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Abstract

Today, ankle joint kinematic assessment gives important information regarding the intersegment
range of motion. It does not, however, provide information regarding coordination between the
segments. This study aimed to determine whether or not intersegment coordination can provide
valuable, otherwise missed information in relation to kinematic alterations of the ankle joint. The
study consisted of 40 participants, including 12 total ankle replacement (TAR) patients, 12 ankle
arthrodesis (AA) patients and 16 controls. Gait assessment was carried out wearing 3-D inertial
sensors. Intersegment coordination was determined by calculation of the continuous relative phase
(CRP) between foot intersegments. CRP analysis found useful information regarding the magnitude
and directionality of segment motion throughout the gait cycle, with AA patients reporting an
altered coordination pattern for all three intersegments, forefoot-hindfoot, hindfoot-shank and
forefoot-shank, and TAR patients showing alterations in the hindfoot-shank intersegment. Results
show that assessment of intersegment coordination can provide further information, otherwise
overlooked by the general kinematic assessment, which could be used to optimize patient
rehabilitation. Furthermore, the study showed that such information could be used to compare
surgical outcomes. As a result, the study concludes that the inclusion of intersegment coordination
assessment could be beneficial in clinical practice. This article is protected by copyright. All rights

reserved
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Introduction

In foot and ankle research, gait analysis has played an important role in understanding alterations in
gait mechanics for various foot and ankle pathologies. Gait analysis gives information on joint
kinematics, allowing one to understand the extent of a patient’s mobility. Conventional foot and
ankle kinematic assessment portrays the whole foot as a single rigid body."  However, for a
structure with multiple articulations, a single segment model was less accurate. As a result, several
multi-segment foot models were developed to attain detailed information on individual joint
rotation.>”’

Multi-segment foot model assess joint rotation based on the movement between the two segments,
hence were more accurate in assessing the amount of movement at different foot regions in
comparison to the single segment model.2*® However, this method does not explain the relative
action of one segment with respect to the other to achieve the defined movement at a joint at any
particular phase of the gait cycle.*

Looking at the complex anatomy of the foot and ankle joints, along with the available surgical
options where the outcome consists of different levels of joint restrictions. For example, ankle
arthrodesis (AA) the most commonly used surgical treatment for end-stage ankle osteoarthrosis,
where the degenerated tibiotalar/ ankle joint is fused at a neutral position, such that the joint has
zero motion. The second commonly seen surgical treatment is total ankle replacement (TAR) where
the diseased ankle joint is replaced by an artificial joint such that the new joint mimics the original
joint biomechanically, in terms of freedom of motion. Knowing this, the inter-segment coordination
quantification would be an interesting method to understand the adaptation and compensation made
by different foot segments. The relative phase dynamics helps to assess the inter-segment
coordination by utilizing angular displacements and angular velocities of the segments surrounding

13,14 a5 well as for

the joint.*? Inter-segment coordination has been studied for various sports injuries
hip and knee joint pathologies,** ** but research relating to degenerative diseases of the ankle joint

is relatively sparse.



The continuous relative phase (CRP) has been shown to be a reliable tool in characterizing inter-
segment coordination based on the phase plane portraits of the distal and proximal segments.**™
CRP may therefore be an interesting parameter in assessing the clinical status of the ankle joint after
the surgical correction. The aim of the study is to find whether or not inter-segment coordination
adds beneficial information which is missed by commonly used kinematic assessments. To achieve
this, joint displacement and inter-segment coordination were assessed utilizing a validated
measurement system (3-D inertial sensors) and protocol.*® The segments studied include, forefoot

(FF), hindfoot (HF) and shank (SH) for the two most commonly used surgical treatments for

end-stage osteoarthrosis of ankle joint.

Materials and methods

Participants

This is a retrospective cohort study, with a level of evidence Ill. The study consisted of three
groups: 12 AA patients, 12 TAR patients and 16 healthy controls, totaling 40 participants. Only
patients with isolated post-traumatic end-stage osteoarthrosis, who had undergone isolated AA or
TAR, between 2003 and 2013, were evaluated. All surgeries were performed by the senior author in
the University Hospital’s Orthopedic Department. The mean postoperative follow-up period was
4.7 (£2.7) years for AA and TAR patients. Difference in the functional status of the patients in the
two surgical groups were not significant based on the foot and ankle ability measure score (FAAM)
with average scores of 70 (16.8) and 80 (17.1) for AA and TAR, respectively. Patients were
excluded if they were affected by other pathologies of the spine and or lower extremities. Control
group inclusion criteria included no prior history of any foot and ankle pathology and or any
previous surgeries or trauma of lower limbs which may have affected their gait. All participants
gave their informed consent and approval of the ethics commission of the University was obtained.

