
Texas Medical Center Library
DigitalCommons@TMC

UT GSBS Dissertations and Theses (Open Access) Graduate School of Biomedical Sciences

5-2017

VISUALIZING THE DYNAMICS OF
IMMUNE SURVEILLANCE IN BRAIN
TUMORS BY INTRAVITAL MULTIPHOTON
MICROSCOPY
Felix Nwajei

Follow this and additional works at: http://digitalcommons.library.tmc.edu/utgsbs_dissertations

Part of the Medicine and Health Sciences Commons

This Dissertation (PhD) is brought to you for free and open access by the
Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has
been accepted for inclusion in UT GSBS Dissertations and Theses (Open
Access) by an authorized administrator of DigitalCommons@TMC. For
more information, please contact laurel.sanders@library.tmc.edu.

Recommended Citation
Nwajei, Felix, "VISUALIZING THE DYNAMICS OF IMMUNE SURVEILLANCE IN BRAIN TUMORS BY INTRAVITAL
MULTIPHOTON MICROSCOPY" (2017). UT GSBS Dissertations and Theses (Open Access). 735.
http://digitalcommons.library.tmc.edu/utgsbs_dissertations/735

http://digitalcommons.library.tmc.edu?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F735&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.tmc.edu/utgsbs_dissertations?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F735&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.tmc.edu/uthgsbs?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F735&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.tmc.edu/utgsbs_dissertations?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F735&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F735&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.tmc.edu/utgsbs_dissertations/735?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F735&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laurel.sanders@library.tmc.edu


 

 

Visualizing the dynamics of immune surveillance in brain tumors by intravital 

multiphoton microscopy 

by 

Felix I. Nwajei, MD  
 
 

APPROVED: 
 
 
 
______________________________ 
Tomasz Zal, Ph.D.  
Supervisory Professor 
 
 
______________________________ 
Kimberly Schluns, Ph.D. 
 
 
______________________________ 
Amy Heimberger, M.D. 
 
 
______________________________ 
Joya Chandra, Ph.D. 
 
 
______________________________ 
Robert Dantzer, DVM, Ph.D. 

 
 

APPROVED: 
 
 
____________________________ 
Dean, The University of Texas 
Graduate School of Biomedical Sciences at Houston 

 

 



 

VISUALIZING THE DYNAMICS OF IMMUNE SURVEILLANCE IN BRAIN TUMORS 

BY INTRAVITAL MULTIPHOTON MICROSCOPY 

A 

DISSERTATION 

Presented to the Faculty of 

The University of Texas 

M.D. Anderson Cancer Center UTHealth 

Graduate School of Biomedical Sciences 

In Partial Fulfillment 

of the Requirements 

for the Degree of 

DOCTOR OF PHILOSOPHY 

By 

Felix I. Nwajei, MD 

Houston, TX 

 

         May, 2017

 

 



 

 

 

 

 

 

 

DEDICATION 

To my parents, Felix and Felicia Nwajei, I have seen further because of you. 

Thank you for being an embodiment of dignity and integrity.  

To my siblings Michael, Tony, and Francisca, you have been the best examples 

of true optimism and perseverance.  

  

iii 

 



ACKNOWLEDGEMENTS 

I am indebted to a lot of people for walking this journey with me. First, I would 

like to thank my mentor Dr. Tomasz Zal, for allowing me to explore my passion and 

creativity in his lab; I honestly did not think that it was possible to be given free reins to 

pursue new areas with relatively little experience in the basic sciences. I have truly 

discovered science as a personal passion. Thank you for guiding me, providing helpful 

criticisms and helping me think like a scientist. My experience here has left an indelible 

mark for my future endeavors. 

I would like to thank my current and previous committee members, Drs. Kimberly 

Schluns, Amy Heimberger, Joya Chandra, Robert Dantzer and Bradley McIntyre for all 

your valuable advice and support. Dr. Schluns, you have been an invaluable personal 

mentor; Dr. Heimberger, thank you for accepting me into your lab, mentoring me on the 

translational aspect of brain tumor immunology, and providing me with plenty avenues 

for professional growth. I feel very lucky and truly privileged to have experienced the 

entire spectrum of basic and translational tumor immunology; Dr. Chandra, thank you 

for always reminding me that you all want the best for me; Dr. Dantzer, thank you for 

making me statistically conscious.  Also, to my PhD examination members; thank you 

Dr. Stephen Ullrich for volunteering to chair my exam and for helping me enhance my 

public speaking through your seminars; Dr. Greg Lizee, thank you for volunteering and 

challenging me during my candidacy exam. This experience has helped mold me into a 

better scientist. 

Many thanks to past and present Zal lab members Meena Shanmugasundaram, 

Figen Beceren-Braun, Chodaczek Grzegorz, Anna Zal, Sungho Lee, Todd Bartkowiak, 

iv 

 



Ivy Wuenyue Wu, and Dana Paine. Thank you for your contributions toward my 

research project, your advice and technical help. I wouldn’t have been able to finish all 

of this without your mental and physical assistance. To the Heimberger past and 

present lab members, Konrad, Edjah, John, Tiffany, Ling, Yuuri, Anantha, Martina, 

Ryuma, Hillary, Nasser, thank you for your suggestions and encouragement. Further, I 

have been blessed to have completed a rotation at the Konopleva lab. Thank you, Dr. 

Konopleva for all the recommendation letters that you have generously provided and to 

all the lab members including Juliana, Karina, and Polina. Finally, I will be forever 

grateful to Shouhao Zhou, who helped analyze my “big data” collection with advanced 

statistical models.  

To Shailbala, Nahum, Laura, Elizabetta, thank you for providing advice and 

encouragement every time you could. Thank you Stephanie for providing me with 

useful resources during the completion of this thesis; I owe a lot of it to your generosity. 

To Tonya, Lauren, Bonnie, Rosie, Doretha, Patrice, Toretta, thank you for your help 

when I needed it. 

Many thanks to the many doctors, nurses, and patient care assistants of CHI-St. 

Luke’s hospital that helped nurse me back to health just three weeks before the 

completion of this thesis and my public defense. You made this possible. 

To my friends, Ayokunle, Vincent, Akhil, Evans, Mimi, Tony (too many of you), 

Mark, Kingsley, Duben, thank you for making my journey lighter throughout all these 

years.  

Lastly, I am grateful to all the institutes and organizations that have funded my 

work during the past few years including grants from the NIH/NCI, Schissler fellowship 

v 

 



for translational research at the University of Texas MD Anderson Cancer Center, T.C. 

Hsu memorial scholarship, The University of Texas MD Anderson Cancer Center MRP 

fund, and CPRIT. This work would not have been possible without your generous 

support. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vi 

 



VISUALIZING THE DYNAMICS OF IMMUNE SURVEILLANCE IN BRAIN TUMORS 

BY INTRAVITAL MULTIPHOTON MICROSCOPY 

By 

Felix I. Nwajei, MD 

Supervisory Professor: Tomasz Zal, Ph.D. 

Brain tumors (BTs) generally have a bad prognosis despite conventional treatment 

strategies. Immunotherapy is a relatively novel treatment approach that has shown 

benefit for durable treatment of melanoma, and is a promising candidate for different 

tumor types including BTs.  Immunotherapeutic strategies work by exploiting and/or 

enhancing natural anti-tumor immune response, a process that is critically dependent 

on adaptive immunity, T cell infiltration and surveillance of tumor.  However, little is 

known about the dynamics and regulation of T cell surveillance in BTs. Resident 

immune cells of the myeloid lineage known as microglia are ubiquitous in the brain 

parenchyma while tissue-resident myeloid dendritic cells (DCs) known to activate T 

cells are relatively rare in the brain compared to DCs in other organs. Accumulating 

evidence indicates that myeloid cells infiltrate and create an immune suppressive 

microenvironment in BTs, but the identity of these myeloid cells and their role in the 

adaptive immune surveillance of BTs by T cells is unclear. Based on the predominance 

of microglia in the brain tissue, studies focused on understanding how BT immune 

surveillance is regulated, have been skewed toward microglia. Many conclusions 

regarding microglia function have been deduced from in vitro experiments. 

Nonetheless, in vivo studies in parallel models such as EAE indicate that DCs are 

superior to microglia in antigen presentation to T cells in the brain and to date, there is 
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no direct in vivo evidence to suggest otherwise. In addition, DCs are well-established 

cellular regulators of T cell surveillance in extracranial tumors. Therefore, I 

hypothesized that DCs, rather than microglia, play a major role in regulating T cell 

surveillance in BTs. To address this hypothesis, I have developed experimental 

imaging systems for longitudinal intravital multiphoton microscopy of immune cell 

dynamics in BTs in living mice and used this approach to interrogate T cell behavior in 

orthotopic glioma and in experimental intracranial metastases in vivo. I found that the 

myeloid infiltration of BTs was dominated by CD11c+ DC cells rather than microglia. 

Quantitative in situ tissue cell image cytometry further revealed that myeloid-derived 

CCR2+ monocytes accumulated in the BT core, CD11c+ DCs at the tumor margin, and 

CX3CR1+ microglia outside the tumor. T cells formed clusters around CD11c+ DCs, 

but not the microglia. Within these clusters, T cells vigorously interacted directly with 

CD11c+ DCs. CD11c+ DCs retained T cells and controlled their motility patterns, 

indicating that CD11c+ DCs play a major role in regulating T cell retention and motility 

in BT. Corresponding to the preferential distribution of CD11c+ DCs at BT margins was 

expression of the neuronal chemokine Fractalkine (CX3CL1). Deficiency of the 

Fractalkine receptor CX3CR1 resulted in decreased CD11c+ DC recruitment. In 

addition, decreased CD11c+ DC recruitment was accompanied by decreased T cell 

recruitment, an increase in the spatial diffusion of the few BT-infiltrating T cells, and 

subsequent outgrowth of a fibrosarcoma BT, which spontaneously regresses in the 

brain of control wild type mice in a CD8 T cell dependent manner.   

In summary, by using novel intravital imaging systems for longitudinal 

visualization of BT immune surveillance across several types of cancer, I showed that 

the recruitment, migration and retention of tumor infiltrating T cells in the brain is 
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mediated by incoming CD11c+ DCs rather than by the brain-resident CX3CR1 

microglia, and identified the neuronal chemokine Fractalkine as a key molecule that 

promotes T cell surveillance in BTs by recruiting CD11c+ DCs.  

These findings suggest that the non-microglial tumor-associating CD11c+ myeloid 

cells and the fractalkine/CX3CR1 chemokine pathway control T cell surveillance in BT 

and represent attractive immunotherapeutic targets that could be modulated for guiding 

endogenous or adoptive transfer of T cells to BT sites and for therapeutic modulation to 

enhance immunity against BTs.  
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1.1. General Introduction 

Mammalian tissues are under constant surveillance by the immune system1,2. 

The primary function of the immune system is to protect organisms from environmental 

pathogens such as bacteria or viruses that could prove fatal if left unchecked. 

Generally, the immune system recognizes molecular aspects of pathogens and mounts 

a rapid response in a two-layered manner to resist host organ invasion and damage. In 

contrast, nonviral cancer is a more sinister pathological event as it involves intrinsic 

mutational changes in an organism’s own cells that may be barely detectable by the 

immune system during cancer initiation. These mutations trigger a cascade of events 

including cellular transformation, immortalization, unabated proliferation, and a 

diminished survival capacity of the host organism. Although cancer cell-intrinsic factors 

play key roles in tumor development and progression, and cancerous cells were once 

thought to be undetectable by the immune system3-24, it is now established that during 

a natural anti-tumor immune response, immune cells are capable of detecting specific 

peptide antigens in transformed cancer cells. In addition, immune cells play a major 

role in both tumor progression and eradication, and have more recently been shown to 

be attractive targets for cancer therapy24-34.  

Cancer has been aptly described as “wounds that do not heal35.” This notion is 

based on decades of research uncovering striking similarities between chronic wounds 

and cancer. Importantly, both disease conditions are usually characterized by rich 

immune cell infiltrates and abundant immune cell-derived molecular signals, and 

epidemiological and mechanistic studies have linked chronic inflammation to cancer 

progression, indicating a pro-tumorigenic effect of immune cell infiltrates36-42. However, 

the significance of the immune system as a key antagonist of cancer growth has been 
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recognized due to better understanding of the immune system through finely-tuned 

molecular mechanistic studies and immunotherapeutic applications43-45. More than a 

decade ago, in a landmark review, Hanahan and Weinberg condensed the multitude of 

research data elaborating the mechanistic underpinnings of the cellular and molecular 

aspects of cancer progression into a handful of principles known as the “Hallmarks of 

Cancer.” These hallmarks include self-sufficiency in growth signals, insensitivity to anti-

growth signals, evading apoptosis, limitless replicative potential, sustained 

angiogenesis, and tissue invasion and metastasis46. This extensive review excluded 

the role of the immune system because there was only weak mechanistic evidence 

available to support the hypothesis of tumor immune surveillance proposed by Burnet 

and Thomas in 1957. More recently, however, the inflammatory and immune evasive 

properties of cancer have been included as part of cancer hallmarks based on 

mounting evidence that the immune system can in fact detect and eliminate cancer 

cells, and paradoxically also aid in cancer progression24,47,48. While each of the initially 

prescribed hallmarks were viewed from a mostly cancer cell-intrinsic  angle, myriad 

studies have been extensively reviewed in the updated version of the “Hallmarks of 

Cancer,” emphasizing that tumor immune infiltrates and immune-derived molecules 

play either major or supporting roles in almost all of the initially described hallmarks of 

cancer47,49-55.  

A reinvigorated interest in the historically controversial field of cancer 

immunology is due to a better understanding of molecular immunology and the 

accepted role of immunotherapy in the care of the cancer patient. 56-60 Nonetheless, a 

significant proportion of patients receiving immunotherapy do not respond. Therefore, 

to increase the efficacy of immunotherapy, it is pertinent to answer key questions 
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pertaining to why some tumors elicit robust immune responses while others do not. For 

example, it was hypothesized that differences in tumor neoantigenic load could explain 

differences in response to immunotherapy in different tumor types, and advances are 

already being made in understanding the impact of tumor mutational load and as a 

consequence, neo-antigens in response to T cell immunotherapy61-64. It is also known 

that immune cell compositions in different tissues are distinct in steady state and in 

cancer progression65-67, and this may play a role in determining the extent to which an 

adaptive T cell immune response to cancer works to eradicate cancer cells. A 

deepening of our understanding on immune response to tumors in the context of the 

complex biological milieu in which they might exist is essential for a better grasp of 

immune surveillance in specific tumor types.  

The brain is one such complex environment that presents a challenge for proper 

understanding of an immune response to tumors because of its distinct anatomy and 

immunological makeup. I will address brain tumors (BTs), the immunological 

composition of the brain, its anatomical barriers (blood brain barrier and CNS 

lymphatic), and the concept of brain immune privilege in different sections below. In this 

thesis, I have sought to investigate the extent to which BTs are infiltrated by T cells, the 

dynamics of potentially-infiltrated T cells in BTs, and the mechanisms by which T cell 

surveillance in BT is regulated. A comprehensive understanding of the mechanisms 

guiding T cell immune surveillance in BTs may reveal strategies that may be important 

for the development of potent immunotherapy for BT treatment and may pave the way 

for an organ-specific approach to immunotherapy application in cancer.  
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1.2. A brief historical perspective on brain tumor immunology research:  

Brain tumors constitute one of the most deadly types of cancer. Relative to other 

tumor types, BTs are one of the less well-understood in the context of tumor 

immunology. On the basis of research conducted by Medawar more than half a century 

ago, the brain was claimed to be an immune privileged site68,69.  About the same time, 

the inability to identify classical lymphatic vessels in the brain, which were known to be 

present in other mammalian tissues and organs and critical for immune cell trafficking,  

lent credence to the notion of brain immune privilege. Subsequent studies conducted a 

few decades after Medawar’s findings revealed no role for the immune system in 

controlling BTs in athymic immune-deficient nude mice and further bolstered the idea of 

brain immune privilege70,71. These findings led to the erroneous conclusion that the 

brain is shielded from surveillance by adaptive immune cells such as T cells, and likely 

has impeded progress in understanding the mechanisms of T cell surveillance of BTs. 

However, the idea of an immune-privileged brain was first challenged in observational 

studies showing the presence of dural lymphatic-like vessels and subsequent findings 

in which fluorescent tracers injected directly into mouse brain parenchyma were 

identified within non-vascular pathways in the olfactory lobe region, which were 

traceable to the cervical lymph nodes72. In the absence of a conventional channel for 

drainage of brain interstitial fluid (ISF) to the cervical lymph nodes, non-vascular tracks 

were proposed to serve as substitutes for lymphatics. Since then, studies have 

documented the presence of brain-derived myelin antigen-specific T cells in the 

parenchyma, brain meninges, and cervical lymph nodes in mouse models of multiple 

sclerosis and brain infections73-79. The latter studies suggested a model in which 

antigens in the brain can be transported to the cervical lymph nodes for potential 
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activation of naïve T cells 72,80. In support of this model, recent studies confirmed and 

extended these previous observations by identifying and describing distinct networks of 

lymphatic channels that drain directly into the cervical lymph nodes, indicating that 

lymphatic drainage of the brain is similar to extracranial peripheral tissues. In addition, 

it suggested that the brain is not sequestered from immune cell surveillance. Based on 

this, there is more impetus in the field of neuroimmunology to investigate the dynamics 

of antigen presenting cells and T cells in various brain pathologies.  

Historically, BTs have been classified according to histological appearance and 

studied as separate entities, and treatments have been applied differently according to 

the histological diagnosis81. In the section below, I will be discussing BT types and 

examine how immune infiltrates in such tumors could serve as a predictive/prognostic 

tool in patient survival. 82-88.   

 

1.3. Brain Tumors 

Brain tumors are heterogeneous and are classified into two main types 

according to the organ of origin. Primary BTs arise from within the brain tissue and 

secondary BTs or brain metastases originate from extracranial organs.  

I will briefly elaborate on the complexity in BTs types and subtypes based on the World 

Health Organization (WHO) and The Cancer Genome Atlas (TCGA) classifications5,89. 

 

1.3.1. Primary brain tumors 

Primary BTs arise within distinct anatomical brain regions in the pediatric patient 

relative to the adult patient. BTs in pediatric patients frequently develop in the 

infratentorial (brainstem) region, while they are mostly supratentorial (cerebral 
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hemispheres) in adults. However, the cell-specific origin for such tumors is not well 

understood90-94. Because of similar marker expression with several precursor or 

differentiated cell types, primary BTs are thought to originate from poorly differentiated 

glial cells such as oligodendrocytes, astrocytes, neural progenitor cells, and ependymal 

cells. For instance, astrocytomas share glial fibrillary acid protein (GFAP) expression 

with astrocytes and oligodendrogliomas stain for myelin basic protein (MBP), an 

oligodendrocyte marker. Based on aggressive histological characteristics and rapid 

patient mortality, a deadly type commonly known as glioblastoma multiforme (GBM) 

has become well-recognized among the multitude of primary BTs types and is thought 

to arise from astrocytes as it characteristically has GFAP expression. Recent studies 

based on gene-expression from TCGA dataset has further classified GBMs according 

to molecular characteristics95. Differential gene-expression and somatic molecular 

characteristics delineate GBM into four recognized subtypes including pro-neural, 

classical, and mesenchymal, thus indicating distinct molecular subtypes within the 

GBM histological subtype with associated differences in the inflammatory 

responses95,96. In this new classification, it is now recognized that in both primary and 

recurrent GBM, the mesenchymal subtype has the highest immune signature, 

characteristically infiltrated by neutrophils, both pro-inflammatory “M1” and immune 

suppressive “M2” macrophages, but reduced presence of activated natural killer T 

(NKT) cells in comparison with other molecular subtypes96. The proneural subtype has 

decreased resting memory CD4 T cells and the classical subtype has increased 

dendritic cell signature96. Despite the differences in the composition of immune 

infiltrates, in recurrent GBM of all subtypes, there is increased infiltration by regulatory 

T cells. Patients with primary or recurrent GBM of the mesenchymal subtype have the 
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worst overall or progression-free survival while the proneural subtype has the best96.  In 

sum, differences in immune cell presence may be exploited for effective 

immunotherapy in different GBM molecular subtypes. However, as these studies were 

nonfunctional, mechanistic work is required for better understanding of immune 

surveillance in BTs and could provide new knowledge for developing novel immune 

therapeutic strategies to improve patient survival. 

 

1.3.2. Brain metastases 

In contrast to primary BTs, brain metastases originate from cancers of 

extracranial tissues97. The epithelial to mesenchymal transition (EMT) process enables 

conditions favorable for cancer cells to migrate and penetrate the tissue basement 

membrane and gain access into the circulation98,99. Subsequently, disseminated cancer 

cells undergo a cascade of events that end with successful engraftment and growth of 

cancer cells in peripheral organs including brain tissue27,100. Brain metastasis is an 

event that can potentially occur during the progression of any malignant primary cancer 

type100. In the United States alone, it is estimated that approximately 170,000 new 

patients will be diagnosed with brain metastases annually, a number 10 times higher 

than in primary BTs101. Primary cancer types such as lung cancer, breast cancer, and 

melanoma have a high propensity to metastasize to the brain102 (Table 1). In contrast, 

brain metastases derived from soft tissue fibrosarcoma, cervical, prostate, and liver 

cancers are relatively rare103-106. Patients who develop brain metastases have very 

poor prognosis with a median overall survival ranging from a few weeks to months100. 

Present treatment strategies such as surgical resection, radiation therapy, and 
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chemotherapy have shown only modest benefit in extending survival of patients with 

brain metastases107,108. 

In comparison with GBM, the link between the immune system and brain 

metastases is even less well-understood despite its high incidence. Although there is 

no comprehensive comparison of immune cell infiltrates between distinct brain 

metastases types, recent characterization of patient brain metastases aggregated 

regardless of tissue of origin demonstrated that T cells can infiltrate brain metastases 

generally109,110. Further, it was shown that the density of T cells infiltrating brain 

metastases foci ranged from sparse to very dense109. In addition, T cell localization was 

found to correlate with “peritumoral edema” as defined by the flare region in pre-

operative magnetic resonance imaging, and higher T cell infiltration into brain 

metastases correlated with better overall survival time of patients109. These 

observations and associations are potentially translatable as they could serve as 

prognostic or predictive tools for patient outcome; however, the extent to which T cells 

infiltrate brain metastases foci originating from distinct primary tumor types is unclear. 

In addition, how T cells localize and are organized in BT and what mechanisms 

regulate T cell localization in the tumor and their interaction with other cells in the BT 

microenvironment remain unknown. These are questions that I will be probing in 

chapters 3 and 4 of this thesis. In sum, a better understanding of T cell surveillance in 

brain metastases is urgently needed. The knowledge gained may provide new insights 

into the development of novel immunotherapeutic strategies for brain metastases. 

Overall, the brain tissue is a common denominator for growth of both primary BTs such 

as GBM and brain metastases. Therefore, knowledge of immune response gained from 

studying one cancer type may be relevant for the other and vice versa. 
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Adapted by permission from Macmillan Publishers Ltd: [Nat Rev Cancer] (Nguyen DX 
et al., Metastasis: from dissemination to organ-specific colonization 2009. Apr; 
9(4):274-84. Copyright Clearance Center. 
 
 

1.4. Mechanisms of tumor immune surveillance in the brain 

1.4.1 An overview of the immune system and anti-tumor immune surveillance 

The immune system is divided into two arms—innate and adaptive (Figure 1). 

The innate arm of the immune system is naturally wired with evolutionary conserved 

receptors that can sense conserved structures on pathogens and sterile tissues such 

as pathogen associated molecular patterns (PAMPs) and danger associated molecular 

patterns (DAMPs), respectively111-114. Innate immunity functions as the first line of 

defense during an immune response and responds rapidly relative to the adaptive 

immune system; however, this response is generally non-specific. In contrast, the 

adaptive arm of the immune system takes several days to respond during an immune 
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response, but its actions are highly specific. The specificity of adaptive immune cells is 

determined by an incredible capacity to recombine their receptors to recognize different 

antigens in a major histocompatibility complex (MHC)-restricted manner. Upon 

resolution of a disease, the adaptive immune cells can evolve a memory phenotype. 

Due to their intrinsic cellular properties, antigen-specific memory adaptive immune cells 

are capable of initiating very strong and rapid adaptive recall responses in the event of 

a re-encounter of the same antigen1,115,116. Innate immune responses are executed by 

myeloid cells including macrophages, microglia, monocytes, dendritic cells; 

granulocytes such as neutrophils, eosinophils, basophils, and mast cells; γδ-TCR T 

cells; and natural killer (NK) cells. On the other hand, adaptive immune cells include 

αβ-TCR T cells and B cells. For the purpose of this thesis, I will be focusing on how 

innate myeloid cells including microglia, monocytes, macrophages, and dendritic cells, 

and the adaptive T cells interact in BTs.  
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Figure 1. Classification of cells in innate and adaptive immunity. Cells that 
participate in innate and adaptive immunity are illustrated within the bright lavender 
(left) and pink (right) colored circles, respectively. Natural killer (NK) and γδ T cells 
have characteristics that overlap between innate and adaptive immunity and are 
represented within the overlapping segment between both circles. Adapted by 
permission from Macmillan Publishers Ltd: [Nat Rev Cancer] (Glenn Dranoff, Cytokines 
in cancer pathogenesis and cancer therapy 2004. Jan; 4(1):11-22. Copyright Clearance 
Center. 
  

 
Immune surveillance of a tumor is based on the fact that immune cells are highly 

dynamic and can detect and recognize tumor-specific antigens (TSA) and/or tumor-

associated antigens (TAA). Tumors are composed of highly mutated cells that may 

provide a plethora of antigenic materials that are potentially ingested by antigen 

presenting cells such as dendritic cells (DCs) and macrophages, and transported via 

tumor-draining lymphatics to secondary lymphoid tissues for presentation to naïve T 

cells (Figure 2). Following T cell recognition of TSA/TAA displayed by DCs, T cells 

become activated, egress from the lymph node, and potentially migrate to the target 
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organ invaded by cancer to perform effector functions including an attempt to eradicate 

the tumor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Illustration of the dynamics of antitumor immune surveillance.  

Dendritic cells (green) engulf antigens from the tumor; process it, and present 
processed antigens to naïve T cells in the tumor-draining lymph node. Effective antigen 
presentation involves 3 signals (1. Peptide-MHC complex; 2. costimulatory molecules; 
and 3. cytokines), which lead to T cell activation, differentiation and proliferation of 
effector T cell that then migrate to the tumor (tumor infiltrating lymphocytes; TIL) to 
perform effector functions. In the absence of costimulation, T cells become anergic. 
Several cellular [myeloid derived suppressor cells (MDSCs) and regulatory T cells 
(Tregs)] and molecular (PD-1/PD-L1) regulatory mechanisms are present in the tumor 
or the lymph node to maintain tight control of this process and may cause immune 
suppression through a variety of mechanisms leading to T cell exhaustion.    
 
 

Afferent lymphatic 

Efferent lymphatic 
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The idea of tumor immune surveillance was first hypothesized by Thomas and 

Burnet in 1957 based on observations made in organ transplantation and subsequent 

studies in tumor graft transplantation24,117. Essentially, it was discovered at that time 

that following transplantation in rabbits, a donor tissue such as skin was frequently met 

with vigorous rejection by the recipient’s immune system118,119. In tumor transplantation 

experiments, it was observed that tumor transplantation into a non-syngeneic host 

resulted in tumor rejection, indicating that the recipient’s immune system was capable 

of recognizing what was likely a tumor antigen. Therefore, it was postulated that the 

infrequency of cancer occurrence in humans could be explained by an immune 

surveillance mechanism that continuously prevents the outgrowth of cancerous 

cells117,120. However, this idea was controversial because there was no mechanistic 

insight into how the immune system could recognize and eliminate a tumor, which was 

believed to express self-antigens as it originates from aberrant host cells117,121,122. Also, 

spontaneously arising tumors were rarely rejected despite the induction of an immune 

response123. Subsequent experiments by Osias Stutman revealed no difference in the 

development of tumor in immune-deficient athymic nude mice in comparison with 

control immune-competent mice, suggesting that the immune system played no role in 

the control of tumor progression, and discredited the immunosurveillance concept71. 

