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Glial cell line-derived neurotrophic factor (GDNF) and Neurturin (NRTN) bind to a receptor

complex consisting of a member of the GDNF family receptor (GFR)-α and the Ret

tyrosine kinase. Both factors were shown to protect nigro-striatal dopaminergic neurons

and reduce motor symptoms when applied terminally in toxin-induced Parkinson’s

disease (PD) models. However, clinical trials based on intraputaminal GDNF protein

administration or recombinant adeno-associated virus (rAAV)-mediated NRTN gene

delivery have been disappointing. In this review, several factors that could have

limited the clinical benefits are discussed. Retrograde transport of GDNF/NRTN to

the dopaminergic neurons soma is thought to be necessary for NRTN/GFR-α/Ret

signaling mediating the pro-survival effect. Therefore, the feasibility of treating advanced

patients with neurotrophic factors is questioned by recent data showing that: (i) tyrosine

hydroxylase-positive putaminal innervation has almost completely disappeared at 5

years post-diagnosis and (ii) in patients enrolled in the rAAV-NRTN trial more than

5 years post-diagnosis, NRTN was almost not transported to the substantia nigra

pars compacta. In addition to its anti-apoptotic and neurotrophic properties, GDNF

also interferes with dopamine homeostasis via time and dose-dependent effects such

as: stimulation of dopamine neuron excitability, inhibition of dopamine transporter activity,

tyrosine hydroxylase phosphorylation, and inhibition of tyrosine hydroxylase transcription.

Depending on the delivery parameters, the net result of this intricate network of

regulations could be either beneficial or deleterious. In conclusion, further unraveling of

the mechanism of action of GDNF gene delivery in relevant animal models is still needed

to optimize the clinical benefits of this new therapeutic approach. Recent developments

in the design of regulated viral vectors will allow to finely adjust the GDNF dose and period

of administration. Finally, new clinical studies in less advanced patients are warranted to

evaluate the potential of AAV-mediated neurotrophic factors gene delivery in PD. These

will be facilitated by the demonstration of the safety of rAAV administration into the human

brain.
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GLIAL CELL LINE-DERIVED
NEUROTROPHIC FACTOR GENE
DELIVERY: PRECLINICAL FINDINGS IN
ANIMAL MODELS

Glial cell line-derived neurotrophic factor (GDNF) has first been
shown to protect embryonic dopaminergic neurons in vitro
(Lin et al., 1993). GDNF and related factors, such as neurturin
(NRTN), signal through a multicomponent receptor system
consisting of a glycosyl-phosphatidylinositol-anchored receptor,
the GDNF family receptor (GFR)-α and Ret tyrosine kinase
(Paratcha and Ledda, 2008). GDNF and NRTN preferentially
bind to GFR-α1 and GFR–α2, respectively (Sariola and Saarma,
2003). In the absence of Ret, GDNF in complex with GFR-α1may
also interact with heparan sulfate glycosaminoglycans to activate
the c-Met receptor tyrosine kinase and to neural cell adhesion
molecule (NCAM) which activates the Src-like kinase Fyn and
focal adhesion kinase (FAK; Sariola and Saarma, 2003).

Since dopaminergic neurons express both GFRα and Ret in
the rodent (Jing et al., 1997; Walker et al., 1998) and human
(Walker et al., 1998; Quartu et al., 2007) brain, it was soon hoped
that GDNF could have a therapeutic potential for Parkinson’s
disease (PD) (Tomac et al., 1995). The therapeutic benefit
of GDNF and NRTN has been demonstrated in phenotypic,
toxin-induced [6-hydroxydopamine (6-OHDA) and 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)] rodent and non-
human primate models of PD (Bilang-Bleuel et al., 1997; Choi-
Lundberg et al., 1997; Mandel et al., 1999; Kirik et al., 2000;
Kordower et al., 2000; Eslamboli et al., 2003, 2005; Kordower
et al., 2006; Gasmi et al., 2007a,b; Ramaswamy et al., 2007; Herzog
et al., 2008, 2009; Su et al., 2009). Ret induces the serine/threonine
kinase AKT and extracellular signal-regulated kinase (ERK)
signaling which mediate pro-survival and neurotrophic activities
(Sariola and Saarma, 2003). In favor of this hypothesis, it was
shown that the absence of Ret signaling caused progressive
degeneration of the nigrostriatal system (Kramer et al., 2007).
These data are however, in contradiction with another study
suggesting that GDNF is dispensable for dopaminergic neurons
survival (Kopra et al., 2015). Since GDNF does not pass the
blood-brain barrier, intracerebral gene delivery by stereotaxic
injection of viral vectors has been proposed as a method of
administration. The therapeutic potential of GDNF gene delivery
has been evaluated in different pre-clinical paradigms.

