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A B S T R A C T

Emergence and self-organization of cooperation
This dissertation reports the main work I developed during my Ph.D.

program. It contains my contributions to the field of population dynamics
and a study of a global problem of cooperation.

Evolutionary game theory (EGT) and stochastic population dynamics
have proven to be powerful tools to describe frequency-dependent dynam-
ics in evolutionary biology. More recently, EGT has become increasingly
popular in the study of social settings and conflict resolution among hu-
mans, calling for an extension of the initial framework towards the bound-
less complexity of human reasoning. Here, I discuss the necessity of in-
troducing different levels of rationality and prospective strategies, proving
under which circumstances the equations that govern both rational and
rationally-bounded players coincide. Moreover, since decision-making of-
ten relies in a continuum of possible options, I propose a novel equation
to describe the evolution of populations with a continuum of strategies,
analyzing why and when we can discretize the sets of possible strategies.
Finally, when finite populations and stochastic effects are considered, the
increasing population size or increasing number of individual configura-
tions rapidly renders the analysis of stationary states prohibitive. Here, I
also discuss a novel framework that allows us to define a hierarchy of ap-
proximations to the stationary distribution of any population dynamics
described by a Markov process, overcoming the limitations of existing ap-
proaches. These results and methods are general in the sense that they are
applicable to the study of different dilemmas and their respective game-
theoretical representation.

In the last part of this dissertation, I focus on problems related with
global coordination for the preservation of a common good, such as cli-
mate change governance. Indeed, preventing global warming requires over-
all cooperation. Contributions will depend on uncertainty of future losses,
which plays a key role in decision-making. Here, I discuss an evolutionary
game theoretical model – and its stochastic dynamics in finite populations
– in which decisions within small groups under high risk and stringent re-
quirements toward success are shown to significantly raise the chances of
coordinating to save the planet’s climate. This result calls for a decentral-
ized or polycentric way of coordinating efforts to tame the planet’s climate.

I further discuss whether a polycentric structure of multiple small-scale
sanctioning institutions provides a viable solution to solve global dilem-
mas. Such structure is shown to help deterring non-cooperative behavior
(when compared with a single global institution), even though it suffers,
to a smaller extent, from most of the same problems as the top-down ap-
proach: sensitivity to risk perception and to overall uncertainty. Further-
more, I also discuss how world’s wealth inequality may influence the out-
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come of this type of collective dilemmas, studying how the segregation
between rich and poor players harms cooperative behavior, even if rich
tend to, at first, compensate for contributions (or lack of them) from the
poor. Finally, I discuss in which conditions the establishment of pre-play
contracts may help to overcome part of these problems. The results indicate
that contracts are more effective if voluntary and more prevalent if small,
acting as a costly signaling mechanism for a naturally cooperative group
of individuals sharing common goals. This, in turn, if combined with some
partnership advantages, creates more incentives to join, allowing both co-
operation and the total membership to grow.

Keywords: Emergence of cooperation; Evolution of Cooperation and
Institutions; Collective action; Tragedy of the commons; Climate change;
Complex systems; Evolutionary game theory; Evolutionary dynamics.
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R E S U M O

Emergência e auto-organização da cooperação
Esta dissertação é uma coletânea do principal trabalho desenvolvido du-

rante o meu doutoramento. Contém as minhas contribuições para o ramo
da dinâmica de populações e o estudo de um problema global de coopera-
ção.

A Teoria de Jogos Evolutiva (EGT) e a dinâmica estocástica de popula-
ções são identificadas como ferramentas poderosas para descrever a dinâ-
mica evolutiva em Biologia Evolutiva. Mais recentemente, a EGT tem-se
tornado mais popular no estudo de sistemas sociais de resolução de con-
flitos entre humanos pedindo por uma extensão das ferramentas originais
de forma a acomodar a grande complexidade humana. Nesta dissertação,
eu discuto a necessidade de introduzir diferentes níveis de racionalidade e
estratégias que recorrem a previsões, mostrando em que circunstâncias as
equações que governam estratégias racionais e com racionalidade limitada
coincidem. Além disso, uma vez que a tomada de decisão muitas vezes in-
cide num contínuo de estratégias possíveis, proponho uma nova equação
para descrever a evolução de populações com um contínuo de estratégias.
Finalmente, quando as populações são finitas e são considerados os seus
efeitos estocásticos, o aumento do tamanho da população ou do número
de configurações individuais possíveis rapidamente torna impraticável a
análise de estados estacionários. Aqui, eu também discuto uma nova ferra-
menta que permite definir uma hierarquia de aproximações para a distri-
buição estacionária de qualquer dinâmica de populações descrita por um
processo de Markov, ultrapassando as atuais limitações. Estes resultados e
métodos são gerais, no sentido de serem aplicáveis ao estudo de diferentes
dilemas e da respetiva representação em termos de teoria de jogos.

Na última parte desta dissertação, foco-me em problemas relacionados
com a coordenação global para a preservação de um bem comum, como a
prevenção das alterações climáticas. De facto, a prevenção do aquecimento
global requer cooperação a nível global. Contudo, as contribuições vão de-
pender da incerteza sobre as perdas futuras, o que joga um papel crucial
na tomada de decisão dos responsáveis. Aqui discuto um modelo de EGT
– e os seus efeitos estocásticos em populações finitas – com o qual mostro
que as hipóteses de coordenação para salvar o clima do planeta aumentam
significativamente se as decisões forem tomadas no seio de pequenos gru-
pos sobre problemas locais que, por um lado, reflitam menor incerteza e,
por outro, onde os requisitos para a tomada de ação possam ser apertados.
Este resultado pede uma forma de coordenar os esforços para domar o
clima do planeta que seja descentralizada, ou policêntrica.

Ainda nesta parte, discuto se uma estrutura policêntrica de múltiplas
instituições para sancionar comportamentos de pequena escala providen-
cia uma solução viável para resolver problemas globais. Mostro que essa
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estrutura ajuda a prevenir comportamentos não cooperativos (quando com-
parada com uma única instituição global), mesmo que sofra, em menor
escala, dos mesmos problemas da alternativa top-down: sensibilidade à
perceção do risco de desastre e incerteza, em geral. Além disso, também
discuto como é que a desigualdade de capacidade contributiva no mundo
pode influenciar o resultado deste tipo de dilemas coletivos, estudando
como é que a segregação entre jogadores ricos e pobres prejudica a coo-
peração, mesmo que os ricos, a princípio, tendam a compensar a falta de
contribuições dos pobres. Finalmente, discuto em que condições a criação
de contratos pode ajudar a ultrapassar parcialmente estes problemas. Os
resultados indicam que os contratos são mais eficientes se voluntários e
mais prevalentes se entre poucos membros, funcionando como um meca-
nismo de sinalização com custo para grupos de indivíduos naturalmente
cooperativos. Isto, por sua vez, combinado com vantagens intra-contrato,
cria mais incentivos para novas adesões o que torna possíveis o aumento
tanto da cooperação como do número de membros.

Palavras Chave: Emergência da Cooperação; Evolução da Cooperação
e Instituições; Ação Coletiva; Tragédia dos Comuns; Alterações Climáti-
cas; Ciências da Sustentabilidade; Redes Complexas; Sistemas Complexos;
Teoria de Jogos Evolutiva; Dinâmica Evolutiva.
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Há um tempo em que é preciso abandonar as roupas usadas, que já têm a
forma do nosso corpo, e esquecer os nossos caminhos, que nos levam

sempre aos mesmos lugares. É o tempo da travessia: e se não ousarmos
fazê-la, teremos ficado para sempre à margem de nós mesmos.

— Fernando Teixeira de Andrade, in O Medo: o Maior Gigante da Alma
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C’est le temps que tu as perdu pour ta rose qui fait ta rose si importante.

— Antoine de Saint-Exupéry, in Le Petit Prince
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Part I

I N T R O D U C T I O N

The foundations are a necessary piece of all that is to be devel-
oped.





1
I N T R O D U C T I O N

my goal is to understand the emergence and evolution of

cooperative behavior in order to promote overall coopera-
tive responses from individuals that face social dilemmas

opposing self and collective interest. Interactions are the cen-
ter of many disciplines. In Physics, they are not only the core of research
but also the basis of its scientific knowledge. Gravity, electromagnetism,
weak and strong interactions, together with all the other effective forces de-
rived from those, are part of, and many times define, the fields of Physics.
On one hand, they can serve as means of studying the behavior of the ele-
ments in which they act upon but they can also be the object of study them-
selves. At a different level, both natural ecosystems and human economies
are also structured by the interactions between their elements [136]. Typi-
cally, in these, the interactions in question are ones of competition: in the
first case, the organisms that are better adapted to the environment grow
or reproduce and replace those that do not and, in the second one, individ-
uals or companies with the most successful formulas thrive and grow to
take over those that are less successful. However, many other interactions
act upon these complex systems and, again, they can be used to study and
model the behavior of individuals and organisms or they can be the target
of the study themselves. Physics is not only about

Physics anymore. Deeply, it
is about organization, an
exploration of the laws of
pure form.[15]

Due to this common ground, modeling techniques are shared across
these different scales, from atoms to world’s economies. Many times, even
the same models are applicable to diverse topics, when taken with dif-
ferent interpretation. This means that, no matter the scale, the insights
obtained in the search of a solution of two apparently completely differ-
ent problems can, if not provide immediate answers, at least pave way
to the development of one another. In this dissertation, I will turn my at-
tention to frameworks, methods, and models developed in the context of
social and biological interactions. In particular, the elements of which sys-
tem I want to study are individuals and their behavior. I will refrain from
dwelling into the similarities and bridges across methods and models in
different subjects, as they can either be completely clear, as in the case of,
for instance, spin alignment and individuals imitation of behaviors in a net-
work, or they can be hard to grasp, sometimes through some non-intuitive
change of variables, or can be even unknown. This, of course, would be a
hard and interesting exercise in itself, which, however, would deviate me
from my goal.

the structure of my dissertation is accomplished in three parts.
In the first part, I lay down the frameworks used to study such complex
systems in a general fashion. I start with the simplest equation that has

3



4 introduction

been used to study the dynamics of behavior adoption, review where it
arises from and use it as a motivation and reference frame. In the second
part, I discuss the underlying assumptions, in this way creating new frame-
works that either justify them or allow for their advancement. Lastly, in the
third part, I will take these frameworks, equations and methods to explore
the particular systems I am interested in, and over which I have raised my
actual theses – and over which I have said little to nothing so far.

The prototypical scenario over which the solution of a global problem is
directly against individual self-interest is that which relates to the mitiga-
tion of climate change effects. In fact, it has been 7 years since the United
Nations Secretary-General said, before the Copenhagen summit in 2009, to
nearly 100 world leaders: “There is little time left. The opportunity and
responsibility to avoid catastrophic climate change is in your hands”.

In a dance that repeats itself cyclically, countries and citizens raise signif-
icant expectations every time a new International Environmental Summit
is settled. Unfortunately, few solutions have come out of these colossal and
flashy meetings. This represents a challenge to our current understanding
of models on decision-making: more effective levels of discussion, agree-
ments and coordination must become accessible. From Montreal and Ky-
oto to Paris summits, it is by now clear how difficult it is to coordinate
efforts [4, 5].

Climate is a public good, and, probably, the welfare of our planet ac-
counts for the most important and paradigmatic example of a public good:
a global good from which every single person profits, whether she con-
tributes or not to maintain it. However, these summits failed to recognize
the well-studied difficulties of cooperation in public-good games [47, 60,
88]. Often, individuals, regions or nations opt to be free riders, hoping
to benefit from the efforts of others while choosing not to make any effort
themselves. Most cooperation problems faced by humans share this setting,
in which the immediate advantage of free riding drives the population into
the tragedy of the commons [47], the ultimate limit of widespread defec-
tion [11, 28, 47, 60, 74, 77, 88, 122]. When dealing with such an essential
public good as climate, many efforts need to be made to avoid this, being
a major concern to countries. Indeed, efforts ought to be shared between
all and balanced measures should then be taken. The strive to identify and
improve the mechanisms that allow this will be the goal of this work.

One of the multiple fatal flaws often pointed to such agreements is a
deficit in the overall perception of risk of widespread future losses, in par-
ticular the perception by those occupying key positions in the overall po-
litical network that underlies the decision process [54, 77, 115]. Another
problem relates to the lack of sanctioning mechanisms to be imposed on
those who do not contribute (or stop contributing) to the welfare of the
planet [5, 91, 101]. Moreover, agreeing on the way punishment should be
implemented is far from reaching a consensus, given the difficulty in con-
verging on the pros and cons of some procedures against others. Many pos-
sibilities have been under consideration - from financial penalties, trade
sanctions, to emissions penalties under future climate change agreements
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– but their details have not been well established and negotiations are usu-
ally slow and difficult [10]. A deadlock over these measures is expected
since their consequences do not have a solid theoretical or even experimen-
tal background.

To address this and other cooperation conundrums, ubiquitous at all
scales and levels of complexity, the last decades have witnessed the dis-
covery of several core mechanisms responsible to promote and maintain
cooperation at different levels of organization [32, 33, 45, 47, 60, 76, 80–82,
90, 110, 119, 122, 149, 150].

Most of these key principles have been studied within the framework of
two-person dilemmas, such as the Prisoner’s Dilemma, which constitute
a powerful metaphor to describe conflicting situations often encountered
in the natural and social sciences. Many real-life situations, however, are
associated with collective action based on joint decisions made by a group
involving more than two individuals [47, 60, 90, 135]. These types of prob-
lems are best dealt-with in the framework of N-person dilemmas and Pub-
lic Goods games, involving a larger complexity that only recently started
to be unveiled [39, 49, 60, 96, 116, 118, 119, 128].

In this dissertation, reproducing the works my coauthors and I have
developed, I will model the decision making process as a dynamical pro-
cess, in which behaviours evolve in time [104, 119], taking into consider-
ation decisions and achievements of others, which influence one’s own
decisions [16, 34, 103]. We implement such behavioural dynamics in the
framework of Evolutionary Game Theory, in which the most successful (or
fit) behaviours will tend to spread in the population. This way, one is able
to describe strategic interactions between individuals, complemented by
evolutionary (dynamical) principles. In particular, I will focus on the work
done in finite populations, where such fitness driven dynamics occurs in
the presence of errors (leading to stochastic effects), both in terms of er-
rors of imitation [138] as well as in terms of behavioural mutations [141],
the latter accounting for spontaneous exploration of the possible behaviors
available. I expect that by the end of this dissertation it is clear that the
emergence of overall cooperative behavior, specially in this prototypical
example of climate change mitigation, is full of subtleties that make it hard
to happen, but its chances can be ameliorated if one faces the problem as
a complex system and tackles it from the bottom-up.





2
F R A M E W O R K

Most of the phenomena in nature evolve in an intricate way. For sure, indi-
vidual decision making processes are so deeply related to the ways of our
brain – the most complex kilogram of matter in the universe, as a teacher of
mine used to say – that models have no hope in computing all variations
and variables in detail. Even if one would succeed, the results would be
so cumbersome – like having all trajectories of all electrons of everyone’s
brain over time – that, by themselves, would be useless. Often, what is of
use is how average properties evolve and are established and, often, these
are described by much simpler laws. For this reason, I will make use of a
variety of concepts related to the theory of probability and statistics.

In this chapter the framework used throughout the text is presented.
Most of the notation is defined also here. From the deterministic replicator
equation to stochastic processes and the M-equation, this chapter sets itself
as an overview and collection of concepts and results that are relevant
further on.

2.1 growth and competition

Growth and competition are many times synonyms. They happen in nature
or economic contexts that are characterized by a limiting resource, may it
be time, investment, space or nutrients. [64, 94, 136]. However, let us think
of competition in a more general way. Let me start with the simplest model
of growth I can think of. Imagine a population, A, of ZA individuals that
have a growth rate fA. Many times, this growth rate is called fitness and is
directly related (and is many times defined resorting to) the equation

dZA
dt

= ZAfA. (1)

Clearly, fA can be extremely complex, dependent on ZA and other ex-
ternal variables. Furthermore, usually, individuals of a given population,
characterized by a given trait, are not alone, and they may compete or sim-
ply be considered as part of a larger population. Similarly, a population B,
with some trait different of that of A, will also have its own fitness, fB and
its growth can be described by an equation identical to Eq.(1). In this case,
if we look at the fraction of individuals with a given trait, say A, on the to-
tality of individuals, ZA +ZB, we can look at the variation of xA = ZA

ZA+ZB
and get that Competition does not

necessarily mean interaction.
It is not more than a balance
of powers that are being
measured in the same scale.

dxA
dt

= xA(fA − 〈f〉) = xA(1− xA)(fA − fB), (2)

7



8 framework

where 〈f〉 is the average growth-rate of the population of the distribu-
tion of individuals. Eq.(2) is the so-called replicator equation with the first
equality being generalizable to any number of different traits: A, B, C, etc..
Here, even though the traits are not directly competing, the nature of the
equation is such that the faster rate of growth of one trait results in a de-
crease in the fraction of the other trait. Notice that this happens even if
both traits are increasing in number (or decreasing). The competition is for
the fraction of elements in the total population.

