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Abstract 22 

Aim: Niche-based models of species distribution (SDMs) are commonly used to predict impacts of 23 

global change on biodiversity but the reliability of these predictions in space and time depends on 24 

their transferability. We tested how the strategy to choose predictors impacts the SDMs’ 25 

transferability at a cross-continental scale. 26 

Location: North America, Eurasia and Australia 27 

Method: We used a systematic approach including 50 Holarctic plant invaders and 27 initial 28 

predictor variables, considering 10 different strategies to variable selection, accounting for 29 

predictors' proximality, multicollinearity and climate analogy. We compared the average 30 

performance per strategy, some of them using a large number of predictor combinations. Next, we 31 

looked for the single best model for each species across all the predictor combinations retained in 32 

the analysis. Transferability was considered as the predictive success of SDMs calibrated in native 33 

range and projected onto the invaded range.  34 

Results: Two strategies showed better SDM transferability on average: a set of predictors known 35 

for their ecologically-meaningful effects on plant distribution, and the two first axes of a principal 36 

component analysis calibrated on all predictor variables (Spc2). From the >2000 combinations of 37 

predictors per species across strategies, the best set of predictors yielded SDMs with good 38 

transferability for 45 species (90%). These best combinations consisted of 8 randomly-assembled 39 

(39 sp) or uncorrelated predictors (6 sp) and Spc2 (5 sp). We also found that internal cross-validation 40 

was not sufficient to fully inform about an SDMs’ transferability to a distinct range.  41 

Main conclusion: Transferring SDMs at the macroclimatic scale, and thus anticipating invasions, is 42 

possible for the large majority of invasive plants considered in this study, but the predictions’ 43 

accuracy relies strongly on the choice of predictors. From our results, we recommend including 44 



either proximal and state-of-the-art variables or a reduced and orthogonalised set to obtain robust 45 

SDMs’ projections.  46 

 47 

Introduction 48 

Species distribution models (SDMs) quantify estimates of ecological niches by relating observed 49 

species occurrences to environmental variables. They rely on the realized niche concept defined 50 

from the set of environmental conditions at locations where a species is observed, i.e. accounting 51 

for the species’ physiological tolerances constrained by dispersal limitations and biological 52 

interactions (Soberon & Nakamura, 2009; but see Halvorsen 2012). Projections of SDMs onto 53 

geographical space then allow predicting the potential distributions of species (Elith & Leathwick, 54 

2009), and it is frequent to project models calibrated in one area onto a different geographic area or 55 

time period, with an assumption of ecological niche transferability (Randin et al., 2006; Maiorano 56 

et al., 2013; Wenger & Olden, 2012). Projections in space may be used to identify the potential 57 

distribution in other distinct geographical areas that a species reached naturally (e.g. different 58 

mountain chains: Randin et al., 2006) or through human activities (e.g. invasive species: Thuiller et 59 

al., 2005). Using climate change data, SDMs can also be projected back in time (hindcasting), e.g. 60 

to depict potential glacial refugia (Maiorano et al., 2013) or to the future (forecasting), e.g. to assess 61 

the impact of climate change on biodiversity (Engler et al., 2011). These approaches are especially 62 

useful for supporting conservation decisions in an era where biodiversity is massively threatened by 63 

human activities (Guisan et al., 2013).  64 

However, some SDMs, based on some techniques or for some species, have shown limited 65 

predictability when projected to different areas (e.g. Randin et al., 2006; Broennimann et al., 2007) 66 

or to past climatic conditions (e.g. Maiorano et al., 2013). Failures in model transferability can 67 

result from many, possibly interrelated factors, such as violation of the niche conservatism 68 

assumption (Broennimann et al., 2007; Early & Sax, 2014; Guisan et al., 2014) or methodological 69 



limitations (Randin et al., 2006; Peterson et al., 2007; Wenger & Olden, 2012). Because the 70 

realized environmental niche fitted in SDMs is restricted to the available environmental variables 71 

(Halvorsen, 2012), the choice of predictor variables can thus have a strong effect on quantification 72 

of the realized niche and therefore on SDM transferability (Rödder et al., 2009; Peterson, 2011). 73 

Three aspects, in particular, are critical to consider when building a set of predictors to project 74 

SDMs in time or space: i) proximality, ii) multicollinearity and over-parametrization and (iii) 75 

analog environments.  76 

Using proximal variables, which can define species’ physiological limits, is expected to bring the 77 

model closer to the real requirements of the species, thus allowing more robust predictions (Austin 78 

2007; Kearney & Porter, 2009; Rödder et al., 2009). However, without a priori knowledge about 79 

the species’ ecology and physiology, choosing the most proximal variables is not obvious as they 80 

may be confounded with other, highly correlated variables. Moreover, there is no guarantee that 81 

relevant proxies for these variables would be available as spatial GIS layers covering a wide study 82 

area. 83 

Multicollinearity (i. e. when two or more variables are correlated) can significantly decrease the 84 

accuracy of SDM predictions if the correlation matrices of the variables differ between the 85 

calibration and projection ranges (Dormann et al., 2008; Braunisch et al., 2013). A common rule of 86 

thumb is to avoid correlations between variables where the Pearson’s correlation |r| is higher than a 87 

fixed threshold (e.g. > 0.7; Dormann et al., 2013). When several variables are correlated, one should 88 

choose the variable most proximal to the species’ ecology (Austin, 2007; Austin & Van Niel, 2011).  89 

