘Sphk1-/--to-WT’ mice (Figure 12c).  

Consistent to global knockouts, no obvious difference in erythrocyte 2,3-BPG and P50 

were observed under normoxia condition (Figure 12d and e).  However, after 72 hour-

hypoxia exposure, ‘WT-to-Sphk1-/-‘ group showed a 30% increase in Sphk1 activity, one 

fold induction of S1P levels, 50% increase in 2,3-BPG levels and 6 torr elevation in P50 

in the erythrocytes as with the WT to WT group (Figure 13d and 3). In contrast, Sphk1 

activity was undetectable and 2,3-BPG and P50 were not induced by 72 hour-hypoxia in 

WT mice transplanted with Sphk1-/- mouse BM (Figure 12d and e).  No obvious 

HypoxyprobeTM signals were detected in those three groups of mice under normoxia 

(Figure 13f). However, after 72 hour-hypoxia exposure, severe hypoxia were observed 

in the kidneys and hearts from ‘Sphk1-/--to-WT’ mice similar to global Sphk1-/- mice, 

indicating that deficiency of Sphk1 in BM-derived cells is sufficient to mimic the severe 

tissue hypoxia as seen in global Sphk1-/- mice.  By contrast, the ‘WT-to-Sphk1-/-‘ group 

mice showed significantly less HypoxyprobeTM signals in the kidneys and hearts 

compared with that of ‘Sphk1-/--to-WT’ mice after 72 hour exposure to hypoxia (Figure 

12 f-h). Thus, Sphk1 in BM-derived cells but not in other tissues is responsible for 

adaptation to hypoxia by inducing erythrocyte S1P production, 2,3-BPG levels and O2 

release.  
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Figure 12. Bone marrow derived Sphk1 and S1P are responsible for protecting tissue hypoxia by inducing 

erythrocyte 2,3-BPG levels and O2 release capacity. 

(a) Schematic illustration of reciprocal bone-marrow transplantation (BMT) between WT and Sphk1
-/-

 

mice. Erythrocyte Sphk1 activity (b), S1P (c), 2,3-BPG level (d) and P50 (e)  in each group of mice in 

normoxia and hypoxia for different treatment time. (f) Tissue hypoxia signals measured by 

Hypoxyprobe
TM

 in renal cortex and heart in each group of mice in normoxia and hypoxia for 72h. 

Quantification of hypoxia signals in renal cortex (g) and heart (h). Mean ± s.e.m; n = 8 per group of mice; 

*P < 0.05 versus normoxia, # P < 0.05 versus WT to WT, ## P < 0.05 versus WT to Sphk1
-/-

, Student’s t-

test and one way ANOVA. 
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Figure 13. Erythrocyte Sphk1 activity measurements in bone-marrow transplanted mice. 

Data indicate a high chimerism with nearly 100% of circulating cells donor derived in receipts. 

Erythrocyte Sphk1 activity were assayed using D-erythro-sphingosine and [γ-
32

P]ATP. Lipids were 

extracted and then resolved by TLC on silica gel G60. The plates were then exposed to phosphor-imaging 

screening (Bio-Rad) and scanned for radioactive signals as indications of the amount of S1P synthesized. 

The bands in the figure indicate radio-labeled S1P detected in the Sphk1 assay.   

 

3.2.3 Intracellular S1P underlies increased 2,3-BPG production  

S1P is a versatile signaling molecule that plays many important roles by binding 

to five G-protein coupled receptors.  Therefore, I sought to test if the above mentioned 

function of S1P in regulating erythrocyte 2,3-BPG levels can be attributed to the 

extracellular signaling roles of S1P. Consistent with human and mouse findings, hypoxia 

induced Sphk1 activity in erythrocytes from WT mice, but no detectable activity in 

erythrocytes isolated from Sphk1-/- mice under both normoxia and hypoxia conditions 

(Figure 14a).  Moreover, hypoxia directly induced 2,3-BPG levels in erythrocytes from 

WT mice but not Sphk1-/- mice (Figure 14 b and c), indicating that erythrocyte Sphk1 is 

required for hypoxia-induced 2,3-BPG production in mouse erythrocytes.     
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Next, to determine if extracellular S1P signaling via its surface receptors directly 

induces 2,3-BPG production in erythrocytes, I isolated erythrocytes from both WT and 

Sphk1-/- mice and pretreated them with exogenous S1P up to 250 nmole∙l-1, which 

activates all of five S1PRs[109] but does not increase intracellular S1P, under normoxia 

and hypoxia conditions. However, S1P pretreatment with up to 250 nmole∙l-1 failed to 

further increase 2,3-BPG levels in WT erythrocytes under either noxmoxia or hypoxia 

conditions (Figure 14b).    Moreover, S1P pretreatment could not rescue the lack of 2,3-

BPG induction under both normoxia and hypoxia condition in Sphk1-/- erythrocytes 

(Figure 14c).  Thus, these studies provided direct evidence that S1P functions 

independently of S1P receptors to mediate hypoxia-induced 2,3-BPG level increase in 

the erythrocytes. 

 

Figure 14. Regulation of erythrocyte 2,3-BPG production by Sphk1-S1P is independent of S1P receptors. 

(a) Sphk1 activity in cultured erythrocytes isolated from WT mice under normoxia and hypoxia.  (b-c) 

2,3-BPG concentration in cultured erythrocytes isolated from WT (b) and Sphk1
-/-

 (c) mice  treated with 

vehicle or  different doses of S1P under normoxia and hypoxia for 6 hours. Mean ± s.e.m; N=6~8 for each 

group; *p<0.05 versus normoxia, Student’s t-test and one way ANOVA. 
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3.2.4 Glycolysis is induced by high altitude in human RBCs  

Since 2,3-BPG is generated through glycolysis, to investigate the mechanism 

underlying S1P-mediated 2,3-BPG production increase in hypoxia, I revisited the 

metabolomic profiling data and noticed that levels of representative glycolytic metabolite 

glyceraldehyde-3-phosphate (G3P) and downstream intermediate of 2,3-BPG, were 

significantly elevated in hypoxia after 12 hours and continued to increase to day 16 

(Figure 15). In contrast, all of the upstream intermediates of G3P, including glucose-6-

phosphate and fructose 1,6-bisphosphate and the two most immediate intermediates 

downstream of 2,3-BPG including 2/3-phosphoglycerate and phosphoenolpyruvate 

(PEP), were significantly reduced in response to high altitude hypoxia in a time 

dependent manner. These findings suggest that the glycolytic pathway prior to shunting 

to the erythrocyte-specific Rapoport-Luebering Shunt, which is a diversion of main 

glycolytic pathway for production of 2,3-BPG, is significantly induced (Figure 15).  
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Figure 15. Metabolomic screening revealed time-dependent increase of glycolysis and decrease of PPP in 

erythrocyte from humans exposed to high-altitude hypoxia. 

(Data obtained by Dr. Angelo D’Alessandro of The University of Colorado School of Medicine, use with 

permission) 

There are two major glucose metabolism pathways in erythrocytes: the Embden-

Meyerhof glycolytic pathway that generates energy and glycolytic intermediates such as 

2,3-BPG to promote O2 release; and the pentose phosphate pathway (PPP) that 

produces reducing equivalents to regenerate NADPH-dependent antioxidant glutathione 

and enzymes to protect against oxidative stress[110]. In support of the observation that 

induction of glycolytic pathways favors 2,3-BPG induction under hypoxia, steady state 

levels of PPP intermediates, such as phosphogluconolactone, 6-phosphogluconate, 

erythrose 4-phosphate and sedoheptulose phosphate (Figure 15), were found to be 

significantly decreased in hypoxia compared to sea level.  As such, nicotinamide 

Figure 15 
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adenine dinucleotide phosphate-reduced (NADPH), the PPP derived reducing 

equivalent, was significantly decreased in high altitude hypoxia in a time-dependent 

manner (Figure 15).  These observations implicate that erythrocytes adapt to high 

altitude hypoxia by enhancing glucose flux through glycolytic pathway and decreasing 

its flux through the PPP and thus facilitating 2,3-BPG production. 

3.2.5 Erythrocyte Sphk1 promotes glucose fluxes to glycolysis in hypoxia 

The above results suggest the possibility that hypoxia-induced erythrocyte Sphk1 

activity regulates glucose metabolism. To test this hypothesis, I conducted glucose flux 

experiments in collaboration with Dr. Angelo D’Alessandro of The University of Colorado 

School of Medicine using isotopic 13C1,2,3-glucose to trace the fraction of glucose 

metabolized to glycolysis and PPP, respectively, in erythrocytes isolated from WT and 

Sphk1-/- mice treated under normoxia and hypoxia at different time points (for detail see 

Methods). As shown in Figure 16a, if 13C1,2,3-glucose is metabolized directly through 

glycolysis, 13C3-lactate will be generated; whereas if glucose is metabolized through 

PPP, 13C2-lactate will be produced, owing to the release of the first carbon atom of 

glucose in the form of CO2 during glucose catabolism at the oxidative branch of the PPP. 

Ratios of 13C3-lactate/13C2-lactate isotopologue indicate glucose fluxes to glycolysis over 

PPP.  First, 13C3-lactate/13C2-lactate ratios were significantly induced in cultured WT 

mouse erythrocytes under hypoxia compared to normoxia in a time dependent manner 

(Figure 16b), indicating that hypoxia promoted significant increases in metabolic switch 

of glucose fluxes toward glycolysis in WT mouse erythrocytes and supporting the 

findings from in vivo human erythrocyte metabolomic profiling in response to high 

altitude (Figure 16b).  Unexpectedly, ratios of 13C3-lactate/13C2-lactate isotopologue 
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were also significantly induced in WT mouse erythrocytes under normoxia in a time 

dependent manner, implicating that other factors besides hypoxia likely involved in 

switch of glucose fluxes to glycolysis in WT mouse erythrocytes in culture system under 

normoxia (Figure 16b).  And S1P appears to be such a factor because ratios of 13C3-

lactate/13C2-lactate isotopologue under hypoxia to normoxia was significantly induced 

approximately 1.5 fold from 1 hour until 6 hours in WT mouse erythrocytes (Figure 16c); 

while the fold induction of the ratios of 13C3-lactate/13C2-lactate isotopologue under 

hypoxia to normoxia was significantly attenuated in Sphk1-/- mouse erythrocytes 

compared (Figure 16c), indicating that hypoxia-induced switch of fluxes of glucose from 

PPP to glycolysis is compromised in Sphk1-/- mouse erythrocytes.  Altogether, these 

data indicate that erythrocyte Sphk1 contributes to the regulation of the hypoxia-

dependent metabolic switch that promotes glucose metabolic fluxes through glycolysis.  
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Figure 16. Alteration of erythrocyte glucose metabolism favoring glycolysis in hypoxia. 

