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SUMMARY

B cell activating factor (BAFF) provides B cells with
essential survival signals. It binds to three receptors:
BAFFR, TACI, and BCMA that are differentially ex-
pressed by B cell subsets. BAFFR is early expressed
in circulating B cells and provides key signals for
further maturation. Here, we report that highly regu-
lated BAFFR processing events modulate BAFF
responses. BAFFR processing is triggered by BAFF
binding in B cells co-expressing TACI and it is
executed by the metalloproteases ADAM10 and
ADAM17. The degree of BAFF oligomerization, the
expression of ADAM proteins in different B cell sub-
sets, and the activation status of the cell determine
the proteases involved in BAFFR processing. Inhibi-
tion of ADAM10 augments BAFF-dependent sur-
vival of primary human B cells, whereas inhibition
of ADAM17 increases BAFFR expression levels on
germinal center B cells. Therefore, BAFF-induced
processing of BAFFR regulates BAFF-mediated B
cell responses in a TACI-dependent manner.

INTRODUCTION

B-lymphocytes are essential components of adaptive immune

responses. Developing from precursor cells in the bone marrow,

immature B cells enter the spleen where they fully develop into

follicular and marginal zone (MZ) B cells. Follicular B cells patrol

via circulation and lymph through the whole body searching for

pathogens and antigens. Activated by antigen binding to surface

IgM and IgD, they proliferate and differentiate in germinal cen-

ters into long-lived antibody-secreting plasma cells and memory

B cells expressing high affinity IgA, IgE, or IgG antibodies. Most

of the MZ B cells are specific for encapsulated bacteria and

develop in response to antigen binding into short-lived plasma

cells. These B cell subsets express three tumor necrosis factor
Cell Rep
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(TNF)-receptor family members termed BAFFR, BCMA, and

TACI. The three receptors regulate the survival of B cells and

plasma cells by interacting with BAFF (B cell activating factor

of the TNF family). In contrast to BAFFR, BCMA and TACI

also bind the closely related ligand called APRIL (a prolifera-

tion-inducing ligand) (Kalled, 2002; Dillon et al., 2006; Bossen

and Schneider, 2006; Schuepbach-Mallepell et al., 2015). The

three receptors are expressed in a subset-specific manner

starting with BAFFR in transitional B cells followed by TACI in

marginal zone and switched memory B cells and finally by

BCMA in plasma cells (Pieper et al., 2013). The differential

expression of these receptors during B cell development allows

at least three distinct combinations: naive B cells express only

BAFFR, marginal zone and switched memory B cells express

BAFFR and TACI, and plasma cells express TACI and BCMA.

How the combinatorial expression of these receptors may affect

the outcome of the signals triggered by BAFF as a common

ligand is a puzzling question that we start to address in this work.

Deletion of the BAFF-encoding Tnfsf13b gene in mice inter-

rupts B cell development at the stage of transitional B cells

causing humoral immunodeficiency (Gross et al., 2001; Schie-

mann et al., 2001). A similar but slightly less severe phenotype

is observed in BAFFR-deficient mice (Shulga-Morskaya et al.,

2004). In contrast, overexpression of BAFF promotes the poly-

clonal expansion of B cells and the development of hypergam-

maglobulinemia and autoimmunity (Mackay and Schneider,

2009). Also in humans, BAFFR deficiency blocks B cell develop-

ment at the transitional stage. It results in reduced IgG and IgM

serum concentrations and impedes T-independent immune re-

sponses against pneumococcal cell wall polysaccharides (War-

natz et al., 2009).

TACI is upregulated in activated B cells in response to B cell

receptor or Toll-like receptor (TLR) ligands (Groom et al., 2007;

Ng et al., 2005) and appears to have opposing roles. On the

one hand, TACI negatively regulates B cell homeostasis,

because Taci�/� mice have elevated numbers of B cells. On

the other hand, TACI seems to promote the differentiation or

survival of plasmablasts (Mantchev et al., 2007), as T-indepen-

dent humoral responses are severely reduced in Taci�/� mice
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Figure 1. BAFF Induces BAFFR Processing

in Primary Human B Cells

(A) Human B cells were incubated over night

with the pan-metalloprotease inhibitor marima-

stat. TACI surface levels were determined by flow

cytometry. CD19+ B cell subsets were identified

according to the expression of IgD and CD27 as

follows: naive, IgD+ CD27�; marginal zone, IgD+

CD27+; switched memory B cells, IgD� CD27+.

(B) Cells were treated as in (A) and analyzed for

BAFFR surface expression. Samples were from

five independent healthy donors. Significant dif-

ferences were analyzed by a paired t test. The

gating strategy and survival rate are outlined in

Figures S1A–S1C.

(C) Western blot analysis of whole cell lysates of

resting (left) or CpG-activated (100 nM, middle)

CD27-negative human B cells treated overnight

with increasing concentrations of BAFF 60-mer

revealed the accumulation of a 22 kDa BAFFR

C-terminal fragment (arrowhead, C-ter). The

ADAM10 inhibitor GI254023x (4 mM) and the

pan-metalloprotease inhibitor marimastat (4 mM)

but not by the ADAM17 inhibitor TAPI-2 (4 mM),

block processing completely (right panel). One

representative blot out of three independent ex-

periments is shown. For BAFFR, two signals

migrating at �50 and 36 kDa were detected.
(Yan et al., 2001; von B€ulow et al., 2001). Moreover, BAFF and

APRIL signals relayed by TACI augment the survival of primary

B cells ex vivo (Treml et al., 2007; Katsenelson et al., 2007; Bos-

sen et al., 2008), whereas simultaneous engagement of Toll-like

receptors and TACI sensitizes marginal zone B cells to Fas-

induced apoptosis (Figgett et al., 2013). Finally, depletion of

BAFF or BAFF and APRIL in humans treated with monoclonal

anti-BAFF antibodies or with TACI-Ig decoy receptors strongly

reduces the number of circulating B cells (Stohl et al., 2012;

Tak et al., 2008; Wallace et al., 2009).

Recently, it was reported that TACI is constitutively shed by a

disintegrin and metalloprotease (ADAM) 10, releasing a soluble

fragment with decoy receptor activity (Hoffmann et al., 2015).

