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Abstract 
The presence of the endogenous Leishmania RNA virus 1 (LRV1) replicating stably within 

some parasite species has been associated with the development of more severe forms of 

leishmaniasis and relapses after drug treatment in humans. Here, we show that the disease 

exacerbatory role of LRV1 relies on Type I interferon (Type I IFNs) production by 

macrophages and signaling in vivo. Moreover, infecting mice with the LRV1-cured L. 

guyanensis (LgyLRV1-) strain of parasites followed by Type I IFN treatment increased lesion 

size and parasite burden, quantitatively reproducing the LRV1-bearing (LgyLRV1+) infection 

phenotype. This suggested the possibility that exogenous viral infections could likewise 

increase pathogenicity, which was tested by co-infecting mice with L. guyanensis and 

Lymphocytic Choriomeningitis virus (LCMV), or the sand fly-transmitted arbovirus Toscana 

virus (TOSV). The type I IFN anti-viral response increased the pathology of L. guyanensis 

infection, accompanied by down regulation of the IFN-γ receptor normally required for anti-

leishmanial control. Further, LCMV co-infection of IFN-γ-deficient mice promoted parasite 

dissemination to secondary sites, reproducing the LgyLRV1+ metastatic phenotype. 

Remarkably, LCMV co-infection of mice that had healed from L. guyanensis infection 

induced reactivation of disease pathology, overriding the protective adaptive immune 

response. Our findings establish that Type I IFN-dependent responses, arising from 

endogenous viral elements (dsRNA/LRV1), or exogenous co-infection with IFN-inducing 

viruses, are able to synergize with New World Leishmania parasites in both primary and 

relapse infections. Thus, viral infections likely represent a significant risk factor along with 

parasite and host factors, thereby contributing to the pathological spectrum of human 

leishmaniasis. 

 

Significance Statement 
Infection with Leishmania (Viannia) parasites can have different manifestations, 

ranging from localized cutaneous to disseminated and mucocutaneous leishmaniasis, that are 

prone to relapse after the healing. We previously described the association of the 

endosymbiont Leishmania RNA virus 1 (LRV1) with increased disease severity. Here we 

showed that coinfection with the Lymphocytic Choriomeningitis virus (LCMV) or Toscana 

virus exacerbated the outcome of L. guyanensis-induced murine leishmaniasis, favoring 

parasite persistence and dissemination resulting in metastasis. Both endogenous and 

exogenous co-infections were dependent upon Type I interferon responses. Strikingly, LCMV 
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co-infection after the healing of leishmaniasis induced disease reactivation, overriding the 

protective adaptive immune response. Thus, viral infections may be a significant risk factor 

contributing to the pathological spectrum of human leishmaniasis. 

 

Introduction 

Leishmania are protozoan parasites, transmitted as unicellular promastigote forms by 

sand flies to their mammalian host (humans and dogs). In the skin, Leishmania parasites are 

phagocytized by tissue resident macrophages, where they survive intracellularly and 

proliferate as amastigotes. Infection with Leishmania parasites may lead to the development 

of leishmaniasis, affecting over 12 million people worldwide (1, 2). Leishmaniasis may have 

different outcomes, ranging from localized cutaneous leishmaniasis to visceral leishmaniasis 

(1, 2). Infection with L. guyanensis (Lgy) or L. braziliensis (Lbr) principally leads to simple 

cutaneous lesions, however, up to 10% of patients develop disseminated or mucocutaneous 

leishmaniasis. These latter more severe forms of the disease are characterized by the 

dissemination of the parasites from the primary infection site. Another complication of Lgy or 

Lbr infection can be relapse, which may occur months to years after the healing of the 

primary lesion, or after a first line drug treatment (3, 4). Recently, we correlated the 

development of these more severe forms of leishmaniasis with the presence of Leishmania 

RNA virus (LRV1) within different species of Leishmania (3-6). Discovered in the 1980s (7, 

8), and since then for a long time neglected, Leishmaniavirus is a genus of double stranded 

RNA viruses belonging to the Totiviridae family. Like most other viruses in this family, 

LRV1 is neither shed nor infectious, and thus can be seen as a persistent, endogenous viral 

element (9). Two species of LRV have been identified. The LRV1 species is principally found 

in South America within Lgy and Lbr (10, 11), and the LRV2 species is found within L. major 

and L. aethiopica in the Old World (6, 12). The increasing reports of LRVs in different 

Leishmania species could imply a wider role in determining the fate of infection in humans. 

However, in some instances, metastasis and relapse after drug treatment also occur in the 

absence of LRV1 (13). The basis for these discrepancies is of considerable interest, the 

hypothesis put forward include the significance of the presence of other parasite species, 

microbial or host factors that are known to play an important role in the development of MCL 

(14-16). 

The disease-exacerbatory role of LRV1 relies principally on its modulation of the 

innate immune system via its dsRNA genome (5). We recently showed that LRV1-dependent 
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IL-17 promotes the dissemination of the parasite and the consequent formation of metastatic 

lesions (17). Moreover, we demonstrated that LRV1 increases the life span of Lgy-infected 

macrophages through a Toll-like receptor 3 (TLR3) and Akt dependent pathway (18). Further, 

LRV-containing parasites promote TLR3-dependent secretion of pro-inflammatory cytokines 

and chemokines, including interferon-β (IFN-β) (5). Interestingly, ablation of LRV1 using the 

parasite RNAi machinery, or by treatment with compounds selectively inhibiting LRV1, 

completely abrogated the production of pro-inflammatory cytokines by infected macrophages 

(19, 20). 

The induction of TLR3-dependent interferon-β production following infection with 

LRV1+ parasites suggested a potential role in the pathway leading to elevated pathogenicity. 

Type I interferons (Type I IFNs) are mainly known for their anti-viral activity, and interferon 

therapy is currently used to treat several viral infections, including hepatitis B and C and 

herpes virus (21-23). The role of Type I IFNs in bacterial and parasitic infection is less clear, 

as they are known to protect mice from Plasmodium falciparum infection, but on the other 

hand, can promote infection pathology with Listeria monocytogenes, Toxoplasma and 

Trypanosoma (24-27). During parasite infection, Type I IFNs show more variable effects, 

being either protective or detrimental for the host, depending on the dose, timing of 

administration and on the parasite species (28, 29). For L. major, Type I IFNs have been 

associated with control (30-32), whilst for other species,  especially the New World species L. 

amazonensis and Lbr, IFN-β has been associated with promotion of parasite survival and/or 

disease (33-35). 

The potential significance of IFN signaling during infections with Leishmania 

parasites bearing endogenous dsRNA viruses raises the intriguing possibility that co-

infections with exogenous viruses inducing Type I IFNs could also worsen the disease 

outcome. Such co-infections could occur at the site of infection by sand flies carrying both 

Leishmania parasites and Phleboviruses (e.g. TOSV), or by another virus inducing systemic 

production of Type I IFNs. Thus far little is known about co-infection with Leishmania and 

viruses, with the exception of HIV and the phenotypic change due to its impairment of the 

adaptive immune response (16, 36). 

In this study, we investigated the disease exacerbatory role of viral-induced Type I 

IFNs in Lgy infection, not only with LRV1-bearing Lgy (LgyLRV1+), but also by co-infecting 

mice with LRV1-cured Lgy (LgyLRV1-) and Lymphocytic Choriomeningitis virus (LCMV), or 

Toscana virus (TOSV).  
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 Results 
Type I IFNs exacerbate LgyLRV1+ infection  

We first analyzed whether Type I IFNs could modulate the pathogenicity of Lgy. 

C57BL/6 wild type (WT) or Type I IFN receptor deficient (ifnar-/-) mice were infected with 

LgyLRV1- or LgyLRV1+ parasites. Two weeks post infection, WT mice began to develop 

lesions that grew until reaching a maximal size at week 5 which then healed 4 weeks later, 

with LgyLRV1+ infection inducing significantly larger lesions compared to LgyLRV1- 

infected mice (Fig. 1A). In contrast, LgyLRV1+ infected ifnar-/- mice developed significantly 

smaller lesions, similar to those developed by ifnar-/- and WT mice infected with LgyLRV1- 

(Fig. 1A). Parasite numbers were also significantly increased in WT mice infected with 

LgyLRV1+ compared to the LgyLRV1- infected counterpart (Fig. 1B). Again, no difference 

was observed between ifnar-/- mice, independent of the presence of LRV1 in the infecting 

parasite, as the parasite load was similar to LgyLRV1- infected WT mice. Thus, the 

deleterious effect of Type I IFNs includes worsening of lesion pathology and increased 

parasite numbers.  

