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Molecular evolution is being revolutionized by high-throughput sequencing allowing
an increased amount of genome-wide data available for multiple species. While base
composition summarized by GC-content is one of the first metrics measured in
genomes, its genomic distribution is a frequently neglected feature in downstream
analyses based on DNA sequence comparisons. Here, we show how base composition
heterogeneity among loci and taxa can bias common molecular evolution analyses such
as phylogenetic tree reconstruction, detection of natural selection and estimation of
codon usage. We then discuss the biological, technical and methodological causes of
these GC-associated biases and suggest approaches to overcome them.

Keywords: GC-content, positive selection, biased gene conversion, codon usage bias, phylogeny, methodological
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INTRODUCTION

GC-content is shaped by a complex balance among mutation, selection, recombination, and genetic
drift (Bulmer, 1991; Eyre-Walker and Hurst, 2001; Duret et al., 2002). As a consequence of
variation in this subtle balance, it has been observed that GC-content varies considerably at two
levels: (i) among genomes from different species and (ii) along chromosomes of a single species
(Bernardi et al., 1985). Among species, the average genomic GC-content ranges from 13 to 75%
(Pagani et al., 2011). Within the same genome, large chromosomal regions can also greatly differ
in their nucleotide composition as first described in humans (Bernardi et al., 1985). For instance,
GC-content is distributed across the human genome over successive long stretches of >100 kb
that can be either GC-rich (with a GC-content ∼60%) or GC-poor (with a GC-content ∼35%;
International Human Genome Sequencing Consortium, 2001).

After several years of debate among neutral or selective hypotheses [reviewed in Duret and
Galtier (2009)], it is now widely accepted that one of the major drivers of base composition
heterogeneity is GC-biased gene conversion (gBGC), a repair bias that favors GC over AT alleles
during meiotic recombination (Eyre-Walker, 1993; Galtier et al., 2001; Montoya-Burgos et al.,
2003; Duret and Arndt, 2008; Kent et al., 2012; Arbeithuber et al., 2015; Mugal et al., 2015). As a
result of this link between GC and recombination, local GC-content increases faster in genomic
hotspots of recombination (Spencer, 2006) while genome-wide GC-content increases faster in
species with higher recombination rates per time unit (Romiguier et al., 2010, 2013b; Figuet et al.,
2014; Weber et al., 2014). By conferring a higher transmission probability of GC alleles over AT in
heterozygotes, gBGC mimics natural selection but is frequently overlooked in molecular evolution
studies. Here, we revisit how much intra-genomic and inter-specific variations in base composition
have a strong power to bias popular analyses in molecular evolution such as phylogenetic tree
reconstruction, detection of natural selection and estimation of codon usage bias (Figure 1).
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FIGURE 1 | Methodological biases associated to recombination, GC-biased gene conversion (BGC) and GC-content heterogeneity.

PHYLOGENETIC TREE
RECONSTRUCTION

Reconstructions of phylogenetic trees from molecular datasets
are central in evolutionary biology. While initially limited
to a handful of loci with limited power to resolve difficult
phylogenetic relationships, phylogenetic tree reconstruction is no
longer restricted by the number of genetic markers. However,
some phylogenetic relationships of the Tree of Life remain
unresolved (Philippe et al., 2011). This difficulty stems from the
mosaic nature of genomes gathering alternative and conflicting
gene trees (Degnan and Rosenberg, 2009), where some but not
all loci support the true species genealogy. Determining which
loci are reliable phylogenetic markers is thus one of the biggest
challenges in phylogenomics. While mixed historical signals
along genomes are likely to have different natures, we will here
focus to issues related to base composition.