Over-parameterization can be the result of fitting a model with too many predictors relative to the 90 

number of available observations. It may result in modeling spurious relationships between 91 

biological and environmental variables (depending on the model algorithm) without any ecological 92 

and causal relationship, thus potentially reducing transferability (Warren & Seifert, 2011). A 93 



common solution is the empirical rule of “1 in 10” (Harrell et al., 1984), i.e. the use of a maximum 94 

of one predictor for ten (but preferably 15-20) species occurrence records. 95 

Next, one has to take into account the distribution of environmental variables across the whole 96 

study area(s). Specific environmental conditions in distinct study areas can vary in their frequency 97 

(i.e. different availability between ranges, Broennimann et al., 2012) or can be completely non-98 

existent in one of the ranges (i.e. non-analog climate, Fitzpatrick & Hargrove, 2009). For example, 99 

the Greenhouse Frog colonized colder temperatures in its invaded ranges that do not exist in its 100 

native range (Rödder & Lötters, 2010). In such cases, models calibrated in the native range should 101 

be extrapolated with caution in the non-analog environments of the invaded range (Fitzpatrick & 102 

Hargrove, 2009; Owens et al., 2013; Guisan et al., 2014). Non-analog variables could be derived 103 

into more analog predictors, with the hope that they could provide more transferable SDMs. 104 

Similarly, to depict the moisture conditions in a niche comparison of arctic-alpine plant species, 105 

Wasof et al., 2015) used aridity indices, more analog than the annual precipitation. 106 

Fully testing the ability of SDMs to predict species’ distribution through space or time requires an 107 

independent test dataset (Bahn & McGill, 2013). The usual split-sample approach, repeatedly and 108 

randomly leaving out a certain proportion of data within the study area to evaluate models accuracy 109 

(i.e. internal cross-validation), could be insufficient in this regard (Phillips et al., 2006; Randin et 110 

al., 2006; Veloz, 2009). Independent data sets are thus optimal when they are geographically or 111 

temporally separated from the training data set (Araújo & Rahbek, 2006; Austin, 2007; Bahn & 112 

McGill, 2013). Systems with a temporal separation include ancient distribution data set such as 113 

pollen fossil data (e.g. Maiorano et al., 2013). Geographical separation can be achieved between 114 

distinct study areas: e.g. different mountain ranges (Randin et al., 2006), neighboring countries 115 

(Barbosa et al., 2009), active subsampling disentangling spatial autocorrelation (Edvardsen et al., 116 

2011), or the native and invaded ranges of invasive species (Petitpierre et al., 2012). Biological 117 



invasions represent one of the few opportunities to assess the predictive capacity of SDMs in a 118 

context of global change. 119 

In this study, we use native and invaded ranges of 50 Holarctic plant species, to investigate the 120 

impact of variable selection on SDM transferability at a coarse macroclimatic scale. This study aims 121 

to improve our understanding of the climatic variables shaping invasive species distributions, while 122 

also assessing the validity of transferring SDMs in the context of rapid climate change, a 123 

phenomenon interconnected with invasive species distributions (Caplat et al., 2013). As SDMs are 124 

currently widely used to assess global change threats to biodiversity (Guisan et al., 2013), assessing 125 

their transferability is a crucial task. More specifically, we ask the following two questions: 126 

- When building SDMs, how do considerations of variable proximality, collinearity and climate 127 

analogy affect model transferability? 128 

- Are there general strategies for selecting variables that will optimize model cross-continental 129 

transferability? 130 

 131 

Methods 132 

Data 133 

We used the same distribution data as Petitpierre et al. (2012) (raw distribution maps can be seen in 134 

Appendix S1 in Supporting information). The dataset consists of the distributions of 50 Holarctic 135 

plant invaders, either native in the Palearctic part of Eurasia (EU) and invading North America 136 

(NA) or vice versa. A subset of 38 of these species was introduced in Australia (AU), which was 137 

used here as a second independent invaded range outside the Holarctic (see Table 1 for the species 138 

list and their respective native and invaded ranges). In EU and NA, 10’000 background points were 139 

sampled as pseudo-absence, while 2826 background points were retained in AU (corresponding to 140 

the total number of pixels in AU).  141 



Based on the conclusions of Petitpierre et al. (2012), we distinguished species shifting their realized 142 

niche, i.e. showing more than 10 % niche expansion (E) in analog climates, from species with stable 143 

niches. Only seven species showed niche shifts due to realized niche expansion within their 144 

Holarctic ranges comparison (A. fruticosa, B. sterilis, C. stoebe, C. scoparius, H. lanatus, H. 145 

tuberosus and T. dubium), and seven species in their Holarctic-Australian range comparison (C. 146 

vulgare, H. radicata, L. vulgaris, M. albus, S. canadensis, S. oleraceus and T. dubium). We 147 

distinguished these species because models of niche-shifting species are expected to show lower 148 

performance when projected in the invaded range, for any method of variable selection.  149 

We downloaded 35 bioclimatic variables at a resolution of 10 arcminutes from the Climond 150 

database (Kriticos et al., 2011, downloaded the 6.9.2012). In total, 27 variables were kept (Table 2). 151 

We did not include the solar radiation variables because they were used in the calculation of the 152 

moisture variables, the latter being more proximal for plant growth at this coarse continental scale 153 

where microhabitats and slope, two important factors affecting radiation, cannot be taken into 154 

account. Using the raster library in the R software (version 2.15.1), we aggregated these data at the 155 

same resolution as the species distribution data, i.e. 0.5°, corresponding also to the minimal distance 156 

between two occurrences.  157 

 158 

Variable selection strategies  159 

For each species, each SDM calibrated on the exhaustive set of variables (Sall) was compared to 160 

nine other strategies to select variables in the SDM (Table 3, Fig. S1 in Appendix S2). The variable 161 

selection strategies included increasing proximality (Ssoa, Ssh), reducing multicollinearity and over 162 

parametrization (Sunc, Sran, Spc8, Spc2) and/or considering climate analogy in the invaded range (Sana, 163 