To further confirm the deleterious role of Type I IFNs, WT mice were injected with 

recombinant IFN-β (IFN-β) at early time points post Lgy infection, to mimic the anti-viral 

response induced by the endogenous dsRNA LRV1 virus (5). In LgyLRV1- infected mice, 

IFN-β showed a dose-dependent effect in increasing the lesion size and the parasite load at the 

peak of infection. In fact, injection of 100U of IFN-β showed a moderate increase in lesion 

size and no effect on parasite load, whereas injection of 500U or 1000U caused greater 

increase of both lesion size and parasite burden, quantitatively reproducing the phenotype of 

LgyLRV1+ infection (Fig. 1C-D). In contrast, little effect from IFN-β treatment was seen in 

LgyLRV1+ infected mice, (Fig. 1E-F). Similar results were obtained with IFN-α treatment 

(Fig. S1).   

 

Viral co-infection increases the severity of Lgy leishmaniasis 

The data above, in combination with previous findings (5), suggest that the 

endogenous dsRNA virus LRV1 acts to promote Lgy virulence through TLR3 and Type I 

interferon signaling. This alluded to the possibility that other agents triggering Type I 

interferon responses might act similarly to promote Leishmania virulence, such as co-

infections with other viruses. To test this, we co-infected mice with LgyLRV1- parasites and 

lymphocytic choriomeningitis virus Armstrong (LCMV), an arenavirus which induces a 
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potent Type I IFN response (37). Two different sites of injection were used, intra-peritoneal 

injection for LCMV and subcutaneous in the footpad for Lgy.  

Infection with LCMV Armstrong was shown to be cleared in 8 days by C57BL/6 WT 

mice with a robust T cell response (38). Viral titration in mouse serum, following 

intraperitoneal inoculation, showed only transient and very low viremia (39). As previously 

reported (40), the presence of Leishmania parasites did not increase LCMV infection (Fig. 

S2). Similarly, the concentration of Type I IFNs in the serum after 24 hours of LCMV 

infection was comparable between mice infected or not with Lgy (Fig. S3). These data 

demonstrated that the development of the LCMV infection was not affected by the presence 

of Lgy parasites. Interestingly, Type I IFNs were not detected in mouse blood following single 

infection with LgyLRV1+, suggesting that in this particular case the Type I IFN response is 

only local (Fig. S3). 

We subsequently investigated whether LCMV-induced Type I IFNs stimulated gene 

expression at the site of Leishmania infection. We observed that genes known to be 

stimulated by Type I IFNs (oas1a, oas2, oasl2 or pkr) were significantly up-regulated in mice 

infected with LgyLRV1+, or with LgyLRV1- co-infected with LCMV, compared to LgyLRV1- 

infected mice (Fig. S3).  

We then tested the effect of LCMV co-infection on the progression of leishmaniasis. 

LCMV injection in LgyLRV1- infected mice significantly worsened the outcome of 

leishmaniasis, increasing both pathology and parasite burden, which were very similar to the 

phenotype induced by LgyLRV1+ infection (Fig. 2A and C). The LCMV aggravation of Lgy-

induced leishmaniasis completely relied on Type I IFNs, as no difference was observed when 

LCMV was injected into LgyLRV1- infected ifnar-/- mice, neither with regard to footpad 

swelling nor parasite burden. ifnar-/- mice failed to rapidly clear the virus due to the absence 

of a proper Type I IFN response (Fig. S2) (41). Moreover, this effect could again be related to 

the Type I IFN level, since, as already shown in the Type I IFNs injection experiment, no 

significant effect was observed when LCMV was injected in LgyLRV1+ infected mice (Fig. 2 

B and D). 

We furthermore asked if another virus could similarly affect the course of 

leishmaniasis. We focused on Toscana virus (TOSV), a phlebovirus transmitted to humans by 

the same insect vector as Leishmania parasites (42). Mimicking the likely biological route of 

concomitant infection, TOSV was inoculated together with Lgy parasites subcutaneously into 

the footpad. As observed with LCMV, LgyLRV1-/TOSV co-infection highly increased 

footpad swelling and parasite burden at the peak of infection (Fig. 2E-F). ifnar-/- mice were 
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susceptible to TOSV infection, with over 50% of mortality after two weeks of infection, 

precluding further tests on the Type I IFN dependency in this co-infection model. 

 

Viral co-infection modulates macrophage responsiveness to IFN-γ through Type I IFNs 

The data above suggested that co-infection with exogenous RNA viruses resulted in 

worsening of leishmaniasis, quantitatively similar to that seen by parasites bearing 

endogenous LRV1. We thus focused on defining potential mechanisms responsible for these 

exacerbated phenotypes. The immune system efficiently clears intracellular Leishmania 

through the production of IFN-γ (43), and Type I interferon responses are known to down-

modulate IFN-γ responses (24). The early IFN-γ response is fundamental for the 

determination of the outcome of Leishmania infection (44), consistent with our finding 

showing that injection of Type I IFNs in the first hours of infection is crucial for the 

development of  disease (Fig. 1C-D). As LRV1 or LCMV co-infection did not modulate early 

IFN-γ production (Fig. S4), we wondered if IFN-γ signaling was modulated during co-

infections. To this end, we firstly, measured IFN-γR surface expression on bone marrow 

derived macrophages. Infection with LgyLRV1+ parasites induced a significant down-

regulation of IFN-γR compared to LgyLRV1-, in a Type I IFN dependent manner (Fig. S5). In 

this in vivo model of co-infection with LCMV and Leishmania, the pathogens were inoculated 

at two different sites, lowering the chances for the same cell to be infected by both pathogens 

and arguing for a systemic production of Type I IFNs. Thus, in in vitro experiments we 

replaced LCMV co-infection by treating the cells with increasing doses of recombinant IFN-α 

or IFN-β subsequent to LgyLRV1- infection. Both Type I IFNs induced IFN-γR down-

regulation in a dose-dependent manner, with IFN-β showing somewhat higher potency 

(somewhat greater than 2 fold; Fig. S5D). Subsequently, we confirmed these results during in 

vivo infection. Flow cytometric analysis 48 hours post infection showed that macrophages 

from LgyLRV1+ infected, or LgyLRV1-/LCMV infected mice, expressed significantly lower 

levels of surface IFN-γ-receptor (IFN-γR), compared to infections by LgyLRV1- alone (Fig. 

3A). No significant difference was observed in ifnar-/- mice (Fig. 3B), however, the down-

regulation of IFN-γR expression was observed when mice were infected with LgyLRV1- and 

injected with IFN-α or IFN-β (Fig. 3C). This confirmed that the effect depended on Type I 

IFNs. 

 

LCMV – Lgy co-infection accelerates parasite dissemination 
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The importance of IFN-γ was further demonstrated as a critical component of our 

murine model for metastatic leishmaniasis, where IFN-γ-/- mice failed to control Lgy 

infection, causing multiple metastatic lesions, usually located on the tail (17). In this model, 

metastases were accelerated in the presence of the endogenous LRV1 within Lgy parasites. 

Interestingly, IFN-γ-/- mice co-infected with LgyLRV1-/LCMV developed metastasis earlier 

than those infected with LgyLRV1- alone, thus reproducing the phenotype of LgyLRV1+ 

parasites. Therefore, exogenous viral co-infection was equally capable of synergizing parasite 

virulence and metastasis (Fig. 4A-C). 