(a) Schematic illustration of glucose metabolism flux detection using 
13

C1,2,3-Glucose. Changes of 
13

C3-

lactate (b) and 
13

C2-lactate (c) in hypoxia in WT and Sphk1
-/-

 erythrocytes.  (d) 
13

C3/
13

C2-lactate ratio 

determined in WT erythrocytes in normoxia and hypoxia. Fold change of 
13

C3/
13

C2-lactate ratio (e) in WT 

and Sphk1
-/-

 erythrocytes in hypoxia to normoxia. (f) Erythrocyte cytosolic GAPDH activity in 

erythrocyte from humans exposed to high-altitude hypoxia. Mean ± s.e.m. For human studies, n = 16–21 

per group; for mouse studies n=4 per group; *P < 0.01 versus SL, normoxia or Sphk1
-/-

, **P < 0.01 versus 

HA1, ***P < 0.001 versus HA7, Student’s t-test, two way ANOVA and one way ANOVA. 

 

Figure 16 
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3.2.6 High altitude induces glycolytic enzyme activity in human erythrocytes  

Glycolysis is limited by the availability of glycolytic enzymes such as 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in cytosol, since most of the 

rate-limiting glycolytic enzymes are bound to membrane and partially inhibited under 

normoxia [102, 103]. In hypoxia, deoxygenated Hb (deoxyHb) binds to the cytosolic 

domain of band 3 at the membrane and releases the glycolytic enzymes to the cytosol 

to become more active and enhance glycolysis [111-113]. The above findings suggest 

that S1P may be a key regulatory contributor to the oxygen-dependent metabolic 

modulation model. Therefore, I tested if S1P affects the binding of deoxy-Hb to 

membrane, which could result in the release and activation of glycolytic enzymes from 

membrane. The cytosolic activity of GAPDH is measured in human volunteers at sea 

level and at high altitude.  Supporting the hypothesis and metabolomic profiling result, 

erythrocyte cytosolic GAPDH activity was significantly increased in a time-dependent 

manner in response to high altitude hypoxia compared to sea level (Figure 16d).  

3.2.7 Hypoxia-induced GAPDH activity is blunted in Sphk1-/- mice  

Next, to provide genetic evidence, I first measured cytosolic GAPDH activity in 

WT and Sphk1-/- mice under normoxia and hypoxia at different time points.  Consistent 

with the results in humans, hypoxia gradually induced cytosolic GAPDH activity up to 

three folds after 72 hours exposure (Figure 17a).  However, hypoxia-induced elevation 

of erythrocyte cytosolic GAPDH activity was significantly reduced in Sphk1-/- mice 

compared to WT mice (Figure 17a). Meanwhile, confocal microscopy showed significant 

increase of cytosolic GAPDH in WT mice erythrocyte after 72 hours hypoxia treatment 

while to a much less extent in Sphk1-/- mice using (Figure 17b). Thus, Sphk1 is essential 
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for hypoxia-induced release of GAPDH from membrane to cytosol and subsequent 

elevated cytosolic GAPDH activity under hypoxia condition. 

 

Figure 17. Sphk1-mediated production of S1P functions intracellularly underlying hypoxia-induced 

cytosolic GAPDH by inducing GAPDH release from membrane to cytosol . 

(a) Erythrocyte cytosolic GAPDH activity in WT and Sphk1
-/-

 mice treated in normoxia and hypoxia (10% 

O2) for different time. (b) Representative con-focal images demonstrating GAPDH localization in 

erythrocytes from WT and Sphk1
-/-

 mice treated in normoxia and hypoxia for 72 hours. (c-d) Cytosolic 

GAPDH activity (c) and representative con-focal images in primary cultures of Sphk1
-/- 

mouse erythrocyte 

pretreated with DMSO, 2 and 6 µmole∙l
-1

  S1P in normoxia and hypoxia (4% O2) for 6 hours.  Mean ± 

s.e.m; n = 4-6 per group; *P < 0.05 versus normoxia, **P < 0.05 versus 6h, ***P < 0.05 versus 24h, # 

P<0.05 versus control, Student’s t-test and one way ANOVA. (Confocal data obtained by Dr. Yujin 

Zhang and use with permission) 

Next, to determine if function of Sphk1 is mediated by S1P surface receptors, 

erythrocytes from WT and Sphk1-/- mice were isolated and pretreated with exogenous 

S1P up to 250 nmole∙l-1 under normoxia and hypoxia conditions. S1P pretreatment up 

to 250 nmole∙l-1 had no effect on cytosolic GAPDH activity in cultured erythrocytes from 

WT under either normoxia or hypoxic conditions (Figure 44). Moreover, S1P 

pretreatment could not rescue cytosolic GAPDH induction under both normoxia and 
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hypoxia condition in cultured erythrocytes isolated from Sphk1-/- mice (Figure 44).  Thus, 

these studies provided evidence that Sphk1 underlies hypoxia-induced GAPDH activity 

independent of S1P receptors in the erythrocytes.  

 

Figure 18. Cytosolic GAPDH activity in erythrocytes isolated from WT and Sphk1-/- mice treated with 

different doses of S1P under normoxia and hypoxia for 6 hours. 

Mean ± s.e.m; N=6~8 for each group; *p<0.05 versus normoxia, Student’s t-test and one way ANOVA. 

Erythrocytes can readily uptake exogenous S1P up to 5mole∙l-1 in an in vitro 

system[4]. Thus, I chose to test if exogenous S1P at µmole∙l-1 concentrations known to 

be taken up by erythrocytes can restore hypoxia-induced GAPDH activity by releasing 

membrane anchored GAPDH to the cytosol in isolated Sphk1-/- mouse erythrocytes. 

First, under normoxia, pretreatment with S1P up to 6 µmole∙l-1 had no effect on cytosolic 

GAPDH activity in Sphk1-/- erythrocytes (Figure 17c). However, under hypoxia, S1P 

pretreatment at 2 µmole∙l-1 began to induce erythrocyte cytosolic GAPDH activity and 

reached higher level with 6 µmole∙l-1 S1P pretreatment (Figure 17c).  Consistently, 

confocal image analysis revealed that S1P treatment significantly induced 

translocalization of membrane anchored GAPDH to the cytosol of Sphk1-/- mouse 

erythrocytes in a dosage-dependent manner under hypoxia but not normoxia condition 

(Figure 17d). These studies provided genetic evidence that S1P at µmole∙l-1 
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concentrations restored hypoxia-induced cytosolic GAPDH activity by promoting 

translocation of GAPDH from the membrane to the cytosol in Sphk1-/- mouse 

erythrocytes.  

3.2.8 S1P underlies hypoxia-induced GAPDH activity  

Previous studies showed that organic phosphates (such as 2,3-BPG) can bind to 

Hb[42, 114-117]. S1P, also an organic phosphate, is produced and stored at relative 

high concentrations in erythrocytes. Thus, it is possible that S1P directly binds to Hb. 

Indeed, S1P-beads, but not lysophosphatic acid (LPA)-beads or sphingosine (Sph)-

beads, successfully pulled down Hb from erythrocyte lysates of normal humans (Figure 

19a). This is important evidence that S1P directly interacts with Hb in the erythrocyte 

lysates. These findings raise an intriguing possibility that interaction of S1P with Hb can 

promote deoxy-Hb anchoring to the membrane thereby enhancing release of glycolytic 

enzymes (such as GAPDH) from membrane to the cytosol under hypoxic conditions.  

To test this hypothesis, membrane anchored Hb was assayed by measuring heme 

content in isolated Sphk1-/- mouse erythrocytes treated with or without S1P at M 

concentrations, which is known to increase intracellular S1P levels.  S1P treatment 

significantly increased membrane heme content under hypoxia but not under normoxia 

(Figure 19b). Thus, S1P treatment can restore hypoxia-induced deoxygenated Hb 

anchoring to the membrane and subsequent release of GAPDH from membrane to 

cytosol.   
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Figure 19. S1P promotes deoxy-Hb anchoring to the membrane and enhances GPADH release from 

membrane to cytosol only under hypoxia but not normoxia deoxy-Hb. 

(a) Pull-down of Hb by LPA, Sphingosine and S1P beads from normal human RBC lysates. (b) 

Membrane heme concentrations in isolated Sphk1
-/- 

mouse erythrocyte pretreated with DMSO, 2 and 6 µ 

µmole∙l
-1

  S1P in normoxia and hypoxia (4% O2) for 6 hours. (c) Schematic drawing illustrates functional 

experiments to monitor translocalization of GAPDH from membrane isolated from human erythrocytes. 

Hb binding to membrane (d) and GAPDH release from membrane to the cytosol (e) in human erythrocyte 

membrane ghost treated with Hb and different concentration of S1P under normoxia and hypoxia. Hb 

binding to membrane (f) and GAPDH release from membrane to the cytosol (g) in human erythrocyte 

membrane ghost treated with Hb-CO and different concentration of S1P under normoxia and hypoxia. 

Mean ± s.e.m; n = 6 per group, *P < 0.05 versus normoxia, **P < 0.05 versus 2µmole∙l
-1

   or 100nmole∙l
-1

, 

Student’s t-test and one way ANOVA. (Pulldown data obtained by Dr. Yujin Zhang and use with 

permission) 

 

Finally, to validate the mouse findings, I conducted functional experiments to 

directly monitor 1) the alteration of membrane anchored Hb and 2) the translocation of 

GAPDH from human erythrocyte membranes under normoxia and hypoxia.  First, 

human erythrocyte ghost membranes were inversely coated on silicon beads to expose 

the inner layer.  Then, the silicon beads were coated with inverted erythrocyte ghost 

membranes with 100mole∙l-1 Hb in the absence or presence of S1P at 100 nmole∙l-1, 

to mimic the physiological molar ratio of Hb:S1P from 1000:1 under different 

concentration of O2 ranging from fully oxygenated (21% O2) to hypoxia (8%). After 10-
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min incubation followed by brief centrifugation, supernatant GAPDH activity and 

membrane anchored Hb were quantified, respectively (Figure 19c). Membrane 

anchored heme significantly increased under hypoxia compared to normoxia (Figure 

19d). Moreover, once Hb was fully oxygenated under normoxia condition (21% O2), S1P 

failed to induce oxy-Hb anchoring to membrane (Figure 19d).  However, under hypoxia 

condition, S1P further enhanced deoxy-Hb anchoring to the membrane (Figure 19d). 

