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ABSTRACT 

 

Background and purpose: Recent development of anti-angiogenic drugs in 

oncology without any direct marker of angiogenesis has lead to the elaboration 

of a new PET tracer referred as 68Ga-NODAGA-RGD. This radiotracer 

consists of a sequence of three amino acids abbreviated RGD and has the to 

capacity to bind to αVβ3 integrins present tumoral vessels. We evaluate this 

new tracer in the framework of tumoral angiogenesis in native gliomas. The 

aim of this study is to describe the distribution of the tracer compared to 18F-

FET PET that highlights tumor protein transport and to IVIM MRI that 

highlights micro-perfusion. Long-term work consists of determining whether 

RGD tracer could allow a better selection of patients who could benefit from an 

anti-angiogenic treatment and an earlier assessment of response to treatment. 

Materials and methods: Two patients were included in this study. A qualitative 

analysis of the tracer uptake compared to 18F-FET PET and IVIM MRI was 

realized. 

Results: Our first patient had a bi-component glioblastoma/high-grade glioma 

with an anterior part corresponding to a WHO grade IV glioblastoma and a 

posterior part to a high-grade glioma. RGD was only taken up by the 

glioblastoma part whereas 18F-FET was taken up by both parts. The 

comparison with IVIM showed no correlation in this patient. The second patient 

with a WHO grade II ganglioglioma showed no RGD uptake, no IVIM signal 

but a high 18F-FET uptake by the whole tumor.  

Conclusions: RGD uptake shows a different process than 18F-FET PET and 

IVIM MRI in gliomas in two patients. This needs to be further examined in a 

larger cohort to consolidate our interesting preliminary results.  

 

 

Key words: angiogenesis-gliomas-RGD-IVIM-integrins. 
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INTRODUCTION  

 

The formation of new vessels, a process also known as neoangiogenesis is 

one of the fundamental pathophysiological mechanisms for the development 

and proliferation of cancer. Tumoral cells need nutrients and oxygen for their 

development that normal tissue vasculature cannot afford. Thus, in order to 

fulfill their needs, tumoral cells secret pro-angiogenic growth factors that act on 

endothelial cells and their environment to stimulate the formation of new 

vessels (1). Neoangiogenesis implies two main signal proteins pathways 

referred as Vascular Endothelial Growth Factor-A (VEGF-A) and integrins (2) 

(3).  

Integrins are cell surface heterodimeric glycoproteins, consistent of an α 

and β subunit, that allow cell adhesion, migration, proliferation and 

differentiation on normal and tumoral blood vessels. Among the integrin family, 

some of them such as αVβ3 are implicated in cancer angiogenesis, invasion 

and metastasis. It is a fundamental process in tumor growth and in 

development of resistance to chemotherapy and radiation therapy, which 

therefore consists on a promising target (4) (5).  

αVβ3 is one of the most studied type of integrin in cancer. αVβ3 is 

preferentially expressed on tumoral endothelial cells to facilitate the growth 

and survival of the newly forming vessels (6) (7). However they are not 

overexpressed in quiescent endothelium. This characteristic makes it an 

interesting target for antiangiogenic therapy and angiogenesis imaging marker 

(8) (9) (10) (11).  

So far there is no direct marker of angiogenesis thus, a molecular PET 

imaging probe has been developed with a sequence of three amino-acids : 

arginine-glycine-aspartic acid, abbreviated RGD and has the capacity to bind 

to αVβ3 integrins (12) (13) (14) (15).  

Based on the understanding of these cellular pathways, the recent 

development of new oncologic tools for the treatment of tumors, including 

brain tumors has lead to the creation of anti-angiogenic treatments that target 

VEGF-A receptor (bevacizumab) and integrins (cilengitide). Cilengitide is 

currently under clinical investigation (4).  
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Bevacizumab is a humanized monoclonal antibody that inhibits the effect 

of VEGF-A and induces a decrease in microvasculature and a return to 

baseline of the remaining capillaries on a functional and architectural plan (16).  