This equation will be of foremost importance in all the discussion that
follows and we will have the chance to see it derived in other contexts,
other than growth, with different assumptions and as limiting case of other
equations.

One of the first aspects that may turn the replicator equation inviable
is the fact that not all properties grow continuously. In fact, the number
of individuals, which was the motivation in this derivation, is a discrete
property and, thus, may not be appropriately described by it in some cases.
To treat the discrete case, we need to move on to the study of stochastic
processes, which we will in Section 2.3. However, before doing so, in the
next section I will introduce the basic concepts of game and Nash-equilibrium
and how these relate to population dynamics.

2.2 game theory and its population wide counterpart

Game theory is a wide term to classify the science that studies the behavior
of decision makers, usually called players, from a rational viewpoint [1]. It
is often used in Economics in the pursuit of optimal behavior from the
purely strategic perspective. It consist in the study and development of
models of conflict and cooperation that are competition problems, which,
as we have seen, reach far beyond human competition.

The simplest of those models, called game, is a 2-person game, in which
two players interact with each other and have to decide to act according to
one of two strategies, C, typically associated with cooperation, and D, with
defection. Their outcome, or payoff, is given the matrix bellow

C

D

C D[
R S

T P

]

where the values are for the player playing the strategy represented on the
line against an opponent playing the strategy on the column. If the game
is symmetric, the same matrix describes both players.Originally game theory was

developed as a theory of
human strategic behavior

based on an idealized picture
of rational decision making. It

often concerns the search of
equilibria of a mistake-free

population.

Indeed, one of the most studied scenarios is the one called Prisoners’
dilemma. This game is characterized by a conflict between self-interest and
global optimum: i) the best move is always to defect but ii) players are
worse of by defecting than if they would both cooperate. From i) we have
T > R and P > S and ii) implies R > P. The fact that no player can unilat-
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erally change strategy to be better of makes the configuration where both
players play D a Nash-equilibrium.

Definition 1 Nash-equilibria

Consider a game with N players, where S(i) is the strategy space of player
i, and f(x) = (f1(x), . . . , fN(x)) is its payoff function evaluated at x ∈ S, S
being the set of strategies space. Let x(i) be the current strategy of player i
and x(\i) be the set of strategies of all players except for player i. A strategy
profile x∗ ∈ S is a Nash equilibrium (NE) if no unilateral deviation in
strategy by any single player is profitable for that player, that is:
∀i, x(i) ∈ S(i) : fi(x∗(i), x∗(\i)) > fi(x(i), x∗(\i)).

Depending on the relative values of the parameters in the 2-player ma-
trix, different games (and dilemmas) can arise. To analyze them, let us
move on from the idea that i) players are purely rational and that ii) they
play these games once and isolated. For this, we will enter in the realm of
population dynamics, more specifically, of Evolutionary Game Theory. Evolutionary garne theory

arises in Biology does not rely
on rationality assumptions
but on the idea that the
Darwinian process of natural
selection drives the
population dynamics when
fitness derives from the game
indivudals play.

Evolutionary game theory applies the concept of games into population
dynamics. Suppose we have a very large population. The individuals in
that population will interact with each other and receive a payoff in each
interaction, e. g. given by the matrix above. Let us say that x is the fraction
of individuals playing C in that population and 1− x the fraction of those
that play D. Then, given that players interact in pairs and with all others
with the same probability, the average payoff each strategy gets can be
written as

fC = xR+ (1− x)S (3)

fD = xT + (1− x)P. (4)
In well-mixed populations,
2-person games give rise
linear fitness and linear
fitness differences.

As time evolves, players will tend to adopt different strategies, in partic-
ular through imitation. If we assume that at any given time all players are
equally likely to change strategy, the probability that a C changes strategy
is proportional to the number of Cs, x, and the probability that he looks at
a D to imitate is proportional to the number of Ds, 1− x. Finally, if the C
player’s fitness is larger than that of a D, the number of Cs increases, and
it decreases otherwise. With this simple ingredients, we can write

ẋ = x(1− x)(fC − fD) = x(1− x)(x(R− T) + (1− x)(S− P)) (5)

which is exactly the replicator equation we saw last section. A more formal
and detailed description will be given in next section. Notice that if both
R− T and S− P are negative, as in the Prisoners’ dilemma, the whole pop-
ulation will go into full defection. If that is not the case, three other topo-
logically different scenarios can emerge, with the right hand side of Eq.(5)
fully characterizing the dynamics and being called gradient of selection. Fig-
ure 1 illustrates those four scenarios: Prisoners’dilemma (PD), character-
ized by a dominance of D, Snowdrift (SD) characterized by a coexistence
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𝑅 − 𝑇

𝑆
−
𝑃

0

0

PD

𝑥

ሶ𝑥

HG

𝑥

ሶ𝑥

SH

𝑥

ሶ𝑥

SD

𝑥

ሶ𝑥

Figure 1: Linear fitness differences game dynamics The four different classes of
games that result from symmetric 2-player games where R > P, depend-
ing on two parameters, S − P and R − T and their sign. The full dots
represent stable equilibria of the system while the open dots represent
unstable equilibria.

of both strategies, the Stag Hunt (SH) characterized by a coordination be-
tween both strategies and finally, but less interesting since it does not pose
a dilemma, the Harmony Game (HG) where the whole population will al-
ways end up in the C state which is also a global maximum [22, 27, 118,
122].

We will be studying in more details both the SD and the SH in Chapter 6

and we will recover the PD many times.

2.3 stochastic processes

Individuals in large populations are often named, or even categorized, ac-
cording to their preferences, behaviors, physical and psychological resem-
blance and many other characteristics that make people alike. This can hap-
pen for the most various reasons, from hierarchisation to discrimination,
but is often a way to simplify the line of thought by means of disregarding
individuality. In social problems, people, nations, leaders and other social
entities can be classified according to their acts, to their strategy in some
problem.

Throughout this dissertation, I will make use of a crucial assumption
that will render all this setup possible: a well-mixed, or mean-field, approx-
imation. This means that the outcome of an individual interaction is aver-
aged over all possible interactions. In turn, because all players interact with
all other equally, this allows one to fully classify and individual by his/her
strategy – effects of personal history of interaction, position on a not com-
plete graph, or other heterogeneous factors, are disregarded. Nonetheless,
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the effects of different sources of heterogeneity in players can sometimes
be mapped into the well-mixed scenario with the game parameters chang-
ing into (different) effective parameters, making it a good frame of refer-
ence.[83, 93, 111, 113, 117] The interference of diverse

complex behaviors, such as
those present in human
interaction, may actually
render the description and
evolution of average salient
properties compreensible. For
this, a variety of concepts
related to the statistical
mechanics of non-equilibrium
stochastic processes is
required.

Therefore, it is convenient to consider a set of Z elements, each of these
can be in one of S states. I will think of the elements of this system as the
individuals of a population who can adopt different strategies: σ1, ...,σS.
Let ik(t) be, at a given time t, the number of individuals with the strategy
σk, where k = 1, ...,S. The number of individuals of a given type will
randomly evolve in time according to some rule. To study these quantities
I need the proper framework; probability theory has the right objects.

Let i be a random or stochastic variable defined by a set Ωi and a func-
tion Pi(x). Ωi represents the set of possible states of i; I will be calling
it indiscriminately “phase space”, “domain” or, ususally as a reference to
its graphical representation, “simplex”. Pi(x) is a probability distribution
defined over Ωi. However, when studying a system, one may need more
than just a single snapshot of Pi(x). One is usually interested in describing
its evolution in time. In order to do so, one needs more than one stochas-
tic variable. Suppose I build a set according to Def.(2). It depends on the
random variable i and on a parameter, t, that represents time.

Definition 2 Stochastic Process
Let Y be a a set of stochastic variables indexed by a parameter, t: it1 , it2 ,
. . . , itm . If t represents time, Y is a Stochastic Process. Whenever t does not
represent time, Y is called a random function.

This set can be written in a compact way which easily takes into account
all possible values of the indexing parameter: Yi(t). To cut out notation,
often the set is named after the stochastic variable, ii(t) or, simply, i(t).

All ik, mentioned before as the number of individuals with a given strat-
egy, perfectly fit into this definition and so can be treated as a stochastic
process. Furthermore, note that We will be looking at

bounded phase-spaces.

i1 + ... + iS = Z. (6)

Since Eq.(6) determines, for example, iS in terms of the remaining ik,
I only need to retain d = S− 1 of them, making d the dimensionality of
phase-space. Strictly speaking, one defines i(t) = {i1, ..., id} as multivariable
stochastic process over an d-dimensional sample space, Ωi, given in Eq.(7).

i1 ∈ {0, 1, ...,Z} (7)

i2 ∈ {0, 1, ...,Z− i1}

...

id ∈ {0, 1, ...,Z− i1 − ... − id−1}

Within the framework of stochastic processes, there is a specific subclass
of processes called Markov processes. Being important, Markov processes
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are, by far, the most well known and used stochastic processes. In part
due to their manageability but, ultimately, because any isolated system is
a Markov process once one considers all microscopic variables. Evidently,
this is not always possible or even desirable. The task is to find a small
collection of variables with the Markov property at a given time scale.

These are formally defined in Def.(3), which states that the conditional
probability of a future event at tn, T1|n, is independent of the knowledge
of the values at times earlier than tn−1. Informally, one can say that the
information required to compute future statistical properties depends only
on the actual state; the system has no memory.

Definition 3 Markov Property
Let i(t) be a Markov process, indexed by a set of n successive times, i.e.
t1 < t2 < ... < tn. The conditional probability of getting in at tn, given the
set of observed values in−1 at tn−1, . . . , i1 at t1 is given by:

T1|n−1(in, tn|i1, t1; ...; in−1, tn−1) = T1|1(in, tn|in−1, tn−1).

The evolution of a population need not be a purely random process:
there may be mechanisms that generate,e. g., a global tendency for indi-
viduals. From a practical standpoint, the Markov property is the simplest
way of introducing statistical dependence into the models built and, hence,
such tendency.

For example, individuals that are part of a population with a given con-
figuration of strategies can opt to change their own whenever they feel
their outcome is not the best: they can compare themselves with the present
situation and choose a better strategy. Therefore, one supposes that, at a
give state, the evolution of the system depends only on the present config-
uration so that i(t) = {i1, ..., id} is a Markov process.Fortunately, we will be able

to numerically solve for the
stationary distribution of the

M-Equation in most cases.
When the number of

configurations grows too
large, and that is no longer

directly possible, the method
proposed by my coauthors

and I, which I show in part II,
allows one to hierarchicaly
obtain better estimations of

the solution.

The study of a Markov process often consists in determining its probabil-
ity density function (PDF) evolution, Pi(t). Since i(t) has the Markov prop-
erty, its transition probability T1|1 respects the discrete time M-Equation,
Eq.(8), and consequently, with a delta-shaped initial condition, its PDF
also respects it [57]. This is a gain-loss equation that allows one to com-
pute Pi(t) given the transition probability from the configuration i to the
configuration i ′, Ti ′i.

Pi(t+ τ) − Pi(t) =
∑

i ′
{Tii ′Pi ′(t) − Ti ′iPi(t)} (8)

As a result, the problem of modeling this system is reduced to the com-
putation of Tii ′ . Furthermore, making the left side zero, in the search for a
stationary Pi(t), one falls into an eigenvector search problem [57].
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2.4 from the m-equation to the langevin equation

Before I proceed with modeling Ti ′i, I would like to give further insight on
its meaning and derive some related quantities. Therefore, in this section
I will review some important equations together with their interpretation,
which will be of use later on. By the end of the section, I will derive these
equations, in the framework presented so far, in order to relate their well
known quantities to Ti ′i and these to the replicator equation.

The M-equation, Eq.(8), can be rewritten in an equivalent formulation,
the Kramers-Moyal (KM) expansion, Eq.(9) [57]. The functionsD(n)

i1,...,in(x, t)
characterize the process and each one is called the n-th Kramers-Moyal co-
efficient.

∂P

∂t
(t) =

+∞∑
n=1

(−1)n
d∑

i1,...,in

[
n∏
l=1

∂

∂xil

]
D

(n)
i1,...,in(x)P(x, t) (9)

This is an equation for the time evolution of the PDF, P(t), of an d-
dimensional continuous Markov process, X(t). It often allows one to make
use of perturbation theory and, consequently, the effect of its successive
terms can be more easily studied. Hence, the equation containing only the
first two terms is well discussed in the literature and is called the Fokker-
Planck Equation (FPE), Eq.(10). Pawula’s theorem reinforces the study of
this equation stating that stochastic processes obey this equation not only
as an approximation but exactly as long as one of the even KM coefficients
is zero [105].

∂P

∂t
(t) = −

d∑
i=1

∂

∂xi

[
D

(1)
i (x, t)P

]
+

d∑
i=1

d∑
j=1

∂2

∂xi∂xj

[
D

(2)
ij (x, t)P

]
(10)

The first KM coefficient, D(1)
i (x, t), is called the Drift, which we will see

matches the gradient of selection, g(x, t), and the second, D(2)
ij (x, t), the

Diffusion.
Associated with the FPE (10) is a system of S coupled Itô-Langevin equa-

tions, which can be written as [37, 105] The Langevin equation is the
simplest way to interpret the
evolution of a stochastic
system.dX

dt
= h(X) + G(X)Γ (t) (11)

Here, Γ (t) is a set of d normally distributed random variables fulfilling

〈Γi(t)〉 = 0, 〈Γi(t)Γj(t ′)〉 = 2δijδ(t− t ′) . (12)

These equations drive the stochastic evolution of X(t). The vectors h and
the matrices G = {gij} for all i, j = 1, . . . , s are connected to the local Drift
and Diffusion function through
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D
(1)
i (X) = hi(X) and (13)

D
(2)
ij (X) =

d∑
k=1

gik(X)gjk(X) . (14)

While the FPE describes the evolution of the joint distribution of the d
variables statistically, the system of Langevin equations in Eq.(11) models
individual stochastic trajectories of a system. In Eq. (11) the term h(X),
related to the Drift, contains the deterministic part of the macroscopic dy-
namics, while the functions G(X), related to Diffusion, account for the am-
plitudes of the stochastic forces mirroring the different sources of fluctua-
tions due to all sorts of microscopic interactions within the system.

Notice, however, that the d×d matrix G cannot be uniquely determined
from the symmetric diffusion matrix D(2) for s > 2: the number of un-
known elements in G exceeds the number of known elements in D(2) lead-
ing to d2 − 1

2d(d + 1) = 1
2d(d − 1) free parameters. However, a simple

method can be used to obtain G from D(2) in such a way that a Langevin
equation can be extracted from a FPE, but is not unique [58, 144]. Sym-
bolically I will write this particular G as

√
D(2). Furthermore, in general,

the eigenvalues of these matrices indicate the amplitude of the stochas-
tic force and the corresponding eigenvector indicates the direction toward
which such force acts, in the Langevin point of view. Even more interest-
ing features, however, can be extracted from the eigenvalues and eigenvec-
tors.[144].

Now with some intuition on these equations, I will perform a Kramers-
Moyal expansion in order to identify the KM coefficients of our system,
namely the Drift and Diffusion – this is a classical procedure that can be
found in many textbook of statistical mechanics[57, 105] but it is useful to
set notation and to bring about results that will be of use. I will be able
to prove that, in the dynamics of the fraction of traits in a population, the
coefficients are sequentially smaller and therefore justify the analysis using
the FPE and its Langevin interpretation.The evolution of the fraction

of individuals of a given trait
is well described by a

Langevin equation. The
evolution of its distribution

can be approximated by a
Fokker-Planck equation. That

will be of use and will help
our interpretation of the

results.

Consider that all transition probabilities and statistical properties de-
fined so far as functions of the number of individuals of the different
strategies, i, are redefined as functions of the fraction of individuals in
the total population, X = i/Z. The changes and notation are introduced in
Eqs.(15).

