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TargetingmTORC1 has been thoroughly explored in cancer therapy. Following encouraging preclinical studies, mTORC1 inhibitors
however failed to provide substantial benefits in cancer patients. Several resistance mechanisms have been identified including
mutations of mTOR and activation of alternate proliferation pathways. Moreover, emerging evidence discloses intratumoral
heterogeneity of mTORC1 activity that further contributes to a reduced anticancer efficacy of mTORC1 inhibitors. Genetic
heterogeneity as well as heterogeneous conditions of the tumor environment such as hypoxia profoundlymodifiesmTORC1 activity
in tumors and hence influences the response of tumors to mTORC1 inhibitors. Intriguingly, the heterogeneity of mTORC1 activity
also occurs towards its substrates at the single cell level, asmutually exclusive pattern of activation ofmTORC1 downstream effectors
has been reported in tumors. After briefly describingmTORC1 biology and the use ofmTORC1 inhibitors in patients, this reviewwill
give an overview on concepts of resistance to mTORC1 inhibition in cancer with a particular focus on intratumoral heterogeneity
of mTORC1 activity.

1. Introduction

Cancer is usually driven by an accumulation of genetic
and epigenetic alterations which promote cell growth and
immune escape. Hence, blocking these alterations represents
a major treatment approach in cancer [1]. The initial success
of imatinib in chronic myeloid leukemia demonstrated the
feasibility of such an approach which was further extensively
developed in cancer therapy [2]. Patient stratification, based
on cancer genotyping, aimed at identifying the driving forces
in a tumor, should help chose the appropriate treatment.
However, over years, several drawbacks were identified that
limit the efficacy of this approach. In particular, tumor het-
erogeneity emphasizes the complexity of cancer cells, where
frequentlymore than one driving force for tumor progression
coexists heterogeneously in cancer [3]. Furthermore, not
only a random accumulation of mutations induces tumor
heterogeneity, but also in fact variable tumor environmental
traits add another level of complexity to this process [4].
In addition to tumor heterogeneity, development of cellular
resistance to a specific treatment represents a major hurdle to

targeted therapies in cancer. Several resistance mechanisms
have been identified, including secondary alterations in the
target and activation of bypass mechanisms [5]. Hence,
despite promising preclinical studies, most targeted therapies
have failed to provide prolonged benefits in cancer patients.

In the context of personalized therapies in cancer, the
mammalian target of rapamycin complex-1 (mTORC1) rep-
resents a fascinating topic that has been extensively explored.
mTORC1 perfectly reflects the problem of targeted therapies,
being conceptually and preclinically a promising target but
displaying only limited efficacy if targeted by mTORC1
inhibitors in clinical trials. Several causal factors for a limited
efficiency ofmTORC1 inhibitors have been identified andwill
be described in this review with a particular focus on the
intratumoral heterogeneity of mTORC1 activity.

2. mTORC1 and Cancer

mTORC1 is an ubiquitously expressed protein complex that
controls cell growth by inducing protein and nucleotide syn-
thesis, ribosome biogenesis, and lipogenesis and by blocking
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Figure 1: mTORC1 regulates cellular anabolic processes. mTORC1 is activated by growth promoting conditions including energy, nutrients,
and growth factors. In contrast, unfavorable conditions such as hypoxia or acidity inhibit mTORC1. Once activated, mTORC1 promotes key
anabolic processes that lead to cell growth. In addition,mTORC1 inhibits autophagy. A nonexhaustive list of downstream effectors ofmTORC1
is displayed.

autophagy (Figure 1) [6, 7]. mTORC1 is able to sense envi-
ronmental signals including growth factors and nutrients and
initiates cell growth in favorable environmental conditions. In
contrast, unfavorable conditions such as acidity and hypoxia,
which are frequently encountered in the tumor microenvi-
ronment, inhibitmTORC1 activity [8, 9]. Among the different
signaling pathways that transmit extracellular signals to
mTORC1, oncogenic PI3K/AKT andRAS/RAF/MEK/MAPK
pathways have been well characterized. Activation of these
pathways leads to the phosphorylation and inhibition of
TSC2 which, in association with TSC1, forms a protein com-
plex that inhibits mTORC1 [10–12]. Of note, mutations in the
TSC1 or TSC2 gene are responsible for the tuberous sclerosis
complex (TSC), a disease characterized by a variety of benign
tumors found inmultiple organs including the brain, kidneys,
liver, heart, and lungs [13]. Following activation, mTORC1
phosphorylates a variety of substrates such as S6K1 and 4E-
BP1, leading overall to an anabolic cellular response and
resulting in cell growth and proliferation [6, 14, 15].