Before starting a specific treatment, it remains difficult to evaluate 

neoangiogenesis phenomenon, to evaluate early response to an anti-

angiogenic treatment and to differentiate between relapse and radio-necrosis 

on conventional imaging (17) (18) (19). PET-MR image fusion has the 

potential to obtain a non-invasive characterization of tumoral angiogenesis 

either with PET tracers targeting integrins on neovessels or by indirect 

measure of tumoral perfusion (20) (21) (22) (23). So far, several PET tracers 

allow an assessment of tumoral cell proliferation before and during treatment 

with their glucose metabolism (FDG) or protein transport (FET), but they do 

not measure angiogenesis phenomenon (24) . 

18F-fluoroethyltyrosine (FET) is an artificial amino acid, which is taken up 

into upregulated cancerous cells. Therefore FET gives information about tumor 

metabolism of proteins (25). FET can be used to provide the best site for 

biopsy in heterogeneous tumors and to diagnose early residual tumor after 

resection (26) (27) (28) (29). 

The microvasculature changes induced by anti-angiogenic treatments 

occur before the morphological changes detectable by conventional imaging 

such as MR (30). There is a need to evaluate the targets before starting a 

treatment and an early detection of response or non-response to the treatment 

during treatment follow-up (31). Thus, a specific molecular probe that targets 

neoangiogenesis is needed. 

In this study neoangiogenesis phenomenon are assessed in the context 

of gliomas. Primary brain tumors represent 1-2% of adult cancers. Gliomas are 

the most common (80%) malignant primary brain tumor (32). According to the 

classification of the World Health Organization (WHO), there are 3 main types 

of gliomas: oligodendrogliomas, astrocytomas and mixed oligoastrocytomas 

(33). 

They are divided into two types of grades with different prognosis and 

approaches: grade I and II are considered as low-grade with a slow-moving 

evolution and grade III (anaplastic) and IV (glioblastoma) are considered as 

high-grade with a very short evolution leading to death if untreated (34) (35).  

An estimated 68’480 new cases of primary central nervous system 

tumors are expected to be diagnosed in the United States in 2015 according to 

the Central Brain Tumor Registry of the United States of primary brain tumors 
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(36), of which an estimated 23’180 new cases will be malignant (37). With a 

poor 5-year survival rate after diagnosis of about 17.7% in patients aged of 55-

64 years old, this percentage reaches 5.9% in patients aged more than 75 

years old. They remain unfortunately incurable for the majority of them 

because of late diagnosis and poor variety of treatments. 

MRI T1, T2 and gadolinium-enhanced sequences play a key role in initial 

diagnosis and follow-up because of obvious high structural resolution (38). 

However MRI lacks specificity especially after treatment where for example 

contrast enhancement reflects a non-specific increased permeability of blood-

brain barrier (39) (31).  

The high heterogeneity of gliomas composition and irregular shapes 

make the assessment of response to treatment difficult especially with criteria 

of linear measurements of enhancing tumor components (40). This limits the 

interpretation of MRI even by experienced radiologists and consequently 

makes it difficult to provide the information about the best site to biopsy in 

particular when there is no contrast enhancement (41). 

In addition to that, in 1988 Le Bihan et al. (42) defined intravoxel 

incoherent motion (IVIM) as a new technique of cerebral perfusion 

measurement that uses a diffusion sequence with several b-values and a bi-

compartmental model to measure blood pseudo-diffusion caused by its 

passage through microvasculature (43) (44) (45). IVIM measures microscopic 

translational motions that occur in each image voxel during an MRI acquisition. 

In biological tissues, these motions are due to microcirculation of the blood in 

the capillary network and to molecular diffusion of water. These two 

phenomena constitute the bi-exponential decay of the observed signal on 

diffusion-weighted images (DWI) when several diffusion b-values are 

employed (46) (47) (48). 

This method allows us to evaluate quantitatively the tumoral capillary 

microcirculation. IVIM has shown promising results to help differentiate 

between high- and low-grade tumors, such as in the salivary gland, pancreas, 

renal, breast. In brain, the IVIM perfusion fraction might be a good tool to 

differentiate between high- and low-grade gliomas, but is still under clinical 

investigation (37) (49). 