Configurations are described by x, with a PDF ρ(x, t), and Tδ(x) repre-
sents a transition from configuration x in the direction δ such that it gets
to configuration x ′ = x + δ.
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xk ≡
ik
Z

(15a)

Pi(t)→ p(x, t) (15b)

Ti ′={i1+∆1,...,id+∆d}i={i1,...,id} → Tδ(x) (15c)

ρ(x, t) ≡ Zdp(x, t) (15d)

Finally, we can rewrite Eq.(8) in terms of the PDF of X, ρ(x, t), using
∆ρ(x, t) = ρ(x, t+ τ) − ρ(x, t) as follows.

∆ρ(x, t) =
∑
δ 6=0

[
ρ(x + δ, t)T−δ(x + δ)−

−ρ(x, t)Tδ(x)
] (16)

With a population model in mind, it is reasonable to assume that, as the
population increases, the frequency in which an individual of some type
changes strategy also increases with Z. Thus the update time decreases
with 1/Z. Also, at this point, we do not have to neglect simultaneous tran-
sitions from different individuals as long as one guarantees that δ scales
with 1/Z. Then, taking into account that one has two small parameters, τ
and δ, which scale with the same 1/Z factor, and using a Taylor expansion,
we can expand Eq.(16) to the desired order.

The left side of Eq.(16) is easily computed to be

∆ρ(x, t) = τ
∂ρ

∂t
+
τ2

2

∂2ρ

∂t2
+O(τ3). (17)

The right side requires further analysis. Writing the terms inside the
sum in Eq.(16), using the Taylor expansion to isolate the terms without
derivatives, performing the sum over the terms and reordering them, we
identify the KM coefficients D(n)(x) as

D
(n)
i1,...,in(x) = N

(−1)n

n!

∑
δ 6=0

[
n∏
m=1

δim

]
T−δ(x). (18)

This can be used to calculate the Drift, D(1)
k (x), and Diffusion, D(2)

kl (x).
Notice that the n-th KM coefficient contains a factor which is roughly
Z |δ|n, which proves that the terms in this KM expansion are increasingly
small. In addition, it proves that the dynamics of infinite populations is
deterministic since all coefficients but the first tend to zero and, therefore,
the Langevin equation, Eq.(11), becomes an ordinary differential equation.

2.5 one-step processes

Populations evolve when individuals change their strategy. When an indi-
vidual with a given strategy decides to change, the number of individuals
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with this strategy is reduced by one and the strategy he adopts gains a new
member. This way one has a birth-death or one step process, keeping the to-
tal number of elements. The underlying assumption when using this kind
of processes is that the probability that two different individuals change
strategy in a time interval τ is O

(
τ2
)

[57], making Def.4 appropriated.

Definition 4 One Step Process
The process i is a one step process if its transition probability per unit time
between states i and i ′ 6= i, Tii ′ , is zero for all non adjacent configurations.

One-step processes are widely
used, specially because even if

we increase the time scale of
observation, thus allowing for

more intermediate step, we
can redefine our states with

meta-states over which
definition 4 is valid.

When referring to the process, I will eventually introduce the extra strat-
egy index just to keep track of what I am doing; symbolically, i = {i1, ..., id} =
(i1, ..., iS−1, iS = N− i1 − ... − iS−1). Then, if one considers all S strategies,
the configuration of strategies at a given time is i = (i1, ..., iS−1, iS) and it
can only move to a configuration i ′ = (i ′1, ..., i ′S−1, i ′S) = (i1 + ∆1, ..., iS +
∆S), where, either all ∆k are null, or only two of them are non-zero and,
respectively, 1 and −1, which identifies the adjacent states. The probability
that the system changes into states i ′ that do not obey these conditions is
zero, Ti ′i = 0. When all ∆k = 0, the system remains unchanged, i ′ = i,
and the transition probability correspondent to this event can be calcu-
lated from the remaining as Tii = 1−

∑
i ′ 6=i Ti ′i. Hence, the determination

of the transition probabilities between adjacent states, allows one to solve
the problem. This will be left for next chapter.

In the next section, I will present and derive several general results re-
lated to these processes. Then, I will restrict the analysis to populations
with only two strategies so I can introduce concepts as fixation probability
and fixation time and motivate the study of stationary distributions.

2.5.1 Drift and Diffusion

𝑋

𝑡

𝑃𝐷𝐹

Diffusion
Drift

The Drift and Diffusion will
be of crucial importance to

what comes next. Imagining
a drifting peak of probability,

the drift corresponds to the
direction of where that

probability tends to move to
and the diffusion corresponds

to the widening of that
distribution.

Let me start by explicitly computing the Drift and Diffusion coefficients for
this kind of processes. Considering birth-death processes, notice that the
possible transition directions, δ, are under the assumptions of the deriva-
tion since all its entries are null except two of them which are, respectively,
1/Z and −1/Z, see Sec.2.4. Their explicit form is: δ = {. . . , δk, . . . , δl, . . .} =
{0, . . . , 0,±1/Z, 0, . . . 0,∓1/Z, 0, . . . , 0}. Using Eq.(18) one writes

D
(1)
k (x) =

(
Tσk+(x) − Tσk−(x)

)
(19)

and

D
(2)
kk (x) =

1

2N

(
Tσk−(x) + Tσk+(x)

)
(20)

D
(2)
kl (x) = −

1

2N
(Tσk→σl(x) + Tσl→σk(x)) , (21)

where I have used the definitions in Eq.(22) and Eq.(23). Tσk±(x) is the
sum of all transition probabilities that increase or decrease the strategy
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k, respectively, and Tσk→σl(x) is the probability that an individual with
strategy k changes into a strategy l.

Tσk±(x) :=
∑

δ:δk=1/N

T±δ(x) (22)

Tσk→σl(x) := T
{...,δk=−1,...,δl=1,...}(x) (23)

We finally have Drift and Diffusion written in terms of quantities that can
be computed in the finite system. We can also write a Langevin equation,
which has now a very intuitive interpretation, Eq.(24). The deterministic
trend and the most probable direction in phase space, given by the Drift,
are a balance between the probability of increasing and decreasing a given
strategy. The dispersion of the fraction of individuals with a given strategy
across the configurations in the phase space decreases with the increase of
population and the major terms in the Diffusion are a sum of the transitions
in opposite directions.

dx
dt

= T+(x) − T−(x) +
1√
Z

√
ZD(2)Γ . (24)

In the unidimentional case this is particularly easy to notice, Eq.(25).

dx

dt
= T+(x) − T−(x) +

1√
Z

√
T+(x) + T−(x)

2
Γ . (25)

In any case, the study of the Drift and Diffusion will prove key to un-
derstand the population dynamics. In what follows I will discuss briefly
how to interpret these functions and how to relate them to the population
dynamics.

For large enough populations the fluctuations in the individuals of a
given strategy will be small compared to the global trend. Therefore, ne-
glecting the stochastic term in the Langevin equation, one finds a system of
ordinary differential equations that, as we will see next, we can map to the
replicator equation, Eq.(2): dx

dt = D(1)(x), where D(1)(x) = T+(x) − T−(x).
This is an intuitive way to motivate the Drift as the central direction in
phase space. Formally, for prediction of the system’s evolution, in general,
short time propagators need to be taken into account, T1|1(x, t + τ|x ′, t),
which involve both the stochastic (Diffusion) and the deterministic (Drift)
parts of the dynamics [105]; computing the gradient in x for the each point
x ′ one finds D(1)(x ′) as the most probable direction.

Let me get back to finite populations. To make this transition clear, I will
use the i variables whenever we are in the finite system and the x variables
when we are talking about the infinite limit. The functional dependence
distinction is done indexing the variable whenever we are talking about
the discrete system’s functions.
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If the elements in the population can only adopt two different strategies,
say σ1 and σ2, we have a one-dimensional problem. Let i1 be the number
of individuals with a given strategy σ1 (then Z− i1 is the number of indi-
viduals with strategy σ2) and our configuration space be represented as a
set of points confined in a line segment such that 0 6 i1 6 Z, see Eq.(7).
Whenever D

(1)
i1

> 0 (< 0) the population will tend to see the number
of elements with strategy σ1 increase (decrease). In infinite populations,
if D(1)(x1) = 0 one finds a fixed point which can be stable or unstable,
as in traditional dynamical systems. However, since populations are finite,
stochasticity is present and there is no fixation. These fixed point analogues
act as attractors or repellers, respectively. Diffusion is also a function of i1
and is always non-negative, so it can be plotted similarly to the Drift if one
is interested in it. Figure 2a shows an example of a simple way of gathering
all this information. Notice that Figure 1 has something similar to panel A
but for an infinite population.
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Figure 2: Drift and Diffusion representation (a) Illustration of Drift and Diffu-
sion representation for a population whose individuals can opt between
two different strategies. The line with circles represents the Drift and
the line with the squares represents the Diffusion. When the Drift is
positive (negative) an arrow pointing right (left) is placed in the configu-
ration axis, indicating the general tendency of the population. The dots
in this axis represent fixed points analogues: a filled dot represents a
fixed point which acts as an attractor and an empty dot acts as a repeller.
Notice that those fixed points do not necessarily belong to the configu-
ration state space, for it is discrete, and that Diffusion in those points is
necessarily non-zero (see, eg. Eq.(25)). (b) Illustration of Drift representa-
tion for a population whose individuals can opt between three different
strategies. The vector field indicates the direction of preferential motion
and a color scale is used to indicate its strength. Fixed point analogues
are also visible in this image though they are not represented to avoid
overloading the image. The dynamics illustrated here are characteristic
of the N-person games (N > 2) that we will see later on: they have
multiple internal fixed points with different stabilities, contrary to the
scenarios of the 2-player games in Fig. 1
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However, if the elements in the population can adopt more than two
different strategies, the representation can get a little bit tricky. Notice that,
in general, the Drift is a vector field but the Diffusion is a tensor field that
is represented by a matrix. Therefore, using its eigenvectors and making
their magnitude equal to the corresponding eigenvalue, one is able plot
the Diffusion matrix [144, 154].

2.5.2 Fixation Problem and Stationary Distributions

In this subsection I will consider one-dimensional processes, i.e. popula-
tions whose individuals can opt for two different strategies: σ1 and σ2.
This way, i = i1 = i.

Suppose the population dynamics has some stable and unstable fixed
points analogues, some {x ∈ < : D

(1)
xZ = 0}: attractors and repellers. The

population will, therefore, spend most of its time around the attractors
and little time near repellers but, since it is finite, stochasticity will allow
all configurations to be explored. Eventually, the configuration in which
the whole population adopts strategy σ1 or σ2 will occur and the imitation
process, which drives the dynamics, will end: an individual can only imi-
tate his own strategy. Essentially, if only the imitation process is considered,
evolutionary dynamics in finite populations will (only) stop whenever the
population reaches a state in which all individuals have the same strategy
– a monomorphic state [84, 138].

Hence, in addition to the analysis of the shape of the drift, or gradient of
selection, often one of the quantities of interest in studying the evolutionary
dynamics in finite populations is the probability φi that the system fixates
in a monomorphic σ1 state, starting from, for instance, a given number i
of σ1’s. Even though computing

fixation probabilities alone
may disregard important
information, they can be
extremely useful. In chapter 6
I will make use of them to
define approximations to
invariant distributions of
population Markov chains.

The fixation probability of i σ1’s, φi, depends on the ratio λi = T−i /T
+
i ,

being given by [58]

φi =

i−1∑
l=0

l∏
l ′=1

λl ′/

Z−1∑
l=0

l∏
l ′=1

λl ′ (26)

Under neutral selection (that is, when the probability of changing strat-
egy is 1/2), the fixation probability trivially reads φ0i = i/Z, providing
a convenient reference point [30, 58, 81, 138]. For a given i, whenever
φi > φ0i , selection will favor σ1 behavior, the opposite being true when
φi < φ

0
i .

Yet, even if fixation in one of the two absorbing states is certain (i = 0

and i = Z), the time required to reach it can be arbitrarily long. This
is particularly relevant in the presence of basins of attraction containing
polymorphic stable configurations, which correspond to finite population
analogues of co-existence equilibria in infinite populations. For example,
the existence of a stable equilibrium may turn the analysis of the fixa-
tion probability misleading and, therefore, fixation probabilities may fail
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to characterize in a reasonable way the evolutionary dynamics under gen-
eral conditions. Moreover, as I mentioned before, stochastic effects in finite
populations can be of different nature, going beyond errors in the imitation
process. In addition to social learning by imitation dynamics, one can also
consider the so-called mutations: random exploration of strategies or any
other reason that leads individuals to change their behavior [141]. Under
these circumstances, the population will never fixate in any of the two pos-
sible monomorphic states (see Chapter 6, where I propose an extension to
this approach).

The proper alternative, which overcomes the drawbacks identified in
both fixation times and gradient alone, consists in the analysis of the dis-
tributions of the complete Markov process as mentioned in the very be-
ginning, Sec. 2.3. In general, for the complete solution of the problem, one
would solve the M-Equation, Eq.(8), to compute the PDF evolution. This
can be very time and resource consuming and, furthermore, the analysis
of the results would not be simple. However, I am not interested in tran-
sient distributions and, thereafter, we can look for stationary solutions of
this equation. In general, this is obtained from the eigenvector associated
to the eigenvalue 1 of the Ti ′i matrix. Notice that as long as the states are
numerable this matrix is always possible to build for an arbitrary number
of strategies.

To finish this subsection I will derive a solution that avoids solving
this eigenproblem for one-dimensional one-step processes. For an alternate
derivation see [57]. I also reinterpret this solution in a way that I conjecture
it can be extended to any dimension and phase-space.

Let i be a limited one-step process: i = 0, 1, ...,Z. The transition probabil-
ity from state i to i ′ is Ti ′i.

Using Eq.(8), we search for a stationary solution making the left-hand
side equal to 0 for all i. Thus, one can write a recurrence relation:

i = 0⇒ P1 = P0T10/T01 (27)

0 < i < Z⇒ Pi+1 = (Pi(Ti−1i + Ti+1i) − Pi−1Tii−1)/Tii+1 (28)

i = Z⇒ PZ = PZ−1TZZ−1/TZ−1Z (29)

which allows one to write all Pi as a function of P0 = α. However, from
Eq.(28) and using Eq.(27), one has T12P2 = P1T21, which is the same kind
of relation as in Eq.(27). Thus, it is natural to assume the hypothesis:

Pn = Pn−1Tnn−1/Tn−1n, (30)

Valid for n = 1 via Eq.(27). Using Eq.(28) one writes:

Tnn+1Pn+1 = Pn(Tn−1n + Tn+1n) − Pn−1Tnn−1 (31)
hip
= Pn(Tn−1n + Tn+1n) − PnTn−1n (32)

= PnTn+1n (33)
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which validates the hypothesis, by induction, for i > 1. Recurrently one
has:

Pi = Pi−1Tii−1/Ti−1i = Pi−2Ti−1i−2/Ti−2i−1Tii−1/Ti−1i = . . . =

= α
T10
T01

T21
T12

. . .
Ti−1i−2
Ti−2i−1

Tii−1
Ti−1i

(34)

Finally, each Pi is determined as a function of the ratio between T+l = Tl+1l
and T−l+1 = Tll+1, Rl, and P0 determined by normalization:

Pi = α

i−1∏
l=0

Tl+1l
Tll+1

≡ α
i−1∏
l=0

Rl, α =

(
Z∑
i=0

i−1∏
l=0

Rl

)−1

. (35)

Now notice that, apart from normalization, Pi has i products. However,
if we multiply all Pi by

∏Z
i=1 Ti−1i, all terms loose the quotients and all

end up with the same amount of products. Because beauty and symmetry
in Math is seldom achieved by chance, let me give it a geometric interpre-
tation.

If we represent Tii ′ with an arrow from i ′ to i, we get that the (stationary)
probability of being in state i is given by Figure 3. The statement is that the
stationary distribution at any given point can be computed as the sum of
the different paths that fill the phase-space and end at that point. The paths
are products of transition probabilities, one from each single state, conse-
quently meaning that paths will always have the size of the phase-space
minus 1. In the 1D case, there is only one path for each state. However, as
Figure 4 shows, in a 2D phase-space, the number of paths that lead to the
same configuration increases rapidly.

