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Calcium Homeostasis Is Altered in Skeletal Muscle of
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Hypertension is often associated with skeletal muscle pathological conditions related to function and
metabolism. The mechanisms underlying the development of these pathological conditions remain un-
defined. Because calcium homeostasis is a biomarker of muscle function, we assessed whether it is altered
in hypertensive muscles. We measured resting intracellular calcium and store-operated calcium entry
(SOCE) in fast- and slow-twitch muscle fibers from normotensive Wistar-Kyoto rats and spontaneously
hypertensive rats (SHRs) by cytofluorimetric technique and determined the expression of SOCE gene
machinery by real-time PCR. Hypertension caused a phenotype-dependent dysregulation of calcium ho-
meostasis; the resting intracellular calcium of extensor digitorum longus and soleus muscles of SHRs were
differently altered with respect to the relatedmuscle of normotensive animals. In addition, soleus muscles
of SHR showed reduced activity of the sarcoplasmic reticulum and decreased sarcolemmal calcium
permeability at rest and after SOCE activation. Accordingly, we found an alteration of the expression levels
of some SOCE components, such as stromal interaction molecule 1, calcium release-activated calcium
modulator 1, and transient receptor potential canonical 1. The hypertension-induced alterations of cal-
cium homeostasis in the soleus muscle of SHRs occurred with changes of some functional outcomes as
excitability and resting chloride conductance. We provide suitable targets for therapeutic interventions
aimed at counterbalancing muscle performance decline in hypertension, and propose the reported
calcium-dependent parameters as indexes to predict how the antihypertensive drugs could influence
muscle function. (Am J Pathol 2014, 184: 2803e2815; http://dx.doi.org/10.1016/j.ajpath.2014.06.020)
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Hypertension is a multifactorial disease, characterized by an
increase of blood pressure associated with an increased risk of
organ damage. Other than impairing cardiomyocytes’ func-
tionality, the alteration of microcirculation affects skeletal
muscle physiological features, resulting in a significant in-
crease in fatigue and muscle weakness in hypertensive pa-
tients during exercise.1e5 Although it is still controversial
whether the microvessel rarefaction is a cause or a result of
blood pressure elevation, a growing body of evidence in-
dicates that skeletal muscles undergo a series of alterations
regarding both function and metabolism. Specifically, struc-
tural and biochemical abnormalities have been reported in
spontaneously hypertensive rat (SHR), the most widely used
stigative Pathology.

.

animal model of essential hypertension, when compared with
the normotensive Wistar-Kyoto rat (WKY), including reduced
cross-sectional area of muscle fibers,6 sarcomere disorganized
structure,7 altered Naþ/Kþ pump number and activity,8 reduced
sensitivity to insulin,9 elevated cellular stress markers,10 and
apoptotic signaling.11,12 Furthermore, fiber-type redistribu-
tion7,13,14 and muscle-typeespecific modification of autophagy
markers15 have been reported inmuscles of SHRwith respect to
WKY animals.
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Calcium ion plays a pivotal role in sustaining muscle
performance, controlling its contractile properties and
regulating the gene expression profile of fiber-specific pro-
teins.16 Accordingly, in previous studies, we showed a close
correlation between the phenotype transition of slow- to
fast-twitch muscle fibers and the alteration of calcium ho-
meostasis in rodent soleus muscle during disuse.17,18

Furthermore, it has been widely demonstrated that the
store-operated calcium entry (SOCE) is a rapidly activated,
robust mechanism in skeletal muscle, essential for mainte-
nance of Ca2þ homeostasis by ensuring the refilling of
intracellular calcium storage.19,20 Physiological SOCE is
required for proper muscle function. Indeed, excessive
SOCE contributes to the progression of muscle deterioration
in muscular dystrophy,21,22 whereas reduced SOCE is
associated with muscle performance decline during aging.23

To test the hypothesis that hypertension could cause a
dysregulation of skeletal muscle calcium homeostasis, we
used fura-2 acetoxymethyl ester (fura-2) fluorescence to
investigate Ca2þ signaling and to evaluate the functional
status of SOCE in tendon-to-tendoneisolated fast- and
slow-twitch skeletal muscle fibers of SHR and WKY rats.
Furthermore, to gain insight into the SOCE machinery, we
compared the expression levels of SOCE components in
WKY and SHR muscles using real-time PCR. Finally, to
evaluate whether the hypertension-induced alteration in cal-
cium homeostasis interferes with muscle function, we deter-
minedmuscle excitability and the resting chloride conductance
(gCl), a parameter that controls the electrical stability of
sarcolemma,24,25 by electrophysiological techniques.

Our data show that calcium homeostasis is dysregulated
in skeletal muscles of SHR animals in a phenotype-
dependent manner. Given the crucial role of calcium ions
in skeletal muscle function and maintenance, these find-
ings contribute to elucidate the mechanisms underlying
hypertension-induced muscle contractile dysfunction and
identify druggable targets for the treatment of muscle
weakness affecting hypertensive patients.

Materials and Methods

Animal Care

Animal care and all experimental protocols involving animals
were in accordance with the European Directive 2010/63/EU
andwere approvedby the ItalianMinistry ofHealth.MaleSHR
(aged 15 to 17 weeks) and age-matched normotensive WKY
control rats were purchased from Charles River Laboratories
(Calco, Italy). Animals (nZ 15 for each group)were housed in
a temperature-, humidity-, and light-controlled room.

Blood Pressure Measurements

Systolic blood pressure (SBP) was measured non-
invasively in conscious, prewarmed, restrained rats using
a tail-cuff BP-2000 Blood Pressure Analysis System
2804
(Visitech System Inc., Apex, NC), according to previously
described procedures.26,27 The reported SBP values are
the average of three sequential blood pressure measure-
ments that were within 10 mmHg of each other.