BCMA is constitutively shed from the cell surface by g-secretase

activity without the need for an initial processing by another pro-

tease (Laurent et al., 2015). Correlating with the disease activity,

increased concentration of soluble forms of TACI and BCMA

were found in the spinal fluid of multiple sclerosis patients as

well as in the serum from systemic lupus erythematosus pa-

tients. In both cases, shedding reduced the receptor-dependent

activation of nuclear factor kB (NF-kB), indicating a negative

impact on signaling (Hoffmann et al., 2015; Laurent et al.,

2015). However, it remains elusive whether shedding can be trig-

gered or enhanced by any specific signal.

In our study, we report that BAFFR is processed in a regulated

manner and not constitutively like TACI and BCMA. BAFFR is

proteolytically cleaved after BAFF binding, but only in cells co-

expressing TACI. Moreover, different forms of the ligand BAFF
2190 Cell Reports 18, 2189–2202, February 28, 2017
triggered different processing pathways

leading to the proteolytic cleavage of

BAFFR and TACI. BAFF 3-mers induced
processing of BAFFR by ADAM10 and did not affect the pro-

cessing of TACI, whereas BAFF 60-mers activated BAFFR and

TACI cleavage by ADAM10 and by ADAM17. In resting and in

TLR9-activated human B cells, ADAM10 is the main protease

that cleaves BAFFR in response to BAFF binding, whereas

ADAM17 seems to be responsible for the processing of BAFFR

in B cells from the dark zone of germinal centers. Inhibition of

ADAM10 activity augmented BAFF-dependent survival and

IgM secretion, whereas inhibition of ADAM17 restored BAFFR

expression on the cell surface of B cells from the dark zone of

germinal centers. Therefore, BAFF-dependent processing of

BAFFR is a mechanism that regulates BAFFR surface levels on

B cells and thus BAFFR mediated B cell survival.

RESULTS

BAFF Induces BAFFR Processing in Primary Human B
Cells
Because TACI and BCMA are shed constitutively (Hoffmann

et al., 2015; Laurent et al., 2015), we tested whether BAFFR

is also processed constitutively by metalloproteases. B cells

were isolated from the blood of healthy donors, incubated over-

night with the pan-metalloprotease inhibitor marimastat, and

analyzed by flowcytometry.Whereas TACI expression increased

on the surface of IgD+ CD27+ (marginal zone/IgM memory, MZ)

and IgD� CD27+ (switched memory) B cells (Figure 1A) BAFFR

expression remained unchanged in all B cell subsets, indicating

that BAFFR was not constitutively processed (Figure 1B). As



BAFF binding to BAFFR might change its conformation and

expose potential cleavage sites to proteases, we tested if BAFFR

wouldbecleaved in thecourseofBAFF treatment.RestingBcells

were incubatedovernightwith increasing concentrationsofBAFF

60-mers and analyzed by western blot (Figure 1C). Only at BAFF

concentrationsR100 ng/mL BAFFR processing was detectable

as a new signal derived from the C-terminal region of BAFFR

migrating at 22 kDa (Figure 1C, left). However, activation of

TLR9with CpG strongly enhancedBAFF-dependent BAFFR pro-

cessing as the C-terminal fragment was detected already at a

BAFF 60-mer concentration as low as 6.25 ng/mL (Figure 1C,

middle). Notably, the increased sensitivity of BAFFR to BAFF-

dependent proteolytic cleavage correlated with the upregulation

of TACI (Figure 1C). Because BAFF-induced processing of

BAFFR was completely blocked by the pan-metalloprotease in-

hibitor marimastat and by the ADAM10 inhibitor GI254023x, but

not by the ADAM17 inhibitor TAPI-2 (Figure 1C, right), ADAM10

seemed to be responsible for BAFF-induced BAFFR processing

in CpG-activated human B cells.

BAFF-Induced BAFFR Processing Depends on TACI
BecauseCpG stimulation led to strong upregulation of TACI (Fig-

ure 1C) (Treml et al., 2007), we tested whether processing of

BAFFR required the co-expression of TACI. Two different cellular

models were used: the Burkitt’s lymphoma cell line BJAB and the

EBV transformed B cell line IM9. BJAB cells express only

BAFFR, but not TACI, whereas IM9 cells express both receptors.

BAFF treatment of BJAB cells did not change total BAFFR

protein levels whereas they clearly decreased over time in

BAFF-treated BJAB cells transduced with TACI (BJAB-TACI)

(Figure 2A). In a similar way, total BAFFR and TACI levels

decreased in BAFF-treated IM9 cells in a time-dependent

manner, whereas BAFFR was not processed in TACI-knockout

IM9 cells (IM9-TACI KO) (Figure 2B). After 24 hr, most of BAFFR

had been processed, and only after 72 hr, the initial BAFFR pro-

tein levels were reached again. A similar kinetic was observed in

both cell lines (Figures 2C and 2D).

Soluble BAFF assembles into trimers and into 60-mers and

both forms can bind to BAFFR and TACI (Cachero et al., 2006;

Bossen et al., 2008). We therefore analyzed if the degree of

BAFF oligomerization had an effect on BAFFR processing. In

addition, we tested if BAFFR processing required the engage-

ment of both receptors by using APRIL, which only binds to

TACI but not to BAFFR. Treatment of BJAB-TACI cells with

APRIL did not change BAFFR levels, showing that ligand binding

to TACI alone did not trigger BAFFR processing (Figures 2E and

2F, left). Although both forms of BAFF, the trimer and the 60-mer,

induced BAFFR processing (Figures 2E and 2F, right), only the

60-mer enhanced processing of TACI above the levels of consti-

tutive shedding in IM9 cells (Figures 2B and 2F). TACI levels re-

mained unchanged in BJAB-TACI cells, possibly because the

high expression levels of transduced TACI masked processing

occurring at the cell surface (Figures 2A and 2E). qPCR showed

that BAFF treatment neither changed the mRNA levels of BAFFR

nor of TACI (Figure 2G). Although the time- and dose-dependent

decrease of total BAFFR protein levels was readily detected, the

C-terminal 22 kDa BAFFR fragment observed in primary B cells

was not found in these cell lines. To study the fate of the C-ter-
minal fragment released during processing, we tested several

