
Re
na

to
 F

er
re

ira
 G

on
ça

lve
s

março de 2017UM
in

ho
 |

 2
01

7
H

ig
h 

pe
rf

or
m

an
ce

 m
ag

ne
to

el
ec

tr
ic

 n
an

oc
om

po
si

te
m

or
ph

ol
og

ie
s 

fo
r 

ad
va

nc
ed

 a
pp

lic
at

io
ns

Universidade do Minho
Escola de Engenharia

Renato Ferreira Gonçalves

High performance magnetoelectric
nanocomposite morphologies for
advanced applications



março de 2017

Tese de Doutoramento
Engenharia de Materiais

Trabalho efetuado sob a orientação de
Professor Senentxu Lanceros-Mendez
Professora Gabriela Botelho

Renato Ferreira Gonçalves

High performance magnetoelectric
nanocomposite morphologies for
advanced applications

Universidade do Minho
Escola de Engenharia





 



V 
 

Acknowledgments 

First of all, I would like to express my gratitude to every person who somehow 

contributed for the development of this thesis. 

The Foundation for Science and Technology (FCT), grant SFRH/BD/88397/2012, 

for the financial support to this project. 

All the work at the thesis would not have been accomplished without the 

accompaniment and effort of my supervisors. In this sense, I would like to acknowledge 

the Professor Senentxu Lanceros-Mendez and Professora Gabriela Botelho for the 

opportunity, effort, scientific knowledge, sympathy, support, understanding and good 

vibes given to me. 

To Professor Xavier Moya I would like to express my gratitude for the kind 

reception during the stay at Cambridge University - Department of Materials Science & 

Metallurgy. To Professors Harvey Amorín and Jesus Ricote I would like to thank all the 

kindness and support given to me at Materials Science Institute of Madrid, Consejo 

Superior de Investigaciones Científicas (CSIC). 

To the Electroactive Smart Materials group (ESMG), I would like to thank all the 

great team spirit, encouragement and friendship given by all group. A special thanks to 

the Doctors Vitor Sencadas, Pedro Martins and Carlos Costa due to all the help, effort 

and support given to me. To the Magnetoelectric Group for all the hours at the 

laboratory searching and pursuit what sometimes appeared impossible. 

I would like to acknowledge all my friends and Claudia Teixeira for unconditional 

support, good moments and for being present at good and difficult times. At last and 

more important I would like to thank my sister and parents for the unconditional love, 

support and for always believing in my capability. 

 

Thank you all for keeping up with me on this good and happy journey!! 

   

  



VI 
 

 

  



VII 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“The important thing is not to stop questioning. Curiosity has its own reason for existing.” 

Albert Einstein   



VIII 
 

 

  



IX 
 

Abstract 

The magnetoelectric (ME) effect is characterized by the variation of the electrical 

polarization of a material with an applied magnetic field and the variation of the 

magnetization of a material with an applied electric field. Single-phase materials with 

intrinsic ME effect are not generally used for practical applications since they typically 

show weak ME coupling at room temperatures. Such problem has been overcome by 

the development of ME composites. Strong ME effect at room temperature has been 

obtained, particularly in those composed by a piezoelectric and a magnetostrictive 

phase. In such materials, a strain is induced on the magnetostrictive phase once a 

magnetic field is applied to the composite. This strain is transmitted to the piezoelectric 

constituent, which undergoes a change in the electrical polarization. In an analogous 

way, the reverse effect can occur.  

The main objective of the thesis was the development of high performance 

polymer-based ME materials, that were characterized, optimized and their potential 

applications evaluated. Particulate ME composites were produced from materials with 

strong piezoelectric - poly(vinylidene fluoride) (P(VDF)) - and magnetostrictive - Cobalt 

iron oxide (CoFe2O4 - CFO) - responses in the form of film, membrane, fibers, and 

spheres. Related piezoelectric materials, such as the copolymer of P(VDF), 

poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)), and magnetic nanoparticles, 

such as magnetite (Fe3O4), goethite (δ-FeO(OH)) and CoFeO(OH), were also used. All 

developed morphologies show the presence of the ME effect.  

The studies on film morphology addressed the relevance of the magnetostrictive 

filler dispersion on ME composite response, suggesting that the use of surfactants or 

ultrasounds to improve the dispersion leads to the same ME response. The filler size and 

shape shows an important role on the ME measurements. Studies with Fe3O4 

nanoparticle with sizes of 9, 30 and 50 nm within a P(VDF-TrFE) matrix show that the 

largest α31 = 0.97 mV.cm-1Oe-1 is obtained for the lowest nanoparticle size. The shape of 

the same filler was studied and the results shows that a rod shape, comparing with a 

spherical, nucleate the β-phase of P(VDF), due to the high interface interaction between 

the polymer and the filler. Anisotropic nanosheet fillers of δ-FeO(OH) and CoFeO(OH) 
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were synthetized and evaluated for the preparation of ME composites. Thus, δ-FeO(OH) 

/P(VDF-TrFE) composites lead to a maximum ME response of 0.4 mV.cm-1.Oe-1, which 

depends on filler content, alignment state as well as on both incident magnetic field 

direction and magnitude. A new ME effect is proposed based on the magnetic rotation 

of the nanosheets inside the piezoelectric polymer matrix. New CoFeO(OH) highly 

magnetostrictive (λ = 507 ppm) and anisotropic nanostructures were synthesized by a 

coprecipitation method using a modified gas-slugs microfluidic system. CoFeO(OH) 

/P(VDF-TrFE) composites reveal an interfacial ME coupling strongly dependent on the 

angle between HDC and filler length direction, with a maximum α31 = 5.10 mV.cm-1.Oe-1. 

ME membranes were also produced in CFO/P(VDF-TrFE) composites. The porous 

morphology and ME response were evaluated. The porous composite shows 

piezoelectricity with an effective piezoelectric coefficient (d33) of -22 pC.N-1, a maximum 

magnetization of 12 emu.g-1 and a maximum ME coefficient of 9 mV.cm-1.Oe-1. 

ME nanofibers and microspheres of CFO/P(VDF) produced by electrospinning 

and electrospray technique, respectively, were studied and evaluated. The average 

diameter of the nanofibers is ≈325 nm, independently of filler content, and the amount 

of crystalline polar β-phase was strongly enhanced when compared to pure P(VDF) 

polymer fibers, due to the introduction of the magnetostrictive fillers. The piezoelectric 

response of these electroactive nanofibers was modified by an applied magnetic field, 

thus evidencing the ME character of the CFO/P(VDF) composites. The CFO nanoparticles 

content in the ME microspheres (3-7 µm diameter) reached values up to 27 wt.%, 

despite their concentration in the starting solution reaching values up to 70 wt.%. No 

relevant effect on β-phase content (≈60 %), crystallinity (40 %) and onset degradation 

temperature (460-465 °C) of the polymer matrix was observed. The ME microspheres 

show a maximum|d33|≈30 pC.N-1, leading to a ME response of ∆|d33|≈5 pC.N-1 obtained 

when a 220 mT DC magnetic field was applied. Its also shown that the interface between 

CFO and P(VDF) (0-55 %) has a strong influence on the ME response of the microspheres.  

The simplicity and the scalability of the processing methods used in the present 

work as well as the excellent ME response in a large variety of composite morphologies 

suggest a large application potential of the developed polymer-based ME composites in 

areas such as sensors and actuators and tissue engineering, among others. 
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Resumo 

O efeito magnetoelétrico (ME) é caraterizado pela variação da polarização elétrica 

do material na presença de um campo magnético e pela variação da magnetização do 

material quando um campo elétrico é aplicado. Os materiais de fase única com o efeito 

ME intrínseco não são usualmente utilizados em aplicações uma vez que possuem fraco 

acoplamento ME à temperatura ambiente. Este problema é então ultrapassado com o 

desenvolvimento de compósitos MEs. Nestes, verifica-se um forte efeito ME obtido à 

temperatura ambiente, particularmente quando constituídos por uma fase piezoelétrica 

e outra magnetostritiva. Nestes materiais, a deformação é induzida na fase 

magnetostritiva quando um campo magnético é aplicado ao compósito. Essa 

deformação é transmitida ao constituinte piezoelétrico que provoca uma mudança na 

polarização elétrica do material. O efeito contrário pode ser também observado.  

O objetivo principal desta tese foi o desenvolvimento de materiais ME de base 

polimérica com alta performance, caracterização, otimização e avaliação para potencial 

aplicação.  Foram produzidos compósitos ME particulados a partir de materiais com uma 

forte resposta piezoelétrica – poli(fluoreto de vinilideno) (P(VDF)) – e magnetostritiva – 

CoFe2O4 (CFO) – em forma de filme, membrana, fibras e esferas. O polímero 

piezoelétrico como o copolimero do P(VDF), poli(fluoreto de vinilideno-trifluoretileno) 

(P(VDF-TrFE)), e nanopartículas como Fe3O4, δ-FeO(OH) e CoFeO(OH) foram também 

estudados. Todos as morfologias desenvolvidas mostram a presença do efeito ME.  

Os estudos realizados na morfologia de filmes mostram a relevância da dispersão 

do material de reforço nos compósitos ME. Estes sugerem que tanto o uso de 

surfactantes como do ultrassons, para dispersar, têm a mesma influência nas medidas 

ME dos compósitos. O tamanho e a forma do material de reforço têm um papel 

importante nas medidas ME. Estudos com nanopartículas de Fe3O4 com tamanhos de 9, 

30 e 50 nm no interior da matriz polimérica de P(VDF-TrFE), mostram que o maior α31 

(0.97 mV.cm-1Oe-1) é obtido para a nanopartícula de menor tamanho. A influência da 

forma do material de reforço foi estudada e os resultados mostram que a forma de 

bastão, comparada com a esférica, nucleiam a fase β do P(VDF) devido à alta interação 

na interface entre o polímero e o material de reforço. Foram também sintetizadas e 

avaliadas as nanofolhas anisotrópicas de δ-FeO(OH) e CoFeO(OH) para a preparação de 
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compósitos ME. Compósitos de δ-FeO(OH)/P(VDF-TrFE) com um máximo de ≈0.4 

mV.cm-1.Oe-1, variam consoante a concentração do material de reforço, alinhamento e 

a direção e intensidade dos dois campos magnéticos incidentes. Um novo efeito ME é 

proposto baseado na rotação magnética das nanofolhas no interior da matriz 

polímérica.  Sintetizou-se uma nova nanoestrutura anisotrópica de CoFeO(OH) com alta 

magnetostrição (λ = 507 ppm), pelo método de coprecipitação, com uma modificação 

no sistema microfluídico “gas-slugs”. Nanocompósitos de CoFeO(OH) /P(VDF-TrFE) 

revelam um acoplamento ME fortemente dependente do ângulo entre o HDC e o 

comprimento do CoFeO(OH), com um máximo α31 de 5.10 mV.cm-1.Oe-1. 

Membranas ME foram igualmente produzidas em compósitos CFO/P(VDF-TrFE). A 

morfologia porosa e a resposta ME foram avaliadas. O compósito poroso apresenta uma 

resposta piezoelétrica com um coeficiente piezoelétrico efetivo (d33) de -22 pC.N-1, uma 

magnetização máxima de 12 emu.g-1 e um coeficiente ME máximo de 9 mV.cm-1.Oe-1. 

Foram estudadas e avaliadas nanofibras e microesferas de CFO/P(VDF) produzidas 

por electrospinning e electrospray, respetivamente. O diâmetro médio das nanofibras 

foi de ≈325 nm, independentemente da quantidade de material de reforço e da 

quantidade da fase polar β, que é fortemente aumentada com a introdução do material 

de reforço magnetoestritivo quando comparada com as fibras puras de P(VDF). A 

resposta piezoelétrica das nanofibras eletroativas é modificada com a aplicação de um 

campo magnético, evidenciando assim o carácter ME do compósito CFO/P(VDF). 

Microesferas ME (3-7 µm de diâmetro) com nanopartículas de CFO foram preparadas 

com concentrações que chegam aos 27 % em peso, apesar de a solução inicial ter 70 %. 

Não foram verificadas alterações de fase β (≈60 %), cristalinidade (40 %) e temperatura 

de degradação onset (460-465 °C) do polímero. As microesferas ME apresentam um 

máximo |d33|≈30 pC.N-1, com a uma resposta ME de ∆|d33|≈5 pC.N-1 quando um campo 

magnético DC  (220 mT) é aplicado. Verificou-se que a interface entre as nanopartículas 

de CFO e o P(VDF) (0-55 %) tem uma forte influência na resposta ME das microesferas.  

A simplicidade e a escalabilidade dos métodos de processamento apresentados 

neste trabalho, assim como a distinta resposta ME numa ampla variedade de 

morfologias, sugerem uma potencial aplicabilidade dos compósitos ME de base 

polimérica, em áreas como sensores e atuadores, engenharia de tecidos, entre outros. 
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Chapter 1 
Introduction 

 

 

The main concepts related to magnetoelectric (ME) materials and structures are 

presented, together with the state of the art indicating the relevance and advantages of 

polymer-based ME novel morphologies. The selection of piezoelectric and 

magnetostrictive materials is also discussed in this chapter and novel application areas 

are introduced. Finally, the main objectives and the structure of the thesis are 

presented.  
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1.1. Introduction 

The magnetoelectric (ME) effect, defined as the variation of the electric 

polarization (ΔP) in response to an applied magnetic field (MEH) or the variation of the 

magnetization (ΔM) under an applied electrical field (MEE), is a scientifically interesting 

and technological useful phenomenon, with an increasing range of applications in areas 

such as computer memories, smart sensors, actuators, high frequency microelectronic 

devices and biomedical materials [1-5]. It can be described as direct effect (1.1) or 

inverse effect (1.2): 

𝑴𝑬𝑯 → ∆𝑃 = 𝛼∆𝐻 (1.1) 

  

𝑴𝑬𝑬 →  ∆𝑀 = 𝛼∆𝐸 (1.2) 

 

where α represent the ME coefficient, ΔH the variation of magnetic field and ΔE the 

variation of the electric field [6]. 

A single phase multiferroic (MF) is a material that simultaneously possesses two 

or more ‘ferroic’ order parameters (ferroelectricity, ferromagnetism and ferroelasticity). 

A small subgroup of all magnetically and electrically polarizable materials are either 

ferromagnetic or ferroelectric. In this subgroup, fewer still simultaneously exhibit both 

order parameters (multiferroic). In some of these materials, electric fields cannot only 

reorient the polarization, but also control magnetization; similarly, a magnetic field can 

change electric polarization (figure 1.1) [7]. 

 

Figure 1.1. Relationship between multiferroic and magnetoelectric materials [7]. 
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The ME effect can occur in single-phase materials or in composites. In the later, 

the ME effect can be achieved by the combination of magnetostrictive and piezoelectric 

responses [8]. Single-phase ME materials, typically show very low ME coupling at low 

temperatures, hindering their implementation into technological applications [2, 9, 10]. 

Nanocomposites are multi-phasic materials where the matrix material 

incorporates units with at least one dimension in the size range below 100 nm. They 

combine both the properties of the matrix material and the nanosized filler resulting in 

novel functional materials, which match the needs of a given application. In general, the 

range of host materials used in nanohybrids is vast, including organic polymers, silica or 

even liquid media. Host materials, that display tunable properties which respond to an 

external stimulus, are of particular interest. In this context, the use of magnetic fields as 

external stimulus has attracted increasing interest due to their several advantages [11] 

and applications in medical therapy and diagnosis, separations, catalysis and actuation 

(e.g., the relatively large penetration depth). To produce a response to an external 

magnetic field, the matrix host is loaded with magnetic nanoparticles, which can be well 

dispersed in different materials and show peculiar properties when exposed to static or 

alternating magnetic fields. The interaction between a magnetic field gradient and the 

magnetic moments of the particles induces magnetomechanical forces, which may be 

employed to change the shape of the host materials or to move the material [11]. 

ME composites emerged as an interesting possibility for device applications as in 

those composites, consisting on the combination of magnetostrictive and piezoelectric 

phases. The ME effect is the result of a product property, i.e., the mechanical 

deformation induced by a magnetic field, due to the magnetostriction of one of the 

phases, results in a dielectric polarization variation due to the piezoelectric effect of the 

other phase, allowing large ME effects at room temperature [3, 6, 9]. The large ME effect 

at room temperature is the main characteristic of these composites that leads to the use 

of these materials in new applications. 

1.2. Types of magnetoelectric film composites 

The ME composites can be classified in two ways: material based and structure 

based. The materials that can be used as ME composites have to possess piezoelectric 
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and magnetostrictive phases. These properties are mandatory for composites. ME 

composites structures have an important role due to the different interactions between 

the piezoelectric and magnetostrictive materials. The contact area and orientation 

between the materials are the key issue to reach a high ME effect. 

1.2.1. Material based magnetoelectric composites  

ME composite materials can be ceramic or polymer-based. Ceramic- and alloy-

based ME materials exhibit ME coefficients three orders of magnitude higher than the 

polymer-based ME materials, but they are limited by reactions at the interface regions 

which lead to high dielectric losses, hindering sustainable device applications [2]. Alloys 

ME composites are commonly formed by magnetostrictive Terfenol-D (TD) or Metglas, 

due to their high ME effect. Figure 1.2 shows the different ME susceptibility of diverse 

materials [12]. 

 

Figure 1.2. Maximum ME susceptibility of diverse materials [12]. 

 

TD together with some piezoelectric materials have been applied in different 

laminated ME composites. Yang Zhu and Jean W. Zu, for example, prepared one ME 

generator for energy harvesting application with laminated lead zirconate titanate (PZT) 

and TD. The 3 – layer laminated ME composite shows a TD/PZT/TD structure [13]. 

However, ME composites that have TD in their composition, cannot be used in low 

magnetic fields due their low permeability, high saturation field and mechanical 

hysteresis [14, 15]. One of the disadvantages is also the high cost. As an alternative, 
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others alloys, such as Metglas, have been explored and studied for ME composites. The 

Metglas is a commercial amorphous alloy formed by a fast solidification process, that is 

responsible for the magnetic properties of the composite. Comparing with the TD, 

Metglas shows a higher piezomagnetic coefficient (at low magnetic fields) and higher 

magnetic permeability. The high ME coefficients obtained with Metglas raised scientific 

interest, leading to the development of new materials. ME composites with Metglas are 

often used in magnetic sensors (AC and DC magnetic fields). J. Gao et al, confirmed that 

a high sensibility for DC field is verified with the application of different frequencies (1 

kHz and 10 kHz), showing the potential application of those materials as location and 

navigation devices [16]. 

A rich combination of ferroelectric and magnetic oxides (mainly ferrites) can be 

used for the development of ceramic-based ME composites. Ceramic-based ME 

composites are synthetized at high temperatures. Theoretically, these composites show 

a high ME effect, however, this ME effect is lower than the predicted due the inherent 

preparation problems, such as thermal expansion and atomic interfacial interdiffusion 

reactions [14]. Giap V. Duong at al, claimed that laminate ME composites with 50 % of 

CoFe2O4 (CFO) and 50 % of barium titanate (BaTiO3) shows a better magnetostrictive 

and piezoelectric coupling than the same materials in particulate structures [17]. Jing 

Ma et al., also indicated that laminate ME composites exhibit higher ME coefficients due 

to the reduction of dielectric losses, when compared with particulate ME composites. 

The author also affirmed that, in laminates, the ferrite layer is not sufficiently conducting 

itself. To solve that, the addition of metals as nickel and silver is necessary [14]. In these 

kind of composites, the major problem is related with the functional properties. These 

properties are complex and affected by various factors such as magnetic and 

ferroelectric properties of the materials, preparation method, structure, defects 

originated by the coupling of the materials and the interfaces between the layers, 

among others [18]. 

Polymer-based ME composites have attracted increasing interest from the 

industrial point of view as they can solve the abovementioned application problems. 

Further, in polymer-based ME composites strain coupling does not deteriorate with 

operation, as the magnetostrictive material is in direct contact with and completely 
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surrounded by the piezoelectric polymer matrix. They show simple and scalable 

production methods, a flexible structure, without large leakage currents, can be 

fabricated by conventional low-temperature polymer processing into a variety of forms 

(such as thin sheets or molded shapes) and can exhibit tailored mechanical properties, 

flexibility, lightweight, versatility, low cost and biocompatibility [2, 3]. 

Comparing the polymeric-based with the ceramic-based ME composites, less 

studies have been devoted to particulate structures in the last decade. Polymers such 

as poly(vinylidene fluoride) (P(VDF)) and polyurethane (PU) have been used due to their 

good piezoelectric and mechanical responses [19]. Several studies have been carried out 

with these polymers [20]: Rabah Belouadah et al., used P(VDF) and PU as polymers in 

ME composites together with magnetite (Fe3O4) and TD at different percentages (2 and 

50 %) and different polymer combinations. The model and the experimental data shows 

that the mechanical losses in the magnetostrictive materials play a key role, since they 

induce magnetostrictive losses and ME losses on the ME response [21]. MF composites 

composed by P(VDF) and CFO, Ni0.5Zn0.5Fe2O4 and NiFe2O4 were studied. P(VDF) shows 

different phases, however the α phase processing was used in this study. It was verified 

that with the addition of the nanoparticles previously mentioned, the P(VDF) crystalizes 

in the β-phase. For a ME composite, it is essential that the P(VDF) possesses the β-phase 

due to its piezo-, pyro- and ferroelectric properties, contrary to the α-phase. The study 

also concluded that the concentration and the type of ferrite influences the interaction 

and the interface between the polymer and the ferrite. The β-phase percentage 

increases with the addition of the ferrites. For the CFO ferrite, the β-phase reaches 

around 90 %. It was also concluded that the addition of the ferrite induces a decrease of 

the thermal stability of the polymer [22]. The addition of different quantities of 

nanoparticles, such as CFO and NiFe2O4, in P(VDF) was investigated. It was verified that, 

for the P(VDF) composite to reach 90 % of the β-phase, it is necessary to add 5 weight 

percentage (wt.%) of CFO and 50 wt.% of NiFe2O4. These results Indicate that different 

nanoparticles promote the β-phase at different crystallization rates [23, 24]. The 

nanoparticles surface charge also has a strong influence on the nucleation of the P(VDF). 