 

LCMV infection induces reactivation of leishmaniasis 

We then asked whether viral infection could lead to reactivation of leishmaniasis 

following healing, a pathological situation often observed in humans (45). LCMV injection 

subsequent to lesion healing induced reactivation of the disease, with a reappearance of both 

lesion pathology and increased parasite numbers, overriding the protective adaptive immune 

response essential in C57BL/6 mice re-infected with Lgy (Fig. S6). Once reactivated, 

pathology and parasite burden progressed very similarly to that seen in concomitant LgyLRV1-

/LCMV infections, with the lesion pathology and size peaking around 5 weeks post LCMV 

injection and healing a few weeks later (Fig. 5A). Further, at the peak of LCMV infection, we 

found higher parasite burden, a sign of reactivation of parasite proliferation (Fig. 5B). The 

mechanism of relapse relied on Type I IFNs, since no footpad swelling or increase in parasite 

load was observed in ifnar-/- mice infected with either LgyLRV1- or LgyLRV1+ (Fig. 5A-B). 

As seen with simultaneous infections, the subsequent delayed post-healing LCMV injection in 

LgyLRV1- infected mice induced down-regulation of IFN-γR surface expression on 

macrophages in a Type I IFN-dependent manner (Fig. S7A). 

Interestingly, LgyLRV1+ infected WT mice developed only small lesions and parasite 

number compared to their LgyLRV1- counterparts, thus reversing the phenotype observed in 

simple Lgy infection. Indeed, when LgyLRV1- infected mice were injected with Type I IFNs 

during the first two days of infection, they developed less severe relapses when subsequently 

co-infected with LCMV (Fig. 5C). This result suggests that early Type I IFN production could 

significantly prevent the reactivation of the disease in mice previously infected with 

LgyLRV1+, thus explaining the difference between the LgyLRV1+ and LgyLRV1- relapsing 

phenotype. Accordingly, the down-regulation of IFN-γR was not observed in LgyLRV1+ 
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infected, nor in LgyLRV1-/ Type I IFN injected mice (Fig. S7B), suggesting that early Type I 

IFN signaling may inhibit the effect of a subsequent LCMV co-infection.  

 

Discussion 

In this study we confirmed in an in vivo murine model of leishmaniasis that the 

detrimental role of LRV1 borne by Lgy was due to the anti-viral response triggered by viral 

dsRNA recognition, which culminated in Type I IFN production. Further, we demonstrated 

that injection of recombinant Type I IFNs during the initial days of infection was sufficient to 

worsen the outcome of leishmaniasis. Despite the fact that Type I IFNs are mainly known for 

their anti-viral role, increasing evidence attests the involvement of Type I IFNs in bacterial 

and parasitic infection (24-27, 29). Our findings are consistent with earlier reports suggestive 

of a disease exacerbatory role for Type I interferons in New World Leishmania species (33-

35). 

Here we showed that LgyLRV1+ infection, or LgyLRV1- plus LCMV co-infection, 

induced the down-regulation of IFN-γR on macrophages, in a Type I IFN dependent manner. 

In this model both Type I IFNs demonstrated activity, with IFN-β showing greater potency in 

vitro.  The importance of IFN-γ production during the first days of infection with Leishmania 

parasites has been widely described (44). In our model of co-infection we did not observe 

differences in early IFN-γ production, nevertheless the lower expression of the IFN-γ receptor 

likely acts to promote the development of disease. Recently we have shown that infection 

with LgyLRV1+ highly increased macrophage survival in vitro (18). This result, combined 

with the down-regulation of IFN-γR, suggests that the presence of viral co-infection increased 

the persistence of Leishmania parasites. While the down-regulation of IFN-γR was 

quantitatively modest, this was also observed in studies of the exacerbatory role of Type I 

interferons in Listeria infections (24). Our studies, however, do not rule out other mechanisms 

of disease exacerbation induced by Type I IFNs.  

Significantly, exogenous viral co-infection with LCMV or TOSV worsened the 

outcome of murine leishmaniasis caused by LgyLRV1-, reproducing the phenotype of 

LgyLRV1+ infected mice (Fig. 2). It was recently reported that mice infected with LCMV 

present increased lesions when subsequently infected with L. major (46). This phenotype was 

due to an increased inflammatory response induced by memory T cells not accompanied by 

an increased parasite burden. Similar results were observed when mice were firstly infected 

with L. major and only two weeks later co-infected with LCMV (40). In this latter case, a 
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transiently decreased anti-Leishmania immune response was observed one week following 

LCMV co-infection. In our experiments, mice were infected at the same time with parasites 

and LCMV, leading not only to increased footpad lesions, but also to higher parasite burden, 

compared to infection with parasites alone. This suggests that there was a decrease of 

macrophage anti-parasitic activity, consistent with the lower IFN-γR expression on 

macrophages, this observation, however, did not exclude other possible systemic effects of 

LCMV. Interestingly, LCMV co-infection was able to promote the metastatic phenotype in 

LgyLRV1- infected IFN-γ-deficient mice (Fig. 4). Further, we showed that disease 

exacerbation of LRV1 and LCMV co-infection depended completely on Type I IFNs (Fig. 

2A-B).  

These findings may explain why the tight correlation between disease severity and 

metastasis with LgyLRV1+ in animal models (5) may be more variable in humans (13, 17, 47, 

48). Potentially, co-infection with viruses or other pathogens inducing a sufficient amount of 

Type I IFNs could increase the severity of Lgy infection, contributing to the development of 

more severe disease manifestations. Certainly, many viral diseases are found in Leishmania 

endemic regions which could contribute to increased disease severity (49). A number of 

arboviruses are transmitted by the sand fly vectors also transmitting Leishmania, including the 

Massilia and TOSV Phleboviruses (50, 51). Co-infection was reported in dogs, while 

seropositivity to TOSV was associated with L. infantum in humans (52, 53), however, the 

clinical relevance of the co-infection is unknown. Since our results suggest that events early 

in infection were crucial to determine the fate of the disease (Fig 1C-D), having the virus 

transmitted simultaneously with Leishmania (Viannia) could magnify the impact of 

coinfection. However, intraperitoneal LCMV infections which induce a systemic Type I IFN 

response strongly exacerbated disease, suggesting that co-infections do not require the same 

entry site.   

Finally, we showed that LCMV infection following the resolution of the primary 

lesion induced relapses of leishmaniasis, overriding the memory immune response of the host. 

Surprisingly, relapses were more severe in LgyLRV1- infected mice compared to LgyLRV1+. 

This result correlated with a Type I IFN dependent down-regulation of IFN-γR observed in 

LgyLRV1- infected mice compared to LgyLRV1+, confirming the role of IFN-γR in 

determining the outcome of the disease. Identification of the mechanism(s) underlying 

difference will require future investigation. In humans, relapses are observed following 

infection with different species of Leishmania and can have varying outcomes, ranging from a 
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simple cutaneous lesion, to DCL or MCL in the case of Lgy or Lbr infection, or post-kala-azar 

dermal leishmaniasis, in the case of L. donovani  infection (3, 54, 55). Here we suggest that 

viral co-infection and prior exposure to Type I IFNs could not only be a risk factor for 

relapses of leishmaniasis, but could be the trigger of parasite reactivation.  

In total, our findings establish a major role for simultaneous or subsequent viral 

infection in determining the severity of Leishmania (Viannia) infection in animal models and 

that viral co-infections could contribute towards metastasis and relapse in human patients 

suffering from leishmaniasis. 

  

Material and Methods 
 

For additional information please refer to the SI text. 

 

Mice 

C57BL/6 WT mice were purchased from Harlan Laboratories (Netherlands), type-1 IFN 

receptor deficient (ifnar-/-) mice were obtained from M. Aguet, Swiss Institute of 

Experimental Cancer Research (Epalinges, Switzerland), IFN-γ-/- mice were purchased from 

Jackson laboratories. Experimentation procedures were undertaken with strict adherence to 

ethical guidelines set out by the Swiss Federal Veterinary Office and under inspection by the 

Department of Security and Environment of the State of Vaud, Switzerland.  

 

Parasites and viruses 

Matched	 LgyLRV1+	 and	 LgyLRV1-	 parasites	 expressing	 luciferase	 obtained	 following	

limited	 treatment	 with	 anti-LRV1	 inhibitors	 were	 used	 in	 all	 studies	 (20).	 In vivo 

parasites were quantified by luciferase bioluminescence imaging as described previously (17).  

LCMV and TOSV were provided by D. Zehn and M. G. Cusi, respectively. 

 

Macrophages 

Bone marrow derived macrophages were generated as described previously (18). 