Now, clearly, some paths contribute more than others. In fact, in the light
of this interpretation it is easy to understand why a stable fixed point in
the deterministic dynamics (keeping only the drift, or gradient of selection,
in the KM expansion) is an attractor of probability in the full system. If
we look at the phase-portrait of the deterministic system, it will overlap
with the transitions in Figure 4 giving different weights to the different
paths. Notice, however, that in the full system, that stable point contains
the path whose streams are given by the drift and thus have the largest
transitions, making it the more probable point. On the other hand, if its
basin of attraction is small, those streams are still multiplied by transitions
that are contrary to the drift, and thus are small, making the probability of
being in that attractor smaller.
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Figure 3: Stationary distribution graphical solution The solution of a stationary
distribution in a 1D can be computed by the paths that fill the phase-
space and lead to each point. Each arrow corresponds to a transition
and a path is the product of those transitions. Each patch contains |s|− 1

transitions, where |s| is the size of the configuration space. In this case,
there is only one path that is T+0 . . . T

+
i−2T

+
i−1T

−
i+1T

−
i+2 . . . T

−
X .

00 01

1110

Phase space: Stationary distribution:

𝑝00 = + ++

𝑝01 = + ++

𝑝10 = + ++

𝑝11 = + ++

Figure 4: Stationary distribution graphical solution for a 2D phase space Apart
from normalization, the right panel shows the solution of a stationary
distribution in a 2D phase space. It has several paths that lead to the
same configuration.
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G A M E S I N F I N I T E P O P U L AT I O N S

So far, I have reduced the problem of building up a model that describes
the evolution of a finite population to the ability of writing some transi-
tion probabilities. To do this, we must include microscopic details into the
model, i. e., what makes individuals change their own strategy. As already
mentioned, an imitation principle will be employed but it is not enough,
for it would systematically lead the population to homogeneous states.

Imitation reflect individuals’ tendency to copy others whenever these
appear to be more successful. Contrary to strategies defined by a contin-
gency plan, which, as some argue [70], are unlikely to be maintained for
a long time scale, this social learning (or evolutionary) approach allows
traits or strategies to change as time goes by [104, 119, 137]. Likely, these
strategies will be influenced by the behavior (and achievements) of others,
as it happens in the context of donations to public goods [16, 34, 103].

Moreover, one should also consider random exploration of strategies or
any other reason that leads individuals to change their behavior without
imitating anyone, mutation. In the simplest scenario, this creates a modified
set of transition probabilities, with an additional random factor encoding
the probability of a mutation, µ, in each update step. Under these circum-
stances, the population will never fixate in any of the possible monomor-
phic states and will evolve preferentially according to such imitation pro-
cess.

To this point, the missing transition probabilities correspond to the prob-
ability that an element with a given strategy, σl, changes into another spe-
cific strategy, σk, k, l = 1, . . . ,S. Evidently this may depend on the strate-
gies but I will assume a common functional form for all pairs of strategies;
the process of decision has the same rule. A rule one can use to compute
Tσl→σk ≡ T{...,ik+1,...,il−1,...}{...,ik,...,il,...} is the Fermi update rule with muta-
tion, or pairwise comparison rule [138]: Fermi update rule is but one

of the many possible updates
and defines a contact process.
It is extremely useful not only
due to analythical tractability
but also because it allows one
to push intensity of selection
to a non-linear regime in a
very familiar way, decreasing
the temperature/errors of the
system as β→∞.

� Considering a birth-death process in a well-mixed population, all in-
dividuals are equally likely to change of strategy and all the others
are equally likely to be selected as role model, resulting in a contact
probability between strategy σl and σk of il/Z× ik/(Z− 1).

� In the comparison process, the individual more likely changes strat-
egy if his strategy is worse than the one he is comparing to. This is
accomplished using a Fermi distribution, (1+exp(β∆σlσk))

−1, which
introduces errors in the imitation process, where β represents the in-
tensity of this selection and ∆σlσk quantifies how better is strategy σl
compared to σk. For β << 1, selection is weak and its effect is but a
small perturbation to random drift in behavioral space.

23
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� Additionally, one may introduce a parameter µ, the mutation, that
allows transitions between strategies independent of how good they
are. When µ has its maximum value, 1, individuals change (or not)
to any strategy with equal probability.

These three ingredients build Eq.(36) [138, 139, 141].

Tσl→σk =
il
Z

(
ik
Z− 1

1− µ

1+ exp(β∆σlσk)
+
µ

s

)
(36)

This formulation allows one to explicitly compute the Drift and Diffu-
sion for a Fermi update rule using Eq.(19) and Eqs.(21), see Section 3.1
below.

3.1 drift and diffusion for fermi update rule

In this section I will calculate all Drift and Diffusion using the Fermi up-
date rule. I use the finite system notation.

Consider the quantities Tσk+i ± Tσk−i , whose definitions are given, in
Eq.(22), in terms of Tσl→σk , Eq.(36). Then, again with d = S− 1,

Tσk+i ± Tσk−i =

s∑
l 6=k

[
ik(1− µ)

N(N− 1)
il

(
1

1+ exp(β∆σlσk)
±

± 1

1+ exp(β∆σkσl)

)
+
µ

dZ
(il ± ik)

]
. (37)

Using the conceptual symmetry ∆σlσk = −∆σkσl and the identities (1+

exp(x))−1−(1+exp(−x))−1 ≡ tanh(−x/2) and (1+exp(x))−1+(1+exp(−x))−1 ≡
1 I can write Eqs.(38).

Tσk+i − Tσk−i =
ik(1− µ)

Z(Z− 1)

s+1∑
l 6=k

[
il tanh

(
β

2
∆σkσl

)]
+
µ

dZ
(Z− sik)

(38a)

Tσk+i + Tσk−i =
ik(1− µ)

Z(Z− 1)
(Z− ik) +

µ

dZ
(Z+ (d− 1)ik). (38b)

In the same way, one computes

Tσk→σl + Tσl→σk =
ikil(1− µ)

Z(Z− 1)
+
µ

dZ
(ik + il) (39)

Tσk+i − Tσk−i is the Drift vector and the remaining functions are part of
the Diffusion matrix.

Notice that Tσk+i + Tσk−i and Tσk→σl + Tσl→σk are independent of the
strategies. These elements build the diffusion matrix and, therefore, Diffu-
sion is the same for all conceivable games and strategies once one chooses
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the Fermi update rule. If one is interested in the study of fluctuations of
strategies in populations, the mutation should follow some more complex
rule, otherwise no contributions from the games themselves will arise.

In the limit of very large populations, one can write a set of replicator-
like equations including mutations with non-linear update and noise as

dxi
dt

= (1− µ)
Z

Z− 1
xi
∑
j6=i

xj tanh
(
β

2
∆σkσl

)
+
µ

d
(1− Sxi) +

∑
j

Γi
Z

√
Dij,

(40)

akin to what has been deduced for two strategies in [138].

3.2 interaction

Up to now, I have not defined how subjects compare their strategies. I have
already mentioned “better strategies” but, so far, all I did was packing this
information in ∆σlσk . Actually, ∆σlσk is indexed to a given configuration
too, since a strategy is only said to be good in a given situation. I will
consider that each strategy, σk, for each configuration, has a well defined
fitness, fσki. The greater its fitness, the better succeeded is the strategy. In
this sense, one writes ∆σlσk = fσl − fσk . The way the whole procedure is
built assumes this fitness to be accessible to individuals since it is part of
their decision process. Evidently, this can only be done via interaction with
the other players.

In a previous section, namely in Section 2.2, I mentioned some examples
of 2-player games. Clearly, in general, interactions do not need to happen
in pairs. Along this dissertation, I will consider examples of N-person in-
teractions as they will repeatedly occur when dealing with public goods
with N > 2. Indeed, according to the well-mixed ansatz, individuals in a
population may interact with all other Z− 1 players with equal probability
but they do so in groups of size N. From that interaction results a payoff to
each player. Indeed, since individuals with the same strategy are described
in the same way, the payoff is a characteristic of the strategy and, ultimately,
the payoff, Pσk , is what defines the strategy σk.

If the number of interactions is large enough, the central limit theorem
assures that the average payoff obtained by each player will be close to the
expected payoff. That, in turn, given an unbiased partition of the groups,
can be analytically expressed for each configuration of the population i,
population size Z and groups size N.

Definition 5 Fitness
The fitness of a strategy σl, fσl i, is the average payoff a single individual
with strategy σl obtains over all possible games that can be played in a
given configuration of the whole population.
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For finite, well-mixed populations of size Z, this average is accomplished
using a hypergeometric sampling (without replacement) [107]. Let j =

{j1, ..., jd} = (j1, ..., jS) be the configuration of players in the group of size N
with identical definition to i but replacing Z for N, i. e., the configuration
of the small group. Then, using Def.5, fσki is given by Eq.(41).

𝑍

𝑁
Population

Group 𝑁
Group

Randomly selected groups of
size N are sampled from a

population of size Z.

fσk i =

(
Z− 1

N− 1

)−1 ∑
j1,...,jS

j1+...+jS6N−1

Πσk j

(
ik − 1

jk

) S−1∏
l 6=k

(
il
jl

)
(41)

Where Πσk j is the payoff of an individual with strategy σl in anN-person
game with configuration j, which must be such that it contains at least one
individual with strategy σk.It is common to assume that

players interact enough times
such that their average payoff
is close to the expected payoff.
For a not so large number of
interaction, deviations in the

expected fitness difference
start to occur, in which an

effective decrease in β,i. e. an
increase in imitation errors, is

expected.

If one assumes an infinite population, in a configuration x = {x1, ..., xS−1} =
(x1, ..., xS = 1− x1− ...− xS−1), where also every individual can potentially
interact with everyone else, the fitness of each individual can be obtained
from a random sampling of groups. The latter leads to groups whose com-
position follows a binomial distribution. Hence, for groups of size N and
configuration j, I may write the fitness of a given strategy fσk(x) using
Eq.(42) [48, 96, 128], which, for N = 2 and the 2-player symmetric games
discussed before, returns Eqs.(3,4).

fσk(x) =
∑
j1,...,jS

j1+...+js6N−1

(N− 1)!
j1! . . . js+1!

Πσk j

S∏
l

x
jl
l (42)

From now on, my mission will be to define proper strategies by giving
the behavior of an individual in a group of size N, attribute payoffs for
the groups depending on their strategy composition, and compare the ef-
fects that different strategies have on the behavior of the whole population,
using the tools laid so far.

Before proceeding, however, I will introduce a deeper reflection on the
methods used. My goal is to justify for hypotheses used and motivate the
extensions proposed.



Part II

D E V E L O P I N G T H E F R A M E W O R K

This part represents my contribution to the development of the
field of population dynamics in a general way. I propose frame-
works to study

� the effects of discounting the future, with the use of fore-
casting and different orders of theory of mind,

� the evolution of the distribution of continuous traits in in-
finite populations with non-zero mutation and selection,

� evolution of the distribution of discrete sets of traits in
finite populations with non-zero mutation and selection

I also use this part to question the usual assumptions of Evo-
lutionary Game Theory and show how one could lift those as-
sumptions. Namely, I will be concerned with the assumptions
of

� Infinite discounting of future events,

� Bounded rationality,

� Discrete strategies,

� Rare exogenous events.





4
A D I S C U S S I O N O N R AT I O N A L I T Y

All the sophisticated abilities often associated with human reasoning should
at least be mentioned in a dissertation on cooperation. In particular when
we are dealing with benefits that, many times, only arise in the future.
The description of the methods of the last part has, so far, also lacked
a bridge between the purely rational and the simple imitation-based so-
cial learning process that is implicitly described by the replicator equation.
However, the two need not be separated. Humans face different decisions
everyday, some of which pose dilemmas that involve the provision of pub-
lic goods[106]. These dilemmas typically concern the ability of individuals
to suppress their selfish calculations – that only take into account their im-
mediate benefits – in the interest of achieving an end result that provides
a collective benefit. Many times, solutions involve the establishment of in-
surance arrangements whose implementation revolves on how individuals
discount the future. Discounting requires

Forecasting which needs a
Theory of Mind.

On one hand, discounting – the phenomenon of weighting present ben-
efits more than future ones – is accounted as one of the main reasons for
the lack of cooperation in what concerns resource consumption [65, 66].
On the other, evolutionary game theory is one of the main tools to deal
with the study of cooperation and one of the few that can deal explicitly
with time, modeling a complex system as a dynamic one. Here I look at –
and give the equations on – how to extend Evolutionary Game Theory to
analyze the effects of discounting. I will argue that in order to consider dis-
counting, players need the ability of forecasting so as to make predictions
about the future. The limiting cases of predicting no changes and consid-
ering only one’s direct impact are considered and the equations for it are
derived. Finally, I explore the relationship between the ability to make pre-
dictions and the need of a theory of mind. We will consider some ways to
make predictions and superficially discuss the order of theory of mind it
takes. Overall, this is not, and does not intend to be, a deep study of the
effects of discounting, forecasting or theory of mind, but a way to clearly
ascertain how the methods and equations used contain or not any of it. In-
deed, this chapter deeply contrasts with the remainder of this dissertation
in what level of simplicity of the assumptions, and consequent modeling,
is concerned. Nonetheless, it sets aside some concerns about our ability to
deal with human behavior.

4.1 discounting

Let us consider a population of size Z whose individuals weight the future
into their decisions. For simplicity, the individuals in this population can
adopt one of two strategies, C or D. Individuals receive a given payoff

29
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depending on their strategy, on the number of Cs and Ds that they interact
with and also on some resource that can have a dynamics of its own, B.
As an example, B can stand for a water resource and Cs are the players
that extract a smaller amount compared to Ds. In general, it represents
additional state variables.

The average payoff of an individual, also called fitness, will then de-
pend on the fraction of individuals of each strategy, say x for the frac-
tion of individuals playing C, and on the resource level, B – i.e., fX ≡
fX (x,B) , with X = C,D.

A strategical individual will change strategy if she sees herself getting
an advantage at a given time by doing so. The weight she gives to that
advantage depends on how much importance she gives to that time relative
to the present or future time. However, in order to perceive an advantage
in any time that is not the present one, say τ units of time after the present,
the individual has to estimate her fitness at that time. Thus, at a given time
t, a focal individual with strategy X changes to strategy Y by eventually
choosing a player with that strategy to imitate and computing the weighted
fitness difference over future time, also called present value[66]

∆̃fXY =
∑
τ

w (τ)
(
f̃Y
X
(τ) − f̃X

X
(τ)
)

, (43)

where f̃Y
X

is the fitness of strategy Y estimated by player (with strategy)
X at time t for time t + τ and w (τ) is the weight given to that moment
in the future [35, 40, 59, 63]. The bigger ∆̃fXY , the more likely the player
is to change strategy. We can use the logistic/Fermi function we used be-
fore, F (x) =

(
1+ e−βx

)−1, to implement the Fermi update process under
discounting players, setting the probability that the player with strategy X
changes to strategy Y as F

(
∆̃fXY

)
. Notice that I use the tilde to reinforce

the idea that such quantity is estimated. Also, I should emphasize that,
despite the players being strategic, this is a socially driven update as, for
now, players act by potential imitation, not being able to come up with new
strategies themselves.

Before proceeding, let us navigate through some of the equations that
govern this kind of dynamics so that we can get familiarized with it be-
fore getting into specificities. Neglecting stochastic effects, this leads to a
dynamics akin to a replicator dynamics, which we have deduced before in
Eq.(40).

ẋ = x (1− x)
(
F
(
∆̃fDC

)
− F

(
∆̃fCD

))
. (44)

Because we are setting this from scratch, let us look at a linearized ver-
sion making β small (i. e.in the limit of weak selection) – using the Taylor
series [of] F (x) = 1/2+ βx/4+O

(
x2
)

– and getting rid of it by rescaling
the time

ẋ = x (1− x)
1

2

(
∆̃fDC − ∆̃fCD

)
. (45)
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This equation is already quite similar to the replicator equation. Natu-
rally, it can be obtained through other update rules, like the Moran pro-
cess [85] or replicator dynamics [52] or any other F function that grows
monotonically. In order to make sure everything is in place, we can try
to recover the replicator equation from it. Naturally, there should be no
weight on the future. Let us set w (τ) = δτ0, where δij is the Kronecker
delta that is 1 if i = j and 0 otherwise. Furthermore, players assume that
their fitness playing the other strategy will be the same as that of the
other player and it will not change in the immediate next round, making

f̃Y
X
(τ) = f̃Y = fY . This means that the players do not even have to know

the game at stake or any kind of shape for the fitness functions. It also
means that ∆̃fDC = −∆̃fCD = fC − fD, leading to the replicator equation

ẋ = x (1− x) (fC − fD) . (46)
Assuming no changes in
fitness leads to the replicatior
equation.