Since mTORC1 controls cell growth, it represents a
potential target in cancer therapy. mTORC1 hyperactivation
is furthermore frequently observed in sporadic cancers,
either through activating mutations of upstream effectors of
mTORC1 or through activating mutations of mTOR itself
[16–18]. Additionally, enhanced activation of mTORC1 is
observed in hamartoma syndromes including Peutz-Jeghers
syndrome, Cowden disease, and TSC that are characterized
by the development of benign tumors and mutations in

tumor-suppressor genes that negatively regulate mTORC1
activity [19].

Besides mTORC1, another protein complex called
mTORC2 exists [20]. In contrast to mTORC1, less is known
about the functions of mTORC2. It is mainly activated by
growth factors and it preferentially phosphorylates and
activates proteins belonging to the AGC protein kinases
family including AKT (Ser 473) and SGK1 (Ser 422). As such,
mTORC2 also promotes tumor growth, and blocking its acti-
vity displays antitumoral effects in various preclinical models
[21–25]. Nevertheless, for the purpose of this review, we
will primarily focus on the effects of mTORC1 inhibition in
cancer.

Different options exist to target mTORC1. By now, three
generations of mTORC1 inhibitors have been developed [26].
Rapamycin and its derivatives termed rapalogs are the first
generation of mTORC1 inhibitors. They inhibit mTORC1
by binding together with FKBP12 to the FRB domain, a
domain adjacent to the kinase domain of mTOR, limiting
the access of substrates to the active kinase site [27, 28].
Of note, rapalogs only incompletely block mTORC1, as, for
example, mTORC1 phosphorylates the Thr-37 and Thr-46
sites of 4E-BP1 that are rapamycin insensitive [29]. Besides
rapalogs, a second generation of mTOR inhibitors, termed
ATP-competitive inhibitors of mTOR, has been generated.
They inhibit the kinase domain of mTOR and therefore
block both mTORC1 and mTORC2 [30, 31]. Also, compared
to rapalogs, they exhibit a more profound inhibition of
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mTORC1. Due to kinase similarities between mTOR and
other kinases such as PI3K, some of these kinase inhibitors of
mTOR also block PI3K in addition tomTORC1 andmTORC2
[30]. Finally, recently, mTOR resistance mutations to both
rapalogs and kinase inhibitors of mTOR have been identified
[32]. To overcome this resistance, a third generation of
mTOR inhibitor was developed, called Rapalink, containing
rapamycin crosslinkedwith a kinase inhibitor ofmTOR in the
same molecule [32].

3. Lessons Learned from the Use of mTORC1
Inhibitors in Clinic

Rapalogs have been routinely used in clinic, in particular
as immunosuppressive agents. In contrast, ATP-competitive
inhibitors ofmTORhave not yet been approved and are tested
in clinical trials. Rapalink is only in its experimental devel-
opment. Hence, information regarding mTORC1 inhibition
in patients has mostly been gathered from rapalogs. Overall,
rapalogs exhibit antiproliferative effects in untransformed
cells. Indeed, they effectively block T-cell proliferation in
transplanted patients [33, 34]. Similarly, significant antitumor
responses to rapalogs were observed in benign tumors of
TSC [35, 36]. For instance, 75% of patients presenting a sub-
ependymal giant cell astrocytoma had more than 30%
volume reduction of their lesions at 6 months of treat-
ment [37]. Similar effects were noted in TSC patients with
other types of benign tumors, including renal angiomy-
olipoma, fascial angiofibroma, lymphangiomyomatosis, car-
diac rhabdomyoma, and retinal astrocytic hamartoma [35].
Tumors however regrew with cessation of therapy, demon-
strating that rapalogs are rather cytostatic than cytotox-
ic.