Neuroprotection vs. Neurorestoration
In the neuroprotective paradigm, a viral vector encoding GDNF
is administered prior to lesioning the nigro-striatal dopaminergic
pathway whereas in the neurorestorative paradigm, the vector
is administered after lesioning. While a large number of
neuroprotection studies (Bilang-Bleuel et al., 1997; Choi-
Lundberg et al., 1997; Mandel et al., 1999; Bensadoun et al., 2000;
Kirik et al., 2000; Kordower et al., 2000; Eslamboli et al., 2005;
Bartus et al., 2011) have been published, only few works aimed
at evaluating a potential neurorestorative effect (Kozlowski et al.,
2000; Yang et al., 2009; Tereshchenko et al., 2014). In addition, the
latter paradigm can refer to different approaches. Indeed, GDNF

administration has been performed either during the progressive
phase (Kozlowski et al., 2000) or after stabilization of the lesion
(Wang et al., 2002; Zheng et al., 2005; Eberling et al., 2009).

In both paradigms, increased numbers of SNpc dopaminergic
neurons stained by antibodies directed against tyrosine
hydroxylase (TH), an enzyme of the DA biosynthesis pathway,
and attenuation of themotor symptoms have been demonstrated.

Intranigral vs. Intrastriatal Delivery
Two delivery sites were used and sometimes combined: the SN
(Choi-Lundberg et al., 1997;Mandel et al., 1997; Bensadoun et al.,
2000) and the striatum (Bilang-Bleuel et al., 1997; Connor et al.,
1999; Kirik et al., 2000) in order to deliver GDNF respectively
to the dopaminergic neurons cell soma and at the level of their
terminals. In some instances, both approaches were combined
(Kirik et al., 2000; Kordower et al., 2000).

Most of the studies performed in the neuroprotection
paradigm indicated that when GDNF was administered at the
level of the SN, cell bodies were protected but no benefit onmotor
symptoms was observed (Bilang-Bleuel et al., 1997; Mandel
et al., 1999). In contrast, when GDNF was administered into
the striatum, both cell bodies and terminals were preserved and
motor symptoms were reduced (Kirik et al., 2000). Accordingly,
several recent studies have suggested that axonal dysfunction
precedes neuronal cell death and is better correlated with clinical
symptoms (see further; Burke and O’Malley, 2013; Kordower
et al., 2013; Schulz-Schaeffer, 2015).

In one report, the authors succeeded to obtain a protection
after intranigral delivery of an adenoviral vector in the
neurorestorative paradigm (Kozlowski et al., 2000). Strikingly,
in this study, dopaminergic neurons survival was assessed by
injecting a retrograde tracer, Fluorogold, into the striatum and
counting the number of Fluorogold-positive neurons in the
SNpc. By that mean, all neurons which still have nigro-striatal
projections proficient for retrograde transport are taken into
account. In contrast, in the same study, the number of cells
expressing TH in the SNpc was not increased by the GDNF
treatment. Other studies reported a lack of matching between
TH staining and retrograde Fluorogold labeling of nigrostriatal
neurons (Sauer and Oertel, 1994). The loss of the TH marker
could indicate that the neurons were dysfunctional but still
present and possibly rescuable. Thus, the method to assess
neuronal survival and pathway integrity is crucial. Neuronal
survival evaluation solely based on TH immunostainings could
provide misleading interpretations.

Perturbations of Dopamine Homeostasis
by Excessive GDNF Overexpression
DA is submitted to an intricate network of regulations controlling
its homeostasis (see Figure 1). Firstly, DA regulates its own
synthesis by binding to TH and retro-inhibiting its activity
(Gordon et al., 2008). After release in the synaptic cleft,
DA is rapidly re-uptaken by the dopamine transporter (DAT;
Nirenberg et al., 1996; Uhl, 2003). Finally, binding to the pre-
synaptic D2R autoreceptor results in a negative feed-back on DA
synthesis and release (Westerink et al., 1994) whereas binding to
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FIGURE 1 | Schematic dopaminergic synapse depicting the different levels of GDNF regulation. The dopamine synthesis, release, re-uptake, and

degradation pathways are indicated by black arrows. Dopamine is synthesized by conversion of tyrosine to L-DOPA by tyrosine hydroxylase (TH) that uses

tetrahydrobiopterin (BH4) as a cofactor. L-DOPA is converted to dopamine by aromatic acid decarboxylase (AADC) and then integrated into pre-synaptic vesicles via

the vesicular monoamine transporter 2 (VMAT2). After release into the synaptic cleft via exocytosis, dopamine acts on its receptors (DAR), is uptaken by the dopamine

transporter (DAT) and degraded into 3-methoxytyramine (3-MT) and 3,4 dihydroxyphenyl acetic acid (DOPAC) leading to the final homovanillic acid (HVA) metabolite.