Notice that we would have gotten the exact same equation if we just
hypothesized that players assume the fitness to be unchangeable, having
only to get rid of the

∑
τw (τ) in the same fashion as we did with β/2,

rescaling time, and making no hypotheses on w (τ). Let us stick to Eq.(43)
and Eq.(45) and move on. We will keep checking in which cases we get the
replicator equation back as we make more assumptions.

4.2 moving the tildes

We have briefly addressed discounting and we immediately see that in or-

der to continue we have to move deeper into f̃Y
X
(τ), the fitness of strategy

Y estimated by player (with strategy) X for τ into the future. Without much

loss of generality let us write it as f̃Y
X
(τ) ≡ f̃Y

X (
x̃X→Y (τ) , B̃X→Y (τ)

)
,

meaning that, to estimate the fitness, players set some (potential) depen-
dencies over which they understand their impact – in this case, they could
understand their impact on the fraction of Cs, x, or in other external vari-
able, that we called the resource, B. We say that the player with strategy
X will estimate a fraction of Cs at time t+ τ of x̃X→Y (τ) and a resource
B̃X→Y (τ) when she changes to strategy Y (which could be the same as X
or not).

For the sake of sanity – ours, definitely not that of the players – we
assume that they know the rules of the game exactly and, thus, they know,
or at least are very good at estimating, the fitness fY (x,B) for all values
of x, B and strategies. This means that we assume from now on that fY is
a known function, which, in terms of what is known (no tildes) and what

is predicted (with tildes), means f̃Y
X
(τ) = fY

(
x̃X→Y (τ) , B̃X→Y (τ)

)
. Also,

because we will develop on an arbitrary τ, I will drop it and recover it
when necessary, keeping in mind that it is associated with the tilde. So,
finally, we can go back to Eq.(43) and look at the quantity

f̃Y
X
− f̃X

X
= fY

(
x̃X→Y , B̃X→Y

)
− fX

(
x̃X→X, B̃X→X

)
. (47)
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Well, so far we have not done much, apart from setting arguments for
moving the estimations – and thus the tildes – from the fitness into some-
thing different. This way, the players may estimate the fraction of Cs and
the resource τ in the future. As you were probably guessing from the first
tilde, discounting needs forecasting and that is where we are getting at. Let
us keep on going, now with Eq.(45), Eq.(43) and Eq.(48) in our mind and
x̃X→Y , B̃X→Y un...specified.

4.3 forecasting

Whenever we talk about forecasting, we have a reference value, typically
the current value of some property and we worry about its variation. As-
sume the present value is accurate and common knowledge. In this case,
the current value is that of the state variables x and B. Evidently the idea
is to get this forecast as a function of those state variables as they should
contain all the necessary information for the evolution of the system. Thus,
we write

x̃X→Y = x+ ∆̃x
X→Y

(x,B) and

B̃X→Y = B+ ∆̃B
X→Y

(x,B) . (48)

Clearly, if players assume nothing will change, making ∆̃x
X→Y

= ∆̃B
X→Y

=

0, we recover the replicator equation. In general, this will not be the case.
In fact, one could argue that in order to make predictions we often look at
the past but, first, we (really) do not want to dwell into delayed differen-
tial equations as it is fairly complicated[79] and, second, when we do so is
to come up with the functional form to our estimations. For now, we will

skip that discussion and, instead, discuss how one computes ∆̃x
X→Y

and

∆̃B
X→Y

, which will come right after.

Let us look at the questions we need to answer. Starting with ∆̃B
X→Y/X

(x,B),
we want to answer the question “Given the actual configuration, how
will the resource change if I do/do not change strategy?”. Similarly, in

∆̃x
X→Y/X

we ask “Given the actual configuration, how will the fraction of
Cs change if I do/do not change strategy?” .

With these questions we can grasp a very subtle difference in the two
forecasts. The difference concerns the fact that both questions include the
hypothetical change of strategy and only one of the forecasts is directly

about the strategies in the population, ∆̃x
X→Y

. Let us make this clearer in
our equations by setting a reference change over time and specifying the
players’ change of strategy in the hypothetical scenario.

x̃X→Y = x+ ∆̃x (x,B) + δ̃x
X→Y

(x,B) +
(−1)δYD

Z
and
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Prediction of a X 

player if he/she 

changes to Y
= Current value

Prediction of 

change in BAU + +
Prediction of 

change of other 

players due to 

change of own 

strategy

Direct change 

caused by X 

changing to Y
+

Predicted value in BAU (if nothing 

changes),

Impact of own 

decision on 

others (TOM)

Perception of 

own impact+ +

෤𝜒𝑋→𝑌 = 𝜒 + ෪Δ𝜒 + ෪𝛿𝜒𝑋→𝑌 + 𝑂
1

𝑍
,

Known + Predicted/Anticipated change, 

ǁ𝜒

෪Δ𝜒𝑋→𝑌

with 𝜒 = 𝑥, 𝐵

Figure 5: Prediction decomposition The decomposition of the prediction made by
each player for a given moment in time, t+ τ, where the symbols with
the tilde depend on τ.

B̃X→Y = B+ ∆̃B (x,B) + δ̃B
X→Y

(x,B) . (49)

∆̃x (x,B) and ∆̃B (x,B) are the scenarios in which the player at stake
does not change strategy, i. e., the projections of change with the indi-
vidual performing Business As Usual (BAU)[19]. Additionally, we look at

∆̃x
X→Y

(x,B) − ∆̃x (x,B), which reads as the change of the fraction of Cs
that is caused by changing the strategy. We isolate the direct effect of the
(singular) player that changes strategy and necessarily changes the fraction

of Cs by ±1/Z, i.e., writing ∆̃x
C→D

(x,B) − ∆̃x (x,B) = δ̃x
C→D

− 1
Z and

∆̃x
D→C

(x,B) − ∆̃x (x,B) = δ̃x
D→C

(x,B) + 1
Z . The same for the resource,

which has no direct effect, ∆̃B
X→Y

(x,B) − ∆̃B (x,B) = δ̃B
X→Y

(x,B).
Before posing the next and final problem, let us be a bit redundant, and

rewrite and reread this equation. So, the first two terms in the equations,
x̃ = x+ ∆̃x (x,B) and B̃ = B+ ∆̃B (x,B), are the projections with BAU and
everything else is caused by the decision of changing: an immediate effect
of 1 more or 1 less C player – that is the player that is thinking about

changing strategy –, eventually, δ̃x
X→Y

of the perception of influencing the

others and δ̃B
X→Y

an effect of the perception of the consumption of more
or less resource. All the quantities considered are the following

x̃C→D = x̃+ δ̃x
C→D

(x,B) −
1

Z
, x̃D→C = x̃+ δ̃x

D→C
(x,B) +

1

Z
,
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B̃C→D = B̃+ δ̃B
CD

(x,B) , B̃D→C = B̃+ δ̃B
DC

(x,B) . (50)

Figure 5 systematizes all the information and notation here exposed. It
is a good time now to recover our equations. Putting all the ingredients
together – Eq.(50) goes into Eq.(48) which goes into Eq.(43) which goes
into Eq.(45), or alternatively Eq.(44) – we get

ẋ =x (1− x)
∑
τ

w (τ)
1

2

(
fC
(
x̃ (τ) , B̃ (τ)

)
− fD

(
x̃ (τ) , B̃ (τ)

)
+ (51)

fC

(
x̃ (τ) + δ̃x

D→C
(τ, x,B) +

1

Z
, B̃ (τ) + δ̃B

DC
(τ, x,B)

)
−

fD

(
x̃ (τ) + δ̃x

C→D
(τ, x,B) −

1

Z
, B̃ (τ) + δ̃B

CD
(τ, x,B)

))

This is not exactly pretty and one might ask what we can extract from
this. Let me try to answer. On one hand, we have underlined the hypothe-
ses assumed on building it and that is useful in itself. On the other hand,
we can make additional assumptions to pursue more realistic behaviors or
to understand in which cases we are led back to a replicator-like dynamics.
We will do the latter before continuing with exploring how one can specify
the forecast and how that will depend on the mental development of the
players.

Whenever the players believe their actions will not affect that of the oth-

ers, δ̃x
D→C

= δ̃x
C→D

= 0. Furthermore, if it is their belief that their action
will not impact the resource dynamics δ̃B

CD
= δ̃B

DC
= 0. In that sce-

nario, and using the difference operator ∆δxf (x,y) = f (x+ δ,y) − f (x,y) ≈
δ∂xf (x,y), we get

ẋ = x (1− x)
∑
τ

w (τ)

(
fC
(
x̃ (τ) , B̃ (τ)

)
− fD

(
x̃ (τ) , B̃ (τ)

)
+ (52)

1

2
∆
1
Z
x

(
fC
(
x̃ (τ) , B̃ (τ)

)
+ fD

(
x̃ (τ) , B̃ (τ)

))
)

.

Additionally, if we weight only the immediate step, w (τ) = δτ0, this
reduces to

ẋ = x (1− x)

(
fC − fD +

1

2
∆
1
Z
x (fC + fD)

)
. (53)

Considering one’s own
imediate impact, leads to a

modified replicator equation.
Surprisingly, we do not get exactly the replicator equation. We have lost

it along the way. In fact, we lost it in the moment we let the player take
into account her own – eventually small – impact on the fraction of Cs
when she changes strategy. Notice that if the fitness are smooth functions,
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this is an effect that disappears as the population goes to infinity, in which
case one recovers exactly the replicator equation. This simple result, as we
will see, is highly important. Not only because it can be directly applied to
the studies that use the standard replicator equation to social systems but,
mostly, because it introduces an additional term that is well known to exist
when one turns to experiments and traditional game theory.

Take, for instance, the N-person prisoners’ dilemma, in which N players
choose to contribute, or not, to a common pool an amount c. Let Cs be
those that contribute. The total contribution is then multiplied by a factor
F and divided by everyone. If this group consists of the whole population
– and that is a very important if – then the number of contributors is just
xN. This makes average payoff of a C fC (x) = −c+ Fcx and that of a D
fD (x) = Fcx. Then, using Eq.(53), the dynamics will be given by

ẋ = x (1− x)

(
−c+

Fc

N

)
. (54)

Whenever the marginal per capita return F/N is smaller than 1, the
population will evolve towards full defection, and we recover the Prison-
ers’Dilemma scenario, and whenever F/N > 1 the population will evolve
towards full cooperation, as in the Harmony Game (see Figure 1). This is a
triviality for many specialists but it is one that could not be obtained with
the replicator dynamics whenever a single group was interacting, which,
taking Eq.(46), would result in

ẋ = x (1− x) (−c) . (55)

And that is an important difference.
Later on, in the next chapter, I will clarify under which circumstances

this result creates an important difference and when it only adds a minor
shift to the replicator-like dynamics. The difference between

considering one’s own impact
or not can be big. But doing
so also implies the knowledge
of the game being played.

4.4 theory of mind

We are now under conditions of exploring different ways of forecasting
and how those relate to different orders of theory of mind (TOM) [17, 102,
126].

Definition 6 Theory of Mind (loose)
A Theory of Mind is the ability to attribute mental states to oneself and
others. It allows us to understand that the information we have, and our
self, is different from that of the others and, more, allows us to assume
what are those of the other. As we increase the order of Theory of Mind,
we understand that the others can also do the same about us, and so on.

As we have done with the update rules, we will not dwell deeply into
why-this-way-and-not-others or in all the bells and whistles we can add to
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the mix to make it more accurate. As the application of Eq.(52), resulting
in Eq.(53), has proven, adding the right bell already provides additional
important results.

To systematize before proceeding, let us recover the decompositions we
have made so far for each of the estimated state variables, x and B.

x̃C→D = x+ ∆̃x (x,B) +
(
δ̃x
C→D

(x,B) −
1

Z

)
, (56)

x̃D→C = x+ ∆̃x (x,B) +
(
δ̃x
D→C

(x,B) +
1

Z

)
,

B̃C→D = B+ ∆̃B (x,B) +
(
δ̃B
CD

(x,B)
)

, (57)

B̃D→C = B+ ∆̃B (x,B) +
(
δ̃B
DC

(x,B)
)

.

The terms in parenthesis are the ones perceived as caused by the change
of strategy and, again, ∆̃x (x,B) and ∆̃B (x,B) are the BAU predictions,
made under the assumption that the player does not change strategy and
x and B are known in each present time.

In fact, we have already used two different estimators – or different ab-
sences of estimations. We have set the BAU terms to zero and, in the first
reasoning, we excluded the terms in parenthesis, which led to the repli-
cator equation. In the second one, we left the 1/Z term and dropped the
estimators. The difference between the two can be seen – taking it lightly –
as one of different orders of theory of mind. In the first case, the focal indi-
vidual simply looks at the other’s fitness and compares with her own. This
makes sense if the individuals do not realize that different individuals can
attain different fitness or that their action affects the fitness of others and
their own in the future. In the second case, keeping the 1/Z term, individ-
uals compare their fitness with that that they would obtain if they would
be using the other’s strategy, similar to a fictitious play [53] but socially
driven. This means that individuals understand their impact on the imme-
diate result and, also, they may realize that the fitness they attain using the
same strategy can be different from that of the others – this is extremely
important, not only for what we saw before, but even more if individuals
are in a network or if there is an imbalance of power between them or, in
fact, for any case of known heterogeneity between the players.

This said, so far, using some strict definition of TOM, one could easily re-
but what was described as a TOM. In particular, a TOM must be something
that can be used to make predictions about the behavior of others. That, of

course, is present in both ∆̃x and δ̃x
X→Y

. However, even in the absence
of a TOM, individuals with access to data, or a memory, can develop a
form for ∆̃x by looking at the history or by looking at the present variation
rates of x. Nevertheless, only a developed TOM allows one to understand
that one’s own actions affect the actions of others and that is exactly what

is considered in δ̃x
X→Y

. Those are the terms that we have not specified.
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Specifying them requires one to decide on the order of the TOM the indi-
viduals have and that modifies the equations used. Conversely, choosing
an equation implies assuming a given order of TOM.

4.5 a final equation

Before finishing, let us set up an example with all the terms, leaving its
analysis and the discussion of different levels of TOM to other writings.

A way to get ∆̃x (x,B) could be setting ∆̃x (τ, x,B) = x (t) − x(t− τ), as-
suming a constant variation, which would be accurate for high discounting
rates, in which case we could even set ∆̃x (τ, x,B) = τ ẋ (x,B). The same
for ∆̃B (τ, x,B) = τ Ḃ (x,B), whose improvement depends mostly on the
knowledge about the resource dynamics.

To get δ̃x
X→Y

we pick up its definition in Eq.(57) and we rewrite it as

δ̃x
C→D
D→ C

(τ, x,B) = ∆̃x
C→D
D→ C

(
τ, x∓ 1

Z
,B
)
− ∆̃x (τ, x,B) . (58)

One needs the knowledge of the evolution of the system when the player
changes strategy. Indeed, players need to have a model of how the others
will behave to that change, in our notation it would be some ˜̇x when the
player changes strategy. This can be anything, from a constant to a repli-
cator like dynamics or even a dynamics in which players understand the
others as acting the same way as they do. Different orders of TOM result in
different functional forms for this. Using that last case, which would need
a completely developed TOM, we set:

δ̃x
C→D
D→ C

(τ, x,B) ≈ τ ẋ
(
x∓ 1

Z
,B
)
− τ ẋ (x,B) ≈ ∓ τ

Z
∂xẋ (x,B)

δ̃B
C→D
D→ C

(τ, x,B) ≈ τ Ḃ
(
x∓ 1

Z
,B
)
− τ Ḃ (x,B) ≈ ∓ τ

Z
∂xḂ (x,B) (59)

The order of TOM is related
to the number of times one
considers the impact of one’s
own decision on the decision
of the others and how that
influences the prediction one’s
and others’ behavior.

Finally, we have an autonomous form, though implicit, for the dynamics
of the system:

ẋ = x (1− x)
∑
τ

w (τ)

(
∆fCD

(
x̃ , B̃

)
+ (60)

1

2

[
∆
τ
Z (∂xẋ)+

1
Z

x +∆
τ
Z(∂xḂ)
B

]
ΣfCD

(
x̃, B̃

)
+

1

2
∆
τ
Z(∂xḂ)
B ∆

τ
Z (∂xẋ)+

1
Z

x ∆fCD
(
x̃, B̃

)
)

with ∆fCD (x ,B) = fC (x,B)− fD (x,B), ΣfCD (x,B) = fC (x,B)+ fD (x,B),
x̃ = x+ τẋ (x,B) and B̃ = B+ Ḃ (x,B). Or, neglecting 1/Z2terms,
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ẋ = x (1− x)
∑
τ

w (τ)

(
∆fCD

(
x̃ , B̃

)
+ (61)

1

2Z

[
∂x + τ

(
(∂xẋ)∂x +

(
∂xḂ

)
∂B
)]
ΣfCD

(
x̃, B̃

)
)

.