Sanc, Scon). Note that the performances of Sran and Sunc were assessed with an average of 1000 164 

replicates of variable combinations. These selection strategies based on processes expected to affect 165 

SDM transferability are not exhaustive and do not deal explicitly with purely statistical variables 166 



selection, such as backward/forward stepwise analysis or shrinkage (although such processes are 167 

included in some of the modeling techniques, see below). A full explanation of each strategy is 168 

provided in Table 3.  169 

 170 

Modeling techniques 171 

For each set of predictors, we combined three of the most frequently used modeling techniques: 172 

generalized linear models (a polynomial GLM based on a stepwise predictors‘ selection using a 173 

Bayesian Information Criteria, McCullagh & Nelder, 1983), generalized boosted models (GBM, a 174 

synonym for boosted regression trees, with the number of trees fixed at 2500, Friedman et al., 2000) 175 

and Maximum Entropy (ME with a beta-penalization analog to a Bayesian Information Criteria, 176 

Phillips et al., 2006, Halvorsen et al., 2015). Modeling was calibrated on the native ranges of each 177 

species using the R package biomod2 (Thuiller et al., 2014) and predictions were averaged across 178 

the three modeling techniques to provide an ensemble model (Araújo & New, 2007). A preliminary 179 

analysis where all techniques were evaluated independently showed that the ensemble approach 180 

yielded predictions close to the best individual modeling technique in most cases and is quite 181 

resilient to an individual technique failing (Fig. S4 in Appendix S2). To estimate the relative 182 

contribution of individual variables, each variable was randomized while the others were kept fixed. 183 

The effect of this randomization was assessed on predictions (see Thuiller et al., 2014 for more 184 

details).  185 

 186 

Evaluation of predictions across predictor combinations 187 

It is challenging to evaluate predictions of SDMs with invasive species because of the uncertain 188 

nature of the absences in the invaded range (Jiménez-Valverde et al., 2011). Therefore we used two 189 

different indices to get a more insightful evaluation of SDMs. The Boyce index (B) and sensitivity 190 



(Se). B measures how observed presences are distributed across the gradient of presence predictions 191 

and how it differs from the random expectation in the study area. It is analog to a Spearman 192 

correlation and varies between -1 and 1, with zero meaning no different than random. B was 193 

computed with the bin-independent approach using a moving window along continuous predictions 194 

(Hirzel et al. 2006). Se is the percentage of presences correctly predicted by the model. To compute 195 

Se, a threshold binarizing continuous predictions is required. We used the threshold maximizing the 196 

True Skill Statistics (TSS) in the native range (i.e. the max-TSS approach; Allouche et al., 2006), 197 

where species distributions are assumed to be closer to the dispersal equilibrium than in the invaded 198 

ranges. In this manuscript we refer to bad, poor, fair, good, very good Se for values between 0 - 0.5, 199 

0.5 - 0.7, 0.7 - 0.8, 0.8 - 0.9 and 0.9 - 1 respectively. We consider SDMs to be transferable when 200 

they show B ≥ 0.7 and Se ≥ 0.8 in the invaded range.  201 

To evaluate SDMs in the native range, models were calibrated on a random sample of 70% of the 202 

data and evaluated with the remaining 30%. The evaluation was averaged through 5 repeated splits-203 

samples. On the other hand, SDMs calibrated on 100% of the native dataset were projected to the 204 

invaded ranges. Hence, we considered Se and B as indices of SDMs transferability in the invaded 205 

range and examined how they differ between different variable selection strategies. Strategies 206 

providing both high Se and B on the average were considered as the best strategies providing the 207 

most transferable SDMs.  208 

Finally, among all the predictor combinations generated for each species across strategies, including 209 

all the replicates for Sran and Sunc (1000 for each strategy), we identified for each species the single 210 

best combination that maximized both B and Se in the Holarctic and Australian invaded ranges 211 

(hereafter called best model). For species not present in AU, we considered only the Holarctic 212 

invaded range to find the best model. The aim was twofold: first, to test if the best transferability 213 

depends of a particular predictor selection strategy and second, to test if some particular variables 214 

were more closely associated with better transferability.  215 



Results 216 

Across all strategies, 2011 predictor combinations were examined for 38 species present in the three 217 

study areas (EU, NA and AU), while 2008 predictor combinations were examined for the 12 species 218 

not present in AU, resulting in a total of 100’514 ensemble SDMs to evaluate how variable 219 

selection affects SDM transferability. 220 

   221 

Comparison of strategies 222 

In each species’ native range, Se varied between 0.81 and 0.99 whereas B was between 0.75 and 1, 223 

corresponding to good to excellent predictive power for most SDMs, except for M. albus which had 224 

a lower but still fair Se and A.novi-belgii with a lower B (Fig. 1, Table S1 and S2 in Appendix S2). 225 

Selection strategy had a significant effect on Se and B (Kruskal-Wallis test P <0.001 and P = 0.027 226 

respectively), with Sall showing better Se than other strategies and Spc2 having lower B on average. 227 

In the Holarctic invaded range, species showed lower Se and B values than in the native range. The 228 

variable selection strategy had a significant effect on average model performance for B and Se 229 

(Kruskal-Wallis test P < 0.001 and P = 0.001 respectively), but with different trends from the native 230 

range. Spc2 and Ssoa had better evaluation scores on average for both Se (0.83 ± 0.14 and 0.76 ± 231 

0.20) and B (0.81 ± 0.26 and 0.81 ± 0.23 respectively) and smaller variance in performances with 232 

fewer poorly predicted species than the other strategies. Most notably, this was true for Spc2 (A. 233 

retroflexus, A. fruticosa; C. stoebe, C. scoparius, R. Typhina, A. novi-belgii and H. tuberosus had 234 

bad results with Ssoa, whereas only A. fruticosa, C. stoebe and A novi-belgii had bad SDMs with 235 