The antitumor efficacy of rapalogs was more disappoint-
ing in sporadic cancers [21, 38]. Overall, rapalogs did not
provide any long lasting benefits, increasing median overall
survival by only a few months. Nevertheless, rapalogs are
currently approved for the treatment of renal cell carci-
noma [39, 40], advanced pancreatic neuroendocrine tumors
[41], postmenopausal hormone receptor-positive advanced
breast cancer in combination with exemestane [42], and
advanced nonfunctional neuroendocrine tumors of the lung
or gastrointestinal tract [43]. In Europe, they are further
approved for the treatment of relapsed or refractory mantle
cell lymphoma [44]. Most of the time rapalogs cause disease
stabilization and fail to induce tumor regression, further
highlighting that rapalogs are cytostatic. Hence, although
several clinical trials are still investigating the anticancer
efficacy of rapalogs, it is very unlikely that rapalogs will cure
cancer.

Clinical trials with rapalogs revealed that blocking
mTORC1 is associated with nonnegligible side effects [45,
46]. Since mTORC1 is ubiquitously expressed, blocking its
activity in cancer therapy lacks specificity. The side effects
include a variety of dermatological, metabolic, renal, hema-
tological, and respiratory toxicities that often require dose
reduction. These side effects are mostly moderate but can
also be life-threatening in the case of pneumonitis. By gen-
erating discomfort, mTORC1 inhibitors are also responsible

for an important prevalence of drug discontinuation [45].
Toxicities of mTORC1 inhibitors should hence be kept in
mind, particularly when combined therapies are consid-
ered.

4. Limitations of mTORC1 Inhibitors in
Cancer Therapy

Despite a significant efficacy in preclinicalmodels, the clinical
tumor response to rapalogs is modest. Several factors might
explain this limited impact in clinical applications [47]. As
mentioned above, rapalogs provide only an incomplete inhi-
bition of mTORC1 [48]. To overcome this limitation, ATP-
competitive inhibitors of mTORC1 were generated that
completely block mTORC1. These inhibitors further block
mTORC2, which represents an additional advantage over
rapalogs. In vitro and in vivo experiments demonstrated a
stronger anticancer efficacy of these second generation inhib-
itors compared to rapalogs [49, 50]. ATP-competitive inhib-
itors of mTOR are currently being tested in clinical trials,
but so far, an ample antitumor response has not been
reported [51]. In addition, several other limitations of target-
ing mTORC1 in cancer therapy have been described, includ-
ing treatment resistant mutations of mTOR, activation of
alternate proliferative signaling pathways, and intratumoral
heterogeneity of mTOR activity (Figure 2). These will be
further discussed here.