Dissection of Native Muscle Fibers

The extensor digitorum longus (EDL) and soleus muscles
were removed from each animal under deep urethane
anesthesia (1.2 g/kg body weight). Immediately after the
surgery, the rats were maintained under anesthesia and
euthanized with an anesthetic overdose. EDL and soleus
muscles were pinned in a dissecting dish containing 95%
O2/5% CO2-gassed normal physiological solution (compo-
sition defined later) at room temperature (22�C) for further
dissection. Small bundles of 10 to 15 fibers arranged in a
single layer were dissected lengthwise (tendon to tendon)
with the use of microscissors, as previously described.17

Fura-2 Fluorescence Measurements in Intact Muscle
Fibers

Calcium measurements were performed using the membrane-
permeable Ca2þ indicator, fura-2 AM (Molecular Probese
Invitrogen, Monza, Italy). Loading of muscle fibers was
performed for 2 hours at 25�C innormal physiological solution
containing 5mmol/L fura-2AMmixed to 0.05% (v/v) Pluronic
F-127 (Molecular Probes). After loading, muscle fibers were
washed with normal physiological solution and mounted in a
modified RC-27NE experimental chamber (Warner Instru-
ment Inc., Hamden, CT) on the stage of an inverted Eclipse
TE300 microscope (Nikon, Tokyo, Japan) with a 40� Plan-
Fluor objective (Nikon). The mean sarcomere length was set
to 2.5 to 2.7mm.Fluorescencemeasurementsweremade using
a QuantiCell 900 integrated imaging system (Visitech Inter-
national Ltd, Sunderland, UK), as previously described.17,28

During the experiments, pairs of background-subtracted
images of fura-2 fluorescence (510 nm), emitted after
excitation at 340 and 380 nm, were acquired and ratiometric
images (340/380 nm) were calculated for each muscle fiber
of the preparation using QC2000 software (VisiTech Inter-
national Ltd, Sunderland, UK). Subsequently, fluorescence
ratio values were converted to the resting cytosolic calcium
concentration, [Ca2þ]i (nmol/L), after a calibration proce-
dure using the following equation:

�
Ca2þ

�
i
Z

�
R�Rmin

���
Rmax �R

� �KD � b ð1Þ

where R is the ratio of the fluorescence emitted after excita-
tion at 340 nm to the fluorescence after excitation at 380 nm;
KD is the affinity constant of fura-2 for calcium, which was
taken as 145 nmol/L (Molecular Probes); and b is a param-
eter, according to Grynkiewicz et al,29 that was determined
experimentally in situ in ionomycin-permeabilized muscle
fibers, as previously described.17,29 Rmin and Rmax (minimum
and maximum, respectively) were determined in muscle fi-
bers incubated in Ca2þ-free normal physiological solution
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Calcium in Hypertensive Muscles
containing 10 mmol/L EGTA and in normal physiological
solution, respectively. Because calibration parameters of
fura-2 can depend on muscle type and experimental condi-
tion,17,28 we determined the parameters of the equation of
Grynkiewicz et al29 in each muscle examined for accurate
calculation of calcium concentration.

Resting Calcium Entry and SOCE Measurements by
Mn2þ Quenching Technique

The manganese quench technique was used to estimate the
sarcolemmal permeability to divalent cations. Mn2þ enters
via the same routes as Ca2þ but accumulates inside the cell.
As Mn2þ quenches the fluorescence of fura-2, the reduction
of the intensity of fura-2 fluorescence can be used as an
indicator of the time integral of Mn2þ influx.30 Muscle
preparations were perfused for 2 minutes with normal
physiological solution containing 0.5 mmol/L Mn2þ as a
surrogate of CaCl2 (quenching solution). To measure the
Mn2þ influx through the SOC, a proper protocol for SOCE
activation was used.19,31,32 Particularly, the fibers were
perfused with 10 mmol/L thapsigargin and 40 mmol/L
caffeine for 15 minutes in zero Ca2þ extracellular solution
to induce sarcoplasmic reticulum (SR) Ca2þ depletion;
successively, 0.5 mmol/L Mn2þ was added to extracellular
solution. During the quenching protocol, the fluorescence
emission of fura-2, excited at 360 nm, was acquired at 1 Hz.

Electrophysiological Recordings by Intracellular
Microelectrodes

Soon after removal, the soleus and EDL muscles were tied
at each tendon on a glass rod in a 25-mL chamber and
perfused with the normal physiological solution at 30�C,
gassed with 95% O2/5% CO2. The resting sarcolemmal gCl
was determined using the two intracellular microelectrodes
technique in current-clamp mode, as detailed elsewhere.25

Briefly, the membrane resistance was calculated by inject-
ing a hyperpolarizing square current pulse into the muscle
fiber through one microelectrode and recording the resulting
voltage deflection with a second microelectrode inserted at
two different distances from the current electrode. The
current stimulation and data acquisition and analysis were
performed under computer control. The total membrane
conductance (gm) was 1/membrane resistance in the normal
physiological solution. The potassium conductance (gK)
was measured in a chloride-free physiological solution. The
mean chloride conductance, gCl, was calculated as the mean
gm minus the mean gK. To measure the excitability char-
acteristics of sampled fibers, the membrane potential was set
by a steady holding current to �80 mV before passing the
depolarizing pulses. By increasing the amplitude of the
pulse, a single action potential was elicited. The excitability
parameters, determined off-line on digital action potential
recordings, were the current threshold to elicit the first ac-
tion potential (Ith) and the latency of action potential, which
The American Journal of Pathology - ajp.amjpathol.org
is the delay from the beginning of the current pulse to the
onset of an action potential at threshold and is an excitability
parameter inversely correlated to the gCl.
Solution and Chemical Compounds

The normal physiological solution was composed of
148 mmol/L NaCl, 4.5 mmol/L KCl, 2.5 mmol/L CaCl2,
1 mmol/L MgCl2, 0.44 mmol/L NaH2PO4, 12 mmol/L
NaHCO3, and 5.5 mmol/L glucose. The pH of all solutions
was adjusted to 7.3 to 7.4 by bubbling them with 95% O2/
5% CO2. To stimulate Ca2þ influx via Naþ/Ca2þ exchanger,
most of the Naþ to the solution was replaced with N-
methyl-D-glucamine.33 The normal physiological solution
was modified as follows: CaCl2 was omitted, and 10 mmol/L
EGTA was added for calcium-free solution; 0.5 mmol/L
MnCl2 was substituted for CaCl2 for quenching solution;
methyl sulfate salts were substituted for NaCl and KCl;
and nitrate salts were substituted for CaCl2 and MgCl2 for
chloride-free solution. All chemicals cited above and ion-
omycin, caffeine, and thapsigargin were purchased from
Sigma (St. Louis, MO).
Western Blot Analysis of RyR1 Expression