Spc2, Fig. 1, Table S3 and S4 in Appendix S2). This translated into negative or weak correlations 236 

between the SDMs’ evaluation obtained in the native and the invaded ranges (Table S5 in Appendix 237 

S2). The better performances of Spc2 and Ssoa appear even clearer when niche-shifting species are 238 

removed (Fig. S5 in Appendix S2). SDMs for niche-shifting species showed lower performances on 239 



average in their Holarctic invaded range for both Se and B but the magnitude of this decrease 240 

depended on the variable selection strategy (Fig. S5 in Appendix S2). Among seven niche-shifting 241 

species in the Holarctic, 4 species were badly predicted with Ssoa (A. fruticosa, C. stoebe, C. 242 

scoparius, H. tuberosus) and 2 with Spc2 (A. fruticosa and C. stoebe Fig. S5, Tables S2 and S3 in 243 

Appendix S2). Importantly, this pattern showing Spc2 and Ssoa as better strategies for SDM 244 

transferability remains constant across the individual ensembled modeling techniques (Fig. S6 and 245 

S7 in Appendix S2).  246 

In the Australian invaded range, SDMs showed good performance on average. Although strategy 247 

did not show a significant effect, we observed that Spc2 and Ssoa had the best B (0.79 ± 0.23 and 0.76 248 

± 0.28 respectively) and Se along with Sana (0.81 ± 0.25, 0.82 ± 0.26 and 0.83 ± 0.19, Fig. 1, Tables 249 

S6 and S7 in Appendix S2). Niche-shifting species had a significantly lower Se in Australia (Fig. S5 250 

in Appendix S2).  251 

 252 

Best model across all combinations 253 

When focusing on the model maximizing both B and Se, screening all the replicates of Sran and Sunc, 254 

we found 45 species with a transferable SDM (i.e. Se ≥ 0.8 and B ≥ 0.7) and 5 species with bad or 255 

poor predictive SDMs in the invaded range (Fig. 2, Table 1): A. novi-belgii (Se = 0.40 in EU and B 256 

= 0.69 in AU), C. stoebe (Se = 0.48 in NA), S. oleraceus (Se = 0.76 in NA), A. retroflexus (Se = 257 

0.76 in EU) and H. tuberosus (B = 0.67 in AU). We observed that the single best models are 258 

achieved by the random (Sran: 39 species), the random/uncorrelated (Sunc: 6 species) or with the two 259 

first components of the PCA (Spc2: 5 species) strategies (Table 1).  260 

In the best models, the most frequently included variables are, in rank order, precipitation 261 

seasonality, precipitation of the coldest quarter, annual precipitation, moisture seasonality and 262 

precipitation of the warmest quarter. Mean diurnal temperature range is included in only 5 best 263 



models and the two first principal components provided the best models for five species, all from 264 

NA. Some variables are never or rarely included in the best models of NA species, whereas they are 265 

frequently included for EU species (e.g. temperature daily range, temperature seasonality, 266 

precipitation of the wettest week, moisture of the wettest quarter, Fig. 3a, Table S8 in Appendix 267 

S2). Once they are included, temperature variables have higher contribution than the variables in 268 

other categories. This trend is also confirmed by the more important contributions of the second 269 

component of the PCA, corresponding to temperature variables, when PCA provides the best model 270 

(Fig. 3b).  271 

 272 

Discussion  273 

Our results show that variable selection significantly impacts predictions of the SDMs in the 274 

invaded ranges and that across the numerous predictor sets screened for each species, there is at 275 

least one that can provide a reliably transferrable model for 45 invasive species out of 50. Among 276 

the different strategies used to select predictors, a standard set of variables (Ssoa) and a reduced and 277 

orthogonalized set (Spc2) yield the highest SDMs transferability in the Holarctic. When projecting 278 

into a more different environment such as Australia, although Ssoa remains robust, the analogy of 279 

specific predictors between native and invaded ranges should be taken in account (as in Sana), as the 280 

analog variables set provides better SDMs for species shifting their niches in Australia. Overall, 281 

these findings favor using proximal variables and simpler, more parsimonious models for spatial 282 

projections. This systematic approach including many of the most widespread Holarctic plant 283 

invaders offers strong support to previous discussions raised from more case-specific review 284 

(Jiménez-Valverde et al., 2011). Beyond the particular case of invasive species, it is reasonable to 285 

assume that such recommendations for building transferrable SDMs in space can be extended more 286 

generally to projecting species’ potential habitats under rapid climate changes scenarios, where 287 

variable selection can also affect predictions (Synes & Osborne, 2011). Hereafter we discuss the 288 



factors involved in the success or the failure of the transferability of SDMs and how to optimize 289 

model performance when predicting distributions in space and time. 290 

 291 

A starting point: niche conservatism 292 

Niche conservatism between native and invaded range is a pivotal assumption to project SDMs 293 

through space and time (Pearman et al., 2008; Peterson, 2011). Niche shifts have commonly been 294 

measured from SDM predictions, i.e. the predictive ability of SDMs calibrated on one range when 295 

projected to the other range (Guisan et al., 2014). Our results show that the degree of niche 296 

conservatism, when assessed through such SDMs’ predictions, can thus arise independently from 297 

ecological or evolutionary processes affecting species fitness (see Pearman et al., 2008 for a review) 298 

and may simply result from non-proximal variables confounded with important variables for the 299 

delimitation of species distribution or from climatic non-analogy in the native range. It is thus 300 

important to understand the nature of apparent niche shifts across the variables used to depict the 301 

species’ realized niche (Rödder et al., 2009; Peterson, 2011; Guisan et al., 2014).  302 