A recent phylogenomic study reported that base composition
is a relevant criterion to select markers carrying unambiguous
phylogenetic signal: gene GC-content (average GC% of the
sequences of an alignment) and GC-heterogeneity (variance
of GC% among sequences of an alignment) were proved to
bias species tree reconstructions (Romiguier et al., 2013a).
As illustrated with mammalian genomes, phylogenetic trees
of genes located in GC-rich regions produce five times
more contradicting topologies than GC-poor genes, leading to
important reconstruction biases and a poor resolution for both
accepted and controversial nodes. This negative analytical effects
of GC-content on tree reconstructions is widespread across the
tree of life, as reported in basal eukaryote lineages (Rodríguez-
Ezpeleta et al., 2007), yeasts (Collins et al., 2005), beetles (Sheffield
et al., 2009), bees (Romiguier et al., 2016), hexapods (Delsuc,
2003), fishes (Li and Ortí, 2007; Betancur-R et al., 2013),

birds (Nabholz et al., 2011), and bats (Teeling et al., 2000).
Despite the accumulating empirical evidence demonstrating the
pervasiveness of base composition issues in phylogeny, the
reasons underlying such strong biases are unexplored. Here, we
suggest three non-mutually exclusive hypotheses to explain this
negative GC-effect in phylogenomics studies.

First, some aspects of the GC-bias are likely to be due to
model misspecifications. Probabilistic methods for phylogenetic
reconstruction (maximum likelihood or Bayesian inference)
are indeed generally based on models of sequence evolution
that assume a homogeneous base composition along the tree.
However, this assumption is often violated (Phillips et al.,
2004). Indeed, average GC-content of an alignment correlates
strongly with GC-heterogeneity among sequences as a result
of variation in the dynamic of gBGC among sampled species
(Romiguier et al., 2013a). Such departures from the assumption
of base composition homogeneity can lead to severe biases
by incorrectly grouping distantly related taxa that converge in
extreme nucleotide composition on a given locus (Phillips et al.,
2004). This type of issues can be, however, easily solved by
model-based solutions (see last paragraph of this section for more
details).

The second hypothesis proposes that incomplete lineage
sorting (ILS) is more important in GC-rich than GC-poor
regions. ILS is known to produce conflicts among gene
trees and the species tree because of the retention of
ancestral polymorphisms (Degnan and Rosenberg, 2009). At
the scale of the whole genome, the amount of incompletely
sorted genes increases when the time of divergence is small
relative to the average effective population sizes (Clark, 1997).
Genomic variation in ILS was also empirically reported to be
associated to GC-content in hominid genomes (Hobolth et al.,
2011). This indirect (Charlesworth et al., 1993) relationship
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between GC-content and ILS can be explained by the dual
effects of local recombination rates on base composition and
linkage disequilibrium. High local recombination rates increase
GC-content through gBGC, but also decrease the effect of genetic
interferences, i.e., background selection (Charlesworth et al.,
1993) and hitchhiking (Smith and Haigh, 1974). By being less
affected by linked selective processes, GC-rich regions are thus
expected to have relatively higher effective population sizes than
GC-poor regions, leading to an extended retention time of
ancestral polymorphism.

The third hypothesis is that gBGC is associated to saturation
in multiple substitutions. Following the rapid birth and death
of local recombination hotspots, gBGC is expected to occur
in short, intense episodes (Duret and Galtier, 2009) where
deleterious GC substitutions are likely to occur (Necs̨ulea et al.,
2011). Following a gBGC episode, natural selection is likely to
revert such deleterious substitutions through AT replacement
(Galtier et al., 2009). This toggling between GC deleterious
and AT compensatory substitutions at the same nucleotide site
is expected to lead to homoplasy, a direct consequence of
multiple substitutions causing spurious similarity not due to
common ancestry (Philippe et al., 2011). This type of AT/GC
toggling is expected to be particularly fast and difficult to track
because of the short-life of gBGC episodes that depends on
the self-destructive nature of recombination hotspots (Coop and
Myers, 2007). Even at very short evolutionary scales such as
the Denisovan/Modern human divergence (0.4–0.8 Myrs), local
recombination hotspots are not conserved (Lesecque et al., 2014),
which could imply a complete loss of phylogenetic signals due to
multiple turnovers between gBGC and natural selection at larger
evolutionary scales. Although genomically small (1–2 kb), these
short-lived recombination hotspots tend to arise and disappear
in the same genomic regions of 1–2 Mb (Duret and Galtier, 2009)
exhibit homoplasy issues. Common in fast-evolving sequences,
homoplasy is also at the origin of the so-called and undesired
“long branch attraction artifact” (Felsenstein, 1978). Reinforcing
the idea that GC-rich genes might be affected by such biases,
GC-rich and GC-heterogeneous genes have fast rates of evolution
(Romiguier et al., 2013a, 2016). These abnormally fast-evolving
genes are then likely to cause long-branch attraction artifacts,
but also more general issues related to heterotachy-driven biases
(Philippe et al., 2005). Even if long-branch attraction is generally
considered as a minor problem in likelihood-based phylogenetics
compared to parsimony, maximum likelihood methods using
GC-rich genes can have a biased support toward topologies
grouping long branches together (Romiguier et al., 2013a, 2016).