 

Author contributions 

M.R., C.R., D.Z., M.G.C., S.M.B. and N.F. designed research; M.R., P.C., M.A.H, R.O.E., 

F.P., C.D. and D.T.U. performed research; F.M.K., D.Z. and M.G.C. provided key reagents; 



	 12	

M.R. and D.T.U. analyzed data; M.R., S.M.B. and N.F. wrote manuscript; D.Z., F.M.K. and 

M.A.H. revised manuscript. 

 

Acknowledgments: We thank S. Masina for critical reading of the manuscript and J. Boon 

for comments on an early draft of the manuscript. This work was funded by the Swiss 

National fund for research (FNRS 310030-153204 and IZRJZ3_164176), the Institute for 

Arthritis Research (iAR), the Pierre Mercier Foundation, and the NIH (R56AI099364 and 

R01AI029646). 
 

References 
1.	 Alvar	 J,	 et	 al.	 (2012)	 Leishmaniasis	 worldwide	 and	 global	 estimates	 of	 its	

incidence.	PloS	one	7(5):e35671.	
2.	 Kaye	 P	 &	 Scott	 P	 (2011)	 Leishmaniasis:	 complexity	 at	 the	 host-pathogen	

interface.	Nature	reviews.	Microbiology	9(8):604-615.	
3.	 Bourreau	 E,	 et	 al.	 (2015)	 Presence	 of	 Leishmania	 RNA	 Virus	 1	 in	 Leishmania	

guyanensis	 Increases	the	Risk	of	First-Line	Treatment	Failure	and	Symptomatic	
Relapse.	The	Journal	of	infectious	diseases.	

4.	 Adaui	V,	et	al.	 (2015)	Association	of	 the	Endobiont	Double-Stranded	RNA	Virus	
LRV1	With	 Treatment	 Failure	 for	Human	 Leishmaniasis	 Caused	 by	 Leishmania	
braziliensis	in	Peru	and	Bolivia.	The	Journal	of	infectious	diseases.	

5.	 Ives	 A,	 et	 al.	 (2011)	 Leishmania	 RNA	 virus	 controls	 the	 severity	 of	
mucocutaneous	leishmaniasis.	Science	331(6018):775-778.	

6.	 Zangger	 H,	 et	 al.	 (2014)	 Leishmania	 aethiopica	 field	 isolates	 bearing	 an	
endosymbiontic	 dsRNA	virus	 induce	pro-inflammatory	 cytokine	 response.	PLoS	
neglected	tropical	diseases	8(4):e2836.	

7.	 Tarr	PI,	et	al.	(1988)	LR1:	a	candidate	RNA	virus	of	Leishmania.	Proceedings	of	the	
National	Academy	of	Sciences	of	the	United	States	of	America	85(24):9572-9575.	

8.	 Stuart	 KD,	Weeks	 R,	 Guilbride	 L,	 &	Myler	 PJ	 (1992)	Molecular	 organization	 of	
Leishmania	RNA	virus	 1.	Proceedings	of	 the	National	Academy	of	Sciences	of	 the	
United	States	of	America	89(18):8596-8600.	

9.	 Hartley	 MA,	 Drexler	 S,	 Ronet	 C,	 Beverley	 SM,	 &	 Fasel	 N	 (2014)	 The	
immunological,	 environmental,	 and	 phylogenetic	 perpetrators	 of	 metastatic	
leishmaniasis.	Trends	Parasitol	30(8):412-422.	

10.	 Salinas	 G,	 Zamora	M,	 Stuart	 K,	 &	 Saravia	 N	 (1996)	 Leishmania	 RNA	 viruses	 in	
Leishmania	 of	 the	 Viannia	 subgenus.	The	American	 journal	 of	 tropical	medicine	
and	hygiene	54(4):425-429.	

11.	 Saiz	M,	et	al.	(1998)	Short	report:	detection	of	Leishmaniavirus	in	human	biopsy	
samples	 of	 leishmaniasis	 from	 Peru.	 The	 American	 journal	 of	 tropical	medicine	
and	hygiene	58(2):192-194.	

12.	 Scheffter	SM,	Ro	YT,	Chung	IK,	&	Patterson	JL	(1995)	The	complete	sequence	of	
Leishmania	RNA	virus	LRV2-1,	a	virus	of	an	Old	World	parasite	strain.	Virology	
212(1):84-90.	



	 13	

13.	 Pereira	 Lde	 O,	 et	 al.	 (2013)	 Severity	 of	 tegumentary	 leishmaniasis	 is	 not	
exclusively	associated	with	Leishmania	RNA	virus	1	infection	in	Brazil.	Memorias	
do	Instituto	Oswaldo	Cruz	108(5):665-667.	

14.	 Castellucci	 LC,	 et	 al.	 (2014)	 Host	 genetic	 factors	 in	 American	 cutaneous	
leishmaniasis:	 a	 critical	 appraisal	 of	 studies	 conducted	 in	 an	 endemic	 area	 of	
Brazil.	Memorias	do	Instituto	Oswaldo	Cruz	109(3):279-288.	

15.	 Schriefer	 A,	 Wilson	 ME,	 &	 Carvalho	 EM	 (2008)	 Recent	 developments	 leading	
toward	a	paradigm	switch	in	the	diagnostic	and	therapeutic	approach	to	human	
leishmaniasis.	Curr	Opin	Infect	Dis	21(5):483-488.	

16.	 Parmentier	 L,	 et	 al.	 (2016)	 Severe	 Cutaneous	 Leishmaniasis	 in	 a	 Human	
Immunodeficiency	Virus	Patient	Coinfected	with	Leishmania	braziliensis	and	Its	
Endosymbiotic	 Virus.	 The	 American	 journal	 of	 tropical	 medicine	 and	 hygiene	
94(4):840-843.	

17.	 Hartley	MA,	et	al.	(2016)	Leishmaniavirus-Dependent	Metastatic	Leishmaniasis	Is	
Prevented	by	Blocking	IL-17A.	PLoS	pathogens	12(9):e1005852.	

18.	 Eren	 RO,	 et	 al.	 (2016)	 Mammalian	 Innate	 Immune	 Response	 to	 a	 Leishmania-
Resident	 RNA	 Virus	 Increases	 Macrophage	 Survival	 to	 Promote	 Parasite	
Persistence.	Cell	host	&	microbe	20(3):318-328.	

19.	 Brettmann	 EA,	 et	al.	 (2016)	 Tilting	 the	 balance	 between	 RNA	 interference	 and	
replication	 eradicates	 Leishmania	 RNA	 virus	 1	 and	mitigates	 the	 inflammatory	
response.	Proceedings	of	the	National	Academy	of	Sciences	of	the	United	States	of	
America	113(43):11998-12005.	

20.	 Kuhlmann	 FM,	 et	 al.	 (2017)	 Antiviral	 screening	 identifies	 adenosine	 analogs	
targeting	 the	endogenous	dsRNA	Leishmania	RNA	virus	1	(LRV1)	pathogenicity	
factor.	 Proceedings	 of	 the	 National	 Academy	 of	 Sciences	 of	 the	 United	 States	 of	
America.	

21.	 Cooksley	WG	(2004)	The	role	of	 interferon	therapy	 in	hepatitis	B.	MedGenMed	:	
Medscape	general	medicine	6(1):16.	

22.	 Shepherd	J,	Waugh	N,	&	Hewitson	P	(2000)	Combination	therapy	(interferon	alfa	
and	 ribavirin)	 in	 the	 treatment	 of	 chronic	 hepatitis	 C:	 a	 rapid	 and	 systematic	
review.	Health	technology	assessment	4(33):1-67.	

23.	 Wilhelmus	KR	(2010)	Antiviral	treatment	and	other	therapeutic	interventions	for	
herpes	 simplex	 virus	 epithelial	 keratitis.	 The	 Cochrane	 database	 of	 systematic	
reviews	(12):CD002898.	

24.	 Rayamajhi	M,	Humann	J,	Penheiter	K,	Andreasen	K,	&	Lenz	LL	(2010)	Induction	of	
IFN-alphabeta	 enables	 Listeria	 monocytogenes	 to	 suppress	 macrophage	
activation	by	IFN-gamma.	The	Journal	of	experimental	medicine	207(2):327-337.	