Notice that, in this case, some truncation or an explicit equation for some
derivative of order n in x, ∂(n)x ẋ, is required. This term originated from the
estimation of the behavior of others and its truncation or direct estimation
represents the limits up to which individuals understand and compute the
behavior of others.

4.6 rational versus bounded-rational

The rationality of the subjects
under study is often a subject

of interest in itself.
The previous sections were a discussion on players’ abilities and sophis-
ticated reasoning with potential to solve an intricate problem. However,
clearly, there are situations in which being rational has advantages and
others in which the costs of it, in terms of time, energy, or, in general, re-
source consumption, overcome the marginal benefits when compared to a
more instinctive, or simply based in less information, decision.

Indeed, for sixty years now, economists have identified what is often re-
ferred to as "bounded rationality" in decision making processes [120, 121].
This idea reflects the inability of individuals to access and process all the
information needed to make an optimal decision, in the classical economi-
cal sense. However, this does not necessarily mean that individuals do not
tend to choose an optimal decision (in whatever sense). As I will show next,
different levels of "rationality" can lead to the same outcome, depending
on the configuration of the decision making process.

Overall, I show that if an individual interacts in different groups with
possibly different configurations, he/she can access the marginal advan-
tages of each strategy, being "bounded" or not.

4.6.1 Setup

Let us assume we have a population of size Z. The individuals in this pop-
ulation engage in some interactions in groups of size N. These interactions
consist on a general investment game in which players can decide to in-
vest, paying a cost c, or not, paying no cost. After all investments are done,
every player in the group gets a benefit b, that depends on the total group
investment. Let us say that in the population there is a fraction x of players
that invest, or cooperate, Cs, and the remaining players do not, D. In gen-
eral, the return or benefit of the individuals depends on the number of C
players in that group, yN, and on the group size N. Thus, Ds only get the
benefit, which makes their payoff ΠD = b(y,N), whereas Cs pay some cost,
contributing to the benefit, meaning that their payoff is ΠC = −c+ b(y,N).
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Assuming the well-mixed approximation, the average payoff, or fitness, of
each strategy is given by

fC(x) + c =

1∑
y=0, 1

N−1 ,...

P

(
x
Z

Z− 1
−

1

Z− 1
,Z− 1;y,N− 1

)
b

(
y
N− 1

N
+
1

N
,N
)

(62)

fD(x) =

1∑
y=0, 1

N−1 ,...

P

(
x
Z

Z− 1
,Z− 1;y,N− 1

)
b

(
y
N− 1

N
,N
)

,

(63)

where P(x,Z,y,N) =
(
Z
N

)−1(Zx
Ny

)(Z(1−x)
N(1−y)

)
is the hypergeometric distri-

bution, giving the probability of success when sampling from a pool of
Z elements, of which a fraction x can be successful selections, a set of N
elements of which a fraction y are successful selections (see Section 3.2
for more details on fitness computation). This formulation is general and
includes, under the well-mixed assumption, all 2-player games, and all of
the common N-player games, such as N-person Prisoners Dilemma (NPD),
Stag Hunt (NSH) and other threshold games, and many others.

4.6.2 Simple imitation

Now that we have laid down the game, let us introduce some dynamics.
Here, we can differentiate individuals’ rationality. I will choose the two
simplest scenarios discussed in Chapter 4. Let us start by the update with
the least information, with those individuals we identified in the previous
chapter as being associated with the traditional replicator and evolutionary
game theory, "bounded" or, strictly in that sense, "irrational". Each time an
individual, A, is revising his strategy, he compares his fitness, fA, to that
of a randomly chosen individual, fB. Then, he changes strategy according
to a probability that is an increasing function of that difference, p(fB− fA).
Thus, whenever a D is changing to C, he only needs to know his own fitness
and that of the other, without any knowledge of the game or even explicitly
knowing the history of the games. The probability that the number of Cs
increases is, thus, T+ = x(1 − x)p(fC(x) − fD(x)), and that it decreases
is T− = x(1− x)p(fD(x) − fC(x)). The direction of evolution of x will be
determined by the sign of fC(x) − fD(x) which is given by

fC − fD = −c (64)

+

1∑
y=0,1/(N−1),...

P

((
x−

1

Z

)
Z

Z− 1
,Z− 1;y,N− 1

)
∆
1
N
y b

(
y
N− 1

N
,N
)

−

1∑
y=0,1/(N−1),...

∆
1
Z−1
x P

(
(x− 1/Z)

Z

Z− 1
,Z− 1;y,N− 1

)
b

(
y
N− 1

N
,N
)
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where ∆δx is a difference operator that acts in a function f(x, . . .) such
that ∆δxf(x, . . .) = f(x+ δ, . . .) − f(x, . . .) = δ ∂f∂x +O(δ2) (see Chapter 2 for
details on how to go from the transition probabilities into a drift or gradient
of selection).

The first thing we notice is that as Z→∞
fC − fD = −c (65)

+

1∑
y=0, 1

N−1 ,...

P (x;y,N− 1)∆
1
N
y b

(
y
N− 1

N
,N
)

with P (x;y,N) =
(
N
yN

)
xyN(1− x)(1−y)N being the limiting distribution

of the hypergeometric distribution and Z increases, making replacement
irrelevant and leading to the binomial distribution.When the number of different

groups increases, one’s
strategies is always present in
all those groups, allowing for
a permanent contribution (or
lack of it) that is reflected in

the average payoff.

We can see that even in this "bounded" players scenario, the average re-
turn of the benefit (its derivative) in relation to each unit of investment
is what determines the tendency to invest, a result that is identical to the
classical economics result. However, this is only the case when the popu-
lation size is much larger than the interaction group. Indeed, if we make
N = Z, in Eq.(64), since P

((
x− 1

Z

)
Z
Z−1 ,Z− 1;y,Z− 1

)
= δy (x− 1

Z)
Z
Z−1

and

∆
1
Z
x P
((
x− 1

Z

)
Z
Z−1 ,Z− 1;y,Z− 1

)
= δy x Z

Z−1
− δy (x− 1

Z)
Z
Z−1

, we get

fC − fD = −c. (66)

This means when the groups are of the size of the population (and thus
all groups formed are the same), myopic players cannot access the marginal
advantages by directly comparing fitness (and this is in line with the result
in Eq.55 in the previous chapter). On the other hand, when they take part in
different groups, even though they have limited information, and making
no computation whatsoever, they are able to understand the return of the
investment. How does this compare with more rational players, who are
able to compute their fitness in each hypothetical configuration?

4.6.3 Sophisticated update

Let us now assume the players in the population revise their strategy ac-
cording to a more complex rule. A player will change his strategy if the
average payoff he will get when he changes is larger than that he has now.
So a D will change to a C with a probability that is an increasing function
of fC

(
x+ 1

Z

)
− fD(x) and a C will change with a probability that is an

increasing function of fD
(
x− 1

Z

)
− fC(x). To make both dynamics socially

driven, let us assume that players act according to a contextual best-response,
which does not allow them to come up with non-existing strategies, only
computing the fitness differences when they encounter someone with the
other (already existing) strategy, making the probability that a D changes
to C T+ = x(1 − x)p(fC

(
x+ 1

Z

)
− fD(x)) and that of a C changing to D
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T− = x(1 − x)p(fD
(
x− 1

Z

)
− fC(x)). Thus, evolution of x will be deter-

mined, for a close to linear p, by the sign of

1

2

(
fC

(
x+

1

Z

)
− fD

(
x−

1

Z

)
+ fC(x) − fD(x)

)
= (67)

− c+

+

(
1+

1

2
∆

1
Z−1
x

)
×

1∑
y=0,1/(N−1),...

P

((
x−

1

Z

)
Z

Z− 1
,Z− 1;y,N− 1

)
∆
1
N
y b

(
y
N− 1

N
,N
)

which turns into Eq.(65) when Z→∞. However, when we make N = Z

we get

1

2

(
fC

(
x+

1

Z

)
− fD

(
x−

1

Z

)
+ fC(x) − fD(x)

)
= (68)

= −c+
1

2

(
b

(
x+

1

Z
,Z
)
− b

(
x−

1

Z
,Z
))

= −c+
1

Z

∂b

∂x
(x,Z) +O(

1

Z3
), (69)

which has the same economical interpretation as Eq.(65).

4.6.4 Match

With this I have shown that both rational and irrational players have the
same dynamics when N << Z, i.e., when players are part of different
groups, making them able to access the marginal advantages of cooper-
ating even without knowing the game. This is of relevance as one could
have thought that the more different interactions there are the more com-
plex the update rule should be in order to achieve a reasonable dynamics.
However, that is not the case, on the contrary. Moreover, this many groups
scenario is also closer to real world applications given that individuals are
part of different circles and interact with different people in different cir-
cumstances, such as their social network, and professional network, and
family and so on. Perhaps this sheds light into explaining why classical
economical theory still provides so many results and research even though
we have identified ourselves as beings with "bounded rationality". Further- When the game’s payoffs are

hard to compute, for there
being a lot of different
interactions, and thus taking
into account one own’s
impact whenever changing
strategy is complicated,
averaging leads to the same
conclusion.

more, the scenario of a polycentric solution for climate, the one I am in-
terested in, and that we will deal with later on, is one in which multiple
interacting instances are key to solving the pieces of a global problem.

For this, and also because it is both easier to handle analytically and a
more common practice, I will later on use the rationally bounded players
that compare their fitness directly with one another without additional in-
formation. Furthermore, since my problem concerns understanding global
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behavior with the common goal of promoting cooperation, it is only fair
that I choose the hardest scenario for cooperation to strive and, comparing
Eq.(64) and Eq.(67), it is very clear which one is. Naturally, I will take spe-
cial care setting N < Z and recover the discussion of the update rule only
in those settings that require N ∼ Z.

4.7 summing up

Considering discounting effects on the importance of the provision of a
public good in the future requires the use of forecasting abilities. As soon
as this forecasting abilities are not for the immediate future, or the dis-
counting is not complete, one needs to consider the Theory of Mind each
individual has about the others in order to anticipate the influence of one’s
own choices in those of the others.

We can learn from this, even if we set discounting to the maximum. In
an evolutionary game theory setting we are now able to recover traditional
game theory results that were not possible before due to the bounded ratio-
nality with the advantage that we have a very specific temporal dynamics
that can be mapped into reality. This, however, opens up a panoply of
questions and considerations. In fact, we are now under the conditions of
studying and revisiting different scenarios and the possible branches are
almost uncountable.

What is the impact of forecasting and discounting in games that have a
fixed public good provision? Is this impact dependent of the order of TOM
considered? What happens when we specify a resource dynamics? Does it
depend on whether the resource is renewable or non-renewable? What if
players in the same population have different TOM?

Another branch one can develop is the connection between discounting
and decision making in event that are uncertain. Can we explain the shape
of the discounting function with a selection process given uncertainty? Can
setting the weights of discounting as an inverse uncertainty (as we do in
weighted least square, e.g.) be “optimal” in some evolutionary sense?

Many assumptions have been laid down when writing Eq.(61). Which
ones make the most sense? For instance, we assumed that the players were
projecting with a fixed strategy. Assuming strategies that allow in the fore-
cast for fluctuation over time is a crucial improvement, especially for low
discounting rates. If the player is so good at forecasting the behavior of
others she can anticipate that at a certain point she will change strategy.
When or why is it important to make such a big sophistication?

I will not dwell on these questions as they fall much deeper into how
the human mind works and that is far away from my goal. Nonetheless,
I believe this discussion to be of crucial importance as it sets boundaries
on the scenarios we can explore and sets itself as a useful tool for further
development. A way around this discussion is to show that rational players,
with high level of TOM, and myopic individuals, with no TOM, can be
governed by the same equation under certain circumstances; and that is
what I will do next.
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So far, we have only dealt with finite sets of strategies. In fact, most of
Evolutionary Game Theory deals with a finite set of strategies. However,
biological and social traits can, many times, be continuous[44, 109]. An
alternative framework, called adaptive dynamics [73], is typically used in
these situations but it assumes the resident population already to be in
a dynamical equilibrium, usually monomorphic[14, 26]. These monomor-
phic states are found by an invasion process: when a new mutant type
appears, the fate of such mutant invasions can be inferred from the ini-
tial growth rate of the mutant population. If every mutant is prevented
from growing, the population is in equilibrium, otherwise it is not. This al-
lows one to find the different equilibria of a population but it does not say
much about its weight in terms of probability of occupancy of such states.
Furthermore, this process assumes a separation of time scales between se-
lection and mutation that may not be appropriate to social systems. We
will dwell more on this in next chapter.

In general, in a large population, a continuous distribution over that trait
is expected. However, as I will show, whenever selection over those traits
is high and mutation is low enough, specific values are selected. Those val-
ues coincide with (potentially Nash [52]) equilibria whose predominance
in the population is induced as a critical transition into a condensate as
errors, both in terms of mutation and selection, decrease. Clearly, when
errors are small, on should recover the states identified in adaptive dy-
namics but with additional information as to their occupancy probability.
As a consequence, this procedure serves as an argument to discretize the
strategies considered when selection is high and reveals the importance of
considering the full spectrum of traits for weak selection, whenever we are
interested in a detailed characterization of the population.

Let me start by introducing a game that is a continuous version of the
group contribution game we already encountered. This is of particular in-
terest given that i) is simple and ii) later on, we will be dealing with public
goods games, contribution games that involve groups of individuals.

5.1 a continuous prisoners’ dilemma

Let us assume we have an infinite population of individuals. Individuals
engage in interactions in groups of size N. Each individual has a choice to
make in terms of contributions to a pool, 0 6 c 6 1. The total amount of
contributions is multiplied by an enhancement factor F and split. At a given
time, t, the distribution of contributions in the population is given by ρ(c, t)
– or simply ρ(c). The average payoff of an individual with contribution c,
its fitness, is given by

43
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f (c) =

∫
dc1· · ·

∫
dcN−1

(
ρ (c1) . . . ρ (cN−1) (c1 + · · ·+ cN−1 + c)

F

N
− c

)

= (N− 1) 〈c〉 F
N

− c

(
1−

F

N

)
(70)

which gives a fitness difference between a player that contributes c and one
that contributes c ′ of

∆f
(
c, c ′

)
= f (c) − f

(
c ′
)
= −

(
c− c ′

)(
1−

F

N

)
. (71)

The process of changing strategy follows a Fermi update with mutation
(see Chapter 3 for a deeper description). With probability (1− µ) the num-
ber of individuals contributing between c and c+ dc (c ′ and c ′ + dc) will
increase (decrease) by, first, selecting a player A with contribution between
c ′ and c ′+dc which, in turn, selects a player B contributing between c and
c+ dc to imitate, resulting in a contact probability of ρ (c ′, t)dc ′ρ (c, t)dc.
Then, player A compares his fitness with that of player B and changes to his
strategy with probability p (c ′, c) = (1+ exp (β∆f(c ′, c) )−1. Finally, with
probability µ a randomly selected individual will change to any strategy.
So, the probability that the traits between c and c+ dc increases is

T+(c) = (1− µ)

∫1
0

p
(
c ′, c

)
ρ
(
c ′, t

)
dc ′ρ (c, t)dc+ µ

(
1− ρ (c, t)dc

1
dc

)

and the probability that the traits between c and c+ dc decreases is

T−(c) = (1− µ) ρ (c, t)dc
∫1
0

p
(
c, c ′

)
ρ
(
c ′, t

)
dc ′ + µρ (c, t)dc.

Thus, in the light of what we deduced for an infinite population in Sec-
tion 24, the rate of change of that probability can be written as

ρ̇ (c, t)dc = T+(c) − T−(c)
A continuous replicator

equation allows one to study
the distribution of continuous

traits even in the presence of
selection errors and

mutations.

which, letting dc→ 0, turns into

ρ̇ (c, t) = (1− µ) ρ (c, t)
∫1
0

ρ
(
c ′, t

)
tanh

(
β

2
∆f
(
c, c ′

))
dc ′ +µ (1− ρ (c, t)) .