The electrical interaction, due to the presence of negative nanoparticle surfaces, will 

interact with the polymeric CH2 groups that have positive charge density. This 
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interaction induces the polymer chains to align on the surface of the nanoparticle 

resulting in the P(VDF) β-phase nucleation [25]. The main issue of the ME composites is 

to understand and control all the processing variables. Polymer-based ME composites 

are prepared to be applied in devices due the high ME effect above room temperature 

and the low cost [14]. 

1.2.2. Structures 

The ME composites are divided in three main structures: particulate (0-3), 

laminate (2-2) and pillar (1-3). The particulate structure 0-3 means that magnetic 

particles (0) are embedded in a ferroelectric film matrix (3). The laminate structure 2-2 

consists in horizontal structures with alternating ferroelectric (2) and magnetic (2) 

layers, or simply a ferroelectric (or magnetic) thin film grown on a magnetic (or 

ferroelectric) substrate. The pillar structure 1-3 are fabricated by vertical structure with 

one-phase nanopillars (1) embedded in a matrix of another phase (3) [26]. Figure 1.3 

illustrates these main structures. 

 

Figure 1.3. Main structures for ME composites; a) particulate, b) laminate and c) pillar [26]. 

 

In order to produce particulate ME composites, different materials such as 

ferrites, piezoelectric ceramics and polymers have been investigated. Similar materials 

have been investigated in laminate and pillar ME composites, but alloys as TD and 

Metglas are the most often used in these structures [27]. 
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1.3. Possible novel morphologies of particulate magnetoelectric 

composites 

In the last decade, many studies have been carried out in the area of ME and MF 

nanostructured materials in order to reach and fill future technological needs [28]. 

Across the interface of such nanostructured ME materials, the electric polarization can 

be coupled to the magnetization, based on the interplay among the lattice, charge, spin, 

and orbital degrees of freedom realized usually by the exchange of certain type(s) of 

potential energy, such as mechanical, electric, and magnetic. Such coupled polarization 

and magnetization can be exploited to significantly improve the performance of many 

devices such as memories, tunable radio-frequency/microwave devices, and magnetic 

sensors [29]. Such structures, can optimize the ME coupling once is possible to control 

of the size, interface and epitaxial strain of the nanostructures [30]. 

The low dimensionality opens a new road of opportunities and challenges [31]. 

At the nanoscale some materials present new interesting effects that should be studied 

and understood. The nanostructured materials present a great potential functionality 

due to the large surface to volume ratio when compared with the bulk. With the 

miniaturization of the ME materials size, applications on medical and biomedical 

engineering could be then explored. Different morphologies with different 

connectivities between the magnetostrictive and piezoelectric materials have been 

produced allowing to obtain innovative structures. In this subchapter, the low 

dimensionality of polymer-based ME composites will be presented, challenges that need 

to be addressed in pursuing practical applications of ME devices will be discussed and 

promising future for research and technology in this field evaluated. 

1.3.1. Morphologies 

Low dimensional materials can be prepared with different morphologies such as: 

film, membrane, fiber, sphere (Figure 1.4), and some unconventional structures. 
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Figure 1.4. Different ME morphologies: film, membrane, fiber and sphere. 

 

Polymer-based nanostructures can be produced by different techniques 

according to the possibilities and limitations of each of them. The physical-chemistry 

properties of the composite material are central factors that will determine which 

method will be adapted.  

Phase inversion, also denoted as polymer precipitation or phase separation 

method, is a demixing process that transforms a polymer solution into solid form 

through the solvent removal. This method is the mostly used process to obtain polymer 

structures due to its versatility and scalability. During the process, the polymer solution 

is separated into a polymer rich and polymer lean phase. The membrane and film 

morphology can be reached by controlling parameters as solution thermodynamics and 

demixing kinetics. Different methods can be used to perform the phase inversion 

process: vapor induced phase separation (VIPS), nonsolvent induced phase separation 

(NIPS) and thermally induced phase separation (TIPS). TIPS is a method based on the fact 

that the solvent quality usually decreases with temperature decrease. After demixing is 

induced, the solvent is removed by extraction, evaporation or freeze drying. A 

membrane is formed from the homogeneous solution, where phase separation is 

induced by removal of the thermal energy. Research in this method was raised due to 

the simplicity of the method, high reproducibility, low defects produced in the polymer 

structure, high porosity and the ability to produce narrow pores with good distribution 

[32, 33]. 
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Figure 1.5.  Electrospinning set-up [34]. 

 

Electrospinning (ES) (figure 1.5) and electrospray techniques allow the 

production of fibers or spheres, respectively. Beyond that, membranes can be easily 

fabricated by these techniques. Both techniques depend on the complex interplay of 

surfaces, shapes, rheology and electrical charge. Those phenomena interact in different 

ways to create charged jets of polymer solutions and molten polymers. The charges are 

usually carried by ions, which may move through the fluid faster, commensurate with, 

or slower than the shape of the fluid changes. For a fixed quantity of fluid, the Coulomb 

repulsion between the charged ions promote the creation of shapes such as a jet, while 

the surface tension of the fluid favors sphere-like shapes with smaller surface area per 

unit mass [35]. When the electrical potential of the surface is increased to a sufficiently 

high value, the electrical forces act in opposition to, and dominate the surface tension 

of the fluid. A charged jet of fluid is then ejected (Taylor cone). During the travel between 

the needle and the collector most of the solvent is evaporated, leaving the polymer dry 

and stack in the collector. A typical ES apparatus contains a high voltage supplier, pump 

system and the collector [35]. The electrospray, self-dispersing in space of the spheres 

due to the highly charged of droplets prevent spheres agglomeration and coagulation. 
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If the solution concentration is high, the jet from the Taylor cone is stabilized, and 

elongation takes place [36]. Among these techniques processing parameters, solution 

properties and ambient conditions are the key for controlling the polymer morphology. 

Molecular weight, concentration, viscosity, solvent volatility, applied voltage, flow rate, 

needle diameter, temperature and humidity are the main parameters that influence the 

obtained microstructure. 

ME films are the most studied morphologies by the scientific community, due to 

their easy processability and fabrication. Since the thesis is focused on new ME 

morphologies, the state of art on ME membranes, nanofibers and microspheres will be 

highlighted. 

1.3.1.1. Membranes 

Membranes and porous films have a central role on different areas such as 

environment, energy, chemical and medical industries. Pores based morphologies are 

one of the most promising functional materials due to the outstanding properties and 

their applicability. As porosity provides a great tool to strain engineer nanostructured 

materials and the high surface area of porous materials opens new ways of opportunity 

for ME composites (pores can host several kinds of materials), ME porous materials can 

be an added-value on the ME area. Nevertheless, just few studies [37-40] are devoted 

to this subject. 

Quickel et al. [37] created ME porous structures, based on nanoporous Bismuth 

ferrite (BiFeO3) through epitaxy-free wet chemical methods. By comparing porous 

materials with non-porous films (produced using analogous methods), it was found that 

the porous ones reveal large changes in saturation magnetization – MS - (0.04 to 0.84 

μb) as a result of the application of an electric field.  

A different study on nickel ferrite-PZT bulk composites performed by Petrov et 

al. [38] has shown by theoretical and experiment methods, that porosity has influence 

on ME response. The changes made on ferrite included Co substitution and Fe deficiency 

that resulted in a high resistivity for the ferrite and an improvement in the ME voltage. 

Results shown that the ME coefficient (at low frequency) decreases linearly (from 50 to 

10 V.cm-1Oe-1) as the sample (60 vol.% ferrite and 40 vol.% PZT) porosity increases from 
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5 to 40 %. Experimental data were in good agreement with the theoretical calculations 

allowing to produce composites with the desired and tailored ME parameters. 

Using the same piezoelectric material, PZT, but changing the magnetostrictive 

one, CFO, Xu et al. [39] reported a new method for fabrication of ME porous composites. 

In such work, a combination of methods as tert-butyl alcohol (TBA)-based freeze-casting 

technique, a chemical solution deposition method, and an impregnation process were 

used, leading to composites with different volume fractions of PZT, with stable and 

excellent dielectric behaviors, good ferroelectricity and ferromagneticity. The ME effect 

of the composite was dependent on the PZT and CFO content, namely the composite 

with PZT volume fraction of 0.5 and CFO mass fraction of 0.2 presented a maximum ME 

coefficient of 2.2 mV.cm-1.Oe-1. The study also indicated that the ME coefficient of the 

composites saturate at 3 kOe, suggesting that samples are applicable for relatively weak 

magnetic fields application devices. However, the samples present low ME coefficient. 

The lower response observed in such porous structures, compared with other ME 

composite structures, was due to the leakage current caused by the 3-1 structure. The 

authors stated that a better coupling between the CFO nanoparticles and PZT matrix is 

necessary, as well as the decrease of the influence of low resistance of ferromagnetic 

phase on depolarization of the piezoelectric phase. One of the most innovative 

approaches to solve this problem is the use of a polymer matrix. Following this line, 

novel multifunctional porous membranes suitable for advanced applications, ranging 

from biomedical to water treatment, have been established by the integration of 

magnetic CFO nanoparticles into P(VDF-TrFE), taking advantage of the interactions 

between the magnetostrictive filler and the piezoelectric polymer. The porous 

membranes showed a piezoelectric response with an effective piezoelectric coefficient 

(d33) coefficient of ≈20 pC.N-1 , a maximum magnetization of ≈10 emu.g-1 and a 

maximum ME coefficient of ≈10 mV.cm-1 Oe-1.  

A high-voltage corona discharge system (point-to-plane type) has been 

constructed by Zhang et al. [40] aiming to improve the ME response of porous 

polypropylene (PP) and polyvinyl chloride (PVC) composites. As a result of the 30 kV 

voltage, electrical charges are induced due to the Parson Breakdown during the corona 

discharge procedure. Furthermore, the ME responses between discharged and non-
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discharged porous PP and PVC have been measured and compared, being found that 

the porous PP shows better charge storage ability, leading to fine ME effect response. A 

higher ME current was generated in the corona discharged porous PP than in the 

discharged PVC, which was subjected to 0.1 mT AC magnetic field and 0 mT DC magnetic 

field, while frequency was in the range 0-4000 Hz. The main result of this work was the 

suggestion that charges injected in the polymers can induce ME responses on porous 

structures.  

Despite these promising studies, that open the door for innovative applications 

ranging from biomedical or drug delivery systems to water treatment, more works are 

needed in this area in order to validate their added value. 

1.3.1.2. Fibers 

The diameter of electrospun polymer fibers span more than four orders of 

diameter, with nanofibers that have cross-sections containing fewer than 10 elongated 

polymer macromolecules at one end of the range, and conventional textile fibers at the 

other. Polymer nanofiber technology continues to evolve rapidly as the usefulness of 

nanofibers becomes apparent to a growing number of applications [35]. Additionally, 

fiber structure allows a good demonstration of intrinsic ME coupling without the 

substrate clamping such as the one obtained with thin films. Once the aspect ratio is 

enhanced, the mechanical displacement can be amplified by the piezoelectric or 

magnetostrictive effect leading to an improved ME coupling [41]. 

As in the case of ME membranes, the first reports on ME fibers were related with 

piezoelectric ceramic-based materials.  Zhao et al. [42] produced Aurivillius Bi5Ti3FeO15 

(BTF) MF nanofibers using ES with further calcination. In order to provide fiber structure, 

the polymer polyvinylpyrrolidone (PVP) was used and removed by one calcination step, 

being obtained fibers with ≈ 400 nm. For ME measurements the MF sample was pressed 

in a pellet and fixed in a rigid sample shelf. The ME coefficient was then measured in a 

DC magnetic field of 300 Oe and frequencies ranging between 0.5 and 126 kHz. Such ME 

coefficient reached a maximum of 14 mV.cm-1.Oe-1 at 16 kHz. It was also observed that 

the phase remains almost unchanged as a function of frequency. From the technological 

applicability point of view, the phase information near the resonance frequency is very 
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important when ME elements are joined together. One of best innovations achieved in 

this field was the study of the weak coupling behavior of macro-ferroelectric and ME 

due the non-sintering and pressing process and the filled air. Nevertheless, the results 

offer new comprehensions into the design and application of promising lead-free MF 

materials for novel devices [42]. 

In the case of the fiber structure, no studies were reported on polymer-based 

ME. This shows that a new area of innovation and opportunities are open to be explored. 

The applicability of fiber morphology is vast and the expected ME effect is high due the 

large surface area of magnetostrictive nanoparticles within the piezoelectric polymer 

fibers.  

1.3.1.3. Spheres 

The sphere coating with a different material is a relatively new and a promising 

research area. The coating not only changes the surface of the sphere but also its 

interaction and properties, such as catalytic, optical, magnetic and others. In this way, 

new functionalities can be added to a material only depending on the coating used. 

Ceramic-based ME spheres are the most studied, due to their high ME coefficient 

when compared with the polymeric analogues. Particles like BCZT/CFO, BTO/ nickel 

ferrite (NFO), CFO/BaTiO3, SiO2/Ni, SiO2/Fe3O4, BaTiO3/Fe3O4, PZT/Fe3O4 are some 

examples of ceramic-based ME spheres. The techniques used for the preparation of 

these particles vary between sol-gel, hydrothermal, solid state and others.  

Kumar et al. [43] synthetized a core-shell BCZT/CFO composite by a co-sol-gel 

technique. In this study, it was demonstrated that the sample revealed a ferromagnetic 

ordering at room temperature with a MS of 14.93 emu.g-1 and a remnant magnetization 

of 6.93 emu.g-1. The composite exhibited a ME coefficient of 12.15 mV.cm-1.Oe-1 and 

presented highly sensitivity to the AC magnetic field [43]. 

In another study, Srinivasan et al. [44] reported a magnetic-field-assisted-

assembly of barium titanate (BTO)/NFO core-shell particles (BTO/NFO) produced by 

chemical self-assembly. Linear chains were formed at low particle concentrations, 

evolved into 2D and 3D arrays at high particle concentrations. One of the studies 

estimated the ME coefficient for a free- standing BTO-NFO core-shell particle and then 
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extended the model to include an array of linear chains of the particles. One of the main 

results obtained predict a reduction in ME coefficient for the array compared to isolated 

core-shell particle. This decrease is due to dipole-dipole interactions and 

demagnetization and depolarizing effects [44]. 

Chaudhuri et al. [45] synthetized CFO/BaTiO3 nanocomposites by hydrothermal 

and sol-gel techniques. A comparative study with CFO, CFO-BTO mixture and CFO-BTO 

core-shell particle was performed. It was proved that the magnetostriction of the CFO-

BTO core-shell nanocomposite is higher than the CFO-BTO mixture; there results that 

are theoretical reinforced once the microstrain of the core-shell nanoparticles was much 

higher (≈2 times) than the CFO-BTO mixture. As expected, the ME coefficient for the 

core-shell was higher (8.13 mV.cm-1.Oe-1) than the mixture (0.10 mV.cm-1.Oe-1). This 

substantial difference between the ME coefficient is also explained by the aggregation 

and irregular form which act as conductive channels to disable the poling effort [45]. 

The main problems in the production of the abovementioned ceramic spheres 

are the agglomeration, the high temperatures needed for the processing and the use of 

reagents with high toxicity and vapor pressure. This agglomeration can reach 20 μm of 

diameter in the worst cases. The use of a polymer as piezoelectric phase, instead of a 

ceramic, is a good way to avoid such issues. Since the polymer can be more easily 

functionalized, further properties may be added beyond the ME response. 

1.3.2. Materials for polymer-based composites   

According to chapter 1.1.1. different materials can be used to obtain a ME 

composite. The piezoelectric polymer P(VDF) is one of the most promising materials for 

the development of polymer-based ME composites. On the other hand, the CFO 

nanoparticles are one of the most studied particles in ME composites. These two 

materials were intensively studied due to their outstanding properties. As each material 

in particular presents high piezoelectric (P(VDF)) and magnetostrictive (CFO) responses, 

the combination of these two materials is expected to provide a suitable polymer-based 

ME composite. 
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1.3.2.1. Poly(vinylidene fluoride) 

Poly(vinylidene fluoride) - P(VDF) - and its copolymers offer unique advantages 

over piezoelectric ceramic, like flexibility and therefore can be formed easily on to the 

curved surfaces. Further, P(VDF) is chemically inert, tough, creep resistant and has good 

stability when exposed to radiation [46]. In addition, it has a low density along with low 

dielectric permittivity resulting in a very high voltage coefficient [47]. P(VDF) is a 

semicrystalline polymer which exists in five different phases: α, β, γ, δ and ɛ. Those five 

distinct crystalline phases are related to different chain conformations designed as all 

trans (TTT) planar zigzag for the β-phase, trans-gauche–trans-gauche (TGTG′) for the α 

and δ phases and T3GT3G′ for γ and ɛ phases [46]. Of the five distinct phases that P(VDF) 

can assume, α and β phase are the most common (mechanical drawing contributes to 

the transition of the original α structure into β-phase – Figure 1.6); nevertheless β-phase 

and δ-phase are the only ones exhibiting a spontaneous polarization, thus 

piezoelectricity, being for such reason the most suitable for ME applications. 

 

Figure 1.6. Conversion of α-crystalline conformation into β-crystalline conformation [48]. 

 

In order to improve the P(VDF) properties and to adapt it to the increasing 

technological demands, different copolymers of P(VDF) such as poly(vinylidene fluoride-

trifluoroethylene) (P(VDF-TrFE)) and poly(vinylidene fluoride-hexafluoropropylene) 

(P(VDF-HFP)) have been developed. P(VDF-TrFE), is the most studied copolymer on ME 

laminates. Contrary to P(VDF), and in precise molar ratios, it always presents the 
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ferroelectric crystalline β-phase, since the addition of the third fluoride in the TrFE 

monomer unit, with a large steric hindrance, favours the all-trans conformation and 

therefore prompts the ferroelectric β-phase, independently of the used processing 

procedure: melting or solution casting. This situation occurs when the monomer 

vinylidene fluoride (VDF) content is between 50 and 80 %, corresponding also to the 

ferroelectric behavior of the copolymer [46]. Moreover, the high degree of crystallinity 

and the preferred orientation of the well grown crystallites explain the higher remnant 

polarization (∼110 mC.m−2) present when compared with P(VDF), which, in turn, gives 

rise to a larger electromechanical coupling factor, k, that is translated into a higher 

efficiency in mechanical to electrical transformation, that is very useful for use in ME 

composites. 

1.3.2.2. Cobalt Ferrite 

Ferrite properties can be improved with the incorporation of divalent metallic 

ions inside their structure. One element that promotes that improvement is cobalt. 

Cobalt increases the coercivity due the growth of magnetocrystalline anisotropy 

resultant from the coupling of the spins of the cobalt and iron ions. Cobalt ferrite has as 

molecular formula CoFe2O4, is a cubic ferrite with an inverse spinel structure. The 

anisotropy constant of CFO is higher than that of the common ferrites as magnetite and 

maghemite [49]. The MS changes with size and temperature. The MS values vary 

between 53 and 79.5 emu.g-1. For CFO the maximum value was 79.5 emu.g-1 for 48 nm 

nanoparticles close to the bulk value of 80.8 emu.g-1 (figure 1.7) [50]. 
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Figure 1.7. MS as function of CFO nanoparticle size (nm) at maximum applied field of 15 kOe [50]. 

 

A decrease in nanoparticle size results in a decrease in coercivity and MS, 

whereas the susceptibility and anisotropy constant have been reported to increase. Due 

to high value of magnetostriction, high Curie temperature (520 °C), low cost and easy 

processability, polycrystalline CFO can be a better alternative for magnetostrictive 

material against the currently used alloy-based magnetostrictive material [51]. 

Furthermore, CFO nanoparticles show large chemical stability, mechanical hardness, 

wear resistance and are easy to synthetize [52]. 

1.4. Novel application perspectives   

ME materials in general, and polymer-based ME materials in particular, are 

interesting for an increasing number of technological applications, in particular, for 

sensors and actuators. Polymer-based ME nanocomposites have attracted considerable 

attention in recent years. Such structures are a current and future topic of interest for 

studies on the physics of ME interactions and application from micro to nanoelectronics. 

Innovative techniques, methodologies and procedures need to be developed and 

optimized for measurements of accurate direct and inverse ME effects in those 

structures [2]. Some of the applications of the ME polymer-based composites are: 

magnetic field sensors, transducers, filters, oscillators, phase shifters, memory devices 

and biomedical materials [5, 12, 14]. 
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Novel areas of application are emerging in the biomedical field. In particular, 

controlling the functions of the biological macromolecules has become one of the areas 

with more study efforts in biology, biomedical and biotechnology. In order to stimulate 

cell functions, approaches as using heat generated by hysteresis losses of magnetic 

nanoparticles placed in high magnetic field frequency and mechanical agitation of the 

nanoparticles attached to the cells using external low magnetic field frequency. 

A few existing articles [53-55] of ME nanoparticles do not report the ME 

coefficient. The extrapolation of the ME coefficient is based on laminated ME 

composites. At the present, the polymer-based ME composite with higher ME 

coefficient is a laminated ME obtained by Jin et al. with a cross-linked P(VDF-

TrFE)/Metglas 2605 with 383 000 mV.cm-1.Oe-1 [53]. Nanoparticles under the 50 nm are 

estimated to possess a ME coefficient of 5 V.cm-1.Oe-1 , and thus generate 25 mV under 

100 Oe of magnetic field. This voltage is sufficient to trigger action potential in nerves 

and to control ion transport through ion channels. Further, it is expected that by 

increasing particle size to 1 μm, the voltage generated can be increased by 2 orders of 

magnitude [54]. The literature does not possess enough available data on polymer-

based ME composites but these materials are intriguing for reasons such as: the capacity 

of no particles agglomeration in the absence of an external field (due to polymer 

functionalization) and the biocompatibility of some polymers that allows the 

bioapplications of these materials [54]. 

One example of applicability of a polymer-based ME composites was performed 

with P(VDF-TrFE) with TD in order to study the ME effect on tissue growth. Through an 

external AC magnetic field, the poled composite in contact with the cell culture provides 

the cell growth when compared with a non-poled composite. The study shows that the 

mechanical and electrical stimulus play an important key role on pre-osteoblast cell 

growth, which was enhanced up to 25 % [55].  