Dynamic susceptibility contrast (DSC) is the usual technique used to 

measure cerebral perfusion on MRI. It is sensible to neoangiogenesis and is 

part of all the investigation protocols and brain tumors follow-ups. The latter 

will be used as a reference for the IVIM technique (50) (51) (52).  
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Furthermore, 18F-FDG PET is commonly used to assess malignant 

disease and treatment response in several organs such as lungs, breasts, 

lymph nodes, and melanomas. Nevertheless 18F-FDG shows normal uptake 

within normal brain and brain inflammation, which makes it unreliable for 

assessing malignancy in brain particularly for low-grade tumors (53).  

Current treatment for gliomas involves surgery, chemotherapy with 

temozolomide and radiation therapy. In case of recurrent disease after first line 

treatment, an anti-angiogenic treatment such as bevacizumab is usually given 

according to the guidelines (54). 

A new radiotracer that represents a tool to assess neoangiogenesis is 
68Ga-NODAGA-RGD, which binds to αVβ3 integrins located on the surface of 

endothelium and macrophages present on neovessels (55) (56) (57).  

The clinical applications of RGD for gliomas will be a better 

characterization of cancerous lesions (58) and a better quantification of 

neovessels. Moreover, it could provide a more appropriate selection of 

patients who will benefit from an angiogenesis inhibitor, an earlier assessment 

of response to angiogenesis inhibitor (59), a more accurate way to monitor 

therapy and a better characterization of recurrent disease especially after 

radiotherapy. Consequently, in the long term RGD could improve the 

diagnostic and the choice of an anti-angiogenic treatment and the follow-up 

patients could benefit from. 

The existence of a relationship between tumoral metabolism and 

neoangiogenesis using PET tracers targeting each function remains to be 

demonstrated. The same applies to the existence of a relationship between 

perfusion quantified by IVIM and neoangiogenesis estimated by 68Ga-

NODAGA-RGD, their respective benefits are unknown.  

The aim of this study is to demonstrate whether IVIM and 68Ga-NODAGA-

RGD PET measure the same phenomenon and whether a correlation exists 

with protein metabolism shown with FET PET. We wanted to demonstrate the 

respective contributions of each technique. As we have the biopsy 

histopathology report to correlate with the images, we wanted to see whether 

we could extrapolate information non-invasively from the scans.  
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METHODOLOGY  

 

Study design   

Between July 2014 and October 2015, 2 patients (2 men, aged 49 and 68 

years, respectively) followed by Dr. Jocelyne Bloch from the Department of 

Neurosurgery for whom an 18F-FET PET was indicated to assess the initial 

extension or a relapse suspicion of a glioma, were offered a 68Ga-NODAGA-

RGD PET to assess the neoangiogenesis phenomenon.  

Patients had a preoperative MR imaging examination with T1-weighted, 

T2-weighted, T1-weighted post-gadolinium sequences (gadoteric acid, 

Dotarem, Guerbet, Switzerland; 0.1 mmol/kg), diffusion DTI and ADC, DSC 

perfusion, IVIM and followed by a FET PET and a 68GA-NODAGA-RGD within 

1 week (except the FET PET of patient 2 that was fused to a previous MRI 

realized 18 weeks before). 

The local ethics committee at University of Lausanne approved the 

protocol. Each participant gave written informed consent before inclusion.  

Inclusion criteria  

Patients had to be less than 85 years old and present a Karnofsky 

Performance Status of ≥ 80%. 

Exclusion criteria  

Lack of discernment, pregnancy, breastfeeding and aged less than 18 years 

old.  
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Data acquisition 

 

PET protocol  

Both 18FET-PET and 68Ga-NODAGA-RGD-PET acquisitions were realized on 

PET/CT scanner (Discovery D690 TOF, GE Healthcare, Milwaukee, Michigan, 

USA). All patients fasted for at least 4 hours prior the tracer injection as 

recommended by European Association of Nuclear Medicine (EANM) 

guidelines (60)(38). 