Next, the functional kinetics of S1P on membrane anchored deoxy-Hb under 8% O2 was 

measured with different concentrations of S1P ranged from 0 to 200 nmole∙l-1. S1P 

increased membrane anchored deoxy-Hb but not oxy-Hb in a dose-dependent manner 

(Figure 19d). Thus, these studies provide direct evidence that S1P forms a complex 

with Hb and promotes deoxy-Hb anchoring to the membrane in a hypoxia-dependent 

manner. 

In parallel, the release of GADPH from the membrane under normoxia and 

hypoxia was also monitored, in presence of different doses of S1P as detailed above.  

Supernatant GADPH activity was significantly induced under hypoxia in a S1P dose-

dependent manner in comparison to normoxia (Figure 19e). In contrast, S1P had no 

effect on supernatant GAPDH activity under normoxia (Figure 19e).  Since CO was 

reported to highly stabilize R-state of Hb to inhibit glycolysis, I examined if treatment 

with CO cancels effects of S1P on hypoxia-induced anchoring of Hb and GAPDH 

activity. In the CO-treated groups, we found that S1P had no effect on membrane 

anchoring of Hb (Figure 19f) and GAPDH activity (Figure 19g). Altogether, these data 

provide human evidence that S1P functions intracellullary as a hypoxia modulator 

promoting deoxy-Hb anchoring to the membrane and subsequently enhancing 
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membrane bound GADPH releasing to the cytosol, which in turn leads to increased 

cytosolic GAPDH activity under hypoxia. 

In this chapter, first, S1P is found significantly induced in humans following 

ascent to high altitude or mice expose to hypoxia. Then, beneficial role of Sphk1-

dependent elevation of erythrocyte S1P by promoting 2,3-BPG production and O2 

release to counteract tissue hypoxia was revealed in animal experiments. Moreover, 

S1P functions intracellularly by binding directly to Hb, promoting deoxy-Hb anchoring to 

the membrane and subsequently enhancing the release of membrane bound glycolytic 

enzymes to the cytosol.  Together, I found that increased erythrocyte S1P directs 

metabolic fluxes through glycolysis to generate more 2,3-BPG and thereby promoting 

O2 release to protect against tissue hypoxia 
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3.3 Chapter 3: S1P induces pathogenic metabolic programming in SCD 

erythrocytes 

Metabolomics screening revealed that circulating S1P is elevated in patients and 

mice with SCD[7, 8].  Additional studies showed that pharmacologic inhibition or shRNA 

knockdown of Sphk1 significantly attenuated sickling and other deadly complications [8]. 

Moreover, the previous chapter showed that increased S1P induces O2 delivery to 

counteract tissue hypoxia by inducing 2,3-BPG production in healthy individuals at high 

altitude and in normal mice exposed to hypoxia, revealing the beneficial role of elevated  

erythrocyte S1P in normal individuals.  However, it is puzzling why elevated S1P is 

detrimental in SCD.  Here, functional, metabolic and structural studies solve the puzzle.  

In contrast to normal erythrocytes, genetic deletion of Sphk1 in SCD has potent anti-

sickling and anti-hemolysis effects by correcting pathogenic metabolic reprogramming, 

channeling glucose to pentose phosphosphate pathway relative to glycolysis, lowering 

2,3-BPG production and rewiring NADPH/glutathione-mediated detoxification. The 

findings open new scenarios for the development of innovative mechanism-based 

therapies. 

3.3.1 Genetic evidence for the pathogenic role of elevated Sphk1 in SCD mice  

To precisely asses the detrimental role and mechanisms of elevated S1P in SCD, 

I generated a strain of mice with humanized sickle Hb and Sphk1 deficiency by crossing 

the SCD Berkeley mice[68] with Sphk1-/- mice[107] (Figure 20a). The SCD/Sphk1-/- 

offspring were viable and lived to adulthood.  PCR analysis confirmed that the Sphk1 

gene was deleted (Figure 20 a); analysis of Hb composition demonstrates the presence 

of only HbS in SCD/Sphk1-/- erythrocyte; and Sphk1 activity is undetectable (Figure 20b; 
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erythrocyte and plasma S1P levels also decreased dramatically (Figure 20 c-e ).   The 

remaining plasma S1P is presumably derived from the Sphk2 isoform expressed in a 

variety of cells[106], but not in mature erythrocytes due to lack of a nucleus.  

 

Figure 20.  Generation and confirmation of SCD/Sphk1
-/-  

mice.  

Figure 20 
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 (a) Schematic plot demonstrating the mating strategy employed to generate SCD/Sphk1
-/-  

mice. (b) PCR 

analysis of genomic DNA detecting α,β Hb genes and Sphk1 gene. (c) HPLC analysis of Hb composition 

in SCD and SCD/Sphk1
-/-  

mice. Erythrocyte Sphk1 activity (c), erythrocyte (d) and plasma (e) S1P levels 

in WT, Sphk1
-/- 

,SCD and SCD/Sphk1
-/-  

mice. Mean ± s.e.m; N=5 for each group; *p<0.05 versus WT, 

 **p<0.05 versus SCD, Student’s t-test.

 

Next, I compared sickling in age and gender matched SCD/Sphk1-/- mice and 

SCD mice.  Erythrocyte shape was much more uniform and organized in SCD/Sphk1-/- 

mice (Figure 21a), and the percentage of irreversible sickle-shaped erythrocytes was 

significantly reduced (Figure 21b). Because intravascular hemolysis is one of the major 

complications of SCD[118], I assayed erythrocyte hemolysis by measuring plasma Hb 

concentrations, which are significantly lower in SCD/Sphk1-/- mice (Figure 21c). 

Improvement of erythrocyte life-span in SCD/Sphk1-/- mice was observed (Figure 21d). 

Because of severe anemia, there is a large number of reticulocytes in SCD mice[68], 

which were significantly reduced in SCD/Sphk1-/- mice (Figure 21e). Complete blood 

count (CBC) analysis revealed higher total erythrocyte number, Hb concentration and 

hematocrit in SCD/Sphk1-/- mice (Table 1).  Moreover, the erythrocyte distribution width 

was also significantly reduced (Table 1). Because S1P is a potent immune 

regulator[119], the peripheral white blood cell count was dramatically decreased in 

SCD/Sphk1-/- mice with both neutrophil and lymphocyte counts in the normal range 

(Table 1). Splenomegaly and multiple organ damage are the hallmarks of SCD 

progression[118]. Consistent with the above findings of improvements in SCD/Sphk1-/- 

mice, splenomegaly (Figure 21f), congestion and damage in spleen, lungs and liver 

were also significantly improved in SCD/Sphk1-/- mice (Figure 21g and h). Albumin 

levels in the bronchoalveolar lavage fluid were also significantly reduced (Figure 21h), 

indicating less vascular leakage in the lungs of SCD/Sphk1-/- mice. Taken together, 
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these data provide solid genetic and clinic evidence indicating that deletion of Sphk1 is 

beneficial in SCD.  

 

Table 1. Complete Blood Count of WT, SCD and SCD/Sphk1
- / -  

mice.  

Values shown represent the mean ± SEM (n = 5); *p<0.05 versus SCD, Student’s t-test. 

 WT SCD  SCD/Sphk1-/- 

Erythrocyte    

 RBC (M/µl) 9.42 ± 0.78 5.26 ± 0.39 6.79±0.59* 
 Hb (g/dl) 14.5 ± 0.36 7.15 ± 0.26  9.83 ± 0.55* 
 HCT (%) 44.8 ± 1.05 28.53 ± 0.98  34.55 ± 0.47* 
 MCV (fl) 49.8 ± 2.33 44.53 ± 0.97 50.60 ± 3.47* 
 MCH (pg) 15.23 ± 0.17 10.83 ± 0.31 14.06 ± 0.70* 
 MCHC (g/dl) 29.9 ± 1.22 25.33 ± 1.21 26.68 ± 0.88 
 RDW (%) 18.5 ± 4.35 32.47 ± 5.47 23.58 ± 3.54* 

Leukocyte    

 WBC (k/µl) 4.90 ± 2.98 18.56 ± 5.10 5.12 ± 2.16* 
 NE (k/µl) 1.44 ± 1.74 11.25 ± 2.37 2.57 ± 1.49* 
 LY (k/µl) 4.55 ± 3.13 6.81 ± 2.04 2.15 ± 1.50* 
 MO (k/µl) 0.41 ± 0.10 0.45 ± 0.40 0.35 ± 0.24 
 EO (k/µl) 0.14 ± 0.05 0.04 ± 0.006 0.05 ± 0.03 
 BA (k/µl) 0.03 ± 0.005 0.013 ± 0.005 0.006 ± 0.008 
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Figure 21. Genetic deletion of Sphk1 improves disease conditions in SCD Berkeley mice.  

(a) Representative pictures of blood smears from SCD and SCD/Sphk1
-/-

 mice (magnification X400). 

Percentage of sickle cells (b), plasma Hb (c) and reticulocytes (e) were significantly reduced while 

erythrocyte lifespan was significantly prolonged (d) by genetic deletion of Sphk1. Spleen size, (f) H&E 

staining of spleens, livers, and lungs (g), and albumin concentrations in bronchial alveolar lavage (BAL) 

Figure 21 



86 
 

fluid (h) collected from SCD and SCD/Sphk1
-/-

 mice. Values shown represent the mean ± SEM (n = 5-10); 

*p < 0.05 versus SCD, Student’s t-test. Scale bar: 20μM in blood smear pictures; 200μM in H&E staining 

pictures.     Indicates sickled RBCs. 

 

3.3.2 Enhanced erythrocyte pentose phosphate pathway and anti-oxidation 

capacity in SCD/Sphk1-/- mice 

Next, because erythrocytes lack nuclei and organelles, metabolic adaptation has 

a key role in erythrocyte homeostasis[120], to further determine the molecular basis 

underlying such beneficial effects of Sphk1 deficiency in SCD, unbiased high-

throughput metabolomics profiling was conducted to compare global metabolic changes 

in the erythrocytes among WT, SCD and SCD/Sphk1-/- mice.  Then, an unbiased 

pathway-enrichment analysis was performed in the results using MetaboAnalyst[121]. 