With polymer-based ME spheres new applications areas can be opened and solve 

some of the drawbacks reported before. The use of these kind of materials as 

biomaterials for cell culture, drug delivery, and others, is expected to increase when 

suitable materials are available. The low size ME nanoparticles can be million times 

smaller than the size of a typical mammalian cell, allowing them to easily accommodate 
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inside the cells. They can also propagate through the bloodstream, reaching the vascular 

system. These properties will allow the possibility to direct the particles to a specific 

organ. The addition of magnetostrictive materials into the piezoelectric spheres allows 

the improvement of the applications of the polymer spheres as magnetic nanosensors 

and actuators, and also, to take advantage of the induced ME phenomenon. The main 

drawback of the polymer-based ME is the time-consuming ME voltage coefficient 

determination. It can be theoretically predicted using simulation software or using other 

equipment as Piezoelectric Force Microscopy (PFM) with an applied magnetic field. 

These kind of materials present a vast applicability in low size devices and 

biotechnology. 

1.5. Objectives 

In the present thesis, new polymer-based ME materials were produced, 

characterized, optimized and their potential for applications was evaluated. Particulate 

ME composites were produced from materials with strong piezoelectricity (P(VDF)) and 

magnetostrictive (CFO) responses in the form of film, membranes, fiberes, and spheres. 

The composites were evaluated and characterized at different levels: morphological, 

structural, thermal, dielectric, piezoelectric, magnetic and ME properties. The 

innovations rely on different levels, as new polymer composites and novel polymer 

preparation techniques were used and, therefore, highly performant ME materials were 

obtained with improved coupling and flexibility. 

Thus, the main objectives of this work: 

 To obtain, in the form of films, membranes, fibers and spheres, new and highly 

responsive and reliable ME composites based in electroactive polymers. 

 To get a deeper knowledge of the origin of the ME effect, together with the 

structural, dielectric, magnetic, thermal and electromechanical properties of the 

composites and their relationship. 

 To relate the processing conditions with the microscopic and macroscopic 

response of the materials. 
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 To determine and optimize the range of applicability of these materials both 

from the point of view of the physical and chemical parameters and also the 

areas of applications. 

1.6. Structure of the thesis 

The present thesis is divided in five chapters where three of them are based on 

published/submitted scientific papers. Beginning with an introduction of the basic 

concepts of the ME materials, the techniques used to obtain the different morphologies 

of the materials used. The piezoelectric and the magnetostrictive materials used, P(VDF) 

and CFO, respectively, were selected due their high quality characteristics, as well as, 

the high piezoelectricity and magnetostriction. After the introduction of the main 

concepts, a state of art for each polymer-based ME morphology 

(film/membrane/fiber/sphere) reported in the literature was presented.  

Each chapter between two and four are dedicated to each of the morphologies 

of the ME composites previously indicated. In the case of film morphology, a study of 

the fillers dispersion, size, nucleation and anisotropy was evaluated in order to obtain 

knowledge on the origin of the ME effect. After this understanding, other morphologies 

were studied, such as membranes, fibers and spheres morphologies. Subsequently, a 

brief summary of each chapter is made. 

Chapter 1 covers the main ME concepts, presenting the main structures of ME 

materials. The importance and advantages of polymer-based ME novel morphologies is 

presented with a state of art for each one of them. A deeper study of the state of the 

art is included in each of the corresponding subchapters. The piezoelectric and 

magnetostrictive materials selection is also discussed. A short subchapter with the main 

novel application areas and finally the objectives and the structure of the thesis are 

reported. 

Chapter 2 presents some studies on magnetostrictive filler/piezoelectric 

polymer-based ME composite films: the effect of dispersion, size, nucleation and filler 

anisotropy are reported. Each one of these studies leads to a full understanding of the 

ME mechanism.  
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Chapter 3 is dedicated to CFO/P(VDF-TrFE) ME membranes. Their ME response, 

magnetic properties and morphology were evaluated and shows high interest, due to 

their permeability and high porosity, allowing biomedical applications. 

Chapter 4 reports two different morphologies: fibers and spheres. Their 

production is based on electrospinning and electrospray techniques, for nanofibers and 

microspheres respectively. Similar parameters were used for each morphology. The ME 

effect was proved in such morphologies. 

Finally, Chapter 5 presents the main conclusions of the thesis, as well as, the 

suggestions for future works. 
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Chapter 2 
Development of magnetoelectric films 

 

Studies on magnetostrictive filler/piezoelectric polymer ME composite films are 

presented and discussed as a function of filler dispersion, size, and anisotropy.  
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2.1. Introduction 

Magnetoelectric (ME) materials have attracted large interest due to the cross-

correlation between the magnetic and electrical orders of matter [1, 2], allowing the 

development of technological applications such as multifunctional devices, transducers, 

actuators and sensors, among others [3, 4]. Thus, one of the major challenges in the ME 

research area is to obtain composites with a feasible production method, a flexible 

structure and without large leakage currents. A possible way to correspond to this quest 

is to use particulate piezoelectric polymer/magnetostrictive nanoparticle 

nanocomposites [5, 6]. 

As one of the most relevant piezoelectric polymer, P(VDF-TrFE) in the poled 

ferroelectric phase exhibits one of the highest piezoelectric responses among polymer 

materials over a wide range of temperatures depending on its composition [7]. 

Polymeric composites may be formed directly from a melt or cast solution, the 

piezoelectric properties are also strongly dependent on the poling process [6]. 

Ferrites are an important class of magnetic materials that have gained increasing 

attention of the scientific community due to their wide range of applications in sensors, 

communication, electronics, magnetic recording, microwave absorption-based devices, 

electrical and automobile industries as well as their increasing use in biotechnology and 

biomedical applications [8-11]. Particularly, nanosized ferrites have attracted large 

consideration due to their interesting surface reactivity, electrical and magnetic 

properties, which are largely influenced by the nanostructured phase [8, 12, 13]. 

Additionally, ferrites are used as magnetostrictive phase in ME composites since they 

show the largest magnetostrictive coefficients together with high Curie temperatures 

among different magnetic oxide materials [14-16]. 

It is theoretically predicted and experimentally proven that high ME response 

appears in the 0–3 particulate composites with high magnetic phase concentration [3, 

17]. However, the percolation of the randomly dispersed ferrite phase with low 

resistivity makes the electric poling of the composites difficult and the ME properties 

are reduced because of leakage. In this way, the dispersion of the low-resistance ferrite 
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nanoparticles in the piezoelectric matrix has to be optimized in order to obtain a 

significant ME effect [18]. 

For polymer-based ME materials, the polymer has to be in the electroactive 

phase, which for P(VDF) is the β-phase. The β-phase of P(VDF) can be produced by 

conventional polymer processing technologies. Although the nucleation mechanism is 

not unambiguously stablished, most authors point to the fact that the essential factor 

for the nucleation of the β-phase on P(VDF) nanocomposites is the static electric 

interaction between the fillers with a negative surface potential and the CH2 groups 

having a positive charge density [19-24]. The main evidence of such mechanism comes 

from of the inclusion of ferrite nanoparticles, that when were modified with positively 

charged molecules, lose the ability to induce the formation of the polar phase of P(VDF) 

[19]. Nevertheless, and surprisingly, the induced formation of dominating β-phase in 

P(VDF) is sometimes attributed to the interaction between the positively charged 

surfaces of fillers and the CF2 dipoles in P(VDF) chains [21, 25, 26]. 

As rare earth elements are expensive, cytotoxic, show nonlinear response at high 

fields (2 kOe), and are hysteretic at lower fields, the applications of large 

magnetostrictive materials such as TD has been restricted [27-29]. Thus there is an 

urgent need for suitable magnetostrictive nanomaterials which are efficient in their 

performance, cheaper, non-cytotoxic and with anhysteretic magnetic response, having 

Fe3O4 emerged as one of the most suitable choice [27, 30]. Allied to their 

biocompatibility, Fe3O4 nanoparticles are characterized by excellent electrical, optical 

and magnetic properties, are easy to prepare, showing a very active surface for 

adsorptions or immobilization of metals and ligands, which can be separated by 

magnetic decantation after the reaction [31-33]. On the other hand, the 

magnetostrictive response of Fe3O4 needs to be optimized for values of the same order 

of magnitude as CoFe2O4 in order to be competitive for application in magnetostrictive 

and ME devices [3, 30, 34]. It is noteworthy that despite the unique properties of Fe3O4 

nanomaterials, and knowing that in nanoscale regime, the particles are usually single 

domain and their magnetostrictive properties are mainly governed by particle size, size 

distribution, shape and surface effects [27, 32]. There are no studies reporting on the 

effect of particle size on the magnetostrictive properties of Fe3O4 nanoparticles. This 
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fact is intimately related to the difficulty of measuring the magnetostrictive properties 

of Fe3O4 nanoparticles on the nanoscale and in their dispersed state [35]. 

ME coefficients, ranging from 1 to 400 000 mV.cm-1.Oe-1, obtained on polymer-

based ME nanocomposites allow the fabrication of magnetic sensors with enormous 

potential for other byproducts related to them: electric current sensors, speed sensors, 

angular sensors, electronic steering, throttle control, battery management, vehicle 

transmission, digital compasses and GPS devices [3, 7]. Additionally, it has been reported 

that the ME magnetic sensors exhibit larger application prospects in geomagnetic field 

measurements when compared to traditional magnetic sensors such as 

magnetoresistant sensors or fluxgate sensors [36-38]. In general, high ME anisotropy is 

critically necessary for ME single-axis sensors, which are capable of probing the 

magnitude as well as the direction of the magnetic field vector [37]. 

This new concept of anisotropic ME magnetic sensors, despite having high 

interest in applications such as navigation, motion tracking, sports and healthcare, 

remains vaguely explored, [37, 39-41], with it being not possible to find in literature 

reports on anisotropic magnetic sensors built on ME polymer-based materials. 

In order to enhance the magnetostrictive/ME performance, current research is 

focused on obtaining a nanostructured material, which exhibits higher magnetostrictive 

strains [42]. Such enhancement on the nanostructure’s magnetostriction can further 

open new application directions such as in ME stimuli for tissue engineering applications 

[43, 44]. 

ME film morphology is the most studied morphology due to its easy 

processability and fabrication. Beyond that, in film morphology it is easier to measure 

and characterize the composite when compared with other morphologies such as fibers 

and spheres. In that order, macro- and microeffects of the filler should be studied in 

such morphology. To understand the effects of the magnetostrictive CFO filler in the ME 

P(VDF) based composite, the effect of filler dispersion, size and anisotropy was 

evaluated. First of all, the dispersion method used to prepare the ME composites was 

investigated. In this study, the ultrasound and the surfactation methods were compared 

in order to study the more efficient dispersion method. With the intention of understand 
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how filler size influences the ME effect, three different Fe3O4 nanoparticles (9, 30 and 

50 nm) were synthetized and used to prepare P(VDF-TrFE) based composites. In this 

study, P(VDF-TrFE) was used instead the P(VDF) due to necessity of guarantee the total 

β-phase nucleation and just to focus on the influence of the nanoparticle size. Beyond 

that, the nucleation effect of the filler on the piezoelectric polymer phase of P(VDF) was 

also studied. The same three nanoparticles and a Fe3O4 nanorods (NRs) were used for 

the preparation of P(VDF) composites. In this study not only the size but also the filler 

morphology (spherical and rod) were studied. Last but not least, the effect of the 

anisotropy of the filler in the ME response was evaluated. The study consisted in 

measuring the ME response of P(VDF-TrFE) composites with FeO(OH) and CoFeO(OH) 

nanosheets. According to this, the chapter will be divided with a subchapter in which 

materials and methods are indicated, followed by subchapters in which dispersion, size 

and nucleation and anisotropy studies are described. 

2.2. Materials and methods 

In this subchapter each materials and experimental methods will be presented 

according to the corresponding study: dispersion, size and nucleation and anisotropy. 

2.2.1. Materials 

Evaluation of the filler dispersion on the piezoelectric and magnetoelectric 

response 

All the chemicals and nanoparticles were used as received from the suppliers: 

CoFe2O4 nanoparticles were purchased from Nanoamor with dimensions between 35-

55 nm. N,N-dimethylformamide (DMF, pure grade) was supplied by Fluka, P(VDF-TrFE) 

was supplied by Solvay Solexis and citric acid was supplied by Sigma-Aldrich. All the 

chemicals were used as received without further purification. 

Evaluation of the filler size on the magnetostriction, polymer phase nucleation 

and magnetoelectric response of polymer composites 

Potassium nitrate (KNO3, ≥ 99 %) were purchased from Fluka and ethanol 

absolute from Panreac. Iron (III) acetylacetonate ([Fe(acac)3], ≥ 97 %), ferrous sulfate 

heptahydrate (FeSO4.7H2O, ≥ 99 %), iron(III) chloride hexahydrate (FeCl3 6H2O 99 %), 
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sodium citrate tribasic dihydrate (99 %),  triethylene glycol (TREG, 99 %), sodium 

hydroxide (NaOH, ≥ 98%), L-lysine crystallized (≥ 98 %), hydrogen peroxide (H2O2, 30 %), 

oleylamine (70 %) branched polyethyleneimine (PEI, Mw 25,000),  sulfuric acid (H2SO4, 

95-98 %), hexane (99.5 %), toluene (99.5 %), N,N-dimethylformamide (DMF, 99.8 %) and 

ethyl Acetate (HPLC grade) were purchased from Sigma-Aldrich. P(VDF-TrFE) and P(VDF) 

powder was purchased from Solvay. All the chemicals were used as received without 

further purification.  

Development of anisotropic magnetoelectric polymer composites 

P(VDF-TrFE) was obtained from Solvay and sulfuric acid (H2SO4 with purity 

ranging 95-98 %), potassium nitrate (KNO3 with purity higher than 99 %), cobalt (II) 

chloride hexahydrate (CoCl2.6H2O), ferrous sulfate heptahydrated (FeSO4.7H2O with 

purity higher than 99 %), sodium hydroxide (NaOH with purity higher than 98 %) and L-

lysine crystallized (C6H14N2O2 with purity higher than 98 %) were obtained from Sigma 

Aldrich Corporation. N,N-Dimethylformamide (DMF, with pure grade) was supplied by 

Fluka.  All chemicals were used as received without any extra treatments. 

2.2.2. Methods 

The methods used for each study were divided in processing and 

characterization methods. Each method was divided in the corresponding study. 

2.2.2.1. Processing methods 

Evaluation of the filler dispersion on the piezoelectric and magnetoelectric 

response 

Composites were prepared by two alternative routes leading to very different 

dispersion levels of the ferrite nanoparticles in the polymer matrix: 

a) The first method consists of using nanoparticles surfactated with citric acid and 

later added to DMF [45]. 

 

b) The second method consists of adding the desired amount of nanoparticles to 

the DMF solvent and then place the solution in an ultrasound bath during 8 

hours.  
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Further, the obtained mixtures were placed in a Teflon mechanical stirrer with 

ultrasound bath for complete dissolution of the polymer during 2h. This method is an 

improvement of the one reported in [46] since the ultrasound absence during the 

mechanical agitation meant that non surfactated ferrite nanoparticles lead to 

agglomerates of ≈30 μm [46].  

Flexible films were obtained by spreading the solution on a clean glass substrate. 

Solvent evaporation was first performed inside an oven at a controlled temperature of 

210 °C for 10 min. Crystallization was achieved by cooling down the samples to room 

temperature. The ferrite nanoparticle content varied from 3 to 80 in wt.%, 0.01 to 0.59 

in volume fraction, and the thickness of samples was controlled to be approximately 

50 μm. 

Evaluation of the filler size on the magnetostriction, polymer phase nucleation 

and magnetoelectric response of polymer composites 

a) Synthesis of 9 nm Fe3O4 magnetic nanoparticles. 

Water-soluble superparamagnetic iron oxide nanoparticles were synthesized by 

a polyol-mediated method scaling up the synthesis procedure previously described [47, 

48]. 4.5 g of [Fe(acac)3] were vigorously mixed with 90 mL of TREG in a three-neck round-

bottom flask equipped with a mechanical stirrer and degassed with Ar. The resulting 

mixture was heated at 15 °C.min-1 to 180 °C and held at this temperature for 30 min in 

order to achieve the decomposition of the [Fe(acac)3] precursor. After that, the mixture 

was heated again at 5 °C.min-1 to reach 280 °C and kept at this temperature for 30 min 

under reflux. The resulting dark solution was cooled to room temperature. After the 

reaction, the nanoparticles were washed 3 times with a mixture of ethyl acetate and 

ethanol (9:1) and separated using a magnet. The precipitated nanoparticles after 

washing cycle were redispersed in polar solvents such as water. 

b) Synthesis of 30 nm and 50 nm Fe3O4 magnetic nanoparticles 

Fe3O4 magnetic nanoparticles (MNPs) with an average particle size of 30 nm and 

50 nm were synthesized by an oxidative hydrolysis method, following a synthesis 

pathway described in previous works [49]. Briefly, 30 nm Fe3O4 MNPs were produced in 

a two-stage continuous flow polytetrafluoroethylene (PTFE)-microreactor. The reagent 
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solutions were prepared as follows. In a 500 mL vessel (solution 1), a 444 mL solution of 

180 mM KNO3, 162 mM NaOH and 1.85 mM L-lysine was prepared using deionized 

water. In other 500 mL vessel (solution 2), a 444 mL solution of 13 mM ferrous sulfate 

heptahydrate and 3.38 mM sulfuric acid was prepared using deionized water. Argon gas 

was bubbled in each solution for 15 minutes. After deoxygenation, solution 1 and 

solution 2 were filled in a 60 mL plastic Becton Dickinson syringes.  In the first stage, 

solutions were pumped at a flow rate of 1.87 mL.min-1 with residence time of 1 min and 

were mixed in a PEEK polymer Y junction located in an ultrasound bath. Sonication was 

carried out by maintaining the temperature in between 25 and 30 °C, using a cooling 

bath. In a second stage a H2 gas stream was introduced in a PEEK Y junction to form a 

H2-liquid segmented flow and heated at 100 °C. The synthesized nanoparticles were 

centrifuged at 10 000 rpm for 10 minutes, then washed twice with distilled water and 

finally resuspended in distilled water. 

50 nm Fe3O4 MNPs were produced in a mechanical mixed batch reactor. A 40 mL 

aqueous solution 0.1 mM KNO3, 90 mM NaOH and 1 mM of L-Lysine were bubbled with 

Argon during 15 minutes. Subsequently, 4.4 mL of an aqueous solution containing 65 

mM FeSO4.7H2O and of 17 mM H2SO4 was added dropwise under constant stirring. 

When the addition was completed, argon was allowed to pass for another 15 minutes 

and the suspension was heated at 90 °C for 1 hour in an oil bath. The synthesized 

nanoparticles were centrifuged at 10 000 rpm for 10 minutes, then washed twice with 

distilled water and finally re-suspended in distilled water. 

c) Synthesis of Fe3O4 nanorods 

Fe3O4 nanorods (NRs) were obtained by reduction of as prepared feroxyhyte (β-

FeO(OH)) NRs, according to the method reported by Aslam et al. [50] in a typical 

synthesis, β-FeO(OH) NRs were prepared by mixing 5.6 g of FeCl2 6H2O and 0.2 ml of PEI 

in 100 ml of deionized water. The mixture was heated to 80 °C under stirring in a reaction 

flask during two hours. The resulting NRs were washed by centrifugation at 6000 rpm 

during 15 min. 

β-FeO(OH) NRs were reduced to Fe3O4 NRs using oleylamine (9 mmol) mixed with 

120 mg of β-FeO(OH) NRs in a three necked round bottom flask under argon 



Chapter 2 – Development of magnetoelectric films 

38 
 

atmosphere. The mixture was heated to 200 °C during 4 hours under vigorous stirring. 

The product was precipitated by magnetic separation in mixtures hexane:acetone (1:1) 

to remove the excess of oleylamine. 

d) NRs surface modification with PEI 

Fe3O4 NRs were treated to surface modification with polyethyleneimine (PEI) to 

make them stable. The ligand exchange was done by heating 100 mg of NRs dispersed 

in 10 ml of toluene and 2 ml of PEI in 10 ml of DMF. The solution was heated at 80 °C 

overnight under argon atmosphere. After the reaction solution was cooled to room 

temperature, NRs were obtained by magnetic separation and washed three times with 

ethanol to remove the excess of PEI, and finally dispersed in water. 

e) Fabrications of Fe3O4 nanostructures/P(VDF) (and P(VDF-TrFE)) composites 

In order to obtain a good nanostructure dispersion it was used and experimental 

procedure that ensures a good dispersion of nanofillers [51, 52], briefly a mixture of 

magnetic nanostructures in DMF was first placed in an ultrasound bath for 8 h. After this 

period of time, P(VDF) (or P(VDF-TrFE)) powder was added to the solution. Complete 

dissolution of the polymer was achieved by using a Teflon mechanical stirrer 

incorporated in the ultrasound bath during 1 h. Flexible nanocomposite films with an 

average thickness of ≈ 50 µm and with filler content of 1 wt.% were obtained by 

spreading the solution at room temperature on a clean glass substrate. Such wt.% of 

magnetic nanofiller was chosen as previous studies showed that such content is capable 

to effectively nucleate a significant amount of the P(VDF) in the β-phase [7, 19, 53, 54], 

suitable for the present investigation. 

Three different magnetic/P(VDF-TrFE) nanocomposites were obtained with ≈9 

nm Fe3O4 nanoparticles (NP 9 nm); with ≈30 nm Fe3O4 nanoparticles (NP 30 nm) and 

with ≈50 nm Fe3O4 nanoparticles (NP 50 nm). Four distinct magnetic/P(VDF) 

nanocomposites were obtained: composites with ≈ 9 nm Fe3O4 nanoparticles (NP 9 nm); 

with ≈ 30 nm Fe3O4 nanoparticles (NP 30 nm); with ≈ 50 nm Fe3O4 nanoparticles (NP 50 

nm); and with Fe3O4 NR.  

Solvent evaporation was carried out, after sample melting, at a controlled 

temperature of 210 °C inside an oven (SELECTA, 2000). 
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Development of anisotropic magnetoelectric polymer composites 

a) Synthesis of nanostructures 

The feroxyhyte (δ-FeO(OH)) nanosheets were synthetized using a 

polytetrafluoroethylene (PTFE) microfluidic reactor by a liquid-gas segmented flow. Inlet 

flow A, composed of an aqueous solution 180 mM KNO3, 162 mM NaOH and 1.85 mM 

L-lysine was mixed with an inlet flow B which consist of an aqueous solution of 13 mM 

ferrous sulfate heptahydrate (with Fe2+ cations) and 3.38 mM sulfuric acid (figure 2.1). 