Physiological negative feedback on dopamine release is indicated in hatched red arrows. GDNF alters dopaminergic transmission (orange arrows) by (i) increasing the

BH4 levels, (ii) increasing Ca2+-evoked-dopamine release via inhibition of K+ channels and subsequent membrane depolarization, and (iii) reducing DAT activity.

Depending of the GDNF dose and administration period, the ratio of TH and phosphorylated (active) TH levels can be either increased or decreased. Except for DAT

regulation, the direct or indirect impact of the GDNF receptor complex (RET/GFRα1) on these herein described levels of regulation still need to be clarified.

D1R-type receptor on striatal medium spiny projection neurons
provides a long-loop retro-control (Saklayen et al., 2004).

GDNF interferes with DA homeostasis at different levels
(see Figure 1 and Table 1). It increases DA available in the
synaptic cleft via different mechanisms such as: (i) stimulation
of TH phosphorylation, which blocks the DA binding site and
thus reduces the retro-inhibition of TH activity (Ramsey and
Fitzpatrick, 1998; Gordon et al., 2008); (ii) GDNF enhancement
of DA release via inhibition of a A type K+ channel thus
provoking depolarization and Ca2+ entry (Hebert et al., 1996;
Bourque and Trudeau, 2000; Yang et al., 2001); (iii) reduction
of DAT activity via Ret/DAT interaction (Airavaara et al., 2004;
Boger et al., 2007; Littrell et al., 2012; Barroso-Chinea et al., 2016).
These effects can ultimately lead to compensatory mechanisms
such as downregulation of TH transcription (Georgievska et al.,
2002a).

Consequently, important variations of GDNF level are
likely to profoundly perturb DA homeostasis. Whether a
“normal” dopaminergic neurotransmission can be restored
in the presence of supraphysiological GDNF concentrations
cannot be predicted. Not surprisingly, long-term uncontrolled
and sustained GDNF overexpression has led to compensatory
changes (Georgievska et al., 2002b; Barroso-Chinea et al.,
2016) that could have outweighed trophic effects. In contrast,
a moderate GDNF overexpression is likely to compensate a
diminished neurotrophic environment (Chauhan et al., 2001)
and provide the possibility to re-establish a physiological DA

homeostasis (Kumar et al., 2015). Indeed, a 60% increased GDNF
level was sufficient to observe a protective effect toward a 6-
OHDA lesion. Similarly, in other studies, neuroprotective effects
in the absence of TH downregulation have been obtained by
applying low GDNF doses either by injecting a low amount
of viral vector (Eslamboli et al., 2005) or by controlling the
level of transgene expression (Barroso-Chinea et al., 2016;
Chtarto et al., 2016). Interestingly, using a discontinuous GDNF
delivery paradigm in the partial rat 6-OHDAmodel, also allowed
to reduce the behavioral symptoms as well as to maintain
VMAT2-positive cells and innervation in the absence of TH
downregulation (Tereshchenko et al., 2014).

Pro-Survival vs. Neurochemical Effects
Given the above-described GDNF-mediated multiple effects
on dopaminergic neurotransmission, the mechanism of the
neuroprotective effects observed in the numerous gene delivery
studies (Bilang-Bleuel et al., 1997; Choi-Lundberg et al., 1997;
Mandel et al., 1999; Kirik et al., 2000; Kordower et al., 2000)
can be questioned. Whether neurons were protected against
pro-apoptotic pathways or whether surviving but dysfunctional
neurons were boosted to re-express lost markers is still an open
question.

In addition to “waking-up” dysfunctional dopaminergic
neurons, stimulation of striatal reinnervation in remaining
healthy neurons (without increase of the number of cell bodies)
is also a potential mechanism (Brizard et al., 2006). In particular,
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increased TH activity, through phosphorylation (Salvatore et al.,
2004) and reduction of DAT activity (Barroso-Chinea et al.,
2016) both leading to increased extracellular DA levels probably
contribute, in addition to neuroprotection, to the observed
behavioral benefits. In conclusion, several GDNF-mediated
effects not related to its anti-apoptotic mechanism, could
have biased the interpretation of behavioral and histological
data (especially when TH alone was taken as a criteria;
Sajadi et al., 2005; Yang et al., 2009; Barroso-Chinea et al.,
2016).