This dataset of widespread invaders with a large distribution shows no major niche expansion for 303 

more than 70% of the species (Petitpierre et al., 2012), probably explaining the good overall 304 

transferability of the SDMs. However, niche conservatism may be lower for species with smaller 305 

distributions and niche breadth, potentially affecting SDM transferability (Li et al., 2014; Early & 306 

Sax, 2014; Bocsi et al., 2016). For such species, particular care given to variables selection may be 307 

even more important to obtain reliable predictions of species’ potential distribution. For example, 308 

niche expansion may occur only at one end (low or high) of a predictor variable’s gradient. Indeed, 309 

the realized niche can be more labile at one or another extremity of the gradient and it has been 310 

shown that the most stressful extremity of the gradient is more predictable by SDMs because it 311 

corresponds to physiological limits affecting the fundamental niche (Normand et al., 2009; 312 

Maiorano et al., 2013; Araújo et al., 2013). In our dataset, this can be seen for isothermality in the 313 



case of C. scoparius and for moisture of the coldest quarter in the case of H. lanatus, which appear 314 

to be a limiting factor only at the lower side of the gradients (Appendix S3). For such species, 315 

modelling the limiting thresholds along critical variables rather than the typical bell-shaped 316 

distribution may provide more transferable models.  317 

 318 

Proximality 319 

It is recommended to use proximal variables, known to have direct impact on species physiology 320 

and fitness, to predict potential species distribution (Austin, 2007; Kearney & Porter, 2009; Rödder 321 

et al., 2009; Buckley et al., 2010). Because the variables included in the best models provide the 322 

best transferability, such variables may be assumed to have more proximal effects on species 323 

distributions. Among the 27 included variables, the analysis of variable importance shows that 324 

thermal variables are more important in the single best models and thus may be more proximal for 325 

invasive plants. This finding, comparable to Randin et al. (2013), provides support for forecasting 326 

plant species distributions under climate change scenarios, given that scenarios of future 327 

precipitations are more uncertain than temperature scenarios (Bosshard et al., 2011). However, 328 

precipitation and moisture variables are more often included in the best model, suggesting that they 329 

are necessary for good transferability, even if they have less impact on predictions. Beyond these 330 

generalities, the fact that the best model of each species does not follow a particular strategy in most 331 

of the cases supports that proximality of variables is species specific. Additionally, the discrepancy 332 

between EU and NA in the inclusion of some variables in the best models (Fig. 3a) also suggests a 333 

possible effect of the study area in the selection of variables optimizing the transferability. Focusing 334 

on the variable set which provides the best SDM transferability among multiple combinations, as 335 

we did in this study, could precede and help in selecting variables to include in further experimental 336 

research on species’ physiological response to environmental complex gradients. Only these 337 

physiological models can be used to ultimately define species’ fundamental niche, a safer approach 338 



to predict all the species’ potential habitats excluding competitive interactions. This is because, 339 

even if the fundamental niche may also be subject to changes, it requires evolutionary adaptations 340 

which take times to develop (Whitney & Gabler, 2008). Note that the realized niche is generally 341 

equal to or smaller than the fundamental niche (i.e. except in the case of biotic facilitations; 342 

Callaway et al., 2002), and predictions based on models of the fundamental niche may overestimate 343 

species potential distribution in their native range.  344 

 345 

Non-analogy 346 

Extrapolating complex SDMs to novel climates may lead to unreliable predictions as there is no 347 

guarantee that interactions between the predictors remain constant in the novel climates (Fitzpatrick 348 

& Hargrove, 2009; Peterson, 2011; Owens et al., 2013; Guisan et al., 2014). In our study, strategies 349 

based on climate analogy did not show better performances in the Holarctic invaded ranges. 350 

However, considering climate analogy did lead to a better average Se in AU where climate is more 351 

different from the native ranges (see Fig. S8 in Appendix S2). Additionally, the difference between 352 

Se for shifting- and non-shifting species in AU is strongly reduced with Sana (Fig. S5 in Appendix 353 

S2), suggesting that the nature of these niche shifts in AU could be linked with the climate non-354 

analogy with the native range (Rödder & Lötters, 2010). Therefore, species growing in a globally 355 

different climate and thus presenting an apparent niche shift may paradoxically provide information 356 

about species’ niche conservatism along the few environmental predictors that do not differ 357 

between the two ranges.  358 

 359 

Good at home doesn’t mean good elsewhere  360 

In contrast to recent multi-species studies investigating the importance of variable selection for 361 

SDMs (e.g. Barbet-Massin & Jetz, 2014; for birds or Ashcroft et al., 2011, for plants), our study 362 



used a completely independent dataset (i.e. invaded ranges) to evaluate SDMs’ transferability. 363 

Complex and highly parameterized SDMs like Sall can be used to depict the fine variations in the 364 

range where they are calibrated but are less robust against changes in the structure of the predictors. 365 

Therefore, the difference between the model performances in the native and invaded ranges with Sall 366 

and Spc2 demonstrates that excellent performances as determined by pseudo-independent data 367 

(native range sub-sampling) do not necessarily imply a good transferability. Spatial autocorrelation 368 

and over-parametrization can explain this apparent paradox. The usual approach by which a 369 

subsample of the calibration area is used as an independent dataset for model evaluation may be 370 

biased by spatial correlation with the calibration dataset (McPherson & Jetz, 2007; Bahn & McGill, 371 

2013). Although fully independent dataset should always be the one and only gold standard for 372 