Ryanodine receptor 1 (RyR1) was isolated according to
Bastide et al.34 Briefly, soleus and EDL muscles were ho-
mogenized in ice-cold buffer containing 20 mmol/L HEPES
(pH 7.4), 2 mmol/L EDTA, 0.2 mmol/L EGTA, 0.3 mol/L
sucrose, and 0.2 mmol/L phenylmethylsulfonyl fluoride.
Homogenates were centrifuged at 7000 � g for 5 minutes at
4�C. The supernatant obtained was centrifuged at 100,000
� g for 90 minutes at 4�C. Microsomal proteins were
separated using 6% SDS-PAGE and transferred onto nitro-
cellulose membranes for 1 hour at 200 mA (SemiDry
transfer blot; Bio-Rad, Waltham, MA). Membranes were
blocked for 2 hours with 0.2 mol/L Tris-HCl, 1.5 mol/L
NaCl, and pH 7.4 buffer [Tris-buffered saline (TBS)] con-
taining 5% nonfat dry milk and 0.5% Tween-20. They were
incubated overnight at 4�C with the first antibody (mouse
anti-RyR; clone 34C; Thermo Scientific Pierce, Berkeley,
CA), diluted 1:2500 with TBS containing 5% nonfat dry
milk, washed three times with TBS containing 0.5% Tween-
20, and then incubated for 1 hour with secondary antibody
labeled with peroxidase (1:5000 rabbit anti-mouse IgG;
Sigma-Aldrich, St. Louis, MO). Membranes were then
washed with TBS and Tween 20 and developed with a
chemiluminescent substrate (Clarity Western ECL Sub-
strate; Bio-Rad).
Isolation of Total RNA, Reverse Transcription, and
Real-Time PCR

For each soleus and EDL muscle sample, total RNA
was isolated with TRIzol (InvitrogeneLife Technologies,
2805
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Table 1 Summary of Animal Characteristics

Experimental characteristic WKY group SHR group

SBP (mmHg) 137 � 2.7
(n Z 15)

204 � 1.5
(n Z 15)*

Body weight (g) 421 � 9.5
(n Z 15)

362 � 5.4
(n Z 15)*

EDL
Fiber diameter (mm) 67.2 � 2.3

(n Z 43)
77.5 � 4.5
(n Z 60)

Muscle weight/body
weight (mg/g)

0.47 � 0.006
(n Z 12)

0.49 � 0.005
(n Z 12)

Soleus
Fiber diameter (mm) 62.5 � 2.3

(n Z 40)
55.4 � 3.7
(n Z 60)

Muscle weight/body
weight (mg/g)

0.52 � 0.012
(n Z 12)

0.46 � 0.012
(n Z 12)y

For SBP and body weight, values are means � SE of n animals. For fiber
diameter and muscle weight/body weight, values are means � SE of n fibers
and n muscles, respectively. Significant differences in fiber diameter
(F Z 7.3, df Z 3,199, P < 0.001) and muscle weight/body weight (F Z 8,
df Z 3,44, P < 0.001) are determined by analysis of variance.
*P < 0.05, significant difference in SBP and body weight between WKY

and SHR by Student’s t-test.
yP < 0.001, significant difference in soleus muscle weight/body weight

of SHR with respect to WKY by Bonferroni’s t-test.

Liantonio et al
Carlsbad, CA) and quantified using a spectrophotometer
(ND-1000 NanoDrop; Thermo Scientific).

To degrade any DNA contamination in each sample, 1 mg
of the total RNA was incubated with 1 U of DNase I
(RNAse free; Ambion, Carlsbad, CA) at 37�C for 30 mi-
nutes and 75�C for 5 minutes.

To perform reverse transcription, for each sample, 400 ng
of total RNA was added to 1 mL dNTP mix (10 mmol/L
each) (model 11277049001; Roche, Basilea, Switzerland) and
1 mL 50 mmol/L random hexamers (model C.N. n808-0127;
Life Technologies) incubated at 65�C for 5 minutes. Four
microliters of 5� first standard buffer (model C.N. Y02321;
Life Technologies), 2 mL of 0.1 mol/L dithiothreitol (model
C.N. Y00147; Life Technologies), and 1 mL of 40 U/mL
recombinant RNasin ribonuclease inhibitor (model C.N.
N2511; Promega, Fitchburg, WI) were then added, and the
solution was incubated at 42�C for 2 minutes. One microliter
of 200 U/mL SuperScript II Reverse Transcriptase (model
C.N. 18064-014; Life Technologies) was then added to each
solution and incubated at 25�C for 10 minutes, 42�C for 50
minutes, and 70�C for 15 minutes. Each reaction was per-
formed as a singleplex real-time PCR. The setup of reactions
consisted of 8 ng of cDNA, 0.5 mL of TaqMan gene
expression assays (Life Technologies) for each gene, 5 mL of
2� TaqMan Universal PCR master mix No AmpErase UNG
(model C.N. 4324018; Life Technologies), and nuclease-free
water (not diethyl-pyrocarbonate treated; model AM9930;
Life Technologies), for a final volume of 10 mL. The RT-
TaqMan-PCR conditions were as follows: step 1, 95�C for
20 seconds; step 2, 95�C for 3 seconds; and step 3, 60�C for
30 seconds. Steps 2 and 3 were repeated 40 times. The re-
sults were compared with the relative standard curve ob-
tained by five points of 1:4 serial dilution. The mRNA
expression of the genes was normalized to the housekeeping
gene HPRT1 (Supplemental Table S1). To detect ORAI1
gene expression, the cDNA was pre-amplified. The setup
of PreAmp reaction consisted of 200 ng of cDNA, 25 mL
of 2� TaqMan PreAmp master mix (model PN 4384557;
Invitrogen-Life Technologies, Carlsbad, CA), 12 mL of
each 0.2� TaqMan GenExpression Assays (ORAI1 and
HPRT1), and nucleotide-free water, for a final volume of
50 mL. The PreAmp PCR conditions were as follows:
95�C for 10 minutes, 95�C for 15 seconds, and 60�C for
4 minutes. Steps 2 and 3 were repeated 10 times. The
PreAmp products were diluted 1:5 with nucleotide-free
water before real-time experiment. All real-time PCR
experiments were conducted respecting Minimum Infor-
mation for Publication of Quantitative Real-Time PCR
Experiments guidelines.35