Cell Type Secreting GDNF
In the striatum, endogenous GDNF is expressed by parvalbumin-
positive interneurons (Hidalgo-Figueroa et al., 2012). The
different classes of viral vectors used to deliver GDNF [adenoviral
vector (Choi-Lundberg et al., 1997; Connor et al., 1999;
Kozlowski et al., 2000); lentiviral vectors (Bensadoun et al., 2000);
and recombinant adeno-associated virus (rAAV)-based vectors
(Mandel et al., 1999; Kirik et al., 2000)] transduce different
cell types with varying efficiencies. The promoter used for
transgene expression further influences the cell type specificity
(Bockstael et al., 2008). In most studies, this issue has not been
evaluated. Some vectors transduce the more abundant medium
spiny neurons which project to the globus pallidus and SNr,
thus resulting in an anterograde transport of the transgene
product in these structures (Bockstael et al., 2008). In order to
avoid this dissemination of GDNF in non-targeted structures
which can provoke undesired effects (Manfredsson et al., 2009),
some groups have directed GDNF expression into astrocytes
in order to restrict transgene expression to the delivery site in
the striatum (Do Thi et al., 2004; Pertusa et al., 2008; Drinkut
et al., 2012). Considering the different cell type specificities
of transgene expression mediated by the different vectors and
the variable amounts of GDNF produced (see Table 1), it is
very difficult to compare studies performed using different viral
vectors.

Interestingly, mice which were manipulated to overexpress
GDNF from the native locus (by deletion of miR-binding sites
in the 3′ untranslated region) had an increased number of
dopaminergic cells in the substantia nigra pars compacta (SNpc)
as well as increased dopaminergic innervation and dopamine
(DA) release in the striatum (Kumar et al., 2015). However,
when these mice were treated with 6-OHDA, an aggravation
of the DA level decrease in the striatum and dopaminergic
neurons loss was observed. This surprising result was attributed
to GDNF-mediated stimulation of DAT activity which increases
6-OHDA uptake. In order to evaluate GDNF neuroprotective
effect using a toxin which does not depend on DAT, the authors
injected lactacystin, a proteasome inhibitor which induces alpha-
synuclein accumulation in nigral neurons. Although, motor
symptoms were improved and dopaminergic levels were higher
in GDNF hypermorphic mice the mutant mice, the number of
dopaminergic neurons was not increased. As already outlined in
Section Pro-Survival vs. Neurochemical Effects, this recent study
further suggests that, due to the pleiotropy of GDNF functions,
confounding factors might have biased the interpretation of
putative pro-survival effects in previous studies.
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NEUROTROPHIC FACTORS GENE
DELIVERY: STILL A PROMISING CLINICAL
PARADIGM FOR PARKINSON’S DISEASE?

Clinical trials were conducted using catheters releasing
recombinant GDNF protein (Nutt et al., 2003; Lang et al., 2006)
as well as rAAV serotype 2 (rAAV2)-mediated delivery of the
NRTN (Marks et al., 2010; Warren Olanow et al., 2015) or GDNF
cDNA (https://clinicaltrials.gov/ct2/show/NCT01621581?term=
AAV2-GDNF&rank=1). In the Phase I trials, AAV vectors were
safe. However, the Phase II results were disappointing, although
beneficial effects have been described for patients which have
been followed for longer periods (Marks et al., 2010). Several
factors could have reduced clinical benefits.

Impact of Axonopathy on NRTN Signaling
The patients were enrolled in the AAV2-NRTN clinical trial
at very late stages of the disease, usually more than 5 years
post-diagnosis (Marks et al., 2010). Analysis of brains from
untreated PD patients at different stages, from 1 to 37 years post-
diagnosis, showed that the putaminal innervation, as measured
by immunostaining against TH, had almost totally disappeared
from 4 years post-diagnosis (Kordower et al., 2013). In contrast,
numerous TH-positive dopaminergic neurons were still present
in the SNpc. These data are in accordance with other studies
pointing to a dying-back degeneration of dopaminergic neurons
in PD. The current view that more than 80% dopaminergic
neurons have died at the time of diagnosis has been revisited
using new techniques to evaluate the number of surviving
neurons and the putaminal dopaminergic innervation (using
radioactive ligand binding to DAT; Burke and O’Malley, 2013;
Kurowska et al., 2016). These data demonstrate that the extent
of neuronal death at the time of symptoms onset is only
30% whereas putaminal DA levels were 50–70% reduced,
suggesting that axon terminals become dysfunctional prior to cell
death.