One solution to cope with base composition issues is
the use of models of sequence evolution that takes into
account heterogeneity in GC-content (Galtier and Gouy, 1998;
Foster, 2004; Blanquart and Lartillot, 2006; Boussau and
Gouy, 2006; Gowri-Shankar and Rattray, 2007; Dutheil and
Boussau, 2008). However, these so-called non-homogeneous
models are computationally costly. Albeit useful to alleviate
GC-heterogeneity issues in phylogeny, empirical studies illustrate
their limits to retrieve high bootstrap supports in the most
GC-heterogeneous sequences (Betancur-R et al., 2013; Romiguier
et al., 2016), shedding light on other GC-dependent biases in

phylogeny such as ILS and gBGC-driven homoplasy. To date,
the best practice recommended to discard noisy signals in
sequences is the use of non-homogeneous models and/or the use
of GC-poor phylogenetic markers. In this regard, it is noteworthy
that coding sequences tend to be clustered in recombination
hotspots and GC-rich regions (Duret and Galtier, 2009).
Consequently, the use of the rare phylogenetic markers located
in AT-rich regions is recommended. This is the case of ultra-
conserved non-coding elements (UCE) that have the advantage
to be AT-rich and evolve particularly slowly (McCormack et al.,
2012). Compared to these non-coding AT-rich markers, clusters
of AT-rich coding genes in low-recombining regions could
undergo a higher rate of background selection, decreasing the
effective population size and then, the amount of ILS. It is
noteworthy that UCE and AT-rich genes both support the same
topology for the controversial rooting of placental mammals
(McCormack et al., 2012; Romiguier et al., 2013a), highlighting
relevance of these markers to overcome GC-biases. Other
strategies might involve to compare these markers with markers
that cannot be affected by recombination and gBGC, such
as mitochondrial genes. Further methodological improvements
could come from coalescent-based supertree methods (Liu et al.,
2009) that account for ILS. By weighting the confidence in
each gene tree according to the GC-content of an alignment,
they may allow the integration of most of the available
information and alleviate the spurious signal inherent to GC-rich
markers. To date, methods computing the exact likelihood
of alternative topologies are restricted to relatively simple
models neglecting direct and indirect effects of background
selection, selective sweep, gBGC and ILS on phylogenetic
reconstruction. But these processes are now implemented in
recent simulators (Haller and Messer, 2017), allowing them to be
treated as nuisance parameters during computational evolution
of sequences. Although such highly complex models are currently
intractable by maximum likelihood approaches, the possibility
to simulate them within an approximate Bayesian computation
(ABC) framework (Beaumont et al., 2002; Csilléry et al., 2010a,b;
Pudlo et al., 2016) could bring new methodological perspectives
in phylogenetic reconstruction. ABC has been proved to be a
powerful framework to compare complex evolutionary scenarios
for large datasets (Roux et al., 2016), illustrating the recent
improvements made in flexible machine learning algorithms.
Applied to phylogenetic reconstructions, efficient computational
tools like SLiM 2 are already available to simulate models with
gBGC episodes and multiple substitutions along a branch as well
as statistical packages to compute the probabilities of alternative
scenarios (Csilléry et al., 2012; Pudlo et al., 2016). Altogether,
current available softwares already provide stimulating leads for
future developments in phylogeny.