 

 

Figure 2.1. Schematic representation of the synthesis process of the feroxhyte nanosheets. 

 

Inlet flows A and B were injected in a Y junction with an O2 flow at the proper 

flow rate to achieve a steady segmented flow. The compartmentalized slugs were 

heated at 90 °C, obtaining at the microreactor outlet an orange solution that was 

identified with a pure feroxhyte phase. Afterwards, the synthesized nanoparticles were 

centrifuged at 10 000 rpm for 10 minutes, then washed twice with distilled water and 

finally resuspended in distilled water for further use. 

CoFeO(OH) nanosheets were synthesized by coprecipitation using a modified 

gas-slugs microfluidic system adapted from [49]. In brief, two distinct solutions, X and Y, 

were prepared in deionized water and Ar bubbled during 15 minutes to induce 

deoxygenation (figure 2.2). 
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Figure 2.2. Schematic representation of the modified gas-slugs microfluidic system. 

 

The solution X was composed of 180 mM KNO3, 160 mM NaOH and 1.9 mM L-

lysine. In turn, solution Y was constituted of stoichiometric ratio 2:1 of FeSO4 (9 mM) 

and CoCl2 (4 mM); and sulfuric acid (3.4 mM).  After the deoxygenation process, both 

solutions were placed in plastic Becton Dickinson syringes (60 mL capacity). Solutions X 

and Y were later injected with an adequate flow rate to obtain a 60 seconds residence 

time in accordance to the total microfluidic system volume. A constant flow ratio of 1:1 

was used to mix Solution X and Y in a PEEK polymer X-junction aiming to ease the 

synthesis process. 

The developed microfluidic system is constituted by a pair of PTFE coils (0.04” ID 

and 1/16” OD) which are defined as reaction and mixing stages, correspondingly. After, 

the mixing of X and Y streams was done by sonication in an ultrasound bath, maintaining 

the bath temperature in the 25-30 °C range. A pure oxygen gas stream was injected after 

the mixing coil, to achieve stability at the liquid-gas segmented flow in the reaction 

stage. The reaction stage temperature of 100 °C and the pressure of 1.4 bar were fixed. 

The resulting synthesized nanostructures were centrifuged for 10 minutes at 10,000 

rpm, then double washed with distilled ethanol and water (1:1), and finally resuspended 

in distilled water. 
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b) Fabrications of nanostructures/P(VDF-TrFE) composites 

The desired amount of the magnetic phase (figure 2.3a) was added to DMF and 

placed in an ultrasound bath for 8 h in order to ensure a good dispersion of the 

nanosheets. Flexible ME composite films were prepared (figure 2.3b), with 1, 5, 10 and 

20 δ-FeO(OH) filler weigh content (wt.%) and with 1 wt.% (0.01 in volume fraction after 

solvent evaporation) of CoFeO(OH) filler. Such content was chosen once it allows high 

ME response and flexible MF samples [3, 15]. 

  

Figure 2.3. a) Obtained feroxhyte nanosheets. b) Flexible MF δ-FeO(OH)/P(VDF-TrFE) composite films. 

 

P(VDF-TrFE) polymer (70/30 molar composition) was then added and mixed 

during 2 hours with the help of a mechanical Teflon stirrer in an ultrasound bath to avoid 

the magnetic agglomeration during the mixing process.  After that, the solution was 

spread in a clean glass substrate, and solvent evaporation and samples crystallization 

took place at 80 °C, while it was placed between the two coils of an electromagnet to 

ensure the magnetic alignment along the length direction (longitudinal-L samples, figure 

2.4a) and along the thickness direction (transversal-T samples, figure 2.4b) of the 

composite film of the δ-FeO(OH) nanosheets. A sample with random δ-FeO(OH) filler 

orientation was also prepared (A samples, figure 2.4c). 

a b 
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Figure 2.4. Representation of a) magnetic alignment along the length direction; b) magnetic alignment 

along the thickness direction; c) Randomly oriented samples. 

 

During the alignment process, solvent evaporation occurred at 80 °C in order to 

obtain flexible films, without pores and with good mechanical properties (figure 2.3b) 

[55]. Polymer crystallization ended by cooling down films to room temperature. At the 

end of the process, the flexible film was peeled from the glass substrate and a films with 

an average thickness of ≈25 µm was obtained for δ-FeO(OH) and ≈30 µm for CoFeO(OH) 

composites. 

2.2.2.2. Characterization methods 

Evaluation of the filler dispersion on the piezoelectric and magnetoelectric 

response 

The distribution of the ferrite nanoparticles was investigated by Scanning 

Electron Microscopy using a NovaTM NanoSEM Scanning Electron Microscope with an 

acceleration voltage of 15 kV. The nanoparticles average size and their distribution were 

determined using the Image J software. 

The ferroelectric hysteresis loops of the composites were measured at room 

temperature using Radiant Ferroelectric Premier II LC equipment. After 30 minutes of 

corona poling at 10 kV and at 120 °C in a home-made chamber, the piezoelectric 

response (d33) of the poled samples was analyzed with a wide range d33-meter (model 

8000, APC Int Ltd). 
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Magnetic hysteresis loops at room temperature were measured using a vibrating 

sample magnetometer (Oxford Instruments) up to a maximum field of 1.8 T. 

In order to obtain the out-of-plane ME coefficient, a DC and AC magnetic field 

were applied along the same direction than the electric polarization of the P(VDF-TrFE), 

i.e., perpendicular to the composite surface. An AC driving magnetic field of 8.1 mOe 

amplitude at 5 kHz (resonance of the composite) was provided by a pair of Helmholtz 

coils. The DC field with a maximum value of 1.2 T was applied by an electromagnet. The 

induced ME voltage was measured with a Standford Research Lock-in amplifier. 

Evaluation of the filler size on the magnetostriction, polymer phase nucleation 

and magnetoelectric response of polymer composites 

a) Structural characterization of the nanoparticles 

Transmission electron microscopy observations were performed with a T20-FEI 

microscope with a LaB6 electron source fitted with a “SuperTwin” objective lens 

allowing a point-to-point resolution of 2.4 Å. The phases of iron oxide nanoparticles 

were identified by powder X-ray diffraction (XRD). The X-ray patterns were collected 

between 20° and 80° (2θ) in a D-Max Rigaku diffractometer with Cu Kα radiation. 

The particle size distribution was determined by statistical analysis of the 

dimensions of at least 100 nanoparticles within the transmission electron microscopy 

(TEM) micrographs. 

The magnetic properties of the different nanoparticles were measured as dried 

powders after solvent evaporation at different temperatures in a superconducting 

quantum interference device (SQUID MPMS-5S, Quantum Design) from 0 to 40 000 Oe. 

The samples were measured in a gelatine capsule (a diamagnetic correction for the 

sample holder was carried out). Magnetic hysteresis loops (plot of the magnetization of 

the sample as a function of the magnetic field strength) were evaluated at 37 °C. 

Zeta potential measurements were performed on a Malvern Zetasizer nano ZS, with 

an operating range between 0.3 nm to 10 μm, with a laser HeNe 633 nm, Max 4 mW. 
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b) Structural characterization of the nanocomposites 

The vibrational modes of the polymer, used to determine the polymer-phase and 

phase content, were recorded by Fourier transformed infrared spectroscopy (FTIR) using 

a Thermo Nicolet Nexus 670 FTIR spectrophotometer from 650 to 4000 cm-1 with a 

resolution of 2 cm-1. 64 scans were performed for each sample. The thermal behavior of 

the samples was determined by Thermo Gravimetric Analysis (TGA). Samples were 

transferred to open alumina pans with capacity of 60 µL and analyzed using a TGA 

METTLER TOLEDO 822e, operating between room temperature and 975 °C. A heating 

rate of 10 °C.min-1 and a nitrogen flow rate of 50 ml.min-1 were used. 

The d33 of the samples was analyzed with a wide range d33-meter (model 8000, 

APC Int Ltd) after poling the ME composites by corona poling at 10 kV during 120 min at 

120 °C in a home-made chamber and cooling down to room temperature under applied 

field [52]. 

The capacity and the tan δ, dielectric loss, of the composites were measured with 

an automatic Quadtech 1929 Precision LCR meter. The applied signal for frequencies in 

the range of 1 Hz to 1 MHz was 0.5 V. The samples were previously coated by thermal 

evaporation with circular Au electrodes of 5 mm diameter onto both sides of the sample 

in order to obtain a parallel condenser geometry. The real part of the dielectric constant, 

ε’, was then obtained taking into account the geometrical characteristics of the samples. 

In order to obtain the out-of-plane ME coefficient α31, the first index indicating 

the collinear ferroelectric poling and electrical measurement directions, and the second 

indicating the applied magnetic field direction, a DC and AC magnetic fields were applied 

along the length of the sample. An AC driving magnetic field of 1 Oe amplitude at 7 kHz 

(resonance of the composite) was provided by a pair of Helmholtz coils and controlled 

by a signal generator. 

In-plane Young’s modulus values EY were obtained from the initial slope of 

strain–stress curves measured for nanocomposite samples using a Linkam TST350 

tensile stress testing system in tensile mode, with a 2 mm.min−1 loading rate. 
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The magnetostriction of the nanoparticles was determined based on the ME 

measurements and using the method proposed by Martins-Silva-Lanceros-Mendez [35]. 

Briefly, the strain derivative, dS/dH, was obtained through equation 2.1: 
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where mV, ɛ0, ɛ, EY, l, w and t are the volume fraction of Fe3O4 nanoparticles, the vacuum 

permittivity, the relative permittivity, the Young's modulus, the length, the width and 

the thickness of the composite, respectively. 

Assuming that the magnetostriction (λ) of the nanoparticles increases almost 

linearly with increasing magnetic field, until saturation is reached, λ can be determined 

by equation 2.2: 
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where BS is the magnetic field at which magnetostriction saturation is achieved. 

Development of anisotropic magnetoelectric polymer composites 

The magnetic properties of the nanoparticles were measured as dried powders 

after solvent evaporation at different temperatures in a superconducting quantum 

interference device (SQUID MPMS-5S, Quantum Design) from 0 to 40 000 Oe. The 

samples were measured in a gelatin capsule (a diamagnetic correction for the sample 

holder was carried out). Magnetic hysteresis loops (magnetization of the sample as a 

function of the magnetic field strength) were evaluated at 37 °C.  Zero-field-cooled field-

cooled (ZFC-FC) magnetization analysis was carried out at 50 Oe from 4 to 320 K. 

The X-ray patterns of the nanoparticles were identified by powder X-ray 

diffraction. The X-ray patterns were collected between 20° and 80° (2θ) in a D-Max 

Rigaku diffractometer with Cu Kα radiation. 

The particle morphology and size distribution were determined by transmission 

electron microscopy (TEM FEI-TECAI T20) operated at 200 kV. 
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The average size of nanosheets was determined through TEM images and Image 

J software. Aberration corrected scanning transmission electron microscopy (Cs-

corrected STEM) images were obtained through high angle annular dark field detection, 

using a FEI XFEG TITAN electron microscope with a voltage of 300 kV. Elemental analysis 

was performed with an energy-dispersive detector - EDS - (EDAX) detector. 

The morphology of composites was studied by scanning electron microscopy 

(SEM) using a Quanta 650 FEI electron microscope with acceleration voltage of 10 kV. 

Before SEM measurement, the samples were coated with gold by magnetron sputtering. 

Images were taken in three different locations of the samples and at different 

magnifications to ensure reproducibility of the observed morphological features. 

Composite’s d33 was evaluated with a wide range d33-meter (8000 model from 

APC International, Ltd.) Afterwards, the poling of the ME composites was achieved 

through corona poling for 120 min at 120 °C and 10 kV, and cooling down to room 

temperature (25 °C) under applied magnetic field, by using a previously optimized poling 

procedure [15, 56]. 

In order to obtain the out-of-plane ME coefficient α31, the first index indicating 

the collinear ferroelectric poling and electrical measurement directions, and the second 

indicating the applied magnetic field direction, a DC and AC magnetic fields were applied 

along the length of the sample i.e., in the same direction of the alignment of the 

nanosheets. 

For the δ-FeO(OH), an AC driving magnetic field of 1 Oe amplitude at 7 kHz 

(resonance of the composite) was provided by a pair of Helmholtz coils and controlled 

by a signal generator. Such resonance was determined by equation 2.3 [29, 57]: 

  Yn Elnf 2  (2.3) 

 

where l is the length along the resonant direction, n is the order of the harmonic mode, 

and ρ and EY are density and Young’s modulus, respectively. 

For the CoFeO(OH) composite, the resonance was verified with 1 Oe amplitude 

AC magnetic field with frequencies ranging from 1 to 75 kHz was controlled by a signal 

generator and delivered by two Helmholtz coils. 
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An electromagnet controlled by a DC source provided the DC magnetic field (HDC) 

with a 0.15 T (CoFeO(OH)) and 0.5 T (δ-FeO(OH)) maximum magnetic field value. A 

Standford Research Lock-in amplifier (SR530) was used to measure the produced ME 

voltage. The magnetic field direction influence on the ME response of the composite 

was evaluated by sample rotation from 0 to 360° angles (figure 2.5). 

 

Figure 2.5. Schematic representation of the experimental setup used to study the influence of the 

magnetic field direction on the ME response of the composites. 

 

Prior to the ME measurements, composites were coated by thermal evaporation 

with 5 mm diameter circular Au electrodes onto both sides of samples. Three samples 

for each alignment state (L, T and A) were measured and the error in the obtained ME 

coefficient was less than 5 %. 

The rotation/deformation of the nanosheets was determined based on the ME 

measurements presented above and the theory proposed by Van den Boomgaard et al. 

[58], Zubkov et al. [59] and Ryu et al. [60]. In this way, it is possible to determine the 

strain derivative, dS/dH, through the abovementioned equation 2.1. 

Assuming that the deformation generated by the rotation of the nanosheets 

increases almost linearly with increasing magnetic field, until saturation was reached, λ 

can be determined by equation 2.2 (abovementioned): 

 

0-360º 
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2.3. Evaluation of the filler dispersion on the piezoelectric and 

magnetoelectric response 

It is already well established that the aggregation of the fillers is critical in 

determining some functional properties of composites such as thermal, electrical and 

mechanical properties [61-64]. To avoid this problem, one of the most popular strategies 

is the use of surfactants [46, 65], nevertheless in the case of magnetic nanoparticles 

polymer, aspects such as the chemical and processing complexity, thermal stability, 

costs and health issues of such additives have severely constrained the development of 

upscaled applications of such composites [66, 67]. Bearing this in mind in this work, the 

influence of the ferrite filler aggregation state in the ME response of the produced 

polymer composites was studied and determined. 

In order to determine the effect of the different dispersion methods in the 

agglomeration state of the ferrite nanoparticles and their dispersion on the P(VDF-TrFE) 

matrix, SEM was used. Figure 2.6 shows representative SEM images of the samples 

prepared with 20 wt.% ferrite content dispersed by ultrasound (figure 2.6a) and with 

the use of citric acid (figure 2.6b). The results shown for this composite concentration 

are representative for all samples. 

 

Figure 2.6. Representative cross section SEM images of CFO/P(VDF) composites prepared after 

dispersion achieved by (a) ultrasound and by (b) surfactation. 
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The agglomerates observed in figure 2.6a shows a poor dispersion of the ferrite 

nanoparticles along the polymeric matrix. On the other hand, citric acid surfactation led 

to a homogeneous distribution of the ferrite nanoparticles by avoiding agglomerates 

(figure 2.6b) reaching an overall higher nanoparticle surface area interacting with the 

polymer matrix. Image J software was used to quantify the nanoparticle aggregates in 

two distinct areas of the samples with 20 wt.% of ferrite content. 

 

Figure 2.7. a) Cluster distribution for ultrasound dispersed composites. b) Nanoparticle/cluster 

distribution for composites prepared by nanoparticle surfactation. 

 

It was verified (figure 2.7a) that the cluster average diameter obtained in the non 

surfactated particles was 668 ± 256 nm and the average diameter of the surfactated 

ferrite nanoparticle/cluster was 49 ± 12 nm (figure 2.7b), clearly indicating the 

effectiveness of surfactation in preventing nanoparticle aggregation. The use of 

ultrasound during the mechanical agitation in the non-surfactated composites led, on 

the other hand, to lower agglomerates as the ones reported in [46].  

The ferroelectric hysteresis loops as well as the piezoelectric response of the 

composites obtained by both dispersion methods are presented in figures 2.8a and 2.8b, 

respectively. 
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Figure 2.8. a) Ferroelectric hysteresis loops of samples with 7 wt.% of CoFe2O4 content. b) Ferrite 

weight fraction-dependent d33 for the samples prepared by the two dispersion methods. 

 

Figure 2.8 shows that the dispersion method has no relevant influence in the 

ferroelectric and piezoelectric responses of the samples. Figure 2.8b illustrates the 

correlation between the piezoelectric response of the composites and the CFO content. 

As ferrite concentration increases, the piezoelectric response increases until a maximum 

value ≈27 pC.N-1 at a concentration of 7 wt.% ferrite content. For higher concentrations, 

the values of both remnant polarization and piezoelectric response decrease, being this 

decrease stronger for concentrations above 60 wt.% ferrite content. Figure 2.8 makes 

clear that the dispersion method has no influence in the polarization and piezoelectric 

responses of the MF films being independent of the large cluster differences. The 

piezoelectric and ferroelectric responses are fully determined by the polymeric 

piezoelectric phase, indicating that, independently of the ferrite cluster size, polymer 

crystallization occurs in a similar way, leading to a well crystallized sample with no 

defects that would prevent sample poling [68]. It should be noted that samples prepared 

by the ultrasound method reported in [46] were not possible to be polarized due to the 

size of the ferrite clusters, leading to sample dielectric breakdown. 

Figure 2.9 shows magnetic hysteresis loops measured for the different 

nanocomposites. 

-90 -60 -30 0 30 60 90

-20

-10

0

10

20  7wt.% ultrasound 7 wt.% surfactant

 

 

 

 

Electric Field (V/m)

P
o

la
ri

za
ti

o
n

 (
C

.c
m

-2
)  P(VDF-TrFE)

0 20 40 60 80

10

20

30

  

 

 

d
3

3
(p

C
.N

-1
)

CoFe
2
O

4
 content (wt.%)

 7 wt.% surfactant

 7 wt.% ultrasound

a b 



                                      Chapter 2 – Development of magnetoelectric films 

  51 
 

  

 

Figure 2.9. a) Room temperature hysteresis loops for the pure ferrite nanoparticle powder and for 

P(VDF-TrFE)/CoFe2O4 nanocomposites. b) Room temperature hysteresis loops measured for the 

composite with 62.1 wt.% of ferrite for the different dispersion methods. 

 

The shape and magnetization maximum values of the measured hysteresis loops 

demonstrates that magnetic nanoparticles are randomly oriented within the polymer 

matrix. For all composites a coercive field of 0.21 T was measured, higher than the one 

measured in similar nanocomposites but prepared by other methods [6] since the 

coercive field value strongly depends on factors such as the calcinations temperature, 

size, shape and structure of the formed nanoparticles [69]. It was found that the 

dispersion method has no influence in the magnetic response of the nanocomposites, 

demonstrating that the use of surfactants does not change the magnetic properties of 

the nanoparticles. Additionally, it can be noted that contrary to what was reported for 

other magnetic nanoparticles [70], the nanoparticle magnetic response is independent 

of the nanoparticle aggregation state, at least with respect to clusters up to ≈10 

nanoparticles.  

Finally, figure 2.10 shows the variation of the ME voltage coefficient for samples 

with different ferrite concentrations and with the DC magnetic field, for films obtained 

by both dispersion methods. 
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Figure 2.10. a) ME coefficients as a function of CFO filler content for the different dispersion 

methods. b) In plane and out of plane ME response of 72 wt.% ferrite content samples for samples 

with different dispersion methods. 

 

Figure 2.10a shows the ME response of the nanocomposites at a bias field of 2.5 

kOe for increasing CFO loadings. The initial increase in the ME voltage is explained by 

the increase of the magnetostrictive elongation arising in the magnetostrictive ferrite 

phase. This response is optimized at 72 wt.% CFO content (for both dispersion methods). 

For higher concentrations, nanoparticles lead to the disruption of the ferroelectric 

copolymer phase [6], having as a result an abrupt decrease in the ME response of the 

nanocomposite [15].  

No differences are detected in the ME response of the samples when comparing 

both dispersion methods (figure 2.10b), demonstrating that the disruption of the 

ferroelectric polymer phase occurs for the same filler content, independently of the 

cluster size in the measured size range. This is in agreement with the developed theories 

that accurately fit the experimental ME results without consideration of the filler size or 

surface area [6, 71, 72]. It was reported in a previous work that the ME response of 

PZT/Ni ferrite composite ceramics was improved with the increase of the nickel ferrite 

powder surface area [73]. This increased surface area was obtained with a simultaneous 

increase in the ferrite density that in fact also influences parameters such as Young´s 

modulus, shear modulus and bulk modulus which also play a relevant parameter in the 

ME response. 
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Our results show that the optimization in the ME response in such composites 

cannot be uniquely attributed to the change in the nanoparticle surface area. Filler 

content and good distribution turns out to be key parameters independently of filler 

dispersion method during ME composite fabrication process. Such result is of special 

interest for industrial large scale processes, in which feasibility for fabrication of smart 

structures is one of the main tasks.  

2.4. Evaluation of the filler size on the magnetostriction, polymer 

phase nucleation and magnetoelectric response of polymer composites  

Having this interesting discussion being centered on the surface charge of the 

nanostructures, a key factor was left out: the size and shape factor of the 

nanostructures, at the origin of specific electrical field geometries around the 

nanoparticle surface and to confinement effects [74, 75]. This issue is also particularly 

relevant when different nanoparticle shapes are increasingly being used for the 

development of novel sensors, such as anisotropic ME magnetic field sensors [51]. 