Post-mortem analysis of four patients enrolled in the AAV2-
NRTN trial, showed that although surviving melanin-positive
dopaminergic neurons were still present in the SNpc, TH-
positive dopaminergic terminals in the putamen were very
sparse and NRTN transport from the putamen to the SNpc
was very slow and inefficient (Bartus et al., 2011, 2015). It
should be noted that this analysis was based uniquely on
TH immunohistochemistry. Thus, it cannot be excluded that
dopaminergic projections were still present but did not express
TH. Indeed, as already discussed above, TH expression does
not always correlate with other dopaminergic markers, such as
the vesicular monoamine transporter VMAT2 or aromatic acid
decarboxylase (AADC; Bjorklund and Dunnett, 2007) and in
some cases, fibers have lost TH expression but kept their ability
for retrograde transport (Sauer and Oertel, 1994). Therefore,
it cannot be excluded that the loss of TH expression observed
in these patients could reflect a diseased state rather than the
absence of putaminal innervation.

Why was NRTN not transported? A plausible hypothesis
is that alpha-synuclein oligomers characteristic of early PD
neuropathology (Schulz-Schaeffer, 2015), accumulating in the

axons empede trafficking of the signaling endosomes. Indeed,
in dementia with Lewy bodies, the greatest abundance of alpha-
synuclein aggregates is found in the axons, more particularly in
the pre-synaptic terminals (Kramer and Schulz-Schaeffer, 2007)
causing synaptic pathology and loss of dendritic spines in the
postsynaptic area.

Interestingly, alpha-synuclein fibrils have been shown to
interfere with the trafficking of the BDNF/Trk-B signaling
endosome (Watson et al., 1999; Volpicelli-Daley et al., 2014).
Whether, like these neurotrophins, GFR–α ligands such as GDNF
and NRTN exert their survival effect on dopaminergic neurons
by a terminally-initiated signaling cascade is still unclear. Indeed,
data obtained in compartmentalized cultures of sympathetic and
dorsal root ganglia sensory neurons, suggested that GDNF pro-
survival effect was predominantly related to a direct cell soma and
a terminally-induced Ret-signaling, respectively, thus pointing
to a cell type-specific GDNF protective mechanism (Tsui and
Pierchala, 2010).

On the other hand, it has been suggested that in the absence
of functional nigro-striatal fibers, GDNF expressed in striatal
medium spiny neurons can be anterogradely transported to the
SNpr and bind to its receptor in the neighboring SNpc, thus
providing a trophic effect (Kells et al., 2010). However, other
pre-clinical data have suggested that applying GDNF at the
level of the SN could be deleterious either reducing the benefit
of intrastriatal delivery (Kirik et al., 2000) or provoking local
aberrant sprouting (Georgievska et al., 2002a). In accordance
with these studies, in a subsequent clinical trial, two-sites rAAV2-
NRTN delivery into both putamen and SNpc provided no clinical
benefit (Warren Olanow et al., 2015).

Since the rAAV2 vectors used in the clinical trials transduce
both interneurons and projection neurons, discriminating
between a retrograde signaling mechanism and anterograde
transport followed by a local signaling at the soma level has not
been feasible. Interestingly, in the adult brain, GDNF is expressed
by parvalbumin -positive interneurons (Hidalgo-Figueroa et al.,
2012) which are distributed throughout the striatum in a
topology which coincides with the distribution of dopaminergic
neurons terminals. In this respect, GDNF delivery via AAV2-
mediated gene transfer does not recapitulate the physiological
GDNF secretion.

Strategies targeting separately either interneurons or striato-
nigral projection neurons could help to unravel themechanism of
the neurotrophic effect and design more promising therapeutical
approaches.

Finally, if the nigrostriatal projections are not simply
dysfunctional but degenerated and thus absent from the
putamen, it is likely that terminally-administered neurotrophic
factors will fail to rescue a functional nigro-striatal pathway.