Despite these early setbacks, the first tumor antigen was eventually identified in 

1991124, athymic nude mice are now known to be “leaky” and not absolutely immune-

compromised125-128, and robust concrete evidence has accumulated in support of tumor 

immune surveillance in both animal models and humans leading to renewed 

enthusiasm for the immune surveillance hypothesis24,129-132. With advancements in the 

field of molecular biology and the availability of new tools including knockout (KO) mice, 
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the immune surveillance hypothesis has been overwhelmingly supported by 

observations from studies conducted in the laboratory of Robert Schreiber and 

others24,133-140. For example, sarcomas that were induced by a chemical carcinogen in 

recombination activation gene (Rag)-KO mice, which unlike nude mice completely lack 

adaptive immune cells, showed significant outgrowth in comparison with wild type mice, 

indicating that tumor growth is controlled by the adaptive immune system. Similar 

results were obtained in interferon-gamma receptor (IFNyR)-KO mice, STAT1-KO 

(lacking the gene responsible for IFNy signaling), perforin-KO, αβ T cell KO (lacking the 

TCR β-chain), and γδ T cell KO (lacking the TCR δ-chain) mice, all indicating that 

components of the immune system are involved in controlling tumor growth24,133-140 . 

Although the immune system plays a tumor surveillance role, spontaneous tumors tend 

to progress lethally from presumably immune-resistant cancer cell clones. In a set of 

experiments to test the role of the immune system in the development of tumor 

resistance clones, transplantation of a carcinogen-induced tumor from a primary wild 

type host to a secondary wild type recipient resulted in lethally progressive tumor. In 

contrast, transplantation of a similar tumor from a primary immune-deficient Rag-KO 

host to a secondary wild type recipient showed significant decrease in tumor growth. 

Together, these results suggested that the intact immune system in the primary 

immune-competent wild type host provided selective pressure for development of less 

immunogenic and resistant tumor clones while the lack of immune selective pressure in 

the primary immune-deficient RagKO host was necessary for the retention of tumor 

immunogenicity. This phenomenon of tumor sculpting by the immune system was 

conceptualized as the process of cancer immunoediting. 132,141-143. Cancer 

immunoediting is a process that includes three phases including elimination, 
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equilibrium, and escape (Figure 3). In effect, this concept includes tumor 

immunosurveillance during which tumor eradication occurs (elimination phase), 

immunological sculpting of the tumor leading to selection for resistant cancer cell 

clones, which are potentially less immunogenic or have acquired mechanisms of 

immune evasion or suppression (equilibrium phase), and subsequent uninhibited tumor 

progression  (escape phase)24,130,144.  

Despite our present understanding of cancer immune surveillance and aspects 

of immunoediting, most of the data is borrowed from research conducted in extracranial 

organs. In the brain, however, the mechanisms regulating immune surveillance in 

tumors remain unclear partly due to the idea of brain immune privilege. This idea first 

came to light following an experiment by Medawar69. He observed that skin to skin 

transplantation in rabbits caused the recipient rabbit to mount strong immune response 

with subsequent rejection of the transplanted tissue. However, when the same tissue 

was transplanted into recipient rabbit brain, the tissue was not rejected. In contrast, 

when he first transplanted donor skin tissue into the skin of recipient rabbits and waited 

a few days before transplanting similar donor skin tissue into the brain of the same 

recipient rabbits, the transplanted tissue in the brain was rejected69. This suggested 

that the brain is immunologically quiescent or privileged in comparison with peripheral 

tissues. Since then, in support of an immune-privileged brain, countless studies have 

demonstrated unique features of the brain that could prevent the development of robust 

immune response within the brain tissue68,145-148.  
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Figure 3. The process of cancer immunoediting.  

Cancer immunoediting encompasses three processes. (a) Elimination corresponds to 
immunosurveillance (b) Equilibrium represents the process by which the immune 
system iteratively selects and/or promotes the generation of tumor cell variants with 
increasing capacities to survive immune attack. (c) Escape is the process wherein the 
immunologically sculpted tumor expands in an uncontrolled manner in 
immunocompetent host. In a and b, developing tumor cells (blue), tumor cell variants 
(red) and underlying stroma and nontransformed cells (gray) are shown; in c,  
additional tumor variants (orange) that have formed as a result of the equilibrium 
process are shown. Different lymphocyte populations are as marked. The small orange 
circles represent cytokines and the white flashes represent cytotoxic activity of 
lymphocytes against tumor cells. Reprinted by permission from Macmillan Publishers 
Ltd: [Nature Immunology] (Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer 
immunoediting: from immunosurveillance to tumor escape. 2002;3:991-8); Copyright 
(2002). Copyright Clearance Center. 
 

 

1.4.2. The Blood-Brain Barrier (BBB) in steady state and inflammation 

The BBB has been pivotal in the debate on brain immune privilege and is 

believed to play a critical role in regulating interactions between the brain and immune 

cells in extracranial peripheral tissues. The BBB serves to tightly regulate the influx of 

molecules or cells from the circulation into the brain tissue in normal homeostatic 

conditions146,149,150. Unlike fenestrated capillaries in the extracranial peripheral tissues, 

the BBB is made up of endothelial cells that are bound together by tight junctions. This 
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basic endothelial structure is further reinforced by pericytes, astrocytic foot processes, 

and smooth muscle cells151. BBB tight junctions and efflux pumps are mechanisms that 

prevent small molecules from penetrating the brain parenchyma152-155. Consequently, 

delivery of small molecules such as kinase inhibitors and targeted therapy to treat brain 

pathologies such as brain tumors has been shown to be inefficient154. In contrast, 

systemic immune cells such as memory T cells have been found to be present in the 

brain at steady state156-158; however, only very small numbers of these cells have been 

identified in comparison with extracranial peripheral tissues147,158159. Furthermore, 

transmigration of T cells via the BBB into the brain parenchyma frequently occurs in 

diseases such as multiple sclerosis and viral encephalitis in humans74,79,160,161, or 

experimental acute encephalomyelitis (EAE) in mice79,162,163.  

As an early model system to understand how immune cells breach the BBB and 

penetrate into the brain parenchyma, several mechanisms have been proposed as to 

how the initiation of EAE occurs. Activated or encephalitogenic T cells, but not resting T 

cells were found to be able to penetrate the BBB after intravenous injection in 

rats164,165. This event was found to be independent of antigen recognition or MHC 

compatibility, but dependent on the activation and the blast stage of the T cell, 

indicating that T cell activation alone was sufficient for T cells to breach the BBB166.  

Subsequent studies showed that this process is dependent on P-selectin to access the 

leptomeningeal vascular endothelium, and lymphocyte function-associated antigen 1 

(LFA-1) and α4-integrins to penetrate the BBB167. Additionally, based on the 

constitutive expression of CCL19 in CNS endothelia, a CCR7/CCL19-chemokine-

dependent mechanism has been proposed for CCR7-expressing T cells to cross the 

BBB via the leptomeninges162,164,168,169. In another study, entry of T helper-17 cells into 
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the CNS via the choroid plexus into the brain ventricles was found to be a 

CCR6/CCL20-dependent process, required for the initiation of EAE170. Cumulatively, 

these data indicate that encephalitogenic T cells can access multiple brain interface 

sites to penetrate the BBB and induce neuroinflammation.  Although the prior studies 

were based on a model in which autoreactive T cells are constantly circulating in the 

bloodstream and are able to directly penetrate the BBB, a recent study showed that 

circulating T cell blasts lack the capacity to penetrate the BBB and initiate EAE in a rat 

model unless they are first licensed in the lungs171. In fact, after local stimulation of 

resting myelin-reactive memory T cells in the lungs of rats, those cells proliferated 

profoundly, migrated to the CNS, and caused paralysis in the rats171.  This indicated 

that the lung is a site of reactivation for autoaggressive T cells prior to induction of EAE.  

More recently, another study detailed the events that occur after the BBB has 

been breached following induction of EAE163. Shortly after cerebral vessel disruption 

following EAE induction with subcutaneous injection of myelin oligodendrocyte 

glycoprotein (MOG) peptide, Incomplete Freund’s Adjuvant (IFA), and intraperitoneal 

injection of pertussis toxin, microglia become activated, and this was followed by 

infiltration of DCs and T cells163. This latter study suggested a model in which activated 

microglia are the primary initiators of autoaggressive T cell entry into the CNS. 

However, only the green fluorescent protein-tagged receptor CX3CR1, which is broadly 

expressed by microglia, macrophages, and some DCs, was used to identify 

microglia163. In addition, the mechanisms by which T cells accumulate and are retained 

at sites of EAE remain unknown. In sum, there appear to be different mechanisms 

involved in the initiation of EAE. Whether the various mechanisms involved in EAE 

initiation are interconnected or work separately is an important question that is still 
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being dissected. Importantly, whether similar mechanisms are operational in brain 

tumors is being investigated.   

In patient GBM tissues, studies conducted in the 1970s and 1980s revealed high 

numbers of infiltrated microglia and macrophages, but rare infiltrating T cells. In 

addition, GBM patients were found to be highly lymphopenic, bearing resemblance to 

patients with immune-deficient disorders172-175. On one hand, it was believed that GBM 

patients were generally lymphopenic and on the other, due to the prevailing idea of 

brain immune privilege, it was thought that antigen presenting cells such as DCs and 

adaptive immune T cells were likely restricted from being present within these tumors. 

Regulatory T cells have been found in high numbers in peripheral blood and tumor 

tissue in patients with GBM, and have been suggested as an immune suppressive 

mechanism in GBM patients176-179. Hence, it is unlikely that the BBB preferentially 

restricts effector T cells from migrating into GBM tumor tissue. Alternatively, it was 

thought that inefficient or lack of antigen presentation to naïve T cells could explain the 

limited number of effector T cells in GBM tissue180-189. This latter theory seemed 

plausible partly due to the fact that classical lymphatics in the CNS had not been 

identified at the time190-192. As it would turn out, there is now evidence to support the 

idea of inefficient or lack of antigen presentation in GBM, and CNS lymphatics have 

been identified62,63,82. Thus, by using appropriate models in which antigen presentation 

is operational, one could address several important questions pertaining to the 

dynamics of T cell migration into BT, potential local proliferation in the tumor, and 

interaction with antigen presenting cells in the tumor microenvironment. These are 

questions that I will probe in chapter 3 of this thesis.   
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1.4.3. The role of CNS Lymphatics in immune response to brain tumor   

Lymphatics are critical in the generation of an immune response during tumor 

progression. Conventional lymphatic vessels are made up of endothelial cells that are 

identified by the expression of Prox1, CD31, LYVE-1, podoplanin, VEGFR3, and 

CCL2182,193,194. Similar to peripheral tissue capillaries, lymphatics are generally 

permeable, allowing for ISF, macromolecules, and cellular entry195. Anatomically, there 

are two types of lymphatics, including afferent and efferent lymphatics; the afferent 

lymphatic channel transports lymph and cells from the tissue to the draining lymph 

node while cells exit the efferent lymphatic into the bloodstream to a potential target 

tissue (Figure 2). Functionally, lymphatic vessels are classified into initial and collecting 

vessels195-198. Importantly, the collecting vessels possess bi-leaflet valves to allow for 

unidirectional flow of lymph.  Antigen presentation generally involves the migration of 

antigen presenting cells such as DCs via the afferent lymphatic vessel to the tissue-

draining lymph node where antigen presentation to naïve T cells occurs. The efferent 

lymphatic vessel serves as a conduit for activated effector T cells exit the lymph node 

into the bloodstream and migrate to a target tissue.  

In the brain, the mechanism of antigen transport is still been unraveled. In the 

1960s, lymphatic vessels were described to be present at the base of the skull 199. 

Subsequently, dural lymphatics were described in rats200. It was in the 1980/ 1990s that 

Cserr H.F. et al. first showed using functional experiments that tracer dyes that were 

directly injected into the CSF or brain parenchyma could be traced from beneath the 

olfactory lobe to the nasal lymphatics and the cervical lymph nodes72,80 (Figure 4). 

Recently, mechanistic studies have confirmed earlier findings and demonstrated that 

brain parenchymal ISF drains into cerebral perivascular spaces, termed “glymphatics”, 
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and that both ISF and cerebrospinal fluid (CSF) eventually drain into a recently 

described perisinusoidal conventional lymphatic network in the mouse meninges82,194 

(Figure 5a &b). In addition, a direct connection between the meningeal lymphatics and 

the cervical lymph node has been demonstrated. In light of these findings, the routes of 

antigen-presentation in EAE that I elaborated on in the BBB section are being 

reexamined193,201,202.  

In BTs, prior studies showed that vaccination of BT-bearing mice and GBM 

patients in the flank region with dendritic cells loaded with tumor antigen can induce 

antigen presentation in the inguinal lymph node and result in BT eradication86,203,204. 

This supported the idea that antigen presentation is likely defective in GBM patients. It 

also suggests a model in which antigen-presentation in a distal secondary lymphoid 

tissue from the brain can elicit robust immune response to BT. In addition, in a recent 

study, Dunn G.P. et al., identified the presence of neoantigens in GBM mouse tumor 

models including GL26163. Interestingly, these mouse tumor models were found to 

contain very high mutational load of up to 26, 000 compared to less than 100 in GBM 

tissues22,63. Following direct inoculation of mice with cancer cells into the brain, antigen-

specific T cells for the same previously identified neoantigens were recovered with 

tetramers from both the tumor mass and the cervical lymph node. These findings 

suggest a model in which BT antigens are transported from the brain parenchyma to 

the cervical lymph node likely via the “glymphatic” and meningeal lymphatic routes 

described above. Whether BT antigen-presentation occurs at multiple sites other than 

the cervical lymph node or whether the extent of BT antigen presentation varies in 

different lymphoid tissues remains to be elucidated. In sum, the brain appears to be 

open to surveillance by immune cells such as T cells. This gives further support for the 
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questions I aim to answer pertaining to T cell surveillance in BTs. In the next few 

sections I will go into details into the key cells involved in tumor immune surveillance, 

the distinct immune cells found in the brain, and the roles they might play in BT 

surveillance.       

 

 

 

 

 

 

Figure 4. Prior view of CNS lymphatics. Schematic showing the drainage paths of 
lymphatics in a rat brain (Black arrows). Adapted by permission from John Wiley 
&Sons, Inc.: [Neuropathol Appl Neurobiol.] (Kida, S., CSF drains directly from the 
subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and 
immunological significance 1993 Dec; 19(6):480-8.). Copyright Clearance Center. 
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Figure 5. New view of CNS lymphatics.  
a. Schematic showing the drainage paths of lymphatics in a mouse brain (Green 
arrows). The blue and orange arrows show the flow of CSF and ISF, respectively. 
Adapted by permission from Elsevier: [Neuron] (Louveau A., Lymphatics in 
Neurological Disorders: A Neuro-Lympho-Vascular Component of Multiple Sclerosis 
and Alzheimer’s Disease? 2016 Sep 7;91(5):957-73.). Copyright Clearance Center.  
b. Schematic depiction of the glymphatic pathway. In this brain-wide pathway, CSF 
enters the brain along para-arterial routes, whereas ISF is cleared from the brain along 
paravenous routes. From here, solutes and fluid may be dispersed into the 
subarachnoid CSF, enter the bloodstream across the postcapillary vasculature, or 
follow the walls of the draining veins to reach the cervical lymphatics. “From [Iliff, 
Jeffrey J. et al. “A Paravascular Pathway Facilitates CSF Flow Through the Brain 
Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid Β.” Science 
translational medicine 4.147 (2012): 147ra111. PMC. Web. 11 Mar. 2017.]” Reprinted 
with permission from AAAS. Copyright Clearance Center. 

a 

b 
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 1.4.4 Myeloid cells 

Macrophages  

Macrophages are critical in regulating tissue homeostasis, and controlling tissue 

inflammation involving pathogens and cancer53,205.  Macrophages originate from the 

yolk sac during embryogenesis in mice and migrate into tissues to become tissue 

resident cells such as Kuppfer cells in the liver, microglia in the brain, Langerhan cell in 

the dermis, and alveolar macrophages in the lungs. During inflammatory conditions, 

macrophages presumably originate from circulating monocytes, which are derived from 

the bone marrow common macrophage dendritic precursor (MDP) cells206. However, 

the specific population of blood monocytes that differentiates into macrophages in 

tissue is yet to be identified. Within different tissues, the mechanisms by which 

macrophages are sustained vary. In general, macrophages are able to self-renew in 

tissue by local proliferation while a portion of tissue-resident macrophages are 

replenished from the circulation by blood monocytes207. Macrophages in mice and 

humans can be identified by a combination of surface markers including CD11b 

(mouse/human), F4/80 (mouse), CD68 (mouse/human), CSF1R (mouse/human), 

MAC2 (mouse/human), CD11c (mouse/human), Ly6G (mouse), Ly6C (mouse), IL-

4Ralpha (mouse/human), and CD163 (human)208. Importantly, there is no single 

marker that defines macrophages exclusively and typically a combination of high 

CD11b, F4/80, and low CD11c (enriched in DCs), Ly6G (enriched in granulocytes), and 

Ly6C (enriched in monocytes) are used to identify them. In addition, other surface 

markers such as CX3CR1 and Iba1 together with cellular morphology are utilized for 

identifying specialized tissue macrophages such as microglia and other CNS 

macrophages residing at brain interfaces209,210. 
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Microglia and CNS macrophages 

In the adult steady state brain, microglia make up the highest number of resident 

myeloid cells in the brain parenchyma 75,211,212 (Figure 6). Microglia play critical roles 

during neural development and in maintaining tissue homeostasis in the adult brain by 

pruning developing neurons and engulfing cellular debris, respectively211,213. In steady 

state, microglia soma are fixed, and they rely on highly motile cell processes that 

continuously extend and retract to survey the surrounding brain region for potential 

dead cells214. In a recent finding, TAM (named after receptor tyrosine kinases Tyro3, 

Axl, and Mer) receptor tyrosine kinases Mer and Axl, and corresponding ligands Gas6 

and protein S, which are known regulators of innate immune response, were found to 

control phagocytic functions of microglia at steady state215.  However, in the presence 

of inflammatory signals such as IL6, TNFalpha, and nitric oxide (NO), microglia become 

sensitized to neural-derived factors such as adenosine triphosphate (ATP), glutamate, 

and the chemokine fractalkine (CX3CL1)216-219. They then become activated, transform 

into an amoeboid form, and subsequently migrate to areas of perturbation to prevent 

further damage to the brain tissue or, in some cases, exacerbate the inflammation215.  

For a long time, microglia were thought to arise from bone marrow progenitor cells, 

which give rise to some tissue macrophages220-223. Fate mapping studies in mice, 

however, have revealed a colonization of the brain by microglia during only 

embryogenesis224 (Figure 7). Around embryonic day 9.5 (E9.5), yolk sac myeloid cells 

migrate to the brain to become the brain microglia. It was also believed that circulating 

monocytes could replenish microglia in an adult brain221. However, numerous studies 

have now shown that microglia in an adult brain are not replenished by peripheral 

myeloid cells, indicating that microglia self-renew and that resident microglia and       
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Figure 6. Organization of innate myeloid cells in the healthy brain. Microglia are 
present within the parenchyma of the brain in steady state. Other myeloid cells are 
named according to location occupied in the cranial compartment including choroid 
plexus macrophages (location: choroid plexus in the ventricles); perivascular 
macrophage (location: perivascular space); meningeal macrophage (location: 
meninges); and dendritic cells (location: meninges and perivascular space). Adapted by 
permission from Macmillan Publishers Ltd: [Nat Rev Neuroscience] (Marco Prinz and 
Josef Priller, Microglia and brain macrophages in the molecular age: from origin to 
neuropsychiatric disease 2014 May; 15(5):300-12. Copyright Clearance Center. 
 

infiltrating monocytes/macrophages derived from the circulation may play distinct roles 

in steady state and pathological conditions206. However, the radioresistant nature of 

microglia as well as the quick regenerative properties of monocytes/macrophages have 
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made it technically challenging in delineating the distinct roles played by each of these 

subsets in chronic diseases such as cancer225,226.   

Apart from microglia which are the resident intraparenchymal myeloid cells of 

the CNS, there are other resident macrophages that reside within specific niches at 

brain parenchyma interfaces including meningeal (mMF), perivascular (pMF), and 

choroid plexus macrophages (cpMF). Recent studies have provided a better 

understanding of the relationship between these cell types209. Despite the believe that 

other CNS macrophage subsets originate from the fetal liver and can be replenished by 

circulating bone marrow-derived monocytes, recent findings indicate that CNS 

macrophages and microglia are actually ontogenically related209 (Table 2). Apart from 

cpMFs which originate from both the yolk sac and fetal liver myeloid precursor cells and 

can be replenished by circulating Ly6C+ monocytes in a CCR2 dependent manner, 

mMFs and pMFs were demonstrated to originate from only the yolk sac and migrate 

into their distinct niches in the brain at similar times with microglia209. And both mMFs 

and pMFs are not replenished by circulating monocytes in similarity to microglia. At the 

transcriptional level, CNS macrophage subsets and microglia depend on the 

transcription factor PU.1, but not Myb, Batf3, and Nr4a1. In addition, they share surface 

expression of CX3CR1, CSF1R, and Iba1. Notwithstanding, all CNS macrophage 

subsets showed higher expression of Ptprc (CD45) at both the mRNA and protein level 

when compared with microglia, while perivascular macrophages were enriched for 

Mrc1 (CD206) and CD36 in addition to CD45209. Furthermore, CNS meningeal and 

perivascular macrophage development was shown to be independent of Flt3+ 

multipotent hematopoietic precursors in the BM, indicating that CNS macrophages are 

distinct from BM derived cells. 
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Table 2. Characteristics of resident myeloid cells in the brain parenchyma and at 

central nervous system interfaces 

 

 

In fact, it was demonstrated that previous observations of BM-derived cells infiltrating 

the brain interfaces in chimera experiments was due to irradiation-induced CNS tissue 

inflammation, which could damage the BBB and artificially attract BM cells to the 

brain221. Morphologically, microglia are ramified, meningeal macrophages are 

amoeboid, and perivascular macrophages are elongated in alignment with proximal 

blood vessels. Therefore, they can be distinguished by imaging studies. In addition, 
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intravital imaging has shown that microglia and CNS macrophages extend and retract 

cell protrusions differently209. However, whether CNS macrophage subsets play distinct 

roles from bone marrow-derived macrophages or microglia is not yet known. In sum, 

different myeloid cell subsets have to be taken into consideration when investigating 

the role of myeloid cells in BTs.  

 

 

Figure 7. Myeloid cell colonization of the brain from embryonic to adult life in 
mice. At embryonic day 9.5 (E9.5), Yolk-sac (YS)-derived macrophages gain access 
into the circulation, migrate, and localize in the embryonic brain to give rise to microglia. 
Other brain macrophages depicted in Figure 6 differentiate from YS and fetal liver-
derived monocytes, and the bone marrow becomes a major source of monocytes in 
adult steady state or inflamed brain.  Adapted from Frontiers open-access publisher: 
[Front Cell Neurosci.] (Ginhoux F, Origin and differentiation of microglia 2013 Apr 
17;7:45.)  
 

Role of Macrophages and Microglia in brain tumors 

In the context of cancer, macrophages constitute a widely researched population 

in the tumor microenvironment termed tumor-associated macrophages (TAMs)227-231. 
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Early investigations into immune response to BTs revealed that BTs are largely 

infiltrated by classical macrophages and the brain resident microglia205,232. Since then, 

there has been immense interest in understanding macrophage plasticity and its role in 

BT progression. Based on the availability of certain molecular factors such as IFN-

gamma, IL-1, and TNF-α, TAMs can be skewed to an “M1” anti-tumor or “classical” 

phenotype, while immune suppressive cytokines such as IL-4, TGF-beta, and IL10, 

tend to skew TAMs to an “M2” pro-tumor or “alternative” phenotype233,234. However, 

most of these studies are in vitro and may not rigidly translate in vivo as represented by 

a recent study that found that these macrophage phenotypes do not exist at polar ends 

of a spectrum but rather in continuum, with more resemblance of an unpolarized “M0” 

phenotype235. Depletion of presumably “M2” TAMs by various strategies including small 

molecule inhibitors such as colony stimulating factor 1 receptor (CSF1R) inhibitors in 

vivo has shown reversal in tumor growth, and this is presently an area of intense 

research as CSF1R inhibitors are currently being tested in clinical trials236-239.  

However, the origin of TAMs in brain tumor remains very controversial. 

Experiments in mice have shown that TAMs are mostly composed of infiltrating cells 

from peripheral tissues such as the bone marrow; however, a recent study claims that 

TAMs in BT are composed of mainly microglia and not circulating monocytes, and that 

microglia drive BTs progression240. In the latter study, head-shielded mice were 

irradiated, leading to eradication of only bone marrow hematopoietic cells and 

circulating cells in the periphery but not the cranial compartment. Microglia but not 

blood-derived macrophages or monocytes were found to be diffusely infiltrating the 

tumors. Conflicting with other investigators, the authors claimed that microglia have 

high expression of CD45 (a marker that has been shown to be strikingly low in 
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microglia and used as a separation marker for microglia and CD45hi-expressing 

macrophages)240 and suggested that the literature on microglia should be reevaluated. 

Furthermore, the authors failed to consider CNS macrophage subsets at brain 

interfaces, skull bone marrow myeloid cells, and brain dendritic cells that were not 

eliminated with irradiation 209,212,241. In fact, a more recent study showed that 

macrophages residing at CNS interfaces express high levels of CD45 at both the 

mRNA and protein levels, in contrast to microglia, and may play a crucial role in neuro-

oncologic diseases209. As such, the composition of myeloid cells in BTs is still unclear 

and deserves thorough scrutiny. In this thesis, I have generated a novel reporter mouse 

model and developed a new method of analysis in an attempt to better characterize 

myeloid cell subsets in BTs. 

For a long time, there has been uncertainty as to whether DCs could play a 

major role in antigen presentation in BTs since only very small numbers have been 

detected in BT tissue242. Due the predominance of microglia and macrophages, which 

have been estimated to make up about 30% of BT tissue, it has been suggested that 

these are the cells that play a major role in regulating immune surveillance in BT 

progression. In studying immune regulators in BTs, microglia and macrophages are 

commonly lumped together due to the difficulty in distinguishing between both cell 

types. Thus, it is unclear as to whether both cell types play distinct roles in immune 

response to BTs. Nevertheless, glioma-infiltrating microglia/macrophages show high 

expression of TLRs, but are inefficient at producing inflammatory cytokines such as 

TNF-α, IL-1, and IL-6. In addition, despite showing high expression of MHC-II, they lack 

expression of costimulatory molecules CD80 and CD86242,243. This would suggest that 

they are likely ineffective at presenting antigens to T cells. Interestingly, in vivo 
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stimulation of glioma-infiltrating microglia/macrophages in rats by intratumoral injection 

of CpG-containing oligonucleotides, which engage TLRs, in glioma-bearing rats 

resulted in increased glioma growth and a reduction in cytotoxic T cell tumor lysis 

capacity244. This indicates that attempts at stimulating glioma-infiltrated 

microglia/macrophages, at least with CpG-containing oligonucleotides, may be 

ineffective in activating adaptive T cells and could be deleterious. In BT-bearing mice, 

microglia have been shown to express Fas ligand, a molecule involved in cell-mediated 

apoptosis. Inhibition of Fas ligand activity resulted in increased infiltration of leukocytes 

into the tumor mass. Thus, glioma-infiltrating microglia/macrophages are thought to be 

polarized to an “M2” tumor-promoting phenotype, in which form they suppress effective 

immune surveillance of BT245.  Importantly, interventions aimed at skewing presumable 

“M2” macrophages to an “M1” proinflammatory or anti-tumor phenotype or depleting 

glioma-infiltrating microglia/macrophages have resulted in extended survival in tumor-

bearing mice235,236,246 247. However, it is still unknown whether depletion by CSF-1R 

inhibitors actually acts on distinct “M2” macrophages since “M1/M2” macrophages are 

now known to be closely related and bear semblance to an unpolarized “M0” 

phenotype at least in human glioma, which may extend in a similar manner in mice. 