drugs affecting endocytosis and vesicular transport. Blocking

of lysosomal activity using the vacuolar-type H+-ATPase-spe-

cific inhibitor bafilomycin A1 led to the dose-dependent accumu-

lation of a BAFFR C-terminal fragment in BAFF-treated BJAB-

TACI cells (Figure S2A), corresponding to the signal detected

in primary B cells (Figure 1C). This 22 kDa C-terminal region of

BAFFR includes most likely the transmembrane segment,

because it was enriched in the membrane and not in the soluble

subcellular fraction of BJAB-TACI cells (Figure S2B).Moreover, it

was also detected when membrane fractions of BAFFR-trans-

duced EBV6 cells were treated in vitro with rhADAM10 (Fig-

ure S2C). Binding of BAFF trimers to BAFFR-YFP fusion proteins

expressed in BAFFR-deficient EBV6 cells decreasedBAFFR sur-

face expression and reduced the fluorescence of EYFP. When

bafilomycin A1 was included, only BAFFR surface expression,

but not the YPF signal, decreased, supporting the hypothesis

that the inhibition of lysosomal vesicle transport prevented the

degradation of the C-terminal fragment (Figure S2D).

To demonstrate that BAFFR is processed on the cell surface,

we compared cell surface BAFFR expression with total BAFFR

protein levels following BAFF treatment. However, binding of

anti-BAFFR antibodies to the extracellular portion of BAFFR

was inhibited by receptor-bound BAFF. Therefore, ligand was

removed by a brief acid treatment (‘‘acid elution’’) originally

developed for MHC-bound peptides (Purcell, 2004; Fortier

et al., 2008). Washing cells for 1 min at low pH efficiently eluted

BAFFR-bound BAFF trimers but not BAFF 60-mers (Figures 2H

and S3A), whereas BAFF bound to TACI was not removed (Fig-

ure S3B). Thus, we used this technique to analyze BAFFR pro-

cessing induced by BAFF trimer but not by BAFF 60-mer.

As expected, BAFFR was not processed in TACI-negative

BJAB cells (Figure 2I), but whenBJAB-TACI cells were incubated

with BAFF trimers, we observed a similar decrease of cell surface

BAFFR and of total BAFFR levels (Figures 2I, S3C, and S3D),

suggesting that BAFFR was processed on the cell surface

upon BAFF binding. The incubation with BAFF 60-mers inter-

fered with the visualization of cell surface BAFFR (Figure S3E)

allowing the detection of BAFFR processing only by western

blot (Figure S3F). Similar to BJAB-TACI cells, binding of BAFF tri-

mers reduced BAFFR surface expression on TACI-expressing

IM9 and EBV1 cells but not on TACI-KO IM9 cells, or on a EBV

line homozygous for the TACI-S144X mutation (Figures S3G

and S3H).

Taken together, these results show that BAFF binding to

BAFFR induced the processing of the receptor on the surface

of TACI-expressing B cell lines generating a C-terminal fragment

that is degraded by the lysosomes.

Primary Immunodeficiency-Associated Mutations in
BAFFR and TACI Affect BAFF-Induced Processing
Because BAFFRwas processed in a BAFF-dependent manner in

the presence of TACI, we analyzed ifBAFFR and TACImutations

found in the human population might affect BAFF-induced pro-

cessing of these two receptors. To this end, we used EBV-

immortalized B cell lines derived from primary immunodeficiency

patients carrying previously characterized mutations in BAFFR

or TACI. EBV3 carries a homozygous nonsense mutation in
Cell Reports 18, 2189–2202, February 28, 2017 2191



Figure 2. BAFF-Induced BAFFR Processing Depends on TACI

(A) BJAB-TACI or BJAB WT cells were treated with 100 ng/mL BAFF 60-mer and analyzed at the indicated time points by western blot of whole cell lysates.

(B) Same as (A) for IM9 and IM9-TACI KO cells.

(C) BAFFR protein levels were evaluated by western blot at 0, 24, 48, and 72 hr after addition of 100 ng/mL of BAFF 60-mer in BJAB and in BJAB-TACI cells (mean

values ± SEM of densitometric analysis of two independent experiments).

(D) Same as (C), but for IM9 and IM9TACI-KO cells.

(E) Overnight treatment with BAFF 60-mer or APRIL (left panel), BAFF 60-mer, or BAFF 3-mer (right panel) at the indicated doses.

(F) Same as (E) but for IM9 cells. The images in (A), (B), (E), and (F) display one out of five representative experiments.

(G) qPCR of BAFFR (top) and TACI (bottom) mRNA in B cell lines stimulated or not with BAFF 60-mer at 100 ng/mL. EBV1 (healthy donor, HD), EBV2 (HD), BJAB-

TACI (BJ-T), and IM9. Expression levels are normalized to the housekeeping gene RPLP0. ND, not done.

(H) Incubation of BJAB-TACI cells with 100 ng/mL of BAFF 3-mer inhibits staining with anti-BAFFR mAb as shown by weaker FACS signals (red histogram plot).

Signals are restored after acid elution (pH 2.4, 1 min: green histogram plot).

(I) FACS plots of BJAB and of BJAB-TACI incubated with 200 ng/mL of BAFF trimer for 16 hr. Acidic elution was performed prior to antibody staining. Mean values

and SEM of BAFFR surface levels of three independent experiments are shown. Significant differences were calculated by a paired t test.
TACI (S144X, encoded by rs104894650) preventing TACI

expression (Salzer et al., 2005). Like the TACI-negative BJAB

or IM9 TACI-KO lines, TACI S144X EBV3 cells did not process

BAFFR after BAFF binding (Figure 3A, also shown in Figures

S3G and S3H). To define if BAFFR processing requires ligand

binding to BAFFR and TACI, we used EBV lines that express

mutant forms of BAFFR or TACI interfering with BAFF binding.

EBV4 carries a homozygous missense mutation in TACI
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(C104R, rs34557412) preventing the formation of a cysteine

bridge in its ligand-binding domain (Bacchelli et al., 2011).