18FET-PET acquisitions  

A 60-minute acquisition, centered on the skull is performed after an 

intravenous infusion of 200MBq of 18F-FET. A low dose CT-Scan is performed 

to correct the attenuation and for co-registration of images.  

68GA-NODAGA-RGD-PET acquisitions 

A 60-minute acquisition, centered on the skull is performed after an 

intravenous infusion of 200MBq of 68GA-NODAGA-RGD. A low dose CT-Scan 

is performed to correct attenuation and for co-registration of images. 

 

MRI protocol 

Conventional MR imaging, DSC and IVIM were realized during the same 

procedure to permit direct comparison. The images were acquired on a 3T MR 

imaging scanner (Verio, Siemens, Erlangen, Germany), equipped with 32 

multi-channel receiver head coils. Before the data acquisition, an 18- to 20-ga 

needle was inserted in the right or left antecubital vein. 

Conventional MRI protocol  

MR images included sagittal T1-weighted spin echo, axial T2-weighted spin 

echo and contrast enhanced axial T1-weighted spin echo. Diffusion weighted 

imaging (DWI) or diffusion tensor imaging (DTI) sequences were also 

performed. DWI was performed by using DWI pulse sequence at b = 0 s/ mm2 

and three orthogonal diffusion weighted acquisitions at b = 1000 sec / mm2. 

ADCs being calculated from the trace images. DTI was performed by using 6-

30 direction DTI sequence at b = 0 s / mm2 from which ADCs were calculated. 
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IVIM MR Imaging 

A Stejskal-Tanner diffusion-weighted spin-echo EPI pulse sequence was 

performed, with several b-values (0, 10, 20, 40, 80, 110, 140, 170, 200, 300, 

400, 500, 600, 700, 800, 900 s/mm2) in 3 orthogonal directions, and the 

corresponding trace was calculated.  

The images were axially oriented with a section thickness of 4mm, a field of 

view (FOV) of 297 x 297 mm2 and a matrix size of 256 x 256 yielding an in-

plane resolution of 1.2 x 1.2 mm2. Parallel imaging, with an acceleration factor 

of 2 and a 75% partial Fourier encoding, allowed TR/TE = 4000/99ms. 

Receiver bandwidth was 1086 Hz/pixel and fat was suppressed with a 

spectrally selective saturation routine (37).  
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RESULTS 

 

2 patients were included in this study. Both underwent surgical stereotaxic 

tumor biopsy and resection in order to obtain a histological classification 

according to the World Health Organization classification of the tumors of the 

central nervous system and the 3rd edition of the International Classification of 

Diseases for Oncology (ICD-O-3). The pathologists were blinded for imaging 

results. 

We reviewed the histopathological slices with two pathologists and 

correlated them to our images.  

Patient 1:  

The histopathological results showed two different histologic types within the 

glioma in the right amygdala. The temporo-lateral and posterior temporo-

median part of the tumor was infiltrated by a high-grade glioma and the 

anterior temporo-median part of the tumor was infiltrated by a WHO grade IV 

glioblastoma with small cell component.  

There was another peri-lesional area in the temporo-posterior cortex 

lesion that showed subacute necrosis due to a post-biopsy stroke. 

Patient 2:  

The histopathological results demonstrated a low-grade glioma in the right 

temporo-insular area with no necrosis and no endothelial proliferation. The 

tumor was homogenous and well defined which was typical for a glioneuronal 

tumor. The final report evoked a WHO grade II ganglioglioma, which will still 

be sent out for confirmation to a international expert site in France (result not 

available at the time of this report).  
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Patient 1  

 

a. 

 

b. 

 

c. 
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d. 

 

e. 

              I.                                          II.                                         III.    

Figure 1 - a, b, c, d and e: trans-axial slices of a bi-component high-grade 

glioma/glioblastoma primary brain tumor 

I. Axial T1-weighted postgadolinium showing a hyperintense lesion in the 

right amygdala.  

II. 68Ga-NODAGA-RGD (RGD) showing uptake (SUVmax = 1.1 g/ml) in the 

superior antero-median side of the tumor.  