Among the 25 pathways identified, the top three metabolic pathways affected by genetic 

deletion of Sphk1 in SCD mice were the pentose phosphate pathway (PPP), glutathione 

metabolism, and sphingolipid metabolism (Figure 22a).  Sphingolipid metabolism 

alteration validates the impact of Sphk1 deletion (Figure 20).  Moreover, steady state 

levels of multiple intermediates of PPP including glucose 6-phosphate (G6P), 

gluconate-6-phosphate (6-P-gluconate), ribose 1-phosphate (R1P), erythrose 4-

phosphate (E4P) and sedoheptulose 7-phosphate (S7P) substantially increased in the 

erythrocytes of SCD/Sphk1-/- mice comparing to SCD mice (Figure 22b and c), 

suggesting that the PPP is significantly enhanced. In agreement with enhanced PPP, 

NADPH, an important byproduct of this pathway, increased as well (Figure 22d). As 

such, reduced glutathione (GSH), a key NADPH-dependent antioxidant, was 

substantially elevated (Figure 22e).  Altogether, these data strongly suggest a decrease 
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in oxidative stress in SCD/Sphk1-/- erythrocytes. Not surprisingly, ROS levels are 

significantly lower in SCD/Sphk1-/- erythrocytes (Figure 22f). Many studies have 

indicated that excessive oxidative stress in SCD leads to hemolysis and erythrocyte 

destruction[64]. Thus, I sought to determine if deletion of Sphk1 increases resistance of 

SCD erythrocytes to hemolytic challenges induced by oxidative stress. After exposure to 

hydrogen peroxide (H2O2), SCD/Sphk1-/- erythrocytes had a significantly lower osmotic 

fragility with increased half-maximal effective concentrations (EC50) (Figure 22g), 

consistent with increased GSH and NADPH-dependent antioxidant capacity.  
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Figure 22. Enhanced pentose phosphate pathway and anti-oxidant capacity in SCD/Sphk1
-/-

 mouse 

erythrocytes.  

(a) Top metabolic pathways affected by genetic deletion of Sphk1 in SCD mice. (b) Relative abundance 

of selected PPP metabolites in erythrocytes from WT, SCD and SCD/Sphk1
-/-

 mice (left); PPP is 

significantly enhanced in erythrocytes of SCD/Sphk1
-/-

 mice comparing to SCD mice (right). (c) Intensity 

peak of selected PPP metabolites in erythrocytes from WT, SCD and SCD/Sphk1
-/-

 mice detected by 

metabolomics screening. Levels of NADPH (d), GSH (e) and ROS (f) in erythrocytes from WT, SCD and 

SCD/Sphk1
-/-

 mice. (g) Resistance of SCD and SCD/Sphk1
-/-

 erythrocytes to osmolality-induced hemolysis 

with or without oxidative stress challenge.  Values shown represent the mean ± SEM (n = 5); *p < 0.05 

versus WT; **p < 0.05 versus SCD; Student’s t-test. G6P: Glucose 6-phosphate; 6-P-Gluconate: 

Gluconate-6-phosphate; R1P: Ribose 1-phosphate; E4P: Erythrose 4-phosphate; S7P: Sedoheptulose 7-

Figure 22 
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phosphate; GSH: reduced glutathione. (Figure 22 a and b drawn by Dr. Angelo D’Alessandro of The 

University of Colorado School of Medicine, use with permission) 

3.3.3 Reduced erythrocyte glycolysis and Hb-O2 binding affinity in 

SCD/Sphk1-/- mice 

Glucose in erythrocytes is metabolized through either PPP, to generate reducing 

equivalents to preserve redox homeostasis, or glycolysis, to produce ATP as an energy 

source[122].  Additionally, approximately 19~25% of the glucose is utilized to produce 

2,3-BPG, a key allosteric regulator of Hb-O2 affinity, which derives from the Rapoport-

Luebering branch of glycolysis[123]. Under high O2 saturation conditions, oxidative 

stress promotes PPP to generate NADPH. To deliver O2 efficiently while neutralizing 

excessive oxidative stress caused by a heavy load of O2, erythrocytes rely on a finely-

tuned O2–dependent modulation of glucose metabolism[113]. Based on the enhanced 

PPP and glutathione metabolism in the erythrocytes of SCD/Sphk1-/- mice (Figure 22), I 

sought to test if increased steady state levels of PPP intermediates in SCD/Sphk1-/- 

mouse erythrocytes correspond to a decline of metabolic flux through glycolysis.  First, I 

observed significantly increased glycolytic intermediates including G6P, fructose 1,6-

bisphosphate (FBP), glyceraldehyde 3-phosphate (G3P), 2/3-phosphoglyceric acid (2/3-

PG), phosphoenolpyruvate (PEP) and pyruvate in SCD mouse erythrocytes compared 

to WT (Figure 54.a-b), confirming that glycolysis rather than the PPP is preferentially 

active in SCD mouse erythrocytes, which explains the compromised capacity to 

produce reducing equivalents and preserve glutathione homeostasis in SCD.  

Surprisingly, three upstream glycolysis metabolites including G6P, FBP and G3P 

increased in SCD/Sphk1-/- erythrocytes compared to SCD (Figure 23a and b), 

suggesting a metabolic bottleneck downstream to G3P dehydrogenase (GAPDH)[124]. 
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In contrast, the levels of three glycolytic intermediates downstream of G3P including 

2/3-PG, PEP and pyruvate were significantly reduced in SCD/Sphk1-/- erythrocytes 

(Figure 23a and b).  More importantly, 2,3-BPG, also an intermediate downstream of 

G3P, increased in SCD erythrocyte but decreased in that of SCD/Sphk1-/- mice (Figure 

23c).  The major reasons why elevated 2,3-BPG-mediated erythrocyte sickling is by 

decreasing HbS-O2 binding affinity which leads to increased deoxyHbS and deoxyHbS 

polymerization[125, 126]. To determine if Sphk1 contributes to this process, I measured 

the O2 equilibrium curve (OEC) indexed by calculating the partial pressure of O2 

required to produce 50% Hb-O2 saturation (P50) and found increased Hb-O2 binding 

affinity and thus reduced P50 in SCD/Sphk1-/- mouse erythrocytes (Figure 23d).  These 

findings indicate that decreased 2,3-BPG due to deficiency of Sphk1 results in Hb-O2 

binding affinity increase and deoxyHbS level decrease, which supports the observation 

of less sickling in SCD/Sphk1-/- mouse. Altogether, the beneficial role of Sphk1 

deficiency in anti-sickling and anti-hemolysis is strongly supported by metabolic rewiring 

in SCD/Sphk1-/- erythrocytes.   
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Figure 23. Genetic deletion of Sphk1 reduces glycolysis and O2 release. 

(a) Relative abundance of selected glycolysis metabolites in erythrocytes from WT, SCD and SCD/Sphk1
-

/-
 mice (left); glycolysis is blocked at the step where G3P is metabolized by GAPDH in erythrocytes of 

SCD/Sphk1
-/-

 mice comparing to SCD mice (right). (b) Intensity peak of selected glycolysis metabolites in 

erythrocytes from WT, SCD and SCD/Sphk1
-/-

 mice detected by metabolomics screening. Reduced 2,3-

BPG level (c) and P50 (d) in SCD/Sphk1
-/-

 mouse erythrocytes. Values shown represent the mean ± SEM 

(n = 5); *p < 0.05 versus WT; **p < 0.05 versus SCD; Student’s t-test. PPP: pentose phosphate pathway; 

G6P: Glucose 6-phosphate; FBP: Fructose 1,6-bisphosphate; G3P: Glyceraldehyde 3-phosphate; 2/3-PG: 

2/3-Phosphoglyceric acid; PEP: Phosphoenolpyruvate. (Figure 23 a drawn by Dr. Angelo D’Alessandro 

of The University of Colorado School of Medicine, use with permission) 

3.3.4 Genetic deletion of Sphk1 channels glucose fluxes to PPP in SCD 

erythrocytes 

Next, to provide direct mechanistic insights into intracellular glucose flux, I used 

the stable 13C1,2,3-glucose isotope to trace intracellular glucose metabolism through 

glycolysis and PPP in SCD and SCD/Sphk1-/- erythrocytes at different time points.  

Specially, I investigated whether glycolysis or the PPP is the major contributor to the 
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accumulation of G3P in SCD/Sphk1-/- mouse erythrocytes by determining the ratios of 

the isotopologues 13C2,3/
13C1,2,3 of G3P (Figure 24a). First, 13C1,2,3-lactate/13C1,2,3-

glucose ratios were significantly increased in SCD but not in SCD/Sphk1-/- mouse 

erythrocytes in a time-dependent manner, indicating significant increases in metabolic 

fluxes through PPP in SCD mouse erythrocytes (Figure 24b). As expected, ratios of 

13C2,3-G3P/13C1,2,3-G3P isotopologues were significantly higher in erythrocytes from 

SCD/Sphk1-/- erythrocytes (Figure 24c), indicating that glucose fluxes through the PPP 

are enhanced.   

 

Figure 24. Genetic deletion of Sphk1 channels glucose flux to PPP in SCD erythrocytes.  

(a) Schematic illustration of glucose metabolism flux detection using 
13

C1,2,3-Glucose.  Ratios of
 13

C1,2,3-

Lactate/
13

C1,2,3-Glucose (b) and 
13

C2,3-/
13

C1,2,3-G3P (c) in SCD and SCD/Sphk1
-/-

 mouse erythrocytes. 