Nonetheless, the results indicate that glioma-infiltrating microglia/macrophages have an 

immune suppressive role in BTs, but does not reflect on their capacity to directly control 

T cell surveillance in BTs.  In addition, depleting glioma-infiltrating 

microglia/macrophages is inefficient as tumors recur frequently237. 
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Monocytes 

Monocytes play key roles in tumor progression248. They are thought to differentiate and 

replenish macrophages or DCs in tissue249,250. Monocytes originate from a common 

macrophage dendritic cell precursor (MDP) in the bone marrow250 (Figure 8), and are 

classified into Ly6C+ classical monocytes (CM) and Ly6C- patrolling monocytes 

(PM)250.  

 

 

 

 

 

 

 

 

 

 

Figure 8. Monocyte derivatives in peripheral tissues in health and disease. 
Resident monocytes express high levels of CX3CR1 which, upon interaction with 
fractalkine, facilitates extravasation into tissues, where these cells give rise to 
specialized cell types. Inflammatory monocytes express lower levels of CX3CR1 but 
have high levels of other receptors like CCR2 that respond to inflammatory 
chemokines, resulting in migration of the cells to sites of inflammation, where they 
subsequently differentiate into dendritic cells (DCs) or macrophage/myeloid derived 
suppressor cells.  Monocytes with no expression of CX3CR1 give rise to interferon 
producing cells (IPC) also called plasmacytoid DCs (PDC). Adapted by permission from 
Macmillan Publishers Ltd: [Immunity] (Geissmann F. et al., Blood Monocytes Consist of 
Two Principal Subsets with Distinct Migratory Properties 2003 Jul;19(1):71-
82.) Copyright Clearance Center. 
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Several transcription factors including PU.1, JunB, C/EBP-a, C/EBP-b and IRF8 play 

key roles in the development of myeloid cells in general and especially in CM. In 

contrast, development of hematopoietic cells into PM has only been recently shown to 

be dependent on Nuclear Receptor Subfamily 4 Group A Member 1 (NR4A1) 

expression251,252. Although it was previously believed that CMs differentiate into PM, it 

is now known that CM and PM utilize distinct and independent pathways during 

development and likely perform different functions252.  The CM subset is identified by 

the surface expression of Ly6C+ CCR2+ CX3CR1lo CD62L+. Functionally, CMs migrate 

to tissues invaded by infectious agents or into inflamed tissues, and can differentiate 

into antigen presenting DCs and potentially mediate acute pathogen clearance or 

differentiate into monocytic myeloid derived suppressor cells (MDSC), in which case 

they contribute to immune tolerance in chronic disease states253. Importantly, CMs 

have also been shown to robustly migrate and infiltrate tumors, where they contribute 

to an immune suppressive population of monocytic cells also referred to as Ly6C+ 

CD11b+ Gr1+ CCR2+ monocytic MDSC as opposed to the neutrophilic population of 

Ly6G+ CD11b+ Gr+ granulocytic MDSCs. Both populations promote tumor growth and 

there is active research in this area to gain better understanding about their 

regulation254,255. Despite the availability of more evidence skewed toward revealing CM 

as pro-tumorigenic cells, some studies have also demonstrated an anti-tumor role for 

CM in the control of cancer cell metastasis, reminiscent of its capacity to also serve as 

precursor for antigen presenting DCs in infection and indicative of a dual role during 

inflammation256-258.  
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Table 3. Classification and characteristics of monocytes 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

In contrast, patrolling monocytes, which are identified by the surface expression 

of Ly6C- CCR2lo CX3CR1+ CD62L-, were known for long a long time to only survey 

healthy vasculature for potential damage259,260; however, recent intravital imaging 

studies in a model of lung tumor revealed a new role for PMs in preventing the 

adhesion of circulating cancer cells to lung tissue vasculature. In situations where 

cancer cells succeeded in engrafting into the lung tissue, PMs were found to be 

capable of transmigrating through the pulmonary vascular endothelium and infiltrating 

the established tumor. In addition, signaling via the Fractalkine chemokine receptor 

CX3CR1 was found to be required by PM to inhibit lung tumor initiation261. However, 

the extent to which CMs and PMs infiltrate brain tumor and their organization in the 

tumor microenvironment is unknown. In this thesis, I have attempted to analyze the 
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extent to which CMs and PMs are prevalent in BT. Nevertheless, it will be crucial to 

distinguish the functions of these monocyte subsets in BT progression.  

 

Dendritic cells  

Dendritic cells (DCs) are professional antigen presenting cells (APCs) and serve 

as a major link between the innate and the adaptive arms of the immune system212,262-

265. DCs utilize a diverse repertoire of receptors expressed on the cell surface to scan 

and recognize PAMPs in microbial infections266-273 Consequently, they endocytose and 

process such infectious microbial agents into peptides that are eventually presented to 

naïve T cells in the lymph node via peptide-MHC complexes I and II (pMHC-I and 

pMHC-II)274-276. Precisely, the engulfed tumor materials are processed through complex 

intracellular machinery such as the proteasome into distinct peptide antigens, which are 

then loaded unto MHCs in the endoplasmic reticulum, and eventually routed through 

the golgi apparatus and displayed on the surface of DCs277. During this process, DCs 

migrate through afferent lymphatic channels to the tumor-draining lymph node 

paracortical regions, where they encounter naïve T cells.  

Importantly, unlike other APCs such as macrophages, after phagocytosis of 

antigens, the acidic milieu in DCs is tightly regulated by NOX2 to prevent destruction of 

potential peptide antigens necessary for T cell activation278. In addition, DCs have an 

extensive capacity to process and present/cross-present antigens from both 

intracellular and extracellular pathways via pMHC I and II278. Further, in contrast to 

other APCs, DCs express costimulatory ligands CD80 and CD86 that are necessary for 

T cell priming.  Regardless, a clear distinction between DCs and macrophages still 
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remains controversial as there is no specific marker that delineates these two 

described cell types.  

DCs are recognized by their expression of a combination of several surface 

markers, including CD45+ CD11chi MHC-II+ CD11b+. Although CD11b is widely 

shared by myeloid cells including DCs and macrophages, CD11c is highly expressed 

on all subsets of DCs in mice in contrast to a low expression on macrophages (which 

have high expression of F4/80), while CD11b is expressed by only a few subsets of 

DCs. Therefore, CD11c expression has become almost interchangeable with the 

presence of DCs; however, care must be taken in interpreting results using this marker. 

CD11c is an integrin also referred to as integrin gamma X (ITGAX) and its functional 

role is unknown. Fluorescent transgene encoded by the CD11c promoter has been 

used to create a reporter mouse that has helped dissect the myeloid lineage within in 

vitro studies and has played a major role in increasing our understanding and 

appreciation of dynamic interactions between DCs and T cells in in vivo imaging 

studies.  

Two subsets of DCs have been recognized based on differences in phenotype 

and function. They include CD8α+ and CD8α- DC subsets. CD8α+ DCs are found in 

the spleen of mice279 and are critical in the activation of CD8+ cytotoxic T cells (CTLs). 

In peripheral tissues, however, similar DCs do not classically express CD8α. Instead, 

they are recognized by the expression of CD103280. Importantly, CD8α+/CD103+ DCs 

are efficient at engulfing and processing apoptotic cell bodies at sites of infection or 

cancer, and subsequently cross-present the peptide product of apoptotic cells to CD8+ 

T cells within the same vicinity281,282. Thus, it is likely that efficient T cell surveillance of 

BT will involve interactions between DCs, such as CD8α+ DCs, and T cells in the tumor 
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microenvironment. CD8α+/CD103+ DCs rely on several transcription factors for 

development including Batf3, IRF8, and Zbtb46283.  In Batf3 knockout mice in which 

CD8α+ DCs are absent, there is poor control of infections such as Toxoplasma gondii, 

and enhanced growth of tumor in cancer models284-286. This would suggest a possible 

role for CD8α+ DCs in BT control.  The second subset of DCs identified as CD8α- DCs 

are delineated by other surface markers including CD11b+ and CD4+. Importantly, they 

are involved in the activation of CD4+ T cells. CD8α- DCs are required in Th2 T cell 

responses in allergic diseases279,287. Apart from these latter DC subsets, a small 

population of resident DCs has been found to reside in certain regions of the brain 

involved in neurogenesis212. Based on marker expression such as CD115, Gr-1, and 

Ly-6C, it is thought that they are mucosal and monocyte-derived288. In addition, they 

can be identified by expression of CD11c, but some populations express CD11b and 

CD103. Interestingly, brain DCs can proliferate under the influence of IFN-gamma, can 

upregulate MHC-II, and can stimulate naïve CD8 T cells241,289. However, they are 

known to be largely radioresistant, in similarity to microglia, and their role in BTs needs 

to be determined.  In sum, DCs are likely to play a major role in controlling T cell 

surveillance in BT. In the next section, I will discuss T cells and the mechanisms by 

which DCs prime T cells during an immune response. 

 

1.4.5 T cell biology, T cell priming, and role of T cell subsets in cancer 

T cells are the main effectors of the adaptive arm of the immune system involved 

in cell-mediated immunity1. For T cells to function effectively, they must recognize 

antigens presented as peptides on MHCs via the T cell receptor (TCR). The TCR is a 

heterodimeric protein in the T cell membrane that consists of an alpha and a beta chain 
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(αβ-T cells); however, in a different type of T cells, the TCR is made up of a gamma 

and a delta chain (γδ T cells). Within the scope of this thesis, I will be focusing strictly 

on the role of αβ-T cells in BT surveillance. Developmentally, T cell precursors, which 

originate from the bone marrow, migrate to the thymus where they rearrange alpha and 

beta TCR chains and undergo positive and negative selection in the thymic cortical and 

medullary regions, respectively. During this selection process, T cells that bind strongly 

to self-antigens are clonally deleted290. T cells that are not deleted undergo clonal 

diversion to become regulatory T cells (Tregs), which play crucial roles in both 

autoimmunity and cancer progression. Following completion of T cell selection, mature 

CD4 and CD8 T cells exit the thymus into the systemic circulation and eventually 

localize and reside in secondary lymphoid organs such as lymph nodes (SLOs) and 

spleen291.  Within SLOs such as lymph nodes, T cells continuously scan for cognate 

antigens in the para-cortical region. However, for efficient antigen presentation, pMHC-

DCs rely on chemokine receptors like CCR7 to migrate to paracortical T cell areas in 

the draining lymph node over a CCL19/CCL21 chemokine gradient78,292,293. 

Correspondingly, naïve T cells also utilize CCR7 in addition to DC-CK1 (a DC-

expressed chemokine, which preferentially attracts naïve T cells294) to scan for pMHC-

bearing DCs.  Upon making contact with pMHC-bearing DCs, a three-signal model of T 

cell activation ensues295-298.  

The first step in T cell activation involves the engagement of T cells with the 

pMHC on DCs via the TCR. The avidity and affinity of the TCR for cognate pMHC 

determines the strength of the signaling cascade downstream of the TCR299,300. This 

TCR signaling can be monitored by use of transgenic mouse models such as nuclear 

factor of activated T cells (NFAT) or NR4A1-GFP reporter mice301-303, in which the 
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green fluorescent protein (GFP) transgene is expressed under the orphan nuclear 

receptor NR4A1/Nurr77 promoter. By using a reporter mouse such as NR4A1-GFP 

transgenic mouse, early T cell activation involving only the ligation of the TCR can be 

detected in the form of GFP accumulation in the T cell nucleus. The mechanism behind 

this involves TCR ligation to pMHC complex, which leads to translocation of the NR4A1 

transcription factor from the cytoplasm to the nucleus where it binds to DNA cassettes 

to promote further downstream signaling.  

Following TCR ligation, cell-cell contact between the T cell and pMHC-

expressing DCs initiate the second signal299,304; this is mediated by binding of 

constitutively-expressed CD28 on T cells to costimulatory molecules on pMHC-DC 

including CD80 (B7-H1) and CD86 (B7-H2). Efficient binding of CD28 to CD80/86, is a 

necessary step in T cell activation without which T cells become anergic305.  This step 

also helps to amplify the TCR signal strength. In some situations, very high TCR signal 

strengths that could be deleterious to the host are potentially possible and could cause 

T cells to function in an auto-reactive manner. To prevent this from occurring, 

peripheral tolerance regulatory mechanisms involving the upregulation of co-inhibitory 

molecules such as CTLA-4  on the surface of T cells, which has a high affinity for 

B7/H1 and B7/H2,  competitively bind to and work to out-compete CD28 for the same 

cognate receptors,  preventing cell cycle progression306. Furthermore, the programmed 

death receptor receptor (PD-1), which is upregulated by chronically activated or 

exhausted T cells and binds to its cognate ligands (PDL1 and PDL2) on tolerogenic 

DCs, inhibits T cell activation by recruiting SHP1/2 to the TCR. SHP1/2 

dephosphorylate early downstream signaling events307-311. Cancers appropriate the 

upregulation of these natural homeostatic mechanisms of immunity to prevent 

41 

 



immunological clearance. In addition to the immune checkpoints, cellular (Tregs and 

MDSCs) and other molecular factors including T cell Fas/Fas-ligand interaction, 

transforming growth factor-beta (TGF-b), IL-10, and indoleamine 2,3-dioxygenase 1 

(IDO1), and immune suppressive cytokines contribute to peripheral tolerance 

mechanisms in physiologic or pathologic states312,313. These factors are known to be 

involved in inhibiting T cell activation. This would imply that in situations such as viral 

diseases and cancer, the inhibition of T cells by upregulation of these factors could 

subdue effector functions of T cells including interferon-gamma (IFN-γ), perforins, and 

granzymes139. In fact, a number of studies have revealed the utility of blocking these 

inhibitory signals in the tumor microenvironment in preclinical models of a diverse type 

of cancers including BTs314. The results from those studies showed that inhibition of 

such inhibitory signals slows the rate of tumor progression and is associated with 

increased presence of cytotoxic effector T cells314-319.     

The third signal includes a variety of stimulating cytokines including type 1 

interferon (IFN-I) and IL-12. Mechanistically, IFN-I and IL-12 enhance T cell response 

to basal IL-2 by prolonging the surface expression of IL-2 high-affinity receptor, CD25, 

thereby activating downstream phosphoinositol-3-kinase (PI3K) pathway and cell cycle 

progression genes via FoxM1320. As such, the third signal maintains long-term T cell 

proliferation.  

 

CD4 effector T cells 

A subset of CD4 T helper cells enhance the activation of CD8 cytotoxic T cells 

and also perform effector functions such as tumor killing. The Th1 subset of CD4 

effector T cells is induced by IL-12 and IFN-γ and is identified by the expression of the 
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Tbet transcription factor and production of cytokines including IFN-γ, IL-2, and TNF-

ɑ321. This subset is involved in cell-mediated immunity and inflammatory conditions, 

elimination of intracellular pathogens, and autoimmunity. Importantly, during T cell 

activation, inhibition of the co-inhibitory molecules such as CTLA-4 resulted in a Th1-

mediated control of tumor322.  

The Th2 subset is induced by a cytokine milieu in which IL-4 and IL-2 

predominate323,324. Such T cells are identified by the expression of GATA-3 

transcription factor and the production of IL-4, IL-5, IL-6, IL-10, and IL-13. This subset 

is primarily involved in the production of antibodies by B cells, in elimination of 

extracellular pathogens, and in allergic diseases such as asthma.  

In chronic diseases, a different subset known as Th17 is induced by TGF-beta and IL-

6, and identified by the expression of RORγt and production of IL-17, IL-21, and IL-22. 

Th17 cells play a role in the exacerbation of autoimmune conditions such as Crohn’s 

disease and in the elimination of extracellular pathogens and fungal infections325. 

Although their function remains controversial, elimination of Th17 cells resulted in 

decreased tumor-bearing mouse survival326,327.      

 

CD4 Regulatory T cells (Tregs) 

CD4 regulatory T cells are a subpopulation of T cells that are usually 

characterized by FoxP3 expression. In steady state, Tregs maintain immune tolerance 

to self-antigens.  Within inflammatory diseases, Tregs suppress T cell activation328-332. 

Tregs are similar to other T cells in that they originate from the same lymphoid 

precursor that populates the thymus. However, Tregs only acquire a distinct signature 

during the later stages of T cell development in the medullary region of the thymus by 
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binding to intermediate levels of self-antigen presented by autoimmune regulator 

(AIRE+)-expressing medullary thymic epithelial cells333,334. In addition, before exiting 

the thymus, they begin expressing high levels of the forkhead box P3 transcription 

factor (FoxP3)335, a hallmark feature of functional regulatory T cells (Tregs). Deficiency 

of Tregs in mice and humans leads to the rapidly fatal autoimmune condition known as 

immunodysregulation polyendocrinopathy enteropathy X-linked syndrome (IPEX)336,337, 

demonstrating the key role of Treg cells in the maintenance of immune tolerance. The 

thymus-derived Tregs are termed natural Tregs and are best defined by the expression 

of CD4+, CD25+, and FoxP3+338. In addition, an inducible form of Tregs, which can be 

identified with a similar set of markers, are potentially generated from effector T cells in 

disease microenvironment such as cancer due to abundant immune suppressive and 

differentiation cytokines such as TGF-beta339,340. Importantly, Tregs are highly enriched 

in tumors and play an immune suppressive role by producing cytokines such as IL-10 

and TGF-b305,334,341-343. Previous work showed that Tregs accumulate preferentially in 

high-grade human gliomas, such as GBMs, altered effector function of non-Treg T cell 

fraction in vitro, but there was no impact of Treg presence on patient survival179,344,345. 

However, following similar observations in glioma-bearing mice, depletion of Tregs with 

anti-CD25 antibody resulted in prolonged mouse survival indicating that Tregs play an 

immune suppressive role in the glioma microenvironment178,179,318,319,346. 

Mechanistically, the CCL2/CCR4 chemokine axis has been implicated in the 

recruitment of Tregs in human glioma and strategies have been tested to modulate this 

pathway347. In addition, small molecule inhibitors acting on pathways utilized by Tregs 

such as the signal transduction and activation of transcription 3 (STAT3) pathway have 

been shown to deplete Tregs and are about to be tested in clinical trials348,349. 
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Furthermore, checkpoint blockade therapies including CTLA4, which have been shown 

to alter the CD4 T cell compartment and prolong survival in glioma-bearing mice, are 

already in clinical trials315. Thus, there is great interest in understanding immune 

suppressive mechanisms that might be utilized by Tregs to subvert immune-eradication 

of cancer and potentially resist these promising treatment strategies. However, it is 

unknown how Tregs are regulated by DCs in brain tumor. This thesis will address how 

Treg dynamics might be regulated in the BT microenvironment.   

 

CD8 T cells 

CD8 T cells are crucial in the elimination of viral infectious agents and in 

controlling cancerous growths341,350-355. Depletion of CD8 T cells with monoclonal 

antibodies is known to result in increased tumor growth and decreased mouse 

survival356,357. CD8 T cell engagement with cancer cells in vitro results in the 

polarization of cytolytic granules including perforins and granzymes toward the contact 

area if effector function is maintained358. Perforins are released and contribute to cell 

killing, in part, by creating pores in the target cell membrane thereby enabling the 

penetration of granzymes and subsequent target cell lysis359,360. Because CD8 T cells 

are effective in eliminating cancer during cancer immunotherapy, CD8 T cell proportion 

in tumor has been applied clinically, to some extent, as a surrogate for response to 

treatment361-367. Following the clearance of cancer cells or pathogens, CD8 T cells 

contract and form a memory pool that can be rapidly recalled upon secondary 

challenge by the same cancer or pathogen.  

Memory CD8 T cells are also an attractive target in immunotherapy especially in 

formulating anti-tumor vaccines because of its potential to prevent tumor occurrence or 
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recurrence after successful treatment. An active area of tumor immunology research is 

trying to understand how endogenous or exogenous transferred CD8 T cells can be 

retained in tumor to promote tumor cell killing. Some survival molecules that are being 

investigated include cytokines such as IL-2, IL-7, IL-15, and IL-21368,369, because they 

are critical in both naïve T cell function and in maintaining memory CD8 T cell pool. In 

the brain, CD8 T cells have been shown to form a tissue-resident memory pool after 

the elimination of a model virus pathogen in mice370. This memory pool correlated with 

the presence of a subset of CD11c+ DCs371, indicating that memory T cells may require 

CD11c+ DCs after resolution of an infection, at least in the brain. In general, however, 

how T cells interact with DCs and may be retained in BTs is unknown. I will be 

investigating the retention and interaction dynamics of T cells in this thesis. 

 

1.4.6. Dynamics of DCs and T cells in anti-tumor immune surveillance  

Anti-tumor immune surveillance is a very dynamic process. For this to occur 

during a natural anti-tumor immune response there must be cell-to-cell interaction 

between myeloid cells and T cells, and between T cells and the tumor372-375. Classical 

immunological techniques such as flow cytometry, immunohistochemistry, and animal 

cell transfers or chimera experiments have been used to establish a basis for immune 

cell infiltration and interactions in tissue; however, they have limited primary utility, but a 

significant complementary role in dissecting, understanding, and defining distinct real 

time cell dynamics and interactions within the immune circuit. Recent advances in 

intravital confocal and two photon microscopy have played a major role in the 

investigation of cell interactions in various organs and tissues including the eye, skin, 

lung, liver, intestine, brain, and lymph nodes376. While this technical application has 
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advanced our understanding of immune cell interactions especially in the lymph 

node295,377-379, it has only been recently deployed to study immune surveillance of 

tumors in peripheral organs including the lungs, skin, brain, mammary fat pad, and 

abdomen374,380.  

Through intravital multiphoton microscopy and complementary in vitro live cell 

studies of mostly infectious diseases373,379,381-383, it has been established that naïve T 

cells in the lymph node are highly motile. Naïve T cells display high average velocities 

of between 10-15μm/min, show non-directed random motility, and high instantaneous 

speeds of up to 25μm/min. However, upon making contact with antigen-loaded DCs, T 

cells show reduced velocity and instantaneous speed and persist in long-lived 

contacts384.  Thus, the exceptionally high speeds displayed by T cells in the lymph 

node have been explained as a mechanism to enhance the scanning efficiency of 

naïve T cells for peptide-loaded DCs. 

Super-resolved in vitro microscopy studies of peptide-loaded DCs and T cells 

have enhanced our understanding of immune synapse formation between cytotoxic T 

cells (CTLs) and DCs385-393. This highly dynamic process involves a feedback 

mechanism between CTL actin cytoskeleton polarization and TCR signaling. The 

mechanism entails the polarization of CTL actin cytoskeleton toward the immune 

synapse, upregulation of adhesive molecules such ICAM-1 and LFA-1, ligation of the 

TCR to the pMHC-DCs, and subsequent TCR downstream signaling that eventually 

results in the activation of the CTLs. Calcium imaging studies and model antigens such 

as ovalbumin have also enhanced the appreciation of the level of strength of T cell 

activation during such interactions394-396. In addition to the TCR ligation, the expression 

of co-stimulatory ligands such as CD28 and its interaction with its cognate B7-H1/B7-
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H2 receptors on DCs has been detailed296,306,397. As these processes are critical for T 

cell function, it will be important to study these processes in the BT microenvironment, 

as there may be differences in how T cells interact with DCs in vivo.  

In the tumor, the dynamics of immune cells in general are less well-

understood398,399. Nevertheless, in time-lapse movies, antigen-experienced T cells 

engage cancer cells and potentially a myriad other immune and stromal cells. Although 

it was predicted that an activated T cell could make sequential one to one contacts to 

kill cancer cells as had been observed in vitro, it has become apparent that this is a 

more complicated process in vivo400. For example, intravital imaging has shown that it 

takes approximately 6 hours for one cytotoxic T cell to kill one cancer cell372. This 

indicates that cancer killing, in vivo, is a very slow process, and supports the idea that 

large numbers of cytotoxic T cells are required to make any meaningful impact in tumor 

progression. However, possibly due to antigen recognition, T cells display a variety of 

migration patterns in vivo such as maintaining prolonged interactions, less prolonged 

interactions (“kiss and run”), or no interaction401. Therefore, it is likely that given a 

certain number of cytotoxic T cells in the tumor, only a proportion of those T cells may 

be involved in active killing of cancer cells. Despite these potential limitations, valuable 

knowledge has been obtained by direct visualization of T cell surveillance in tumor. For 

example, in a a model of subcutaneous tumor, OVA-expressing EG7 thymoma cells 

were implanted in mice and subsequently infused with exogenous TCR transgenic OT-

I-CTLs.Tumor-antigen specific CTLs infiltrated the tumor and show high expression of 

CD69 and IFN-y, indicating T cell activation. They exhibited reduced velocity, their 

migratory pattern became more confined, and they showed increased arrest in the 

tumor relative to non-OT-I-expressing CTLs372,402,403. Recent studies in mammary fat 
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pad of mice also utilizing the model OVA-antigen have shown that exogenously 

transferred OT-I-CTLs can persist in prolonged contact with DCs at the margin of the 

tumor, where they undergo reactivation375. These findings indicate that T cells must 

recognize cancer antigens in order to engage in prolonged interactions in the tumor 

microenvironment, potentially with cells such as DCs, macrophages, and/or tumor. It 

must be recognized that despite the ease of using model antigens in mouse studies to 

simplify our understanding of anti-tumor immune response, parallel studies in human 

tissues require analysis of highly polymorphic MHCs expressing a vast array of tumor 

associated-antigens, and variably recombined TCRs may have different reactivity to T 

cell epitopes404. A more recent study utilizing intravital imaging within a subcutaneous 

tumor suggested that during tumor progression, DCs “trap” CTLs; however, little is 

known about the role of DCs in the regulation of T cell surveillance in tumor. 

Specifically, much less is known within BT. Therefore, I will be devoting chapter 3 of 

this thesis to comprehensively address some questions pertaining to the role of DCs in 

BT immune surveillance and their interaction with T cells. 

 

1.4.7. Role of chemokines in immune cell recruitment and surveillance in brain 

tumors 

For immune cells to establish cell to cell contact, they must first migrate to the 

tissue of interest. Immune cells are highly dynamic and can migrate over long and short 

distances405,406. Myeloid cells such as DCs are generally generated from monocytes 

that migrate from the bone marrow and seed tissues while adaptive T cells egress from 

lymph nodes to tissue after undergoing priming. Chemokines are cytokines involved in 

the chemoattraction of cells in normal homeostatic conditions and at sites of 
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inflammation407. Several chemokines have been identified and they are grouped into 

four subfamilies including C-, CC-, CXC-, and CX3C- based on the number and 

spacing of cysteines.  

During inflammation, chemokines may be expressed at tissue endothelial 

surfaces in a bound form or released as a soluble form into serum. Importantly, 

immune cells migrate over chemokine gradients and utilize adhesion molecules such 

as integrins to bind to endothelial-bound chemokines in order to transmigrate into 

tissues via the vasculature408,409. Interestingly, DCs have been shown to exhibit 

differential migration patterns depending on the form of chemokine available. For 

example, surface-immobilized CCL21 was found to induce random migration of DCs, 

whereas a soluble CCL21 induced a directional motility pattern408. Although the 

repertoire of chemokines necessary for myeloid and T cell migration is vast, the 

specifics of how immune cells migrate and organize themselves in BT remains unclear 

and the regulation of this process is largely unknown.  

In the brain, several factors have been implicated in immune cell recruitment 

during inflammation including chemokines, neurotransmitters, molecules of the 

complement pathway, and ATP216. In BTs, glioma cells have been shown to produce a 

host of chemoattractants, which have been implicated in the recruitment of TAMs.  

including CSF-1, monocyte chemoattractant protein-3 (MCP-3), monocyte 

chemoattractant protein-1 (MCP-1/CCL2), hepatocyte growth factor and scatter factor 

(HGF/SF), fractalkine (CX3CL1), glial cell-derived neurotrophic factor (GDNF), CXCL12 

(SDF-1), and granulocyte macrophage-colony stimulating factor (GM-CSF). This 

indicates that there are a multitude of chemoattractants that can mediate immune cell 

recruitment in BTs. However, many of these studies have been conducted in vitro using 
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microglia cell lines, and in vivo studies on the importance of some chemoattractants 

such as MCP-1 have been challenged216. Out of all these, fractalkine is a particularly 

compelling candidate since it is highly expressed at steady state in brain tissue in 

comparison with other organs and has been termed the “neuronal chemokine.” Yet, its 

role in BT immune surveillance is unknown.    