When treated with BAFF, this cell line neither processed BAFFR

nor TACI. EBV5 contains a homozygous missense mutation in

BAFFR (P21R) encoded by SNP rs77874543. It affects the pre-

ligand assembly domain, disturbs BAFFR multimerization, and

reduces BAFF binding (Pieper et al., 2014). When treated with

BAFF, this cell line did not process BAFFR but showed enhanced



Figure 3. Primary Immunodeficiency-Associated Mutations in BAFFR and TACI Affect BAFF-Induced Processing

(A) Overnight treatment with increasing doses BAFF 60-mer and analysis of BAFFR and TACI protein levels by western blot of whole cells lysates of EBV1

(HD, healthy donor) and EBV3 (TACI-negative S144X homozygous) cells.

(B) Same as (A) but for EBV4 (TACI C104R homozygous; no ligand binding) and EBV5 (BAFFR P21R homozygous; deficient for BAFFR multimerization, reduced

ligand binding).

(C) Same as (A) but for EBV6 (homozygous deletion BAFFR removing amino acids 89–96) and EBV2 (HD). Average values of densitometric analysis of BAFFR

(top) and TACI (bottom) protein from at least two independent experiments (± SD). FACS plots display TACI and BAFFR surface expression levels for each

cell line.
processing of TACI. Because both mutations prevented BAFFR

processing (Figure 3B), BAFFR cleavage requires BAFF binding

to functional BAFFR and TACI molecules. Moreover, ligand-

induced processing of TACI occurred in the P21R BAFFR line

EBV5 and in the BAFFR-deficient EBV line EBV6 (Figure 3C),

indicating that BAFF can enhance TACI processing independent

of BAFFR expression or function.

BAFFR Is Processed by ADAM10 and by ADAM17
ADAM10 and ADAM17 can process a variety of different pro-

teins. Many of these are common targets for both proteases.

Therefore, to define the role of ADAM10 and ADAM17 more pre-

cisely, we used specific ADAM inhibitors and knockout cell lines.

Inhibition of ADAM10, but not of ADAM17, activity prevented

BAFF trimer-induced BAFFR processing in BJAB-TACI cells

(Figure 4A). Likewise, BAFFR was not processed in BJAB-

TACI cells in which the ADAM10 alleles had been knocked out

by CRISPR/Cas9-mediated mutagenesis (Figure 4B), whereas

knockout of ADAM17 still allowed BAFFR processing.

Thus, binding of BAFF trimers induced ADAM10- but not

ADAM17-dependent processing of BAFFR. This pattern changed
when BAFF 60-mers instead of trimers were used, because

they induced processing by ADAM10 and by ADAM17, which

was only prevented by the pan-metalloprotease inhibitor

marimastat (Figure 4C) and by knocking out both ADAM10

and ADAM17 (Figure 4D). Neither the inhibition of both proteases

(Figure 4E) nor their genetic inactivation (Figures 4F and 4G)

changed the surface expression levels of BAFFR, strengthening

our observationmadewith primary B cells (Figure 1B) that BAFFR

is not processed constitutively. In contrast, TACI surface levels

strongly increased in the presence of ADAM10 inhibitors (Fig-

ure 4E) as well as on ADAM10 knockout cells (Figure 4F). This

result confirms that TACI is constitutively shed by ADAM10 (Hoff-

mann et al., 2015). Because BAFF 60-mer can activate TACI

signaling while trimeric BAFF cannot (Bossen et al., 2008), we

reasoned that BAFF 60-mers might activate ADAM17 in a

TACI-dependent manner. Incubation of BJAB-TACI cells with

BAFF 60-mers strongly enhanced ADAM17 surface expression

within 3 hr (Figure 4H), whereas BAFF trimers or the treatment

of TACI-negative BJAB cells with BAFF 60-mers had no effect.

Under the same conditions, ADAM10 surface levels remained un-

changed (Figure 4H). This suggests that cell surface levels of
Cell Reports 18, 2189–2202, February 28, 2017 2193



Figure 4. BAFFR Is Processed by ADAM10 and by ADAM17

(A) BJAB-TACI cells were incubated over night with increasing amounts of trimeric BAFF and with or without the ADAM10 inhibitor GI254023x, the ADAM17

inhibitor TAPI-2, or the pan-metalloprotease inhibitor marimastat. Processing is shown by decreased BAFFR signals calculated from densitometric analysis of

western blot images.

(B)BJAB-TACI,BJAB-TACIADAM10KO,ADAM17KO,andADAM10/17doubleKOcellswere incubatedovernightwithBAFF trimersandanalyzedasoutlined in (A).

(C) Experiments were performed as in (A) but with BAFF 60-mers instead of trimers.

(legend continued on next page)

2194 Cell Reports 18, 2189–2202, February 28, 2017



ADAM17 can be regulated by TACI in a BAFF-dependent

manner.

Therefore, ADAM10-dependent processing of BAFFR re-

quires binding of BAFF trimers or 60-mers to BAFFR and

TACI. It differs from ADAM10-mediated shedding of TACI, which

is processed constitutively independent of BAFF binding and

BAFFR expression. In addition, binding of BAFF 60-mers in-

duces proteolytic cleavage of BAFFR by ADAM17 in a ligand-

dependent way.

BAFFR Processing Can Be Triggered in a Ligand-
Independent Manner
The proteolytic activity of ADAM17 is rapidly induced by

cellular activators (Le Gall et al., 2010) including phorbol-12-

myristate-13-acetate (PMA), a strong activator of protein ki-

nase C (PKC). We therefore tested if the PKC-dependent acti-

vation of ADAM17 by PMA would suffice for BAFFR processing

in the absence of BAFF. Activation of ADAM17 with PMA for

1 hr led to the processing of BAFFR as well as of TACI in

ADAM17-expressing BJAB-TACI but not in ADAM17 KO cells

(Figure S4A). The proteolytic activity of ADAM10 can be

enhanced by calcium flux (Hundhausen et al., 2007). Therefore,

we tested if activation of ADAM10 by ionomycin would suffice

for BAFFR processing in the absence of BAFF. While BAFFR

levels remained constant, TACI expression decreased in

ADAM10 competent cells (Figure S4B) showing that although

the activation of ADAM10 enhanced shedding of TACI, it did

not induce processing of BAFFR. Accordingly, ionomycin treat-

ment of primary B cells had no effect on BAFFR surface

expression but significantly reduced TACI levels in IgD+CD27+

(marginal zone) and IgD�CD27+ (switched memory) B cells

(Figure 5A).