Values shown represent the mean ± SEM (n = 5); **p < 0.05 versus SCD; Student’s t-test. CO2: carbon 

dioxide.   (Figure 24 a drawn by Dr. Angelo D’Alessandro of The University of Colorado School of 

Medicine, use with permission)   

3.3.5 Sphk1 regulates GAPDH localization in SCD erythrocyte  

Under normoxia, erythrocyte glucose flux through glycolysis is limited by the 

inhibitory sequestration of glycolytic enzymes, including GAPDH, to the membrane 
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protein Band3[78].  However, under hypoxia, deoxygenated Hb (deoxyHb) competes 

with glycolytic enzymes for  binding to Band3, which results in the release of those 

enzymes, thereby promoting glycolysis[78]. Recent studies have revealed that 

deoxyHbS disturbs normal coupling among erythrocyte O2 content, glycolysis and 

antioxidant capacity by increasing release of membrane anchored GAPDH to the 

cytosol[6]. Since the previous chapter revealed that S1P can regulate GAPDH 

localization in normal erythrocyte in hypoxia, I sought to test if such regulation also 

exists in SCD erythrocytes. Western blot results indicated no obvious difference in total 

amount of GAPDH (Figure 25a). However, a significantly larger percentage of GAPDH 

in SCD/Sphk1-/- erythrocytes was found on the membrane (Figure 25a). Moreover, 

cytosolic GAPDH activity significantly reduced in SCD/Sphk1-/- erythrocytes compared to 

SCD (Figure 25b). Thus, genetic and biochemical evidence demonstrate that Sphk1 

enhances release of membrane anchored GAPDH and increases cytosolic GAPDH 

activity. Next, I isolated erythrocyte membrane ghosts from SCD and SCD/Sphk1-/- mice 

and noticed that ghost membrane isolated from erythrocytes of SCD mice displayed 

much more intensive red color compared to SCD/Sphk1-/- mice (Figure 25c left panel), 

indicative of increased membrane bound hemoglobin in the former. To dissect the 

influence of non-specifically bound HbS, I inverted the membrane ghost on silicon 

beads and washed for 8 times with low-salt buffer. Significantly higher heme can be 

seen anchored on the ghost membrane of erythrocytes from SCD (Figure 25c, right 

panel).  These findings indicate that elevated Sphk1 is associated with enhanced HbS 

anchoring to membrane, and are consistent with the release of membrane bound 

GAPDH and increased cytosolic GAPDH activity. 
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Figure 25.  Sphk1-mediated production of S1P functions intracellularly to regulate GAPDH and Hb 

localization and subsequent metabolic consequences.  

(a) Total and membrane bound GAPDH protein levels in SCD and SCD/Sphk1
-/-

 mouse erythrocytes 

detected by western blot. (b) Cytosolic GAPDH activity in SCD and SCD/Sphk1
-/-

 mouse erythrocytes. (c) 

Significantly decreased membrane bound heme in SCD/Sphk1
-/-

 mouse erythrocytes compared to SCD 

mouse erythrocytes. Values shown represent the mean ± SEM (n = 5); *p < 0.05 versus SCD; Student’s t-

test. 

3.3.6 Co-binding of 2,3-BPG and S1P to Hb is required for S1P-induced 

decrease in Hb-O2 affinity 

Since S1P directly induces HbS anchoring to membrane, I speculated that S1P 

binds to HbS as it binds to HbA.  Indeed, S1P-conjugated beads successfully pulled 

HbS from normal and SCD patients erythrocyte lysates, while sphingosine or 

lysophosphatidic acid beads cannot (Figure 26a), indicating that S1P directly and 

specifically binds to both human HbA and HbS in erythrocyte lysates. Next, to determine 

Figure 25 
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if S1P regulates Hb-O2 binding affinity, HbA and HbS O2 binding equilibrium curves 

were measured in the absence or presence of different concentrations of S1P. To mimic 

the molar ratio of S1P to Hb from 1:2500 to 1:500 as seen in normal and sickle human 

erythrocytes, 10µmole∙l-1 HbA or HbS were used with the concentrations of S1P ranging 

from 0 to 10nmole∙l-1. Unexpectedly, S1P alone has no effect on Hb-O2 binding affinity. 

Realizing that there is very abundant 2,3-BPG is in erythrocytes which binds to deoxyHb, 

2,3-BPG was added to the system.  P50 of purified HbA or HbS in the presence of 2,3-

BPG along with S1P revealed that S1P decreased HbA and HbS-O2 binding affinity in a 

dose-dependent manner (Figure 26b-c). Thus, biochemical and functional evidence 

demonstrate that S1P binds directly to Hb but requires co-binding of 2,3-BPG to 

decrease O2 binding affinity, presumably by further stabilizing deoxyHb and increasing 

its T-state character. 

 

Figure 26. Functional evidence of S1P binding to Hb and stabilizing deoxyHb in T-state.  

(a) Pull-down of Hb by LPA, Sphingosine and S1P beads from normal human and SCD patient RBC 

lysates. S1P, at physiological and pathological molar ratios, induces further O2 release from HbA (b) and 

HbS (c) in the presence of 2,3-BPG. (Data collected by Dr. Yujin Zhang and Dr. Anren Song, use with 

permission) 

Figure 26 
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3.4 Chapter 4: X-ray crystallography reveals atomic level insight into S1P-Hb 

binding 

Since chapter 2 and 3 revealed that S1P directly binds to Hb in the presence of 

2,3-BPG and induces further O2 release that stabilizes the deoxy-Hb in T-state, it is 

imperative to provide atomic level insight into the exact fashion of S1P-Hb binding. 

Given the fact that structures (both tertiary and quaternary) of bound or unbound normal 

HbA and sickle HbS are identical even at the pathogenic βVal6 mutation site[127, 128] 

and that it is easier to crystalize HbA, we chose to determine the crystal structures of 

deoxyHbA in complex with S1P alone (deoxyHbA-S1P) or in combination with 2,3-BPG 

(deoxyHbA-S1P-BPG) (subsequently solved at 2.4 Å and 1.8 Å) to gain structural 

insight into the above described S1P-mediated functional/biological effects. The 

structures were determined by molecular replacement using the high resolution native 

deoxyHbA structure (PDB code: 2DN2; details in Table 2)[88]. Expectedly, and 

consistent with published studies, we observed 2,3-BPG bound in two alternate 

conformations at the dyad axis of the β-cleft in the ternary deoxyHbA-S1P-2,3-BPG 

complex to tie together the two β-subunits via interactions with the residues βHis2, 

βLys82, βAsn139, and βHis143 from both β-subunits (intermolecular interactions) in 

symmetry-related fashion (Figure 27a-b).  In both the binary deoxyHbA-S1P and ternary 

deoxyHbA-S1P-2,3-BPG complexes, S1P was observed bound in the central water 

cavity, with the phosphate and the amide moieties located in a pocket formed by 

α1Lys99, α1His103, β1Asn108, β1Tyr35 and β1Gln131, while the flexible aliphatic long 

chain snaked toward the β-cleft making hydrophobic interactions with α1Phe36, 

α1Ser35, β1Lys132, β1Gln131, β1Ala135, β1Val1 and β1His2 (Figure 27c). However, 
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while the ternary complex showed S1P bound in a symmetry-related fashion (Figure 

27c-d), the binding of S1P in the binary deoxyHbA-S1P complex was weak (Figure 27d), 

and only one S1P binding site could be unambiguously fitted in the complex (α1β1 site). 

In the deoxyHbA-S1P complex, the side-chain of α2Lys99 was in a similar position as 

2DN2, consistent with very weak S1P binding as opposed to the ternary deoxyHbA-

S1P-2,3-BPG complex. Binding of 2,3-BPG might have increased the affinity of the 

protein for S1P in the central water cavity. Note that the same concentration of S1P was 

used during crystallization of both the binary and ternary complexes. Each S1P-

associated interaction in the central water cavity was essentially intramolecular in nature 

(i.e. make interactions with only α1β1 or α2β2) and suggest that central-water cavity 

bound S1P might not contribute significantly to the stabilization of the T-state 

structure[129]. This observation indicates that although the affinity of S1P binding to 

central water cavity of the protein is increased by 2,3-BPG, it is unlikely to cause 

significant changes to the deoxyHbA conformation.  

Interestingly, besides the central water cavity bound S1P as described above, we 

also found two additional S1P molecules bound in a symmetry-related fashion at the 

surface of the deoxyHbA-S1P-2,3-BPG complex but not in the deoxyHbA-S1P complex, 

indicating that 2,3-BPG binding most likely is required for S1P binding at the surface of 

the protein. Specifically, the phosphate moiety binds close to the α1-heme and located 

in a highly positive environment formed by α1Arg92, β2Arg40, α1His45, and α1Lys90, 

as well as with β2Glu43; either making direct salt-bridge/hydrogen-bond interactions 

and/or water-mediated hydrogen-bond interactions with these residues (Figure 27e). 

The S1P amide nitrogen makes water-mediated interaction with α1Lys90 and the α1-
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heme propionate. The side-chains of both β2Glu43 and α1Lys90 have moved from their 

native positions to make interactions with the S1P. The highly flexible aliphatic chain 

snaked along a shallow cavity wall making hydrophobic interactions with the so-called 

“switch region” residues of β2Phe41, α1Thr41, α1Pro44, β2Leu96, β2His97, as well as 

with β2-heme, like a molecular sticky tape. The last 3-4 carbon atoms of the aliphatic 

chain project into the bulk solvent (Figure 27e-f). Similar symmetry related interactions 

are observed from the β2-heme site to the β1-heme site. As previously noted, the 

switch region is characterized by significant structural changes during the T to R 

transition[129, 130], and effectors that prevent these changes are known to decrease 

Hb affinity for O2[129]. These findings raise an intriguing possibility that the surface 

bound S1P makes several inter-subunit interactions that involve residues from the 

switch region serve to stabilize the T-state, and presumably further decrease the T-state 

affinity for O2.  
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Figure 27. Structural evidence of S1P binding to Hb and stabilizing deoxyHb in T-state.  

(a) Crystal structure of deoxyHbA in complex with 2,3-BPG (bound at the β-cleft), and S1P (bound both 

at the central water cavity and the protein surface). (b) Close view of 2,3-BPG binding at the β-cleft. (c) 

Ribbon diagram of tetrameric structure of Hb with bound 2,3-BPG at the β-cleft, 2 molecules of S1P 

bound in the central water cavity, and two other molecules of S1P bound at the surface of the protein. The 

α-subunits are colored in cyan and β-subunits in yellow. The small molecules are shown in sticks. (d) 

Binary structure of the central water-cavity bound S1P.  (e-g) S1P binds to the surface of HbA in the 

presence of 2,3-BPG and induces further conformational change stabilizing the complex in T-state. (Data 

in this figure was collected by Drs. Mostafa H Ahmed and Martin K. Safo of Virginia Commonwealth 

University, use with permission)   

To test this hypothesis, we compared the T-state structures deoxyHbA-S1P, 

deoxyHbA-S1P-2,3-BPG, native deoxyHbA (PDB code:  2DN2) and native R-state 

COHbA structure (PDB code: 2DN1)[88] by superposing their 11 dimers (~0.3 Å) and 

then obtaining the screw rotation angles that are required to superpose the non-

superposed 22 Hb dimers as a quaternary measure[129, 130]. Notably, we found that 

deoxyHbA-S1P-BPG was further removed from the R-state (15.7°) more than 

Figure 27 
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deoxyHbA-S1P (14.8°) and T-state HbA (PDB code: 2DN2) (14.2°). Consistently, the 

dimer interface β2F helix/β2FG corner at the switch region show some significant 

positional differences, with that of deoxyHbA-S1P-BPG further removed from the R-

state (Figure 27g). These observations support our conclusion that 2,3-BPG is required 

for S1P binding to the protein, especially to the surface of the protein which leads to the 

protein becoming more tense, and presumably lower affinity for O2 compared to either 

the deoxyHbA or the binary deoxyHbA-S1P complex structures.  