Fractalkine is constitutively expressed in a membrane-bound form by neurons in 

a healthy brain and can be subsequently cleaved into a soluble form by 

metalloproteinases (MMPs) such as ADAM10 and 17 following tissue damage210. In the 

membrane-bound form, fractalkine exists as a 373 amino acid with an extracellular 

domain and mucin-like stalk, a transmembrane domain, and a cytoplasmic tail410. 

Following MMP cleavage, however, the soluble form acts as a chemokine that has an 

extracellular domain and the mucin-like stalk. Thus, fractalkine can serve both adhesive 

and chemotactic functions depending on the state of the tissue411,412.  

Fractalkine acts on and signals via its only known receptor, CX3CR1413,414. 

CX3CR1 is a G-protein coupled receptor413. CX3CR1 has been studied extensively 

with respect to microglia and macrophages in the context of cellular adhesion, 

apoptosis, and migration (Figure 9) but CX3CR1 is also expressed on the surface 

membrane of monocytes, and some DCs as such CX3CR1 may mediate DC and 

monocyte  migration and function in both physiological and pathological 

conditions210,409-411,414,415. In steady state, CX3CR1 is ubiquitously expressed by 

microglia in the brain parenchyma.  

The expression of both fractalkine and CX3CR1 has been intensively studied in 

neurogenesis, neurodegenerative diseases such as Alzheimer’s, and in brain 
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tumors213,416. The disruption of CX3CR1 has been shown to affect neural pruning, 

suggesting that microglia is critical in brain development211,213. In addition, CX3CR1 

deficiency may or may not have a role in mediating microglia function duringplaque 

removal and neuronal damage in models of Alzheimers417,418. Recently, CX3CR1 

deficiency was found to be associated with Ly6C+ classical monocytes infiltration in 

BTs and reduced survival in BT-bearing mice; however, DCs and T cells were not 

studied419. In addition, this process was determined to be orchestrated by IL-1 since 

fractalkine showed very low expression in mouse or human GBM cells/tumor mass, 

where the monocytes/macrophages were localized.419. However, it seems unlikely that 

fractalkine that is constitutively and highly expressed in healthy neuronal cells and a 

major chemokine would be dormant during an inflammatory process involving tumor-

induced tissue stress/damage and immune cell recruitment237. In the brain, it is 

possible that aggressively progressing tumors damage neurons and induce of the 

release of soluble fractalkine, which is an ideal candidate to regulate the dynamics of 

anti-tumor immune surveillance. 
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Figure 9. Role of Fractalkine/CX3CR1 chemokine pathway.  

The roles of Fractalkine are illustrated in the figure. It shows membrane bound and 
soluble Fractalkine (cleaved by metalloproteinases) participating in cellular adhesion 
and survival anti-apoptosis/migration, respectively.  
 
 

1.5. Specific aims 

Based on the information in this chapter, my central hypothesis is that brain 

antitumor immune surveillance by T cells is regulated by extracranial myeloid cells, 

such as BM-derived DCs through the neuronal chemokine fractalkine. I will present 

results from the investigation of this hypothesis in two specific aims: 

1. Determine the role of antigen presenting cells in the recruitment and  

dynamics of T cells in brain tumor microenvironment by employing real time 

imaging techniques 
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2. Determine the role of fractalkine/CX3CR1 signaling pathway in the dynamics 

of immune response to brain tumors by utilizing genetic knockout mouse 

models and intravital microscopy. 

The work in this thesis is aimed at determining the identity and composition of 

myeloid cells infiltrating BT and understanding the fundamental cellular mechanisms 

regulating anti-tumor T cell immune surveillance.  In addition, I have examined a 

molecular mechanism involving how a local chemokine produced in the brain tissue 

governs immune response to BTs. The results obtained from the experiments 

conducted in this thesis will increase our understanding of BT immune surveillance and 

will be relevant in developing strategies to enhance conventional immunotherapy.  

 

1.6. Overall approach and rationale 

The studies conducted in this thesis will help in constructing a brain tumor 

landscape of immune cellular localization, migration, and interaction. For this to be 

accomplished, appropriate tumor models will be used. Genetically engineered mouse 

models of spontaneously developing tumors (GEMMs) are the gold standard for 

studying tumor progression in preclinical settings. However, these models are driven by 

mostly oncogenic mutations and lack the endogenous passenger mutational load that 

may be relevant for proper antigenic immune cell recognition and function. Similarly, 

cancer cells derived from human BTs contain genetic mutations that may be closest to 

those detected in human patients with cancer; however, they have to be grown within 

immune deficient mice to prevent rejection. Thus immune response to such tumors 

cannot be adequately studied. In contrast, experimental tumor models derived from cell 

cultures of carcinogen-induced cancer types from different tissues including the brain, 
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lungs, skin, and soft tissues can potentially develop in immune-competent syngeneic 

animals when re-implanted. Importantly, it has been shown that tumors derived from 

such cancer cell types possess high mutational loads63 and are strongly 

immunogenic117,139, suggesting that there is likely to be endogenous immune reactivity 

when implanted in vivo in immune competent mice and as such help in the 

understanding of T cell surveillance in tumor. Therefore, to investigate the dynamics 

and regulation of endogenous immune cells in BTs, I have employed longitudinal 

intravital multiphoton microscopy of immune cells in experimental BT models including 

GL261 glioma, Lewis lung carcinoma (LLC), B16 melanoma, and MCA fibrosarcoma 

brain metastases. The rationale for employing intravital two-photon microscopy is to 

provide high spatiotemporal 3-dimensional resolution time-lapse images to better 

understand T cell surveillance in BTs in a dynamic fashion.  

 

Two-photon microscopy: 

Two-photon microscopy is a powerful imaging technique in biological research. 

In contrast to a confocal microscope that generates single high-energy photons from 

ultraviolet lasers to excite molecules in a volume of tissue, a 2-photon microscope 

works by simultaneously directing two separate low-energy photons of long 

wavelengths generated by ultra-fast femto-pulsed infrared lasers at a molecule. In 

confocal microscopy, excitation works linearly, while it is non-linear in 2-photon 

microscopy, meaning that, theoretically, image resolution is better with confocal 

microscopy; however, practical adjustments can be made in 2-photon microscopy to 

produce confocal-like resolution images.  
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Figure 10. Illustration of tissue excitation and emission in confocal and 2-photon 

microscopy. The green region represents the volume of tissue excited by photons. 

The green sphere at the intersection of the inverted cones represents the volume of 

tissue at the focal plane of interest.  The region within the inverted cones represents 

the volume of tissue above and below the focal region of interest.  

 

It is worth noting that low-energy photons are significantly less absorbed by 

molecules such as fluorophores than high-energy photons. Based on this principle, 

several advantages of using a 2-photon microscope become apparent. First, in contrast 

to confocal microscopy in which high-energy photons excite molecules above and 

below the focal plane in a volume of tissue illuminated (Figure 10), the low-energy 

photons of a 2-photon microscope only excite molecules in a focal plane, where the 

probability of two separate photons converging on a single molecule is highest. Further, 

because a large volume of tissue is excited during confocal microscopy, there is a lot of 

light scattering that occurs from out-of-focus planes leading to a blurred image. Hence 
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a pinhole is required to prevent the collection of out-of-focus scattered light. In contrast, 

since a 2-photon microscope restricts excitation of a molecule to a single plane, 

scattering from out-of-focus planes is greatly diminished and a pinhole is therefore not 

required. This enables deeper penetration of more low-energy photons into the brain 

tissue, resulting in better signal-to-noise. Interestingly, a very good example of a tissue 

that is highly light-scattering is the brain. In addition, exposure of large volumes of 

tissue to excitation in confocal imaging can potentially lead to 

photobleaching/photodamage and possible loss in tissue viability, while 

photobleaching/photodamage are limited to the focal plane of interest in 2-photon 

imaging and as such better preserves tissue viability. Especially relevant to brain 

imaging, low-energy photons in 2-photon microscopy can penetrate deeper into 

biological tissues to depths of up to 600um to 1mm420-425, while confocal imaging is 

usually limited to the surface of tissues to a depth of about 100um from the surface. 

Apart from the advantages above, 2-photon imaging also has the capacity to produce 

signals from unlabeled tissue samples such as collagen and muscle based on second-

harmonic generation (SHG). In this thesis, SHG will be used during imaging to visualize 

skull and meninges without any labeling, which will enable differentiation from the 

underlying brain cortex.   

Despite the advantages of 2-photon microscopes, the image resolution is usually 

lower than with confocal imaging. This is immediately understandable because a 

microscope’s scale resolution is inversely proportional to the wavelength of light 

used420. As such, 2-photon imaging requires expensive objectives with high numerical 

apertures. In addition, thermal damage arises during imaging of pigmented specimen 
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and could be potentially problematic during imaging of pigmented tumors such as 

melanoma.     

The use of intravital two photon microscopy here is innovative because it has not 

been used previously to the extent of its application in the studies conducted in this 

thesis. In addition, it will reveal information such as real time in vivo single cell-cell 

interactions in a multidimensional manner that cannot be accessed otherwise.  

 

Tumor models 

The tumor types that will be utilized include fluorescent-labelled syngeneic 

GL261 glioma, Lewis Lung Carcinoma (LLC), MCA-fibrosarcoma, and B16-F10 

melanoma. I have selected these cancer types because they recapitulate the most 

prevalent and deadly of patient primary BT and brain metastases to a certain extent, at 

least in an experimental setting. Importantly, as described earlier, each of these models 

is syngeneic to the immune competent hosts in which they will be studied, and thus can 

implanted to be studied in an orthotopic or heterotopic manner. To visualize tumor 

growth by intravital imaging, the cancer cells have been made fluorescent. As it is likely 

that fluorescent cancer cells may have higher immunogenicity due to the fluorescent 

proteins, appropriate controls have been used for proper interpretation of the data. 

 

Experimental strategies  

To visualize immune cell interaction with tumor, a broad range of multi-color 

reporter mice have been used to visualize distinct groups of immune cell populations 

including microglia, monocytes, DCs, T cells, and Tregs. For further visualization of T 

cell subsets and important molecules involved in T cell interaction, cells have been 
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stained by tissue immunofluorescence. To increase the robustness of the investigations 

in this thesis, genetic knockout mice, cell-specific in vivo depletion experiments such as 

in cell-specific diphtheria-toxin receptor mice, and bone marrow transfer studies have 

been conducted. In addition, to ascertain relevance to human patients with brain 

tumors, selected studies have been conducted on human tumors. It is hoped that the 

studies completed here will reveal relevant mechanisms underpinning anti-tumor T cell 

surveillance in the brain and provide new insight into how to optimize immunotherapies 

for brain tumor patients.   
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CHAPTER 2:  

MATERIALS AND METHOD 

Cell lines  

MCA-205 fibrosarcoma cell line was obtained from Dr. Xiao-Feng Qin (The 

University of Texas MD Anderson Cancer Center (UTMDACC)) B16-F10 was obtained 

from Dr. Willem Overwijk (UTMDACC), LLC was obtained from Dr. Limo Chen 

(UTMDACC), and GL261 was purchased from American Type Culture Collection 

(ATCC). Cell lines were confirmed to be mycoplasma free. Cancer cells were 

maintained in RPMI culture medium containing 5% fetal bovine serum (FBS), 1% 

Penicillin/Streptomycin (P/S), 1% beta-mercaptoethanol or in DMEM/high glucose 

media containing 10% FBS and 1% P/S. Cells in culture were stored in incubators at 

370C and 5% CO2. To render the cells fluorescent for intravital microscopy, MCA-205 

fibrosarcoma, B16-F10 melanoma, Lewis-lung carcinoma (LLC), and GL261 glioma cell 

lines were transduced with VECTOR DESCRIPTION encoding the mCerulean 

fluorescent protein as previously described.426 

 

Animals 

Use of animals was approved by the institutional use and care committee 

(IACUC) under protocol number 00000878-RN01. All animals were on the C57Bl/6 

background and bred in-house or commercially purchased. C57Bl/6 wild type (WT), 

Rag1-/-, CX3CR1-GFP, and CCR2-RFP mice were purchased from the Jackson 

Laboratories (Bar Harbor, ME). Additional C57Bl/6 WT mice were purchased from the 

Radiation Oncology Department at UTMDACC. CD11c-EYFP mice were obtained from 

Dr. Michel Nussenzweig, The Rockefeller University, New York, NY; hCD2-DsRed mice 
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were from Dr. Dimitris Kioussis, The National Institute for Medical Research, Mill Hill, 

London, U.K.; and ROSAmT/mG mice were obtained from Dr. M. Konopleva, Dept. of 

Leukemia, UTMDACC. Various combinations of these strains were generated by 

interbreeding and genotyping. For experiments, mice of both sexes were used at ~1.5 

to 6 months old and euthanized by CO2 inhalation and cervical dislocation in line with 

the IACUC guidelines. 

 

Brain Tumor Models  

To generate tumors in mouse brain, cancer cells were prepared and injected 

either directly by intracranial injections or indirectly via the internal carotid artery. 

Cancer cells were harvested from 10 cm cell culture dishes at logarithmic growth phase 

by washing with 1x PBS and trypsinizing with 2ml of 0.05% trypsin for about 2 minutes 

and detaching the cells by gentle agitation of the dish, followed by trypsin neutralization 

with 8 ml media and cell concentration by centrifuging at 1,350rpm, 40C, for 10 

minutes, repeated for a second wash in HBSS. Cell concentration was measured with a 

hemocytometer and adjusted for injections as described later. Cells were kept on ice 

throughout the length of the injection procedure.  

 

Preparation of intravital thinned skull windows 

To create skull window for longitudinal imaging, the mouse was anesthetized 

with a loading dose of 10µl/g mouse of 10mg/mL ketamine and 1mg/mL xylazine 

cocktail intraperitoneally, followed by 50µl of same concentration every 15-20 minutes 

to maintain anesthesia until completion of surgery. Fur was depilated from the cranial 

vault, which extended to the nasal bridge anteriorly, the temporal skull regions laterally, 
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and the occipital region posteriorly. The skin was then decontaminated using swabs of 

betadine and 70% alcohol. The skin overlying the cranium was excised and the 

pericranium was gently detached from the underlying skull bone. Mouse was restrained 

with tapes on a surgical stage and warmed with a heating blanket for the entire length 

of the surgery. A 5-6 mm diameter parietal skull region to be thinned was marked using 

a pen 1-mm lateral to the sagittal suture and 1-mm posterior to the coronal suture. 

Vetbond glue was then applied on the dry skull except within the region marked with a 

pen. The marked skull region was thinned to about 10-20 μm in thickness using a high-

speed diamond drill with saline cooling. Specifically, the outer table or cortical bone and 

spongy medullary cavity of the mouse skull were surgically shaved off, leaving an intact 

inner table. Further shaving was done with cone-shaped drill bits to increase the optical 

quality of the inner table.  Thereafter, the thinned skull was reinforced with a 5mm-

diameter/1mm-thickness round cover glass that was lightly attached to the inner table 

to prevent indentation of the thinned skull into the cranial compartment. Further 

strengthening of the window preparation was done using dental cement.  

 

Internal carotid artery injection for metastasis models  

Brain tumors were induced by injection of cancer cells into the internal carotid 

artery (ICA). Specifically, the mice were anesthetized, the fur was depilated on the 

anterior region of the neck, and the exposed skin was decontaminated with betadine 

and 70% alcohol. After this, a 1 cm midline incision was made on the anterior aspect of 

the neck, followed by exposure of the common, external, and internal carotid arteries. 

The common carotid and external carotid arteries were ligated and 1 x 105 cancer cells 

in 0.1 ml volume of saline were infused via the patent part of the common carotid artery 
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into the internal carotid artery, which supplies the brain. Infusion of cancer cells was 

done slowly over 30 seconds to 1 minute. After this, the patent part of the common 

carotid artery was then ligated, and skin was closed using surgical staples. 

 

Orthotopic cancer injection for the GL261 glioma model 

For direct intracranial injection, the mice were anesthetized, the fur was 

depilated on the head, and the exposed skin was decontaminated with betadine and 

70% alcohol.  A 5-6 mm burr hole was placed in the parietal skull while preventing 

damage to the dura mater. 2 x 104 cancer cells were implanted using a glass pipette 

attached to a micromanipulator system (Sutter, Novato, CA). The glass pipette was 

stereotactically oriented at the center of the exposed brain region and inserted to a 

depth of 200-250 μm. Cancer cells were injected in 2 μl volume of phosphate-buffered 

saline (PBS) over a period of 2 to 5 minutes and the pipette was then withdrawn slowly 

over a period of 15 to 20 minutes. An air-brain interface was created by applying PBS 

or artificial CSF427,428 on the exposed brain. This was followed by closure of the brain 

by use of a glass coverslip that was adhered with Vetbond glue to the adjacent skull 

and further reinforced with dental cement. 

 

Tail vein injection 

For tail vein injection, cells were harvested with trypsin and washed twice in 

PBS. 105 cells were injected via the tail vein into mice.     
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In vivo depletion of CD8 T cells 

For CD8 T cell depletions, mice were injected with 100 mg/ml anti-CD8ɑ 

antibody (Clone #53-6.72, BioXcell, San Diego, CA) intraperitoneally, either one day 

before or on day 5 after injection of cancer cells and then every other day until the 

experiment was terminated at day 20 after cancer cell injection. Control animals were 

injected with PBS. Depletion was verified by flow cytometry analysis of CD8 T cell 

levels in mouse peripheral blood. 

 

Depletion of CD11c-YFP cells 

Mouse expressing both YFP and diphtheria toxin receptor (DTR) under the CD11c 

promoter was used for depletion of CD11c cells in longitudinal imaging studies. 

Specifically, CD11c cells were depleted by consecutive injections of100ng/day of 

diphtheria toxin (DT) on days 11 and 12 after a baseline time-lapse movie of CD11c-

YFP cells in the tumor had been acquired. Depletion of CD11c-YFP cells was 

confirmed by in vivo visualization of CD11c-YFP cells in the tumor on day 13.  

 

Bone marrow transfer studies 

CD11c-EYFP/hCD2-DsRed and CX3CR1GFP/GFP mice were used as donor and 

recipient, respectively. Bone marrow (BM) was harvested from CD11c-EYFP/hCD2-

DsRed mice, resuspended in RPMI media, and injected intravenously via the tail vein 

into unirradiated CX3CR1GFP/GFP mice (7 x 106 cells/mouse). BM infusion was done 

either one day before cancer cells were injected into mice via the ICA or five days after 

ICA cancer cell injection. Brains of recipient mice were harvested, and brain tumors 

were analyzed at day 20 after ICA cancer cell injection. 
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Immunofluorescence  

Brain tissue was embedded in optimal cutting temperature (OCT) medium and 

stored at -800C immediately after mice were euthanized.  Embedded brain tissues were 

cryotome sectioned into 5-8 μm thin sections. Sectioned fresh brain tissues were 

stained with various antibodies, either alone or in combinations including, anti-mouse 

MHC-II biotin conjugated antibody (1:100; Clone M5/114.15.2; eBioscience) as a 

primary and APC streptavidin (1:500; Cat.#554067; BD Pharmingen) as secondary; 

and purified rabbit anti-mouse fractalkine (1:100; Cat.#TP233; Torrey Pines Biolabs 

Inc.) as the primary and Alexafluor-647 goat anti-rabbit (1:500; Cat.#A31633; Invitrogen 

Molecular Probes) as the secondary. Antibodies were used in a 1:100 dilution ratio in 

blocking buffer. Specifically, frozen tissues were first washed with PBS to get rid of the 

OCT. After this, the tissues were incubated with blocking buffer (SuperBlock blocking 

buffer; Thermo scientific; #37517) for 30 minutes. Subsequently, tissue samples were 

washed twice in PBS, and then incubated with antibodies overnight as described. 

Finally, the antibody was washed off of tissues by using PBS. For fresh tissue sections, 

the specimens were immediately incubated in blocking buffer for 30 minutes to 1 hr 

before proceeding through similar steps as with the frozen sections. Tissues were 

mounted with Prolong Gold (Invitrogen) and imaged using a Leica SP8 confocal laser 

scanning microscope (Leica Microsystems, Buffalo Grove, IL).  

  

In vivo dynamic microscopy 

Intravital microscopy was performed using a customized two-photon confocal 

SP5 laser scanning microscope (Leica Microsystems, Buffalo Grove, IL) with four 
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channel non-descanned detectors, including two hybrid (HyD) detectors, and two 

femtosecond lasers (Spectra-Physics). The system was operated in a fast resonant 

scanning mode with frame averaging or in a conventional galvo-scanning mode. Mice 

were anesthetized as earlier described. After confirming complete anesthesia, mice 

were head-immobilized with a custom-made stereotactic holder on a heated motorized 

microscope stage maintained at 370C throughout the entire imaging procedure. To 

highlight the vasculature, TRITC-dextran; 155kD (10mg/ml; Sigma Aldrich; #T1287-

50MG) was diluted at a concentration of 1:5 in PBS and 50μl injected via the tail vein or 

retro-orbital route. Time-lapse stacks of images were acquired using Nikon objectives 

(16X, NA = 0.8 or 25X, NA = 1.1), at a distance of 5 μm between Z-planes and a 20 to 

30 seconds inter-stack interval, for a period of 30 minutes to 2 hours. Interline 

sequential excitation at two femtosecond-pulsed wavelengths was used to enhance 

channel separation as follows: 840 nm excitation: CFP, GFP and TRITC emission; 990 

nm excitation: SHG, YFP and DsRed emission. Typical image format was 512 x 512 

pixels. Some sequences were acquired in 1024 x 1024 pixel format. For longitudinal 

studies, imaging was repeated on the same area using the vasculature as landmark at 

set time points after cancer cell implantation until about 30 days.  

 

Ex vivo imaging 

For ex vivo imaging, brain was harvested after mouse circulation fixation with 

4% paraformaldehyde under anesthesia. The brain was sectioned into 4-5 equal thick 

coronal sections (~2mm each) with a sharp blade, sections were overlaid with a PBS-

moistened cover glass and imaged through a 2X and 4X objectives (Olympus), or a 

16X NA = 0.8 objective (Nikon).  
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Image processing 

Prior to analysis, acquired images were subjected to processing using the Leica 

Application Suite version 1.7.0 build 1240 (Leica Microsystems).  Images were parsed 

through several stages. For example, if images were noisy, filtering was performed by 

applying a median filter width of 3. Next, crosstalk correction was performed on each 

channel to eliminate channel bleed-through. Subsequently, images were analyzed in 

xy-2-dimension maximum intensity projections created from all images, xyz-3-

dimension images, or xyzt-4-dimension time-lapse images.  

 

Image analysis: cell tracking 

For three-dimensional cell tracking and contextual analyses, Leica Image 

Format (lif) files were opened using Bitplane Imaris analysis software versions 7 to 

8.3.1 (Bitplane AG, Saint Paul, MN). Voxel dimensions were specified according to the 

objective used for image acquisition. If drift was present, it was corrected based on 

averaged landmark features such as cancer cell groups. T cell motility was analyzed by 

tracking individual T cells using the spot and surface tools of Imaris. For time-lapse 

images obtained from the open skull window experiments, cells at a depth of >100 μm 

below the cover glass were analyzed to avoid potential confounding surface tissue 

artifacts. Cells were tracked by initial automated spot detection followed by 

autoregressive spot tracking and manual tracking. Quantitative analyses were done on 

all tracks with a duration > 10 min. Contextual analyses, which involves determining the 

behavior of cells in context of other cells or anatomical structures, were based on 

surface detection followed by distance transformation.  
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Image analysis: static analyses 

Large area imaging by image stitching 

For gross analysis of the brain, multiple images were acquired and stitched. 

Each individual image was generated from a z-stack by projecting in 2-dimensions 

using maximum intensity projection in Leica processing software. Image stitching (tile 

alignment) was done in Photoshop CS6. Line intensity profiles were generated from 

images using the Line tool on Slidebook version 5/6 or ImageJ.   

Cells were counted using the spot function in Imaris. If direct counting of cells 

was not possible due to dense cellular clustering and insufficient image resolution in 

the image of the data set, then cell counts were obtained using a volumetric approach 

implemented in Imaris software429,430. Thus, volumes of either CD11c-EYFP or hCD2-

DsRed T cell objects were delineated in 3-dimensions by thresholding. Cell numbers 

were calculated by dividing each volume by the average calculated volume of a given 

cell type, which was calibrated in the same data set based on averaging individually 

measured volumes of multiple well-isolated single cells (10-20 cells). Overall cell 

densities were calculated by dividing the number of cells by the z-stack volume. 

Sphericity is the extent to which the shape of a cell closely approaches that of a 

mathematically perfect sphere. It is calculated by using the surface tool in Imaris to 

represent a cell, and the software models the cell’s shape and does calculations to 

determine the extent of sphericity, which ranges from 0 to 1. 

 

Cell-cell spatial correlation 

To analyze the degree of spatial correlation between cell types, each primary 

image was divided into nine equal sub-fields. In each sub-field, total areas of each cell 
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type were obtained by segmentation of images in respective channels. Resulting paired 

values (measured in pixels) were analyzed for correlation using GraphPad Prism 

Software. 

 

Contextual image analyses 
 
Proximity of T cells to DC or cancer cells.  
 

For calculating cellular densities inside and outside tumors, and at tumor 

margins, each of these regions was determined using the surface tool and distance 

transformation, followed by splitting the DC and T cell volumes (or spots) in each 

measured tumor region volume. Distances of T cell to CD11c-YFP DC was generated 

after converting T cells to spot objects by using the spot tool and CD11c-YFP cells to 

surface object by using the surface tool. Imaris Distance Transformation function was 

then used to create certain threshold distances outside CD11c-YFP cell surface 

objects. Finally T cell distance to CD11c-YFP cells was generated using the Filter and 

distance threshold functions. 

 

Analysis of myeloid cell subset numbers and densities within the tumor, at the margin, 

and within the extratumoral region or brain parenchyma. 

To identify all highlighted myeloid cells, CX3CR1+/GFP/CD11c-YFP/CCR2-RFP 

channels were all normalized and added together by using the Arithmetic processing 

function on Imaris to create a single “myeloid” channel. Each cell in the “myeloid” 

channel was then represented as a spot by using the spot tool. The Surface tool was 

then used to create tumor surface object, and the Distance Transformation tool/Filter 

and Distance threshold functions were used to generate distances from outside or 
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inside the edge of the tumor surface object and used to segregate spots (CX3CR1+/GFP 

/CD11c-YFP/CCR2-RFP) into different compartments (tumor outside, tumor margin, 

and tumor core) from the “myeloid” spot population. 

 

Human Samples 

Human GBM tissue and blood samples were obtained by Dr. A. Heimberger 

under approval from the Institutional Review Board of UTMDACC LAB03-0687. 

Informed consent was obtained from each participant. Patients’ tumors were graded 

pathologically as newly diagnosed glioblastoma (glioblastoma, n = 11) by a 

neuropathologist according to the World Health Organization (WHO) 

classification.  Peripheral blood was drawn from the patients intra-operatively or healthy 

donors (n=11). Control CD14+ cells [a general marker of monocytes and monocyte-

derived macrophages 431 (n = 4, age range of 26-35) from intractable epilepsy brain 

tissue was provided by Prof. Jack P. Antel (Montreal Neurological Institute). CD11b+ 

cells  from postmortem brain tissue (n = 4, age 67 and 78, gray and white matter, post 

mortem delay 7-9 h) were obtained from The Netherlands Brain Bank (NBB), 

Netherlands Institute for Neuroscience, Amsterdam (open access: www.brainbank.nl). 

All Material has been collected from donors who provided a written informed consent 

for a brain autopsy and the use of the material and clinical information for research 

purposes obtained by the NBB.  Human glioma or CNS tissue was digested with 

Liberase TM enzyme which contains highly purified collagenase I and II. This approach 

significantly improves cell isolation when compared with standard collagenase 

digestion.432 After enzymatic digestion, the myelin was removed by centrifugation using 
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a Percoll gradient which has previously been shown to result in the highest viability of 

CD11b+ cells.433 

 

Statistics 

GraphPad Prism version 6.00 (GraphPad Software), Microsoft Excel (Microsoft 

office package), and statistical software R v3.3.1 with packages nestedRanksTest v0.2 

and nlme v3.1-128 were used for statistical analyses. Student t-test was used to 

analyze normal-distributed data while the non-parametric Mann-Whitney test (two-

group comparison) was used to analyze non-normal distributed data. When 

appropriate, non-normal-distributed data were transformed by logarithm for the 

parametric analysis. For data including several mice in which T cells were followed 

longitudinally in the same mouse, the mixed effects regression model was applied to 

account for variability in T cell behavior and heterogeneity between mice. The mixed 

effects regression model434 was employed to examine the change of T cell velocity 

after CD11c-DC depletion. Each observation of velocity was first normalized using 

logarithmic transformation. T cell arrest coefficients were arranged in [0,1] with 

significantly inflated 0s and 1s, with 0 and 1 representing T cell values pre- and post- 

CD11c-DC depletion, respectively.  