SDM evaluation of transferability, having such separate datasets in comparable environmental 373 

conditions is rare. Therefore, to minimize the spatial autocorrelation problem, increasing the ratio of 374 

independent data in the split-sampling evaluation, including a spatial autocorrelation term or 375 

disaggregating the calibration dataset based on a minimum distance can be alternatives (Dormann, 376 

2007, Hijmans, 2012). Interestingly, collinearity does not show any significant negative effect on 377 

predictions in our study (e.g. when Sunc is compared to Sran). Using Pearson’s correlation to assess 378 

collinearity between variables is very common but can be subject to criticism. The threshold (here 379 

in this study |r| ≤ 0.7) was based on a review of literature (Dormann et al., 2013) and does not rely 380 

on any statistical demonstration or simulation. This approach can also be biased when non-linear 381 

relationships exist among predictors (Dormann et al., 2013) and can be alternatively replaced by the 382 

use of a dissimilarity matrix based on indices such as Gower metric (Franklin, 2010), which is less 383 

sensitive to non-linearity. However, both the validity of the correlation threshold and Gower 384 

matrices require formal assessment. An independent dataset, such as a species’ invasive 385 

distribution, can be useful for such purpose.  386 



Evaluating SDM predictions in the invaded range requires particular attention to the choice of the 387 

performance statistic, especially the weight given to the absences. Models predicting a wider 388 

species potential distribution and apparently increasing the rate of false positives (Type I error) may 389 

be underrated if too much weight is given to the predictions of absences because dispersal non-390 

equilibrium prevails in the invaded range. Focusing more on the rate of predicted presences may be 391 

more insightful to assess the transferability of SDMs. To do that, using presence-oriented evaluators 392 

in the invaded range such as sensitivity or Boyce may be helpful to select more transferable models. 393 

 394 

Recommendations  395 

For a majority of species and from a purely predictive perspective, the best model is found using an 396 

iterative random approach (i.e. no strategy) to select the predictor dataset. Therefore, the variable 397 

selection providing the best model is species-specific, meaning that the final combination of 398 

predictors should be carefully chosen, based on its performance to explain the distribution of each 399 

individual species on independent data. However, when such data are not available or in cases 400 

where many species niches are modeled and a standardized set of predictors is required (e.g. to 401 

reduce computing requirements), the state-of-the-art variables used to build SDMs (Ssoa) or a set 402 

based on fewer and orthogonalized variables (Spc2) are the best alternatives among the numerous 403 

strategies to select predictors.  404 

On average, Ssoa performs well on the invaded range probably because it contains the major limiting 405 

predictors for the majority of the species. On the other hand, by summarizing the main regional 406 

complex gradients of the study area in only two components, Spc2 allowed simple and transferable 407 

SDMs for most species, presenting less variance in performance between species and yielding fewer 408 

poorly predicted species. Reducing the numerous and complex interactions between precipitation, 409 

moisture and seasonality into one component, and heat and continentality into another (Fig. S3 in 410 

appendix S2), is an efficient way to depict a simplified climatic envelop (Metzger et al., 2005, 411 



Bakkestuen et al., 2008, Broennimann et al., 2012, Kriticos et al., 2014). In addition, the fact that 412 

the maximization of the environmental variance was made across all ranges pooled together likely 413 

also contributed to make the principal components (i.e. axes) more transferable. However, these 414 

SDMs calibrated on principal components may be more problematic to interpret. Furthermore, 415 

extrapolation and climate change scenarios may change the correlation structure between 416 

parameters and thus lead to unreliable predictions when projected outside the PCA environmental 417 

space. For all these reasons, we recommend using Spc2 as an alternative only when limited 418 

occurrence data are available (thus avoiding SDMs overparametrization) and projecting onto 419 

predictors keeping the same correlation structure. Ssoa may be more desirable if one is interested in 420 

ecological interpretation or in projection towards climatic scenarios where predictors may have 421 

different correlation structures. Finally, when the projection is characterized by a highly different 422 

environment relative to the calibration range (e. g. like between Eurasia and Australia), strategies 423 

maximizing climate analogy (such as Sana or Sanc) may be considered.  424 
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Table 1: Evaluation of the best models for each species with Boyce index and sensitivity in the 642 

native range, Holarctic and Australian invaded range (BNat, SeNat ¸BHol, SeHol, BAu, SeAu 643 

respectively). 1) and 2)
 indicate species shifting their niche in Holarctic and Australia respectively. 644 

Strategy providing the best model is also indicated (Strat.), as well as species native origin (Nat.).  645 