Statistical Analysis

The data are presented as the means � SEM. One-way
analysis of variance, followed by Bonferroni’s t-test, was used
to evaluate multiple statistical differences between groups.
P < 0.05 was considered to be statistically significant.
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Results

Animal Characteristics

The average values of SBP for the SHR and WKY rats
examined in this study, together with animal body and
muscle weight, are summarized in Table 1. SHR rats had
SBP values approximately 46% higher than WKY rats. The
body weight of SHR was 13% lower than WKY animals. As
an index of muscle atrophy or hypertrophy, we determined
the muscle mass expressed as muscle weight normalized to
body weight. Atrophy was evident in the slow-twitch soleus
muscle of SHR, with a significant 11% reduction of muscle-
to-body weight ratio with respect to WKY rats.
Furthermore, the diameter of muscle fibers was reduced,

although not significantly, in the soleus muscle of SHR with
respect to WKY rats (Table 1), thus supporting the evidence
of muscular atrophy.
On the contrary, a tendency to hypertrophy was observed

for EDL muscle, showing a not significant 4% and 15%
increase of muscle-to-body weight ratio and fiber diameter,
respectively, in SHR with respect to WKY animals
(Table 1).

Resting Cytosolic Calcium

According to previous studies,17,36 resting [Ca2þ]i was
significantly higher in soleus than in EDL muscles of
normotensive WKY animals (Figure 1A). The resting
[Ca2þ]i was significantly increased by 50% in EDL muscle
and decreased by 30% in soleus muscle of SHR rats
ajp.amjpathol.org - The American Journal of Pathology
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Figure 1 Resting calcium in EDL and soleus muscle from WKY and SHR
animals. A: Data are given as means � SEM of resting [Ca2þ]i measured in n
myofibers (indicated in parentheses) of at least five rats. B and C: Fiber distri-
bution as a functionof [Ca2þ]i in ratmuscles. Histogramswere constructedusing
a sampling interval of 5 nmol/L. Statistical analysis by analysis of variance shows
significant differences (FZ 86, dfZ 3,83, P< 0.001). *P< 0.05, significantly
different by Bonferroni’s t-test with respect to WKY EDL muscle; yP < 0.05,
significantly different by Bonferroni’s t-test with respect to WKY soleus muscle.

Calcium in Hypertensive Muscles
compared with WKY rats. To determine whether the
changes of resting [Ca2þ]i were homogeneous within the
whole EDL or soleus muscles, we plotted the distribution of
single fibers as a function of [Ca2þ]i, using a sampling value
The American Journal of Pathology - ajp.amjpathol.org
of 5 nmol/L (Figure 1, B and C). In both EDL and soleus
muscles of WKY rats, fibers are normally distributed around
a mean value similar to the arithmetic mean reported in
Figure 1A. Hypertension produced an opposite shift of the
fiber distribution as a function of [Ca2þ]i, for fast and slow
muscles.

Caffeine-Induced Calcium Release and RyR1 Expression

To further analyze calcium-handling mechanisms specif-
ically correlated to the SR properties in the different muscle
groups, we investigated the response to caffeine, a modu-
lator of the RyR, which generates a calcium transient by
directly gating RyR.37 We determined the caffeine respon-
siveness at 40 mmol/L because the maximal amplitude
value of caffeine-induced calcium transient in rat EDL and
soleus intact muscle fibers was obtained at this dose.17 No
significant reduction of the calcium transient after 40 mmol/L
caffeine was observed in EDL muscle of SHR compared
with WKY rats (Figure 2A). More important, the respon-
siveness to caffeine was significantly reduced (approxi-
mately 34%) in SHR soleus muscle with respect to WKY.

To assess whether an alteration of RyR1 expression might
account for the observed alteration of caffeine responsive-
ness, we measured the RyR1 protein level. In accordance
with previous studies,34,38 the RyR1 level of WKY rats was
lower in slow than in fast muscles, resulting in the expres-
sion of RyR1 approximately seven times higher in EDL
compared with soleus muscle. No significant variation in
RyR1 expression was observed in SHR muscles with
respect to WKY (Figure 2, B and C).

Naþ/Ca2þ Exchanger Activity

The Naþ/Ca2þ exchanger (NCX) is a bidirectional trans-
porter that can extrude Ca2þ from cell (forward mode) or
bring Ca2þ into the cell (reverse mode), thus playing an
important role in maintaining the intracellular Ca2þ ho-
meostasis in skeletal muscle.39,40 To assess the contribution
of the NCX in the alteration of calcium homeostasis
observed in SHR muscles, we evaluated its activity in the
reverse mode. According to previous studies,33,40,41 both in
EDL and soleus muscle of WKY rats, the withdrawal of
extracellular Naþ was followed by an increase of approxi-
mately 10 nmol/L in [Ca2þ]i (Figure 3), reflecting the
reverse NCX activity. Similarly, a Naþ-freeeinduced
[Ca2þ]i increase was observed in EDL and soleus muscle of
SHR animals. These results demonstrate the existence of a
functional NCX in skeletal muscle of both rat strains
(Figure 3).