For the mixed effects regression model: 

Suppose yij is the velocity of jth T cell from the ith mouse. APij takes value of either 0 or 1, where 

1 indicates that the jth T cell from the ith mouse is after depletion, 0 before depletion.  β i0 and 

β i1 are between-mouse random effects for intercept and slope. To examine the change of T cell 

velocity after depletion, we test whether H0: α1=0 against H0: α1!=0. 
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This can be mathematically represented as follows: 

log(yij) = α0 + β i0 + (α1 + β i1)*APij + εij 

β i0 ~ N(0, σ0
2) 

β i1 ~ N(0, σ1
2)  

ε i1 ~ N(0, σε
2) 

 

Since we failed to transform arrest coefficient values to fit a Gaussian distribution, we 

applied non-parametric nested Mann-Whitney-Wilcoxon Test435 to make comparison 

before and after CD11c-DC depletion. 

Horizontal bars represent the means, and vertical bars represent +/- Standard 

Deviation (SD). P values of less than 0.05 were considered statistically significant 

(*p<0.05, **p<0.01, ***p<0.001, and ****p<0.0001). 
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CHAPTER 3: LONGITUDINAL INTRAVITAL VISUALIZATION OF ENDOGENOUS 

INNATE AND ADAPTIVE IMMUNE SURVEILLANCE IN BRAIN TUMORS 
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Part I: Development of an intravital imaging system to investigate immune 

response to brain tumors. 

Introduction 

 Multiple physiological mechanisms exist to protect the brain from immune-

mediated neuronal damage150. However, these same protective mechanisms make it 

challenging to tease apart physiological responses of brain immune cells in intravital BT 

imaging as traumatic brain preparations are involved. From the exterior; the 

pericranium, skull, dura, arachnoid and pia maters, and vascular barriers prevent the 

accessibility of the brain parenchyma to environmental pathogens, blood-borne 

infectious agents, molecules, and antibodies. Such barriers include the blood-brain 

barrier and the blood-CSF barrier68,145,146,148,149,152,155,436-439. In addition to these exterior 

deterrents, in the event that the brain vasculature is breached, there is rapid migration 

of microglia to the site of vascular damage, and is a process that is not clearly 

understood in the context of brain metastases initiation76,214. Recent studies have also 

shown in intravital movies how the brain vasculature is immediately repaired by 

macrophages, which are required to “glue” breached endothelial tips together440. All of 

these support a model in which the homeostatic state of brain resident immune cell 

populations changes rapidly upon direct mechanical manipulation of the brain.  

Multiphoton intravital imaging has provided unprecedented direct visualization of 

immune cell dynamics in various organs and tissues including the brain214,380. Despite 

the application of thinned and open skull imaging windows to answer fundamental 

questions214,428,441, studying the initial immune response to tumors in a physiological 

state is nearly impossible due to the surgical procedures involved. For example, 

mechanical trauma to the dura or arachnoid initiates a strong response by the resident 

74 

 



immune cells including the microglia and potentially the peripheral innate and adaptive 

immune cells214. Although it was previously thought that immune cells isolated from 

BTs in mice and humans were mostly microglia, recent understanding of broadly 

shared surface markers between microglia and peripheral immune monocytes and 

macrophages blurs the lines of distinction209. Thus, making conclusions about the 

contribution of immune cell populations to brain tumor immune surveillance during the 

various stages of tumor progression could be confounded by traumatic events during 

cancer cell implantation. Progress in intravital imaging has been made by the use of 

sliced brain organotypic cultures419; however, this isolates the brain from the systemic 

circulation and traumatizes the tissue as well. Recent methods now enable intravital 

imaging of tumors in intact brain tissue in living mice, but the studies still involve 

significant traumatic preparations and have been mostly limited to immune-deficient 

nude and subacute combined immune-deficient (SCID) mice441-449. Intravital imaging in 

immune competent mice has been conducted, but in some cases mice have been 

treated with immune suppressants such as dexamethasone, which prevents immune 

cell proliferation and effector functions441. To overcome these technical limitations in 

brain tumor imaging, which conventionally involves 1) brain trauma due to full-thickness 

skull bone removal and 2) cancer cell deposition by direct intracranial injection, I have 

developed a novel experimental model of intravital imaging of in vivo brain tumor 

immune surveillance. This system consists of a thinned skull window that is combined 

with internal carotid cancer cell injection. Thinned skull window preparations have been 

used in the past to study multiple physiological processes involving neurons, microglia, 

and the cerebral vasculature in pathological conditions such as Alzheimers and 

stroke417,450. Likewise, internal carotid injections have been conducted in previous 
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studies to answer a variety of questions related to the process of brain metastasis and 

stem cell biology100. Both techniques, when done separately, do not involve mechanical 

trauma to the brain parenchyma. Therefore, a combined system involving both 

techniques was developed for visualization of immune cells in brain metastases.This 

method was selected because it does not inflict mechanical injury to the brain tissue, 

when performed with appropriate expertise.  I present data that reveals this approach 

does not produce artefactual immunological activation and specifically, cancer cells 

engraft and grow from within the vasculature into the brain tissue beginning from single 

cancer cells closely recapitulating the clinical scenario. As a read-out of brain tissue 

injury, morphological response of microglia has been visualized in CX3CR1+/GFP mice 

as microglia are known to respond rapidly to regions of brain parenchyma or 

vasculature injury211,214. In addition, I have compared the behavior of microglia in 

response to cancer cells between models in which tumor is initiated by delivery via the 

internal carotid artery relative to cerebral injection. The experiments conducted here 

were focused on early tumor time points ending at day 7, which represents a phase in 

which acute mechanical trauma is potentially most detectable.    
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Results 

3.1a. Intravital imaging experimental setup 

To verify that skull thinning does not inflict mechanical trauma to the brain, 

CX3CR1+/GFP/hCD2-DsRed mice were used. In this mouse strain, GFP reporter gene 

has been knocked into the CX3CR1 locus encoding CX3CR1 protein expression and 

DsRed is expressed under the CD2 promoter; CX3CR1 is expressed by all microglia, 

and T cells can be visualized by the expression of Ds-Red. Importantly, the 

CX3CR1+/GFP reporter mouse strain faithfully reports very rapid reaction of microglia to 

injury within very brief time periods214. The CD2-DsRed mice have been used to show 

the influx of T cells into the brain parenchyma during stroke450.  

To first visualize microglia in the steady state brain, mice with thinned skull 

windows that were not injected with cancer cells were head-restrained with a custom-

designed mouse skull frame and stabilized on a heated custom-made motorized 

imaging stage. Imaging was performed transcranially via the glass window 5 to 10 

minutes after thinning of mouse skull, by using multiphoton microscopy settings as 

described in the methods section. Mouse body temperature and anesthesia was 

maintained throughout imaging, as described in the methods. A schema demonstrating 

this process is shown in Figure 11a. 

 Second harmonic generation (SHG) was applied during multiphoton imaging to 

differentiate the thinned bone and underlying meninges from the underlying brain 

cortex. This is possible because biological structures such as collagen, which constitute 

skull and meninges, exhibit inversion asymmetry and a structural arrangement that 

show a second order non-linear optical property451-453. This property can be harnessed 

during photonic molecular polarization to generate fluorescent signals from such 

77 

 



endogenous tissues without prior dye labeling and is known as SHG. Within the brain 

cortex, microglia were observed to be discretely distributed in both two-dimensional 

orientation and three-dimensional optical sections, with multiple dendrites extending 

from each cell soma (Figure 12a & movie 1). The soma and dendrites of some of the 

microglia appeared to be in direct contact with the cerebral vasculature. Time-lapse 

imaging revealed motile microglia dendrites around the relatively sessile soma, 

scanning the brain especially around vessels and presumably other adjacent brain 

structures such as neurons and astrocytes, as previously described214 (Figure 12b and 

movie 1). This observation was consistent with previous studies that have investigated 

the dynamics of microglia in healthy in vivo brain tissue214,215. Importantly, T cells were 

observed to travel within the lumina of microglia-associated blood vessels, but not 

extraluminally. This observation is similar to those made in sham controls in a previous 

study of T cell influx into the brains of mice with stroke450. Overall, these findings 

indicate that the proposed model does not cause changes in microglia dynamics and 

perturb the blood-brain barrier in mice.   
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Figure 11. Schematic diagram of skull window experimental systems for intravital 

imaging of brain metastases.  

a. A schematic of a new system combining thinned skull window and ICA injection. The 

model consists of thinning a 5-6mm diameter of a mouse skull leaving an eggshell 

osteotomy, followed by bonding of a cover glass to the edges of intact calvaria. Cancer 

Figure 11 

New: Thinned skull window + internal carotid artery inj. expt. setup 

Conventional method 1: Thinned skull window + intracranial inj. expt. setup 

Conventional method 2: Open skull window + intracranial inj. expt. setup c 
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cells are then injected to the brain via the ICA, and non-survival or longitudinal survival 

intravital imaging is performed. 

b. A schematic of a conventional system for intravital imaging system of brain tumor 

through a thinned mouse skull. A 5-6mm diameter of mouse skull is thinned as in (a), 

but cancer cells are implanted directly into the brain through the thinned skull at a depth 

of ~200-250μm by using an automated glass pipette, then the thinned skull window is 

secured with cover glass as in (a). Non-survival or longitudinal survival intravital 

imaging is performed.  

c. A schematic depicting open skull window imaging of brain tumor. Craniotomy is 

performed to completely excise a 5-6mm diameter piece of mouse skull unlike in (b) 

where an eggshell osteotomy is left. In similarity to (b), cancer cells are injected directly 

into the brain at a depth of ~200-250μm below the dura mater by using an automated 

glass pipette. Artificial CSF or PBS is applied to the exposed brain, and a round glass 

coverslip is used to protect the brain tissue from dehydration and reinforced with 

Vetbond glue and dental cement on the edges. Intravital imaging can be done through 

the window to obtain time-lapse images longitudinally, and tumor size can be followed 

by acquiring tumor mosaics. 
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Figure 12 

a. 

b. 

hMW-TRITC-dextran CX3CR1+/GFP hCD2-DsRed 
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Figure 12. Intravital imaging of healthy mouse brain.  

a. Representative image from z-stack imaging of healthy mouse brain showing 

meninges (white) in the xz/yz axes, distribution of microglia (CX3CR1+/GFP; green) 

within the brain cortex, and brain vasculature (cyan) in a three-dimensional xyz space. 

High molecular weight TRITC dextran dye was injected intravenously via the tail vein to 

visualize the vasculature. Imaging depth is up to 200µm (Movie 1).   

b. Representative still image from intravital time-lapse imaging of healthy mouse brain 

showing motility of microglia (CX3CR1+/GFP; green) and T cells (hCD2-DsRed), and 

brain vasculature (hMW-TRITC-Dextran; White). Inset represents zoomed-in region 

showing close-up structure (white lines; thick line represent microglia soma, dotted 

lines represents the dendrites) and motility of microglia dendrites (Movie 1) 
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3.2a. Internal carotid artery injection is a more physiologically relevant method than 

intracranial injection for studying the immune response to brain tumors from a single 

cancer cell level 

Direct implantation of cancer cells in mouse brain confounds the understanding 

of microglia dynamics in response to brain tumor initiation.  To test the extent of 

microglia reactivity to BTs beginning at a single cell level and without local mechanical 

trauma, the new model was used in syngeneic CX3CR1+/GFP mice on the C57BL6 

background (Figure 11a). In these reporter mice, microglia can be visualized in a 

healthy brain based on morphological characteristics (Figure 12a) while CX3CR1+/GFP 

monocytes from extracranial tissues are absent in the healthy brain. CX3CR1+/GFP 

monocytes are present in the brain only after trauma, in which case their morphology is 

ameboidal (Figure 13a & movie 2).  

In the new model,  within two days after mice wereinfused with cancer cells 

derived from methylcholanthrene (MCA)-induced fibrosarcomas by internal carotid 

artery injection, single cancer cells were found to be lodgedwithin cerebral 

microvasculature and the microglia mostly retained their typical ramified morphology as 

in Figure 12a & b. Seven days after ICA-inj., I could still visualize features of resting 

microglia including relatively immobile microglia soma as well as arrays of highly 

dynamic dendritic extensions. In contrast, in the conventional model (Figure 11b), mice 

receiving cancer cells directly into the brain showed CX3CR1+/GFP cell accumulation 

around the site of the injection and lost the typical microglia morphology, and the BBB 

appeared to have been breached as indicated by dye leakage from vessels in the brain 

parenchyma (Figure 13a & movie 2). At day 7 after cancer cell injection by intracranial 

(ICr) injection in the conventional model, I could not identify any distinct morphological 
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features of CX3CR1+/GFP cells resembling that of resting microglia, and analysis of 

CX3CR1+/GFP cell sphericity became technically challenging as the cells appeared to 

have clustered into “bee hive” formations. Quantitatively, the density of CX3CR1+/GFP 

cells in the imaging field of view increased after direct ICr-inj. while there was no 

observable change after indirect ICA-inj. of cancer cells to mice brain in comparison 

with healthy brain (Figure 13c). In addition, CX3CR1+/GFP cells in ICr-injected mice 

increased in sphericity as opposed to cells in ICA-injected mice and in steady-state, 

indicative of the potential activation status of microglia and/or infiltrating 

monocytes/macrophages following ICr injection. (Figure 13d). Importantly, it is 

impossible to distinguish activated microglia from infiltrating monocytes/macrophages 

in an inflamed brain as they both appear amoeboid in shape.  Together, these results 

suggest that ICA injection of cancer cells coupled with transcranial intravital imaging via 

thinned skull window provides a better physiological platform than direct ICr injection 

for studying the initial events of immune response to BTs.    

 

3.3a. CX3CR1+/GFP cells become motile after ICr (conventional model) but not ICA-

induced (new model) cancer cell injection. 

To determine the motility pattern of CX3CR1+/GFP cells in both systems, I tracked 

individual CX3CR1+/GFP cells two days after cancer cell injection (Figure 14a). In mice 

that were injected with cancer cells via ICr-inj., multiple elongated time color-coded 

tracks of varying lengths were found to be present around the site of cancer cell 

injection suggesting CX3CR1+/GFP cell motility. In contrast, after ICA-induced cancer cell 

injection or in the healthy brain, only dots of single colors were observed indicating that 

no CX3CR1+/GFP cell displacement had occurred (Figure 14a). Further, CX3CR1+/GFP 
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cells in the conventional model had significantly increased average velocity in 

comparison with the relatively immotile cells in the new model or steady-state microglia 

(Figure 14b). We were unable, however, to quantify the motility of distinct 

CX3CR1+/GFP cells seven days after ICr-inj. due to the extensive infiltration, cluster 

formation of the CX3CR1+/GFP cells around the injection site, and extremely blurred 

morphological features of individual cells (Figure 14b). Again, this indicates that the 

new model is a better system than the conventional model at least in terms of 

maintenance of CX3CR1+/GFP cell motility behavior as in the healthy steady state brain. 
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d C 

Figure 13 

hMW-TRITC-dextran Microglia/CX3CR1+/GFP hCD2-DsRed 
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Figure 13. Intravital imaging of brain tumor within the New Vs Conventional 

murine model systems.  

a. Representative still image from intravital time-lapse imaging of MCA brain tumor-

bearing mouse in the conventional model showing MCA cancer cells/tumor (blue), 

microglia/monocytes (CX3CR1+/GFP; green), and brain vasculature (hMW-TRITC-

dextran; cyan), 2 and 7 days after cancer cell injection by intracranial injection via a 

thinned skull window. The day 7 panel shows abnormally tortuous vasculature, and 

“bee hives” of CX3CR1+/GFP cells. Scale bar represents 100μm.   

b. Representative still image from intravital time-lapse imaging of MCA brain tumor-

bearing mouse in the new model showing MCA cancer cell/tumor (blue), microglia 

(CX3CR1+/GFP), and brain vasculature (hMW-TRITC-dextran; cyan),  2 and 7 days after 

cancer cell injection by the ICA injection method. The top panel shows MCA cancer cell 

trapped in brain vasculature, and microglia (based on morphology), 2 days after ICA 

cancer cell injection The right panel shows MCA cancer cell(s), brain vasculature, and 

microglia (based on morphology), 7 days after ICA cancer cell injection. Scale bar 

represents 100μm.   

c. Density of CX3CR1+/GFP cells in healthy brain and in MCA brain tumor-bearing mice 

2 days after ICr- or ICA-induced MCA tumor (n = 3 from 2 separate experiments; each 

dot represents the density of all cells in a field of view in a mouse brain; data analysis 

was done by unpaired t test; *P < 0.05). 

d. Sphericity of CX3CR1+/GFP cells in healthy brain and in MCA brain tumor-bearing 

mice 2 days after ICr- or ICA-induced tumor (Representative of 3 animals from 2 

separate experiments). 
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Figure 14. Window-located CX3CR1+/GFP cells become highly motile after IC 

injection, but not after ICA injection.  

a. Representative still images from Imaris cell tracking of CX3CR1+/GFP cells in mice 

brain in intravital time-lapse movies. The left and middle panels show green spots, 

which represent the positions of microglia over the duration of 9 min and 45 min, 

respectively. The right panel shows the positions of CX3CR1+/GFP cells (green spots) 

and their migratory tracks (time-scale color-coded lines) over 40min. Scale bar 

represents 40μm.  

Figure 14 

b 
Spot rendering of microglia/CX3CR1+/GFP cells 

Healthy brain ICA D2 ICr D2 
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b. Mean velocity of CX3CR1+/GFP cells in the imaging field of view within the skull 

window region in healthy brain and MCA tumor-bearing mouse brain after ICA- and ICr-

induction of BT (n = 2  from 2 separate experiments; the average velocity of individual 

CX3CR1+/GFP cells acquired over 20min to >1 hr of time-lapse movies were 

accumulated for comparison by using the non-linear mixed effects regression model; 

****P < 0.0001).   
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Discussion 

In this study, I successfully developed an experimental setup to study the 

immune response to BTs in near-physiological brain tissue in living mice and showed 

that ICA injection combined with thinned skull window imaging is better than the ICr 

injection approach with regards to non-specific immune cell motility. While the 

combination of open skull windows and ICr injection is conceptually superior to the 

thinned skull window technique because it enables direct penetration of photons into 

the brain tissue and ultimately enhances better imaging and visualization of cells 

located in deep remote brain regions, it is a more traumatic alternative.  In general, a 

unique advantage of the conventional thinned skull approach is that it aids relatively 

easy manipulation and cancer cell implantation454. In addition, it enables better 

predictability of tumor growth location, which potentially increases the extent of 

experimental reproducibility in terms of imaging different animals at similar time points, 

in longitudinal experiments. However, it carries an attendant risk of causing brain 

parenchymal damage before cancer cells engraft in the tissue and is associated with 

artifacts of early immune cell activation and response, with the disruption of the BBB. 

The study by Zhang L. et al. supports the conclusion above, in that following ICr 

injection, mouse brain develops gliosis due to injection injury as revealed by increased 

GFAP staining at the injection site454. By combining thinned skull window and ICA-inj., I 

have solved these problems; however, I cannot exclude effects that the procedure may 

have on aspects of microglia physiology that were not investigated such as molecular 

signaling pathways. In addition, because the cancer cells that are lodged in the brain 

after ICA injection are better at reproducing brain metastasis from extracranial tumors 

but may not truly recapitulate the early phase of tumor development in primary BTs, a 
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better physiological system for studying primary BTs would be one in which thinned 

skull windows are combined with spontaneously developing BT in GEMM models in 

which resident immune cells such as microglia can be visualized. Nevertheless, 

experiments conducted in part II of this chapter reveal the power of the ICA-inj./thinned 

skull imaging method in understanding the distribution of both resident and infiltrating 

myeloid cells in late stage BTs when ICA-induced tumors have engrafted extensively 

into the brain parenchyma.  

The novel system established here preserves intact brain vascular structures 

and perfusion. In contrast to the direct injection approach which traumatizes blood 

vessels and causes leakage of injected dyes into the brain tissue, vessels appeared 

normal in the system developed here suggesting an intact BBB442. However, we did not 

explore potential molecular changes such as signaling pathways in the cells composing 

the BBB145. Previous studies have shown that microglia respond rapidly to secure even 

very tiny breaches in the vasculature214. Since I did not observe such protective or 

crowding behavior of microglia around the vasculature at early time points, I suspect 

that cancer cells engraft into brain tissue by a mechanism that may not damage the 

vasculature and maybe undetectable by microglia.  

Microglia can potentially transform from a dendritic morphology to an amoeboid 

form, one that is strikingly similar to blood-derived monocyte and macrophages455. This 

makes it difficult to interpret studies using the conventional approach, as the traumatic 

nature of cancer cell deposition causes an increase in the sphericity of the 

CX3CR1+/GFP cells around the site of injection. In addition, the cells accumulate in 

clusters, making it difficult to assess the morphology of adjacent cells that may retain a 

dendritic morphology within the clusters. Increased motility of CX3CR1+/GFP cells 
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obscures the early physiologic response and behavior of microglia to cancer cells214. 

Therefore, this novel approach may provide better clarity in studying immune cell 

response to cancer cells in the brain at the single cell level.  

Since BTs in humans are thought to begin from single mutated cells or 

disseminated malignant cancer cells from secondary tumors, this approach now opens 

an avenue to study the different aspects of immune response to tumor initiation 

including the contribution of innate cells such as neutrophils, patrolling monocytes, 

dendritic cells, classical monocytes, and NK cells, and the subsequent onset of 

adaptive T cell immune response. Although microglia are brain resident and are quick 

to respond to pathologies such as brain parenchyma injury, there are other innate 

immune cells from the periphery such as neutrophils that are capable of initiating rapid 

response to a variety of disease conditions including trauma and even cancer cells261. 

However, the impact of the new system developed here on the early phase 

homeostasis of other innate cells such as neutrophils was not investigated as previous 

studies that utilized an approach similar to the conventional thinned skull method 

described here did not observe any recruitment of neutrophils to traumatized site in 

brain tissue after direct injection; however, changes in microglia were not investigated 

in those studies456.  

This new approach developed is not without limitations. With ICA-induced 

cancer cell injection, there is markedly reduced power of predicting the location of 

cancer cell entrapment and hence increased variability in timing longitudinal intravital 

imaging of tumor growth within the brain in different mice. This is especially 

pronounced given the small imaging window dimensions in mouse skull and the limits 

posed by anatomical skull suture lines in extending such windows. In addition, since 
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the intact skull can add to light scattering caused by brain tissue, the extent to which 

imaging of immune response in deep brain regions can be accomplished is reduced. 

Our approach may also be limited in use due to the requirements of specialized 

expertise with manipulating microvessels such as the common or internal carotid artery 

during cancer cell injection in mice and the longer duration it takes to complete the 

same procedure in several mice as opposed to conventional intracranial injection 

approaches. Nevertheless, both ICA and ICr injection systems may be combined to 

answer some questions by taking the strengths and limitations of each approach into 

consideration. In the future, additional ways of improving these model systems would 

include developing lasers or optical adaptors capable of deeper photon penetration 

through brain tissue and creation of GEMM BT reporter models.  
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Part II: Identification of a cellular mechanism for the regulation of T cell 

surveillance in brain tumors 

Introduction 

Immune surveillance is a critical aspect of tumor progression. Effective immune 

surveillance depends on a tightly regulated migration of immune cells between 

peripheral organs and secondary lymphoid tissues68,457. However, little is known about 

the dynamic behavior and interactions of immune cells in tissues invaded by cancer. In 

the brain, the dynamics and regulation of immune response in tumors has been 

masked for a long time by the idea of brain immune privilege, and has detracted from a 

comprehensive understanding of immune response in BTs and development of 

immunotherapy68,69. Further, our present understanding of anti-tumor immune response 

through in vivo intravital imaging experiments and analysis has been largely derived 

from studies utilizing model tumor antigens, such as ovalbumin, and exogenously 

transferred cognate antigen-specific clonal T cell populations. Despite the immense 

knowledge on immune cellular dynamics and interactions gained from model antigen 

experiments, tumors in humans have great diversity in antigens and the associated 

potential T cell response is most likely polyclonal. As such, the true biology in human 

patient tumor may not be recapitulated in such experiments.372,375,402. Moreover, in the 

brain, intravital visualization and analysis of anti-tumor T cell response is lacking442.  

Previous studies have attempted to understand brain tumor immune response 

by using brain slices419, thereby isolating the brain from the systemic circulation and 

extra-cranial immune response; other attempts at BT in vivo imaging studies have been 

limited technically by experimental systems and the range of reporter mouse models 
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available for concrete immune response readout444,446. Here, I have applied an array of 

longitudinal intravital imaging systems and reporter mice to visualize endogenous 

innate and adaptive immune surveillance in brain tumors. Specifically, I employed 

thinned skull window in mice in combination with ICA injection to visualize the innate 

and adaptive immune cell response to metastatic tumor types such as MCA and LLC. 

In addition, I used the open skull approach to image immune cell response to ICr-inj. 

orthotopic GL261 because of the inefficiency of this cancer cell type to engraft into the 

brain tissue after ICA injection. Also, this approach aided imaging of GL261 cancer 

cells and associated immune cells in deeper brain regions beyond the extent achieved 

by the thinned skull/ICA injection approach. The CD11c-YFP mouse strain has been 

developed and established for use in dissecting the dynamics of myeloid cells 

especially DCs, which have high expression of CD11c. In this study, I used the CD11c-

YFP mouse strain to visualize a population of innate myeloid cells that I will refer to as 

DCs based on their morphology; however, other myeloid cells such as macrophages 

can express the YFP fluorophore encoded by the CD11c promoter as elaborated on in 

chapter 1. In addition, I have used other myeloid cell reporter mouse strains including 

fractalkine and CCL2 chemokine receptors, CX3CR1 and CCR2, encoding GFP and 

RFP fluorophores, respectively, to better characterize the myeloid cell repertoire in BT. 

hCD2-DsRed mice were used to visualize T cells, which express DsRed that is 

encoded by the CD2 promoter. Finally, I have bred the mouse strains above to obtain 

double or triple reporter mouse strains to dissect the interactions between the innate 

and adaptive immune cells in BTs by intravital imaging.     
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Results 

3.1b. Longitudinal intravital imaging reveals differential immune response patterns in 

different brain tumor types.  

It is well established that for a natural immune response to be generated there must be 

an effective coordination between myeloid antigen presenting cells (APCs) and T cells 

in the lymph node379,397,458,459. At sites of inflammation, T cells are known to undergo a 

cyclical process of reactivation between contacting tumor and tumor-associated 

APCs301. Therefore, to directly visualize the endogenous immune surveillance in 

various brain tumor types in a longitudinal manner, I employed appropriate 

experimental intravital imaging systems (Fig. 11). These systems enabled me to 

capture longitudinal evolution of endogenous anti-tumor immune response (Figure 15). 

As shown in Figure 16 & movie 3, orthotopic GL261 glioma was visualized from about 

10 minutes after cancer cell implantation up to a 28-day terminal time point. GL261 

tumor progressed lethally, and although CD11c-YFP cells and T cells were robustly 

recruited temporally, the pace was slower than tumor growth. GL261 tumor-associated 

T cells steadily increased in migration velocity in the tumor microenvironment from 

8μm/min up to a peak of 13μm/min) between day 7 and 13, but decreased to ~9um/min 

at day 28.  