25.	 Miller	 JL,	 Sack	 BK,	 Baldwin	 M,	 Vaughan	 AM,	 &	 Kappe	 SH	 (2014)	 Interferon-
mediated	 innate	 immune	 responses	 against	 malaria	 parasite	 liver	 stages.	 Cell	
reports	7(2):436-447.	

26.	 Abou-Bacar	A,	et	al.	 (2004)	Role	 of	 gamma	 interferon	 and	T	 cells	 in	 congenital	
Toxoplasma	transmission.	Parasite	immunology	26(8-9):315-318.	

27.	 Chessler	AD,	Caradonna	KL,	Da'dara	A,	&	Burleigh	BA	(2011)	Type	I	 interferons	
increase	 host	 susceptibility	 to	 Trypanosoma	 cruzi	 infection.	 Infection	 and	
immunity	79(5):2112-2119.	

28.	 Stifter	SA	&	Feng	CG	(2015)	Interfering	with	immunity:	detrimental	role	of	type	I	
IFNs	during	infection.	J	Immunol	194(6):2455-2465.	

29.	 Beiting	 DP	 (2014)	 Protozoan	 parasites	 and	 type	 I	 interferons:	 a	 cold	 case	
reopened.	Trends	Parasitol	30(10):491-498.	



	 14	

30.	 Mattner	J,	et	al.	(2004)	Protection	against	progressive	leishmaniasis	by	IFN-beta.	
Journal	of	immunology	172(12):7574-7582.	

31.	 Diefenbach	A,	et	al.	 (1998)	Type	1	 interferon	 (IFNalpha/beta)	and	 type	2	nitric	
oxide	 synthase	 regulate	 the	 innate	 immune	 response	 to	 a	 protozoan	 parasite.	
Immunity	8(1):77-87.	

32.	 Favila	MA,	et	al.	 (2014)	Human	dendritic	 cells	 exhibit	 a	 pronounced	 type	 I	 IFN	
signature	 following	 Leishmania	 major	 infection	 that	 is	 required	 for	 IL-12	
induction.	J	Immunol	192(12):5863-5872.	

33.	 Khouri	R,	et	al.	(2009)	IFN-beta	impairs	superoxide-dependent	parasite	killing	in	
human	 macrophages:	 evidence	 for	 a	 deleterious	 role	 of	 SOD1	 in	 cutaneous	
leishmaniasis.	Journal	of	immunology	182(4):2525-2531.	

34.	 Pereira	 RM,	 et	 al.	 (2010)	 Novel	 role	 for	 the	 double-stranded	 RNA-activated	
protein	 kinase	 PKR:	 modulation	 of	 macrophage	 infection	 by	 the	 protozoan	
parasite	Leishmania.	FASEB	J	24(2):617-626.	

35.	 Xin	L,	et	al.	(2010)	Type	I	IFN	receptor	regulates	neutrophil	functions	and	innate	
immunity	to	Leishmania	parasites.	Journal	of	immunology	184(12):7047-7056.	

36.	 van	 Griensven	 J,	 Zijlstra	 EE,	 &	 Hailu	 A	 (2014)	 Visceral	 leishmaniasis	 and	 HIV	
coinfection:	 time	 for	 concerted	 action.	 PLoS	 neglected	 tropical	 diseases	
8(8):e3023.	

37.	 Teijaro	 JR,	 et	al.	 (2013)	 Persistent	 LCMV	 infection	 is	 controlled	 by	 blockade	 of	
type	I	interferon	signaling.	Science	340(6129):207-211.	

38.	 von	 Herrath	 M	 &	 Whitton	 JL	 (2001)	 Animal	 models	 using	 lymphocytic	
choriomeningitis	virus.	Curr	Protoc	Immunol	Chapter	19:Unit	19	10.	

39.	 Wherry	 EJ,	 Blattman	 JN,	Murali-Krishna	K,	 van	 der	Most	R,	&	Ahmed	R	 (2003)	
Viral	persistence	alters	CD8	T-cell	immunodominance	and	tissue	distribution	and	
results	 in	 distinct	 stages	 of	 functional	 impairment.	 Journal	 of	 virology	
77(8):4911-4927.	

40.	 Crosby	 EJ,	 Clark	 M,	 Novais	 FO,	 Wherry	 EJ,	 &	 Scott	 P	 (2015)	 Lymphocytic	
Choriomeningitis	 Virus	 Expands	 a	 Population	 of	 NKG2D+CD8+	 T	 Cells	 That	
Exacerbate	 Disease	 in	 Mice	 Coinfected	 with	 Leishmania	 major.	 Journal	 of	
immunology.	

41.	 Muller	U,	et	al.	(1994)	Functional	role	of	type	I	and	type	II	interferons	in	antiviral	
defense.	Science	264(5167):1918-1921.	

42.	 Cusi	MG,	Savellini	GG,	&	Zanelli	G	(2010)	Toscana	virus	epidemiology:	from	Italy	
to	beyond.	The	open	virology	journal	4:22-28.	

43.	 Decker	T,	Stockinger	S,	Karaghiosoff	M,	Muller	M,	&	Kovarik	P	(2002)	 IFNs	and	
STATs	in	innate	immunity	to	microorganisms.	The	Journal	of	clinical	investigation	
109(10):1271-1277.	

44.	 Scott	 P	 (1991)	 IFN-gamma	 modulates	 the	 early	 development	 of	 Th1	 and	 Th2	
responses	in	a	murine	model	of	cutaneous	leishmaniasis.	 Journal	of	immunology	
147(9):3149-3155.	

45.	 Netto	 EM,	 et	 al.	 (1990)	 Long-term	 follow-up	 of	 patients	 with	 Leishmania	
(Viannia)	 braziliensis	 infection	 and	 treated	 with	 Glucantime.	 Trans	 R	 Soc	 Trop	
Med	Hyg	84(3):367-370.	

46.	 Crosby	EJ,	Goldschmidt	MH,	Wherry	EJ,	&	Scott	P	(2014)	Engagement	of	NKG2D	
on	 bystander	 memory	 CD8	 T	 cells	 promotes	 increased	 immunopathology	
following	Leishmania	major	infection.	PLoS	pathogens	10(2):e1003970.	



	 15	

47.	 Cantanhede	 LM,	 et	 al.	 (2015)	 Further	 Evidence	 of	 an	 Association	 between	 the	
Presence	 of	 Leishmania	 RNA	 Virus	 1	 and	 the	 Mucosal	 Manifestations	 in	
Tegumentary	Leishmaniasis	Patients.	PLoS	Negl	Trop	Dis	9(9):e0004079.	

48.	 Adaui	V,	et	al.	 (2016)	Association	of	 the	Endobiont	Double-Stranded	RNA	Virus	
LRV1	With	 Treatment	 Failure	 for	Human	 Leishmaniasis	 Caused	 by	 Leishmania	
braziliensis	in	Peru	and	Bolivia.	J	Infect	Dis	213(1):112-121.	

49.	 Tsai	 TF	 &	 Halstead	 SB	 (1998)	 Tropical	 viral	 infections.	 Curr	 Opin	 Infect	 Dis	
11(5):547-553.	

50.	 Es-Sette	N,	et	al.	 (2014)	Phlebotomus	 sergenti	 a	 common	vector	 of	 Leishmania	
tropica	and	Toscana	virus	in	Morocco.	 Journal	of	vector	borne	diseases	51(2):86-
90.	

51.	 Faucher	B,	et	al.	(2014)	Presence	of	sandflies	infected	with	Leishmania	infantum	
and	Massilia	virus	in	the	Marseille	urban	area.	Clinical	microbiology	and	infection	:	
the	 official	 publication	 of	 the	 European	 Society	 of	 Clinical	 Microbiology	 and	
Infectious	Diseases	20(5):O340-343.	

52.	 Dincer	E,	Gargari	S,	Ozkul	A,	&	Ergunay	K	(2015)	Potential	animal	reservoirs	of	
Toscana	 virus	 and	 coinfections	 with	 Leishmania	 infantum	 in	 Turkey.	 The	
American	journal	of	tropical	medicine	and	hygiene	92(4):690-697.	