Ligand-independent, PMA-induced processing of BAFFR

was detected in all primary B cell subsets by the reduction of

BAFFR surface levels (Figure 5B). Addition of the ADAM17 in-

hibitor TAPI-2 to PMA-activated B cells blocked PMA-induced

BAFFR processing. A similar effect was observed for TACI sur-

face levels. Moreover, decreased levels of BAFFR and TACI on

the cell surface correlated with increased levels of soluble

BAFFR and TACI in supernatants (Figures 5C and 5D). Produc-

tion of soluble BAFF in each condition showed very low levels

following PMA treatment, slight increase by ionomycin and

close to 4 ng/mL BAFF in PMA plus ionomycin treatment (Fig-

ure 5E). This increase inversely correlated with the detection

of soluble TACI, but it did not change the detection of soluble

BAFFR.
(D) BAFFR processing was analyzed as in (B) but with BAFF 60-mers instead o

independent experiments normalized using actin expression as internal standard

and ADAM17 expression in the corresponding cell lines was verified by western

(E) BJAB-TACI cells were incubated overnight in the presence of metalloprotease

analyzed by flow cytometry and are represented by histogram profiles.

(F) BJAB-TACI, BJAB-TACI ADAM10 KO, ADAM17 KO, and ADAM10/17 doub

expression.

(G) Flow cytometry analysis of ADAM10 and ADAM17 surface levels in BJAB-TA

(H) BJAB-TACI and TACI-negative BJAB cells were incubated for 3 hr with 100

surface expression by flow cytometry. The expression levels of at least three indep

were calculated by one-way analysis of variance with Bonferroni’s multiple comp
These results show that BAFFR can be processed by ADAM10

and/or by ADAM17, depending on the mode of activation,

releasing a soluble receptor. Only PKC-dependent activation of

ADAM17 allowed BAFFR cleavage in a ligand-independent way.

To identify the minimal requirements for BAFFR processing,

we compared the cleavage of membrane-bound, full-length

BAFFR and of recombinant human BAFFR-IgG1 Fc fusion

protein (rhBAFFR-Fc) by active recombinant human ADAM10

and ADAM17 (rhADAM10/17). RhADAM10 cleaved membrane-

bound BAFFR only when co-incubated with BAFF (Figure S5A)

but it did not cleave rhBAFFR-Fc. Membrane-bound BAFFR

was also cleaved by rhADAM17 in the presence of BAFF, while

rhBAFFR-Fc was not processed (Figure S5B). This suggests

that BAFFR is cleaved in the extracellular domain in the immedi-

ate vicinity of the transmembrane domain, a region that is not

present in the BAFFR-Fc construct. Alternatively, the insertion

into the plasma membrane might be required for the recognition

of BAFFR as an ADAM substrate.

Taken together, these results suggest that BAFF binding al-

lows ADAM-mediated cleavage of BAFFR within its extracellular

domain close to the transmembrane segment.

BAFFR Processing Regulates BAFF-Induced B Cell
Survival
So far, our experiments showed that BAFF binding led to BAFFR

processing in TACI-expressing B cells. To address the question if

BAFFR processing affects the response of B cells to BAFF, we

analyzed the survival of human B cells in the presence of

ADAM10 or ADAM17 inhibitors. Purified B cells were cultivated

for 3 days with increasing concentrations of BAFF 60-mer alone

or in combination with the ADAM10 inhibitor GI254023x or with

the ADAM17 inhibitor TAPI-2. Addition of GI254023x significantly

increased BAFF-supported B cell survival when compared to

BAFF alone, whereas TAPI-2 had no effect (Figure 6A). Likewise,

BAFF-dependent survival and IgM secretion increased when B

cells were activated in the presence of GI254023x with CpG or

with anti-IgM and CpG (Figures 6B and 6C). Therefore, process-

ing might limit BAFFR signaling in resting and activated B cells.

In addition to BCR and TLR signals, B cells are activated in

germinal centers (GC) by T-helper cells, inducing proliferation in

GCdark zones (DZ) and selection anddifferentiation intomemory

B cells and plasma cells in light zones (LZ) (McHeyzer-Williams

et al., 2011). Within GCs, BAFF is produced by follicular dendritic

cells (Suzuki et al., 2010) as well as by T-follicular helper cells

(Treml et al., 2007) thus regulating the output of autoreactive

B cells in mice and humans (Mackay and Schneider, 2009;
f trimers. Bar graphs represent means and SEM of signal intensities of three

. Red bar graphs indicate inhibition of BAFFR processing. The loss of ADAM10

blot.

inhibitors GI254023x, TAPI-2, or marimastat. BAFFR and TACI expression were

le KO cells were analyzed by flow cytometry for BAFFR and TACI surface

CI, ADAM10, and ADAM17 single KO and in double KO cells.

ng/mL BAFF trimer or BAFF 60-mer and analyzed for ADAM10 and ADAM17

endent experiments were normalized to untreated cells. Significant differences

arison test.
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Figure 5. Phorbol Ester Induces ADAM17-

Mediated Processing of BAFFR

(A) B cells were activated for 1 hr with 1 mg/mL

ionomycin and analyzed for BAFFR and TACI

expression by flow cytometry.

(B) B cells were activated for 1 hr with 5 ng/mL

PMA in presence or absence of 4 mM of the

ADAM17 inhibitor TAPI-2 and analyzed for BAFFR

expression by flow cytometry. Plots represent the

mean values and SEM of the median of fluores-

cence intensity (MFI) from three independent

experiments. The gating strategy is outlined in

Figure S1.

(C) Detection of soluble BAFFR by ELISA in

supernatants of PBMC treated overnight with

5 ng/mL PMA, 1 mg/mL ionomycin, or the combi-

nation of both.

(D) Same as (C) but for detection of soluble TACI.

(E) Same as (C) but for detection of soluble BAFF.

Plots represent mean values ± SEM from at least

two independent experiments carried out in qua-

druplicates. Differences were calculated by one-

way analysis of variance with Bonferroni’s multiple

comparison test.
Vincent et al., 2014). We therefore assumed that BAFF binding to

BAFFRwould induce the processing of BAFFR expressed by GC

B cells.