III. 18F-fluoro-ethyl-tyrosine (FET) PET images showing high uptake 

(SUVmax = 4.3 g/ml) in the temporo-polar lesion with the highest uptake in 

in the supero-median part of the lesion.  
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Figure 2 - showing transaxial slices through the tumor with RGD images (left) 

and corresponding Intravoxel Incoherent Motion (IVIM) images (right). 
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MRI 

The MRI results showed on the postgadolinium-T1-weighted sequence, a 

rupture of the blood-brain barrier and contrast taken up into the temporo-polar 

region and right amygdala.  

Moreover, there was gliomatous infiltration starting from the right 

amygdala and the right temporo-polar region extending to the posterior insular 

level with signs of high-grade transformation in the right amygdala. 

IVIM 

On the IVIM signal images, there was visually no augmentation of cerebral 

microperfusion in the tumor area. 

RGD  

PET shows uptake only in the superior and antero-median region of the tumor 

which corresponds according to the histopathologic results, to a grade IV 

glioblastoma. The SUVmax in that portion of the tumor was 1.1 g/ml. The rest 

of the tumor shown on the MRI does not show any uptake of the tracer.  

This patient has another peri-lesional captation of RGD in the right 

temporal area due to a post-biopsy stroke (resulting from a small-vessel 

peroperative hemorrhage needing coagulation) showing necrosis on the 

biopsy.  

FET 

Interestingly our lesion shows a homogenous FET uptake on both anterior and 

posterior portion of the tumor with predominance on the supero-median region 

of the tumor. The SUVmax in the tumor was 4.3 g/ml. 

There was a another less intense site of hyperactivity posteriorly to the 

predominant lesion with a SUVmax of 2.3 g/ml.  

The tumor-to-background SUVmax ratio (TBRmax) was 3.1, which was 

consistent with a high-grade glioma according to (61) that demonstrates that a 

TBRmax value superior to 2.0 is consistent with high grade glioma.  

The cumulative aspect of the time-activity curve of FET uptake was 

evocative of a grade III-IV glioma.  
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Patient 2 

 

a. 

 

b. 

 

c. 
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d. 

 

e. 

              I.                                          II.                                         III.    

Figure 3 - a, b, c, d and e: transaxial slices of a WHO grade II ganglioglioma  

I. Axial T2-weighted image showing a hyperintense lesion in the right 

temporo-insular region in contact with the frontal horn of the right lateral 

ventricle. 

        II. 68Ga-NODAGA-RGD showing no significant uptake in the tumor.  

III. 18F-fluoro-ethyl-tyrosine (FET) PET images showing high uptake 

(SUVmax = 2.4 g/ml) in the right temporo-polar area. 
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Figure 4 - showing transaxial slices through the primary brain tumor with RGD 

(left) and corresponding Intravoxel Incoherent Motion (IVIM) images (right). 
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MRI 

There was no rupture of the blood-brain barrier. T2-weighted images showed a 

hyperintense lesion in the right temporal cortex. There was also a tumoral 

mass effect centered on the right temporo-polar region with infiltration 

consistent of a T2 signal abnormality in the amygdala, posterior hippocampus, 

parahippocampal gyrus and the occipito-temporal gyrus. No pathological 

contrast uptake was present. 

IVIM 

Visually, the IVIM signal showed no visible augmentation of the cerebral 

microperfusion in the tumor area.  

RGD 

There was no significant uptake of RGD in the cerebral tumoral region.  

FET 

The tracer was taken up into the right temporo-polar region of the tumor with 

an SUVmax of 2.4 g/ml. There is no other suspect FET captation.  

The tumor-to-background ratio max (TBRmax) was 3.4 which was 

consistent with a high-grade glioma according to (61).  In addition to that, the 

dynamic cumulative curve of FET uptake evokes a grade III-IV glioma.  
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DISCUSSION 

 

RGD-FET 

When we analyze the PET images of our first patient, we saw that RGD was 

interestingly taken up mainly into the glioblastoma portion of the tumor and 

also into the stroke in the posterior temporal region. Comparing the images 

with the histopathological slices, in patient 1, the avid part of RGD 

corresponded to a very vascular area with proliferative vessels according to 

the pathologists. The latter area corresponded to a WHO grade IV 

glioblastoma. 