53.	 Bichaud	 L,	 et	 al.	 (2011)	 Epidemiologic	 relationship	 between	 Toscana	 virus	
infection	 and	 Leishmania	 infantum	 due	 to	 common	 exposure	 to	 Phlebotomus	
perniciosus	sandfly	vector.	PLoS	neglected	tropical	diseases	5(9):e1328.	

54.	 Passos	VM,	et	al.	(2000)	American	cutaneous	leishmaniasis:	use	of	a	skin	test	as	a	
predictor	of	relapse	after	treatment.	Bull	World	Health	Organ	78(8):968-974.	

55.	 Zijlstra	EE,	Musa	AM,	Khalil	EA,	el-Hassan	IM,	&	el-Hassan	AM	(2003)	Post-kala-
azar	dermal	leishmaniasis.	Lancet	Infect	Dis	3(2):87-98.	

56.	 Battegay	 M,	 et	 al.	 (1991)	 Quantification	 of	 lymphocytic	 choriomeningitis	 virus	
with	an	immunological	focus	assay	in	24-	or	96-well	plates.	Journal	of	virological	
methods	33(1-2):191-198.	

57.	 Gori	Savellini	G,	et	al.	 (2011)	Toscana	virus	 induces	 interferon	although	 its	NSs	
protein	reveals	antagonistic	activity.	The	Journal	of	general	virology	92(Pt	1):71-
79.	

 

  



	 16	

Figures 

 
Figure 1. Type I IFNs increased the severity of Lgy infection. 

(A-B) WT or ifnar-/- mice were infected in the hind footpads with 3 x 106 stationary phase 

Lgy promastigotes. (C-F) At 6, 24 and 48 hours post infection (p.i.) WT mice were injected 

with the indicated amount of IFN-β into the footpad. (A, C and E) Footpad thickness was 

measured weekly. (B, D and F) Parasite burden was quantified 5 weeks p.i. in vivo by 

measuring parasite bioluminescence. Results of one representative of 3 independent 

experiments were expressed as mean ± SEM (n=5). Statistical significance was assessed by 

Repeated measure ANOVA (A, C and E), Two-way ANOVA (B) or Student’s t-test (D and F) 

*p<0.05, **p<0.01, ***p<0.001. 
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Figure 2. Viral co-infection increased the severity of leishmaniasis through Type I IFNs. 

(A-F) WT or ifnar-/- mice were infected in the hind footpads with 3 x 106 stationary phase 

Lgy promastigotes. (A-D) Leishmania infected mice were injected simultaneously with 2 x 

105 PFU of LCMV Armstrong or the same volume of PBS as vehicle control intra-

peritoneally. (E-F) Alternatively, Leishmania infected mice were simultaneously inoculated 

with 5 x 105 PFU of TOSV subcutaneously into the footpad. (A, B and E) Footpad thickness 

was measured weekly. (C, D and F) Parasite burden was measured 5 weeks p.i. by measuring 

parasite bioluminescence or by RT-qPCR. Results of one representative of 3 independent 

experiments were expressed as mean ± SEM (n=5). Statistical significance was assessed by 

Repeated measure ANOVA (A, B and E) or Two-way ANOVA (C, D and F) **p<0.01, 

***p<0.001. 
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Figure 3. Lgy - LCMV co-infection modulated IFN-γR expression on macrophages 

through Type I IFNs. 

(A) WT or (B) ifnar-/- mice were infected in the hind footpads with 3 x 106 stationary phase 

Lgy promastigotes. At the same time, where indicated, mice were injected intra-peritoneally 

with 2 x 105 PFU of LCMV Armstrong. (C) Alternatively, at 6 hours p.i., LgyLRV1- infected 

WT mice were injected with 1’000U of IFN-α or IFN-β subcutaneously into the footpad. 

Forty-eight hours p.i., popliteal LN cells were recovered and IFN-γ receptor expression at the 

surface of macrophages was measured by flow cytometry. Results of one representative of 3 

independent experiments were expressed as mean ± SEM (n=5). Statistical significance was 

assessed by Two-way ANOVA (A-B) or Student's t-test (C) *p<0.05, **p<0.01, ***p<0.001. 
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Figure 4. Lgy - LCMV co-infection promoted disease dissemination. 

(A-C) IFN-γ-/- mice were infected in the hind footpads with 3 x 106 stationary phase Lgy 

promastigotes. At the same time, where indicated, mice were injected intra-peritoneally with 

2 x 105 PFU of LCMV Armstrong. (A) Footpad thickness was measured weekly. (B) Number 

of metastatic lesions per mouse at week 7, 8 and 9 p.i.. (C) Image of photo of representative 

mice showing metastatic lesions on the tail at week 8 post infection. Results of one 

representative of 3 independent experiments were expressed as mean ± SEM (n=5). Statistical 

significance was assessed by Repeated measure ANOVA (A) or Two-way ANOVA (B), 

*p<0.05, **p<0.01. 
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Figure 5. LCMV late co-infection induced the relapse of leishmaniasis. 

(A-B) WT or ifnar-/- mice were infected in the hind footpads with 3 x 106 stationary phase 

Lgy promastigotes. (C) At 6, 24 and 48 hours p.i., LgyLRV1- infected WT mice were injected 

with 1’000U of IFN-α or IFN-β. After the healing, mice were injected intra-peritoneally with 

2 x 105 PFU of LCMV Armstrong. (A and C) Footpad thickness was measured weekly. (B) 

Parasite burden was measured at week 17 p.i. by RT-qPCR, measuring kmp11 gene 

expression. Results of one representative of 3 independent experiments were expressed as 

mean ± SEM (n=5). Statistical significance was assessed by Repeated measure ANOVA (A 

and C) or Student's t-test (B) *p<0.05, **p<0.01, ***p<0.001. 
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Supporting Information 
 
SI text 
 
LgyLRV1+ infection induced Type I IFN expression in vivo 

We previously demonstrated that macrophages produce IFN-β upon infection with 

LgyLRV1+ parasites in vitro (5). To verify if similar production was occurring in vivo, 

C57BL/6 WT mice were inoculated with LgyLRV1+ or LgyLRV1- parasites in the hind 

footpad. At 6 or 12 hours post infection, mice were sacrificed, and the footpads and draining 

lymph nodes were recovered and used for RT-qPCR analysis. ifn-β transcription was up-

regulated at early time points post LgyLRV1+ infection in both footpads and draining lymph 

nodes (Fig. S8). The increase of transcription was found to be only transient, as 48 hours post 

infection, Type I IFNs were not detectable neither in the lymph node, nor in the footpad. 

Similar results were obtained for ifn-α (Fig. S8). Further, in vivo macrophage depletion using 

clodronate-containing liposomes completely abrogated the induction of ifn-α and ifn-β, 

demonstrating that macrophages are responsible for Type I IFN production in LgyLRV1+ 

infection (Fig. S8 and S9). 

 
SI Material and methods 
 

Mice 

Four to 5 week old C57BL/6 mice were purchased from Harlan Laboratories 

(Netherlands), Type I IFN receptor deficient (ifnar-/-) mice were obtained from M. Aguet, 

Swiss Institute of Experimental Cancer Research (Epalinges, Switzerland), IFN-γ-/- mice 

were purchased from Jackson laboratories. Mice were kept and bred at the animal facility of 

the Center of Immunity and Immunology, Lausanne (Switzerland) in a pathogen-free 

environment. All animal protocols were approved by the Swiss Federal Veterinary Office 

(SFVO), under the authorization numbers 2113.1, 2113.2a and 2113.2b. Animal 

experimentation procedures were undertaken with strict adherence to ethical guidelines set 

out by the SFVO and under inspection by the Department of Security and Environment of the 

State of Vaud, Switzerland. 

 

Parasites 
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LRV1-bearing and LRV1-cured L. guyanensis parasites (LgyLRV+ and LgyLRV- 

respective) were used in all studies. These parasites were obtained following brief drug 

treatment of the LRV1+ strain of L. guyanensis M4147 containing a firefly luciferase (ffLUC) 

gene integrated stably into the small subunit gene of the ribosomal RNA locus 

(LgM4147/SSU:IR2SAT-LUCb LRV1+) as described previously (20). 