Immunofluorescence analysis of human tonsil sections

showed high BAFFR levels in CD38� Ki67� CXCR4� mantle

zone (MZ) B cells outside the GC. In contrast, CXCR4+ Ki67�

cells of the GC LZ express intermediate levels of BAFFR

whereas Ki67+ cells of the DZ express very low levels of

BAFFR (Figure 7A). To gain insight into the expression levels

of BAFFR in DZ and LZ B cells we analyzed surface and total

BAFFR expression levels by flow cytometry and western blot

(Figures 7B, 7C, and S6). Using B cells from human tonsils, we

found that GC B cells from the DZ expressed no or little BAFFR,

whereas LZ and mantle zone B cells expressed normal levels

(Figures 7B, 7C, and S6). Even after removing BAFFR-bound

BAFF by acid elution, DZ B cells still expressed less BAFFR

than LZ B cells (Figures 7D and S6B). To test whether this differ-

ence correlates with BAFFR processing, tonsillar B cells were

cultivated with or without metalloprotease inhibitors in the pres-

ence or absence of BAFF (Figure 7B, western blots). Addition of

BAFF induces BAFFR processing in switched memory and LZ B
2196 Cell Reports 18, 2189–2202, February 28, 2017
cells, which was inhibited by the pan-

metalloprotease inhibitor marimastat. In

contrast to LZ B cells, DZ B cells ex-

pressed low amounts of BAFFR; treat-

ment with BAFF did not induce process-

ing but the addition of marimastat

slightly increased total BAFFR protein

levels (Figure 7B, western blots). Inhibi-

tion of ADAM10 by GI254023x in DZ B

cells slightly enhanced BAFFR levels. As

the inhibition of ADAM17 by TAPI-2 or

by marimastat led to a 2-fold increase in

BAFFR MFI (Figure 7E), BAFFR in DZ B
cells seem to be cleaved mainly by ADAM17. Moreover, BAFFR

surface expression levels slowly increased when the cells were

cultivated for 3 days, while the addition of TAPI-2 or marimastat

promoted an almost complete recovery within 1 day (Figures 7F

and S6C). Therefore, BAFFR levels in DZ B cells seem to be

regulated by ADAM17 activity.

These results show that BAFFR expressed byGCB cells of the

DZ is loaded with BAFF. Combined to the cellular activation of

GC B cells, BAFF binding to BAFFR induces ADAM17-depen-

dent degradation of BAFFR, which represent a mechanism to

control BAFFR surface levels on germinal center B cells.

DISCUSSION

Receptor-ligand interactions play a central role in regulating

cellular homeostasis and development. Therefore, proteolytic

processing of ligands and their transmembrane receptors has

a direct influence on cellular responses initiated by receptor-

dependent signals. In the immune system, ADAM proteases

catalyze ectodomain shedding and regulate intramembrane pro-

teolysis of receptors and ligands that are critical for innate and



Figure 6. BAFFR Processing Regulates BAFF-Induced B Cell Survival

(A) Pure B cells were cultivated for 3 days in the presence of BAFF 60-mer alone or in combination with 4 mM GI254023x (ADAM10 inhibitor) or 4 mM TAPI-2

(ADAM17 inhibitor). N-fold increase in survival was calculated as [cell number in the presence of BAFF ± inhibitor/cell number w/o BAFF ± inhibitor]. The plot

shows the mean and SEM of the fold increase of CD19+DAPI� cells of three independent experiments. Statistically significant differences (** for GI254023x

treatment compared to BAFF 60-mer alone) were determined using one-way analysis of variance with Bonferroni’s multiple comparison test.

(B) Survival (top) and IgM secretion (bottom) of B cells activated with 0.1 mM CpG in the presence or absence of GI254023x (4 mM) and 25 ng/mL BAFF 60-mer.

Cells were analyzed by flow cytometry using timed acquisition. The plot shows cell numbers and means of six independent experiments.

(C) Same as in (B) but for B cells activated with anti-IgM (0.1 mg/mL) and CpG (0.1 mM). Significant differences were calculated by one-way analysis of variance

with Bonferroni’s multiple comparison test.
adaptive immune responses, including TNF, TNF-receptors,

CD40, Notch1, Notch2, CD44, and CD23 (Gibb et al., 2011).

Here, we show that BAFF binding induces the proteolytic

cleavage of BAFFR by ADAM10 and/or ADAM17 in TACI-ex-

pressing B cells. BAFFR processing is a tightly controlled event,

which differs from the previously described constitutive shed-

ding of the closely related receptors TACI and BCMA (Hoffmann

et al., 2015; Laurent et al., 2015). Regulated by the degree of

BAFF oligomerization, by the co-expression of TACI and by the

differential expression of ADAM proteins in B cell subsets,

ligand-dependent BAFFR processing appears to be a mecha-

nism to control BAFFR surface expression and BAFF-dependent

B cells responses.

In circulating primary human B cells, ADAM10 seems to

be responsible for BAFF-induced BAFFR cleavage whereas

ADAM17 process BAFFR in DZ germinal center B cells. In Bur-

kitt’s lymphoma and in EBV-immortalized B cell lines, the de-

gree of BAFF multimerization was found to regulate the prote-
ase involved in BAFFR processing. Binding of BAFF 60-mers

activated not only ADAM10 but also induced an increase in

the surface levels of ADAM17 leading to activation-induced

processing of BAFFR and TACI. This observation is in line

with previous reports demonstrating that BAFF trimers prefer-

entially induce BAFFR signaling whereas BAFF 60-mers acti-

vate both BAFFR and TACI (Bossen et al., 2008).

Processing of adhesion molecules, receptors, and cytokines

by ADAM17 plays an important role in inflammation and autoim-

munity (Scheller et al., 2011). Therefore, the activity of the prote-

ase is tightly regulated but it can be induced by potent activators

such as PMA (Doedens and Black, 2000; Le Gall et al., 2010;

Scheller et al., 2011). Using the PKC inhibitor Go6983, the

ADAM17-specific inhibitor TAPI-2, and ADAM17 KO cells, we

show that the PKC-dependent activation of ADAM17 leads to

BAFFR processing in primary human B cells and in B cell lines.