Table 2. Crystallographic data for deoxyHbA-S1P-2,3-BPG and deoxyHbA-S1P complex 

structures.  

Values in parentheses refer to the outermost resolution bin. . (Data in this table was collected 

by Drs. Mostafa H Ahmed and Martin K. Safo of Virginia Commonwealth University, use 

with permission)  
 

 deoxyHbA-S1P-2,3-BPG deoxyHbA-S1P 

Data Collection Statistics 

Space group P21212 P21212  

Cell dimensions (Å) 95.94, 98.08, 65.14 97.56, 95.15, 64.98  

Molecules/asymmetric unit 1 tetramer 1 tetramer  

Resolution (Å) 29.42-1.80 (1.86-1.80) 29.33-2.40 (2.49-2.40)  

No. of measurements 221938 (21321)  119348 (10341)  

Unique reflections 54124 (5483)  24236 (2293)  

 I/sigma I 11.5 (3.4)  9.4 (3.1)  

Completeness (%) 93.9 (96.4)  96.6 (96.8)  

Rmerge (%)
a
 7.6 (38.0)  12.0 (39.8)  

Refinement Statistics  

Resolution limit (Å) 29.42-1.80 (1.88-1.80)  29.08-2.40 (2.51-2.40)  

 Sigma cutoff (F) 0.0  0.0  

 No. of reflections 54123 (6869)  24093 (2969)  

 Rfactor (%) 18.1 (29.6)  22.4 (34.3)  

 Rfree (%)
b
 21.8 (32.7)  27.9 (38.3)  

Rmsd standard geometry  
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 Bond-lengths (Å)/ -angles (°) 0.010 /1.5  0.000/ 1.6  

Dihedral angles 

 Most favored /allowed regions  96.8/3.2  92.4/6.7 

Average B-Factors      

 All atoms/Protein/Heme 23.5/19.3/16.9  43.2/42.6/41.6 

 Water/S1P/2,3-BPG 40.4/73.5/58.9     47.5/96.2   

aRmerge = ΣhklΣi|Ii(hkl) – <I(hkl)>|/ΣhklΣiIi(hkl). bRfree was calculated from 5% randomly selected reflection for 

cross-validation. All other measured reflections were used during refinement. 
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IV. Discussion 

Sphingosine 1-phosphate was discovered two decades ago as a unique 

signaling molecule of the sphingolipids family. Since then, a large body of studies has 

characterized S1P as a versatile bioactive lipid playing various important roles both 

extracellularly and intracellularly. By binding to the five GPCRs on the membrane and to 

different proteins inside, S1P was found important in a myriad of physiological and 

pathological process including but not limited to immune responses, vascular integrity, 

cell proliferation and apoptosis, cell migration, neurogenesis, angiogenesis, 

hematopoiesis, etc. [10]. Since the discovery of S1P and the two S1P generating 

enzymes Sphk1 and Sphk2, erythrocytes have caught the attention of many 

researchers because of the high-level of S1P stored in erythrocytes and the ability to 

generate large amounts of S1P. However, erythrocyte was considered merely a primary 

reservoir supplying circulating S1P before a recent study from our lab reporting the 

detrimental role of elevated erythrocyte Sphk1 and S1P in SCD. Nonetheless, three 

major questions remained to be answered: 1) how erythrocyte S1P production is 

regulated; 2) the normal function of S1P in erythrocytes; 3) why elevated Sphk1 and 

S1P contributes to sickling and disease progression in SCD. Here in this thesis, I have 

provided solid answers to these three questions: 1) testing a series of hypoxia-related 

molecules and known molecules to induce Sphk1 activity in other cell types, I identified 

that adenosine signaling via ADORA2B is a previously unrecognized signaling pathway 

that stimulates Sphk1 activity in normal and sickle erythrocytes isolated from both 

humans and mice. Then, using a genetic approach I provided in vivo evidence that 

excess plasma adenosine induces erythrocyte Sphk1 activity in ADA-deficient mice. 
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ADA enzyme therapy or genetic deletion of ADORA2B completely abolishes excess 

adenosine-induced erythrocyte Sphk1 activity in ADA-deficient mice. Finally, I provided 

both human and mouse evidence that ADORA2B activation-mediated PKA signaling is 

responsible for adenosine-induced Sphk1 activity in an ERK1/2-dependent manner in 

both normal and sickle erythrocytes (Figure 28). 2) I identified that S1P is significantly 

induced in humans following ascent to high altitude or mice expose to hypoxia. 

Functionally, I demonstrated the beneficial role of Sphk1-dependent elevation of 

erythrocyte S1P by promoting 2,3-BPG production and O2 release to counteract tissue 

hypoxia. Mechanistically, I revealed that S1P functions intracellularly by binding directly 

to Hb, promoting deoxy-Hb anchoring to the membrane and subsequently enhancing 

the release of membrane bound glycolytic enzymes to the cytosol.  As such, increased 

erythrocyte S1P leads to increased metabolic fluxes through glycolysis to generate 

more 2,3-BPG and thereby promoting O2 release to protect against tissue hypoxia 

(Figure 29). 3) I found that: genetic deletion of Sphk1 in SCD has potent anti-sickling 

and anti-hemolysis effects by correcting pathogenic metabolic reprogramming, 

channeling glucose to pentose phosphosphate pathway relative to glycolysis, lowering 

2,3-BPG production and rewiring NADPH/glutathione-mediated detoxification. In 

collaboration with structural biologists, we found that S1P as erythrocyte enriched 

biolipid works collaboratively with 2,3-BPG to cause further conformational changes and 

stabilize 2,3-BPG-bound deoxyHbS and HbA to a more enhanced T-state deoxyHbA or 

deoxyHbS that bind to the membrane mediated by the 3-4 tail carbon atoms of S1P, 

promote release of GAPDH to cytosol and thus channel glucose to glycolysis relative to 

PPP (Figure 30). Altogether, I have discovered previously unknown functions of S1P in 
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erythrocytes of normal and SCD and demonstrated the signaling pathway that regulates 

its production. These findings not only significantly extend our understanding of the 

function of S1P, erythrocyte metabolism and regulation, and the molecular basis of SCD 

pathology, but also provide novel therapeutic possibilities for hypoxia-related illness 

including but not limited to high-altitude sickness and SCD (Figure 31).  

 

Figure 28. Regulation of erythrocyte Sphk1 activity by adenosine signaling.  

Hypoxia or tissue damage leads to increased plasma adenosine which signals through ADORA2B and 

subsequent PKA and ERK1/2 pathways to activate SphK1 and produce more S1P in erythrocyte. 

 

Figure 29. Hypoxia-induced S1P promotes glycolysis for hypoxia adaptation. 
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Hypoxia-mediated elevation of erythrocyte Sphk1 activity increases S1P level, which binds to deoxy-Hb 

and facilitates binding of deoxy-Hb to membrane and release of GAPDH; increased cytosolic GAPDH 

accelerates glycolysis and shifts glucose metabolism in favor of 2,3-BPG production which in turn leads 

to more O2 release to counteract tissue hypoxia. 

 

Figure 30.  Erythrocyte Sphk1/S1P induces impaired metabolic reprogramming in SCD. 

Elevated erythrocyte Sphk1 activity increases production of S1P, which binds to deoxyHbS and facilitates 

deoxyHbS anchoring to membrane and release of GAPDH.  Increased cytosolic GAPDH accelerates 

glycolysis and 2,3-BPG production while decreasing PPP and antioxidant production. Increased 2,3-BPG 

leads to more deoxyHbS and more sickling while decreased antioxidant causes more oxidative stress 

(ROS) and more hemolysis. Altogether, erythrocyte S1P induced by elevated Sphk1 activity leads to 

impaired metabolic reprogramming and thus underlies sickling, hemolysis and disease progression in 

SCD. 

 



106 
 

 

Figure 31.  Role and Regulation of Erythrocyte Sphingosine 1-phospate 

Hypoxia induced adenosine signaling activates Sphk1 through ADORA2B and downstream PKA and 

ERK1/2. Activated Sphk1 increases erythrocyte S1P level. S1P binds to deoxyHb and increases binding 

of deoxyHb to the membrane and release of GAPDH, which facilitates glycolysis while inhibits PPP. This 

signaling pathway is beneficial in normal erythrocytes to boost oxygen release but becomes detrimental in 

SCD erythrocytes due to increased sickling and oxidative stress.  

 

4.1 Hypoxic Regulation of Sphk1 

Many previous studies have reported activation of Sphk1 in various nucleated 

cells in response to hypoxia. It has been found in U87MG glioma cells [131], and 

endothelial cells[132] that both HIF-1 and HIF-2 transcription factors can compete for 

binding to putative hypoxia response elements (HREs) located in the promoter region of 

Sphk1 gene. Sphk1 mRNA was also found increased in vascular smooth muscle 

cells[133] and pulmonary smooth muscle cells[134] exposed to hypoxia, though via 

unknown mechanisms. Besides the transcriptional regulations, a diverse range of 

growth factors, cytokines and other external stimuli such as tumor necrosis factor-alpha 

(TNF-), interleukin-1, PDGF, VEGF, Endothelin-1 and phorbol esters could increase 
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cellular SphK1 activity rapidly and transiently[31]. These external factors may induce 

Sphk1 phosphorylation[32], phosphatidylserine binding to Sphk1[135] and calcium 

mobilization[136] which directly affect Sphk1 activity. Other studies also indicate that 

Sphk1 has a substantial basal activity, and stimulation with agonists leads to less than 

two fold increase in catalytic activity. Therefore, Sphk1 activity might rather be regulated 

by cellular localization[137]. The results presented in this thesis demonstrate that 

adenosine signaling can regulate both Sphk1 phosphorylation and membrane 

translocalizaton, suggesting a duel mechanism of Sphk1 activity regulation. Taking into 

consideration the prevalent expression of adenosine-ADORA2B and Sphk1, it is 

reasonable to speculate that the adenosine signaling mediated Sphk1 activation may 

likely exist in other cell types susceptible to hypoxia, such as endothelial cells, vascular 

smooth muscle cells, and cancer cells. The adenosine-ADORA2B-Sphk1-S1P axis 

could also play a big part in the response of these cells to hypoxia. Hypoxic responses 

of endothelial cells and vascular smooth muscle cells are key to blood flow regulation; 

whereas hypoxia is an important factor promoting cancer cell proliferation.  