Lack of Predictability of Pre-clinical Animal
Models?
The clinical data were not predicted by the pre-clinical animal
models generated by the Ceregene group. Indeed, in the
acute MPTP-induced macaque model described by Bartus and
collaborators (Bartus et al., 2011), the surviving nigro-striatal
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dopaminergic neurons still had functional projections, proficient
for retrograde transport. In contrast, in the patients samples,
<1% of surviving melanin-positive neurons in the SNpc were co-
staining with NRTN at 1.5 and 3 months post-surgery and about
5% at 4 years post-surgery.

These data emphasize the need to perform pre-clinical studies
in animal models which recapitulate the progression of the
pathology taking into account recent basic research. Indeed,
accumulating evidence suggest that PD neurodegeneration is
initiated in axon terminals (Schulz-Schaeffer, 2015). Several
authors reported neuropathological hallmarks matching with
this mechanism in animal models. Indeed, in a chronic and
progressive MPTP-induced macaque model described by the
Bezard’s group, at the mean onset of Parkinsonian symptoms,
striatal DAT binding and DA content decreased to, respectively,
20 and 18% of untreated monkeys while 57% of nigral TH-
positive neurons were spared (Meissner et al., 2003).

Interestingly, the Krystof Bankiewicz group has compared
the effects of intraputaminal AAV2-GDNF injection in a mild
and an almost complete MPTP lesion in the macaque (Kells
et al., 2010). They have evidenced functional improvements (as
evidenced by positron emission tomography with 6-[18F]fluoro-
l-m-tyrosine scans) and increased TH putaminal innervation and
SNpc labellings with both types of lesions. The dopaminergic
activities and TH-positive fibers increase in the nearly complete
lesion paradigm, were significantly increased but nevertheless
only localized in a restricted region of the putamen. These data
are in accordance with the post-mortem analysis of patients at
4 years post-injection of rAAV2-NRTN, in which, despite the
nearly total absence of TH staining in the putamen, a TH-positive
innervation appeared in a limited area in the vicinity of the vector
injection (Bartus et al., 2015).

In addition to phenotypic toxin-induced models, genetic
models based on the transgenic expression of mutants isolated in
familial PD cases provide valuable tools to evaluate gene therapy
approaches. Notably, in a virally-mediated local alpha-synuclein
transgenes is, as observed in patients populations (Kordower
et al., 2013), axonopathy preceeded neuronal cell death (Garcia-
Reitbock et al., 2010; Van der Perren et al., 2015). Intriguingly,
GDNF had no effect on dopaminergic neuron survival andmotor
symptoms in two different local, intranigral alpha-synuclein
transgenic models: a lentiviral vector mediated expression of the
humanA30Pmutant inmice (Lo Bianco et al., 2004) and a rAAV-
mediated overexpression of human wild-type alpha-synuclein in
rats (Decressac et al., 2011). This failure has been attributed to Ret
downregulation and disruption of GDNF signaling due to Nurr-
1 downregulation induced by alpha-synuclein overexpression
(Decressac et al., 2012). However, it should be noted that, in
contrast to this report, two other studies showed that neither
RET protein, nor Ret mRNA are downregulated in patients
with Lewy bodies (Walker et al., 1998; Backman et al., 2006). It
might be that the concentration of intranigral alpha-synuclein
protein expressed by the viral vectors was higher than in PD
patients and induced collateral effects (Hoffer and Harvey,
2011). The quantitative evaluation of alpha-synuclein content
in Parkinson’s disease patients post-mortem tissue has proven
difficult due to the existence of multiple alpha-synuclein forms

and difficulties in solubilizing these proteins. In one study,
membrane-associated sodium dodecyl sulfate soluble full-length
17 kDa and high molecular weight alpha-synuclein species were
only slightly increased in PD patients as compared to healthy
subjects (Tong et al., 2010) whereas in another study total alpha-
synuclein was suggested to be 11-fold increased in fresh frozen
protein extracts (Shehadeh et al., 2009). Since the proportion
of monomeric vs. multimeric alpha-synuclein species as well
as their conformation, which play an important role in toxic
effects (Peelaerts et al., 2015), were not quantified separately,
it is difficult to evaluate the predictive value of the animal
models.

In the study by Decressac et al. (2011, 2012) the alpha-
synuclein concentration in the substantia nigra of the rAAV-
injected rats has not been reported. In other studies using rAAV
vectors, the alpha-synuclein levels were found to be three- to
four-fold increased (Gorbatyuk et al., 2010; Landeck et al., 2017).
However, since the AAV vector serotype, the viral preparation
titer and the promoter used for transgene expression differed
from those used in the study by Decressac et al. (2011, 2012)
these data cannot possibly be compared to the patients data. In
addition, it has recently been shown that in contrast to virally-
delivered human alpha-synuclein, rat alpha-synuclein induced
no detectable neurodegeneration at similar vector doses. These
data are questioning the conclusions of studies using human
alpha-synuclein in rodent models.