5. Treatment Resistant Mutations of mTOR

Secondary genetic alterations of the targeted kinase represent
a classic drug resistance mechanism and have been identi-
fied in a variety of tumors of patients treated with kinase
inhibitors [5, 52–54]. Similarly, acquired resistancemutations
of cancer cells exposed to mTORC1 inhibitors have been
reported [32]. Treatment of MCF-7 breast cancer cell line
with rapamycin or an ATP-competitive inhibitor of mTOR
for three months led to the emergence of resistant colonies.
Genomic sequencing revealed that rapamycin resistant clones
harboredmutations in the FRBdomain ofmTOR. In contrast,
the ATP-competitive inhibitor resistant clone contained an
mTOR mutation located in the kinase domain. Both types
of mutations were responsible for drug resistance [32]. FRB
domain mutation disrupted the interaction between mTOR
and FKBP12-rapamycin, consistent with data generated in
yeast (Figure 2) [55, 56]. Mutations that conferred resistance
to ATP-competitive inhibitors of mTOR did not alter binding
of the drug to mTOR but generated a hyperactive state
of the kinase. Interestingly, this type of mutation induces
a hyperactive state of both mTORC1 and mTORC2, high-
lighting that resistance to ATP-competitive inhibitors of
mTOR can occur from both mTORC1 and mTORC2. More
importantly, both types of mutations have been detected in
untreated patients, suggesting that certain types of cancer are
intrinsically resistant tomTORC1 inhibitors [32]. A resistance
mutation of the FRB domain has also been shown to be
acquired under treatment with rapalogs in human. Indeed,
resistance developed in a patient treated with the rapalog
RAD001 for metastatic anaplastic thyroid carcinoma after an
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Figure 2: Factors impeding the anticancer efficacy of rapalogs. Treatment resistant mutations of mTOR: mutations of the FRB domain of
mTOR block the binding of rapamyicn-FKBP12 to mTOR and impede the anticancer efficacy of rapalogs. Mutations conferring a hyperactive
state of mTOR that resists ATP-competitive inhibitors of mTOR have also been reported. Activation of alternate proliferation pathways:
upon inhibition of mTORC1, negative feedback loops are abolished, leading to an overactivation of PI3K/AKT and RAS/RAF/MEK/MAPK
pathways that counteract the anticancer efficacy of rapalogs. Genetic heterogeneity: cancer cells harboring genetic mutations that lead to
mTORC1 overactivation coexist with cancer cells displaying low mTORC1 activity. The latter exhibit an mTORC1-independent growth and
are therefore resistant to mTORC1 inhibition. Hypoxia: hypoxia inhibits mTORC1; hence mTORC1 activity is reduced in hypoxic tumor
regions, and these regions are resistant to mTORC1 inhibitors. Acidity: acidity inhibits mTORC1 activity in cancer cells in vitro, resulting
in mTORC1-independent cancer cell growth. Functional heterogeneity: mTORC1 activity towards its downstream effectors is heterogeneous,
where cancer cells displaying S6K1high/4E-BP1low and S6K1low/4E-BP1high phosphorylation patterns coexist in the same tumor. Rapalogs do
not completely block mTORC1 activity with mTORC1-mediated 4E-BP1 phosphorylation being in part resistant to rapalogs. Beige squares
and green ovals symbolize cancer cells and black ovals symbolize nuclei. Dark green: high mTORC1 activity; light green: low mTORC1
activity. Functionally active components of intracellular signaling pathways are displayed in black writing; functionally inactive components
of intracellular signaling pathways are displayed in grey writing.

initial 18-month response [57]. Whole genome sequencing
revealed that this tumor contained an FRB domain mutation
after treatment that was not present initially. Of note, it
also identified a nonsense mutation of TSC2 which could
explain the initial high sensitivity of this tumor to RAD001
[57].

On the contrary, some of the identified hyperactivating
mutations of mTOR are associated with increased sensi-
tivity to rapamycin, suggesting that cancer cells harboring
such mutations have an mTOR dependent proliferation
pattern [18]. In these patients, such mutations could serve as
biomarker in predicting cancer response to mTORC1 inhib-
itors. Consistent with this observation, a patient with meta-
static urothelial carcinoma containing an mTOR hyperacti-
vating mutation experienced a complete radiological res-
ponse that lasted for 14 months after initiation of a treat-
ment with RAD001 in combination with the tyrosine kinase
inhibitor pazopanib [17].