Considering also this parameter, this work aimed to create a unifying mechanism that 

could be used to explain the ambiguity and solve the existing controversy in the current 

literature about the nucleation of the β-phase of P(VDF) with nanostructures as well as 

to definitively set light on the significance of the key factors prompting the nucleation 

of the electroactive β-phase of this important electroactive polymer. In this way, this 

work used two types of magnetic nanostructures, Fe3O4 NRs and Fe3O4 nanoparticles, 

with distinct sizes and surface charges, to study, isolate and discuss the effects of the 

size, ion−dipole interactions and shape on the formation of the β-phase crystalline 

structure of P(VDF). On the other hand, Fe3O4 was synthesized with different sizes in 

order to improve their magnetostriction and magnetic properties. Additionally, 

Fe3O4/P(VDF-TrFE) composites were produced to study the influence of particle size on 

the magnetostrictive properties of Fe3O4 nanoparticles and validated the use of the 

Fe3O4/P(VDF-TrFE) nanocomposites and ME materials for device applications [3]. In this 

scope, P(VDF-TrFE) was selected as piezoelectric polymer since it shows the highest 

piezoelectric responses among the small class of polymers that exhibit 

piezoelectricity [7], being polymer-based ME materials the most interesting ones from 

the application point of view [3, 76]. 
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Nanoparticles 

Figure 2.11 shows representative TEM micrographs of the obtained magnetic 

nanomaterials, together with their room-temperature magnetic response. 

 

Figure 2.11. Morphology and magnetic characteristic of the obtained magnetic nanomaterials 

nanoparticles produced by oxidative hydrolysis: a-b) TEM images of nanoparticles D= 50 nm, c) 

magnetization curve at 300 K. d-e) TEM images of nanoparticles D= 30 nm, f) magnetization curve at 300 

K. Nanoparticles produced by the polyol-mediated method. g-h) TEM images of nanoparticles D= 9 nm. 

i) magnetization curve at 300 K. Anisotropic growth of iron oxide nanostructures. j-k) TEM images of 

nanoparticles D= 30nm, l) magnetization curve at 300 K. 
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Figures 2.11a-b and figure 2.11d-e show that the morphology of the 

nanoparticles produced by an oxidative hydrolysis method was octahedral with a rather 

uniform size. The particle size distribution was determined by statistical analysis of the 

dimensions of at least 100 nanoparticles measured on the TEM micrographs. Fitting to 

a log-normal distribution yielded an average particle size of 47.7 ± 9.6 nm and 29.5 ± 7.2 

nm. Figure 2.11g-h shows the nanoparticles produced by the polyol-mediated method, 

obtaining nanoparticles of roughly spherical morphology, rather uniform in size (average 

size 9.2 ± 2.3 nm), and well dispersed. 

The magnetization curves of the iron oxide nanoparticles, with average size of 

D=50 nm and D=30 nm show a ferromagnetic behavior with a coercivity (Hc) of 110 and 

65 Oe, respectively (figures 2.11c and 2.11f). The Ms at 40 000 Oe is 84 emu.g-1 for Fe3O4 

50 nm and 82 emu.g-1 for Fe3O4 30 nm. However, the magnetization curve of Fe3O4 D=9 

nm shows a superparamagnetic behavior with a small Hc of 9 Oe and a Ms of 59.6 emu.g-

1 at 40 000 Oe. These results are consistent with the literature [77] and the fact that 

Fe3O4 loses its permanent magnetism when its size is smaller than 20 nm, becoming 

superparamagnetic [78]. 

The anisotropic growth of magnetic nanomaterials has promising advantages 

over the spherical shape in areas such as lithium-ion batteries, gas sensors magnetic 

compasses [79]. The use of nanoparticles with an anisotropic configuration has not been 

properly demonstrated in the literature because their preparation is a challenging task 

as surface energy considerations favor the formation of spherical nanoparticles [50]. The 

production of magnetic NRs was conducted in this work by a novel and simple 

procedure, leading to FeO(OH) NRs with an aspect ratio higher than 8 and a rod diameter 

of ~ 13 nm. After a thermal treatment, hematite NRs were obtained, maintaining the 

morphological structure (figure 2.11j-k). The magnetization curves of Fe3O4 NRs (figure 

2.11l) show a ferromagnetic behavior with a Hc of 120 Oe and a Ms of 0.8 emu.g-1 at 40 

000 Oe. The low magnetization values of the NRs are being attributed to the existence 

of a surface spin disorder layer which decreases with the particle size [50]. 
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Figure 2.12. XRD patterns of the prepared magnetic nanomaterials (the characteristic patters of Fe3O4 

are included for comparison). 

 

The typical X-ray diffraction patterns of the 50 nm, 30 nm and 9 nm nanoparticles 

are shown in figure 2.12a. The XRD patterns of these samples were assigned to the phase 

of bulk Fe3O4 (JCPDS card number 89-0691). The XRD pattern of figure 2.12b confirms 

the transformation of FeO(OH) to Fe3O4. 

Nanocomposites P(VDF-TrFE) 

With respect to the Fe3O4/P(VDF-TrFE) composites, the ME effect required to 

determine the magnetostriction of the Fe3O4 nanoparticles is generated as a product 

property between magnetostrictive and piezoelectric components and, consequently, 

the high piezoelectric coefficient of the polymer matrix will induce a higher ME coupling 

[29]. The variation of the modulus (d33 values are negative for P(VDF) and its copolymers) 

of the piezoelectric |d33| coefficient for the composites with the Fe3O4 nanoparticles of 

different sizes as well as its stability over time are represented in figure 2.13. 
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Figure 2.13. a) Variation of the Fe3O4/P(VDF-TrFE)  |d33| value as a function of Fe3O4 size; b) evolution of 

the Fe3O4/P(VDF-TrFE) |d33| coefficient over time. 

 

No significant differences are detected in the piezoelectric response of the 

composites prepared with Fe3O4 nanoparticles with different sizes (figure 2.13a) for a 

given ferrite content (1 wt.%), which is expected as the piezoelectricity is fully ascribed 

to the polymer and for the low filler concentrations used in this experiments, no 

nanoparticle aggregates are observed, that can hinder mechanical and 

electromechanical responses [52]. Further, the piezoelectric response of the different 

composites is stable over time as revealed on figure 2.13b, assuring the suitability of the 

developed materials for applications. 

Figure 2.14 shows the variation of the ME voltage coefficient with DC magnetic 

field and with Fe3O4 nanoparticle size, measured under an AC field of 1 Oe at 5 kHz 

resonance frequency. 
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Figure 2.14. a) ME coefficients as a function of the bias field for the different Fe3O4/P(VDF-TrFE) 

composites; b) evolution of the Fe3O4/P(VDF-TrFE) α31coefficient with Fe3O4 size. 

 

Figure 2.14a reveals a similar ME response for the three nanocomposite films, 

the ME response increasing with increasing DC magnetic field until a maximum is 

reached due to the increase of the effective piezomagnetic coefficient, and then 

decreasing as a response to the saturation of the magnetostriction coefficient [30].  

Maximum ME voltage coefficients (α31) of 970, 100 and 150 µV.cm-1.Oe-1 at 970, 

1500 and 2120 Oe, respectively for the nanocomposites prepared with 9 nm, 30 nm and 

50 nm. Thus, a strong increase of the ME response (figure 2.14b) is observed with 

reducing filler average size, in particular for the nanocomposite with the smaller Fe3O4 

size (9 nm) as a consequence of its superparamagnetic behavior. By the method 

presented in the characterization methods and using the data from table 2.1, the 

magnetostrictive coefficient (λ) was calculated for each nanoparticle from the ME 

response of the nanocomposites. 

Table 2.1. α31(mV.cm-1Oe-1), mV, d33 (pC.N-1), ɛ, EY (GPa), l (mm), w (mm), and t (µm) values used to 

determine λ (ppm). 

NP α31 mV d33 ԑ Eγ W, I, t λ 

9 FO 0.97 

0.0036 27 12 

1.11 

6, 12,50 

167.0 

30 FO 0.10 1.13 17.2 

50 FO 0.15 1.16 25.8 

 

A strong increase of the λ (± 5 ppm) value was found to the 9 nm nanoparticles 

with respect to those with 30 nm and 50 nm average size. 
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Fe3O4 is a ferrimagnetic iron oxide with a cubic inverse spinel structure with 

oxygen anions forming a face centred cubic (FCC) closed packed structure and cations 

(iron) located at the interstitial tetrahedral sites and octahedral sites. The electron can 

balance between Fe2+ and Fe3+ ions in the octahedral sites at room temperature 

imparting half metallic property to Fe3O4 [80]. As the particle size decreases, there is a 

relative decrease in oxygen content of the sample, which consequently, leads to 

lowering the valance state of the cations [80]. The increase in unit cell volume with the 

reduction in particle size of the Fe3O4 particles, implies an increase in Fe2+ content in the 

sample, as the ionic radius of Fe2+ (0.74 Å) is larger than that of Fe3+ (0.64 Å). Since the 

resultant magnetic moment in Fe3O4 is regarded to be due to the divalent ions (Fe2+), 

which explains the increase in magnetostriction for the 9 nm nanoparticles [80].  

The decrease in the oxygen content is also responsible for the 

superparamagnetic behavior of the 9 nm nanoparticles that results from the 

requirement of charge balance in the crystal structure related with the oxygen-free 

lattice sites that become occupied by doubly charged donors [81]. Furthermore and 

resulting from the high magnetostriction of the Fe3O4 nanoparticles with 9 nm size, their 

ME response of the corresponding nanocomposites is one order of magnitude higher 

than for the nanocomposites with 30 nm and 50 nm nanoparticles. Interestingly, the 

value of the ME response is in the same order of magnitude that for CFO/P(VDF-TrFE) 

nanocomposites that exhibits the highest ME response for polymer-based ME 

nanocomposites, validating their use for ME devices such as sensors and actuators [3, 

52]. 

Nanocomposites P(VDF) 

FTIR has proved to give quantitative information about P(VDF) structure allowing 

to distinguish and quantify the different crystalline forms. In particular, specific bands 

such as those at 766 and 840 cm-1 , were identified to correspond to the α and β-phase 

of P(VDF), respectively [7]. These specific bands have been used for identification and 

quantification of P(VDF) phases in the present study. 
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By assuming that the infrared absorption follows the Lambert–Beer law, for a 

system containing both α- and β-phases, the relative β-phase content, F(β), can be 

determined using equation 2.4 [82]: 






AAKK

A
F




)/(
)(  (2.4) 

 

where F(β), represents the β-phase content; Aα and Aβ the absorbance at 766 and 840 

cm−1; Kα and Kβ the absorption coefficients at the respective wavenumber (6.1 × 104 and 

7.7 × 104 cm2.mol−1), respectively. 

Typical spectra and the variation of the relative fraction of the β-phase for the 

nanocomposites prepared with each different of filler are presented in figure 2.15. 

 
 

Figure 2.15. a) Infrared spectra of the Fe3O4/P(VDF) nanocomposites; b) electroactive β-phase content 

of the Fe3O4/P(VDF) nanocomposites samples calculated from the infrared spectra by equation 2.4. 

 

Figure 2.15 shows that just Fe3O4 NRs successfully nucleate the β-phase of the 

polymer as indicated by the appearance of the β-phase peak at 840 cm−1 and the 

vanishing of the α-phase peak at 766 cm-1 (figure 2.15a).  

Figure 2.15b shows that both nanocomposites with Fe3O4 nanoparticles of 50 nm 

and 30 nm (NP 50 nm and NP 30 nm) have the lowest percentage of β-phase (6 %), and 

the nanocomposite with Fe3O4 nanoparticles with 9 nm reveals 10 % of β-phase, being 

the remainder in the α-phase. FTIR results raise the possibility that can exist a shape 

factor in the mechanism of the β-phase formation, once nanocomposites with Fe3O4 NRs 

reveal a much larger nucleation effect (F(β)≈70 %) than nanocomposites with Fe3O4 
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nanoparticles (NP 50 nm, NP 30 nm and NP 9 nm), independently of the size of the 

nanoparticle. 

Trying to investigate whether the amount of polymer that is electrostatically 

interacting the surface of the nanostructure (interface) has some influence on the β-

phase nucleation ability, the percentage of polymer located at such interface was 

determined by TGA (figure 2.16). 
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Figure 2.16. a) TG thermograms of Fe3O4 /P(VDF) nanocomposites; b) interface wt.% for each of the 

Fe3O4 /P(VDF) nanocomposites. 

 

The mass fraction of the polymer located at the interface, mI, was determined 

following the procedure presented in [83], by using equation 2.5: 
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where mI0 is the mass of the pristine polymer at the temperature at which the mass loss 

rate is maximum and m(x)I0 is the mass of the composite that has not degraded at the 

temperature at which the mass loss rate of the pristine polymer is maximum. The 

difference between mI0 and m(x)I0 values is related with the enhancement of the 

thermal stability of the polymer chains located at the interface. For all Fe3O4/P(VDF) 

nanocomposites is observed the characteristic two step (i and ii) thermal degradation 

mechanism typical of P(VDF) [84]. The first degradation step occurs between 400 and 

500 °C, being the P(VDF) maximum degradation temperature dependent on the 

presence of the nanostructures within the polymer. In this first step, the degradation 

mechanism is chain-stripping where carbon-hydrogen and carbon fluorine scission 
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occurs and the presence of both hydrogen and fluorine radicals leads to the formation 

of hydrogen fluoride [19], leading to the weight loss observed in the first degradation 

step. In turn, the second degradation step occurs between 500 and 600 °C, and the 

detected differences in the plots when compared to the pure P(VDF) are attributed to 

the presence of the nanostructures, as the thermal degradation is independent of the 

polymer phase. This second step is a complex degradation procedure resulting in 

poly(aromatization). The polymeric sequence, previously formed on the first 

degradation step is unstable and, therefore, the formed macromolecules undergo 

further reactions leading to scission followed by the formation of aromatic molecules 

[84]. The residual weight that remains at high temperatures corresponds mainly to the 

nanostructures together with the residual char from the previous degradation steps 

[83]. An extra degradation step (iii) at temperatures around 600 °C, when compared to 

the pure polymer was also identified in the nanocomposite samples. The emergence 

such new step of degradation in comparison to pure P(VDF) is related to the increase of 

an interphase in the interface volume between nanoparticles and polymer. The onset 

temperature for the degradation of neat P(VDF) (452 °C) is lowest than those of 

Fe3O4/P(VDF) nanocomposites (456, 457, 460 and 465 °C for the NP 30 nm, RD, NP 9 nm 

and NP 50 nm respectively), indicating that the thermal stability of the matrix is 

improved with the addition of Fe3O4 nanostructures. By using data from figure 2.16a and 

equation 2.5, it is possible to determine that NP 9 nm shows the lower interface value 

(2 %) and the other NP samples exhibited similar interface values (≈ 11%). The low 

interface value of the NP 9 nm sample can be related with the formation of clusters and 

aggregation of Fe3O4 nanoparticles. The RD composite sample revealed ≈50 % of 

interface value, indicating the anisotropic structure of Fe3O4 rods potentiates the 

existence of more amount of polymer in the nanostructure/polymer interface. Such 

interface is related with the amount of polymer that is electrostatically interacting the 

surface of the nanostructure. By comparing figures 2.15b and 2.16b, and contrary to 

other studies [83], there is no obvious relation between β-phase content and interface 

values.  

Finally, Zeta potential analysis (figure 2.17a) was used to evaluate the 

electrostatic charge on the surface of the nanostructures, in order to determine its 
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influence on the β-phase nucleation mechanism, since previous studies indicated this as 

the main factor responsible for the β-phase nucleation (figure 2.17b) [21, 25, 26, 85]. 

 

 

Figure 2.17. a) Zeta potential of the different Fe3O4 nanostructures; b) schematic representation of the 

β-phase nucleation mechanism through positive Ion−CF2 dipole interactions. 

 

All nanostructures revealed positive surface charges, being 8 and 11 mV the 

values for NP 30 nm and NP 50 nm, respectively. Interestingly both NP 9 nm and RD 

nanocomposite revealed the same value of surface charge: 30 mV. 

Previous works [53, 54] showed that negative surfaces charges (-22 mV) on 

magnetic nanoparticles promoted F(β)≈20 % on P(VDF) composites with the same 

nanoparticles content (1 wt.%). The low value of F(β) (≤ 10 %) found for the present NP 

composites is thus related to the positive values of zeta-potential, once the electrostatic 

interaction between the positively charged magnetic spherical nanoparticles and the 

polymer is less intense. The low β-phase nucleation observed for NP nanocomposites 

confirms once again the previous experimental evidences detected CFO@cetrimonium 

bromide and CFO@citric acid magnetic P(VDF) nanocomposites:  magnetic spherical 

nanoparticles with positive surface charge are not suitable for the nucleation of the β-

phase of the polymer [19, 54]. Further, this fact is independent of the size of the 

spherical NP. On the other hand, the positively surface charged Fe3O4 rods (30 mV) 

reveals a F(β) of ≈70 %. This interesting fact indicates an underlying factor other than 

the electrostatic interaction between nanofillers and polymer for the β-phase formation 

on P(VDF) nanocomposites. The advantageous β-phase formation by Fe3O4 NRs with 

a b 
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respect to their spherical counterparts indicates directly at the relevance of the shape 

on the β-phase formation mechanism. Thus, it is possible to highlight that the 

crystallization of P(VDF) in its β-phase through positive Ion−CF2 dipole interactions is 

assisted via nanostructures (in the form of substrates or templates) endowed with 1D 

(rod/tube) or 2D (planar) geometry through the organization of bonding sites, once β-

phase conformation can extend beyond local ordering [74] (figure 2.17b). Through 

arranged bonding sites, β-phase conformation can be induced and extended. In this way, 

can now be understood that radial intermolecular interaction surrounding positively 

charged Fe3O4 nanoparticles may not be able to retain the polar conformation in long 

range order with competing entropy [74]. However, the Fe3O4 rod shape is capable to 

induce such β-phase conformation beyond the local ordering, thus leading to the 

formation of the polar β-phase along most of the polymer crystalline phase. 

Additionally, confinement effects on the crystallization of the P(VDF) with NRs fillers may 

allow a long range arrangement that optimizes the interaction between fillers and 

polymer chains, leading to the P(VDF)’s β-phase [74, 75]. 

In this way it is possible to conclude that: a) negatively charged nanofillers 

promote the β-phase of P(VDF) nucleation thought negative Ion−CH2 dipole 

Interactions; b) nanoparticles with positive surface charge fail to nucleate the β-phase 

of P(VDF) and; c) rod or planar nanofillers with positive surface charge assist the 

nucleation of β-P(VDF) thought positive Ion−CF2 dipole interactions, favored by 

confinement effects. 

Such conclusion is supported by the data of the present work and by other 

reported cases in the literature: a) negatively charged ferrite nanoparticles nucleate the 

β-phase of the polymer and positively charged ferrite nanoparticles failed to induce the 

polar β-P(VDF) [19, 20, 53, 54]; b) nearly spherical Ag and BaTiO3 cannot improve the β-

phase formation [86, 87]; c) multi-walled carbon nanotubes promote the β-phase 

growth even before post-processing [88]; d) graphene induces polar phase formation 

[89]; e) optimized β-phase formation by m-SiO2 NRs when compared to their spherical 

counterparts [74] and f) flat surface of organoclays facilitates the β-phase formation on 

P(VDF) composites [26].  Hence, both anisotropic shape and negatively charged surfaces 

benefit the β-phase conformation in P(VDF) nanocomposites. 
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2.5.  Development of anisotropic magnetoelectric polymer 

composites 

In this study, the anisotropy of the ME response [90] was obtained by the 

introduction of magnetic nanosheets of δ-FeO(OH) and CoFeO(OH) in a P(VDF-TrFE) 

piezoelectric matrix. 

The ME effect on the δ-FeO(OH)/P(VDF-TrFE) composites will not arise in the 

traditional way, by the coupling between the magnetostriction and piezoelectricity, but 

instead by the alignment of the δ-FeO(OH)nanosheets, as a response to the applied 

magnetic field, on the P(VDF-TrFE) matrix. 

On the other hand, novel high magnetostrictive anisotropic nanofillers are 

developed by doping FeO(OH) nanosheets with the largest room-temperature 

magnetostrictive pure element, Cobalt [91], thus allowing the fabrication of Co(II)Fe(III)-

O(OH)/P(VDF-TrFE) composites with high ME anisotropic response. Thus, the 

CoFeO(OH)/P(VDF-TrFE) composite with anisotropic and optimized ME response will 

allow its implementation into anisotropic sensor/actuator applications especially on 

innovative magnetic compasses [3, 92, 93]. 
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Nanoparticles 

X-ray diffraction was used for nanosheet characterization [94]. 

 

Figure 2.18. a) X-ray powder diffraction patterns of δ-FeO(OH) nanosheets; b) Representative TEM 

images of the nanosheets; c) L-alignment of the δ-FeO(OH) nanosheets within the P(VDF-TrFE) matrix; d) 

Randomly distributed δ-FeO(OH) nanosheets within the P(VDF-TrFE) matrix. 

 

Figure 2.18a displays the X-ray patterns of the synthesized nanopowders, 

showing the typical characteristic structural parameters of the δ-FeO(OH) phase, with 

reflections corresponding to planes (100), (101), (102) and (110) [95]. The morphology 

of the δ-FeO(OH) nanosheets was monitored by TEM, whose images (figure 2.18b) 

revealed an anisotropic sheet structure with dimensions of the order of ≈ 50 nm x 70 

nm x 5 nm. Such anisotropy will allow the magnetic alignment of the nanosheets [96, 

97].  SEM images (figure 2.18c-d) reveal the alignment of δ-FeO(OH) within the polymer 

matrix when the δ-FeO(OH)/ P(VDF-TrFE) composites were prepared under a DC 

magnetic field (figure 2.18c) during the material processing. Further, a random 
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nanoparticle distribution is observed in the δ-FeO(OH)/P(VDF-TrFE) composites not 

submitted to the DC magnetic field during processing, as shown by the random 

microstructural features of figure 2.18d, when compared to the oriented ones on figure 

2.18c. At lower magnifications the nanoparticles are not observed (and, therefore, the 

information about nanoparticle orientation) and the same typical morphology of P(VDF-

TrFE) processed by solvent evaporation at 80 °C is obtained for all samples [55]. 