2.2 Measurement system and protocol



Gait assessment was performed using inertial sensors consisting of 3-D accelerometers and
gyroscopes, in conjunction with the validated protocol.*® The sensors were attached to the medial
aspect of the tibia, at the posterior of the greater tuberosity of the calcaneus and between the base of
the first and second metatarsals. These bony anatomical landmarks were chosen to minimize soft
tissue instabilities. Sensors were connected to a portable data acquisition system (Physilog®,
BioAGM, CH) and data was recorded with a frequency of 200Hz.*® Custom sandals were given to
each participant for optimal placement of sensors. Following the preparation of each participant,

functional calibration was performed,!” *°

after which the participants walked 50 m along the
hospital corridor twice at their natural pace. Average walking speeds were reported to be 1.26 (0.19)
m/s in controls, 0.94 (0.21) m/s for ankle arthrodesis (AA) patients and 1.09 (0.16) m/s for total
ankle replacement (TAR) patients. For the surgical group, both operative (Op) and unoperated
(Unop) sides were tested. Note that the test retest reliability of the utilized gait assessment method
and protocol have both been thoroughly substantiated.'® 2

Data Analysis

Kinematic data was measured for 100% of the gait cycle in the sagittal plane. Angular velocity and
relative angles were calculated based on the joint coordinate system.™® For a detailed assessment,
stance and swing phases of the gait cycle were then subdivided into7 subphases'® including:
Loading response: represents the initiation of the gait cycle from the time of initial heel strike to the
complete contact of the foot with the ground. It constitutes the first 0-10% gait cycle time (GCT).
Mid-stance: represents the time when the foot is completely in contact with the ground as well as
being fully loaded, i.e., the single support duration of the gait cycle. It constitutes 10-30% of the
GCT.

Terminal-stance: represents the duration when the heel is off the ground and the body weight is
divided over the forefoot region. It constitutes 30-50% of the GCT.

Pre-swing: represents the toe-off duration when the foot is about to leave the ground, i.e., leaving

the stance phase and entering the swing phase. It constitutes 50-62% of the GCT.



Initial-swing: represents start of the swing phase, when the foot leaves the ground. It constitutes 62-
75% of the GCT.

Mid-swing: represents the duration when the foot is midway through the swing phase, i.e. at the
furthest away from the ground. It constitutes 75-85% of the GCT.

Terminal-swing: represents the end of the gait cycle, when the heel touches the ground for initial
contact. It constitutes 85-100% of the GCT.

Phase plane portraits were created for each participant by plotting the angular velocity () against
angular displacement (0) for all three segments. Phase plane portrait helps one to evaluate gait
variation.*® Furthermore, phase angles (¢) were calculated for each segment as ¢ =tan™(w/0).
Finally, CRP of all three intersegment pairs was calculated by subtracting the phase angle of the
distal segment from that of the proximal segment. An illustration of CRP calculation for one
intersegment is given in (Figure 1).

For CRP calculation, there is a difference in opinion regarding normalization of the phase angle
data*> ** ** and several methods have been reported to normalize the phase portraits with uncertain
conclusions.??* In this study, the phase plane portrait was not normalized due to ambiguity in the
literature. The sole purpose behind the phase plane portrait normalization is to produce the scalar
multiple of the original data such that the amplitude difference can be negated.? It is also reported
that CRP is not affected by differences in amplitude between segments due to the inverse tangent

function removing amplitude differences.?> A study by Worster et al *°

reported an undesired
induced noise from the alterations made by the normalization of the data and supported the above
findings of keeping the original phase plane portrait.

To characterize the inter-segment coordination maximum peaks, both positive and negative, were
calculated at the sub-phases of the gait cycle. This helped to evaluate which of the two segments,
distal or proximal, led the movement during the stance and swing phases of the gait cycle. Positive

peaks represent that the distal segment dominates movement and vice versa. Finally, mean absolute

relative phase (MARP) was calculated in accordance with the previous publication.® MARP



calculates the mean absolute value of the total CRP curve points in each gait cycle, such that the
two segments are moving in close relation to each other if the value is close to zero.