Resting Sarcolemmal Cationic Permeability

We used the Mn2þ quenching technique to assess the pos-
sibility that alteration of the resting calcium observed in
EDL and soleus muscle of SHR animals could be related to
2807
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Figure 3 Naþ/Ca2þ exchange reverse mode activity. A: Representative
traces of the [Ca2þ]i increase observed after extracellular Naþ removal
[replaced by N-methyl-D-glucamine (NMDG)] from WKY and SHR muscle fi-
bers. B: Data are given as means � SEM of calcium transiently measured in
n myofibers (indicated in parentheses) of four rats. Statistical analysis by
analysis of variance shows no significant difference.

Figure 2 SR properties. A: Caffeine responsiveness. Amplitude values
of calcium transiently recorded during application of 40 mmol/L caffeine.
Data are given as means � SEM of calcium transiently measured in n
myofibers (indicated in parentheses) of at least five rats. Statistical anal-
ysis by analysis of variance shows significant differences (F Z 8.7,
df Z 3,72, P < 0.001). B: Western blot analysis of RyR1. Immunoblot of
microsomal proteins with antibody against RyR1 of EDL and soleus (SOL)
muscles from WKY and SHR animals. C: Each bar represents the quantifi-
cation of the immunoblots normalized by actin of four rats. *P < 0.05,
significantly different by Bonferroni’s t-test with respect to WKY EDL (A) or
significantly different by t-test with respect to WKY EDL (C); yP < 0.05,
significantly different by Bonferroni’s t-test with respect to WKY soleus
muscle (A) or significantly different by t-test with respect to SHR EDL
muscle (C).

Liantonio et al
changes in resting calcium influx. Consistent with previous
studies,17,36 in normotensive WKY rats, the resting quench
rate measured in soleus muscle was approximately 1.7-fold
that of EDL (Figure 4). In contrast to EDL muscle, where
no modification of sarcolemmal permeability to divalent
cations was observed between the two rat strains, the mean
quench rate of SHR soleus muscle was significantly
reduced by approximately 20% with respect to WKY soleus
(Figure 4).
2808
SOCE Data

SOCE is essential for maintenance of Ca2þ homeostasis by
ensuring the SR refilling.19,31 Thus, a reduction of SOCE
activity could account for the alteration of calcium ho-
meostasis observed in hypertensive muscles. To test the
functional status of SOCE in muscles of SHR animals, we
used Mn2þ quenching of fura-2 fluorescence after SOCE
activation. To this end, SR Ca2þ stores of muscle fibers
were depleted with thapsigargin and caffeine.19,31 Hyper-
tensive soleus muscle displayed a significantly diminished
Mn2þ entry rate compared with that of normotensive mus-
cle, indicating that SOCE induced by SR Ca2þ depletion is
compromised in SHR soleus muscle (Figure 5, A and B). In
contrast, a slight SOCE increase was observed in EDL
muscle of SHR with respect to EDL of WKY rats.
To perform a pharmacological characterization of the

cation channels involved in the Mn2þ influx, we used NiCl2,
a broad inhibitor of SOCE and of other Ca2þ entry mech-
anisms.23 On addition of NiCl2, the SOCE activity in EDL
and soleus muscles of WKY animals was largely inhibited,
producing a block of approximately 60% to 65% of quench
rate after SOCE activation. For both muscle types, nickel
block was not modified with hypertension (Figure 5C).

Electrophysiological Measures of Muscle Excitability
and Resting Ionic Conductances

To verify the physiological relevance of the changes in cal-
cium homeostasis observed in hypertensive skeletal muscle
ajp.amjpathol.org - The American Journal of Pathology
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Figure 4 Sarcolemma resting calcium entry. A:
Representative traces of Mn2þ quenching of fura-2 fluo-
rescence at a 360-nm wavelength. Arrows designate
perfusion of muscle fibers by MnCl2. Black trace is EDL
fiber from WKY, and gray trace is from SHR; black trace is
soleus fiber from WKY, and gray trace is from SHR. B:
Mean quench rate. Data represent the means � SEM of
quench rate measured in n myofibers (indicated in pa-
rentheses) of at least four rats. Statistical analysis by
analysis of variance shows significant differences
(F Z 5.9, df Z 3,63, P < 0.005). *P < 0.05, signifi-
cantly different by Bonferroni’s t-test with respect to WKY
EDL; yP < 0.05, significantly different by Bonferroni’s t-
test with respect to WKY soleus muscle.

Calcium in Hypertensive Muscles
fibers, we evaluated membrane excitability in SHR muscles
using the two intracellular microelectrodes technique
(Table 2). Representative traces of the excitability pattern of
SHR andWKYmuscles are shown in Figure 6. According to a
previous study,6 the restingmembrane potential of SHR soleus
Figure 5 SOCE data. A: Representative traces of fura-2 fluorescence quench ass
stores induced by thapsigargin and caffeine (as described in Materials and Methods
with thapsigargin/caffeine in zero calcium. Black trace is EDL fiber from WKY, and
from SHR. B: Mean quench rate after SOCE activation. Data are given as means � S
least four rats. Statistical analysis by analysis of variance shows significant differe
SOCE. Effect of 2 mmol/L NiCl2 on SOCE. Results are expressed as percentage of que
before nickel application after SOCE activation. Data are given as means � SEM
parentheses) of at least four rats. Statistical analysis by analysis of variance showe
t-test with respect to WKY EDL; yP < 0.05, significantly different by Bonferroni’s

The American Journal of Pathology - ajp.amjpathol.org
fibers was more depolarized than that of the corresponding
WKY muscle-type fibers. Furthermore, although no modifi-
cation of the Ith was seen in both SHR muscles, a significant
decrease of the latency of the action potential was observed in
SHR soleus muscle with respect to WKY animals (Table 2).
ociated with Mn2þ influx in skeletal muscle fibers after depletion of SR Ca2þ

). Arrows designate perfusion of muscle fibers by MnCl2 after fiber treatment
gray trace is from SHR; black trace is soleus fiber from WKY, and gray trace is
EM of quench rate measured in n myofibers (indicated in parentheses) of at
nces (F Z 4, df Z 3,83, P < 0.02). C: Pharmacological characterization of
nch rate change induced by nickel in respect to quench rate value calculated
of quench rate percentage block measured in n myofibers (indicated in

d no significant difference. *P < 0.05, significantly different by Bonferroni’s
t-test with respect to WKY soleus muscle (B).
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Table 2 Membrane Excitability Parameters