           Lewis lung carcinoma (LLC) brain metastasis, which was generated by ICA, 

progressed lethally over a 19-day period (Fig. 17 & movie 4). In this model, CD11c-

YFP cells and T cells were recruited robustly up to day 11, but sharply reduced 

afterwards. LLC-associated T cells showed relatively high average velocity at day 5 of 

~8μm/min at day 5, and decreased to ~6μm/min at day 11 after cancer injection. The 

decrease in T cell velocity continued steadily until day 19 (~4μm/min).  
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Figure 15: Schematic and confocal images representing a mouse brain with 

anatomical location of late stage brain tumor, and longitudinal appearance of 

tumor and immune cells via imaging window.  

The continuous blue line schematic above the image panels represents the anatomical 

boundaries of a mouse brain, defining the brain into specific regions and is 

Figure 15 
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superimposed on a representative confocal image of ex vivo whole brain with mosaic of 

GL261 tumor (blue), CD11c-YFP cells (white) and T cells (red). The red continuous 

circle indicates the region of the brain tissue directly underneath a virtual open skull 

window and protected by glass cover slip through which longitudinal intravital imaging 

was performed.  

The panels below the schema are arranged in a clockwise fashion and show 

representative mosaics of tumor (blue), CD11c-YFP cells (green) and T cells (hCD2-

DsRed) acquired longitudinally by 2-photon microscopy via imaging skull window. 

Some regions of mouse skull (white/gray) can be visualized by SHG at late stage time 

points when the brain tumor size is near or beyond the edges of the skull window. 
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          Lastly, in contrast to GL261 and LLC, MCA fibro-sarcoma cancer cells engrafted 

and progressed until day 7 (Fig. 18 & movie 5). Interestingly, the recruitment of 

CD11c-YFP cells and T cells continued in the tumor region, surpassed tumor coverage 

in the imaging field of view, and only began declining after observable tumor regression 

between days 10 and 12. MCA-associated T cells did not show any significant change 

in average velocity throughout the imaging time points (~9μm/min). These data suggest 

that robust anti-tumor immune response is mounted in the brain contrary to the notion 

of brain immune privilege, that the recruitment of CD11c-YFP cells and T cells correlate 

in a time-dependent manner, and that the average velocity of T cells exhibited during 

migration vary in different brain tumor types spanning from relatively high migratory 

activity throughout the length of observation in MCA and GL261 tumors to very low 

activity in late stage LLC tumors. 
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Figure 16. Longitudinal intravital imaging of immune response in GL261 brain 

tumor.  

Representative still intravital images from time-lapse imaging of DCs (CD11c-YFP; 

white) and T cells (hCD2-DsRed) in GL261 brain tumor (blue) from 10 min to 28 days 

Figure 16 
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after intracranial implantation. The graphs below the image panels show the temporal 

dynamics of GL261 tumor growth and infiltration of CD11c-YFP cells and T cells in the 

field of view and the mean velocity of T cells over the time period of imaging (n = 1 

mouse; represents longitudinal imaging sessions conducted in 5-6 different 

experiments; *P < 0.05, ****P < 0.0001; mean velocity was analyzed by using the non-

linear mixed effects regression model). Scale bar represents 50µm. 
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Figure 17. Longitudinal intravital imaging of immune response in LLC brain 

tumor.  

Representative still intravital images from time-lapse imaging of DC (CD11c-YFP; 

white) and T cells (hCD2-DsRed) in LLC brain tumor (blue) from 5 days to 19 days after 

LLC cancer cell injection via the ICA using the thinned skull window approach. The 

Figure 17 

102 

 



graphs below the image panels show the temporal dynamics of LLC tumor growth and 

infiltration of DC cells and T cells in the field of view and the mean velocity of T cells 

over the time period of imaging. (n = 1 mouse; represents longitudinal imaging 

sessions conducted in 3-4 different experiments ns = not significant; ***P < 0.001, ****P 

< 0.0001; mean velocity was analyzed by using the non-linear mixed effects regression 

model). Scale bar represents 50µm. 
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Figure 18. Longitudinal intravital imaging of immune response in MCA brain 

tumor.  

Representative still intravital images from time-lapse imaging of CD11c-YFP (white) 

and T cells (hCD2-DsRed) in MCA brain tumor from 7 days to 12 days after LLC cancer 

cell injection via the ICA using the thinned skull window approach. MCA tumor 

regresses at day 10 and is not evident at day 12. The graphs below the image panels 

Figure 18 
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show the temporal dynamics of MCA tumor growth and infiltration of CD11c-YFP cells 

and T cells in the field of view and the mean velocity of T cells over the time period of 

imaging. (n = 1 mouse; represents longitudinal imaging sessions conducted in 5 mice 

in 3 different experiments; ns = not significant; mean velocity was analyzed by using 

the non-linear mixed effects regression model). Scale bar represents 50µm. 
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3.2b. CD11c-YFP cells preferentially associate with tumor and T cells relative to 

microglia  

I reasoned that since CD11c-YFP cells and T cells correlate temporally during 

recruitment and population of brain tumor types longitudinally, they may also correlate 

in space, in spatially organized niches within the brain tumor microenvironment. 

Remarkably, across different brain tumors including GL261, LLC, MCA, and B16-F10, I 

observed that tumors that were infiltrated by T cells were those that contained high 

densities of CD11c-YFP cells, which unlike the CD11c-negative microglia, are relatively 

rare in normal brain (Fig. 19 and 20). T cell densities strikingly correlated with CD11c-

YFP densities spatially in tumor at both the microscopic (single brain regions acquired 

by high-magnification objective) and macroscopic scales (whole brain) (Fig. 19c and 

Fig. 21). In macroscopic tumors, both T cells and CD11c+ DCs were found in high 

densities around tumor margins (Fig. 21). However, very few CD11c-YFP and T cells 

was observed in B16-F10 brain tumor with only a weak correlation between both cell 

types (Fig. 19a & b) This was not surprising, as this tumor type is historically known to 

be poorly immunogenic.  

It is conventionally believed that microglia are the predominant immune cell 

population in brain tumors and potentially regulate anti-tumor immune 

response191,246,460,461. Based on this, I evaluated the correlation of the area density of 

microglia to the area of the image field of view occupied by MCA brain metastatic 

tumors, and found only a weak correlation between the density of microglia, MCA 

tumor, or MCA tumor-infiltrating T cells. In contrast, the density of CD11c-YFP cells 

was strongly correlated with the area occupied by MCA tumor (Fig. 19a & c). This 
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suggested a critical role for CD11c-YFP cells in the regulation of T cell immune 

response in brain tumors.  

Based on such striking spatial correlation between CD11c-YFP cells and T cells, 

I next assessed the interaction pattern between these two cell populations by using 

intravital two-photon microscopy. In the spontaneously regressive MCA tumor, T cells 

migrated preferentially closer to CD11c-YFP cells and adjacent blood vessels than with 

the tumor itself (Fig. 22). Similarly, in the progressive GL261 tumor, T cells also 

migrated in swarms around CD11c-YFP cells (Fig. 23a & movie 6). Analysis of T cell 

motility tracks revealed that the T cells centered around CD11c-YFP cells over a 

distance of 8-12µm, which is close to the range obtained in a previous study involving 

in vivo intravital imaging studies of lymph node DC/T cell interactions462. However, T 

cells maintained a high local migration speed around CD11c-YFP cells over time 

despite their proximity, and this contrasts to previous observations in the lymph node 

where T cells proximal to DCs showed reduced speed295,379 (Fig. 23b). This would 

indicate presumably very transient contacts between the T cells and CD11c-YFP cells 

in GL261 brain tumor despite the clustered pattern of T cell swarms that could be easily 

presumed for prolonged interaction with CD11c-YFP cells. Further, in GL261, although 

T cells appeared confined, the confinement was relatively weak with a confinement 

radius of ~73um that became apparent only during long observations. In contrast to 

GL261, T cells in MCA brain tumor were more tightly confined around CD11c-YFP cells 

with a confinement radius of 33um (Fig. 23c). Together, CD11c-YFP cells and T cells 

correlate in brain tumor niches and T cells are organized and motile around CD11c-

YFP cells. 
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Figure 19 
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Figure 19: CD11c-YFP cells preferentially associated with tumor and T cells 

relative to microglia.  

a. Top: Representative confocal images showing localization of endogenous CD11c-

YFP cells (white) and T cells (hCD2-DsRed) in different types of brain tumor including 

GL261 glioma, LLC, and B16-F10 melanoma (blue) captured between days 13 and 19. 

Tumor types were generated by direct intracranial injection (GL261) and ICA injection 

(LLC and B16-F10). Bottom: Confocal images show localization of endogenous 

CX3CR1 cells (identified as mostly microglia based on distribution and morphology as 

described in chapter 3), CD11c-YFP cells, and T cells in MCA brain tumor induced by 

ICA injection. Scale bar represents 50 µm.   

b. The first three graphs show the correlation between T cells and CD11c-YFP cells in 

various tumor types (n = 2-4 mice/tumor type; 9 areas of tumor-associated immune 

cells were analyzed from an average of 2 tumor nodules per mouse; each dot 

represents a single area analyzed).  

c. Graphs show the correlation of CX3CR1-GFP microglia and CD11c-YFP cells to 

MCA tumor, and the correlation of T cells to CD11c-YFP cells and CX3CR1-GFP 

microglia cells (n = 4 mice; 9 areas of tumor-associated immune cells were analyzed 

from an average of 2 tumor nodules per mouse; each dot represents a single area 

analyzed).  
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Figure 20. Confocal image of healthy mouse brain 

Representative still image from a healthy mouse brain showing brain vasculature 

(TRITC-Dextran; red), microglia (green), and CD11c-YFP DCs (white). 
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Figure 21. Distribution of CD11c+ DCs and T cells correlate in brain tumor at a 

macroscopic level.  

Representative image of the axial (left) and coronal (right) planes GL261 brain tumor 

(blue) with associated CD11c-YFP DCs (white) and T cells (hCD2-DsRed), 

respectively. The cartoon in the middle depicts a mouse brain and the approximate 

location of the GL261 brain tumor. The dotted line demonstrates the margin of the brain 

and the straight line cuts through the midsection of the tumor. The corresponding line 

profile graph to the straight line shows the distribution of CD11c-YFP DCs and T cells 

in relation to GL261 brain tumor. (Represents experiments conducted in 5 different 

mice) 
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Figure 22: T cells preferentially associate with CD11c-YFP cells and the brain 

vasculature Graph shows an example of the frequency of T cells migrating at a given 

distance relative to vasculature, MCA tumor, and CD11c-YFP cells in intravital time-

lapse imaging in a day 7 MCA tumor. Individual tumor-infiltrating T cells were tracked, 

and the frequency of the distance between the mean positions of T cell tracks to 

vasculature, MCA tumor, and CD11c-YFP cells were plotted in the same graph. The 

left axis represents frequency of CD11c-YFP+ DC and blood vessel, while the right axis 

represents frequency of MCA tumor (n =4). 
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Figure 23: Brain tumor infiltrating T cells are organized in clusters around 

CD11c-YFP cells.   

a. Representative still intravital images of CD11c-YFP and T cellular interactions from 0 

– 30 min in a day 10 GL261 brain tumor (blue). The green spots are superimposed on 

T cells and represent the positions of T cells in the tumor. The color-coded lines 

Figure 23 

a 

b c 
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represent the tracks of T cells during the duration of acquisition of time-lapse images. 

In the bottom right image panel, the T cell track lines are segregated according to 

nearness to CD11c-YFP cells. The green lines represent tracks of proximal ( defined as 

0-7μm from the CD11c-YFP cell margin) T cells while the blue/violet lines indicate 

tracks of distal (defined as 9μm to infinity from CD11c-YFP cell margin) T cells. Scale 

bar represents 50µm.  

b. Graph shows the average distance of all T cells to CD11c-YFP cells (blue line; left Y 

axis) and the average speed of T cells (red line; right Y axis) in relation to the length of 

T cell migration time acquired (Represents experiments conducted 5-6 different times). 

c. Graphs show the squared average displacement of all T cells in GL261 and MCA 

tumor over the length of T cell migration time acquired (represents experiments 

conducted separately for ~5-6 different times). 

 

  

114 

 



3.3b. In situ imaging and quantification of myeloid cells in a novel myeloid reporter 

mouse reveals distinct localization of myeloid cell subsets in brain tumor. 

A better understanding of the myeloid immune cell composition of brain tumors 

is complicated by the presence of the brain resident microglia and infiltrating 

macrophages and monocytes.There are no reporter mouse models to properly 

delineate these two populations appropriately. Therefore, to characterize the myeloid 

cells in the brain tumor microenvironment, I generated a novel triple myeloid reporter 

mouse in which I could visualize different myeloid cells under the CX3CR1-GFP, 

CD11c-YFP, and CCR2-RFP promoters210,212,463.  With this new model, five myeloid 

cell types including microglia, patrolling monocytes (PMs), classical monocytes (CMs), 

mature and immature dendritic cells (DCs) can be potentially identified according to 

different combinations of fluorophore expression (Table 2).  

To gain insight into the composition and localization of brain tumor-associated 

myeloid cells, I then injected MCA cancer cells via the ICA and subsequently imaged 

engrafted brain tumors in fixed ex vivo thick brain tissue sections by using confocal 

microscopy.  Imaging revealed distinct localizations of the different myeloid cells in the 

tumor microenvironment (Fig.24a).  

Next, I developed a novel method of quantifying the myeloid cell populations 

directly from their actual localizations in the tumor and termed this method in situ tumor 

immune cytometry (iTIC). This method is detailed in chapter 2 and represents an 

advancement in cellular quantification in the field of imaging as it is the first method 

employing Imaris imaging software Spot detection tool and the recently developed 

Vantage analysis and plotting tool for cytometry purposes. The closest competing 

method to iTIC utilizes the colocalization tool on the same Imaris imaging software, but 
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has certain technical drawbacks464. For example, the colocalization values calculated 

and exported do not efficiently reproduce true fluorophore colocalization from an 

arithmetic and computational standpoint. In addition, the exported values have to be 

transported to Flowjo software for further analysis and graphing into dot plots. In 

contrast, the iTIC method utilizes the mean fluorophore intensity in a cell to calculate 

the extent of expression of different fluorophores expressed by the same cell of 

interest. Further, the dot plots are generated within the same software by using the 

Vantage tool. This allows for back and forth validation of the data as each spot can be 

visualized and interrogated by any user. Overall this approach is superior to 

conventional flow cytometry because cells are analyzed within retained tissue 

architecture and multi-layered tissue and does not involve cell processing as in flow 

cytometry tissue preparation, which could result in cell loss. Using the iTIC method, I 

was able to identify five distinct myeloid cell populations in the tumor microenvironment 

(Table 2) and account for their spatial localization in the tumor (Fig. 24b).  

After tissue analysis with iTIC, I identified the same five populations of myeloid 

cells outside the tumor and in the tumor regions (Fig. 24c). Interestingly, CD11c-YFP 

DCs were highly enriched in the tumor and were composed mainly of CD11c+ 

CX3CR1- and CD11c+ CX3CR1+ cells. In contrast, CX3CR1+ CD11c- cells were 

predominating outside the tumor region (Fig. 25a & b). In an attempt to better 

understand the composition of the tumor-infiltrating myeloid cells, I stratified the cells 

according to localization in the tumor core or tumor margin. I then analyzed the 

populations residing within each of these compartments and found a preferential 

enrichment of CD11c-YFP DCs (CD11c+ CX3CR1+ and CD11c+ CX3CR1-) at the 

tumor margin, while the CCR2 monocytes (CCR2+ CD11c- and CCR2+ CD11c+) were 
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preferentially enriched within the tumor core (Fig. 25c & d). More specifically, both 

mature and immature DCs dominated the margin and core of the tumor relative to the 

region outside the tumor denoted as the Extratumoral region ((ET); Fig. 24c).  

Interestingly, CMs as defined in Table 2, were preferentially enriched in the tumor core 

relative to the tumor margin or the region outside the tumor. Patrolling monocytes were 

few and were mostly localized in the core of the tumor and outside the tumor region. In 

support of our earlier observation (Fig. 19b), microglia were mostly present outside the 

tumor region relative to the tumor core and margin; however, there was no change in 

the density of microglia in the tumor versus the ET region (Fig.24c), suggesting that the 

tumor is not enriched for microglia as opposed to DCs and CMs.   

 

3.4b. CD11c-YFP cells are competent antigen presenting cells and T cell proliferation 

occurs in proximity to CD11c-YFP cells 

To determine the competence of CD11c-YFP cells to perform professional APC 

functions, I stained tumor-bearing brain tissue sections with MHC-II and by confocal 

imaging; I found preferential expression of MHC-II in tumor-associated CD11c-YFP 

cells compared to the surrounding CX3CR1+ CD11c- microglia (Fig. 26a). In addition, 

there were several examples of T cells undergoing proliferation in the brain tumor 

microenvironment. In most cases these events occurred in proximity to CD11c-YFP 

cells (Fig. 26b & movie 7). These data support the idea that CD11c-YFP cells are a 

key professional APC population in the brain tumor microenvironment. 
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Figure 24. In situ imaging and quantification of myeloid cells in a novel myeloid 

reporter mouse reveals distinct localization of myeloid cell subsets in brain 

tumor. 

a. Representative confocal maximum intensity projection of a 3-dimensional image of 

MCA brain tumor (blue) induced by ICA injection, CX3CR1-GFP (green), CD11c-YFP 

(white), and CCR2-RFP (red) cells.  

b. Arithmetic summation of individual myeloid subsets including CX3CR1-GFP, CD11c-

YFP, and CCR2-RFP cells on Imaris imaging software into a group defined as “parental 

group” (white). The parental group cells is split into two compartments, represented by 

spots (yellow), relative to the tumor; “in tumor” and “outside tumor”. The cells (spots) in 

tumor are further split with respect to the edge or core of the tumor as tumor margin 

and tumor core, respectively. CM = classical monocytes, PM = patrolling monocytes, 

and DC = dendritic cells. 

c. Graphs to the left and right show percentage and density, respectively, of myeloid 

cell subsets residing “outside tumor” or extratumoral (ET), “tumor core”, and “tumor 

margin.” (n = 4 mice from 2 different experiments). 
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Table 4.  

 

 

 

 

 

 

 

 

 

 

Table 2. Phenotypic myeloid cell markers used in this study. To define myeloid cell 

subsets based on these phenotypic markers, novel triple myeloid reporter mice were 

created to then define what populations may be operational within our brain tumor 

models. 

Different combinations of fluorophore marker expression were used to identify distinct 

myeloid cell subtypes including microglia, patrolling monocytes (PM), classical 

monocytes (CMs), and mature and immature DCs. 
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Figure 25 

Tumor myeloid cells 
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Figure 25. Various myeloid-derived immune populations have differential 

distribution in brain tumors.  

Vantage mode dot plots were generated using Imaris imaging software. Distinct 

myeloid cell subsets were identified based on genetically-tagged fluorophore 

expression in a triple myeloid reporter mouse strain based on relative in situ tissue 

location to brain tumor. Colors used in the dot plots are pseudo-colors and only indicate 

populations identified by the markers on the x and y axis. Representative dot plot to the 

left shows the percentage of the various tumor-infiltrating myeloid cells in situ, in (a) 

tumor, (b) extratumoral, (c) margin, and (d) core regions of MCA brain tumor. The 4 dot 

plots to the right show the percentage expression of CCR2-RFP by individual groups of 

myeloid cells in the leftmost panel. 
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Figure 26. Confocal image and intravital microscopy reveal the presence of 

competent CD11c-YFP APC and T cell proliferation in brain tumor 

a. Representative left merged confocal image of MCA brain tumor-associated CD11c-

YFP cells and CX3CR1-GFP cells, reveals coexpression of CD11c-YFP and MHC-II. 

Single panels to the right show MCA tumor, CX3CR1-GFP, CD11c-YFP, and MHC-II 

expresson. 

b. Representative still images showing intravital time-lapse imaging capture of a T cell 

(hCD2-DsRed) undergoing proliferation in association with CD11c-DCs. Yellow sphere 

Figure 26 
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marks the boundary of a T cell undergoing cell division (Observed in >5 different 

experiments). 
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3.5b. Localization of BM-derived CD11c-YFP cells and T cells in brain tumor correlate 

after adoptive co-transfer 

Non-microglial myeloid cells such as monocytes are robustly mobilized from the 

BM during tissue inflammation including brain cancer248,419. Therefore, I wanted to test 

the idea that BM-derived CD11c-YFP cells localize in brain tumors and serve as 

precursors for tumor-associated DCs.  In addition, I wanted to determine whether 

tumor-infiltrating T cells localize in BM-derived CD11c-YFP cell niches in the brain 

tumor microenvironment. To accomplish this, I isolated whole bone marrow (BM) cells 

from wild type double reporter mice in which I could visualize CD11c-YFP cells and T 

cells, and transferred fresh BM isolates into CX3CR1-Knockout tumor-bearing mice. 

BM cells were transferred into animals in two different groups; the first group received 

BM cells one day before MCA cancer cells were injected to the brain via the ICA, and 

the second group received BM cells fourteen days after cancer cell injection. Upon 

imaging of late stage tumor-bearing tissue sections at day twenty after cancer cell 

injection, I found that BM-derived CD11c-YFP cells localized in brain tumor and 

surprisingly, T cells also localized in tumor-associated CD11c-YFP cell niches within  

brain tumor microenvironment in both groups of mice receiving BM cells at an early and 

late time point (Fig. 27a). The CD11c-YFP cells also bore striking morphological 

resemblance to endogenous brain tumor associated-DCs previously observed. 

Quantitatively, the CD11c-YFP cells were specifically localized in tumor in comparison 

with non-tumor regions (Fig. 27b). In addition, T cells correlated strongly with CD11c-

YFP cells in brain tumors from mice that received CD11c-YFP cells and T cells a day 

before or 14 days after cancer injection (Fig. 27c). This indicates that BM-derived 

CD11c-YFP monocytes populate brain tumors and presumably differentiate into 
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competent antigen presenting DCs at different stages of brain tumor growth. In 

addition, it supported the idea that CD11c-DCs play a role in the localization of T cells 

in brain tumor. 

3.6b. CD11c-YFP cells are important for the retention and motility of T cell subsets in 

brain tumor 

I reasoned that since T cells localize and tend to form clusters around CD11c-YFP cells 

in the local tumor milieu that CD11c-YFP cells might be important in regulating T cell 

dynamics. To test this idea, I evaluated double reporter mice in which I could both 

visualize CD11c-YFP cells and T cells and also manipulate CD11c-YFP cells; this was 

possible because the double reporter mouse strain also expressed diphtheria toxin 

receptor (DTR) under the CD11c promoter. In CD11c-DTR expressing mice, CD11c 

cells can be specifically depleted by consecutive injections of small concentrations 

(100ng/day) of diphtheria toxin (DT). I then implanted GL261 cancer cells intra-cranially 

into DTR-expressing or DTR-non-expressing control mouse brain, and imaged the 

tumor longitudinally. I chose an intermediate tumor growth time point of day 10 to begin 

imaging as this time point showed robust CD11c-YFP and T cell recruitment in the 

tumor in most mice. I then obtained baseline time-lapse movies of CD11c-YFP cells 

and T cells in the tumor at day 10 and this was followed by injecting mice with DT 

intraperitoneally (100ng/day) at days 11 and 12, before eventually obtaining post-DT 

treatment time-lapse movies at day 13 and day 16. I used 100ng/day of DT because it 

produced the most optimal and consistent depletion of CD11c-YFP cells over a short 

duration of only two days in my experience. Following treatment with DT, as expected, 

CD11c-YFP cells were almost completely eliminated in the tumor (Fig. 28a & movie 8). 

The numbers of T cells also decreased sharply (Fig. 28a & b); this was unexpected 
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because I had hypothesized that in the GL261 progressive tumor, T cells were “held” 

by DCs in presumably unproductive interactions and I anticipated that after elimination 

of the DCs, T cells would be released from interacting with CD11c-YFP cells, 

redistribute in the tumor and potentially show cytotoxic behavior.  I then analyzed the 

motility of T cells and found a significant reduction in the mean velocity of T cells post-

DT treatment when compared to the pre-DT baseline.  Correspondingly, T cells showed 

more arrest after DT treatment in comparison with the baseline (Fig. 29a-c and movie 

9). In contrast, there was no significant change in the motility of T cells in the DTR-non-

expressing control mice between pre-DT and post-DT scenarios.  (Fig. 29b-c & movie 

9). This indicates that CD11c-YFP cells are important for the retention of T cells in the 

tumor microenvironment and in controlling their motility. When I analyzed for FoxP3 

Tregs, which are much fewer than non-FoxP3 expressing T cells in brain tumor, I found 

that Treg motility was significantly decreased but less affected than T cells (Fig. 30 and 

movie 10). Overall, the experiments conducted here showed a critical role for CD11c-

DCs in retaining T cells and Tregs in GL261 brain tumor and in regulating their motility 

behavior.  
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Figure 27. Transfer of bone marrow cells into brain tumor-bearing mice reveals 

correlation of CD11c-YFP and T cell localization in tumor. 

a. Representative images showing the localization of CD11c-YFP cells (white) and T 

cells (hCD2-DsRed) in a 21-day MCA brain tumor after BM transfer. The left panel 

Figure 27 

128 

 



represents cell localization in tumor after BM cells were transferred a day before cancer 

cell injection via ICA. The right panel represents cell localization in tumor after BM 

transfer 14 days after cancer cell injection via ICA. 

b. Frequency of CD11c-YFP cells in MCA brain tumor (T) in comparison with non-

tumor (NT) regions of the brain. A group of colored dots in the graph represent all 

metastatic tumor nodules randomly imaged and analyzed from a single mouse. Each 

dot represents the number of CD11c-YFP cells localized within a single metastatic 

tumor nodule or field of view (n = 3 mice/group; ****P <0.0001; frequency of CD11c-

YFP cell analysis was done by non-linear mixed effects regression model).  

c. Correlation of total T cells per tumor nodule or field of view and CD11c-YFP cells in 

the same field of view. Left graph represents cell correlation in tumor in experiments in 

which BM was transferred to tumor-bearing mice 1 day before cancer cell injection and 

right graph represents cell correlation in tumor from experiment in which BM was 

transferred to tumor-bearing mice 14 days after cancer cell injection (n = 3 mice/group). 

Different colors represent tumor nodules from different mice. A group of dots of the 

same color in the graph represent all metastatic tumor nodules randomly imaged and 

analyzed from a single mouse. Each dot represents the correlation of the area of 

distribution of CD11c-YFP DC and T cell in a tumor nodule or field of view. 
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Figure 28. Longitudinal intravital imaging reveals CD11c-YFP cells are important 

for the retention and motility of T cell subsets in brain tumor.   

a. Representative still images of longitudinal imaging sessions of endogenous CD11c-

YFP cells (white), total T cells (red) and Gl261 brain tumor (blue) in CD11c-DTR 

transgenic mice at days 10, 13 and 16. Mice were treated with intraperitoneal injections 

Figure 28 

b. CD11c-YFP 
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of DT at days 11 and 12 (n = 5 mice in 5 different longitudinal experiments). Scale bar 

represents 50µm.  

b. Percentage of CD11c-YFP cells and T cells in the imaging field of view on days 10 

and 13 before and after depletion of CD11c-YFP cells, respectively. Each colored line 

represents longitudinal depletion of CD11c-YFP DCs and associated change in T cell 

numbers per field of view in a GL261 brain tumor-bearing mouse.  
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Figure 29. Longitudinal intravital imaging reveals CD11c-YFP cells are important 

for the retention and motility of T cell subsets in brain tumor.   

Figure 29 

c 

132 

 



a & b. Representative still images of longitudinal imaging sessions of endogenous 

CD11c-YFP cells, total T cells and Gl261-mCerulean glioma tumor in CD11c-DTR 

transgenic mice (upper image panels) and wild type mice (lower image panels) at days 

10 and 13. Mice were treated with intraperitoneal injections of DT at only days 11 and 

12.  

c. Graphs show mean velocity and arrest coefficient of T cells at days 10 and 13 before 

and after treatment of CD11c-DTR transgenic mice (n = 4 mice accumulated from 4 

different longitudinal experiments; experiment was repeated ~8 times and only movies 

with trackable T cells were included for analysis; mean velocity and arrest coefficient 

analysis were done by non-linear mixed effects regression model and Nested Mann-

Whitney-Wilcoxon Test, respectively; ***P < 0.001,  ****P < 0.0001, ns = not significant) 

and wild type mice with DT, respectively (n = 2 accumulated from 2 different 

longitudinal experiments; experiment was repeated ~6 times). Different colors 

represent T cells from different mice.  
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Figure 30:  Longitudinal intravital imaging reveals CD11c-YFP cells are important 

for the retention and motility of Tregs in brain tumor.   