In contrast, treatment with ionomycin, which is an inducer of

ADAM10 activity (Hundhausen et al., 2007), failed to initiate
Cell Reports 18, 2189–2202, February 28, 2017 2197



Figure 7. BAFF-Induced BAFFR Processing in B Cells from the Dark Zone of Germinal Centers

(A) Tonsillar cryosections stained with anti-BAFFR (red), anti-CD38 or anti-Ki67 (green), anti-CXCR4 (blue). Mantle zone B cells (BAFFR+ CD38� Ki67� CXCR4�)
were located around the germinal centers. Germinal center light zone B cells (BAFFRlow CXCR4+ Ki67�) and dark zone B cells (BAFFRlow Ki67+) were identified

inside the follicles. Scale bar, 100 mm.

(legend continued on next page)
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BAFFR processing in the absence of ligand binding. This sug-

gests, that physiological changes in ADAM17 activity can lead

to BAFFR processing and, in consequence, modulate BAFFR

function. The decrease in BAFFR and TACI surface levels

induced by PMA or ionomycin correlated with increased soluble

receptors in supernatants. However, the precise cleavage site of

BAFFR by ADAMs still needs to be identified. The membrane-

bound C-terminal fragment, which is a product of BAFFR pro-

cessing, suggests that the cleavage occurs within the extracel-

lular domain. Resistance of BAFFR-Fc to processing leaves a

stretch of <10 amino acids within the membrane-proximal part

of BAFFR as a target for ADAM10 and/or ADAM17 cleavage. It

starts at residue 74 with the sequence N-LPGLL and shares par-

tial homology to a related sequence of TACI (LPGLK) containing

the ADAM10 cleavage site (Hoffmann et al., 2015). However, we

cannot exclude that processing of BAFFR occurs elsewhere in

the extracellular domain.

Similar to what we observed with BAFFR and TACI, it has been

previously shown (Urra et al., 2007) that p75 (NGFR, CD271, or

TNFRSF16) undergoes ligand-induced shedding in a mecha-

nism requiring the high affinity NGF receptor TrkA. Furthermore,

the C-terminal fragment of p75 is internalized and processed by

g-secretase in endosomes, indicating that different TNF receptor

family members might share similar processing mechanism

following ligand binding.

Surprisingly, TACI turned out to be an essential ‘‘co-factor’’ for

BAFF-induced BAFFR processing. Because BAFFR was not

processed in EBV cells expressing a CVID-associated TACI

variant that cannot bind BAFF, the role of TACI was not just

limited to its co-expression. BAFFR cleavage also required a

normal degree of BAFFR multimerization and BAFF binding as

the multimerization-defective P21R BAFFR variant (Pieper

et al., 2014) was not processed following BAFF treatment. There-

fore, while TACI is cleaved regardless of BAFFR expression,

BAFFR processing required the binding of BAFF to both BAFFR

and TACI. The mechanism by which co-expression of TACI al-

lows BAFFR processing has not been completely elucidated.

However, proximity ligation assay (PLA) showed a close prox-

imity between TACI and ADAM10 in TACI-positive primary hu-

man B cells (Figure S7), which is rather expected for a constitu-

tively shed substrate (Figures 1 and 4) (Hoffmann et al., 2015).

Under the same conditions, it is not possible to detect proximity

between BAFFR and ADAM10, neither in TACI-negative (CD27-

negative) nor in TACI-positive (CD27-positive) B cells. Addition of

BAFF induces a positive signal between BAFFR and ADAM10 in

TACI-positive (CD27-positive) B cells, suggesting that shared
(B) Mantle zone (CD19+ IgD+ CD38�), switched memory (CD19+ IgD� CD38�), g
CD83�), and light zone (CD19+ IgD� CD38� CXCR4+ CD83�) B cells from huma

tometry. Sorted subsets were incubated overnight in the presence and absence o

was analyzed by western blot. One representative experiment out of four is show

(C) BAFFR levels by western blot of whole cell lysates of sorted germinal center

(D) Ex vivo tonsillar cells were either analyzed directly or after a 1 min acid (pH 2.4

light zone (LZ) B cells.

(E) Cells were incubated over night with or without the metalloprotease inhibitors

prior acid elution. NT, non-treated. Mean values and SEM of BAFFR MFI of four

analysis of variance with Bonferroni’s multiple comparison test.

(F) Mean of fluorescence (MFI) of BAFFR expressed by IgD� CD38+ germinal c

loprotease inhibitors (all at 4 mM). Acidic elution was performed prior antibody st
binding of BAFF to BAFFR and TACI might lead to close prox-

imity between BAFFR and ADAM10, thus allowing cleavage of

BAFFR (Figure S7). Without BAFF binding, BAFFR would not

get in in contact with ADAM10 and might not undergo structural

changes that expose its processing site to ADAM proteases.

Similar to CVID patients with complete TACI-deficiency (Cas-

tigli et al., 2005; Salzer et al., 2005, 2009), TACI KO mice were

reported to have elevated numbers of B cells in the periphery

(Seshasayee et al., 2003) accompanied with impaired T-inde-

pendent humoral responses (Yan et al., 2001; von B€ulow et al.,

2001). These phenotypes led to the conclusion that TACI may

have both activating and inhibitory functions (Lee et al., 2008).

Our data and a recent report on constitutive TACI processing

(Hoffmann et al., 2015) extend our current view on TACI function

by providing insight into TACI-controlled B cell homeostasis.

Because TACI is released as a soluble decoy receptor, its

expression and processing controls the availability of circulating

BAFF and APRIL (Hoffmann et al., 2015). In addition, TACI is also

required for BAFF-induced BAFFR processing and this event

regulates the pro-survival activity of BAFFR in response to

BAFF. Because TACI mutations impairing ligand binding and

decoy receptor function increase BAFF levels in CVID patients

(Kreuzaler et al., 2012; Romberg et al., 2013), they also enhance

BAFFR-induced pro-survival signals without being controlled

by TACI-dependent BAFFR processing. This scenario would

initiate a self-supporting process resulting in the accumulation

of B cells, which is supported by our results showing that the in-

hibition of BAFFR processing by inhibiting ADAM10 increased in

a BAFF-dependent manner the number of B cells stimulated

in vitro with CpG or anti-IgM and CpG.