DETECTION OF POSITIVE SELECTION

Identifying candidate loci for natural selection is a central goal
explored by two traditional approaches in adaptation-genomics:
top-down (GWA and QTL) and bottom-up (genomic scan)
approaches. With the advent of high-throughput sequencing,
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genomic scans became a popular approach to detect candidate
target of selection. Such scans have the merit to identify
candidates without the a priori expectation of a candidate
gene approach (Ellegren, 2014). However, they have various
limitations with false-positive issues (Mallick et al., 2009;
Bierne et al., 2011), narrow signatures of balancing selection
(Roux et al., 2012), and over-interpretation of outlier loci
(Pavlidis et al., 2012). Here, we detail how GC-content can lead
to important additional bias during genome scans for detecting
natural selection.

Genome scans of positive selection often rely on methods
that look for lineage-specific accelerations in the protein
rate of evolution. Such accelerations are classically measured
through dN/dS, which calculates the excess of amino-acid
substitutions (dN: non-synonymous mutation rate per site)
relative to dS, the substitution rate per site used as a proxy
of the neutral clock. This dN/dS ratio is generally smaller
than 1, reflecting the pervasiveness of purifying selection that
eliminates non-synonymous mutations to preserve the protein
structure. Conversely, a dN/dS ratio greater than 1 is considered
as a signature of positive selection that favors the fixation
of beneficial non-synonymous mutations. From a population
genetics point of view, gBGC mimics positive selection by
favoring the fixation of AT- > GC mutations, regardless of
their beneficial or deleterious status (Nagylaki, 1983). Because
GC alleles are actively selected by the repair systems of meiotic
recombination, they are over-represented in the gamete pool
and benefit of increased transmission to the next generation
in a similar way than beneficial mutations subject to positive
selection. Consequently, many accelerations of the substitution
rate attributed to positive selection during genome scans are
actually due to gBGC episodes (Galtier and Duret, 2007;
Berglund et al., 2009; Galtier et al., 2009; Ratnakumar et al.,
2010; Kostka et al., 2012). When a mutation toward GC is
deleterious, gBGC can counteract positive selection and maintain
or fix deleterious alleles. High fixation rates of non-synonymous
mutations at a locus should thus not be systematically interpreted
as being beneficial for the fitness of the individual, particularly
when considering that gBGC has been proved to be able to
maintain deleterious mutations associated to human diseases
(Necs̨ulea et al., 2011; Capra et al., 2013; Lachance and Tishkoff,
2014).

Confusion between positive selection and gBGC could be
avoided through two different ways. The first is by filtering
the results of classical tests of positive selection and consider
with caution positive selection signatures in GC-rich regions.
This is particularly true for selection tests that rely more on
overall evolutionary rate rather than dN/dS (Pollard et al., 2006;
Kostka et al., 2012). Even if gBGC can increase dN/dS in
some conditions (Galtier et al., 2009; Bolívar et al., 2015), AT-
> GC mutations are more likely to happen in synonymous sites,
which limits the effect of gBGC on dN/dS compared to the
evolutionary rate. Several criterions can be used in both cases to
differentiate gBGC from positive selection, such as the number
of mutations toward GC in the surrounding non-coding regions
(Galtier and Duret, 2007). The second would be to develop
methods that restrict dN/dS estimations to GC-conservative

substitutions in the context of codon-models aimed to detect
positive selection events (Yang and Nielsen, 2002; Lartillot,
2013).