Physiologically, alpha-synuclein-mediated SNARE-complex
assembly is necessary for synaptic function but at high doses,
alpha-synuclein pathologically misfolds into neurotoxic forms.
Accordingly, alpha-synuclein has been shown to inhibit synaptic
vesicle exocytosis in transfected midbrain dopaminergic neurons
cultures in a dose-response manner (Burre et al., 2010; Lundblad
et al., 2012). Toxic alpha-synuclein fibrils was also shown to
impair the retrograde transport of BDNF signaling endosome
(Volpicelli-Daley et al., 2014).Whether, in the study by Decressac
et al. (2011), alpha-synuclein overexpression (Nemani et al.,
2010), in addition to reducing the Ret signaling cascade
(Decressac et al., 2012) also resulted in (i) a reduction of DA
release and re-uptake and/or (ii) blocked GDNF retrograde
transport has not been investigated (Lundblad et al., 2012;
See also reference (Hoffer and Harvey, 2011) for an extensive
discussion about the potential pitfalls of the rAAV-mediated
alpha-synuclein model for the evaluation of the therapeutical
effect of GDNF gene delivery). Interestingly, injection of pre-
formed α-synuclein fibrils seemed to faithfully recapitulate the
hallmarks of the pathology (Volpicelli-Daley et al., 2014, 2016).

Finally, transgenic mice harboring a mutant LRRK2 gene (the
most frequent mutation in PD) also provides an interesting,
potentially clinically-relevant, phenotype. Indeed, in this model
no loss of dopaminergic neuron cell bodies was observed,
whereas axons harbored dystrophic neuritis (Li et al., 2009).

Neurturin vs. GDNF
Pre-clinical studies established the neuroprotective potential of
NRTN gene delivery (Fjord-Larsen et al., 2005; Kordower et al.,
2006; Gasmi et al., 2007a,b; Herzog et al., 2009). However, the
amount of basic knowledge about NRTN is far less abundant than
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for GDNF and outlines important differences between the two
neurotrophic factors.

First, the induction of Ret-mediated signaling is expected to be
far less efficient after NRTN as compared to GDNF gene delivery.
Indeed, dopaminergic neurons express GFR-α1 but not GFR–α2,
the preferred NRTN primary receptor. NRTN can bind to GFR-
α1 but with a much lower affinity than GDNF (Kramer and Liss,
2015). In addition, NRTN diffuses less efficiently than GDNF in
the parenchyma (Runeberg-Roos et al., 2016). Finally, contrarily
to GDNF, NRTN endogenous secretion signal is weak and in
order to reach efficiency, in the genetic construct developed for
gene therapy, it has been replaced by a mice immunoglobulin
signal peptide (Fjord-Larsen et al., 2005).

Delivery Issues: Poor Coverage of the
Target Structure
The rAAV2 viral particles (Nguyen et al., 2001; Burger et al.,
2004; Hadaczek et al., 2006; Lubansu et al., 2008) as well as
NRTN itself (Bespalov et al., 2011) poorly diffuse in the brain
parenchyma. Post-mortem analyses showed that only ∼15% of
the putamen was covered with NRTN (Bartus et al., 2011),
which could be suboptimal to observe a significant therapeutical
effect. Therefore, interpretation of clinical and histopathological
data from the rAAV2-NRTN clinical trials should be taken with
caution.

NRTN binds to heparan sulfate, which severely reduces
its diffusion (Bespalov et al., 2011). Recently, NRTN mutants
(mutated in heparan sulfate binding sites) were shown to
diffuse further away from the delivery site and to be more
neuroprotective in the 6-OHDA model (Runeberg-Roos et al.,
2016). The use of optimized neurosurgical techniques could
further help overcoming this limitation (Johnston et al.,
2009).

Delivery Issues: Long-Term Uninterrupted
GDNF Treatment Induces Compensatory
Effects
In preclinical models, compensatory effects reducing the
expression of enzymes of the DA biosynthesis pathway
(Georgievska et al., 2002a; Chtarto et al., 2007) as well as of DAT
activity (Barroso-Chinea et al., 2016) appeared after long-term
continuous treatment with GDNF. These neurochemical effects
are likely to interfere with neurotrophic effects and possibly
reduce clinical benefits. Interestingly, pulses of GDNF delivery
provided similar neuroprotection as a continuous treatment
while avoiding TH downregulation (Tereshchenko et al., 2014).
Therefore, repeated short-term expression rather that continuous
GDNF administration might constitute the treatment of choice
for PD.