Analyzing germinal centers from human tonsils, we found that

most of the BAFFRs expressed by DZ (IgD� CD38+ CXCR4+

CD83�) GC B cells were occupied by BAFF, whereas BAFFRs

on LZ (IgD� CD38+ CXCR4+/low CD83+) GC B cells carried

much less BAFF. Because BAFF binding to BAFFR and BAFF-in-

dependent activation induce processing of BAFFR by ADAM17,

exposure of B cells entering the DZ of GCs to BAFF would elicit

BAFFR-induced survival signals that are modulated by ligand-

and by activation-induced ADAM17-dependent BAFFR pro-

cessing. Returning to the LZ, GC B cells seem to express

BAFF receptors, which are not or less engaged in BAFF binding.

Thus, differential expression of BAFF between the dark and the

light zones combined with BAFFR signaling and processing by

DZ but not by LZ B cells might contribute to the selection of

high affinity switched memory B cells and plasma cells. In fact,

T-follicular helper cells seem to be an important source for
erminal center (CD19+ IgD� CD38+), dark zone (CD19+ IgD� CD38� CXCR4+

n tonsils were analyzed for BAFFR and TACI surface expression by flow cy-

f BAFF and of the pan-metalloprotease inhibitor marimastat. BAFFR expression

n. Figure S6 displays the gating strategy.

(GC), mantle zone (MZ), and switched memory (SM) B cells.

) pulse for BAFFR surface expression by flow cytometry in dark zone (DZ) and

GI254023x, TAPI-2, marimastat (all at 4 mM) and stained for BAFFR expression

tonsil samples are shown. Significant differences were calculated by one-way

enter B cells from human tonsil treated over 3 days with the indicated metal-

aining. Mean values and SEM of triplicates from one tonsil sample are shown.
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BAFF in GCs and the lack of BAFF expression by these cells

seems to prevent the selection of high affinity antibody-secreting

cells (Goenka et al., 2014). Conversely, it is well established that

the negative selection of autoreactive B cells is impaired in trans-

genic mice overexpressing BAFF (Ota et al., 2010) enhancing the

development of autoimmunity and lupus-like symptoms

(Mackay et al., 1999; Stohl et al., 2005). The finding, that high

BAFF levels in systemic lupus erythematosus (SLE) patients

correlate with low BAFFR expression levels on B cells (Zhao

et al., 2010) may be explained by our observation that BAFF re-

ceptors cannot be stained with specific antibodies while they are

binding to BAFF.

In conclusion, BAFF-induced cleavage of BAFFR by ADAM10

and ADAM17 in TACI-expressing B cells is a regulatory mecha-

nism of BAFFR-dependent B cell survival and activation.

ADAM10 and ADAM17 play an important role as regulators of

lymphocyte development, autoimmunity, inflammation, and tis-

sue regeneration (Gibb et al., 2011; Scheller et al., 2011). Ac-

cording to our data, both proteases also regulate BAFFR-depen-

dent B cell survival and activation. Therefore, the combined

targeting of BAFF levels and ADAM activity may be used to

modulate B cell development and responses in diseases charac-

terized by disturbed B cell function and ADAM activity.

EXPERIMENTAL PROCEDURES

BAFFR Processing

The work with human material was approved by the Ethics Committee of the

Albert-Ludwigs-University Freiburg through approval 169/13. Primary human

B cells or cell lines were plated at 13 106 cells/mL and treated for the indicated

time points or overnight (�16 hr) with the indicated doses of ligands. For west-

ern blot detection, cells were collected in 1.5 mL tubes, centrifuged at

10,000 rpm for 2 min, the supernatant was eliminated and the pellet resus-

pended in Laemmli buffer 13. Samples were vortexed, heated for 5 min at

95�C, and sonicated. For flow cytometry detection, cells were stripped in

acid. Briefly, cells were washed twice (256 3 g; 5 min; room temperature

[RT]) with PBS. Pellets were re-suspended in 50 mL citrate buffer (0.1 M citric

acid + 0.2MNa2HPO4) pH2.4 and incubated at RT for 1min. PBS (150 mL) were

added and cells were pelleted by centrifugation (2563 g; 5min; 4�C). After two

more washing steps (256 3 g; 5 min; 4�C) in 200 ml FACS buffer, cells were

stained with the corresponding antibodies. Flow cytometry analysis was per-

formed using a FACS Canto II (BD Biosciences).

qPCR was performed as described previously (Kienzler et al., 2013; Kraus

et al., 2014) using the primer/probe real-time PCR assays for BAFFR

(TNFRSF13C) (HS00606874-81) and TACI (TNFRSF13B) (HS00963364-m1)

from (Applied Biosystems). PCR fragments were amplified for 2 min at 50�C,
10 min at 95�C followed by 45 cycles consisting of 15 s at 95�C and 1 min at

58�C. Relative expression was calculated using the 22DCq method with

cDNA concentrations standardized to the reference gene RPLPO (Applied

Biosystems).

In Vitro B Cell Experiments

B cell survival assays were performed as described before (Warnatz et al.,

2009; Pieper et al., 2014). B cells (5 3 104) were cultivated for 1–3 days in

96-well plates in 200 mL IMDM10%FCS in the presence or absence of ADAMs

inhibitors, BAFF, 0.1 mMCpG, or 0.1 mg/mL goat anti-human IgM F(ab)2. Cells

were then analyzed by flow cytometry by timed acquisition.

Immunofluorescence

Cryostat sections (10mm)ofhuman tonsilswere stainedasdescribedbefore (Sic

et al., 2014) using anti-human BAFFR PE, anti-Ki67-biotin, anti-CD38 PE (Bio-

legend), anti-CXCR4BV421 (Biolegend), andAlexa405-conjugated streptavidin

(Thermo Fisher). Optimal antibody concentrations were determined by titration.
2200 Cell Reports 18, 2189–2202, February 28, 2017
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B cells from blood samples were isolated and separated bymagnetic cell sort-

ing as described before (Pieper et al., 2014; Sic et al., 2014; Warnatz et al.,

2009).

Statistics

Paired t test was applied in Figures 1B, 2I, and 7D. One-way analysis of vari-

ance with Bonferroni’s multiple comparison test was applied in Figures 4H, 5,

6, and 7E using GraphPad Prism version 5.0a for Macintosh (GraphPad Soft-

ware; http://www.graphpad.com) (not significant [ns] p > 0.05; *p = 0.01–0.05;

**p = 0.001–0.01; ***p < 0.001).

Additional information is provided in the Supplemental Information.
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