Statistical analysis

Range of motion (ROM), CRP curve and MARP were calculated for each gait cycle for the three
intersegments. Coefficient of multiple correlations (CMC) was also calculated for each of the three
CRP inter-segment pairs for all groups. The strength of the CMC was considered strong at r=0.9,
moderate at r=0.5 and weak at r=0.25.”" Comparisons between groups were performed using the
Wilcoxon rank sum test, however, for intra group bilateral comparisons, the Wilcoxon signed rank
test was used (p<0.05).

Results

Intersegment coordination

Evaluation of the CRP curves found various peak patterns in each of the three intersegments among
the study groups (Figure 2). Forefoot-hindfoot intersegment, when compared to the controls
showed significantly low peaks during the mid-stance and initial swing phase in AA Op side while
AA Unop side showed significantly large positive peak at the terminal stance and low peak at the
initial swing phase compared to the controls (p<0.05). This represents a reduction in hindfoot
rotation for both sides of the AA group during the early swing phase and an increased forefoot
rotation on the Unop side during the stance phase. Such an over activity at the forefoot may be
detrimental to the joint long-term. In contrast, TAR patients reported no significant difference in
their intersegment coordination peak pattern, when compared to the controls. Op to Unop side
comparison showed significant difference in the peaks at the loading, mid and terminal stance
phases for AA patients, representing a bilateral asymmetry during the stance phase, but again, no
difference was reported for TAR patients. Comparing the Op side of AA and TAR groups reported
significantly low peak at mid stance and initial swing phases in AA patients. Furthermore

calculating the MARP, the Unop forefoot-hindfoot intersegment of AA patients showed



significantly large values in comparison to the controls and to the Op side (Table 1), this is likely
due to the increased rotation at the forefoot segment.

Looking at the hindfoot-shank intersegment, in contrast to the controls little to no peak was reported
during the initial swing phase for both Op and Unop sides of AA patients. TAR patients showed
similar results for the Unop side, however a comparable peak magnitude was found in their Op
sides, but in the opposite direction. This would hint at a significant hindfoot rotation, rather than
shank. Such differences suggest that, even though TAR operation preserves some motion in the
tibiotalar joint it is still not comparable to the controls. Op to Unop side comparison in AA group
reported significant difference at initial swing with increased rotation on the Unop side. While in
TAR group, similar comparison reported significant difference at terminal stance with increased
rotation on the Unop side, furthermore, during initial swing Op and Unop sides reported different
segments dominating the motion, hindfoot for Op side and shank on the Unop side, representing
significantly different peaks and direction of rotation. No difference was reported between the Op
sides of the two surgical groups. The hindfoot-shank intersegment MARP was found to be low for
Op side of TAR patients in comparison to the controls and the Unop side due to the reduced
hindfoot rotation throughout the stance phase. Furthermore, Op side in both surgical groups
reported a significantly low MARP in comparison to the controls, which is likely due to the reduced
shank rotation during the swing phase. Note that both surgeries report a restriction of movement as
well as altered coordination strategy for the hindfoot-shank intersegment. This can be explained by
the fused tibiotalar joint of AA patients and that tibiotalar motion is only partially preserved in TAR
patients.

Looking at the forefoot-shank intersegment, when compared to the controls, significantly reduced
peak magnitudes were observed, during the initial swing on the Op and Unop side of both TAR and
AA groups, while the Unop side of AA also reported significantly large peaks at mid and terminal
stance phases compared to the control. For the Op to Unop side comparison, AA patients showed

significantly different peaks during the mid-stance, terminal stance, pre swing and mid swing



phases, likely due to the over activity of the forefoot segment on the Unop side. On the other hand,
TAR patients also reported significantly different peaks at the terminal stance and initial swing
phases between the two sides. Comparing the Op sides of both surgical groups, TAR patients
showed a significantly large peak during the initial swing phase, as a result of better shank mobility.
The forefoot-shank intersegment MARP reports a significantly large value for the AA Unop side in
comparison to both the controls as well as the Op side; this is again due to the increased activity of
the forefoot, as seen in forefoot-hindfoot intersegment. In contrast, the Op side of both surgical
groups reported a low MARP, representing an overall reduction in mobility.