Variable
No. of
fibers Ith (nA)

Lat
(milliseconds) RMP (mV)

EDL
WKY 14 179 � 17 8.9 � 1.4 �72 � 3
SHR 16 171 � 15 9.5 � 0.13 �70 � 2

Soleus
WKY 15 129 � 13 11.7 � 1.05 �69 � 0.3
SHR 16 122 � 5.8 9.03 � 0.7* �64 � 2.4

Columns from left to right indicate the means � SEM of Ith (threshold
current) and RMP, calculated from n fibers. Statistical analysis by analysis
of variance showed significant differences (F Z 2, df Z 3,57).
*P < 0.05, significantly different by Bonferroni’s t-test with respect to

WKY soleus muscle.
Lat, latency of action potential; RMP, resting membrane potential.

Table 3 Component Ionic Conductances

Variable gm (mS/cm2) gCl (mS/cm2) gK (mS/cm2)

EDL
WKY 2540 � 58 2205 � 42 335 � 17
SHR 2560 � 106 2288 � 78 272 � 35

Soleus
WKY 1701 � 58 1346 � 40* 354 � 22
SHR 1793 � 91 1560 � 61y 292 � 18

Each value represents the means � SEM of component ionic conduc-
tances measured in 27 to 62 myofibers of at least four rats. Statistical
analysis by analysis of variance showed significant differences (F Z 63,
df Z 3,155, P < 0.001).
*P < 0.05, significantly different by Bonferroni’s t-test with respect to

WKY EDL muscle.
yP < 0.05, significantly different by Bonferroni’s t-test with respect to

WKY soleus muscle.
S, Siemens.
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Because resting gCl is an electrical parameter that controls
the electrical stability of sarcolemma and can be affected by
calcium homeostasis variation, we also measured this
parameter in muscle fibers. According to previous studies,42

in normotensive WKY rats, the gCl resulted approximately
1.7 times higher in the fast-twitch EDLmuscle with respect to
the slow-twitch soleus muscle (Table 3). Consistent with the
shorter latency of action potential observed in SHR soleus, a
significant 16% increase of gCl was observed in hypertensive
soleus compared with WKY soleus muscle. On the other
hand, the gCl was not modified by hypertension in EDL
muscle, with the gCl values being similar in the two rat strains.
Furthermore, the value of the macroscopic gK was only
slightly, and not significantly, lower in both EDL and soleus
muscles of SHR animals with respect to the relative WKY
muscle type. The variation of the gm was consistent with gK
and gCl modifications (Table 3).

Gene Expression Analyses

To determine whether hypertension could produce adaptive
or compensative effects on the expression of some proteins
Figure 6 Excitability characteristics. Representative intracellular
microelectrode recordings of excitability characteristics in EDL (A) and
soleus (B) muscle fibers of SHR and WKY rats. Excitability parameters (re-
ported in Table 2) were measured in at least 15 fibers from at least three
animals for each rat strain.

2810
associated with calcium homeostasis, we used qPCR to
quantify mRNA levels of a selected panel of genes encoding
for proteins responsible for the calcium-dependent param-
eters described herein. As far as the SOCE machinery
components were concerned, we focused our attention on
the stromal interaction molecule (STIM1) and its main
target, the calcium releaseeactivated calcium modulator 1
(Orai1).43,44 Because the transient receptor potential ca-
nonical (TRPC) family of calcium-permeable channels has
been proposed to contribute to SOCE,45e47 we also deter-
mined the expression of TRPC1. In addition, we measured
the expression of other calcium-handling proteins involved
in the structural organization of the triad located in close
proximity to the SR and plasma membrane SOCE in skeletal
muscle,48 such as junctophilins 1 and 2 (JPH1 and JPH2),
RyR1, voltage-sensitive calcium channel Cav1.1 (CACN1S
or DHPR), and sarcoplasmic/endoplasmic reticulum Ca2þ-
ATPase a2 (ATP2A1). The shifts in the mRNA levels of the
selected genes of SHR muscles with respect to WKY
Figure 7 Variations in gene expression in EDL and soleus (SOL) muscles
induced by hypertension. Transcript levels were determined by real-time
PCR for the selected genes. The number of the abscissa indicates the fold
change in gene expression normalized for housekeeping gene. For each
gene, transcript levels were determined in EDL and soleus muscles of at
least nine animals for each rat strain. *P < 0.05 (at least), significant fold
changes, according to two-tailed unpaired Student’s t-test.
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muscles are shown in Figure 7. Interestingly, some varia-
tions in the expression of specific genes were noteworthy in
both EDL and soleus muscles. Particularly, SHR EDL
muscles showed a significant increase of STIM1 expression,
whereas SHR soleus muscles exhibited a significant increase
of STIM1 expression paralleled with a significant decrease
of Orai1 and TRPC1 mRNAs.

We also determined the expression of NCX3 (SLC8A3),
the isoform within the SLC8 gene family predominantly
expressed in skeletal muscle.49 In accordance with previous
studies,49,50 in normotensive WKY animals, SLC8A3 was
highly expressed in fast-twitch EDL muscle with respect to
slow-twitch soleus muscle (Supplemental Figure S1). No
significant change was observed in both SHR EDL and
soleus muscles with respect to the relative WKY muscles,
except for a trend of down-regulation (Figure 7).

Furthermore, consistent with the gCl value, the expres-
sion of CLC-1 chloride channel (CLCN1), which is the main
contributor to gCl, was increased in SHR soleus with
respect to WKY soleus muscle.