The part corresponding to a stroke was shown to have no proliferative 

vessels and therefore has no glioblastoma component. However, it shows a 

little RGD uptake, which is consistent with angiogenesis present on the post-

stroke region.  

The absence of RGD uptake in the posterior part of the tumor makes us 

suspect that there is probably no tumoral angiogenesis in that area. Indeed, 

that part of the tumor that showed FET uptake had no proliferative vessels 

according to the pathologists and therefore was not a grade IV glioblastoma. 

Consequently, we need to acquire more data to assess whether RGD uptake 

is indeed capable of differentiating between several histological types of 

gliomas.  

For patient 2, the tumor was FET-avid, but there was no RGD uptake. 

The latter observation makes us think that the tumor is not very angiogenic 

and may not benefit from any anti-angiogenic treatment. This statement could 

save time by not trying an anti-angiogenic treatment and waiting until a 

decrease in tumor size is observed to evaluate whether the patient is 

responding to the therapy or not. Of course, this would need to be indeed 

demonstrated. 
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To conclude, there was a completely different uptake in our 2 patients 

between RGD and FET, which points up that RGD highlights a different 

phenomenon than FET amino-acid transport. Moreover, we need to pursue 

these comparisons in a larger cohort.  

RGD-IVIM 

Apparently two different phenomena are visualized on the RGD uptake images 

and on the IVIM sequence.  

Usually, micro-perfusion signal is higher in the glioma area (37), which 

interestingly was not observed in our 2 patients. The fD* that represents 

cerebral perfusion volume was not higher in the tumor areas than in the rest of 

the brain, and this in our two cases. 

The IVIM signal did not correlate with the RGD uptake in our first two 

patients and so far we may think that the two techniques demonstrate different 

processes. However, we need to include another 8 patients to finish this first 

comparison study and to have a better characterization of respective and 

cumulative values of both techniques.  
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Conclusion and future work 

This work is a pilot study in which RGD had yet not been compared to FET 

and IVIM for the evaluation of neoangiogenesis in gliomas. We noted an 

interesting uptake of RGD tracer in the glioblastoma region and not in the 

other high-grade regions of the tumor. This latter observation is consistent with 

a fixation of the tracer only where blood vessels are proliferating. 

Our second patient did not show any RGD uptake in the tumor, nor 

proliferative vessels on the histopathologic slices. We could therefore emit the 

hypothesis that the patient would not respond to an anti-angiogenic treatment. 

This statement could make patients earn time in terms of survival, as they 

could avoid getting started on a useless anti-angiogenic treatment and be 

waiting for a clinical response as we know time is key in gliomas management.  

As limitations, we should mention that this observation is extrapolated 

from one case only and that the untreated IVIM sequences are unfortunately of 

suboptimal quality and difficult to interpret because of the noise. This 

encourages us to include further patients in this study. We had difficulties 

including patients at the beginning of the study because of the non-

reimbursement of the 18F-FET PET examination by the Swiss health 

insurances. Fortunately the latter will be reimbursed since the 1st January 

2016. 

To conclude, we observe three different phenomena in gliomas biology 

with our two cases. In order to appreciate in a more precise way the value of 

our RGD tracer compared to FET and IVIM, we need a larger-sized population 

of patients and voxel-based analysis, which is planned in the framework of my 

upcoming MD thesis.  

Future work will consist of a comparison of the distribution of both PET 

tracers and two more volumes defined as: 18F-FET  68Ga-NODAGA-RDG 

and 18F-FET  68Ga-NODAGA-RGD with each a correlation to the IVIM signal. 

Although we only have interesting preliminary results, it is difficult to 

establish firm conclusions with only 2 patients. However, further examination 

with a larger cohort would allow better understanding of RGD tracer 

contribution compared to the two other techniques. We will get an αVβ3-

labeling antibody for immunofluorescence to directly correlate histopathological 

results with angiogenesis.  
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