6. Activation of Alternate
Proliferative Signaling Pathways following
mTORC1 Inhibition

mTORC1 belongs to a complex network of regulatory feed-
back loops responsible for limiting the proliferative signals
transmitted by upstream effectors once mTORC1 gets acti-
vated (Figure 2) [47, 58, 59]. For instance, mTORC1/S6K1
mediated insulin receptor substrate-1 (IRS-1) phosphoryla-
tion enhances its degradation with subsequent disruption of
PI3K/AKT signaling [60–62]. Similarly, mTORC1 activation
leads to platelet derived growth factor receptors 𝛼 and 𝛽 deg-
radation and attenuation of PI3K/AKT activity [60]. Like-
wise, mTORC1 stabilizes Grb10, leading to the inhibition of
PI3K/AKT and MEK/MAPK pathways [63, 64]. mTORC1
activation also leads to a direct reduction ofmTORC2 activity.
For instance S6K1 phosphorylates Sin1, a component of
mTORC2, atThr 86 andThr 398, resulting in the dissociation
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of Sin1 from mTORC2 and suppression of mTORC2-med-
iated activation of AKT [65, 66]. The observation that
S6K1 phosphorylates rictor (Thr 1135), another component
of mTORC2, suggests that additional feedback mechanisms
exist betweenmTORC1/S6K1 andmTORC2/AKT; their func-
tional relevance needs however to be further characterized
[67, 68]. As a consequence, blocking mTORC1 results in
the activation of proliferative pathways that will counteract
the anticancer efficacy of mTORC1 inhibitors [69, 70]. For
example, increased phosphorylation of AKT (Ser 473) was
noticed in tumor metastasis of patients treated with rapalogs
[71, 72]. Similar findings were reported in glioblastoma
patients treated with rapamycin; an increased AKT phos-
phorylation (Ser 473) was further associated with a shorter
time to progression [73]. Activation of upstream proliferative
pathways by rapalogs is not limited to AKT, as rapalogs
were also shown to increase MAPK activity. Indeed, tumor
biopsies before and after RAD001 treatment demonstrated
thatMAPKphosphorylation (Thr 202/Tyr 204)was increased
after treatment [74]. In experimental settings, blocking AKT
or MAPK potentiated the anticancer efficacy of rapalogs,
underlining that rapalogs-mediated AKT and MAPK over-
activation dampens their efficacy [71, 74].

Second generation of mTORC1 inhibitors also abrogates
negative feedback loops. As a consequence, their antitumor
activity is also reduced by the activation of upstream path-
ways [69]. Like rapalogs, mTOR kinase inhibitors increase
PI3K activity. Hence, AKT Thr308 phosphorylation is rein-
forced and sufficient to promote AKT signaling despite
the loss of AKT Ser473 phosphorylation mediated by the
inhibition of mTORC2 by kinase inhibitors of mTOR [75].
Surprisingly, restoration of AKT signaling following treat-
ment with a dual PI3K/mTOR kinase inhibitor has also been
reported [76]. In this case, PI3K-independent mechanisms
are responsible for AKT phosphorylation and activity [77].
Besides AKT, an overactivation ofMAPKby kinase inhibitors
of mTOR has also been described [78, 79]. Interestingly,
MAPK activation by kinase inhibitors ofmTORwas indepen-
dent of PI3K, arguing for a different loop between mTORC1
and MAPK apart from the previously identified loop with
rapalogs [74]. Furthermore, since the feedback loop does not
involve PI3K, dual PI3K/mTOR inhibitors likewise increase
MAPK activity [69].

7. mTORC1 Activity Is
Heterogeneous in Cancer

Recently, an old paradigm, namely, tumor heterogeneity,
has been revisited in cancer biology [80, 81]. Emerging
evidence demonstrates that genetic heterogeneity exists at the
single cell level in cancer and therefore participates in resist-
ance to a specific treatment [82, 83]. Like other signaling
pathways, heterogeneous mTORC1 activity in a tumor has
been reported. For example, immunohistochemical stain-
ing of human breast cancer for phospho-4E-BP1 (Thr 70)
and phospho-S6 (Ser 240/244), as markers of mTORC1
activity, shows a marked heterogeneity among cancer cells,
exhibiting either a strong or a weak staining in the same
tumor [84, 85]. Moreover, genome sequencing of different

regions of a human renal cell carcinoma revealed that a
kinase domain mutation of mTOR was not present in every
tumor region (Figure 2) [86]. Tumor cells displaying this
mutation showed increased staining of phospho-S6 (Ser
235/236) and phospho-4EBP1 (Thr 37/46), suggesting that
the mutation conferred increased activity to mTORC1. This
study further showed that genetic intratumor heterogeneity is
associated with a functional heterogeneity ofmTORC1 kinase
activity and possibly sensitivity to mTORC1 inhibitors [32].
Of note, this mTOR mutation was not detected in tumor
metastases, further highlighting heterogeneity between the
primary tumors and metastases [86]. This latter observation
echoes well with a previous study that showed a poor
concordance of mTORC1 activity in primary breast tumors
and their corresponding metastases, as demonstrated by
immunohistochemical staining of phospho-4E-BP1 (Ser 65)
[87]. Other mutations of mTOR have further been identified,
but their spatial distribution in a tumor has not yet been
revealed [17, 18, 88, 89]. Genetic tumor heterogeneity has also
been reported for proteins that belong to signaling pathways
that lead to mTORC1 activation, such as PI3K/AKT and
Ras/Raf/MEK/MAPK pathways. A high discrepancy in PI3K
mutations between primary breast tumors and their metas-
tases was reported [90]. More importantly, wild-type PI3K,
mutated PI3K (H1047R), and mutated PI3K (E542K) were
all detected in separate tumor regions of the same primary
tumor. Similarly, intratumoral heterogeneity for K-Ras has
been detected in samples of human colorectal cancer [91, 92].
Although mTORC1 activity was not specifically determined
in these studies, one can speculate that the heterogeneous
activation of upstream effectors of mTORC1 contributes to an
intratumoral heterogeneity of mTORC1 activity.