(72)

As a consistency check, let us see what happens at c = 0. Setting B ≡
β
2

(
1− F

N

)
,

ρ̇ (0, t) = (1− µ) ρ (0, t)
∫1
0

ρ
(
c ′, t

)
tanh

(
B c ′

)
dc ′ + µ (1− ρ (0, t)) .
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The stationary solution for this point entails, for M ≡ µ
1−µ ,

ρ (0) =
1

1−
〈tanh(B c ′) 〉

M

Notice that as B → +∞, 〈tanh (B c) 〉c → 1, in which limit, for M < 1

(i.e., µ < 1/2), ρ (0) results in a negative value, which clearly violates the
conditions for a probability density function. So, what is happening?

5.2 correcting the equation

Even though the probability
that a mutant has an exact
value of the trait is zero,
selection can sistematically
push probability into that
state. Those states correspond
to stable (robust to invasion)
equilibria of the distribution
in the absence of mutation.

Notice that the state c = 0 corresponds to a (Nash-)equilibrium for any B
as long as B > 0, i.e., as long as F/N, the marginal per capita return, is
smaller than 1. This means, in classical economic theory, that an individual
has no advantage in unilaterally changing from c = 0 to any other strategy
and coincides with the result we already deduce in population dynamics
in the previous chapters. So, let us consider the probability of being in
state c = 0, p0(t), independently. Using the same reasoning as before we
can write

ṗ0 (t) = (1− µ)p0 (t)

(∫1
0

ρ
(
c ′, t

)
tanh

(
Bc ′
)
dc ′

)
− µ p0 (t)

ρ̇ (c, t) = − (1− µ) ρ (c, t)

(∫1
0

ρ
(
c ′, t

)
tanh

(
B
(
c− c ′

))
dc ′ + p0 (t) tanh (Bc)

)

+ µ (1− ρ (c, t)) , 0 < c 6 1 (73)

Here, we have that p0 (t) +
∫1
0 ρ (c, t)dc = 1 and we can solve for the sta-

tionary distribution, separating the positive and negative terms and, again,
setting M = µ

1−µ

0 = p0

∫1
0

ρ
(
c ′
)
tanh

(
Bc ′
)
dc ′ −Mp0 ⇔ p0 = 0∨M =

∫1
0

ρ
(
c ′
)
tanh

(
Bc ′
)
dc ′

0 = ρ (c)

(
−

∫1
0

ρ
(
c ′
)
tanh

(
B
(
c− c ′

))
dc ′ − p0tanh (Bc)

)
+M (1− ρ (c)) .

Let us rewrite using 〈f (c ′)〉 =
∫1
0 ρ (c

′) f (c ′)dc ′ – notice that this is not
an average but it is a linear operator such that 〈const〉 = (1− p0) const.
We get

p0 = 0∨ p0 = 1−M−
〈
1− tanh

(
Bc ′
) 〉

ρ (c) =
M

〈tanh (B (c− c ′)) 〉+M (74)

which describes the complete stationary distribution and is a Fredholm
integral equation of the second kind. This can be solved numerically and
exactly in some cases. Let us do it.
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5.3 solving the equation

If we let B→ +∞, and define l (c) =
∫c
0 ρ (c

′)dc ′ and r (c) =
∫1
c ρ (c

′)dc ′ =
1− p0 − l (c) we get

p0 = 0∨ p0 = 1−M (75)

0 = ρ (c) (1− 2l (c) − 2p0) +M (1− ρ (c)) (76)

Thus, we have

p0 = 1−M∧ ρ (c) =
M

1−M+ 2l (c)
, M < 1 (77)

p0 = 0∧ ρ (c) =
M

M− 1+ 2l (c)
, M > 1 (78)

Finally, we can differentiate the equation for ρ (c), noticing that dldc (c) =
ρ (c), for the Eq.(77) and Eq.(78), respectively,

ρ (c) =
M

1−M+ 2l (c)
⇔ dρ

dc
(c) = −

2

M
ρ3 (c)∧ ρ (0) =

M

1−M
, M < 1

(79)

ρ (c) =
M

M+ 2l (c) − 1
⇔ dρ

dc
(c) = −

2

M
ρ3 (c)∧ ρ (0) =

M

M− 1
, M > 1

(80)

which have the same solution

ρ (c) =M
(
(1−M)2 + 4Mc

)− 1
2
. (81)

Notice that, as a proper probability density function,
∫1
0 ρ (c)dc = M,

for M < 1 and
∫1
0 ρ (c)dc = 1 for M > 1, which makes it the complete

stationary solution.
In terms of the mutation rate, we have

p0 =

{
4

|µ−µc|
1+2|µ−µc|

, µ < µc = 1
2

0 , µ > µc = 1
2

(82)

ρ (c) = µ(1− 4µ (1− µ) (1− c))−
1
2 . (83)

Figure 6, panel 6a, shows the solution for different values of µ. Notice
that for high mutation rates, high µ, the distribution if close to flat and its
value close to 1. As noise in terms of mutations decreases, the configura-
tions near c = 0 get more populated and the integral of ρ(c) remains 1 (see
the extreme case at the transition where µ = 1/2 or M = 1). When we pass
the transition point, as mutation rate keeps decreasing, ρ(c) loses its nor-
malization and starts flattening and vanishing, with the probability being
absorbed by the single state c = 0. Panel 6b shows how the probability of
that state increases as mutation decreases.
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Figure 6: Stationary distribution for B → ∞ (a) The lines represent ρ(c) and the
dot at c = 0 represents p0. (b) Represents the condensation into c = 0 at
M = 1, where the probability of being at c = 0 increases as the mutation
rate decreases.

Clearly this is a condensation into the equilibrium (c = 0) for small
random exploration rates (µ < µc = 1/2) with the ratio M = µ/(1− µ)

controlling the transition with a critical exponent of 1. This result for very
high selection pressure (B → +∞) immediately suggests that, as long as
M < 1, the selection pressure, B, can also induce a condensation in the
equilibrium with that state containing up to 1−M of the probability.

To investigate that let us first take the opposite limit, B→ 0. Going back
to Eqs(74), we get

p0 = 0∨M = B 〈c〉 (84)

M = ρ (c) (Bc−B 〈c〉+M) . (85)

But if M = B 〈c〉 then ρ (c) has no finite integral. Thus, p0 = 0 is the only
possible solution and

ρ (c) =
M

B (c− 〈c〉) +M . (86)

Clearly, 〈c〉 < M
B and, equating

∫1
0 ρ(c)dc to 1, we get 〈c〉 = 1

2 + M
B −

1
2coth

(
B
2M

)
≈ 1

2 − B
12M , which is a reflection of a flat distribution as

B→ 0.
Finally, given that M = 〈tanh (Bc ′) 〉 6 1− p0, if M → 0, p0 → 1 for

any B and, on the other hand, when M = 1, p0 = 0. So at some point there
should be a transition where the state c = 0 goes from 0 to 1−M.

Let us analyze it numerically. Figure 7 clearly shows a transition for
some critical value of B, Bc.

5.4 estimating the critical transition

Let me try to make a rough estimation of the critical value of the transition.
For high B, let me set tanh (x) ≈ 1−Θ (x− 1) (1− x), where Θ(x) is the
Heaviside function that is 1 is x > 0 and 0 otherwise. Then,
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Figure 7: Condensation into c = 0 for finite B The value of 1/B controls the
number of errors in the imitation process. As these decrease, the popu-
lation goes from occupying all states between 0 and 1 with probability∫1
0 ρ(c)dc = 1 to ocupying a given state, c = 0, with non-zero probability.

p0 ≈ 1−M−
〈
Θ
(
Bc ′ − 1

) (
1−Bc ′

)〉

And if I assume that ρ (c) does not change much, we can use the ρ (c)
we computed for B→∞, in Eq.(81). Then, we get for B > 1

p0 ≈ 1−M−M

∫ 1
B

0

(
1−Bc ′

) (
(1−M)2 + 4Mc ′

)− 1
2
dc ′ (87)

which has an ugly but simple expression that can be solved for the critical
value of B, Bc, that makes p0 = 0, which results in

Bc = α
M

(1−M)2
, with α =

7
√
105− 69

12
≈ 0.227388. (88)

Just for the sake of completeness, for B < 1, where the approximation of
ρ(c) should not be valid,

p0 ≈ 1−M−M

∫1
0

(
1−Bc ′

) (
(1−M)2 + 4Mc ′

)− 1
2
dc ′ = 1−

1

6
(12−B (3−M))M

which gives Bc =
6(2M−1)
(3−M)M , and completes the approximation for high Bc.

In the opposite limit, of B → 0, we know that the distribution will be
close to flat, so we can use that ρ (c) for the limit of small B. In that case
we get

p0 ≈ 1−M−(1− p0)

∫1
0

(
1− tanh

(
Bc ′
))
dc ′ ⇔ p0 ≈ 1−

BM

log coshB
(89)
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Figure 8: Critical value of Bc above which there is condensation The estimation
is obtained by flipping from the low Bc solution to the high Bc solution
when they coincide. This is useful as the numerical solutions are very
sensitive to the discretization of the continuous parameter.

which we can solve for the critical value of M, Mc (B) =
log coshB

B , or Bc =

Mc
−1 (M) .

Apart from being an application for the equation that describes the evo-
lution of continuous traits in the presence arbitrary rates of selection errors
and mutations, this proof shows how this kind of system tends to choose
particular values even if the traits being considered are continuous. This
happens in the regime of strong selection. In the case discussed this was
controlled by B = β/2(1− F/N). In general, i. e., for different cases, this is
still controlled by β. In fact, we can tell that as long as β times the scale
of the fitness differences is at least of the order of 1 and mutation is not
so large (µ < 1/2), then selection is strong. In the opposite regime, of weak
selection, the population is distributed across the range of traits if muta-
tion is positive. This means that, if we want to describe a population with
continuous traits and its dynamics, it is worth setting β high and consider
specific values of that trait or, otherwise, for weak selection, the description
can only be complete with the full spectrum of strategies.

For this, from now on, we will focus on sets of discrete traits and take
into account that selection should not be weak. In the next chapter, the last
before going into the application of all this, I take the idea that populations
tend to adopt specific configurations further and develop a mechanism that
allows one to study finite populations with finite but large sets of traits.





6
S T O C H A S T I C D Y N A M I C S T H R O U G H
H I E R A R C H I C A L LY E M B E D D E D M A R K O V C H A I N S

This chapter is based on the manuscript "Stochastic dynamics through hi-
erarchically embedded Markov chains" by Vítor V. Vasconcelos, Fernando
P. Santos, Francisco C. Santos and Jorge M. Pacheco, submitted to Physical
Review Letters.

Even though in the previous chapter we were able to find a justification
to discretize traits, even if they could be continuous, the study of dynam-
ical processes in (finite) populations often requires the consideration of
Markov processes of significant mathematical and/or computational com-
plexity, which rapidly becomes prohibitive with increasing population size
or increasing number of individual strategies. A ubiquitous example is
found in the evolutionary game models of social systems that we have
been studying and whose strategy space is sizeable. Tractability often leads
one to compute the Markov stationary distribution in the so-called small
mutation approximation (SMA), maximally reducing the configuration space
(see below). Despite its popularity the SMA cannot account for several
scenarios emerging at the macro-level, e.g., when individual decisions are
subject to unanticipated random exploration, or when the real dynamics
encompasses the existence of stable polymorphic configurations. Here, my
coauthors and I develop a general and widely applicable procedure that
allows one to calculate a hierarchy of approximations to the stationary dis-
tribution of general systems at progressive levels of approximation. The
first-order in this procedure scales with the population size in the same
way as the SMA (zeroth-order in this scheme), thus providing an efficient
method for studying social and biological communities at non-vanishing
mutation rates. In general, the method developed here is able to provide a
hierarchy of estimations of the stationary distribution at the boundaries of
the phase space of a discrete population Markov process with time invari-
ant transition probabilities.

Many complex time-dependent processes, from the evolution of coop-
eration [98, 132, 133] to genetic drift and evolution of eco-systems [20],
flocking behavior [21], voter dynamics [62], disease spread [3], diffusion of
innovations [78], consensus formation [127] and peer-influence [100], have
been modeled by means of finite-population stochastic Markov processes.
Whenever the number of possible traits (or behaviors) of each individual
increases, so does the complexity of the associated Markov chain. As we
discussed in Chapter 2, even when these processes are approximated by
their continuous infinite population limit, disregarding finite-size effects
that may prove important[2, 29], the non-linear nature of the dynamics

51
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may preclude a full-analysis, in which case (quasi-)stationary distributions
of the Markov chain still provide insightful information[36, 49, 55, 95, 119,
145]. However, determining these distributions may become impractical
given that the size of the chains involved rapidly becomes prohibitive (see
below). As a result, an approximation has been introduced – the so-called
Small Mutation Approximation (SMA) – that relies on the development of
a minimal (embedded) Markov chain whose solution estimates the limit-
ing stationary distribution of the population [36]. We have already alluded
to this, but let me describe it in more detail.

6.1 the small mutation approximation

To reveal the important savings brought about by the SMA, let us con-
sider a population of finite size Z in which each individual may adopt one
of S different strategies/traits, σ1,σ2, . . . ,σS. In the (conventional) mean-
field approximation, population configurations are characterized by the
number of individuals adopting each strategy, {i1, i2, . . . , iS} adding up
to |s| =

(
Z+S−1
S−1

)
≈ ZS−1

(S−1)! . The complexity obtained for a large number
of strategies (large S) thus turns the complete analysis unfeasible, even
for small populations (small Z). In the absence of mutations (µ = 0), this
stochastic process has S absorbing states, the so-called monomorphic [97,
115], pure [36], or homogeneous [36, 118] configurations, in which all indi-
viduals play the same strategy. Positive values of µ, in turn, allow escap-
ing from the absorbing states. In this context, it is easy to introduce the
SMA and its intuition: Assume that the population starts from a monomor-
phic configuration. The population will remain there until a mutation hap-
pens that flips the behavioral state of one individual. This new behavior
either spreads in the population, ultimately invading and leading to an-
other monomorphic configuration or, alternatively, it will go extinct, such
that the population returns to the monomorphic configuration it started
from. To the extent that mutations are rare, the time scales of selection
(fast) and mutation (slow) become separated [49]. This allows us to define
an embedded Markov chain consisting only of monomorphic configura-
tions (S states). The transition matrix can then be found by computing the
fixation probability of a single mutant in a population of resident individ-
uals all in the same state [84]. Clearly, the SMA brings about a remarkable
simplification, since now the (embedded) configuration space has size S and,
importantly, all transition probabilities are computed by means of an inva-
sion/extinction process involving only two strategies at a time.The SMA is hardly applicable

to highly noisy social systems
and, even for low mutation

systems, quickly fails for
dynamics with coexistence

equilibria.

Since its development, the SMA has been employed with success in dif-
ferent areas of research [49, 55, 97, 99, 108, 115, 119, 143]. However, the
validity of the SMA requires the mutation probability µ to be small [151],
depending on the population size and underlying dynamics of the system.

Here we develop a new method that provides a hierarchical selection of
the configuration space which, starting from the SMA as its 0th-order (H0),
introduces incremental levels of complexity. This hierarchical construction
not only enlarges the range of mutation rates at which "low-cost" approx-
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imations remain valid, allowing also the explicit inclusion of mutations in
the population dynamics, but also provides a means to assess the validity
of the SMA at barely no additional cost. Given that many time-dependent
processes of interest are not amenable to be described in the SMA[24, 25,
99, 108], in the sense that the mutation probability does not allow for a
time scale separation, an approximate yet more reliable framework, such
as the one developed here is highly desirable [25, 31].

6.2 getting the feel of it

The goal is to separate the set of all possible configurations s =
{
s1, s2, . . . , s|s|

}
into two disjoint sets – A =

{
a1,a2, . . . ,a|A|

}
, the Configurations of Inter-

est (CoI) and B =
{
b1,b2, . . . ,b|B|

}
, the neglected configurations, such that

|s| = |A|+ |B| – in a way that it is possible to accurately infer the full dy-
namics by solely considering the behavior of the CoI.