Representative still images obtained from longitudinal 2-photon intravital imaging 

sessions of GL261-mCerulean tumor, and endogenous Tregs at day 10 and 13. 

CD11c-DTR mice were treated by intraperitoneal injection of DT at days 11 and 12. 

Graphs show the mean velocity and arrest coefficient of Tregs before and after 

depletion of CD11c-YFP cells (n = 2 mice accumulated from 2 different longitudinal 

experiments; ns = not significant; **P = 0.01; experiment was conducted ~5 times and 

only movies with trackable T cells were included for analysis). Scale bar represents 

50μm. (Mean velocity and arrest coefficient analysis were done by Non-linear mixed 

effects regression model and Nested Mann-Whitney-Wilcoxon Test) 

Figure 30 

134 

 



3.7b. Batf3 transcription is not important for CD11c-DC-mediated control of brain tumor.  

Effective control of tumors generated in peripheral organs has been associated 

with efficient cross-presentation of antigens by Batf3-dependent DCs to CD8 T cells in 

the tumor bed279. As introduced in chapter 1, Batf3 is a transcription factor that 

regulates the development and function of CD8ɑ+/CD103 DCs. In Batf3-KO mice, 

CD8ɑ+/CD103 DCs are absent, and antigen cross-presentation is deficient. Therefore, 

I sought to test the role of Batf3-dependent CD8ɑ+ DCs in the control of brain tumor 

growth. To test this, I injected MCA cancer cells into the brains of WT or Batf3-KO mice 

via the internal carotid artery. Following visualization of sections of tumor-bearing brain 

tissues and quantification, tumor growth in Batf3-KO mice appeared comparable to 

growth in WT mice (Fig. 31a & b), indicating that MCA brain tumor growth is not 

dependent on the Batf3 transcriptional network in DCs, at least in the model tested 

here. In addition, visualization of CD11c-YFP cells and T cells in Batf3-KO mice 

revealed qualitatively comparable infiltration of CD11c-YFP cells and T cells in the 

tumor.  
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Figure 31 
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Figure 31. Batf3 is not important for CD11c-DC-mediated control of brain tumor.  

A. Growth of MCA fibrosarcoma in the brains of wild-type and Batf3-KO mice at day 20 

following injection of 105 fluorescent-labeled MCA- cells via the internal carotid artery. 

Tumor is in glow-scale and indicated by the white arrows. Scale bar represents 1mm. 

B. Graph shows percentage of brain tissue covered by tumor and each dot represents 

a mouse (n = 3 mice/group; ns = not significant; unpaired t test).  

C. Representative confocal images obtained from brain tissue sections from wild type 

and Batf3-KO mice at day 20 showing CD11c-YFP and T cells in association with MCA 

tumor.  
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Discussion 

To our knowledge, this is the first documented evidence of real time T cell 

dynamics in brain tumors. By applying different methods including direct and indirect 

cancer cell injection and longitudinal intravital imaging, I have uncovered a 

spatiotemporal relationship between T cells and CD11c DCs in brain tumors. 

Interestingly, this was pervasive across different tumor types evaluated, except for the 

poorly immunogenic B16-F10 melanoma, which had very few T cells and CD11c DCs 

present in the tumor to begin with. Overall, T cells formed clusters around CD11c DCs 

but this was not terribly surprising as this finding is consistent with a previous study that 

documented the “entrapment” of T cells in CD11c DC network465; however, the fact that 

T cells continued to migrate around CD11c DCs in a random pattern in such confined 

area was unexpected. Although migration of T cells in clusters or confined spaces 

usually reflect decreased velocity and prolonged interactions between T cells and 

CD11c DCs in studies utilizing model tumor antigens, I detected few events of long-

lived contacts between T cells and CD11c DCs in a model presumably involving 

polyclonal T cells. This suggests that T cells could be transiently interacting with CD11c 

DCs to gather signals for reactivation in the tumor or T cells are only organized in such 

patterns by yet unidentified CD11c DC-associated molecules or chemokine gradient(s). 

In support of the former, tumor associated CD11c DCs showed preferential expression 

of MHC-II and correspondingly, I observed multiple instances of T cell proliferation in 

MCA and GL261 tumor ̶ a phenomenon that may be a more common than previously 

believed. On the other hand, given the above observations it is also possible that T 

cells engaging CD11c DCs in short-lived contacts in the progressive GL261 model may 
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be undergoing tolerization in similarity to a DC/T cell interaction pattern previously 

detailed in the lymph node379.  

A key finding of this study is the demonstration that myeloid cells including 

dendritic cells and classical monocytes, rather than microglia, are preferentially 

enriched in brain tumors and play a dominant role in T cell tumor surveillance. This is in 

contrast with previous studies that have highlighted the predominance of microglia-like 

cells in various brain tumor types and their immune suppressive 

properties216,232,446,460,461,466-468. This discovery was made possible by the iTIC method, 

which I used to delineate and identify major myeloid cell subsets and their spatial 

localization in the brain tumor microenvironment. The distinct localization of mature 

dendritic cells and classical monocytes to the margin and core of the tumor, 

respectively, was particularly striking. These two cell populations have been 

documented to play distinct roles in tumor, with mature DCs playing mostly an anti-

tumor role, while the classical monocytes are known to be tumor supportive, at least in 

other types of extracranial tumor models28,255,258,356,419. In addition, the revelation of 

distinct organization patterns of “mature” and “immature DC” populations at the margin 

and core of the tumor by iTIC quantification methodology suggests likely ongoing 

differentiation of “immature DCs” or monocytes to mature DCs in the tumor and may 

involve cytokine or antigen-dependent differentiation mechanisms. However, it is also 

possible that the localization of mature DCs at the tumor margin and CM in the tumor 

core represent opposing forces during brain tumor progression, as mature DCs and CM 

have been shown to be mostly anti-tumor and pro-tumor258,419, respectively.  

Another surprising discovery in this study is that CD11c DCs control T cell 

retention and their migratory pattern in brain tumors. Although we nurtured the idea that 
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we could eliminate CD11c DCs to “free-up” T cells from CD11c DC “entrapment465,” the 

numbers of T cells decreased dramatically, rather than redistribute in the tumor, and 

the T cells became relatively less motile when compared to controls. This suggests that 

CD11c DCs are necessary for effective T cell surveillance in the tumor. It also suggests 

a role for strategies that enhance infiltration of DCs into the tumor microenvironment or 

combine DC and T cell for tumor immunotherapy as opposed to conventional strategies 

employing either DCs or T cells exclusively. For example, adoptive transfer of TILs or 

engineered chimeric antigen receptor (CAR) T cells may profit from an additional 

strategy of enhancing DC infiltration into the tumor to potentially aid in the retention and 

anti-tumor function of TILs or CAR-T cells at the tumor. This finding also aligns well 

with the recent observation of a subset of rare tumor-associated CD103+ DCs 

mediating the anti-tumor effects of anti-CTLA4 checkpoint blockade in 

melanoma457,469,470. Although we could not implicate the Batf3-dependent CD8α+ DCs, 

which shares the same transcription factors as CD103+ DCs, several compensatory 

transcriptional pathways such as Irf4 and Irf8 have recently been elucidated that allow 

the development of CD8α+ DCs. Importantly, Batf3-dependent CD8α+ DCs are absent 

in Batf3-knockout mice on the 129 SvEV mouse background but not the C57Bl6 

background, suggesting that mouse background may impact encoding of the Batf3-

knockout transgene471. In this study, C57Bl6 mice were used and this could further 

account for the disparity between our results and published findings279,280,285,286,471. 

Future experiments utilizing mice with complete absence of CD8a+/CD103+ in C57Bl6 

mice or other Batf3-KO mouse strains will be important in determining the role of this 

DC population in the immune control of brain tumors.  
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One limitation of this study is the lack of specificity of CD11c expression as a 

marker to distinguish DCs from other macrophages. While the CD11c-YFP transgenic 

mouse model remains very useful in gaining unprecedented appreciation of the 

dynamics of “DCs” and T cells in intravital imaging experiments, better mouse models 

that specifically identify only DCs will be important in clarifying the specific functions of 

DCs relative to other macrophage subtypes. However, theoretically, it may be 

impossible to distinguish all DCs from macrophages, as both cell types arise from a 

common macrophage dendritic progenitor (MDP)  cell, and these cells utilize very 

similar signaling pathways and genetic programs during differentiation472-475. In 

addition, given present technology, it is almost impossible to predict MDP differentiation 

into specific lineages and may present a challenge for developing a transgenic reporter 

mouse that fatefully reveals a single lineage. Also, confounding issues with local tissue 

factors such as cytokines altering the plasticity of potentially differentiated cell types 

cannot be excluded. This may add to the complexity of achieving a goal of cellular 

specificity for DC fluorescent reporter mouse models. Regardless, distinct DC subsets 

such as conventional DCs regulated by Zbtb46 transcription factor have been recently 

engineered for studies on conventional DCs457,476.     

The discovery of distinct myeloid cell organization in different tumor regions by 

the iTIC method provides a framework to begin understanding brain tumor-associated 

myeloid cells. Although this finding needs to be validated in more tumor types, it calls 

into question the long-held notions about myeloid cell types believed to be dominant in 

controlling brain tumor immune surveillance. In the literature, methods that appear to 

have been confounded by the techniques used to initiate brain tumors (intracranial 

injection) and process/analyse brain tumor specimens (flow cytometry procedures) may 

141 

 



have introduced immune cell artifacts such as trauma-induced inflammation and cell 

loss due to tissue processing, respectively, and led to confusion about the composition 

of tumor-infiltrating myeloid cells in brain tumor444-446. Presumably due to these 

limitations, most studies have pooled different tumor-associated myeloid cells under a 

single arc usually coined as the “microglia/macrophages” entity216,477-489. Regardless, 

distinguishing myeloid cell populations is still a difficult task as techniques and distinct 

surface markers to separate different subsets of myeloid cells infiltrating brain tumor in 

their native tumor microenvironment in situ are still being developed.  With availability 

of more reporter mice tagged with cell lineage-specific fluorophores210,212 myeloid cell 

lineages may likely be better teased apart to better understand the composition of 

myeloid cell types and their spatial organization in tumor. In fact, when this approach is 

potentially combined with conventional gene profiling methods such as in situ 

hybridization, a lot of new knowledge may be obtained in terms of associating gene 

expression to cellular phenotype, tissue localization, and dynamic cellular behavior.   

Based on the findings presented here, the presence of CD11c+ DC in tumor or 

similar DCs identified by more robust markers in human tissues may positively impact 

the prognosis of brain tumor patients being treated with immunotherapy. In support of 

this idea, a recent study showed that high expression of CD11c cells469 or DCs was a 

good prognostic factor for patients with different cancer types490,491. However, further 

experiments are needed to determine whether CD11c+ DC population is necessary 

during immunotherapy in brain tumor models.  
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CHAPTER 4: IMMUNE RESPONSE TOWARD BRAIN METASTASIS DEPENDS ON 

THE FRACTALKINE- CX3CR1 RECEPTOR AXIS 
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Introduction 

Immune surveillance of tumor is highly dependent on dynamic cell migration and 

cell-cell contact372,379,400,492,493. For effective immune surveillance to occur, T cells must 

travel to the site of the tumor after being primed by antigen presenting cells in tumor-

draining lymph nodes372,375,379,398. In tumor, T cells show migratory patterns that must 

be regulated for effective tumor control372. However, little is known about the molecular 

mechanisms regulating the dynamics of T cell tumor surveillance in the brain. 

Chemokines are widely known to regulate immune cell migration in host homeostasis, 

defense, and tolerance294,494. Studies of inflammatory disorders in mouse models have 

revealed the importance of chemokines in mediating innate and adaptive immune 

responses in autoimmunity, infection, and anti-tumor immune surveillance407,414,495.  

There are numerous chemokines that mediate immune responses within 

different tissues and they are organized in an organ-specific manner413,496. The stromal-

derived factor 1 (SDF1) chemokine and its receptors CXCR4/CXCR7 are necessary for 

embryonic survival including neuronal migration and vasculogenesis, and has been the 

most studied chemokine pathway in brain tumors497. Importantly, SDF1 and CXCR7 are 

upregulated in tumor endothelium, microglia, and glioma cancer cells in glioma tissue 

while CXCR4 has been shown to be highly expressed in high grade GBM and in glioma 

stem-like cells498-500. The SDF1 pathway works by preventing apoptosis in glioma cells 

and inducing increased tumor angiogenesis/vasculogenesis501-503; however, inhibition 

of CXCR4 or CXCR7 has resulted in increased apoptosis and decreased proliferation 

of glioma cells504-506. The monocyte chemoattractant protein 1 (MCP-1/CCL2) is 

another chemokine that is produced by microglia in inflammatory conditions or in 

glioma tissue and known to attract Tregs, effector T cells, and inflammatory monocytes 
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via its receptor CCR2347,419,502,507,508. In addition, the CCL22/CCR4 pathway has been 

implicated in recruiting T cells to brain tumor508-510. Microglia express CCR5 and 

inhibition of CCR5 prevented transition to an “M2” immune suppressive 

phenotype511,512. CXCL2-CXCR2 is up-regulated by brain resident perivascular myeloid 

cells and inhibition reduced tumor vessel density and glioma size513. Other chemokines 

expressed in glioma or implicated in glioma progression include CXCR3, CCL20/CCR6, 

CXCL16/CXCR6, CCL27/CCR10514-518.  

However, the aforementioned chemokines are inducible in glioma tissue and 

presumably operate equally in inflammatory conditions in other mammalian tissues as 

in glioma. In contrast, there may be chemokines that operate in an organ-specific 

manner even in the brain.   Fractalkine is one such chemokine that is highly expressed 

by neurons in the healthy brain, and to a lesser extent by epithelia in other tissues such 

as the kidney, lung, and uterus411,519. Fractalkine is known to control the migration of 

several myeloid cell types and some T cells via its only known receptor, CX3CR1419. 

Because of its high expression in the brain, Fractalkine could be a key regulator of anti-

tumor immunity in the brain; however, its involvement in brain tumor T cell immune 

surveillance is largely unexplored. Fractalkine is unique as it is the only member of the 

fourth class of CX3C- family of chemokines. It is constitutively membrane-bound on 

neurons and is produced as a long protein with cytoplasmic, transmembrane, mucin-

like stalk, and chemokine domains. In addition, it can assume a soluble form following 

cleavage by metalloproteinases such as ADAM10 and 17520. This form accesses the 

circulation and is important for the recruitment of CX3CR1-expressing cells412,519,520. 

Fractalkine may be released into the tissue and circulation in the setting of CNS 

injury521,522. In this regard, brain tumors show striking similarity to CNS injury events as 
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they progressively invade the surrounding tissue architecture and potentially induces 

responses from the surrounding brain tissue including neurons. Therefore, the 

possibility that traumatized neurons surrounding brain tumors could upregulate 

expression or release soluble Fractalkine is likely.  The process of brain tumor growth 

is associated with increased expression of metalloproteinases27,523 . Therefore it is 

probable that this process may be utilized in upregulating relevant metalloproteinases 

such as ADAM10 and 17, which could then cleave fractalkine into the circulation. 

CX3CR1 is a G-protein coupled receptor that is expressed on the surface 

membrane of various immune cell types including microglia, macrophages, monocytes, 

DCs, and T cells210,413. CX3CR1 is known to be important in cell migration and 

adhesion524-526. Using genetically engineered mice, CX3CR1 has been shown to be 

important in the pathogenesis of Alzheimer’s disease, atherosclerosis, diabetes 

mellitus, atopy, HIV, and cancer414,415,419,527,528. In addition, single nucleotide 

polymorphisms of CX3CR1 have been implicated in several inflammatory disease 

conditions such as atherosclerosis, HIV/AIDs, and atopic dermatitis529-531. Although 

deficiency of CX3CR1 was recently shown to regulate infiltration of immune 

suppressive monocytes in glioma progression419, its role in the regulation of brain tumor 

immune surveillance is lacking especially with regards to T cell involvement, and in the 

regulation of antigen presenting myeloid and T cell dynamics in brain tumor. Therefore, 

based on the expression of Fractalkine in the brain, I hypothesized that the Fractalkine-

CX3CR1 axis counteracts brain tumor progression by regulating anti-tumor immune 

responses.  
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Results 

4.1. MCA brain tumor progression is controlled by T cells 

Different tumor lines were found to have a differential propensity to grow within 

the brain of mice. Specifically, B16 melanoma and Lewis Lung Carcinoma (LLC) 

demonstrated engraftment and rapid growth within 14-21 days after in vivo injection.  In 

contrast, the fibrosarcoma line, MCA, initially demonstrated engraftment in the brain but 

failed to grow. This was not an issue of tissue kinetics or cancer cell viability since MCA 

demonstrated robust growth in vivo in the lung (Fig 32), indicating that there was a 

unique property of the MCA line that allowed immunological recognition and clearance.  

To determine whether adaptive immune surveillance is critical for progression of 

MCA brain tumor, I injected MCA cancer cells via the ICA to the brain of Rag-KO mice, 

which are deficient in T and B cells. After mice were sacrificed at late time points of day 

18-20, brain sections visualized by confocal microscopy revealed significantly larger 

tumor in brain of Rag-KO mice in comparison to wild type (WT) mice (Fig 33a &b). This 

established the role of the adaptive immune system in the control of ICA-induced MCA 

brain tumor.  

To specifically test the role of T cells in MCA anti-tumor immunity, CD8 cytotoxic 

T cells known to play a major role in killing cancer cells were depleted one day before 

or 5 days after MCA cancer cells were injected into C57Bl/6 WT mice as described in 

chapter 2. After depletion of CD8 T cells one day before cancer cell injection, MCA 

brain tumors were found to be significantly larger relative to WT control mice, indicating 

that CD8 T cells control MCA brain tumor growth (Figure 33c). However, depletion of 

CD8 T cells 5 days after injection of cancer cells resulted only in a trend towards 

increased MCA brain tumor growth. Furthermore, intravital microscopy of MCA brain 
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tumor in WT reporter mice revealed fragmentation of MCA tumor (Figure 33d and 

movie 11). This coincided with persistence of T cells in association with CD11c-YFP 

cells in the fragmenting tumor nodule, reminiscent of observations documented in 

chapter 4. Although T cells in associating with the tumor exhibited stable engagement, 

other T cells within the vicinity of the tumor showed less stable engagement or no 

engagement.  

 

4.2. The Fractalkine/CX3CR1 axis is dysregulated in glioblastoma patient myeloid cells 

and control of MCA brain metastases in mice depends on the Fractalkine/CX3CR1 

pathway 

To identify molecular candidates that may regulate brain tumor immune surveillance by 

T cells, I mined several databases including BioGPS which I analyzed for mRNA 

expression of chemokines in different mammalian tissues. Fractalkine was identified as 

a lead candidate based on species conservation and relatively higher expression in the 

brain in comparison with other mammalian tissues in mice and humans. (Fig. 34 & 35). 

In a bid to explore the role of Fractalkine in regulating brain tumor immune surveillance, 

healthy and tumor-bearing mice brain tissue sections were stained with anti-Fractalkine 

antibody in order to visualize the expression of Fractalkine. By using confocal 

microscopy, I found high expression of Fractalkine at the margin of MCA and GL261 

tumor as opposed to its discrete cellular localization in healthy brain tissue, presumably 

within neurons as has been previously documented410,519 (Fig. 36a & b). 
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Figure 32: MCA brain metastases establish efficiently in lung but not brain.  

a. Growth of B16, LLC, and MCA tumors (blue) in the brains or lungs of wild-type mice 

after injection of 105 fluorescent-labeled cancer cells via the internal carotid artery or 

tail vein, respectively. Panels within the red line rectangle indicate inefficient growth of 

MCA in the brains of mice at later time points 

b. Percentage of brain parenchyma area in coronal plane infiltrated by tumor. Each dot 

represents one mouse [GL261 (n = 5), LLC (n = 7), B16-F10 (n = 2), and MCA (n = 29); 

mice were pooled from >2 experiments]. The numbers in parenthesis in the x-axis 

represent the range of time points when mice were sacrificed for analysis. 

Figure 32 

a. 

b. 
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Figure 33: Growth of MCA is controlled by CD8 T cells.  

a. Confocal images of coronal brain sections from WT and Rag-KO mice showing 

growth of MCA at day 20 following ICA cancer cell injection.  Scale bar represents 

1mm.  

Figure 33 
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b. Graph shows the percentage of brain parenchyma infiltrated by tumor in the coronal 

plane and each dot represents a mouse (**P < 0.001; n = 7-13 mice/group; pooled from 

2 different experiments; Mann-Whitney non-parametric test).  

c. Growth of MCA in the brains of control mice or mice injected with anti-CD8α 

depleting antibody (100mg/ml; intraperitoneally; Clone #53-6.72, BioXcell, San Diego, 

CA) at day 20 following injection of MCA cancer cells via the ICA. Graph shows the 

percentage of the brain parenchyma area in coronal plane infiltrated by tumor and each 

dot represents a mouse (n = 5-8 mice/group, pooled from 2 different experiments). 

Scale bar represents 1mm. D-1 and D5 represent two different groups of mice that 

were treated with CD8 depleting antibody beginning one day before they were injected 

with cancer cells via the ICA or five days after cancer cells were injected in mice.  *P < 

0.05, ns = not significant.  

d. Representative image panels to the left show MCA-mCerulean fibrosarcoma brain 

tumor (blue) undergoing fragmentation in association with CD11c+DCs (white) and T 

cells (hCD2-DsRed; time span of active fragmentation is shown in the top left corner of 

the upper panels). Representative time-projection image panel in the middle shows 

areas of T cell persistence (pink) at the tumor site during a 1-hour time-lapse image 

acquisition. In the right panel, time color-coded tracks indicate T cell migration tracks 

over 1 hour; T cell migration tracks proximal to tumor/CD11c-YFP DCs appear more 

clustered in comparison with distal tracks. Scale bar represents 10μm.   
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To test for the relevance of Fractalkine signaling pathway in human brain tumor 

patients, NanoString digital color-coded barcode technology was used to measure the 

mRNA expression of Fractalkine receptor, CX3CR1. This was done using CD14+ 

peripheral blood monocytes from healthy donors and GBM patients, and CD14+ 

myeloid cells from normal post-mortem/epilepsy brain tissue and tumor-infiltrating GBM 

myeloid cells. Interestingly, CX3CR1 mRNA levels were significantly reduced in CD14+ 

PBMCs and GBM tumor-myeloid cells in almost all GBM patient specimens tested in 

comparison with control samples (Fig. 36c & d). Therefore, to test for the importance of 

Fractalkine signaling via CX3CR1 in brain tumor progression, MCA cancer cells were 

injected via the ICA into CX3CR1-KO mice, and wild type (WT) and CX3CR1-

heterozygous mice were used as controls. This was based on the reasoning that 

knockout of CX3CR1 would disrupt Fractalkine signaling and the consequent immune 

surveillance, thereby enabling progression of the spontaneously regressing MCA brain 

tumor. After confocal imaging of MCA tumor-bearing brain tissue sections and analysis, 

significantly larger tumors were found in CX3CR1-KO mice in comparison with WT 

mice. Unexpectedly, MCA tumors in CX3CR1 heterozygous mice were also 

significantly larger than in WT mice (Fig. 37). This suggested that Fractalkine signaling 

via CX3CR1 is important at different levels of its expression in counteracting the 

progression of brain tumors, at least in the MCA tumor model.  

In line with a role for Fractalkine/CX3CR1 signaling in tumor progression, I 

reasoned that absence of fractalkine signaling could impact the dynamics of CD11c-

YFP cells and T cells. Interestingly, when the density of T cells and CD11c-YFP cells 

was quantified in MCA tumor, both populations were highly reduced in CX3CR1-

heterozygous and CX3CR1-KO mice in comparison with WT mice (Fig. 38a-c). In 
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addition, the surface of tumor covered by T cells was reduced in CX3CR1-

heterozygous and CX3CR1-KO mice relative to WT controls; however, the capacity of 

T cells to contact cancer cells was not significantly altered (Fig. 39). This suggested 

that the Fractalkine/CX3CR1 signaling pathway supports the recruitment of CD11c-

YFP cells and T cells to MCA brain tumor.  

4.3. CX3CR1 controls T cell motility patterns in the tumor 

Finally, I investigated the role of Fractalkine/CX3CR1 signaling in regulation of T 

cell motility in brain tumor. To test this, MCA cancer cells were injected via the ICA  WT 

and CX3CR1-KO mice. By acquiring time-lapse movies of T cells in tumor-bearing WT 

or CX3CR1-KO mice between 7-10 days after cancer cell injection and tracking the T 

cells (Fig. 40a and movie 12), radial tracking plots of T cells showed that T cells in 

CX3CR1-KO mice diverged more from their track origin whereas those in WT mice 

were in swarmed or clustered in the tumor region and remained closer to their track 

origins (Fig. 40b). No difference in T cell velocity and meandering was found between 

CX3CR1-KO and WT mice; however, T cells in CX3CR1-KO mice were more diffuse, 

and were less arrested at the tumor (Fig. 40c). These data supports the idea that the 

lack of Fractalkine signaling via CX3CR1 leads to altered and inefficient anti-tumor T 

cell motility patterns in brain tumor. 
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Figure 34: Histogram showing gene expression level of fractalkine in different tissues 

and organs in mice (http://biogps.org/#goto=genereport&id=20312). 
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Figure 35: Histogram showing gene expression level of fractalkine in different tissues 

and organs in human tissue specimens http://biogps.org/#goto=genereport&id=20312). 
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Figure 36 

Extratumoral region 
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Figure 36. Fractalkine is highly expressed at the margin of brain tumors, and 

expression of its receptor CX3CR1, is reduced in GBM patients.  

a. Representative confocal images of ex vivo brain tumor tissue sections showing 

expression of Fractalkine in normal brain, and MCA and GL261 brain tumors. MCA 

tumor was generated by ICA injection while GL261 was directly implanted by ICr-

injection. Scale bar represents 50μm. 

b. Intensity profile of Fractalkine obtained from 10 different MCA tumor nodules (n = 3). 

The intensity line profile cuts across the margin of the tumor beginning from inside the 

tumor and extending to relatively normal brain tissue.   

c. Gene expression level of CX3CR1 on CD14+ monocytes obtained from peripheral 

blood of healthy donors and GBM patients (n = 11; unpaired t test).  

d. Gene expression level of CD14+ myeloid cells obtained from normal brain tissue 

(post mortem/epilepsy patients) and GBM patients. Each dot represents a patient (n = 

11; unpaired t test).  

*Sungho Lee, MD PhD was helpful in staining normal brain tissues for Fractalkine in 

figure a. 

*Konrad Gabrusiewicz, PhD and Amy Heimberger, MD, were helpful in conducting and 

discussing experiments in figures c and d, and kindly shared the results for this thesis. 
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Figure 37. CX3CR1 deficiency in mice is important for efficient establishment of 

brain tumor.  

a. Representative confocal images of MCA cancer cell growth in the brains of WT, 

CX3CR1-heterozygous, and CX3CR1-KO mice at day 20 after injection via the ICA. 

Images are shown in glow-scale; white represents the maximum fluorescence intensity, 

red represents the minimum, and black indicates the lack of fluorescent signal. Brain 

parenchyma is outlined with red dashed lines for clarity.  

b. Graph to the right of the image panel shows the percentage of the brain parenchyma 

area in coronal plane infiltrated by tumor and each dot represents a mouse (n = 7-10; 

pooled from 3 different experiments; unpaired t test). Scale bar represents 9 mm.   *P = 

0.04, **P = 0.003, ns = not significant. 
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Figure 38. Fractalkine/CX3CR1 signaling is important for recruitment of DCs and 

T cells to the tumor.  

a. Representative confocal images of endogenous CD11c-YFP cell and T cell 

localization in WT, CX3CR1-heterozygous, and CX3CR1-KO mice.  

b. Density of CD11c-YFP cells in tumors analyzed in WT, CX3CR1-heterozygous, and 

CX3CR1-KO mice (DC index is defined as the volume of CD11c-YFP cells divided by 

the volume of the tumor). Each dot represents a tumor nodule (n = 3 mice per group; 

Mann-Whitney non-parametric test). 

a 

b c

   

Figure 38 
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c. Density of total T cells recruited to tumor nodules in WT, CX3CR1-heterozygous, 

and CX3CR1-KO mice (n = 3 mice; Mann-Whitney non-parametric test). 
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Figure 39. CX3CR1 controls tumor coverage by T cells but not extent of T cell 

surface contact to tumor 

a. Extent of tumor surface covered by T cells, and b. Extent of T cell surface contacting 

tumor in wild type, CX3CR1-heterozygous, and CX3CR1-KO mice. Each dot 

represents the total surface of a single tumor nodule covered by or contacting T cells. 