The synthesized CoFeO(OH) nanosheets were characterized by TEM (figures 

2.19a-b), XRD (figures 2.19c-d), magnetization measurements at room temperature 

(figure 2.19e) and ZFC-FC magnetization measurements (figure 2.19f). 

 

Figure 2.19. CoFeO(OH) nanosheets characterization: a) Representative TEM image; b) Cs-corrected HR-

STEM-HAADF image; c) X-ray powder diffraction patterns of as-made nanosheets and standard JCPDS 

No. 14-00558; d) EDS analysis of the selected area in figure 2.19b; e) Hysteresis loops at room 

temperature for the CoFeO(OH) nanosheets powder and f) ZFC-FC magnetization. 
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The production of CoFeO(OH) nanosheets was achieved using a novel synthesis 

strategy based on a slug-flow microfluidic system [49, 98]. This approach allows a precise 

control of the reaction conditions (reaction time, temperature, reactants concentration, 

and stoichiometry), and its high surface-area-to-volume ratio and mixing characteristic 

help to mitigate temperature and concentration in homogeneities. This versatile reactor 

enables the flow segmentation using air slugs which have a double role: 1) Promote 

mixing by the recirculating flows inside the fluid segments [99]; 2) Provide the oxidative 

environment to promote the anisotropic growth of nanostructures [49, 100]. 

Considering previous results to produce feroxyhyte, a new study of synthesis 

parameters was performed, achieving the most stable and homogenous FeCo based 

nanomaterials at a residence time of 1 min and 100 °C. TEM characterization reveals 

that the air-segmented flow microfluidic reactor enables the fast and controlled 

production of sheet shaped nanostructures with dimensions of the order of ≈ 40 nm x 

60 nm x 5 nm (100 measurements) (figure 2.19a). 

HR-STEM images obtained with a High Angle Annular Dark Field (HAADF) 

detector show that the nanostructures present a high crystalline structure, but there is 

not HAADF z-contrast related with a segregation of Fe and Co atoms on the surface of 

the nanosheets (figure 2.19b). This implies that Fe and Co atoms are homogenously 

distributed. The chemical composition was studied by EDS analysis, proving the 

presence of both elements (figure 2.19d). Further, XRD pattern of produced nanosheets 

correspond to crystalline structure of cobalt iron oxide-hydroxide Co(II)Fe(III)-O(OH) 

(CoFeO(OH)) (JCPDS No. 14-00558); Figure 2.19c. Since the magnetic properties of the 

magnetostrictive phase are critical aspects in the development of ME composites [15, 

30], CoFeO(OH) magnetization was measured at room temperature (figure 2.19e) and 

as a function of temperature (figure 2.19f). 

The room temperature hysteresis loops of the CoFeO(OH) powders reveal almost 

absence of hysteresis, remanence and coercivity (≈100 Oe), evidencing a 

superparamagnetic behavior. In this way, since room temperature is above the blocking 

temperature, magnetic moments of the nanosheets are free to rotate in response to the 

applied magnetic field, allowing their magnetic alignment in the P(VDF-TrFE) matrix. 
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The magnetization processes irreversibility degree is high, as evidenced by the 

separation of FC and ZFC lines at 100 K. Such irreversibility in nanostructures ascends 

from the struggle between the energy needed for a structure reorientation and the 

magnetoelasticity, shape and crystalline anisotropy energies [54]. The bifurcation 

between the two curves happens at a temperature TB (100 K) that corresponds to the 

blocking temperature of the biggest magnetic structures in the assembly. Below TB, on 

the ZFC curve at a temperature TP (70 K) can be found a maximum that delimits the 

blocking of all structures (independently of the size). This sharp peak pronounces a 

narrow CoFeO(OH) sheets size distribution, confirming also the good synthesis control 

achieved in the microfluidic reactor. The value of TB also specifies a lower temperature 

frontier for the superparamagnetic behavior. Therefore, CoFeO(OH) has a clear 

superparamagnetic behavior at room temperature (≈300 K) as already shown in the 

room temperature magnetic hysteresis loops. 

The magnetic behavior of the obtained δ-FeO(OH)/P(VDF-TrFE) composites is 

represented in figure 2.20. 

  

Figure 2.20. a) Room temperature hysteresis loops for the composites with 20 wt.% of δ-FeO(OH) with 

A, L and T alignments; b) δ-FeO(OH) wt.% dependent MS. The inset shows the derivative of the 

magnetization curves of the aligned samples. 

 

The shape and magnetization maximum value (3 emu.g-1), which corresponds to 

≈ 20 % of the maximum magnetization of the pure δ-FeO(OH) nanosheets of the 

hysteresis loops measured in the sample with randomly oriented nanosheets 

(A samples) demonstrate that the magnetic response is directly proportional to filler 
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content (figure 2.20a). A very small difference is detected between the randomly 

oriented sample and the oriented samples (L and T) which can be attributed to the 

magnetization through easy and hard magnetization directions, respectively [39, 40]. As 

expected, for all compositions, the magnetization saturation of the composite increases 

with increasing δ-FeO(OH) content (figure 2.20b). The nanocomposites showing 

negligible magnetic coercivity and remanence and a magnetization saturating at 8000 

Oe. 

Because piezoelectricity is a fundamental requirement on ME composites, the 

piezoelectric response as a function of the δ-FeO(OH) nanosheets content and over time 

for the δ-FeO(OH)/P(VDF-TrFE) composites are shown in figure 2.21. 

  

Figure 2.21. a) δ-FeO(OH) wt.% dependent modulus of d33 for the samples with nanosheets with A, L 

and T orientations; b) modulus of the piezoelectric response over time measured for all the δ-

FeO(OH)/P(VDF-TrFE) composites with 20 wt.% nanosheets content. It should be noted that the d33 

value is negative and it is given as the modulus in the figures. 

 

Figure 2.21a reveals first an increase in the piezoelectric response with increasing 

nanosheets content, as a result of the increased dipolar orientation of the polymer 

matrix near the interface [29], due to the strong electrostatic interactions, reaching a 

maximum value of ≈24 pC.N-1 (in modulus) in the sample with 5 wt.% of δ-FeO(OH). This 

effect is related to nanoscale polarization contributions that have been proven to 

increase the piezoelectric response [101-104]. With increasing filler concentration, the 

piezoelectric response decreases due to an increasingly defective and stiffer polymer 

matrix [29, 105]. Additionally, the piezoelectric response of the polymer matrix is fully 
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dependent on the content of δ-FeO(OH) filler and independent of the filler orientation. 

Such piezoelectric response is stable over time, until at least 90 days (figure 2.21b). 

The ME response of the composite with 20 wt.% of δ-FeO(OH) nanosheets is 

represented as a function of the intensity of the applied DC magnetic field and the 

magnetic field direction (figure 2.22). 

  

Figure 2.22. a) ME response α as a function of the applied magnetic field (parallel to the nanosheet 

length direction) for the T, L and A aligned composites, with 20 wt.% of nanosheets. b) ME response α, 

for the composite T aligned, with 20 wt.% of nanosheets, as a function of the angle between the length 

direction of the δ-FeO(OH) nanosheets and the DC magnetic field direction. 

 

Figure 2.22a shows that the α value increases with the applied DC magnetic field 

until reaching its maximum value (0.4 mV.cm-1.Oe-1) at ≈1800 Oe, with the α value 

remaining approximately constant with magnetic field increase.  

The samples with 1, 5 and 10 wt.% δ-FeO(OH) content (with A, L and T 

alignments) show no ME response, i.e. the response is too small to be observed in the 

used experimental setup. On composites with 20 wt.% δ-FeO(OH), samples with L-

alignment exhibit similar ME response to the samples with T-alignment; on the other 

hand, samples with no alignment (A samples) show ≈50 % lower ME response (figure 

2.22a). 

The highest ME responses were observed when the DC magnetic field was 

applied perpendicularly to the δ-FeO(OH) length direction alignment (90° and 270°); no 

ME response was observed when the magnetic field was applied parallel to the 

alignment (0°, 180° and 360°) and an intermediate ME response was observed when the 
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magnetic field was applied at angles of 45°, 135°, 225° and 315° relative to the δ-

FeO(OH) alignment (figure 2.22b). Those observations are maintained for L aligned 

samples. The ME response of the samples has been measured to be stable, as the 

piezoelectric response, up to 90 days, with no relevant variation or aging over time. The 

ME response angle sensitivity, such as the one represented on figure 2.22b, recently 

proved its applicability on innovative anisotropic magnetic sensors [37]. For practical 

applications and in order to distinguish, for example, the 45° angle from the 135° one, 

both with the same ME response, two ME materials, X and Y, should be integrated within 

the same magnetic sensor with a well-known angle between them, the comparison of 

the materials response allowing the unambiguous determination of the magnetic field 

direction. 

Such behavior can be related with the impossibility/difficulty of the magnetic 

moments reorientation and with the anisotropy of the magnetization resulting from the 

crystallographic restrictions for specific directions [106]. Additionally, it is observed that 

the ME response saturates at ≈1800 Oe, at the same magnetic field value where the 

magnetization derivative reaches its minimum (inset of figure 2.20b). For higher fields, 

and contrary to what happens with the usual ME composites (constituted by 

piezoelectric and magnetostrictive materials) [3, 15], the ME response does not 

decrease, maintaining its maximum value. In this way, increasing the magnetic field from 

≈1800 Oe will cause no additional substantial magnetization on δ-FeO(OH) nanosheets 

[107], no rotation/movement is promoted, no significant stress is induced on P(VDF-

TrFE) and as a consequence no additional ME response is detected. It should be noted 

that this represents a novel ME response with respect to the previously reported in the 

literature.  

After preparation of the aligned CoFeO(OH)/polymer composites through the 

mechanism proposed on [98], the magnetic and ME response of the sensor was 

evaluated (figure 2.23). 
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Figure 2.23. a) Room temperature hysteresis loops for the composite in comparison with the pure 

powder form; b) ME voltage (VME) and ME coefficient (α31) as a function of the frequency; c) Room 

temperature ME voltage (VME) and ME coefficient (α31) as a function of the HDC; d) Room temperature 

ME response as a function of the angle between HDC and the composite length. 

 

Figure 2.23a shows the magnetization of the pure powder divided by 100, in 

order to allow comparison of the magnetic response of the same quantity of CoFeO(OH) 

nanosheets inside the polymeric composites and in the pure powder form. On the 

CoFeO(OH)/P(VDF-TrFE) sample, measured in parallel with the DC magnetic field, the 

magnetization process is slightly faster with the applied field while in the powder sample 

magnetization process is slightly slower due to the magnetization through easy/hard 

directions [39, 40]. Additionally the maximum magnetization value (1.26 × 10-2 emu.g-1) 

on the composite samples corresponds effectively to 1 % of the maximum magnetization 

value (1.26 emu.g-1) of pure CoFeO(OH) powder, indicating that the P(VDF-TrFE) matrix 

has no influence on the magnetic response of the nanosheets. ME measurements not 
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only will validate the use of the CoFeO(OH)/P(VDF-TrFE) composite as an innovative 

magnetic sensing material but also allows to quantify the magnetostriction of the 

CoFeO(OH) nanostructures. Such ME measurements as a function of the frequency 

(figure 2.23b) reveal that the electromechanical resonance of the composite is ≈53 kHz 

as a result of the length along the resonant direction (7 mm), composite density (1800 

kg.m-3) and Young’s modulus (0.5 GPa) values [29]. Once the ME response was optimized 

at the resonance frequency of the composite, its response as a function of the HDC 

magnetic field was evaluated on figure 2.23c. Such measurements were performed in 

the HDC range from 0 to 1500 Oe, once between those magnetic field values the 

magnetic (and as a consequence the ME) response shows a linear behavior, which is of 

interest for the development of polymer-based ME sensors [108]. The high r2 value 

(0.995) demonstrates the good linearity of the developed ME sensor, being among the 

best values reported in the literature [109]. It was found that the ME response increases 

with increasing magnetic field due to increasing effective piezomagnetic coefficient up, 

until the optimal HDC is achieved [98]. 

Higher contents of CoFeO(OH) nanosheets would lead to an increase of the 

produced ME voltage, on the other hand, for the 1wt.% content sample, the voltage is 

already high enough to be detected and eventually amplified by interface electronics, 

and consequently there is no need for using higher concentrations of CoFeO(OH) once 

this would increase the cost and decrease the flexibility of the magnetic sensor [52]. 

In order to validate the use of the CoFeO(OH)/P(VDF-TrFE) composites as 

magnetic compasses and sensors, the ME response was studied at the 53 kHz resonance 

frequency as a function of the HDC direction, in the experimental setup schematically 

represented in the inset of figure 2.23d. Such setup allows the rotation of the sample 

and therefore the orientation of the fillers with respect to the applied magnetic field. 

Figure 2.23d shows that for the CoFeO(OH)/P(VDF-TrFE) sample the maximum VME of 

1.20 µV is obtained for 0, 180 and 360° (where the magnetic fields has the same 

direction of the nanosheet length) and a minimum VME of 0 mV is obtained for 90 and 

270 degrees (where the magnetic fields and the nanosheet length are perpendicular).   

Since for the CoFeO(OH)/P(VDF-TrFE) composite sample the magnetostrictive 

response is optimized along the length direction of the composite (resulting from the 
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magnetic alignment of the nanosheets), when the HDC is applied along the perpendicular 

direction of the fillers, no ME response is observed. 

On the basis of equations 2.1 and 2.2, is possible to determine the strain 

produced by the rotation of the δ-FeO(OH) nanosheets inside the polymer matrix (table 

2.2). 

Table 2.2. α, mV, d33, ɛ, EY, l, w, and t values used to determine λ and dS/dH. 

Alignment 
α 

(mV.cm-1.Oe-1) 
mv 

|d33| 
pC.N-1 

ɛ 
EY 

GPa 
w × l × t 

(mm×mm×µm) 
ds/dH 
×10-12 

λ 
ppm 

L 0.42 

0.08 11 12 1.14 6.5 × 12.5 × 50 

4.27 
0.51 

T 0.41 4.17 

A 0.19 1.93 0.23 

 

The results from table 2.2 reveal small strains caused by the rotation of the δ-

FeO(OH) nanosheets on P(VDF-TrFE) (≈0.2-0.5 ppm) when compared to the typical 

strains that are transmitted to the piezoelectric polymers by magnetostrictive 

nanoparticles. Nevertheless, this new ME concept allows the development of polymer-

based anisotropic sensors that meet all the most challenging and innovative 

requirements of the actual magnetic field sensors industry [3, 36-38]. 

The obtained ME response of CoFeO(OH)/P(VDF-TrFE) is fully ascribed to the 

anisotropic behaviors of both q and λ in the CoFeO(OH) fillers that strongly depend on 

the angle of the applied HDC [5, 110, 111]. 

Finally, equations 2.1 and 2.2, and the performed measurements allow 

determination of the effective magnetostrictive coefficient (λE) of the CoFeO(OH) 

nanosheets following the procedure introduced in [30]. 

Table 2.3. α, mV, d33, ε, EY, l, w, and t values used to determine λE and dS/dH and a comparison with the 

magnetostrictive properties of CFO nanoparticles and δ-FeO(OH) nanosheets. 

NP Matrix 
α 

mV.cm-

1Oe-1 
mv Ref. 

d33 
pC.N-

1 
ɛ 

EY 
GPa 

w×l×t 
mm×mm×µm 

ds/dH 
(×10-

9) 

λE 
ppm 

CFO 

P
(V

D
F-

Tr
FE

) 3.25 0.02 [15] 23 11 

0.80 

6.5 × 12.5 × 
50 

1.09 217 

CoFeO(OH)-R 2.50 
0.01 

This 
work 

30 10 5×7× 25 
2.08 249 

CoFeO(OH) 5.10 4.25 507 

δ-FeO(OH)-R 0.19 
0.08 [98] 11 12 1.14 6.5×12.5×50 

0.002 0.23 

δ-FeO(OH)-L 0.42 0.004 0.51 
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Table 2.3 shows that the CoFeO(OH) nanosheets present a λE of the same order 

of magnitude of the high magnetostrictive CFO nanoparticles. Further, a CoFeO(OH)-

R/P(VDF-TrFE) composite with CoFeO(OH) nanosheets randomly oriented on the 

polymer matrix (data not shown) has been added to comparison, allowing to verify that 

the effective magnetostriction is strongly optimized with the magnetic alignment of the 

CoFeO(OH) nanosheets. 

Comparing the ME performance of both magnetostrictive fillers, CoFeO(OH) and 

CFO, in the same piezoelectric matrix (P(VDF-TrFE)), and with the same filler content (1 

wt.%), the higher ME response on CoFeO(OH)/P(VDF-TrFE) composites (5.1 mV.cm-1.Oe-

1), relatively to the CFO/P(VDF-TrFE) composites (≈0.7 mV.cm-1.Oe-1), is noticed. 

Additionally, the previously reported anisotropic ME response of δ-

FeO(OH)/P(VDF-TrFE) composites is three orders smaller than the one found in the 

present study. This can be explained by the small λE of δ-FeO(OH) (0.5 ppm) emerging 

from the magnetic rotation of δ-FeO(OH) nanosheets within the piezoelectric P(VDF-

TrFE) polymer matrix. 

2.6. Conclusions 

ME film nanocomposites were successfully produced using P(VDF-TrFE) as 

piezoelectric phase and CFO nanoparticles as magnetostrictive phase by two different 

solvent casting methods including ultrasound bath and surfactation. It was 

demonstrated that no differences were observed in the piezoelectric, magnetic and ME 

response of the nanocomposites when the two distinct dispersion methods were 

compared, being these responses independent of the filler size for filler sizes up to 500 

nm. Key parameters in the ME composite preparation were found to be filler content 

and distribution, this fact being of special interest for industrial large scale processes, in 

which feasibility for fabrication of smart structures is one of the main tasks. 

Fe3O4 nanoparticles were successfully synthesized with 9, 30 and 50 nm of 

average size and 167, 17 and 26 ppm magnetostriction, respectively. Fe3O4/P(VDF-TrFE) 

ME nanocomposites were produced with the different nanoparticles, leading to 

nanocomposites with ME voltage coefficients (α31) of 920 (9 nm), 100 (30 nm) and 150 

(50 nm) µV.cm-1.Oe-1. 
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Thus, a strong increase of the magnetostriction and the ME response is obtained 

for the nanocomposite with 9 nm nanoparticles, which is related to the increase in unit 

cell volume with the reduction in particle size of the Fe3O4 particles that implies an 

increase in Fe2+ content in the sample.  In this way, it is shown that it is possible to tailor 

and optimize the magnetostriction and ME response at the nanoscale, with large 

potential applications in the areas of biomedicine and sensors and actuators. 

Beyond that, Fe3O4 NRs were also synthetized. These NRs a simple and efficient 

method to synthesize β-P(VDF) films was developed. The effects of surface charge and 

filler structure on the crystallization behavior of P(VDF) were systematically studied by 

using two types of nanostructures, Fe3O4 NRs and spherical nanoparticles of different 

sizes, with distinct surface charges, in order to study, isolate and discuss the effects of 

the different ion−dipole interactions, size and shape on the nucleation of the β-phase of 

P(VDF). 

Having almost the same interface values (≈10 %), different Fe3O4/P(VDF) 

composites exhibited distinct β-phase values. Fe3O4 nanoparticles with different sizes 

and distinct zeta potential values; 9 nm (30 mV), 30 nm (8 mV) and 50 nm (11 mV) failed 

to induce high fraction values of β-phase within the composites. In contrast, Fe3O4 rods 

(30 mV) nucleated ≈70 % of β-P(VDF) within the nanocomposites. When compared to 

their spherical nanoparticle counterparts, the use of Fe3O4 NRs has the advantages of 

anisotropic shape and organized crystallization that direct polar molecular conformation 

towards oriented growth of β-P(VDF). Besides optimizing intermolecular interaction, 

NRs promote a confinement effect essential to induce oriented ordering of molecular 

conformation towards long range order. The proposed β-phase nucleation mechanism 

could be used to unambiguously explain the existing controversy in current literature 

reports for the β-phase nucleation on P(VDF) nanocomposites and can be taken to 

advantage for the crystallization of β-P(VDF) form with a variety of intermolecular 

interactions, which largely benefits and dynamizes current development in P(VDF) based 

materials for electroactive devices applications. 

δ-FeO(OH)/P(VDF-TrFE) and CoFeO(OH)/P(VDF-TrFE) ME composites have been 

produced by a simple low-temperature processing method. The nanosheets fillers have 

been introduced in different filler contents and alignment states (random, transversal 



Chapter 2 – Development of magnetoelectric films 

78 
 

and longitudinal). The piezoelectric response (10-24 pC.N-1), the shape and 

magnetization maximum value (3 emu.g-1) depend on δ-FeO(OH) content. The obtained 

ME voltage coefficient, with a maximum of ≈0.4 mV.cm-1.Oe-1, depends on filler content 

and alignment state as well as on both incident magnetic field direction and intensity. 

Further, a new ME effect is proposed based on the magnetic rotation of the δ-FeO(OH) 

nanosheets inside the piezoelectric P(VDF-TrFE) polymer matrix. As a conclusion, 

polymer composites suitable to be used as magnetic field sensor for advanced 

applications, were developed. 

As shown, new CoFeO(OH) highly magnetostrictive (λ=507 ppm) and anisotropic 

nanostructures were synthesized by a coprecipitation method using a modified gas-

slugs microfluidic system. The microfluidic approach enables to grow anisotropic FeCo 

based nanostructures in a reproducible and continuous way under a time scale of 1 min.  

Further, flexible CoFeO(OH)/P(VDF-TrFE) composites reveal an interfacial ME coupling 

strongly dependent on the angle between HDC and CoFeO(OH) length direction, with a 

maximum α31 of 5.10 mV.cm-1.Oe-1. The high magnetostriction, anisotropic ME magnetic 

sensing capability and good linearity (r2 value =0.995) allows the use of 

CoFeO(OH)/P(VDF-TrFE) composites in polymer-based magnetic sensor devices, 

actuators and in the biomedical field. 
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Chapter 3 
Development of magnetoelectric 

polymer-based membranes 

 

CFO/P(VDF-TrFE) magnetoelectric (ME) membranes were processed and their ME 

response, magnetic properties and morphology evaluated. It is shown that the 

membranes have large interest, due to their piezoelectric, magnetic and ME response, 

and high porosity. 
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3.1. Introduction 

Porous films and membranes are playing an increasingly important role in 

various fields, such as energy, environment, chemical and medical industries, being 

regarded as one of the most promising functional materials [1-3]. They are attracting 

increasing attentions both at a research and application levels and experiencing strong 

development in novel theories, technologies and applications [1, 4, 5].   