Lastly, the CMC for forefoot-hindfoot and forefoot-shank CRP curves was found to be strong, 0.95
and 0.98, respectively, indicating comparable inter-joint coordination patterns between each group.
However, a moderate CMC value of 0.8 for hindfoot-shank intersegment could be the result of the
altered coordination pattern on the Op side of both AA and TAR patients, during the swing phase,
which resulted in a lesser predictable fit.

Intersegment displacement

The mean joint angular displacement results, based on inter-segment rotations, are given in (Table
2). In comparison to the controls all three intersegment reported significantly low motion on the Op
side of AA patients while for Op side of TAR significantly low motion was reported at hindfoot-
shank and forefoot-shank intersegments. Op to Unop side comparison in AA group reported
significantly reduced motion at all three intersegments on the Op side in comparison to their Unop
side. Similar comparison for TAR group reported significantly reduced motion at the forefoot-shank
intersegment on the Op side in comparison to their Unop side. Transition between dorsi and plantar
flexion motion at different phases of the gait, during 100 % of the gait cycle is given in (Figure 3).
In comparison to the controls, significant differences were reported on the Op sides of both AA and
TAR patients for hindfoot-shank and forefoot-shank intersegments as well as the forefoot-hindfoot
for AA. Op to Unop side comparison showed a significant difference in all three intersegments for

AA patients. However, TAR patients only reported a difference in the forefoot-shank intersegment.



Comparison between the Op sides of the two surgical groups showed significant differences in
forefoot-hindfoot and forefoot-shank intersegments.

Discussion

This study aimed to introduce intersegment coordination when assessing the kinematics of the ankle
joint by utilizing CRP as it has generally not been studied for foot and ankle joint surgeries. The
purpose of the study was not to compare the outcome of the two surgeries but to see if CRP method
for intersegment coordination assessment adds information which could be of any benefit for
clinicians to improve outcome in patients with different ankle surgeries. The study provided
baseline bilateral intersegment coordination patterns for the controls and two common ankle
surgeries: AA and TAR. Results show that the use of CRP for assessing intersegment coordination
following ankle surgeries can provide qualitative information regarding the relationship between
segments in motion. The magnitude and position of the CRP peaks in the gait cycle not only
provide information about joint kinematics and sensorimotor functions but also about the loading
pattern in each of the foot segments for both Op and Unop sides. As a result, the study suggests the
use of both intersegment ROM and coordination analysis in kinematic assessment of the ankle joint.
Assessing the ROM of the ankle joint following AA and TAR surgeries showed similar results as
the previous studies, with both the surgical groups showing reduced mobility on the Op side when
compared to controls.”® ?* However, TAR has been shown to have a higher mobility when
compared to AA patients.'% 2% %

It is evident in our results that the amount of intersegment rotation does not represent coordination
between the segments. For instance, in the present study, the Unop side of AA patients reported
ROM for all three intersegments — similar to the controls. However, the intersegment coordination
strategy for each intersegment is seen to differ significantly from the controls. This alteration in
coordination could be due to the compensatory gait pattern adapted by the patient after the surgery

as a result of fusing the ankle. It is therefore advised to study bilateral intersegment coordination

patterns to understand the effect of a surgery on both Op and Unop sides, as continuous altered gait
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mechanics may lead to abnormal loading™ further developing joint problems in long-term.
Furthermore, radiographic outcome of long-term AA patients have reported development of
moderate to severe degenerative changes in the surrounding joints of the foot on the Op side, while
the contralateral Unop side is reported to be susceptible for development of arthritis in midfoot and
hindfoot regions .. On the other hand, TAR is known to maintain the normal mechanics of the
ankle joint, unlike the AA surgery, but practically it does not resume complete ankle function and
the replaced joint is shown to have some restriction in joint ROM and altered coordination pattern
between the segments. This information regarding the adapted coordination strategies is notably

missing in the literature for post ankle surgeries.

It is of note that, the study does not suggest that post operatively patients should walk similar to the
controls, when it is clearly not possible in surgery like AA were the ankle joint is fused. However,
comparison is made between the intersegment patterns of controls with the surgical groups to
understand the alterations in intersegment coordination after individual surgery. This information is
important to develop a base line expectation for the patients and find if there is a scope to improve
some of the coordination strategies adapted by the patient, bilaterally, to prevent problems in long

run due to the persistent limp .