(n = 2-3 mice/group; Mann-Whitney non-parametric test).  

Figure 39 
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Figure 40. CX3CR1 is important for T cell motility patterns in brain tumor. 

a. Representative still images from intravital time-lapse imaging sessions showing MCA 

tumor (blue), blood vessels (hMW TRITC-dextran; cyan), and T cells (CD2-DsRed). T 

cell tracks are indicated by lines that are time color-coded.  

b. Representative displacement tracks of T cells in MCA brain tumor-bearing WT or 

CX3CR1-KO mice. Displacement tracks are time color-coded. 

c. T cell motility parameters in MCA brain tumor in WT or CX3CR1-KO mice including 

the mean velocity, meandering index, diffusion coefficient, and arrest coefficient. Each 

dot represents a T cell (n = 2 mice/ group; mean velocity, meandering index, and 

diffusion coefficient were analyzed by non-linear mixed effects regression model and 

arrest coefficient was analyzed by nested Mann-Whitney-Wilcoxon test). 

 

 

 

 

 

 

 

 

 

 

163 

 



Discussion 

In this study, I found that T cell surveillance of brain tumor is controlled by the 

Fractalkine/CX3CR1 signaling axis and that this signaling pathway counteracts MCA 

brain tumor progression These findings are consistent with the results of a recent study 

in which CX3CR1 deficiency was shown to be important in increasing the survival of 

brain tumor-bearing mice in which orthotopic brain tumor was generated by using a 

GEMM brain tumor-derived cancer cell line419.  In addition, lack of CX3CR1 was 

associated with increased recruitment of peripheral immune suppressive 

monocytes/macrophages increased in brain tumor419. However, they failed to identify 

any differences in in situ progression of brain tumor in the brains of CX3CR1-deficient 

mice in comparison with WT mice. Fractalkine expression was detected to be low or 

not expressed by tumor tissue or cancer cells indicating that fractalkine signaling was 

not responsible for recruitment of brain monocytes/macrophages. It appears that their 

focus on the accumulation of monocytes/macrophages inside the tumor core and their 

inability to identify the localization of DCs or T cells in their tumor model may have 

prevented interrogation of fractalkine in the peritumoral compartment as a key player in 

brain tumor progression. Here, I show that Fractalkine expression is increased 

especially at the margin of the tumor in both the MCA and GL261 model. This would 

indicate possible stress or damage to neurons adjacent to brain tumors, as neurons are 

known to constitutively express Fractalkine, and presumably upregulate this chemokine 

during inflammation. It is important to note that myeloid/T cell tumor infiltration has 

been observed in some studies to occur at the margins of tumor types studied532-534, 

and consistently in chapter 4, characterization of tumor-infiltrating myeloid cells 

revealed that mature DCs expressing CX3CR1 are abundant at the tumor margin. 
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Whether this indicates a chemokine-based segregation of myeloid cells into different 

tumor compartments is an area of active investigation.  

A key issue that was puzzling was that although the brain resident microglia 

show high expression of CX3CR1 in both steady state and in brain pathologies, they 

did not form clusters or aggregate around brain tumors as has been heavily 

documented in the literature446,467,477,486,489,535,536. One explanation for the findings in 

this thesis, as opposed to previous observations, may be that Fractalkine does not 

diffuse extensively into the brain parenchyma but is only locally upregulated and 

secreted around the tumor, and that the engraftment and invasion of tumor, for 

example MCA, from within the vasculature into the brain tissue allows for preferential 

secretion of Fractalkine into the circulation. This may then lead to the cascade of 

preferential recruitment of myeloid cells such as BM-derived monocytes rather than 

microglia. In support of this idea, I have observed multiple times that tumor-associated 

DCs are usually proximal to the brain vasculature. Another possibility is that steady 

state constitutive expression of membrane-bound Fractalkine in neurons and high 

expression of CX3CR1 in microglia may exist to tether microglia to neurons in order to 

enable an efficient physiologic neuron-pruning function for microglia and to also prevent 

potentially “neurotoxic” microglia from roaming free in the brain tissue416,537,538. 

Therefore, if this idea holds true, it is possible that relatively distal microglia from the 

tumor margins are not recruited because constitutively membrane-bound Fractalkine in 

intact neurons retain the capacity to tether microglia and prevent microglia recruitment 

to the tumor. In extension, it may be possible that in much larger tumors that have 

invaded significant regions of the brain, more microglia are recruited into the tumor, and 

that in CX3CR1-KO mice, microglia are untethered and able to infiltrate the tumor and 
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contribute to tumor progression; however, more work is needed to test these ideas. 

Alternative possibilities may involve the contribution of other chemokines and/or 

differences in chemokine signaling pathways between microglia and other myeloid cells 

such as DCs.  

The decreased density of T cells and CD11c DCs in brain tumor in the absence 

of CX3CR1 implicates Fractalkine as a major regulator of DC and T cell surveillance in 

the tumor. In fact, analysis of T cell motility behavior in CX3CR1-KO mice showed 

altered patterns of T cell movement suggesting that Fractalkine signaling via CX3CR1 

is important for the local migration of T cells in the tumor. However, if this pathway were 

dominant in deciding the recruitment of DCs and T cells, then such recruitment should 

be observed in melanoma brain tumor such as B16-F10 mouse tumor model. As this 

was not the case according to my observations in chapter 4, it indicates that there are 

other mechanisms that may be necessary for immune cell recruitment. Another 

explanation for differences in immune cell infiltration in cancer is their immunogenicity, 

which is an area of intense interest. Another possibility is that different cancer cells may 

vary in the extent to which they can induce cleavage and secretion of Fractalkine into 

the circulation. Therefore, more work is needed to evaluate the role of MMPs such as 

ADAM10 and 17 in the different tumor models as a potential mechanism underlying the 

differences in immune cell recruitment.  

In human brain tumor patient specimens, CX3CR1 expression in CD14+ myeloid 

cells was reduced in both brain tumor tissues and in the peripheral blood, suggesting a 

similarity to our studies in mice in which CX3CR1-KO enhances brain tumor 

progression. However, a role for Fractalkine/CX3CR1 signaling in patient survival was 

unclear from preliminary analysis of TCGA datasets as the expression of CX3CR1 in 
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patient tissue was conducted in only very few patients and healthy tissues with 

insufficient statistical power.  Regardless, there are several possibilities that might 

cause a reduction in the expression of CX3CR1 in CD14+ monocytes in human patient 

brain tumor including de novo genetic mutations, chemotherapy-induced 

downregulation, or preferential migration and localization of CX3CR1 low-expressing 

CD14+ monocytes in brain tumors that could have been preferentially sampled. In 

addition, CX3CR1 expression may be downregulated as a mechanism of tumor 

immune evasion or it may indicate disruption of fractalkine/CX3CR1 feedback loop. 

These possibilities will be dissected in future studies to gain better insight into the 

significance of reduced CX3CR1 expression on CD14+ monocytes in brain tumors of 

patients with GBM. Although more work needs to be done to elucidate the effect of 

reduced CX3CR1 mRNA expression in patients with GBM in functional human studies, 

the corresponding decrease in both brain myeloid cells and peripheral blood monocytes 

makes CX3CR1 expression an attractive tool for patient stratification for the purposes 

of prognostication, treatment, and follow-up.  

Given these findings, the fractalkine/CX3CR1 chemokine pathway represents an 

attractive immunotherapeutic modulation pathway for guiding endogenous or adoptive 

transfer of T cells to brain tumor sites. Development of strategies modulating this 

pathway may be crucial in providing new immunotherapeutic strategies aimed at 

treating brain tumors.  
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CHAPTER 5: SUMMARY, GLOBAL DISCUSSION, AND FUTURE DIRECTIONS 
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5.1. Summary 

Immune cells residing in tumor microenvironment play a critical role in tumor 

progression. In this thesis, I have documented important technical advances in intravital 

imaging of brain tumors that enable the visualization of immune cells in a near-

physiological state. I have applied several innovative approaches and tumor models in 

elucidating the spatiotemporal dynamics of tumor-infiltrating T cells in relation to CD11c 

DCs. The method of in situ immune cell characterization in a novel myeloid cell mouse 

model reported here has revealed an unappreciated organization of myeloid cells in 

brain tumors. In addition, I have determined a mechanism of cellular control of T cell 

dynamics in the brain tumor microenvironment as well as a molecular chemokine cue 

that controls brain tumor progression, immune cell recruitment and migratory behavior. 

In sum, the data presented here provides a platform from which future studies could 

take off and in which multiple areas of cellular and molecular regulation could be better 

clarified and applied in the development of novel immunotherapy strategies.  
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Figure 41. Model illustrating brain tumor immune surveillance. 

The figure depicts a model in which growth of brain tumor causes damage of neurons 

and subsequent release of Fractalkine. DCs and T cells are recruited to the tumor, in 

part, by Fractalkine. DCs organize around the tumor margin and T cells form clusters 

around DCs. Other T cells migrate within the tumor. 

 

 

 

170 

 



5.2. Future implications of applying a near-physiological brain tumor imaging system 

An elusive aspect of brain tumor immunology has been the lack of 

understanding of the reactivity of brain resident microglia to brain tumors beginning 

from a single cancer cell stage and the differential participation and contribution of 

resident and/or infiltrating myeloid immune cells in tumor progression. By using a new 

approach, I have clarified that microglia are generally non-reactive to cancer cell growth 

in the brain at early time points. Microglia were not recruited to the cancer cells, nor did 

they transform their morphology into an “activated” phenotype. In support of this, 

microglia somas were observed to remain relatively sessile despite appreciable tumor 

growth in brain tissue. Irrespective of the presence of cancer the microglia maintained 

probing activity, continuously extending and retracting dendritic processes toward 

vasculature and presumably other brain structures including neurons and astrocytes. 

Whether the scanning activity of microglia dendrites changes significantly in the 

presence of cancer cells in the brain was not apparent in the studies conducted here, 

but remains to be investigated. Even at later stages of advanced tumor growth, 

appreciable infiltration of microglia into the tumor was not observed.  However, it is 

possible that a certain range of tumor size or brain tissue compression and/or damage 

unidentified here could trigger microglia to infiltrate into the tumor. Therefore, I am not 

able to absolutely exclude that microglia are active participants in brain tumor. This 

ambivalence is complicated by the fact that there is no appropriate technique available 

for the specific depletion of microglia to ascertain its real contribution to tumor 

progression. Some techniques that have been tested for depletion of microglia in mice 

brain include brain irradiation, Clodronate-liposome, Mac-1-Saporin, Colony Stimulating 

Factor 1 Receptor inhibitor (CSF1R; PLX5622), use of ganciclovir-mediated ablation on 
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tga20/CD11b Thymidine Kinase of Herpes Simplex Virus (HSVTK) transgenic mice, 

CX3CR1-DTR transgenic mice, and IL-34-KO mice225,236,539-543. Some of these systems 

have found use in the study of neurodegenerative diseases such as Alzheimer’s or 

prion diseases where microglia but not extracranial myeloid cells are believed to play a 

major role in disease progression; however, none of these systems eliminate microglia 

specifically and most are sub-optimal in depletion efficacy. Also, microglia do not 

respond to irradiation strategies as they are radio-resistant221,544. At most, if an 

appreciable percentage of microglia is eliminated by any of the listed strategies, the 

depletion effect on extracranial myeloid cells in the periphery is disregarded. If the role 

of microglia is to be definitively distinguished from incoming myeloid cells in brain tumor 

studies, a system that targets only microglia for depletion will need to be established. 

Nevertheless, since myeloid cells such as monocytes but not microglia can be depleted 

by irradiation, combining this approach with chimeric reporter mouse bone marrow 

adoptive transfer experimental systems, in addition to the novel intravital near-

physiological imaging system developed here, may help to partially answer this 

question. It is also possible that microglia may regulate brain tumor progression 

indirectly by interacting with other tumor immune infiltrates and this is an area of future 

study.  

5.3. Outstanding questions on DC-T cell interactions   

Anti-tumor immunity is known to depend on productive interactions between 

DCs and T cells in the lymph node379,457. Recently, however, there has been a 

paradigm shift from studying the in vivo dynamic interactions between DCs and T cells 

in the lymph node as a standard for understanding anti-tumor immune response to a 

new model involving real time visualization and mechanistic probing of DC-T cell 
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interactions in the tumor microenvironment 375,402,465,469,476. This thesis has for the first 

time extended previous breakthroughs in imaging tumor DC-T cell interactions in 

tissues and organs such as the mammary tissue and skin to the brain.  I have shown 

that there is robust infiltration of endogenous DCs and T cells to brain tumors and that 

their dynamics are correlated in space and time. Interestingly, T cells cluster around 

foci of DCs, maintain high migratory velocities even when proximal to DCs, and appear 

to make transient contacts with DCs. This is in contrast to previous studies that have 

employed model antigens such as ovalbumin to model tumor antigens and showed 

persistent interactions between DCs and T cells with long-lived contacts, that would 

suggest that prolonged DC/T cell interactions in an endogenous setting are infrequent 

375,465.  Also, further cell tracking analysis revealed that T cells within clusters around 

DCs exhibit random motility when observed for short periods of imaging; however, they 

become highly confined around DCs in more prolonged observations especially in 

tumors undergoing rejection, which is not a known occurrence in human brain tumors. 

Apart from differences in cancer cell immunogenicity that may explain differences in 

interaction patterns of T cells with DCs, it will be important to determine whether 

migration of T cells around DCs is regulated by adhesion molecules like integrins or 

more diffusive molecules such as chemokines. Whether T cells receive differential 

levels of stimulation by the DCs or produce varying levels of cytotoxic molecules during 

tumor rejection versus progression was not investigated here, but should be examined 

in a future study.  

Functional studies employing mouse models such as NFAT-GFP, Nurr77-GFP, 

or interferon-gamma (IFN-y)-GFP reporter transgenic mice in which the activation 

status of T cells can be observed in real time during cellular interactions will be useful 
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in determining the effect of DC-T cell interactions in either scenario.  In addition, future 

application of technologies that  visualize intracellular calcium flux in T cells will enable 

better understanding of potential DC-T cell immune synapses in tumor393-395,545-548. 

Reactivation of T cells in the tumor is a desired outcome in tumor 

immunotherapy375. Chronic unproductive activation or exhaustion of T cells in tumor 

has been well documented and targeted by checkpoint blockade immunotherapy26,57. 

However, little is known about the spatial interactions needed by T cells to integrate full 

activation signals for effective functioning in vivo. Even less is known about the 

molecular signals required for such interactions. An important question that remains 

unanswered is “how do T cells “find” DCs such as CD11c+ DCs to interact with within 

the multitude of different potential APCs in the tumor microenvironment and what 

factors lead to the formation of T cell clusters around DCs?” This is crucial to 

understand because it could guide therapeutic strategies that aim to enhance the 

recruitment of endogenous and exogenous transferred T cells to the tumor 

microenvironment.  

Bear in mind that the novel triple myeloid reporter mouse established and 

evaluated here is an attempt to better understand the diverse myeloid cells in situ in 

tumor microenvironment; however, it likely does not reveal all myeloid cells that could 

potentially infiltrate brain tumor. In addition, although CD11c is highly expressed by 

DCs, some monocytes and macrophages express this marker. Therefore, to partly 

answer the question stated above, models that are engineered for visualization of 

spectrally distinct DC subsets such as conventional DCs in addition to macrophages, 

monocytes, and T cells will have to be established in order to delineate the interaction 

patterns of T cells within a diverse pool of myeloid cells.  
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Another equally pertinent question is how T cells migrate between DCs and the 

adjacent tumor and determine which cancer cell(s) to attack or kill; Do T cells kill better 

in prolonged interactions with tumor or in repeated on-off brief contacts? Do T cells that 

have previously killed continue in a killing “spree” (serial killing) or do they migrate back 

to DCs to be re-activated? Are lone T cells enough to effectively kill single cancer cells 

or does the killing efficacy increase in a T cell number-dependent manner in which 

more than one T cell makes contact with a cancer cell? Are cancer cells being killed 

when T cells are simultaneously contacting both DCs and cancer cells or can T cells kill 

cancer cells indirectly via DCs while maintaining DC-T cell contact?  These are 

important questions that must be answered in vivo to better understand ways of 

improving T cell killing efficiency.  

In observations documented here, active fragmentation of tumor and cancer 

cells was observed in association with T cells stably contacting DCs and/or tumor. An 

interesting speculation that arises from this is whether a mechanism of tumor killing by 

T cells involves initial disruption of adhesion molecules between cancer cells in the 

tumor before T cell-derived cytotoxic molecules are released or whether tumor 

fragmentation is only sequelae of a killing event. This seems plausible because the 

compact architecture of solid tumors may prevent effective T cell infiltration and killing. 

Therefore, if T cells are to engage cancer cells effectively, individual cancer cell surface 

area may have to be increased by mechanisms that cause disruption of cell-cell 

adhesion molecules in a tumor bulk. Whether T cells begin killing by first identifying and 

targeting weak links within the tumor is an interesting idea open for exploration. 

Another important finding in this study is the dominant control exhibited by 

CD11c DCs on T cell retention and motility in brain tumor. This is in contrast with 
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previous studies in other tissues suggesting that T cells may be prevented from 

performing surveillance function in the tumor by being held in unproductive interactions 

with DCs465. In fact, when we adoptively transferred small numbers of T cells and DCs 

into brain tumor-bearing mice, T cells surprisingly localized in DC niches in the tumor, 

indicating that T cell homing and localization may actually be dependent on DCs. It also 

raises questions as to the functions played by specific myeloid cell populations in the 

tumor. Do some myeloid cell subsets synergize with DCs in retaining T cells? Do T 

cells exist in a Yin Yang situation in which their myeloid interaction partner is 

determined by the tumor cytokine milieu? Does the tumor host organ determine what 

interaction partners T cells will preferentially engage with?  Even within the T cell 

population, the difference in the patterns of interaction between individual T cell 

subsets with tumor-associated myeloid cells is yet to be determined. It will be critical to 

evaluate the interaction patterns of Tregs and its potential myeloid cell partners in the 

tumor as this is an attractive T cell target for enhancing the efficacy of immunotherapy. 

Future studies should also determine the cellular and molecular regulators of Treg 

retention and motility as this may provide insight into potential targets applicable in both 

tumor immunology as well as autoimmune studies.  

The neuronal chemokine Fractalkine has been implicated in cancer progression 

as well as in the regulation of immune cells419. The contextual elucidation of Fractalkine 

expression in brain tumor in relation to how tumor-associated myeloid cells are 

organized was achieved in this study. In observing robust Fractalkine expression at the 

margin of the tumor, it is tempting to speculate that the tumor directed tissue injury; in 

particular stress or damage impacted on adjacent neurons that may guide tumor 

immune surveillance. The idea that the innate immune system is capable of detecting 
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and responding to DAMPs via PRRs in host sterile tissue or noninfectious states lends 

support to this speculation112,113,549-552.  

There are several types of DAMPs including chromatin-associated high-mobility 

group box 1 (HMGB1), heat shock proteins (HSPs), deoxyribonucleotide adenine 

triphosphate (DNA), ribonucleotide adenine triphosphate (RNA), S100 molecules, 

purine metabolites such as adenosine triphosphate (ATP), and hyaluronan 

fragments549,553-555. Examples of PRRs utilized in the detection of DAMPs include Toll-

like, RIG-I-like, and NOD-like receptor families. Interestingly, DAMP molecules such as 

S100 are expressed by neurons and glial cells and are utilized clinically to assess for 

brain injury553-555. In addition, pathways including ATP/purinergic receptors and HSPs 

are involved in neuronal and glial physiologic functions such as neurotransmission. 

Whether the signaling of these molecules engage innate myeloid cell PRRs at the 

margin of brain tumor, initiate innate immune responses and synergize with neuron-

derived fractalkine to regulate T cell surveillance will be an interesting area to explore. 

In partial support of this idea, the data here shows that CX3CR1-GFP+ CD11c DCs 

and T cells organize around the margin of brain tumor, and in the absence of 

Fractalkine/CX3CR1 signaling, DCs and T cell numbers were decreased, and the 

motility of the few tumor-infiltrating T cells was more diffuse. Although it has long been 

established that the premise of immune surveillance is based on T cell recognition of 

tumor-associated antigens, it will be interesting to explore whether reaction to tissue 

injury in and of itself is enough to set off a parallel T cell surveillance mechanism in 

tumor. In fact, the immune infiltrates during wound healing bear strong similarity to 

those in tumors, and cancer has been suitably termed “a wound that never heals35.” In 

this regard, groups of antigen non-specific T cells identified in tumor and named 
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“bystander T cells” have unveiled an interesting area in tumor immunology. Whether 

“bystander T cells” are recruited due to the tumor or tissue damage remains a matter of 

speculation. In support of the latter, a study showed that bystander T cells can be 

redirected to kill the stromal component (also a component of wounds) thereby causing 

tumor regression556.  Nevertheless, one of the goals of future studies should be 

focused on elucidating the signals governing the recruitment of “bystander” T cells to 

the tumor, determine their interaction partners in the tumor and how they differ from 

antigen-experienced T cells, delineate the factors that regulate them, and potentially 

manipulate them for therapy.  

5.4. Improvement in intravital imaging of immune cell dynamics in tumor  

Generally, the extent of visualization during intravital imaging is limited by both 

the diffraction index of the tissue being imaged and the numerical aperture of the 

imaging objective441,557,558. In particular, intravital imaging in the brain is complicated by 

the layers of protective tissue and the high lipid content of brain cells, which increase 

light scattering and reduces the depth of tissue that can be sampled441. Although micro-

endoscopes have been used for deep tissue imaging of tumor in mice brain, the 

traumatic nature of this approach may confound real immune cell behavior and 

function559. In addition, recent development of tissue “clearing”, which is a systematic 

process that has been applied to eliminate lipid from the brain and preserves only 

cellular architecture, has enabled high-resolution visualization of deep brain regions 

that were otherwise unreachable by previous techniques; however, such techniques 

can only be applied to non-living fixed brain tissues560,561. Another limitation in imaging 

is the numerical aperture of the imaging objective lens561. This limits sampling of 

immune cell interactions in large tumors located in a three-dimensional space and the 
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extent to which analysis can be done to understand the behavior of T cells in the tumor. 

In general, despite the advantage of two-photon microscopes over confocal imaging in 

terms of depth and other qualities, imaging large and deep areas of the intact brain still 

remains a challenge.  

5.5. Significance of this study and implications for cancer immunotherapy 

I have developed and applied a novel experimental system in illuminating the 

early immune cell events in brain tumor beginning at a single cell level. In combination 

with this, I have applied broadly conventional imaging approaches in studying immune 

cell dynamics in different brain tumors and elucidated DC-T cell interactions. Given the 

differences in immune cell recruitment and tumor progression in the tumor models 

used, it will be important to profile tumor cell genes from each tumor type as well as 

sequence the antigens presumably recognized by T cells to create a clearer picture of 

the differences between experimental tumor types and enhance studies that may be 

relevant in better understanding human tumors. GEMM tumor models are the gold 

standard for understanding biological phenomena and especially for translating 

research findings to the clinic. Therefore, it will be crucial to evaluate DC-T cell 

interactions in appropriate GEMM models that harbor genetic mutations that are known 

to drive progression of human tumors and possibly contribute to tumor immunogenicity.   

I show here that myeloid cells are organized in distinct compartments within 

brain tumor microenvironment. Importantly, CD11c+ DCs reside mostly at the tumor 

margin. However, present analysis of tumor immune cell infiltration in patients with 

brain tumor is done using tumor biopsy specimen obtained from within the core of the 

tumor that may not truly reflect the immune infiltrates in the tumor microenvironment. 
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Therefore, the findings here should be translated to the clinic to guide neurosurgical 

biopsy procedures for immunological evaluation especially when immunotherapy 

strategies are being considered. I also show that CD11c+ DCs and T cells are 

correlated in space and that CD11c+ DCs control the retention and motility of effector T 

cells in brain tumors. Consistently, tissue-resident memory T cells have also been 

shown to be preferentially organized around DCs for prolonged periods after clearance 

of model viral infections in mice brain371. This has implications for brain tumor 

immunotherapy as interactions between T cells and DCs in brain tumors has been 

unappreciated as opposed to microglia and macrophages. Identifying and 

understanding potential molecular signals that control recruitment, retention, and 

survival of DCs in the tumor could present targets for modulating anti-tumor immune 

response, for example by specifically eliminating tumor-infiltrating DCs and associated 

T cells molecularly, and replacing the tumor microenvironment with “new” immune cells 

in addition to therapies that prevent tumor-mediated immune suppression. This strategy 

may find relevance in cellular transplantation in which whole body radiation, which 

could be injurious to normal tissue, is used to eliminate immune cells such as T cells 

before adoptive transfer of exogenous cells. Further, since DCs and T cells appear to 

work together during anti-tumor immune response, another strategy for tumor 

immunotherapy could entail adoptive transfer of competent antigen-presenting DCs 

and cytotoxic T cells serially or simultaneously into patients rather than conventional 

approaches employing either DCs of T cells exclusively. This strategy may aid in the 

persistence of adoptively transferred T cells in the tumor. Also, in addition to adoptive 

transfer of DCs, adjuvants such as Flt3-ligand vaccine (FVAX) may be used to 

stimulate increase in endogenous DC numbers in situations where exogenous DC cell 
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culture may produce low yield or alterations in DC functions470.  Another avenue for 

application is in checkpoint blockade immunotherapy. The present goal for this type of 

therapy is to increase the percentage of patients that respond to this treatment 

strategy. Therefore, based on the data here, there is compelling reason to examine the 

composition of DCs in brain tumor or other tumor types in patients before initiating 

treatment or in patients who show partial or no response to treatment to determine 

whether lack of DCs may play a role in this regard. This could serve as a method of 

predicting treatment response. There is also support for combining DC treatment 

methods such as adoptive cell transfer or FVAX with T cell checkpoint blockade. 

However, more work needs to be done to better understand how DCs may regulate T 

cells in tumor during checkpoint blockade immunotherapy in preclinical models.  

In addition, I have also demonstrated a role for Fractalkine signaling in brain 

tumor progression and in the control of tumor-infiltrating T cell recruitment and 

migration. Although I have not directly elaborated on the function of Fractalkine ligand 

in tumor progression or immune cell dynamics, this molecular pathway is an attractive 

target for modulating immune cells and potentially enhancing cancer immunotherapy. A 

major goal in adoptive T cell therapy in which infusion of exogenous T cell infiltrating 

lymphocytes or CAR T cells is done in patients with tumor, is to successfully direct the 

infused T cells to the tissue of interest. Thus, engineering CAR T cells with chemokine 

receptors such as CX3CR1 may help enhance cellular migration to the tumor.  

However, further studies are required to understand whether there is a functional 

significance to the changes in Fractalkine receptor CX3CR1, in GBM patients, and 

whether mouse observations are applicable in human brain tumor. Another aspect of 

this pathway that could be potentially modulated is the expression of ADAM10 and 17. 
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These MMPs are needed for Fractalkine cleavage and secretion into the circulation. 

Therefore, strategies that increase their expression may help maintain the secretion 

and levels of soluble Fractalkine in the circulation. This may assist in preventing 

downregulation of CX3CR1 expression in anti-tumor myeloid cells562. However, more 

work is required to better understand the regulating mechanisms involved in this 

process. 

In sum, I have elucidated the dynamic behavior of immune cells in brain tumor 

and the studies conducted in this thesis have revealed novel cellular and molecular 

regulatory mechanisms in immune cell recruitment and interaction. This work paves 

way for exploration of other mechanisms involved in the regulation of brain tumor 

immune surveillance and potentially other cancer types.  
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