Porous films can be prepared from (organic) polymers, inorganic materials, 

liquids (immobilized liquid composite membranes) and from self-assembled smaller 

molecules (in analogy to biological membranes). Polymer membranes dominate a very 

broad range of industrial applications due to the large variety of polymeric materials 

commercially available that can be prepared by versatile and industrially scalable 

methods with tailored microstructure and properties. Further, polymer-based 

membranes can be produced in large areas and with various membrane shapes (flat 

sheet, tubular, hollow-fiber, capillary, capsule) and formats including modules with high 

packing densities [1].  

Among polymeric porous films, the ones based on P(VDF) and its copolymers are 

emerging as one of the most promising membranes due to their good mechanical and 

thermal properties and chemical stability [6, 7]. Compared to its P(VDF) homo-polymer, 

P(VDF-TrFE) displays further advantages such as high dipole moment, high dielectric 

constant, and possibility of controlling porosity at room temperature [7].  Furthermore, 

P(VDF-TrFE), for TrFE contents between 50 and 80%, crystallizes in the piezoelectric 

phase independently of the processing method, allowing the preparation of 

piezoelectric porous films with improved flux and fouling in the case of filtration and 

separation membranes [8, 9], improved sensing properties for biomedical monitoring 

[10] and with the possibility of environmental energy storage and harvesting [11]. 

The incorporation of magnetic nanoparticles in porous structures is still very 

recent [12] and the use of such nanoparticles in multifunctional porous films is 

essentially unexplored. Nevertheless, the addition of magnetic nanoparticles can take a 

step forward these materials concerning the development of multifunctional porous 

films able to separate components with distinct magnetic properties (e.g. oxygen is 
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paramagnetic while nitrogen is diamagnetic) [13], generate heat [14], large and 

controlled deflections [15] or in-situ pore size switching [16]. If the magnetic particles 

are also magnetostrictive, other innovative applications such as magnetostrictive 

ultrasonic thrombolysis membranes [17] or magnetic sensor membranes [18] can be 

also developed. Additionally, the inclusion of magnetostrictive nanoparticles in a 

piezoelectric porous structure can allow the preparation of ME membranes [19].  

The ME effect within porous structures will allow novel applications in areas – 

figure 3.1- such as sensors, actuators, transformers and microwave devices [19, 20], in 

technological applications such as separation membranes, water treatment, drug 

release, cell culture or medical devices [16, 21, 22]. In this way, ME porous structures 

represent an innovative concept to be added to the increasingly large variety of 

applications of porous structures [6, 23, 24].  

 

Figure 3.1. Porous ME composite structure, its main responses and possible applications. 

 

Despite this promising and interesting potential, just few reports have vaguely 

addressed the concept of ME porous structures [25, 26]. 
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3.2.  Materials and methods 

CFO/P(VDF-TrFE) porous piezoelectric, magnetic, magnetostrictive and ME films 

were developed. P(VDF-TrFE) was chosen as piezoelectric material since it exhibits one 

of the highest piezoelectric responses among polymer materials over a wide range of 

temperature depending on its composition [28] and CFO nanoparticles were chosen as 

the magnetic/magnetostrictive phase due to the large magnetostrictive coefficients and 

high Curie temperatures [29]. 

3.2.1. Materials  

CFO nanoparticles were purchased from Nanoamor, with dimensions between 

35 and 55 nm. N,N-Dimethylformamide (DMF, pure grade) was supplied by Fluka and 

P(VDF-TrFE) was supplied by Solvay Solexis. 

3.2.2. Methods 

The methods used for the study were divided in processing and characterization. 

3.2.2.1. Processing methods 

Composite porous films of CFO/P(VDF-TrFE) with 1, 7 and 20 nanoparticles wt.% 

were prepared by solvent casting and crystallization at room temperature, with 

thickness of ranging from 200 to 400 μm. Higher contents of ferrite nanoparticles were 

not used to avoid damaging the porous structure and the agglomeration of ferrite 

nanoparticles in the porous surface as demonstrated with other nanoparticles [27]. 

Previously, the CFO nanoparticles were added to 8 mL of DMF and placed in an 

ultrasound bath during 8 hours to ensure a good dispersion of the nanoparticles in the 

solution and also to avoid loose aggregates. After that, 2 g of P(VDF-TrFE) were added 

to this suspension, achieving a polymer/solvent ratio of 20:80, and mixed with a Teflon 

mechanical stirrer until complete dissolution of polymer. Finally, the material was placed 

on a dried glass substrate at room temperature to ensure the complete evaporation of 

the solvent. 
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3.2.2.2. Characterization methods 

The structure of the ME porous films was investigated using a Quanta 650 FEG 

(FEI) Environmental Scanning Electron Microscope with an acceleration voltage of 5 kV. 

Poling of the films was achieved, after an optimization procedure, by corona poling at 

10 kV during 120 min at 120 °C in a home-made chamber and cooling down to room 

temperature under applied field. The d33 of the samples was analyzed with a wide range 

d33-meter (model 8000, APC Int Ltd). 

Magnetic hysteresis loops at room temperature were measured using an ADE 

3473-70 Technologies vibrating sample magnetometer. 

In order to obtain the out-of-plane ME coefficient α33, the first index indicating 

the collinear ferroelectric poling and electrical measurement directions, and the second 

indicating the applied magnetic field direction, a DC and AC magnetic field were applied 

along the direction of the electric polarization of the P(VDF-TrFE), i.e., perpendicular to 

the composite membrane surface.  

An AC driving magnetic field of 1 Oe amplitude at 7 kHz (resonance of the 

composite) was provided by a pair of Helmholtz coils. A DC field with a maximum value 

of 0.5 T was applied by an electromagnet. The induced ME voltage was measured with 

a Standford Research Lock-in amplifier (SR530). 

3.3. Development of magnetoelectric membranes  

The typical microstructure of pure copolymer film samples and composites is 

presented in figure 3.2.  

  

Figure 3.2. Morphology of CFO/P(VDF-TrFE) nanocomposite membranes with 20 wt.% of ferrite content, 

a) before and b) after poling. 

10 20 30 40 50
0

5

10

Semimajor axis

 

 

N
u

m
b

e
r 

o
f 

p
o

re
s

Pore size

 

 

0 10 20 30
0

2

4

6

8

 

Semiminor axis

N
u

m
b

e
r 

o
f 

p
o

re
s

Pore size

 

 

10 20 30 40 50
0

2

4

6

8

10

Semimajor axis

Pore size

N
u

m
b

e
r 

o
f 

p
o

re
s

 

 

0 10 20 30
0

2

4

6

8
Semiminor axis

 

N
u

m
b

e
r 

o
f 

p
o

re
s

Pore size

(

b 

50 um 50 um 

(

a 



          Chapter 3 – Development of magnetoelectric polymer-based membranes 

  97 
 

It can be observed that the porous structure characteristic of neat P(VDF-TrFE) 

polymer is maintained, however the typical spherical shape [6, 7] of these pores is 

replaced by an ellipse shaped structure. The origin of this change can be explained by 

the high weight of CFO nanoparticles during the slow polymer crystallization by solvent 

casting method. Further, it is observed that some of the nanoparticles are inside the 

polymer matrix and others are coating the pores surface. The corona poling process, 

involving high temperature and electric field, does not significantly alter the 

microstructure of the films and the average size of the ellipse shaped pores, both with 

respect to the semimajor and semiminor axes, is maintained before and after the poling 

process.   

Piezoelectric and magnetic properties of the composite membrane prove the 

multifunctionality of the polarized porous membrane (PPM) and will determine its ME 

response [30] (figure 3.3). 

  

Figure 3.3. a) Ferrite wt.% dependent d33 for the ME PPM. b) Room temperature hysteresis loops for the 

ME PPM. 

 

Figure 3.3a shows that the existence of pores decreases to almost one half the 

piezoelectric response of the porous film with respect to the pristine polymer P(VDF-

TrFE) films [28] (from 37 to 22 pC.N-1). On the other hand, this value is still among the 

largest among polymers and comparable to those obtained for CFO/P(VDF-TrFE) MF 
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exhibit piezoelectric response similar to those with CFO nanoparticles, indicating that 

the addition of nanoparticles not affect the piezoelectric response of the resulting 

membrane. Such piezoelectric response is stable over temperature (samples were 

heated until 120 °C in the poling process) and time, with no signal degradation for over 

30 days (inset of figure 3.3a). 

The room-temperature magnetization loops of the ME porous membranes 

(figure 3.3b) show that nanocomposite magnetization increases with increasing CFO 

content (inset of figure 3.3b). The maximum magnetization value of 12 emu.g-1 was 

obtained in the PPM with 20 wt.% of ferrite content. The nanocomposites show 0.2 T 

coercivity, remanence and the magnetization saturates at the applied magnetic field of 

1.8 T, consistent with the ferromagnetic behavior of the nanoparticles [31].  

The ME response in the porous films was measured as a function of the applied 

DC magnetic field and the CFO content (figure 3.4).    

  

Figure 3.4. a) ME response α33 as a function of the applied magnetic field for the different ME porous 

membranes; b) ME coefficients as a function of CFO filler content for the different ME PPM at 0.3 T 

magnetic DC field. 
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the CFO nanoparticles and the polymer matrix due to the existence of pores [32].  

Moreover, the poor elastic coupling resulting from the soft structure of the film leads to 

a poor transition of the mechanical stress between magnetostrictive and piezoelectric 

phases and thus contributing towards lower ME response [33]. Additionally, as seen on 

figure 3.2, some of the ferrite nanoparticles are located in the surface of the pore, being 

only a part of its surface in contact with the polymer matrix. 

Figure 3.4b shows an increase in the ME response with increasing CFO content, 

which is naturally explained by the increased magnetostriction of the sample due to the 

substantial increase of the magnetostrictive phase, being observed the maximum ME 

response (9 mV.cm-1.Oe-1) in the sample with highest content CFO nanoparticles (20 

wt.%). Porous films with higher content of magnetostrictive nanoparticles were not 

produced in order to avoid collapsing the pore structure [27]. 

3.4. Conclusions 

The porous films developed in the present work show a piezoelectric response 

with an effective d33 coefficient of -22 pC.N-1, a maximum magnetization of 12 emu.g-1 

and a maximum ME coefficient of 9 mV.cm-1.Oe-1. Such features make this membrane 

suitable for innovative applications ranging from biomedical or drug delivery systems to 

water treatment [16, 21, 22]. 
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Chapter 4 
Development of polymer-based 

magnetoelectric fibers and spheres 

 

 

Two different morphologies: fibers and spheres were studied. Their production is based 

on electrospinning and electrospray techniques, for nanofibers and microspheres, 

respectively. The magnetoelectric response was proven in both morphologies. 
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4.1. Introduction 

ME composites comprising magnetic nanoparticles embedded in a ferroelectric 

polymer matrix can have several advantages, namely: strain coupling typically does not 

deteriorate with operation as the magnetic material is in direct contact with, and 

completely surrounded by, the ferroelectric material, and ME voltage coefficients in 

composites comprising magnetic nanoparticles and fluorinated-polymer matrices are 

relatively large both at moderate [1] and high [2, 3] magnetic fields. 

Polymer-based ME fibers and spheres composed by magnetostrictive 

nanoparticles within a piezoelectric polymer matrix, can open new applications areas 

and solve some drawbacks of the traditional polymer-based structures 

(nanocomposites, polymer as a binder and laminates) such as agglomeration, irregular 

distributions and the difficulty to shape in a miniaturized form [4, 5]. 

Polymer-based nanofibers and spheres undergo an increasing demand and 

applicability as biomaterials for cell culture, drug delivery systems, electro-optic and 

luminescent devices, heterogeneous catalysis and polymer powder impregnation of 

inorganic fibers in composites [6-9]. 

Particularly, low-scale piezoelectric materials show strong potentials for 

improved energy harvesters with higher volume efficiency, nanosensors and 

nanoactuators and nanomats guiding cell distribution [10, 11]. The addition of 

magnetostrictive materials into the piezoelectric microspheres allows the use of the 

resulting composite also as magnetic nanosensors and actuators, as well as to take 

advantage of the induced the ME phenomenon [12]. 

4.2. Materials and methods 

This subchapter is divided in materials and methods. 

4.2.1. Materials  

Poly(vinylidene fluoride), P(VDF), reference Solef 1010, was acquired from 

Solvay. Analytical grade tetrahydrofuran (THF) and N,N-dimethyl  formamide (DMF)  

were  purchased  from Panreac and Merck, respectively. CoFe2O4, CFO, nanoparticles 
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with 35–55 nm particle size, was purchased from Nanoamor. Laboratory grade Triton X-

100 was purchased from Sigma-Aldrich. 

4.2.2. Methods 

The methods used for the study was divided in processing and characterization. 

4.2.2.1. Processing methods 

CFO contents were chosen since they can contribute to obtaining nanofibers and 

microspheres with good morphology and high ME coupling [2]. The use of lowerCFO 

contents results in an abrupt decrease in the ME response, higher contents, on the other 

hand, will cause substantial changes on polymer solution properties such as surface 

tension, conductivity, and viscosity, thereby hindering the electrospinning/electrospray 

process and affecting the desired fiber/sphere morphology [13, 14]. ME composite 

nanofibers and microspheres, with CFO nanoparticle content 5, 10 and 20 wt. % for 

fibers and 10, 40 70 wt. % for microspheres, were prepared using the following 

procedure:  

(i) CFO nanoparticles were added to the DMF and the solution was placed in an 

ultrasound bath during 4 h to ensure good dispersion and avoid nanoparticle 

agglomeration (in case of the microspheres, Triton X-100 was added to); 

(ii) P(VDF) powder (and THF in case of microspheres) was added and the resultant 

solution was mixed using a Teflon mechanical stirrer and an ultrasound bath until the 

polymer was completely dissolved. The relation between the contents of polymer and 

solvent were previously optimized in order to obtain nanofibers and microspheres with 

the desired morphology, crystallinity and crystal phase [15].  For such reason the 

relations were kept 20/80 (20 % P(VDF) + 80 % DMF by wt.%);  

(iii) the composite solution was introduced into the electrospinning/electrospray 

deposition setup, using a plastic syringe connected to a flux regulator; in order to create 

a jet, high voltage was applied between the syringe steel needle and an aluminium foil, 

where the electrospun nanofibers (or electrospray microspheres) were collected, 

forming a mat; deposition conditions were 20 kV bias (PS/FC30P04 power source), 0.5 
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mm needle inner diameter, 0.5 ml.h-1 flow rate (1 ml.h-1 to the microspheres), and 20 

cm needle-collector distance. 

4.2.2.2. Characterization methods 

The morphology of the CFO/P(VDF) nanofibers and microspheres was evaluated 

by Scanning Electron Microscopy (SEM) (Quanta 650, from FEI) with an accelerating 

voltage of 5 kV (microspheres) and 10 kV (nanofibers).  Average diameter and 

distribution were calculated over approximately 30 nanofibers and microspheres using 

SEM images (5000 X magnification) and the Image J software. 

Fourier Transform Infrared Spectroscopy (FTIR) technique was carried out at 

room temperature in a Bruker alpha apparatus in ATR mode from 4000 to 400 cm-1 using 

24 scans at a resolution of 4 cm-1. Specific bands such as the ones at 766 and 840 cm-1 

were identified to correspond to the α- and β-phase, respectively, allowing the 

calculation of the polymer phase content after the procedure described in [16]. The β-

phase fraction (F(β)) can thus be determined by applying equation 4.1: 

𝐹(𝛽) =
𝐴𝛽

(
𝐾𝛽

𝐾𝛼
) 𝐴𝛼 + 𝐴𝛽

 (4.1) 

 

where F(β) represents the β-phase content; Aβ and Aα the absorbance at 840 and 766 

cm-1, respectively and Kβ (7.7 x 104 cm2.mol-1) and Kα (6.1 x 104 cm2.mol-1) are the 

absorption coefficients at the respective wavenumber for both phases [16]. 

The thermal behavior of the samples was determined by Differential Scanning 

Calorimetry (DSC), measurements in a Mettler Toledo 822e apparatus with sample robot 

and  STAR software, using a heating rate of 10 °C.min-1 under nitrogen purge (50 mL.min-

1); and by ThermoGravimetric Analysis (TGA). For the TGA measurements, samples were 

transferred to open ceramic crucibles with capacity of 60 µL and analyzed using a 

METTLER TGA/SDTA 851 thermobalance operating between 200 °C and 700 °C. A 

heating rate of 10 ± 0.2 °C.min-1 and nitrogen flow rate of 50 mL.min-1 were used. 

The crystallinity content (Xc) of the samples was calculated applying equation 4.2 

[17]: 
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𝑋𝑐 =
∆𝐻

𝑥∆𝐻𝛼 + 𝑦∆𝐻𝛽
 (4.2) 

where ∆H is the melting enthalpy of the sample; ∆Hα and ∆Hβ are the melting enthalpies 

of a 100 % crystalline sample in the α and β phase and x and y indicate the amount of α 

and β phase present in the sample, respectively. ∆Hα and ∆Hβ were considered as 93.07 

and 103.4 J.g-1  [18]. 

Form the TGA results, the filler/polymer interface region of the CFO/P(VDF) 

microspheres was obtained, applying equation 4.3 [19]: 

𝑚𝐼 =
𝑚(𝑥)𝐼𝑂 − 𝑚𝐼𝑂

𝑚𝐼𝑂

×100 (4.3) 

 

where mI0 is the mass of the pristine polymer at the temperature at which the mass loss 

rate is maximum and m(x)I0 is the mass of the composite containing a given wt.% of 

nanoparticles that has not degraded at the temperature at which the mass loss rate of 

the pristine polymer is maximum. 

After poling conditions optimization, 30 min of corona poling at 10 kV and 120 

°C were applied in a home-made chamber in order to optimize the piezoelectric 

response of the microspheres. Then, the d33 of the samples was analyzed with a wide 

range d33-meter (model 8000, APC Int Ltd). In case of the fibers piezoelectric coefficients 

d33 were determined using a Digital Instruments Dimension 3100 for piezoresponse 

force microscopy (PFM), with conductive Cr/Pt-coated tips of stiffness 40 N.m-1. d33 

measurements were performed using a 2 V peak-to-peak AC bias at 13 kHz, with and 

without a 1 kOe magnetic field that was applied using a permanent magnet. Prior to 

local measurements of the fibers piezoresponse, the cantilever deflection amplitude 

was calibrated via force distance measurements [20, 21]. 

The magnetic properties of the MF nanofibers and microspheres were evaluated 

by measuring the magnetization loops M(H) up to 10 kOe using an Oxford Instruments 

vibrating sample magnetometer. 

The ME character of the CFO/P(VDF) microspheres was evaluated by the 

difference in the piezoelectric response obtained with and without the application of a 

220 Oe DC magnetic field (∆d33). 
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4.3. Development of magnetoelectric nanofibers 

Here, we extend the range of geometries available for polymer-based ME 

composites by fabricating nanofibres comprising CFO ferromagnetic particles and 

P(VDF) matrix. One-dimensional polymer-based ME fibers have not been hitherto 

reported, and may allow the development of new ME devices that could be exploited 

for e.g. non-invasive control of cell growth and differentiation, active drug release, tissue 

stimulation, heterogeneous catalysis and energy harvesting [7, 22-24]. 

The studied CFO/P(VDF) electrospun nanofibers have an average diameter of 325 

nm, and are randomly distributed in the aluminium-foil collector (figure 4.1). 

 
Figure 4.1. SEM image and the corresponding distribution of nanofiber diameter D ̅ for CFO/P(VDF) 

nanofibers with a) 5 wt. % CFO, b) 10 wt. % CFO (inset: detail of single composite fiber) and c) 20 

wt.% CFO. Red lines are Gaussian fits, which were used to estimate the average diameter. d) 

Nanofiber average diameter D ̅ as a function of CFO content. e) FTIR spectra for CFO/P(VDF) 

nanofibers, and two pure polymer samples in film (P(VDF)) and nanofiber (e-P(VDF)) form. Vertical 

arrows indicate the traces for the α (766 cm-1) and β (840 cm-1) phases. f) β-phase volume fraction Fβ 

as a function of CFO content. 
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The CFO nanoparticle content has no significant impact on the nanofiber average 

diameter [figure 4.1a-d]. The CFO/P(VDF) nanofibers show a strong enhancement in the 

volume fraction of electroactive β-phase (Fβ) [16, 25] when compared to pure P(VDF) 

electrospun nanofibers (figure 4.1e and 4.1f), as the interaction between the negatively 

charged surface of the CFO nanoparticles (whose zeta potential is -22 mV) and the 

positively charged polymer CH2 groups promotes nucleation of the polar β-phase, as 

seen in CFO/P(VDF) films [2]. The increase in the β-phase volume fraction is also assisted 

by the low evaporation temperature of the solvent (≤ 60 °C) and the stretching that 

occurs during jet formation [15]. 

The magnetization of the nanofibers increases with increasing CFO content 

(figure 4.2), as expected [1, 2, 4]. 

  

 

 

Figure 4.2. a) Room-temperature magnetization M(H) of CFO/P(VDF) nanofiber composites with 

different CFO concentration. Magnetization was measured along the out-of-plane direction of the 

nanofiber mats [complementary in-plane M(H) measurements (not shown) evidenced the isotropic 

magnetic character of the nanofiber composites]. b) Magnetization Mmax measured at 10 kOe as a 

function of CFO content. 

 

The shape of the magnetization loops is determined by the mixture of single 

domain and multidomain nanoparticles, [26] and the magnetization does not saturate 

at the maximum applied magnetic field of 10 kOe, due to the strong magnetic anisotropy 

(> 30 kOe) of the CFO nanoparticles [27]. 
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To establish the ME character of the nanofiber composites, we performed PFM 

experiments in single fibers, with and without an applied magnetic field (figure 4.3). 