Finally, as a marker of the oxidative stress, we deter-
mined the expression of the NADPH oxidase catalytic
subunit gp91phox, also called Nox2 (CYBB). The expression
of CYBB was increased in both muscles of SHR with
respect to WKY animals, more markedly in EDL muscle
(Figure 7).
Discussion

It is well recognized that both in animal models and in
humans, cardiovascular diseases are often associated with
distinct skeletal muscle alterations regarding function and
metabolism.2,3,5,51 In EDL and soleus of SHR animals, a
series of muscle alterations were found, indicating a form of
mild myopathy.6,7,11,14 Herein, we demonstrated that hy-
pertension causes a phenotype-dependent dysregulation of
skeletal muscle calcium homeostasis.
Hypertension-Induced Alterations of Resting [Ca2þ]i

Our results showed that some atrophy or hypertrophy in-
dexes, such as muscle weight and muscle fiber diameter, as
well as the resting [Ca2þ]i are differently affected by hy-
pertension in slow-twitch muscle with respect to fast-twitch
muscle. Particularly, muscle atrophy was evident in soleus
and a tendency to hypertrophy was observed in EDL,
whereas the resting [Ca2þ]i was altered in the two muscle
types in the opposite direction. In hypertensive animals, the
resting [Ca2þ]i of soleus muscle was reduced by 30%,
whereas the resting [Ca2þ]i of EDL muscle was increased
by 50%. Alternately, the resting [Ca2þ]i of SHR soleus and
EDL muscles was highly similar to WKY EDL and WKY
soleus, respectively. These hypertension-induced alterations
of the resting [Ca2þ]i could be in strict correlation with the
fiber phenotype transition reported in both muscles of SHR
The American Journal of Pathology - ajp.amjpathol.org
animals. Indeed, in SHR animals, EDL muscle showed a
reduction of type IIB fast fibers, whereas soleus muscle
yielded a lower proportion of type I fibers and a higher
proportion of fast-twitch and hybrid fibers, in comparison
with the WKY strain.7,13,14

Hypertension-Induced Alteration of SR Calcium
Signaling

Muscle cytosolic calcium alteration may result from
dysfunction in the calcium handling mechanisms involved
in the regulation of internal stores. We introduced the RyR
activator caffeine to deplete Ca2þ from SR, the main in-
ternal calcium store. Although caffeine-induced calcium
transients were not significantly different in EDL muscles of
the two rat strains, soleus muscles of hypertensive animals
had significantly lower caffeine-induced calcium transient
amplitude in comparison with WKY rats. The lack of sig-
nificant hypertension-induced effects on soleus RyR1
expression at the gene and protein levels led us to hypoth-
esize that the transiently reduced caffeine could be likely
due to a decreased Ca2þ storage capacity of soleus SR in
SHR. However, because hypertension is a pathological state
characterized by significantly increased oxidative stress, as
also indicated by the enhanced expression of the NADPH
oxidase catalytic subunit gp91phox in both SHR muscles, we
cannot exclude the possibility that RyR1 post-translational
modifications, such as oxidation, nitrosylation, or phos-
phorylation,52,53 could take place in SHR muscle, thus ac-
counting for the observed Ca2þ dysregulation. Further
studies are needed to assess this aspect.

Hypertension-Induced Alterations of Sarcolemmal
Permeability to Calcium Ions

Alteration of [Ca2þ]i could be sustained by a change of
calcium influx through the sarcolemmal membrane. NCX is
the main actor among the mechanisms involved in the
regulation of calcium through the sarcolemma. We
demonstrated the existence of a functional NCX in reverse
mode in skeletal muscle of both rat strains. These results,
together with no significant alteration of NCX3 gene
expression, led us to conclude that NCX is not primarily
involved in the observed calcium homeostasis alteration.
However, additional experiments are required to assess the
activity of NCX in forward mode, for a wider analysis of the
role of this exchanger in hypertensive skeletal muscle.

By using the manganese-quenching technique, we also
determined calcium entry both at rest and after SOCE
activation. In contrast to EDL muscle, showing similar
calcium entry in both rat strains, in soleus muscle of SHR,
we found a reduction of the cation membrane permeability
at rest, an effect that resulted more marked in condition of
SOCE activation. Muscle fibers were exposed to NiCl2,
which proved to be equally effective in reducing Ca2þ entry
after SOCE activation in both rat strains. The fact that a
2811
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Figure 8 Schematic representation of the effect of hypertension on
SOCE of SHR soleus muscle. Data regarding gene analysis and caffeine
responsiveness showed that soleus muscle fibers of SHR animals are char-
acterized by an increased expression of STIM1 accompanied by a significant
decrease of the expression of both Orai1 and TRPC1 and by a decreased SR
Ca2þ storage capacity. Thus, we propose that after SOCE activation (ie,
after SR Ca2þ stores depletion by thapsigargin and caffeine), the sarco-
lemma Ca2þ entry is reduced in SHR soleus with respect to WKY soleus
muscle due to a reduced aggregation between STIM1 and Ca2þ channels
(Orai1 and TRPC1).

Liantonio et al
similar nickel-induced block was observed independently
on the muscle type and genotype suggests that no qualitative
difference, rather than a quantitative modification in ion
channels involved in the calcium influx, could take place in
SHR soleus muscle. Consistent with these findings, we
found a significant alteration of the expression levels of
STIM1, Orai1, and TRPC1. Indeed, although an increased
expression of STIM1 without modification of Orai1 and
TRPC1 was found in EDL muscle, in soleus muscle, the
increased expression of STIM1 was accompanied by a
significant decrease of the expression of both Orai1 and
TRPC1. We conclude that the down-regulation of Orai1, the
main target channel of STIM1,44,45 and TRPC1, another
proposed target of STIM1,45e47 causes a reduced SOCE
function in SHR soleus muscle (Figure 8).

All these findings regarding the SOCE process may be of
significant physiopathological importance. SOCE is a
pivotal mechanism linking extracellular calcium entry and
intracellular Ca2þ storage, especially during the repetitive
cycles of E-C coupling when the maintenance of SR Ca2þ

store critically needs the activation of SOCE. Indeed, SOCE
2812
is fundamental for store repletion, limiting fatigue under
conditions of extensive exercise,19 and dysregulation of such
Ca2þ entry mechanism may lead to severe muscle patho-
logical conditions.54,55 The reduction of caffeine-induced
calcium transient amplitude that we observed in soleus
SHR muscle could be attributed to an SOCE reduction that
could directly modulate Ca2þ storage, leading to compro-
mised SR Ca2þ release. Thus, the compromised SOCE
described herein could be linked to the reduced contractile
force and decreased fatigue resistance observed in soleus
muscle of hypertensive animals.6,56e59 Indeed, we postulate
that a chronically compromised SOCEmay lead to an equally
chronic reduction in the amount of Ca2þ stored in the SR.
Consequently, less Ca2þ will be available and released and,
finally, less force will be produced.