Parasites were cultured at 26°C in Schneider’s medium (Sigma-Aldrich) supplemented with 

10% Fetal Calf Serum (FCS), 1% penicillin/Streptomycin (P/S), 1% HEPES (Sigma-Aldrich), 

0.6 µg/ml of Biopterin (Sigma-Aldrich) and 5 µg/ml of Haemin (Sigma-Aldrich). 

 

Viruses 

Lymphocytic choriomeningitis virus (LCMV) 53b Armstrong was provided by Prof. 

Dietmar Zehn (Technical University of Munich, Germany). The LCMV 53b Armstrong strain 

was propagated in baby hamster kidney cells and titrated on Vero African green monkey 

kidney cells according to an established protocol (56). Frozen stocks were diluted in PBS; 

2x105 plaque-forming units (PFU) of LCMV Armstrong were injected intra-peritoneally. 

Blood samples from LCMV-infected mice were 'shock frozen' to release the virus. Diluted 

samples were used for infection of Vero cells, and viral titers were determined by the LCMV 

focus-forming assay. 

Toscana virus strain 1812 (TOSV) was provided by Maria Grazia Cusi (University of 

Siena, Italy). TOSV was propagated and titrated on Vero cells according to an established 

protocol (57). 5x105 PFU of TOSV in 50µl of PBS was inoculated subcutaneously into the 

footpad. 

 

Mice infection 

Stationary phase parasites were injected into the hind footpads of mice at a 

concentration of 3x106 parasites per footpad in 50µl of PBS. Footpad thickness was measured 

weekly post infection (p.i.) using a Vernier caliper. Where required, mice were injected in the 

footpad at 6, 24 and 48 hours p.i. with the indicated amount of murine recombinant interferon 

beta (IFN-β, CellScience), or interferon alpha (IFN-α, CellScience) in 50µl of PBS, or with 

the same volume of PBS as vehicle-control. 

 

Macrophage extraction and culture 

In order to obtain bone marrow derived macrophages (BMDMs), bone marrow was 

extracted from tibias and femurs of C57BL/6 or ifnar-/- mice. Macrophages were cultured at 
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37°C and 5% CO2 in 10ml of Dulbecco’s modified eagle medium (DMEM, Gibco®) 

supplemented with 10% of Fetal Calf Serum (FCS), 1% of P/S, 1% of HEPES (Sigma-

Aldrich) and 50ng/ml of murine recombinant M-CSF (Immunotools). After 3 days, 5ml of 

fresh DMEM medium was added to the culture and 3 days later BMDMs were used for 

stimulation assays. 

 

IFN-γ receptor measurement 

5 x 105 BMDMs in 200µl of DMEM supplemented with 10% FCS, 1% P/S, and 1% 

HEPES (DMEM complete medium) were seeded in a 48 well plate and incubated at 37°C and 

5% CO2 O/N. BMDMs were subsequently infected with L. guyanensis parasites (Lgy) 

(multiplicity of infection (moi) 3:1) in 200µl of DMEM complete medium. At 6 hours p.i., 

BMDMs were treated with 50, 100, 250, 500 or 1000U/ml of murine recombinant IFN-α or 

IFN-β (CellScience). Forty-eight hours p.i., BMDMs were detached with PBS/5mM EDTA 

and IFN-γR surface expression was measured by FACS.  

To measure IFN-γR expression in vivo, mice were infected with L. guyanensis 

parasites and co-infected with LCMV, or treated with IFN-α, or IFN-β as described above. 

Mice were sacrificed at 48 hours p.i. and popliteal lymph node cells were recovered. IFN-γR 

expression on macrophages was measured by flow cytometry using the following antibodies: 

IFN-γR1-PE (clone 2E2, dilution 1:100), CD11b-FITC (clone M1/70, 1:500), CD11c-PECy7 

(clone N418, 1:500) and F4/80-APC (clone BM8, 1:300) (ebioscience). Flow cytometry was 

performed with a BD Accuri™ C6 cytometer and results were analyzed using FlowJo 

Software (Tree Star). 

 

IFN-γ  measurement in vivo 

WT mice were infected with L. guyanensis parasites and co-injected with LCMV or 

PBS as control as described above. Mice were sacrificed at 48 hours p.i., popliteal lymph 

node cells were subsequently recovered and intracellular expression of IFN-γ within NK, 

CD4T and CD8T cells was measured by flow cytometry, using the following antibodies: 

CD3-APC-Cy7 (clone 17A2, dilution 1:1000), CD4-Pacific blue (clone GK1.5, 1:1000), 

CD8-PerCP (clone 53-6.7, 1:1000)(BioLegend), NK1.1-FITC (clone PK136, 1:500), IFN-γ-

PE (clone XMG1.2, 1:500)(ebioscience). Flow cytometry was performed with a BDTM LSR-II 

flow cytometer (BD Biosciences) and results were analyzed using FlowJo Software (Tree 

Star). Alternatively, popliteal lymph node cells were cultured for 72 hours in complete 
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DMEM medium. After 72 hours, cells were pelleted and supernatant was recovered. IFN-γ 

protein concentration was measured by ELISA using an IFN-γ ELISA kit (ebioscience) 

following manufacturer’s instructions. 

 

Type I Interferon and Interferon stimulated gene measurement 

Transcript levels of ifn-α and ifn-β were measured in vivo in footpads and draining 

lymph nodes (LNs), at 6 and 12 hours p.i., respectively. Alternatively, transcript levels of 

ISGs were measured in vivo in draining LNs at 24 hours p.i.. To allow RNA extraction, LNs 

were stored in RNAlater RNA stabilization solution (Quiagen) whereas footpads were frozen 

and then homogenized in TRIzol (Life Technologies). Total RNA was extracted from LNs 

and footpads using the ZR-96 RNA Clean & Concentrator™ (Zymo research), and cDNA 

was generated using SuperScript II Reverse Transcriptase (Invitrogen™). The cDNA obtained 

was purified with the ZR-96 DNA Clean & Concentrator™-5 (Zymo research). Real-Time 

Quantitative PCR (qRT-PCR) was performed using the LightCycler 480 (Roche Applied 

Science) to measure SYBR green (Lightcycler®480 SYBR Green I Master, Roche) 

incorporation. The following primers were used: ifn-α: 5'-

GGACTTTGGATTCCCGCAGGAGAAG and 5'-GCTGCATCAGACAGCCTTGCAGGTC; 

ifn-β: 5'-AACCTCACCTACAGGGC, and 5'-CATTCTGGAGCATCTCTTGG; l32: 5'-

AAGCGAAACTGGCGGAAAC and 5'-TAACCGATGTTGGGCATCAG; oas1a: 5’-

CCCATCTGCATCAGGAGGTG and 5’-GGATCAGGCTTGCTGGAAGT; oas2: 5’-

TGAAGAAGCGAAGGAGTGGC and 5’-GGGTCTGCATTACTGGCACTT; oasl2: 5’-

CCGCGACATCTGCATCTACT and 5’-CGGTCTCCCTTCAGCTGTTT; pkr: 5’-

CAGAAACTTTGGCCACTGGGA and 5’-CCGTGCATCTGGCGGTATT. The results were 

analyzed using the CT method (2-ΔΔCt) for relative quantification of gene expression and 

normalized to l32. The fold induction was calculated according to the relative expression in 

naive mice. 

Type I interferon protein levels were measured 24 hours p.i. in mice serum, using the 

Verikine mouse IFN-α ELISA Kit and Verikine-HS Mouse IFN-β Serum ELISA Kit (PBL 

assay science), following manufacturer’s instructions. 

 

Parasite quantification 

In vivo parasites were quantified at the peak of infection in mouse footpads by 

injecting 15mg/kg of luciferin (Invivo Imaging) intra-peritoneally and measuring the 

luminescence produced in the footpads with a Xenogen IVIS Lumina II. The following 
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parameters were used: exposure 10 minutes, binning medium, F/stop 1.2. Alternatively, the 

Brucker Extreme II machine was used with the following parameters: exposure 5 minutes, 

binning 4, F/stop 1.2.  