CODON USAGE BIAS

Popular analytical methods in molecular evolution rely on
a strong assumption: synonymous mutations are neutral.
GC-content at synonymous positions is frequently claimed to
be exposed only to the mutation/drift equilibrium. However,
natural selection was proposed to be superimposed to these
two evolutionary forces at synonymous codons (Urrutia,
2003; Comeron, 2004; Plotkin et al., 2004). Although initially
challenged (Williamson et al., 2005), natural selection acting
on standing synonymous variation was found to be associated
to gene expression level, the most expressed genes using a
set of preferred codons (Comeron, 2004). This association is
explained by selection for increased translational efficiency.
The analysis of >1,000 genes in Drosophila demonstrated
that the most used synonymous codons corresponded to the
most available tRNAs in the genome (Moriyama and Powell,
1997). Translational efficiency would then be optimized by
increasing the usage of the preferred synonymous codons.
Such a process can be tested in coding sequences by
measuring the effective number of codons (ENc) in a given
gene. ENc takes a value of 61 when all codons of the
genetic code (minus the three stop codons) are used without
bias, and decreases to 20 (the number of amino-acids) for
the most biased genes. In agreement with the hypothesis
of selection for translational efficiency, population genetics
analyses in Drosophila described signatures of selection on
synonymous mutations (Akashi, 1995; Akashi and Schaeffer,
1997).

A study of codon usage bias in Caenorhabditis elegans,
Drosophila melanogaster, and Arabidopsis thaliana has shed light
on the over-expression of genes featuring codon preference,
with a large predominance of preferred codons ending with G
or C (Duret and Mouchiroud, 1999). However, the GC-content
at third coding positions (GC3) is also correlated to the
GC-content of the surrounding non-coding regions (Kliman
and Hey, 1994; Akashi et al., 1998), which suggests the
action of gBGC shaping local base compositions. By locally
increasing GC-content, gBGC mechanically restricts the
number of used codons and reduces the measured ENc
independently of selection for translational efficiency. The
measured ENc is thus biased by gBGC and must be corrected
with local background nucleotide compositions. In addition,
variation in GC-content also impacts measures of gene
expression. With the advent of high-throughput sequencing
technologies, it is now a standard practice to approximate
gene expression levels by counting the number of reads
mapping a target in ChIP-seq or RNA-seq analysis. However,
sequencing biases artificially over-represent genomic regions
with intermediate levels of GC-content (50%), which in turn
bias the estimates of gene expression levels (Chouvarine
et al., 2016). Testing selection for translational efficiency by
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measuring the correlation between ENc and gene expression
levels therefore requires the use of both GC-corrected ENc
and GC-corrected expression levels. ENc estimates can be
corrected by GC-content of neighborhood regions (Novembre,
2002), while GC-corrected expression levels can be obtained
by applying local LOESS regression (Miller et al., 2011;
Benjamini and Speed, 2012; Chandrananda et al., 2014) or
quantile normalization-methods (Risso et al., 2011), i.e., by
normalizing the raw number of mapped reads by the local
GC-content.

The ongoing surge of transcriptomic data will permit
measurement of GC-content heterogeneity, preferred codons
usage and expression levels across a large number of loci and
species. This type of large-scale analysis could open the door
to a better understanding of the relationship linking effective
population sizes (Ne) and codon usage. As theoretically predicted
(Bulmer, 1991), selection on synonymous codons might be
stronger in species with large Ne. While the Ne-hypothesis to
explain variation in selection on codon usage remains untested
by empirical studies, a descriptive study of the Ne-effect on
variation in gBGC will be necessary to avoid entangling the
two effects. Future projects aiming to test these hypotheses are
expected to be strongly biased if GC-content biases are naively
neglected regarding estimates of gene expression levels or codon
usage.

CONCLUSION

GC-content is associated to multiple biases of different nature
(Figure 1). Whether through technological reasons (sequencing
technologies biases), biological reasons (GC-biased gene
conversion) or methodological reasons (models of sequence
evolution limitations), all these biases affect the results of
downstream analyses. With the surge of genomic data from
various non-model species, comparative genomics have the
opportunity to solve many unresolved questions in evolution.
However, one should be aware of the methodological challenges
associated to the GC-content heterogeneity inherent to large
scale studies, whether it be for a large number of species
or loci.
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