Species Nat. Strat. BNat SeNat BHol SeHol BAU SeAU 

Alliaria petiolata (M.Bieb.) Cavara & Grande EU Sran 0.99 0.95 0.98 1.00 - - 

Amaranthus retroflexus L. NA Spc2 0.98 0.92 0.93 0.76 0.71 1.00 

Ambrosia artemisiifolia L.  NA Spc2 0.97 0.88 0.94 0.92 0.90 1.00 

Amorpha fruticosa L.1) NA Sran 0.91 0.91 0.71 0.84 - - 

Anagallis arvensis L. EU Sran 0.99 0.93 0.97 1.00 0.99 1.00 

Anthoxanthum odoratum L.  EU Sran 0.97 0.92 0.95 1.00 0.97 0.98 

Arabidopsis thaliana (L.) Heynh EU Sran 1.00 0.94 0.99 0.98 0.90 1.00 

Bromus sterilis L.1) EU Sran 0.97 0.97 0.94 0.84 0.79 0.91 

Bromus tectorum L.  EU Sran 0.99 0.95 0.97 0.81 0.81 0.96 

Carduus nutans L.  EU Sran 0.99 0.93 0.96 0.97 0.91 1.00 

Centaurea stoebe L.1) EU Sran 0.96 0.96 0.91 0.48 - - 

Cirsium vulgare (Savi) Ten.2) EU Sran 0.99 0.96 0.98 0.96 0.98 0.87 

Conyza canadensis (L.) Cronquist NA Sran 0.96 0.94 0.99 0.94 0.94 1.00 

Cytisus scoparius (L.) Link1) EU Sran 0.98 0.97 0.97 0.89 0.97 1.00 

Dactylis glomerata L. EU Sran 0.99 0.89 0.99 0.97 0.95 0.99 

Echinocystis lobata (Michx.) Torr. & A. Gray NA Sran 0.97 0.95 0.97 0.96 - - 

Erigeron annuus (L.) Pers. NA Sunc 0.96 0.96 0.97 0.94 - - 

Erodium cicutarium (L.) L'Hér. ex Aiton EU Sran 0.99 0.94 0.98 0.94 0.97 0.98 

Euphorbia esula L. EU Sran 0.99 0.92 0.93 0.81 - - 

Holcus lanatus L.1) EU Sran 0.97 0.97 0.97 0.88 0.97 0.97 

Hypochaeris radicata L.2) EU Sran 0.98 0.98 0.99 0.92 1.00 0.93 

Juncus tenuis Willd. NA Sran 0.99 0.91 0.98 0.98 0.93 1.00 

Linaria vulgaris Mill.2) EU Sran 1.00 0.89 0.99 0.97 0.86 1.00 

Lythrum salicaria L. EU Sran 0.99 0.96 0.91 0.95 0.95 0.97 

Medicago lupulina L. EU Sran 0.99 0.89 0.98 0.97 0.95 1.00 

Melilotus albus Medik.2) EU Sran 0.99 0.82 1.00 0.93 0.97 0.94 

Phytolacca americana L. NA Sran 0.92 0.91 0.94 0.98 0.92 1.00 

Plantago lanceolata L. EU Sran 0.99 0.94 0.97 0.94 1.00 0.98 

Plantago major L. EU Sran 1.00 0.90 1.00 0.94 0.95 0.97 

Poa annua L.  EU Sran 0.99 0.85 0.99 0.92 0.98 0.95 

Potentilla recta L.  EU Sran 0.99 0.93 1.00 0.99 0.93 1.00 

Prunus serotina Ehrh. NA Sran 0.97 0.96 0.99 1.00 - - 

Rhus typhina L.  NA Spc2 0.91 0.96 0.86 1.00 - - 

Robinia pseudoacacia L. NA Spc2 0.97 0.93 0.99 0.98 0.97 0.98 

Rumex acetosella L. EU Sran 0.97 0.92 0.99 0.95 0.95 0.95 

Solidago canadensis L.2) NA Sunc 0.99 0.92 0.96 0.90 0.93 0.90 

Solidago gigantea Aiton NA Sran 0.98 0.96 0.98 0.99 - - 

Sonchus oleraceus L.2) EU Sran 0.99 0.95 0.89 0.76 0.99 0.96 

Trifolium arvense L. EU Sran 0.99 0.95 0.99 0.98 0.93 0.98 

Trifolium dubium Sibth.1) 2) EU Sran 0.98 0.98 0.97 0.91 0.97 0.95 

Trifolium repens L. EU Sran 0.99 0.85 0.99 0.91 0.98 0.98 



Verbascum thapsus L. EU Sran 0.99 0.92 0.99 0.94 0.93 0.96 

Vicia sativa L. EU Sran 0.99 0.93 0.97 0.93 0.99 0.99 

Acer negundo L. NA Sran 0.99 0.93 0.93 0.97 0.83 1.00 

Asclepias syriaca L. NA Sunc 0.95 0.96 0.95 0.99 - - 

Aster novi-belgii L. NA Sunc 0.79 0.97 0.78 0.40 0.69 0.80 

Bidens frondosa L. NA Sran 0.98 0.92 0.97 0.97 - - 

Epilobium ciliatum Raf. NA Sunc 0.98 0.88 0.97 0.97 0.94 1.00 

Helianthus tuberosus L.1) NA Spc2 0.97 0.93 0.81 0.92 0.67 0.91 

Rudbeckia laciniata L. NA Sunc 0.99 0.95 1.00 0.97 - - 



Table 2: Description of climatic variables (available in the Climond, Kriticos et al., 2011) 

Number Abbreviation Description 

1 Tmean Annual mean temperature (°C) 

2 Tdrange Mean diurnal temperature range (mean(period max-min)) (°C) 

3 IsoT Isothermality (Bio02 ÷ Bio07) 

4 Tvar Temperature seasonality (C of V) 

5 Tmaxw Max temperature of warmest week (°C) 

6 Tcoldw Min temperature of coldest week (°C) 

7 Tarange Temperature annual range (Bio05-Bio06) (°C) 

8 Twetq Mean temperature of wettest quarter (°C) 

9 Tdryq Mean temperature of driest quarter (°C) 

10 Twarmq Mean temperature of warmest quarter (°C) 

11 Tcoldq Mean temperature of coldest quarter (°C) 

12 Pa Annual precipitation (mm) 

13 Pwetw Precipitation of wettest week (mm) 

14 Pdryw Precipitation of driest week (mm) 

15 Pvar Precipitation seasonality (C of V) 

16 Pwetq Precipitation of wettest quarter (mm) 

17 Pdryq Precipitation of driest quarter (mm) 

18 Pwarmq Precipitation of warmest quarter (mm) 

19 Pcoldq Precipitation of coldest quarter (mm) 

20 Ma Annual mean moisture index 

21 Mwetw Highest weekly moisture index 

22 Mdryw Lowest weekly moisture index 

23 Mvar Moisture index seasonality (C of V) 

24 Mwetq Mean moisture index of wettest quarter 

25 Mdryq Mean moisture index of driest quarter 

26 Mwarmq Mean moisture index of warmest quarter 

27 Mcoldq Mean moisture index of coldest quarter 



28-35 PC Principal components calibrated on the 27 climate variables 
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Table 3: List, abbreviation, number of replicates (# rep., i.e. number of different predictor combinations) and description of each strategy used to 1 

select the predictors included in the SDMs. Note that for species present in Australia, there are two datasets for strategies optimizing climate 2 

analogy (Sana, Sanc and Scon): one optimized for climate analogy with the Holarctic invaded range and one for the Australian invaded range.  3 