4.2 Role of Sphk1/S1P in Hypoxia 

As an important member of the sphingolipids family that constitutes the plasma 

membrane structure, S1P is widely expressed in every tissue and organ. Previous 

studies conducted in nucleated cells have revealed strong connections between S1P 

production and the oxygen-sensitive transcription factors HIFs, particularly HIF-1[138]. 

HIF-1 consists of the oxygen-sensitive regulatory subunit HIF-1α and the constitutively 

expressed HIF-1β.  Although constantly synthesized, HIF-1α is prolyl hydroxylated, 

ubiquitinated by the von Hippel Lindau (pVHL) E3 ligase complex and degraded in 
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proteasomes under normoxic conditions. However, prolyl hydroxylase activity is 

attenuated by low oxygen availability in hypoxia and HIF-1α protein becomes stabilized. 

HIF-1 can induce the expression of genes that regulate glucose metabolism, 

angiogenesis, survival and invasion and in turn contribute to the adaption to low oxygen 

levels. Various studies have reported that physiological concentrations of S1P are 

enough to induce the stabilization of HIF-1α in normoxic conditions in different cells 

including thyroid follicular carcinoma cells[139], vascular endothelial and smooth muscle 

cells[140], mouse T cells[141] and macrophages[142], human HepG2 liver cell line[143], 

and distinct tumor cell models (glioblastoma, prostate, breast, lung, kidney)[144]. More 

importantly, rapid activation of SphK1 activity was observed in various tumor cells under 

hypoxic conditions, indicating a likely post-translational effect that may relate to the 

adenosine signaling since adenosine is a potent hypoxia indicator. Of note, the Sphk1 

activation invariably precedes HIF-1α stabilization and accumulation, which again 

confirms that Sphk1/S1P signaling works upstream of HIF-1α.  

Besides the regulation of HIF which causes transcriptional and translational 

activation of certain genes, S1P signaling can directly activate various cellular 

processes. In cardiomyocytes, S1P can enhance survival during hypoxia by triggering 

the S1P1 receptor signaling [145, 146]. In vascular smooth muscle cells, S1P induce 

cell proliferation in hypoxic conditions[133]. In pulmonary smooth muscle cells, chronic 

(10 days) hypoxia increased SphK1 mRNA and triggered the ability of S1P to act as a 

mitogen by stimulating the ERK1/2 pathway in these cells, contributing to arterial 

remodeling in patients with hypertension[134]. Through the activation of HIFs and other 
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signaling cascades in various cell types, the Sphk1/S1P signaling plays important roles 

in angiogenesis, cell migration and proliferation, and cellular glucose/energy metabolism. 

Taking a different perspective from these studies that focused on the influence of 

Sphk1/S1P in hypoxic response of the oxygen-consuming cells, I have demonstrated 

the novel function of Sphk1/S1P in regulating the metabolism of the oxygen-delivering 

cells. Upon activation by hypoxia-induced adenosine signaling, erythrocyte Sphk1 

generates more S1P which can do two things: on the one hand, elevated S1P switches 

erythrocyte glucose metabolism towards glycolysis which leads to the elevation of 2,3-

BPG resulting more oxygen release; on the other hand, elevated erythrocyte S1P can 

be released outside and activate S1P receptors on the peripheral cells and thereby 

inducing the hypoxia responses including HIF stabilization and the activation of the 

various signaling components. Therefore, imperative future endeavors are needed to 

dig deeper into the functional role of erythrocyte Sphk1/S1P in various hypoxia 

conditions, including ischemia, extreme athletic activities, cardiac diseases and various 

tumor. In addition, erythrocytes have long been recognized as the major contributor of 

circulating S1P. However, it is yet unclear how S1P is releases from erythrocytes, 

especially in hypoxia. Although an S1P specific transporter Sphs2 was characterized as 

the major S1P transporter in endothelial cells, it is not expressed in mature 

erythrocytes[147]. An early study claimed that an ATP dependent transporter mediates 

S1P release from erythrocyte[148], but that transporter has not been well-characterized, 

not to mention it’s response to hypoxia. Studies also showed that RBC lysis contributes 

to increased plasma S1P and underlies the circadian rhythm of circulation S1P 

concentration[149, 150], but this is apparently not the major mechanism of S1P release 
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in healthy individuals.  Therefore, understanding the release of S1P from erythrocyte 

requires further investigation. 

4.3 S1P Regulates Erythrocyte Metabolism 

Early studies showed that under hypoxia, deoxy-Hb binds to cytosolic domain of 

Band 3 (cdB3) on the membrane to cause release of glycolytic enzymes such as 

GAPDH from membrane to cytosol to enhance glycolysis and 2,3-BPG production[112, 

151-153].  However, the specific molecules mediating the binding of cytosolic deoxy-Hb 

binding to cdB3 and subsequent elevation of glycolysis under hypoxia remains 

unidentified.  Studies presented in this thesis demonstrated for the first time that 

hypoxia directly induces switch of glucose fluxes through glycolysis from PPP in 

erythrocytes and this switch is Sphk1/S1P dependent.  Because the T state of deoxy-Hb 

is stabilized by binding of organic phosphate including 2,3-BPG[105], it has long been 

speculated that anchoring of deoxy-Hb to the membrane may be mediated by binding of 

phosphate-containing lipophilic signaling molecules  targeting the membrane. Here, I 

report that S1P is such a phosphate that can bind directly to Hb and promote deoxy-Hb 

anchoring to the membrane. The binding affinity of 2,3-BPG to deoxygenated Hb is at 

µmole∙l-1 range, while at mmole∙l-1 to oxygenated Hb[42]. Thus, the ~2-3 mmole∙l-1 

elevation of 2,3-BPG under hypoxia condition observed in humans in high-altitude and 

mouse in hypoxia chamber  can likely covert 2-3 mmole∙l-1  of oxyHb (1:1 molar ratio) to 

deoxyHb.  

Although intracellular S1P binds and regulates the function of multiple important 

proteins including histone deacetylases[11], TNF receptor-associated factor 2 

(TRAF2)[12], and Prohibitin 2 (PHB2)[154], interaction of S1P and Hb is identified for 
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the first time. Moreover, S1P binds to both normal and sickle Hb. It is indeed interesting 

that intracellular S1P at µmole∙l-1 concentrations can mediate metabolic reprogramming 

in SCD by regulating binding of deoxyHb to cdB3. Due to the molar ratio of about 1:300 

between cdB3 and Hb[6], cdB3 (present at µmole∙l-1   concentrations), not deoxyHb 

(present at mmole∙l-1   concentrations), is the rate-limiting factor in deoxyHb-cdB3 

interaction. Interestingly, S1P has an approximately 1:1 molar ratio with cdB3 in normal 

erythrocytes and an even higher ratio in SCD erythrocytes.  Thus, although deoxyHb is 

expected to be present at a much higher concentration than S1P, it is the concentration 

of S1P that controls the amount of deoxyHb that binds to cdB3. Besides regulating the 

sequestration of glycolytic enzymes, it is reasonable to speculate that increased S1P in 

SCD erythrocytes may also play a role in other cdB3-mediated effect including the 

binding of S-nitrosohemoglobin and spectrin to cdB3.  The former is involved in the nitric 

oxide (NO) metabolism[155, 156] in erythrocytes while the latter plays a key role in 

erythrocyte deformability[157], both of which are important in the pathophysiology of 

SCD[158-160].   

The crystal structure data indicate that S1P binds to the surface of 2,3-BPG-Hb 

and leads to considerable additional conformational change of deoxyHb (by making 

hydrophobic interactions at the switch interface) to a more T-state character that in part 

should explain the decreased Hb-O2 affinity.  It is also notable that the surface-bound 

S1P could sterically impede diffusion of diatomic ligands (O2) into the heme, and in part 

also decreased Hb-O2 affinity. Similar studies have been reported for allosteric effectors 

that bind and block the heme access to the bulk solvent[129, 161]. Although S1P was 

also observed bound in the central water cavity, the water cavity is known to be a “sink” 
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for several compounds especially those with anionic groups and not all of these 

compounds show allosteric effect[129]. Since in the absence of 2,3-BPG, we observed 

weak binding of S1P at the water cavity and no apparent effect on the protein’s 

allosteric activity, it is possible that the central water cavity S1P binding is non-specific.  

Another interesting structural observation is that the last 3-4 carbon atoms of the 

surface bound S1P do not make any interaction with the protein residue but project in 

the bulk solvent, which could possibly mediate hydrophobic interactions with other 

proteins, akin to the hydrophobic βVal6 pathogenic mutation involvement in HbS 

polymerization[118]. S1P, like other effectors of Hb binds to multiple residues. Mutation 

of one or multiple residues may result in uncooperative function of Hb tetramer. Such 

study is thus rarely used to ascertain the binding of an effector, but instead structural 

and/or O2 equilibrium studies (Hb-O2 binding studies) have been the norm. Importantly, 

the structural study that show surface S1P binding only in the presence of 2,3-BPG 

binding in the central water cavity is highly suggestive that the surface binding is 

specific.  There are similar reported studies where binding of allosteric effectors to Hb 

lead to subtle but significant tertiary and/or quaternary structural changes at the heme 

environment, 12 interface, -cleft or -cleft[162],32,47. Such changes have been used 

to explain the differences in the allosteric activities of these effectors. Notably, effectors 

that lead to increase in Hb affinity of O2 show more relaxed Hb structural features, while 

the opposite is true for effectors that bind to Hb and decrease its O2 affinity for 

oxygen[129].   
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4.4 Regulation of Erythrocyte Oxygen Release in Hypoxia   

Ever since the emergence of multicellular systems, hypoxia has become a 

common environmental stress to living organisms. To cope with such stress, all 

vertebrates but also some cold-blood fishes, rely on the packed Hb molecules in 

erythrocytes to deliver oxygen to peripheral tissues. Failure of erythrocytes in 

delivering enough oxygen in a timely manner underlies a myriad of life-threatening 

conditions including trauma shock, anemia, and various poisonings including arsenic 

and CO.  The regulation of erythrocyte oxygen delivery ability is at two aspects: i) 

regulating Hb-O2 binding affinity; ii) regulating the transport of erythrocytes in blood 

vessels. The studies presented in this thesis demonstrate for the first time that 

erythrocyte Sphk1/S1P plays an important role in regulating Hb-O2 binding affinity by 

increasing glycolysis and 2,3-BPG production. It is also reasonable to speculate the 

Sphk1/S1P is also involved in regulating blood vessel tone and thereby controlling the 

flow of erythrocytes. 