Furthermore, studies have also shown the importance of gait modification strategies to reduce gait
deviation, as much as possible, following surgical corrections. This can be done using real-time
movement feedback.®* 3 Continuous gait assessment based on the intersegment coordination using
wearable sensors could help improve rehabilitation by helping patients learn the most efficient gait
pattern which could benefit not just the operated but the surrounding joints. This could help patients
break unwanted and potentially harmful compensatory strategies which would further help improve
joint kinematics along with the bilateral joint loading. '° The objective of post-operative
rehabilitation is to optimize the walking function as much as possible and prevent further joint

problems in long-term. Intersegment coordination could play an important role in this by helping
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clinicians understand the alterations in gait mechanics and to find ways to minimize these

alterations to a desired level.

Comparing the CRP outcome with the existing studies, the intersegment coordination between the
shank and forefoot segments has been compared previously in anterior cruciate ligament
reconstruction patients.”> MARP results of their control group (21.2+2.7) are somewhat similar to
our forefoot-shank results (20.6+3.8), while their patient group produced a significantly higher
value (25.7+2.3) which is closer to the Unop side of the AA group in this study (27.8+10.2). A high
MARP can be a result of altered gait strategies, which could be related to the increased loading of

the forefoot, reported in AA patients.'°

A notable strength of the study is that the wearable sensors provide freedom to test patients in open
and more natural environment, instead of only a few restricted numbers of steps as commonly found
in gait labs. The study’s primary limitation is the small subject size. However, studies assessing
intersegment coordination in joint pathologies and surgical treatment have utilized similar number
of participants.*® ** Another limitation of the study is the difference in the walking speed of the
patients in different study groups, as slow walking speed is shown to have an effect on the ROM of
joints * this may have an effect on the 1SC pattern.

In conclusion, intersegment coordination, in particular, CRP mapping can provide otherwise
missing information which could be beneficial in understanding and correcting a patients’
compensatory gait pattern ultimately improving rehabilitation. This study has also shown that it
could be used as a parameter in clinical assessment to help quantify the outcome of ankle surgeries.
Future research should investigate on the reliability of intersegment coordination assessment in

improving the functional outcome of ankle pathology patients.
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Legends

Figure 1: Hllustration of continuous relative phase (CRP) calculation using forefoot (FF) and
hindfoot(HF) data from the control group.

Figure 2: CRP curves at the three inter-segments in sagittal plane; black line represents controls,
bold line represents operated side and dot line represent unoperated side

Figure 3: Graph presenting dorsi and plantar flexion movement in the sagittal plane over 100% of
the gait cycle; black line represents controls, bold line represents operated side and dot line
represent unoperated side. Yerepresents significant difference to the controls.

Table 1: Mean Absolute Relative Phase, mean (SD)

Table 2: Angular displacement, in the sagittal plane, for three intersegments, means (SD)
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Tables

Table 1: Mean Absolute Relative Phase, mean (SD)

Intersegments CON TAR TAR AA AA Group
CRP Op Unop Op Unop p value
Forefoot-hindfoot | 15.5 (35) | 14.9(4.2) | 16.7(4.2) | 147(58)" | 21.6(7.0)" | <0.0001
Hindfoot-shank | 7.1(2.3) | 5.2(1.6)" | 7.6(2.3) 5.0(2.1)" 6.5 (2.1) <0.0001
Forefoot Shank | 20.6 (3.8) | 16.6 (3.9) | 22.3(3.7) | 14.4(7.6) " | 27.8(10.2) " | <0.001

" represents difference in comparison with controls, © represent significant difference between AA and

TAR and "represent significant difference between Op and Unop sides (p<0.05)

Table 2: Angular displacement, in the sagittal plane, for three intersegments, means (SD)

Joint coordinate CON TAR TAR AA AA Group
Op Unop Op Unop p value

forefoot-hindfoot | 23.7 (6.3) | 20.3(6.2)" | 23.9(6.1) | 10.3(3.5) " | 20.3(3.2) | <0.001
hindfoot-shank | 12.5(3.6) | 9.7(3.6)" | 13.4(4.3) | 86(3.4)"" | 12.3(3.1) | 0.004

forefoot-shank | 29.2(7.5) | 22.5(5.9)" ™ | 28.6 (4.7) | 16.1(4.0)"" | 28(2.9) | <0.001

“ represents difference in comparison with controls, T represent significant difference between AA

and TAR and "represent significant difference between Op and Unop sides (p<0.05)
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