Strategy Abbreviation # rep. Description  

All variables Sall 1 

All the 27 variables available, as a “no-strategy” to deal with the dilemma of variable selection. Used to predict 

species invasion (e.g. Giovanelli et al., 2010, Hill et al., 2012), as some statistical methods (e.g. Random 

Forest, Maxent, Stepwise GLM, GBM) are supposed to select automatically those variables with best 

discriminatory power. 

Uncorrelated 

sets 

Sunc 1000 

We sampled eight non-correlated variables 1000 times. The maximal number of variables resulting in a 

Pearson’s correlation |r| ≤ 0.7 was seven in North America (NA) and nine in Eurasia (EU), so that we defined 

eight equidistant clusters of variables on dendrograms where variables were clustered according to their 

pairwise correlations (Fig. S2 in Appendix S2) and randomly selected 1000 combinations including one 

variable in each cluster. 

Random sets Sran 1000 

We randomly sampled a subset of eight variables 1000 times to disentangle the possible effect of reducing the 

number of variables from 27 to 8 from the effect of removing correlation. 

State-of-the-

art 

Ssoa 1 

Eight variables that are commonly used in SDMs for plant species (Thuiller et al., 2005, Broennimann et al., 

2007, Petitpierre et al., 2012): Tmean, Tvar, Tcoldq, Twarmq, Pvar, Pwetq, Ma, Mvar. 
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Stepwise 

hierarchical 

Ssh 1 

For each species, eight statistically most important and uncorrelated variables. Using statistical algorithms to 

select the most relevant variables is common in ecology (Mac Nally, 2002, Cutler et al., 2007) and can be used 

in a hierarchical way (e.g. Roura-Pascual et al., 2009). For each species, SDMs were built based on each 

cluster of the correlation dendrogram. Then, only the most important variable of each cluster was retained so 

that in the end we obtained the eight most important and uncorrelated variables. When only one variable was 

included in a cluster (e.g. Twetq in EU), we automatically included it in the predictors set for the final model. 

Most analog Sana 1 or 2 

Eight variables presenting the highest climate analogy between calibration and projection ranges. A 

Multivariate Environmental Similarity Surface (MESS, Elith et al., 2010) was computed for each climate layer 

(instead of using composite MESS layers) to select eight variables with the lowest number of non-analog sites 

in the invaded range (based on all individual MESS layers). To our knowledge, this approach has never been 

applied despite several calls to take into account such variables’ analogy in variables selection (e.g. Rödder & 

Lötters, 2010) 

Analog-

uncorrelated 

Sanc 1 or 2 

Eight uncorrelated and analog variables. A similar hierachical approach (as for Ssh) was used to select the most 

analog variables (as for Sana) within each variables cluster of the correlation dendrogram. 

Consensus Scon 1 or 2 

For each species, a consensual selection of 8 uncorrelated, analog and important variables. For each cluster of 

the correlation dendrogram, two scores were assigned to each variable based on its rank compared to the other 

variables within the same cluster: one score based on climate analogy in the invaded range and one score based 
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on variable importance determined as in Ssh. Within each cluster, variables with the lowest averaged rank 

between the analogy and variable importance scores were selected. 

8-axes PCA Spc8 1 

Eight variables corresponding to the 8 first component of a principal component analysis (PCA) calibrated on 

the 27 climate variables across EU, NA and AU (Fig. S3 in Appendix S2). PCA can be used to reduce the 

number of parameters in the model and to decrease collinearity because components are orthogonal (e.g. 

Peterson et al., 2007, Bakkestuen et al., 2008, Zhang & Zhang, 2012, Kriticos et al., 2014). Moreover, it has 

been shown to be the most accurate way to build an environmental space to assess niche overlap (Broennimann 

et al., 2012) 

2-axes PCA  Spc2: 1 

Same as Spc8 but keeping only the first 2 components. The first two components explain 73% of the total 

climatic variation (Fig. S3 in Appendix S2) while the first eight components explain 98% 
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Figure 1: SDMs evaluated with the sensitivity (Se) and the Boyce index (B) following different 

variable selection strategies (see Table 3 for abbreviations’ description) in the native range, the 

Holarctic invaded range (Hol.) and the Australian invaded range (AU). Number of species included 

in the analysis (N) and P-value (P) of a Kruskal-Wallis test is provided in each case. When a 

significant effect was detected, strategies were labelled with a, b and c corresponding to different 

groups after a pairwise-Wilcoxon test. 

Figure 2: Performance distribution of the best models with the highest combination of the Boyce 

index (B, a and b) and the sensitivity (Se, c and d) in Holarctic (a and b) and Australian (when 

available, c and d) ranges. N is the number of species included in the analysis and grey area 

represents scores for niche-shifting species. 

Figure 3: Importance of different variables in the best models: Number of times that variables are 

included in the best models (a) and average importance of variables included in the best models (b). 

The variables are ranked in the same order as in Table 2. T, P, M and PCA represent temperature, 

precipitation, moisture and principal component variables, black and grey colors indicate species 

native Eurasia and North America, respectively.  
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