With Hb accounting for over 90% of the dry weight, mature erythrocytes have 

no room for a nucleus, mitochondria and other cellular apparatuses. Therefore, lipid 

and protein metabolism is absent in erythrocytes and glucose metabolism dictates the 

vast majority of cellular activities. Glucose is not merely the sole energy source for 

erythrocytes, it also generates antioxidant and 2,3-BPG. It has been known for over 

two decades that hypoxia regulates erythrocyte glucose metabolism in favoring of the 

production of energy and 2,3-BPG while limiting the generation of antioxidant[43]. 

However, besides deoxyHb, S1P is the first identified factor that also regulates such 

metabolic change. There are also many other small molecules with elevated levels 
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identified in metabolomics screenings conducted in various erythrocyte samples with 

altered oxygen release capacity [7, 76, 104]. It is possible that some of these hypoxia-

induced molecules can also directly or indirectly regulate erythrocyte oxygen release 

capacity, similar to that of S1P and adenosine. Therefore, further investigation may 

uncover more available therapeutic targets for the treatments of hypoxia-related 

illness.  

 Besides enhancing O2 off-loading, erythrocytes can regulate their own 

distribution by releasing vasodilatory compounds that increase blood flow in hypoxic 

tissues. The main mechanisms include: i) release of ATP that activates P2 receptors 

on endothelial cells to generate more NO; ii) release of NO that is synthesized from 

the reduction of nitrate by deoxyHb[163]. Interestingly, the release of ATP from 

erythrocytes also depends on the binding of deoxyHb with Band3[164], which is 

regulated by S1P as proved here. This indicates that S1P, by binding to deoxyHb and 

mediating deoxyHb-band3 interaction, can on the one hand increase ATP by 

facilitating glycolysis, and on the other hand enhance ATP release. In these ways, 

S1P induces vasodilation and increases blood flow to the hypoxic tissues. Moreover, 

S1P directly activates endothelial NO synthase (eNOS)[165]. Therefore, it is highly 

possible that S1P released from erythrocytes during hypoxia activate eNOS in the 

endothelial cells and generate NO to cause vasodilation. More importantly, eNOS has 

also been located inside of erythrocytes[166]. Although it is unknown how this eNOS 

behaves in hypoxic condition, we can reasonably hypothesize that the localization of 

erythrocyte eNOS, much like the other erythrocyte enzymes such as the glycolytic 
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enzymes, is regulated by S1P-mediated deoxyHb-Band3 interaction. In this way, S1P 

may directly regulate NO produced in erythrocytes.  

4.5 Regulation of GAPDH Activity and Localization  

GAPDH is an evolutionarily conserved enzyme that controls the rate-limiting 

step in the glycolysis pathway of glucose metabolism. It comprises ~10–20% of the 

total cellular protein content [167].  Because it is highly conservative across species, 

GAPDH has been used as a control in protein and gene studies, as well as a standard 

in Northern and Western blots [167, 168]. Besides, various studies have revealed 

many diverse and non-glycolytic functions of GAPDH. GAPDH can bind DNA and 

RNA, catalyze microtubule formation and polymerization, facilitate vesicular transport, 

and bind integral membrane ion pumps associated with calcium release [169]. It also 

interacts with a number of small molecules, including tumor necrosis factor (TNF)-α 

ribozymes, glutathione, p53, and nitric oxide (NO) [169].  

With so many diversified catalytic and non-catalytic functions, GAPDH 

regulation plays an important role in many cellular processes. GAPDH is regulated in 

two ways: cellular localization and post-translational modification.  Sequence motifs 

for intracellular localization of a protein were found on GAPDH through protein 

sequence analysis. One motif has the sequence KKVVK (residues 259-263), which is 

partially homologous to the nuclear localization signal (NLS), and the other is 

ALQNIJP (residues 202-208), which is partially homologous to a nuclear export 

domain [167, 170]. In non-nucleated cells, such as mature erythrocytes, GAPDH also 

binds to membrane proteins, which is the cytosolic domain of band3 in the case of 

erythrocytes [151]. Unlike nuclear localization, binding of GAPDH to erythrocyte 
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membrane protein band3 involves the modification of G3P-binding site residues, Lys-

191 and Lys-212, presumably by oxidation [171]. Recently, proteomics analyses 

conducted in stored erythrocytes revealed a storage-dependent oxidation of GAPDH 

at functional Cys152, 156, 247, and His179, which leads to the decrease of GAPDH 

activity and thereby disturbance of erythrocyte metabolism[172]. These studies 

suggest the oxidation of certain residues on GAPDH regulates both the cellular 

localization and the catalytic activity of GAPDH. Besides oxidation, Nitric Oxide (NO)-

mediated S-nitrosylation of GAPDH is responsible for reversible enzyme 

inhibition[173]. Moreover, recent studies have shown that GAPDH can also be 

phosphorylated by protein kinase C delta [174] and AMP-activated protein kinase [175] 

and play important roles in ischemia-reoxygenation-induced injury and autophagy, 

respectively. So far, no direct evidence suggests phosphorylation of GAPDH affects 

the catalytic activity in addition to its cellular localization. Research presented in this 

thesis demonstrated an additional regulatory mechanism of GAPDH location by S1P 

mediated deoxyHb-Band3 binding in erythrocytes. However, whether additional steps 

are needed to fully activate the GAPDH released from erythrocyte membrane is 

unknown and awaits further investigation.      

4.6 Targeting Adenosine-ADORA2B-Sphk1-S1P Axis for Therapeutics 

Development 

The studies presented above have discovered the Adenosine-ADORA2B-Sphk1-

S1P axis that plays a detrimental role in SCD but is beneficial in helping normal 

individuals adapt to hypoxia. Targeting this axis is therefore promising to treat various 

diseases including SCD, anemia, and acute mountain sickness and even boosting 



117 
 

athletic performance. First, adenosine level can be lowered by administration of the 

FDA-approved enzyme therapy PEG-ADA. PEG-ADA treatment has been shown to be 

very successful in lowering the plasma adenosine levels in patients with ADA 

deficiency[176]. Therefore, treat SCD patients with PEG-ADA is possible. However, 

caution should be applied since other studies also indicate beneficial role of adenosine 

in SCD through ADORA2A, though in different animal models[177]. Second, various 

ADORA2B antagonist and agonist have been developed and test it in vivo and even in 

human as treatments for other diseases and conditions. For example, GS 6201 (CVT 

6883), a selective and highly potent ADORA2B antagonist, has been evaluated in 

phase I clinical trial for the treatment of asthma[178]; whereas BAY 60-6583, a potent 

ADORA2B agonist, has demonstrated cardioprotective role by attenuating infarct size in 

a mouse model of myocardial ischemia[179]. These two drugs can be used for testing in 

SCD and hypoxia adaptation, respectively.  

In comparison to adenosine and ADORA2B, Sphk1 and S1P have drawn more 

attention from drug developers because of their great potential in treating cancer and 

inflammatory disorders. A plethora of Sphk1 inhibitors, including SKI-I[180-183], 

Safingol[184], SKI-II[185], and PF-543[186] decreases cancer progression, 

angiogenesis, lymphangiogenesis and airway hyper-responsiveness. Moreover, PF-543 

has been used previously by our lab in treating SCD Berkeley mice and was effective in 

inhibiting sickling and disease progression [7]. It was also used in a hypoxic model of 

pulmonary arterial hypertension and proven effective in reducing post-myocardial 

infarction cardiac remodeling and dysfunction in a most recent study[187], suggesting 

that PF-543 could be used for clinical applications. In addition, testing PF-543 and other 
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Sphk1 inhibitors in other SCD animal models, such as the Townes SCD mice[188], is 

also necessary to provide more solid conclusion.  

Since the discovery of the strong immune-regulatory functions of S1P signaling 

through its receptors particularly S1P1, S1P and its five receptors have become hot 

therapeutic targets for immune and cancer drug developers.  In 2010, fingolimod 

(FTY720), an S1PR1 agonist and functional antagonist, was approved by FDA as the 

first oral disease-modifying drug for the treatment of relapses and delay disability 

progression in patients with relapsing forms of multiple sclerosis[189]. Moreover, it can 

also suppress experimental autoimmune encephalomyelitis, inhibit lymphocyte 

trafficking, prevent transplant rejection and decreases colitis and cancer 

progression[190-194]. Although S1P1 was not detected in mature erythrocytes (data not 

shown), targeting S1P1 with fingolimod to treat SCD has been examined in our lab and 

demonstrated effectiveness in decreasing inflammation and tissue damage in the 

Berkeley SCD mouse model (Zhao et al, manuscript under review). Considering that 

inflammation is a serious complication facing SCD patients and that circulating S1P is 

highly elevated in SCD, fingolimod may become a second FDA-approved treatment for 

SCD adding to the only approved drug hydroxyurea. Besides targeting S1P receptors, 

decreasing S1P availability by neutralization it with specific antibodies offers a new 

therapeutic angle. In fact, S1P neutralizing antibodies have been successfully 

developed and tested in preclinical and clinical studies for multiple cancer and 

angiogenic disorders including renal carcinoma and age-related macular 

degeneration[19, 195]. These studies have shown that S1P neutralizing antibody can 

successfully block S1P receptor activation and subsequent angiogenesis and cancer 
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proliferation. It is reasonable to speculate that S1P neutralizing antibody can also be 

helpful in ameliorating the elevated S1P signaling induced inflammation, leukocyte 

infiltration and adhesion and end-organ damage[8]. In collaboration with the biotech 

company that has generated this S1P neutralizing antibody, our lab is currently 

investigating the treatment effects in the SCD Berkeley mouse model. Preliminary 

results have indicated significantly lowered white blood cell numbers in SCD mice 

treated with the S1P antibody in comparison to the control group that were treated with 

control IgG only, suggesting very promising therapeutic possibilities.  

4.7 Future Directions 

To summarize the future research directions discussed above, further research 

efforts should be taken to investigate: 1) the regulation of Sphk1 activity by adenosine in 

other cells and systems; 2) release of S1P from erythrocytes; 3) other small metabolites 

and signaling molecules in erythrocytes with similar functions as S1P; 4) regulation of 

cytosolic GAPDH by post-translational modification; 5) developing treatments for SCD 

and other hypoxia-related diseases with the therapeutic targets identified.   
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