The Alteration of Hypertension-Induced Calcium
Homeostasis Influences Some Muscle Functional
Outcomes

As functional indexes of potential muscle impairment due to
the alteration of hypertension-induced calcium homeostasis,
we evaluated muscle excitability and resting gCl, the elec-
trical parameter sustained by the voltage-gated chloride
channel CLC-1, which is negatively regulated by the Ca2þ-
dependent protein kinase C and is critical for the mainte-
nance of membrane stability.60,61 Interestingly, SHR soleus,
the muscle in which calcium homeostasis undergoes deeper
changes in terms of alteration of resting [Ca2þ]i and SOCE
mechanism, seemed to be the most affected muscle at the
functional level. Indeed, resting gCl is significantly
increased in SHR soleus muscle with respect to WKY. Such
an effect determines a modification of the sarcolemma
excitability in soleus muscle fibers. Remarkably, the alter-
ation of the latency of action potential may contribute to the
impaired resistance to fatigue observed in hyperten-
sion.4,56,58 The fact that the gCl increase in SHR soleus
muscle was in parallel with an enhancement of CLCN1 gene
expression could indicate that the alteration of calcium ho-
meostasis can interfere with CLC-1 function, likely through
protein kinase C regulation and through an alteration of the
activity of transcriptional factor pathways. Further studies
are needed to investigate the specific pathways involved.
Conclusions

Herein, we demonstrated that hypertension caused a
phenotype-dependent calcium homeostasis dysregulation in
skeletal muscle. The soleus muscle is basically an anti-
gravity and posture muscle that is persistently active and,
consequently, more sensitive to changes of muscle activity
and loading levels as well as of blood supply. Because so-
leus is an oxidative muscle, it can be hypothesized that this
muscle is more affected by hypertension because it is more
sensible to the reduction in blood flow secondary to vascular
ajp.amjpathol.org - The American Journal of Pathology
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changes. A similar mechanism has been reported for soleus
muscle in disuse.62 Furthermore, differences between EDL
and soleus muscle in sensing hypertension could also sug-
gest that fast- and slow-twitch muscles could differently
counteract the hypertensive stimuli by muscle-type specific
compensative responses. Interestingly, it has been recently
demonstrated that the skeletal muscle alterations observed in
autophagy markers between WKY and SHR appeared to be
muscle-type specific, with a larger increase detected in fast
skeletal muscles.15 Because DNA fragmentation and
caspase-3 activity were elevated to a greater extent in slow
versus fast skeletal muscle of SHR animals,11 it has been
proposed that autophagy protects fast skeletal muscle from
excess apoptotic signaling during hypertension. This could
also justify the tendency to hypertrophy that we observed in
EDL muscle of SHR. Therefore, we can hypothesize that the
differential autophagic activity between muscle types in
hypertensive animals could ultimately influence apoptosis
and other cellular processes regarding calcium homeostasis.

Whether the observed calcium dysregulation in hyper-
tensive muscles is primarily due to an alteration in gene
expression in muscle fibers or rather due to the higher blood
pressure in the arterioles in muscle is an open question. We
used SHR animals with established hypertension; thus, we
strongly support the idea that the higher blood pressure is the
cause of the observed calcium homeostasis alteration. It is
well known that in hypertension, skeletal muscles undergo a
series of alterations regarding both function and metabolism,
likely related to changes in gene expression.56e59,63 How-
ever, assessing the precise sequence of events responsible for
the hypertension-induced alterations is difficult. Indeed, it is
still controversial whether the altered gene expression is a
cause or a result of blood pressure elevation; similar to
humans, the hemodynamic and metabolic disturbances in the
SHR are also multifactorially determined.63 It would be
desirable to see whether the changes we reported are also
seen in the aged-matched hypertensive animals, and occur
with the onset of hypertension. Further investigations using
prehypertensive and aged hypertensive rats, with or without
antihypertensive drug treatment, will allow assessment of
this issue.

The alteration of [Ca2þ]i and SOCE in SHR skeletal
muscles supports the idea that the modification of calcium
homeostasis may indeed contribute to the muscle functional
and metabolic phenotype observed in SHR animals.
Because calcium ions exert a crucial role in muscle function
and in safeguarding muscle integrity, the alteration of
resting calcium levels reported herein may be particularly
significant for the development of the muscle weakness
frequently observed in hypertensive patients. As shown for
aging, SOCE should be seen as an important functional
biomarker of muscle function also in hypertension, and it
may provide a suitable target for therapeutic intervention for
counterbalancing muscle performance decline.

Moreover, measurement of the calcium-dependent pa-
rameters determined herein could help to predict which of the
The American Journal of Pathology - ajp.amjpathol.org
various classes of antihypertensive drugs could alter muscle
performance. Finally, skeletal muscle is considered as a
secretary organ capable of producing and releasing myo-
kines, which work in a hormone-like manner and exert
specific endocrine effects on distant organs, generatingmuscle-
liver and muscle-adipose tissue cross talk.64 Interestingly, it
has been more recently proposed that musclin, a skeletal
muscleederived secretory factor, is involved in blood pres-
sure regulation.65 It could be hypothesized that alteration of
muscle calcium signaling could lead to an altered myokine
secretion or response. SOCE is known to be essential for
driving nuclear translocation and activity of various tran-
scription factors, including c-fos and nuclear factor of acti-
vated T cells.66 Therefore, our findings could contribute to
clarify the molecular mechanism involved in pathological
processes of hypertension-associated diseases, such as obesity
and type 2 diabetes mellitus.
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