TIME TO REVISIT GDNF GENE THERAPY
PARADIGM?

Taking into Account Early Axonopathy
Novel knowledge indicates that PD neurodegeneration is
initiated at the level of the terminals and that neuron cell death

is a remote consequence of synaptic dysfunction rather than a
primary event. Therefore, whether GFR-α ligands in complex
with Ret, activating anti-apoptotic and neurotrophic signaling
cascades, constitute a relevant disease-modifying tool could be
questioned.

In advanced patients (from 5 years post-diagnosis),
TH-positive putaminal innervation has almost completely
disappeared (Kordower et al., 2013). rAAV2-NRTN administered
at least 5-years post-diagnosis (Marks et al., 2008) failed
to provide a clear significant clinical benefit (Marks et al.,
2010). In a subsequent clinical trial combining intraputaminal
and intranigral vector administration, less advanced patients
were included (Warren Olanow et al., 2015). A post-hoc
analysis including the patients into subgroups according to the
advancement of the disease at the time of surgery, seemed to
indicate that the therapy could have benefited to less advanced
patients (Bartus and Johnson, 2017a,b).

Effects of GDNF on Dopaminergic
Neurotransmission
As outlined above, GDNF mediates neurochemical effects
either augmenting the dopaminergic function or inducing
compensatory mechanisms reducing the dopaminergic function.
These effects may play an important role in the observed
beneficial effects on motor symptoms in pre-clinical studies and
possibly in clinical studies (Marks et al., 2010; Bartus et al.,
2014). Further studies dissecting the mechanism of specific
GDNF functional effects are required in order to interprete the
clinical data and possibly design new viral vectors and clinical
protocols fully exploiting the neuroprotective effects of GDNF
while avoiding confounding effects.

Avoid Undesirable Compensatory Effects
of Sustained GDNF Administration at
Supraphysiological Doses
Except in one study (Eslamboli et al., 2005), in which
GDNF striatal concentration was only three-fold higher than
the endogenous level, in most preclinical studies it was
increased at least 10-fold (Kirik et al., 2000; Georgievska
et al., 2002a; Yang et al., 2009). In such conditions of
excessive GDNF overexpression, time-dependent compensatory
mechanisms affecting both the motor behavior and DA
biosynthesis and turn-over were observed (Kirik et al., 2000;
Georgievska et al., 2002a; Yang et al., 2009). Therefore,
GDNF administration should be adjusted to a concentration
which does not perturb DA homeostasis and the treatment
should be interrupted before the appearance of compensatory
effects.

Physiological GDNF Secretory Pathway
GDNF secretion can either be constitutive or regulated
by depolarization and Ca2+ entry (Lonka-Nevalaita et al.,
2010). In the rodent striatum, GDNF is natively expressed
by parvalbumin interneurons (Hidalgo-Figueroa et al., 2012;
d’Anglemont de Tassigny et al., 2015) which are fast spiking
neurons, controlling the activity of medium spiny neurons
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of the direct and indirect pathways and closely associated
with dopaminergic neurons terminals (d’Anglemont de
Tassigny et al., 2015). None of the viral vectors used so far
provides a targeted transgene expression into parvalbumin
interneurons.

Future Directions
Although, the results of clinical trials using GDNF recombinant
protein or NRTN gene delivery for PD patients have so far been
disappointing, evolving basic knowledge on PD physiopathology
and GDNF biology as well as improvements of viral vectors
technology justify pursuing neuroprotective approaches.
However, understanding the respective dose range, kinetics
and cellular specificity of neurotrophic and neurochemical
effects and adapting the amounts of neurotrophic factor
administered and the periods of treatment will be of utmost
importance for the success of this emerging disease-modifying
treatment.

Regardless, the recent data showing that TH-positive
putaminal innervation has almost completely disappeared at
5 years post-diagnosis, questions the feasibility of treating
advanced patients with neurotrophic factors. Hopefully, the
demonstration of the safety of rAAV administration into the
human brain (Kaplitt et al., 2007; Marks et al., 2008; LeWitt et al.,
2011; Leone et al., 2012; Bartus et al., 2013; Tardieu et al., 2014;
Warren Olanow et al., 2015) will pave the way for new trials
enrolling less advanced patients.
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