Interestingly, emerging evidence depicts that mTORC1
activity towards its downstream effectors is also heteroge-
neous in tumors (Figure 2) [93, 94]. Using a multiplexed
fluorescence microscopy method in human colorectal can-
cer, it was demonstrated that phosphorylation of S6 (Ser
235/236) and phosphorylation of 4E-BP1 (Thr 37/46) rarely
occur in the same cancer cell but rather show mutual
exclusivity [93]. Although crosstalk to other pathways cannot
be fully excluded, this study supports a functional varia-
tion of mTORC1 to its downstream targets. Most probably,
different mechanisms, which still need to be identified,
regulate mTORC1 signaling to S6 and 4E-BP1. Addition-
ally, since rapalogs do not block mTORC1-mediated 4E-
BP1 phosphorylation (Thr 37/46), cancer cells displaying a
phospho-S6low/phospho-4E-BP1high patternmight be intrin-
sically resistant to rapalogs despite the presence of mTORC1
activity in these cells.

Tumor heterogeneity is not restricted to genomic evo-
lution but also includes other types of heterogeneity [3,
94]. For example, physicochemical properties of the tumor
microenvironment, such as oxygen levels and pH values, vary
considerably between tumor regions and therefore contribute
to heterogeneity and influence response to treatment. Indeed,
regions of hypoxia are frequently present in tumors due
to a high rate of cancer cell proliferation combined with
a reduced perfusion caused by structural abnormalities of
blood vessels [95]. Not surprisingly, as mTORC1 is inhibited



6 Oxidative Medicine and Cellular Longevity

by hypoxia in vitro, several studies have demonstrated that
mTORC1 activity is reduced or absent in tumor hypoxic
regions (Figure 2). For instance, mTORC1 activity as evi-
denced by immunostaining of the phosphorylated form of
S6 ribosomal protein (Ser 235/236) negatively correlated
with pimonidazole staining, a marker of hypoxia in HT29
tumor xenografts andMC-38 tumor allografts [96]. Similarly,
in CAKI-1 tumor xenografts, tumor regions that stained
positive for HIF-1𝛼 had no or little phospho-S6 staining
(Ser 235/236) [97]. Furthermore, in human head and neck
squamous cell carcinoma, the staining pattern of cancer cells
for the hypoxia-regulated glucose transporter Glut-1 was
inversely correlated with phospho-S6 staining (Ser 235/236)
[98]. In addition, treatment of Rag2M mice bearing MCF-7
tumor xenografts significantly decreased tumor hypoxia and
increased mTORC1 activity as demonstrated by Western blot
by reduced HIF-1𝛼 expression and increased S6K1 phospho-
rylation (Thr 412), respectively [99]. In a mouse model of
pancreatic neuroendocrine tumors, phospho-S6 staining (Ser
235/236) was restricted to the normoxic regions of the tumor
following treatment with the antiangiogenic compounds
sunitinib or axitinib [100]. Finally, in patient-derived renal
cell carcinoma tumor xenografts, phospho-S6 staining (Ser
235/236) was predominantly observed around tumor blood
vessels and colocalized with the lactate transporter MCT-1
that is specifically expressed in normoxic tumor regions [101].
Taken together these studies suggest that mTORC1 activity
is predominantly found in the normoxic region of tumors
and further underline that hypoxia, as an environmental
signal, is able to directly influence signaling pathways such
as mTORC1. They further highlight that regional variations
accounting for intratumoral heterogeneity are not only a con-
sequence of random acquisition ofmutations. In other words,
tumor heterogeneity is not limited to clonal differences [3].