 

Macrophage depletion 

To deplete macrophages from the draining lymph nodes, WT mice were injected 

subcutaneously into the ankle with 50µl of PBS- or Clodronate-containing liposomes 

(ClodronateLiposomes.org). Three weeks post-treatment, mice were infected with 3x106 

stationary phase L. guyanensis parasites in each footpad. Mice were sacrificed 12 hours p.i., 

draining LNs were taken and macrophage presence was measured by FACS using the 

Accuri® cytometer C6 and data analyzed with FlowJo (version 10.0.7). The following 

antibodies were used: CD169-PE (clone 3D6.112), CD11b-FITC (clone M1/70) and CD11c-

PEcy7 (clone N418) (ebioscience). 

 

Statistical analysis 

Data obtained from Xenogen and FACS were analyzed using either two-way ANOVA 

or Student's t-test. Data obtained from qRT-PCR and ELISA were analyzed using a Student's 

t-test. Data obtained from footpad swelling measurements were analyzed using a repeated 

measure ANOVA test. When the curves were non-parallel (i.e. the treatment-time interaction 

was statistically significant), statistical significance of difference between treatments at 

different time points was assessed using Bonferroni’s multiple test correction. 

Statistical significance was set at a p-value lower than 0.05. All data are represented 

with the mean ± the standard error of the mean (SEM).  All analyses were performed using 

GraphPad Prism® software. 
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SI Figures 

 

 
Figure S1. IFN-α injection increased the size of the lesions of LRV1-Lgy infected mice. 

WT mice were infected in the hind footpads with 3 x 106 stationary phase Lgy promastigotes. 

At 6, 24 and 48 hours p.i., mice were injected with increasing doses of IFN-α subcutaneously 

into the footpad. (A and C) Footpad thickness was measured weekly. (B and D) Parasite 

burden was quantified 4 weeks p.i. in vivo by measuring parasite bioluminescence. Results of 

one representative of 2 independent experiments were expressed as mean ± SEM (n=5). 

Statistical significance was assessed by Repeated measure ANOVA (A and C) or Student’s t-

test (B and D) ***p<0.0001. 
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Figure S2. Leishmania co-infection did not affect LCMV clearance. 

(A) WT or (B) ifnar-/- mice were infected intra-peritoneally with 2 x 105 PFU of LCMV 

Armstrong. At the same time, where indicated, mice were injected in the hind footpad with 3 

x 106 stationary phase Lgy promastigotes. LCMV titer in the blood was measured at different 

times p.i. by plaque assay. Results of one experiment were expressed as mean ± SEM (n=5). 

Statistical significance was assessed by Repeated measure ANOVA. 
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Figure S3. LRV1 and LCMV co-infection induced a similar interferon response in vivo. 

WT mice were infected in the hind footpad with 3 x 106 stationary phase Lgy promastigotes, 

or PBS as control. At the same time, where indicated, mice were injected intra-peritoneally 

with 2*105 PFU of LCMV Armstrong. (A) IFN-β and (B) IFN-α concentration in serum was 

measured by ELISA 24 hours p.i.. (C-F) Popliteal LNs were recovered 24 hours p.i. and used 

for RT-qPCR analysis. Results of one representative of 2 independent experiments were 

expressed as mean ± SEM (n=5) of protein concentration (A-B) or as mean ± SEM (n=5) of 

transcript increase relative to LgyLRV1- infected mice, and normalized to housekeeping gene 

l32 (C-F). Statistical significance was assessed by Student’s t-test, ***p<0.001. 
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Figure S4. LRV1 or LCMV co-infection did not modulate early IFN-γ  production in 

vivo. 

WT mice were infected in the hind footpad with 3 x 106 stationary phase Lgy promastigotes. 

At the same time, where indicated, mice were injected intra-peritoneally with 2*105 PFU of 

LCMV Armstrong, or PBS as control. Popliteal LN cells were recovered 48 hours p.i.. (A) 

Flow cytometry dot plots showing intracellular IFN-γ expression in different cell populations. 

(B-D) Frequency of IFN-γ-expressing NK, CD8T and CD4T cells, respectively. Results of 

one experiment were expressed as mean ± SEM (n≥4). (E) IFN-γ secretion by lymph node 

cells was measured by ELISA. Results of a pool of two independent experiments were 

expressed as mean ± SEM (n=8). Statistical significance was assessed by Student’s t-test, 

results were non-significant. 
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Figure S5. LgyLRV1+ infection or Type I IFN treatment down-regulated IFN-γR 

expression on macrophages. 

WT BMDMs were infected with Lgy parasites. Six hours p.i., LgyLRV1- infected 

macrophages were treated with 1’000U/ml of IFN-α or IFN-β. Forty-eight hours p.i., IFN-γR 

expression was measured by flow cytometry. Results of one representative of 3 independent 

experiments showed IFN-γR surface expression on LgyLRV1+ infected (A), IFN-α (B), or 

IFN-β (C) treated macrophages compared to LgyLRV1- infection. (D) WT BMDMs were 

infected with Lgy parasites. Six hours p.i., LgyLRV1- infected macrophages were treated with 

increasing doses of IFN-α or IFN-β (50, 100, 250, 500 or 1’000U/ml). Forty-eight hours p.i., 

IFN-γR expression was measured by flow cytometry. Results of a pool of 2 independent 

experiments were expressed as mean ± SEM of IFN-γR MFI. Statistical significance was 

assessed by Student's t-test (D) *p<0.05, **p<0.01, ***p<0.001. 
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Figure S6. C57BL/6 WT mice are protected against Lgy re-infection. 

WT mice were infected in the hind footpad with 3 x 106 stationary phase Lgy promastigotes. 

Twelve weeks p.i. mice were re-infected with Lgy promastigotes. (A) Footpad thickness was 

measured weekly. (B) Parasite burden was quantified 15 weeks p.i. in vivo by measuring 

parasite bioluminescence. Results of one representative of 2 independent experiments were 

expressed as mean ± SEM (n=5). Statistical significance was assessed by Student’s t-test, 

results were non-significant. 
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Figure S7. Early Type I IFNs inhibited IFN-γR down-regulation following LCMV co-

infection. 

(A) WT or ifnar-/- mice were infected in the hind footpads with 3 x 106 stationary phase Lgy 

promastigotes. (B) At 6, 24 and 48 hours p.i., LgyLRV1- infected WT mice were injected with 

1000U of IFN-α or IFN-β. After the healing, mice were injected intra-peritoneally with 2 x 

105 PFU of LCMV Armstrong. (A-B) Forty-eight hours after LCMV infection, popliteal LN 

cells were recovered and IFN-γ receptor expression on macrophages was measured by FACS.  

Results of one representative of 2 independent experiments were expressed as mean ± SEM 

(n=5). Statistical significance was assessed by Two-way ANOVA (A) or Student's t-test (B) 

*p<0.05, ***p<0.001. 
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Figure S8. LgyLRV1+ parasite infection induced Type I IFN up-regulation in vivo. 

WT mice were infected in the hind footpads with 3 x 106 Lgy stationary-phase promastigotes. 

ifn-β and ifn-α transcript levels were quantified by RT-qPCR at 6 or 12 hours p.i. in footpads 

(A-B) or draining LNs (C-D). (E-F) Three weeks prior to infection, mice were injected 

subcutaneously into the ankle with 50µl of PBS- or clodronate-containing liposomes. ifn-β 

and ifn-α transcript levels were quantified by RT-qPCR in draining LNs 12 hours p.i.. 

Results of one representative of 3 independent experiments were expressed as mean ± SEM 

(n=5) transcript increase relative to a naïve mouse and normalized to housekeeping gene l32. 

Statistical significance was assessed by Student’s t-test, *p<0.05, **p<0.01, ***p<0.001 . 
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Figure S9. Clodronate depletion of macrophages in vivo. 

WT mice were injected subcutaneously in the ankle with 50µl of PBS- or clodronate-

containing liposomes. Three weeks post-treatment, mice were infected in the hind footpads 

with 3 x 106 Lgy stationary-phase promastigotes. LNs cells were recovered 12 hours p.i.. (A) 

FACS plots showed the frequency of macrophages and dendritic cells in LNs. (B-C) Graphs 

showed the percentage of dendritic cells and macrophages in total LNs cells. Results of one 

representative of 3 independent experiments were expressed as mean ± SEM (n=5). Statistical 

significance was assessed by Student's t-test, ***p<0.001. 
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