 

Figure 4.3. a) Schematic representation of the piezoresponse force microscopy setup in the applied 

magnetic field used to establish the ME character of the CFO/P(VDF) nanofibers. b) One of such 

nanofibers, as seen via atomic force microscopy. Displacement as a function of voltage, with and 

without magnetic field, for CFO/P(VDF) nanofibers with c) 5, d) 10 and e) 20 wt.% CFO. The maximum 

electric field applied was ≈30 MV.m-1, which is smaller than the coercive field of P(VDF) films (≈50-120 

MV.m-1) [28]. f) d33 as a function of CFO content and magnetic field. 

 

The piezoelectric coefficient increases with the applied magnetic field, due to the 

strain-mediated coupling between the magnetostrictive CFO nanoparticles and the 

piezoelectric P(VDF) matrix, which shows reduced piezoelectric coefficients when 

compared to bulk polymers, possibly due to clamping by the surrounding material, 

which may reduce significantly the local deformation of the nanofibers [2, 29-32]. 
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4.4. Development of magnetoelectric microspheres 

  To the best of my knowledge there are no previous reports on polymer-based 

ME spheres, that can be an innovative and desired solution for applications in which 

multifunctional active response is needed (either magnetic to electrical or mechanical 

to electrical responses, due to the ME and piezoelectric effects) such as in non-invasive 

control of cell growth and differentiation, active drug release and tissue stimulation [7, 

9]. 

For the formation of polymer microspheres several methods have been used 

such as gas atomization, microdroplet, dispersion polymerization, evaporation and 

precipitation, emulsion polymerization [6], oil in water (O/W) or water in oil (W/O) 

emulsions, coacervation and spray drying, among others [33].  Unlike previous methods 

that require high-energy input devices like sonicators and/or high-cost devices such as 

high-pressure homogenisers, electrospray technique is a straightforward and versatile 

technique featuring advantages like ambient condition and single-step processing, high 

reproducibility, high yield and economical set-up [8, 17, 34]. 

Thus, novel CFO/P(VDF) MF microspheres have been prepared, with large 

potential applications in the biomedical, sensing, actuation, catalysis and energy fields 

[6-8]. 

VSM technique has proved to be a precise technique able to accurately 

determine the magnetic nanoparticle content on composites [35-37]. Thus, the 

hysteresis curves shown in figure 4.4 were first used to evaluate the efficiency of the 

particle loading process, i.e.  the relation between the content of the CFO nanoparticles 

within the solution and the concentration in the obtained microspheres (figure 4.4). 
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a b 

 

Figure 4.4. a) Room temperature hysteresis loops for the MF CFO/P(VDF) microspheres. b) Relation 

between the wt.% of CFO nanoparticles within the solution and the wt.% of CFO nanoparticles within 

the MF microspheres, obtained from the hysteresis loops. 

 

Figure 4.4a reveals the typical ferromagnetic behavior of the CFO/P(VDF) 

microspheres. For all compositions, the magnetization saturates at ≈2 kOe. As expected, 

the magnetization saturation increases with increasing nanoparticle filler content. By 

comparing the MS value of the pure CFO nanoparticles with the ones from figure 4.4a it 

is possible to determine, trough equation 4.4, the precise amount of CFO nanoparticles 

within the MF microsphere (table 4.1). 

𝐶𝐹𝑂 𝑤𝑡. %𝑆𝑝ℎ𝑒𝑟𝑒𝑠 =
𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑆𝑝ℎ𝑒𝑟𝑒𝑠×100

60
 (4.4) 

 

 

Table 4.1. CFO wt.% in the solution, expected spheres MS, measured spheres MS and the calculated CFO 

wt.% in the spheres values. 

CFO wt% in the 
solution 

Spheres MS 
(expected) 

Spheres MS 
(measured) 

Calculated CFO wt.% in 
spheres 

10 6 3.0 5 
40 24 12.8 21 
70 42 16.4 27 

100* 60 60.0 100 

*pure powder 

Figure 4.4b and table 4.1 show that with 10, 40 and 70 wt.% CFO contents within 

the solution leads to microspheres with 5, 21 and 27 wt.% CFO amounts, respectively. 

Thus, the maximum CFO content allowed in the microspheres starts to saturate at ≈20 
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wt.%, since an increase of 30 wt.% in the solution wt.% content of CFO (from 40 to 70 

%) leads to just an increase of only 6 % of CFO nanoparticles inside the MF microsphere 

(from 21 to 27 %).  

Therefore, the concentrations of CFO nanoparticles in the electrosprayed 

microspheres is lower than those on the composite solutions, in agreement to previous 

reports [38], and can be attributed to the higher density of the CFO nanoparticles (when 

compared to the polymer matrix) that causes the settling of some nanoparticles on the 

bottom of the syringe during the ES process. Further, some contributions can also come 

from a partial blockage of the needle hole by agglomeration of nanoparticles, due to the 

flow funnelling towards the needle. Figure 4.5a-e shows representative SEM images of 

ME CFO/P(VDF) microspheres with 5-27 wt.% ferrite content. 

 

 
Figure 4.5. Morphology of a) and b) P(VDF) microspheres and the MF CFO/P(VDF) microspheres with 

CFO wt.% c) 5, d) 21 and e) 27 CFO nanoparticle content. 

 

The low magnification image (figure 4.5a) shows a homogeneous production of 

MF microspheres, with good dispersion and spherical shape. Microspheres diameters 

were between 3 and 7 µm, nearly independently of the CFO filler content. The insertion 

of the CFO magnetic fillers within the P(VDF) polymer microsphere originates just a slight 

decrease of the average microsphere diameter.  

Backscattering images (figures 4.5c-e) reveal that the CFO nanoparticles are 

effectively inside (white zones of figures 4.5c-e) the polymer microspheres, wrapped by 
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the polymer matrix (spherical structure of figure 4.5b), giving rise to the desired MF 

polymer composite structure.  

 Since the presence of the piezoelectric crystalline β-phase of P(VDF) is an 

essential requirement to obtain ME response on P(VDF) based ME materials [4], FTIR 

was used to identify and quantify the β-phase content of P(VDF).  

For the pure polymer and the CFO/P(VDF) microspheres, typical FTIR spectra are 

presented in Figure 4.6a and the calculated F(β), equation 4.1, is represented in Figure 

4.6b. 

a b  

 

Figure 4.6. FTIR spectra of a) pure P(VDF) microspheres and CFO/P(VDF) composites microspheres 

with 5, 21 and 27 wt% filler content and b) variation of β-phase content as a function of CFO content. 

 

Figure 4.6a shows that the crystalline phase of the polymer matrix in the 

microspheres are mainly in the β-phase and no significant differences between the 

spectra of the different composite microsphere are detected.  All microspheres, pure 

P(VDF) and CFO/P(VDF) composites, show β-phase contents between 65 and 75 % and 

this value is independent of the CFO content. It is to notice that those β-phase contents 

are compatible with the maximum piezoelectric response of the polymer, as it has been 

verified in [38]. In this way, the β-phase formation is mainly attributed to the low solvent 

evaporation temperature (≤ 60 °C), which mainly leads to the crystallization of the 

polymer in this phase [8, 25]. Further, electrostatic interaction of the filler nanoparticles 

with the highly polar polymer chains certainly reinforce this effect, as it has been verified 
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in samples prepared after melting, that are nucleated in the β-phase, whereas the 

polymer without fillers remain in the α-phase [8]. 

Figure 4.7a shows the DSC thermograph of the microspheres of P(VDF) and 

CFO/P(VDF) composites. From the melting endotherm peak and applying equation 4.2, 

the degree of crystallinity (Xc) was obtained, as represented in Figure 4.7b. 

a b 

 

Figure 4.7. a) DSC thermographs and b) degree of crystallinity of the pristine P(VDF) and the 

CFO/P(VDF) composite microspheres. 

 

The DSC thermographs of all samples are characterized by a double endothermic 

peak, related to the polymer crystallization in both α and β crystalline structures as 

confirmed by FTIR (figure 4.6) results [39] and the presence of the nanofillers. In both 

cases ill-crystallized region arises with lower melting temperature due to the larger 

energy of the imperfect structures. The degree of crystallinity values (figure 4.7b) are in 

good agreement with those obtained in P(VDF) processed by similar procedures [40]. 

Additionally, the overall lower degree of crystallinity is slightly lower when the fillers are 

present in the polymer matrix, which is attributed to hindered crystallization due to the 

presence of the fillers, which can act as nucleation centers for crystallization, but also 

hinder spherulite growth [37, 39]. 

The interface between magnetostrictive materials and piezoelectric polymers is 

one of the most sensitive parameters influencing the ME response of the composites. 

This interface can be determined by the TGA results presented in (figure 4.8) [19, 40]. 

125 150 175 200 225 250

5 mW

endo up

27 wt.% CFO

21 wt.% CFO

5 wt.% CFO

PVDFH
e

a
t 

F
lo

w
 (

m
W

)

Temperature (
o
C)

0 5 10 15 20 25 30
0

15

30

45

X
C
 (

%
)

CFO wt.%



Chapter 4 – Development of polymer-based magnetoelectric fibers and spheres 

  117 
 

a b 

 

Figure 4.8. a) TGA thermographs for the different samples and b) interface volume between 

nanoparticles and polymer as a function of CFO nanoparticle concentration. 

 

In all composite microspheres samples, with and without CFO nanoparticles, the 

typical two step thermal degradation, characteristic of P(VDF), was observed [41]. The 

onset temperature, defined as the temperature at which the polymer losses 1 % of its 

weight, was found to be ≈460 °C for the pure P(VDF) microspheres, slightly lower than 

those obtained for CFO/P(VDF) microspheres that was around ≈465 °C. These results 

shows that the addition of the CFO nanoparticles into the P(VDF) microspheres slightly 

improves the thermal stability of the microspheres. Such effect has already been 

reported in previous studies [19] and can be attributed to two factors: (a) the CFO filler 

in the composite can hinder the formation and escape of volatile by-products during 

heating and (b) the thermal motion of P(VDF) segments near the CFO surfaces may be 

restricted because of the physical interlock and electrostatic interaction [42].  

The first degradation step occurs between ≈400 and ≈500 °C (ii), being the 

polymer maximum degradation temperature not influenced by the CFO content. In this 

initial degradation step the decomposition mechanism is chain-stripping where carbon-

hydrogen and carbon-fluorine scission occurs, the presence of both hydrogen and 

fluorine radicals leading to the formation of hydrogen fluoride [41, 43]. 

The second degradation step occurs between ≈500 and ≈850 °C (iii), and the 

differences observed in the plots relatively to the pure P(VDF) microspheres sample are 

to be ascribed to the presence of CFO nanoparticles, as the different phases of P(VDF) 
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show similar thermal degradation behavior [44]. This second step is a complex 

degradation process resulting in poly(aromatization). The polyenic sequence previously 

formed on the first degradation step, is unstable and, as a consequence, the 

macromolecules formed undergo further reactions leading to scission followed by the 

formation of new aromatic molecules [19, 41, 45]. Previously to these typical two 

thermal degradation steps, an additionally degradation was observed between ≈290 

and ≈400 °C (i) resultant from the degradation of the Triton X-100 [46].  

Figure 4.8b shows the mass fraction of the polymer located at the interface as a 

function of the CFO content, calculated after equation 4.3.  The interface value increases 

with increasing ferrite loading as a result of the increased number of particles interacting 

with the polymer matrix up to a filler content of ≈20 wt.%, after this value, increasing 

CFO content has a result a small decrease in the CFO/P(VDF) interface, explained by the 

fact that a larger filler content can lead to the formation of clusters and agglomerations 

and therefore a decrease of the overall surface contact area. The highest interface value 

(55 %) was obtained for the CFO/P(VDF) microspheres with 21 wt.% ferrite content. This 

interface value is ≈40 % higher than the one reported to CFO/P(VDF) MF composite films 

[47] and will lead to an increased ME coupling due to the larger contact area between 

the magnetostrictive and piezoelectric phases. 

The ME coupling was measured [48, 49] by evaluating the piezoelectric response 

of the composites with and without an applied magnetic field of 220 mT (figure 4.9). 

a b 

 

Figure 4.9. a) |d33| as a function of CFO wt.% and b)|d33| (inset) and ∆ |d33| as a function of CFO 

wt.% with the applied 220 mT DC magnetic field. 
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Figure 4.9a represents the variation of the piezoelectric response of the samples 

(polymer films made out of microspheres - figure 4.5) as a function of filler content. The 

presence of the CFO nanoparticles improves the piezoelectric response of composite 

microspheres due to the strong interfacial interactions between particles and polymer 

[25, 37, 50]. With higher ferrite contents, the interfacial elastic effect is stronger and 

leads to higher piezoelectric responses [50].  

Once a 220 mT DC magnetic field was applied with two permanent magnets, at 

the same time that the piezoelectric response is being measured, an increase in the 

|d33| value is observed in the composite samples (figure 4.9b, inset) but no variation is 

detected in the pristine polymer samples revealing the ME character of the MF 

microspheres (figure 4.9b). 

Since magnetostrictive CFO induces displacements at the interface between 

nanoparticles and polymer [51], with increasing interface value, a better coupling [25] 

and interaction between the piezoelectric P(VDF) and the magnetostrictive CFO ferrites 

will be promoted, explaining the larger increase of the ∆|d33| with increasing 

nanoparticle content until ≈20 wt.%. Such interaction will be hindered for higher CFO 

concentrations, due to the decrease of the previously shown interface area (figure 4.8b), 

leading to a lower ME coupling and a decrease in the |d33| variation value. 

4.5. Conclusions 

The structural, magnetic and piezoelectric properties of low temperature 

processed nanofiber composites of CFO and P(VDF) were reported. Magnetic field 

induced changes in the piezoelectric response of the nanofibers demonstrated the ME 

character of these 0-1 composites, which may be useful for the development of micro 

and nanoscale ME devices. The average diameter of the electrospun composite fibers is 

≈325 nm, independently of nanoparticle content, and the amount of crystalline polar β-

phase is strongly enhanced when compared to pure P(VDF) polymer nanofibers. The 

piezoelectric response of these electroactive nanofibers is modified by an applied 

magnetic field, thus evidencing the ME character of the CFO/P(VDF) composites. 
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ME CFO/P(VDF) microspheres have been prepared by an electrospray process. 

The concentrations of CFO nanoparticles in the microspheres reaches values up to 0-27 

wt.%, though their concentration in solution reaches values up to 70 wt.%. Microspheres 

diameters are between 3 and 7 µm, being the size nearly independent of the CFO filler 

content.  

The addition of CFO nanoparticles into the polymeric microspheres has almost 

no effect on the β-phase content (≈60 %), crystallinity (40 %) and the onset degradation 

temperature (460-465 °C) of the polymer matrix. 

The interface between CFO nanoparticles and P(VDF) was found to have a strong 

influence on the ME response of the CFO/P(VDF) microspheres. Increased interface 

values (from 0 to 55 %) had as result and optimized ME response (∆|d33| from 0 to 5 

pC.N-1) when a 220 mT DC magnetic field was applied to the CFO/P(VDF) microspheres 

with 21 wt.% of ferrite. Thus, the overall properties of the ME microspheres, the 

simplicity and scalability of the processing method indicates a large potential of the 

CFO/P(VDF) multifunctional microspheres for the development of advanced 

applications. 
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Chapter 5 
Conclusions and future work 

 

 

In this chapter, the main conclusions of the thesis are summarized and some suggestions 

for future works are provided. 
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5.1. Conclusions 

Polymer-based ME composites proved to be suitable for different applications 

areas such as sensors, communication, electronics, magnetic recording, microwave 

absorption-based devices, electrical and automobile industries, as well as for 

biotechnology and biomedical applications. Different morphologies as film, membrane, 

fiber and sphere demonstrate to be suitable for the applications mentioned above. The 

ability to tailor the morphologies and physical-chemical properties of polymer-based ME 

composites are also critical to understand the ME effect in order to suitably tailor ME 

response for specific application demands. 

In this thesis the possibility of obtaining piezoelectric P(VDF) and/or P(VDF-TrFE) 

morphologies from film to spheres was demonstrated. Films of both P(VDF) and P(VDF-

TrFE) polymers were produced in order to evaluate the effect of filler dispersion on the 

piezoelectric and ME response, the effect of filler size on the magnetostriction, polymer 

phase nucleation and ME response of polymer composites. The development of 

anisotropic ME polymer composites was also studied.  

Magnetoelectric films 

CFO magnetostrictive filler dispersion methods (surfactation and ultrasound 

bath) were used to demonstrate that there are no differences in the piezoelectric, 

magnetic and ME response of the P(VDF-TrFE) nanocomposites when different 

dispersion levels are achieved. A maximum ME coefficient of 40 mV.cm-1.Oe-1 was 

obtained for samples with 72 wt.% of CFO under a DC magnetic field of 0.25 T. A key 

parameter in the ME composite preparation was found to be the filler content, more 

than filler distribution, this fact being of special interest for large industrial scale 

processing, in which the upscaled feasibility for fabrication of smart structures is one of 

the main tasks.  

Concerning the study of the influence of filler size on the magnetostriction of the 

fillers and the ME response of P(VDF-TrFE) composites, different Fe3O4 sizes were used. 

The P(VDF-TrFE) was used in order to ensure the total β-phase formation. Fe3O4 

nanoparticles with three different sizes were synthesized by solvothermal procedures 

and oxidative hydrolysis methods. The first method lead to nanoparticles with 9 nm 
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average size and 167 ppm magnetostriction; the second one to nanoparticles with 

average size of 30 and 50 nm with magnetostriction of 17 and 26 ppm, respectively. 

Further, Fe3O4/P(VDF-TrFE) MF nanocomposites were produced with those 

nanoparticles, showing ME voltages coefficients (α31) of 920, 100 and 150 µV.cm-1.Oe-1, 

for samples fabricated with nanoparticles with 9, 30 and 50 nm average size, 

respectively. The highest magnetostriction and the ME response is obtained for the 

nanocomposite with 9 nm nanoparticles.  In this material is possible to tailor and 

optimize the magnetostriction and ME response at the nanoscale, with large potential 

application in areas of biomedicine, sensors and actuators.  

Fe3O4 NRs were also synthetized. The effects of surface charge and filler structure 

on the crystallization behavior of P(VDF) were systematically studied by using two types 

of nanostructures, Fe3O4 NRs and spherical nanoparticles of different sizes. Different 

Fe3O4/P(VDF) composites exhibited distinct β-phase values. Fe3O4 nanoparticles with 

different sizes and distinct zeta potential values failed to induce high fraction values of 

β-phase within the composites. In contrast, Fe3O4 rods with a zeta potential of 30 mV, 

nucleated ≈70 % of β-P(VDF) within the nanocomposites. The effect of the anisotropy 

was evaluated with δ-FeO(OH)/P(VDF-TrFE) and CoFeO(OH)/P(VDF-TrFE) ME 

composites by a simple low-temperature processing method. The nanosheets fillers 

were introduced in different filler contents and alignment states. The obtained ME 

voltage coefficient, with a maximum of ≈0.4 mV.cm-1.Oe-1, depends on filler content and 

alignment state, as well as, on both incident magnetic field direction and intensity. 

Further, a new ME effect is proposed based on the magnetic rotation of the δ-FeO(OH) 

nanosheets inside the piezoelectric P(VDF-TrFE) polymer matrix that is suitable to be 

used as magnetic field sensor for advanced applications. New CoFeO(OH) with high 

magnetostrictive of 507 ppm and anisotropic (nanosheet) nanostructures were 

synthesized. Flexible CoFeO(OH)/P(VDF-TrFE) composites reveal an interfacial ME 

coupling strongly dependent on the angle between HDC and CoFeO(OH) length direction. 

Such composite shows a maximum α31 of 5.10 mV.cm-1.Oe-1. Anisotropic ME magnetic 

sensing capability and good linearity value of 0.995 allows the use of CoFeO(OH)/P(VDF-

TrFE) composites in polymer-based magnetic sensor devices, actuators and in the 

biomedical field. 
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Magnetoelectric membranes 

CFO/P(VDF-TrFE) ME membranes were fabricated and characterized. The 

composites simultaneously respond to external stimuli, such as mechanical, magnetic or 

electrical signals, showing a piezoelectric response with an effective d33 coefficient of -

22 pC.N-1, a maximum magnetization of 12 emu.g-1 and a maximum ME coefficient of 9 

mV.cm-1.Oe-1.  

Magnetoelectric nanofibers and microspheres 

Fiber and spherical ME morphologies were studied. In both, structural, magnetic 

and piezoelectric properties of low temperature processed composites of CFO and 

P(VDF) were evaluated. The concentrations of CFO nanoparticles in the fibers reached 

values up to 0-20 wt.%. The CFO/P(VDF) nanofibers show a strong enhancement in the 

volume fraction of electroactive β-phase when compared to pristine P(VDF) electrospun 

nanofibers. The magnetization of the nanofibers increases with increasing CFO content 

reaching to a maximum of 11.5 emu.g-1. Magnetic field induced changes in the 

piezoelectric response of the nanofibers demonstrated the ME character. The 

concentrations of CFO nanoparticles in the microspheres reaches values up to 0-27 

wt.%, though their concentration in solution reached values up to 70 wt.%. The interface 

between CFO nanoparticles and P(VDF) was found to have a strong influence on the ME 

response of the CFO/P(VDF) microspheres (3-7 µm average diameter). With the 

increasing of CFO content, the interface increase from 0 to 55 %. CFO/P(VDF) 

microspheres ME character was proved once the piezoelectric response differs from 0 

to 5 pC.N-1 (in case of sample with 21 wt.%), when a 220 mT DC magnetic field was 

applied. 
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5.2. Future Work 

In the present thesis, it was shown that different polymer-based ME composite 

morphologies can be achieved and that they could be applied in different applications. 

In this sense, some interesting studies should be carried out in the future: 

 Explore the potential of the different polymer-based ME composites in specific 

applications, taking advantage of the specificity of the morphological features of 

the composites; 

 Expand the multifunctionality of the composites by using more than one 

magnetostrictive filler in composite to achieved a composite that react to 

different magnetic fields; 

 Prepare ME composites from biodegradable piezoelectric polymers for 

biomedical applications; 

 Expand the preparation of the composites by addressing novel magnetostrictive 

geometries, such as magnetostrictive micro and nanowires. 
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