Since hypoxic tumor cells still actively participate in
tumor progression, these reports further suggest that tumor
regions displaying low levels of oxygen grow independently of
mTORC1 and are therefore insensitive tomTORC1 inhibition.
Consistent with this hypothesis, it was found that, whereas
rapamycin reduced cancer cell proliferation in nonhypoxic
tumor area, it had no effect in hypoxic tumor regions,
highlighting that rapamycin exerts a tumor region selective
antiproliferative effect [96]. The observation that rapamycin
decreased cancer cell proliferation in the outer well vascu-
larized tumor regions but not in the hypovascular part of
tumors further substantiates this hypothesis [102]. Hence,
these observations suggest that, in cancer therapy, mTORC1
inhibitors should be combined with treatments targeting
the hypoxic tumor compartment. In this context, blocking
carbonic anhydrase IX, which is specifically upregulated by
hypoxia in tumors and participates in tumor progression,
represents a promising approach [103]. In fact, the inhibition
of carbonic anhydrase IX by RNA interference or aceta-
zolamide, a nonspecific inhibitor of carbonic anhydrases,
increased the anticancer efficacy of rapamycin in cancer
mouse models [96].

It is important to note that hypoxia not necessarily leads
to mTORC1 inhibition. Certain cancer cells are able to main-
tain high levels ofmTORC1 activity in hypoxic tumor regions,

which adds another level of complexity to the relationship
between mTORC1 and hypoxia [104]. The molecular mech-
anisms implicated in hypoxia-mediated mTORC1 inhibition
have to some extent been characterized.They involve HIF1𝛼-
induced REDD1 expression [105, 106]. In turn, REDD1 inac-
tivates mTORC1 activity in a TSC1/TSC2 dependent mech-
anism. The Ataxia Telangiectasia Mutated (ATM) protein
also contributes to hypoxia-mediated mTORC1 inhibition by
phosphorylating HIF1𝛼 which is necessary to induce REDD1
expression [104]. Hence, tumor cells harboring disrupted
components of this signaling pathway, such as low levels of
ATM, display a paradoxically elevated mTORC1 activity in
hypoxic tumor regions [104]. In this context, hyperactivating
mutations of mTOR also induce resistance to the inhibition
mediated by high levels of REDD1 and might contribute to
the maintenance of high levels of mTORC1 activity under
hypoxia [89].

Besides hypoxia, tumors also frequently harbor regions
of low pH [107]. Indeed, tumor cells preferentially perform
glycolysis despite the presence of oxygen, hence inducing
acidity and creating a hostile acidic tumormicroenvironment
[108]. Recent in vitro studies support a role of acidity in the
inhibition of mTORC1 [9, 109, 110]. Exposing cancer cells to
acidic pH leads to the downregulation of mTORC1 activity
(Figure 2). Hence, like for hypoxia, cancer cells cultured in
acidic conditions prosper independently of mTORC1. Future
studies are however needed to characterize the molecular
mechanisms involved in acidity-mediated mTORC1 inhibi-
tion and address whether acidity contributes to the mTORC1
activity heterogeneity in tumors.

8. Conclusions

Despite promising anticancer results in preclinical models,
mTORC1 inhibition did not meet the expectations in clinical
trials. Most trials were however performed in advanced
cancer, possibly reducing the chance of success of mTORC1
inhibitors. Nevertheless, several limiting factors have been
identified that help understand the weak clinical response. In
fact, emerging evidence suggests a particularly heterogeneous
activity of mTORC1 in tumors as an important limiting factor
for the efficacy of mTORC1 inhibitors. Several elements con-
tribute to this heterogeneity including genetic and functional
heterogeneity as well as tumor hypoxia. Although tumor
genetic screenings identified mTOR and TSC mutations that
are associated with long term therapeutic benefits, most
tumors eventually relapse within one or two years. Future
therapy approaches will have to acknowledge and approach
tumor heterogeneity, as mTORC1 inhibitors in monotherapy
have failed to cure cancer.
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