The SMA (H0) described above provides the largest contraction of the
configuration space, as the reduced CoI space is limited to the set of monomor-
phic configurations, making |A| = S. The next level of the hierarchical ap-
proach (1st-order, H1) implies enlarging the set A. For simplicity, let us
start with the one-dimensional case described below (S = 2), using it to
point out the limitations of the SMA and motivate the 1st-order extension
(H1). Specifically, let us consider the evolutionary dynamics of a popula-
tion of finite size Z in which individuals interact by means of a 2-person
game that posits a social dilemma of cooperation, reflected in the associ-
ated payoff-matrix (compare with Section 2.2)

C

D

C D[
1 f

1+ g 0

]

where f and g are assumed to vary in the interval [−1, 1] [114]. Individ-
ual behavior is either C or D, and individual fitness, that drives the dy-
namics of the population, is associated with the average payoff acquired
from interacting with all other members of the population. Any possi-
ble configuration of this population, si, is defined in terms of the num-
ber i of individuals that use strategy C (such that Z − i individuals use
strategy D). The temporal evolution is usually implemented by means
of a discrete-time birth-death process [38], characterized by the probabili-
ties that, in each time-step, the number of individuals adopting strategy
C changes by ±1 or remains the same. We model the one-step transi-
tions as the outcome of a stochastic imitation process described in Chap-
ter 3, inspired in the Fermi distribution of statistical physics [138], T±i ≡
Ti→i±1 = (1− µ)

i(Z−i)
Z(Z−1)

1

1+e±β(fC(i)−fD(i)) + µ
(
Z−i
Z δ1,±1 + i

Zδ−1,±1
)
, where

the inverse temperature, β > 0, mimics here the intensity of selection
[139], with added mutation probability µ that accounts for the possibility
of (unanticipated) random exploration of strategies, an important process
in social and cultural evolution [12, 13].
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Figure 9: Stationary distributions associated with a Coexistence game (f = 0.7,
g = 0.3) The gradient of selection is represented by the black curves,
whereas the exact stationary distribution, computed for µ = 10−10, is
depicted by solid (blue) bars. Two levels of approximation are also con-
sidered: i) the small mutation approximation (SMA or zeroth-order, H0,
dashed gray bars) and ii) the extended SMA (first-order, H1 crossed red
bars). In panel (a) we compare the exact solution with the SMA. In the
SMA, only the configurations i = 0 and i = Z are CoI, and the most
probable transitions between CoI – indicated by orange arrows – sug-
gest why the full strength is concentrated at i = Z. Clearly, µ = 10−10 in
a population of size Z = 50 is not small enough to bring the exact result
into the SMA domain of validity. In panel (b), the crossed red bars repre-
sent the stationary distribution yielded by the H1, where i∗ was added
to the CoI. In panel (c) we compare the three methods by plotting the
average of the different stationary distributions. The vertical line marks
the value of µ employed in (a) and (b). Other parameters: Z = 50, β = 10.
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In this one-dimensional case, additional configurations to be included in
A must belong to the line joining the two monomorphic states, as this line
exhausts the phase-space (simplex) available to the system.

In Figure 9A we provide an example of a 2-strategy coexistence game,
which we have already encountered in Section 2.2, known in Physics and
Economics as the Snowdrift Game [131], in Evolutionary Biology as the
Hawk-Dove game [124], and in other contexts as the Chicken game [153].
We consider a finite population of size Z = 50, whose full stationary dis-
tribution is depicted by the blue histogram bars (µ = 10−10). There are
two monomorphic states, associated with configurations in which all indi-
viduals play either strategy D (i = 0) or strategy C (i = Z). The existence
of a probability attractor at i∗ = 35 justifies the coexistence nature of this
evolutionary dynamics, where selection drives the population towards i∗.
The SMA approximation leads to the distribution depicted in Figure 9A
with a solid gray bar. The solid blue line represents the so-called gradient
of selection, given by g(i) = T+i − T−i . Clearly, the SMA leads to a distri-
bution that differs substantially from the full distribution. In other words,
the existence of an interior attractor means that µ = 10−10 is still too large
a mutation probability for the SMA to lead to a reliable estimate of the
distribution. This is easily confirmed by inspection of Figure 9C, where
we change the mutation probability across 13 orders of magnitude. Indeed,
one still needs to reduce the mutation probability by 3 orders of magnitude
to obtain a good agreement between the SMA and the full distribution. Im-
portantly, as µ increases, deviations start to occur, and the SMA quickly
fails to account for the changes introduced in the stationary distribution
by non-zero mutations.

Figure 9B, in turn, shows the result of adopting the first-order term
in this hierarchical approach (H1). To this end, we now add i∗ (the root
of G and coexistence equilibrium of the continuous analogue problem)
to the set A of CoI, which already contained the two monomorphic con-
figurations included in the SMA. This additional configuration is trivial
to find [138]. The transition probabilities ρai→aj , between CoI configura-
tions ai and aj in A, merely require a re-partitioning of the terms already
computed in the SMA, thus bringing no additional overhead to the com-
putation. Similarly to setting T±k = Tk→k±1, an ordering can be defined
over configurations in A such that the transition probabilities from config-
uration ai to configuration a(i±1) are written as ρ±ai ≡ ρai→aj . Those,
in turn, can be written as the probability of having a one-step transi-
tion in the direction of a(i±1) and then being absorbed by it, resulting

in ρ±ai = T
±
ai

(
1+
∑ai±1∓1
j=ai±1

∏j
k=ai±1

T∓k
T±k

)−1
(see proof bellow, Section 6.9).

With the transition probabilities ρ±ai , the unnormalized stationary distri-
bution over configurations in A, p(ai), is then calculated through an eigen-
vector search [61]. In order to obtain the histogram shown with red bars
in Figure 9B, however, a proper renormalization procedure is required. In-
deed, as a1 is a probability attractor, it should carry an associated strength
that mimics the weight of the full stationary distribution (blue bars) in its
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Figure 10: Stationary distributions resulting from a Coordination game (f =

−0.7, g = −0.3) We use the same notation and conventions as in Fig-
ure 9.

vicinity. The natural choice is to derive this renormalization factor from the
Kramers-Moyal expansion of the associated master equation [38, 95] (the
same expansion we did in Chapter 2). We may thus write the distribution
as

P (i) ≈ α−1
(
p (a0) δia0 +Z

√
2πσ2p (a1) δia1 + p (a2) δia2

)

where α = p(a0) + Z
√
2πσ2p(a1) + p(a2), and σ2 can be derived from

the transition probabilities T+x and T−x around a1/Z as σ2 = F/|J| with
J = d (T+x − T−x ) /dx|x=a1 and F =

(
T+a1 + T

−
a1

)
/(2Z). Below we provide a

proof of this results and discuss the validity and accuracy of this estimate.
Whenever the game at stake is not one of coexistence but, instead, one

of coordination, the approach remains unchanged. In Figure 10A we pro-
vide an example of a 2-strategy coordination game or Stag Hunt (see Sec-
tion 2.2), embodying both payoff and risk-dominant equilibria, of ubiqui-
tous importance in areas as diverse as Economics, Econo-Physics, Biology
and Philosophy [67, 69, 122, 123, 131]. Once again, there are two monomor-
phic states. Now, however, the evolutionary dynamics is characterized by
the occurrence of a probability repeller at i∗ = 35, such that selection drives
the population away from i∗ towards i = 0 and i = Z.

Unlike the scenario associated with Figure 9, coordination leads to a
much better scenario for the SMA, as shown in Figure 10C by changing the
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Figure 11: CoI at different levels of the hierarchical approximation The arrows
represent the most likely direction of evolution of the system (the gra-
dient of selection, G; warm colors represent larger magnitudes whereas
the background gray shading represents the stationary distribution
(darker areas correspond to states with higher probability). As muta-
tion increases the population explores configurations deviating grad-
ually from the vertices. For the dynamics and parameters specified
below, this trend starts at µ = 10−4 (panel (a)), exploration of the
phase space extending mostly along the edges up to µ = 10−2 (panel
(b)), to finally explore the interior of the simplex for higher values
of µ (µ = 10−1 in panel (c)). The probabilities of updates from strat-
egy σi to σj are given by Tσi→σj = Z

Z−1xixj
1−µ

1+e
∆fσiσj

+ xi
µ
d , with

∆fσiσj = βijx(x1 − x
∗
1) +βijy(x2 − x

∗
2), xi being the frequency of strat-

egy σj, and d the number of accessible strategies given the restric-
tion of the phase space considered. Parameters: Z = 50, β12x = 2,
β12y = β13x = 10, β23y = −10, β13y = β23x = 0, x∗1 = 2/10 and
x∗2 = 3/10.

mutation probability across 5 orders of magnitude: Now the SMA leads to
very good results up to µ ≈ 1/Z. However, as µ increases, the deviations
start to occur (Figure 10A), and the SMA fails to account for the changes
introduced in g(i) by sizeable (> 10−0.5) mutations. Figure 10B shows
the resulting distribution after adding two configurations to the set A of
the CoI. As Figure 10C shows, extending the set A leads to an excellent
agreement between the hierarchical approximation and the exact solution.
To reach this agreement, we include the two probability attractors that
emerge naturally out of this coordination game when we add a sizeable
mutation probability; indeed, these are associated with the roots of g(i)
close to the monomorphic states. Naturally, these two roots will depend
on µ and their location should be determined for each value of µ. Once
this choice is made, we merely repeat the procedure already adopted in
connection with the coexistence game discussed before.

It is worth pointing out at this stage that augmenting the CoI allows us to
include explicitly the role of mutations, whose occurrence is ubiquitous in
(highly noisy) social systems [142]. Indeed, whereas in the SMA the notion
of mutation is used as a tool to enforce that the embedded Markov chain
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H1
H2

Figure 12: The second order of approximation We plot the average of the station-
ary distributions as a function of mutation probability, for the system
depicted in Figure 11, and at different levels of the hierarchical approx-
imation. At the H0 level (SMA), accurate average values are obtained
whenever µ < 10−5. As mutation increases, the polymorphic configu-
rations attract higher probabilities, requiring the inclusion of CoI along
the edges of the simplex (H1) and in its interior (H2).

is irreducible and it does not occur in transient states, in this case nothing
prevents mutations to occur at par with the selection process.

The first order extension (H1) is enough to provide an accurate descrip-
tion of the population in the one-dimensional case discussed up to now.
This happens because a single mutation is enough to make the system
explore the entire phase space starting from the vertices. Yet, higher di-
mensions may call for higher order approximations, as we discuss in the
following for a two-dimensional problem (see next sections for the general
case).

Let us now consider a population in which Z individuals may adopt
(be in) one of three possible strategies (σk, k = 1, 2, 3). Each configuration
si = (i1, i2), is one in which i1 (i2) individuals have strategy σ1 (σ2) (and
Z − i1 − i2 individuals with strategy σ3). Both the gradient of selection
and stationary distribution can be represented using the two-dimensional
simplex portrayed in Figure 11.

In this case, the H0 (SMA) leads to a set of CoI comprising the three
monomorphic configurations (associated with the vertices of the triangles,
red solid circles in Figure 11A), confining the evolutionary trajectories to
the edges of the simplex. At the next level of approximation (H1), trajec-
tories retain the same constraints, but the CoI set now includes additional
configurations in the edges, as illustrated with blue solid circles in Fig-
ure 11B. Importantly, the criteria adopted in choosing these CoIs follows
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straightforwardly from the one-dimensional cases already discussed be-
fore, given the constraints that apply to the trajectories at this level of ap-
proximation.

At level H2, we add to the CoI configurations in the interior of the sim-
plex (in which three strategies are present), as illustrated with the solid
yellow circle shown in Figure 11C. The results obtained are shown in Fig-
ure 12, where we compare the exact solution (green circles) with the re-
sults provided by successive orders of approximation, for a wide range of
mutation values. We considered a generic two-dimensional evolutionary
dynamics whose interior encloses a saddle point, while exhibiting both
coexistence and coordination dynamics along the edges (see caption to
Figure 11).

As expected, the SMA is unable to provide an accurate description of
the stationary distribution across a wide range of mutation values. As µ
increases, the stable fixed points move away from the vertices, first along
the edges, a feature which is nicely captured at the level of H1, and sub-
sequently to the interior of the simplex, requiring one to move to the H2

level.
It is noteworthy that both H1 and H2 levels are capable of providing

accurate results regarding the average adoption of strategies. Naturally,
however, the outcome of the two approximations is different. Intuitively, if
we consider the extreme case of µ = 1, clearly the stationary distribution
will be concentrated in the center of the simplex – an interior stable fixed
point si∗ =

(
Z
3 , Z3

)
. This feature is nicely captured at the H2 level. At the

H1 level, instead, since the CoI does not contain interior configurations,
the result suggests that most of the time is spent under states si∗1 =

(
Z
2 , Z2

)
,

si∗2 =
(
0, Z2

)
and si∗3 =

(
Z
2 , 0
)
, which, on average, leads to the same result as

obtained under H2 (simply by symmetry). This correspondence, nonethe-
less, would not occur considering, e.g., the variance of the distribution.

6.3 a discussion on the generality of the method

Restricting the phase-space
only makes sense looking at
conditional probabilities.
Clearly, if a single parameter
controls the probability of
going from one region to
others, the smaller it is, the
more similar the conditional
and full probability
distributions will be.

The examples used in the text above belong to evolutionary game theory,
the one I will be interested in the last part of the dissertation, which pro-
vides a very convenient framework to explore the approximation proce-
dure that we propose given that, on one hand, different games lead to very
different phase-space dynamics, while on the other hand a single parame-
ter – mutation – controls the probability of jumping between the different
topologically distinct regions in phase space. More precisely, mutation al-
lows the system to move from the vertices to the edges of the phase space
simplex, as well as from the edges to the faces, and so on. In this sense, it
is natural that the simplest (and, in this notation, the 0th-order) estimate
of the stationary distribution at the vertices originated in this context and
was coined as the small mutation approximation (SMA).

Despite my arguments being built on evolutionary models, we believe
the scope of the method reaches far beyond that and can be applied to a
broader class of problems, of potential interest in several branches of sci-



60 stochastic dynamics through hierarchically embedded markov chains

ence, as mentioned in the beginning of this chapter. In fact, the method
we propose allows one to estimate the stationary distribution of a generic
discrete population Markov process through a corresponding embedded
Markov chain whose states are selected (starting) from the boundaries of
the original phase-space (or simplex) and moving inward. The approxima-
tion is hierarchical as one may tune the recursion level of the state-space
reduction, starting from the vertices (0th-order), to the edges (1st-order),
faces (2nd-order) and so on, with a given level n of the approximation
lending results in O(µn), where in general µ controls the probability of
jumping from one hyperface to the other. This means that it can be adapted
to the needs and features of different problems. Clearly, if there is no nat-
ural µ separating different regions of phase space, the results neglect the
interaction between regions that should be taken into account. In that case,
we can think of the results of a given order as a projection of the system
dynamics to the considered region.

The success of 0th-order approximation – the SMA – is testified by the
many applications employing it [36, 55, 97, 99, 108, 115, 143], meaning that,
in many cases, the resulting embedded Markov chain leads to a distribu-
tion that provides useful information.

Next we provide the framework in which to develop this hierarchical
approximation in the general case.

6.4 transition probabilities between coi (ρ) in an arbitrary

markov chain

Let us start by laying down the general framework for an arbitrary chain,
defining the transition probabilities between the selected CoI using the
transitions stemming from the full chain. To begin with, it is worth noting
that in any finite chain, the configurations can be counted and ordered.
Thus, we consider a finite set of configurations

{
s1, s2, . . . , s|A|+|B|

}
that,

as clarified below, can be divided in those of interest (CoIs, here belonging
to set A) and those to be neglected (set B). A time-homogeneous Markov
process happens over this set such that the system moves from configura-
tion sk to configuration sl, in each step, with a time invariant probability
Tsk→sl (or Tsksl in matrix notation) independent of the configurations it
occupied in all previous times.

The goal now is to reduce the number of considered configurations
to those of interest (CoIs), A =

{
a1, . . . ,a|A|

}
, and calculate the transi-

tion probabilities between each of these selected configurations, ρai→aj (or
ρaiaj). For this we also need the transition probabilities Tbnbm between ne-
glected configurations B =

{
b1, . . . ,b|B|

}
and also the transitions between

neglected configurations and CoIs, which we call Pbn→aj (or Pbnaj). Thus,
we can write that
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ρaiaj =
∑
{bn}

TaibnPbnaj + Taiaj and (90)

Pbnaj =
∑
{bm}

TbnbmPbmaj + Tbnaj . (91)

If we conveniently order the configurations, placing the neglected con-
figurations first and then the CoI, we can make use of matrix notation and
algebra. We may write

T = [Tkl] =

[
Q R

U V

]
, Tkl ≡ Tsksl (92)

with Qmn = Tbmbn representing one-step transitions between neglected
configurations, Rmi = Tbmai representing one-step transitions from ne-
glected configurations to CoI, Uim = Taibm representing one-step transi-
tions from CoI to neglected configurations and Vij = Taiaj representing
one-step transitions between CoI. Notice that if there are no adjacent CoI,
V = 0. This turns Eqs.(90,91) into

ρ = UP + V and (93)

P = QP + R. (94)

Finally, we can write for the transitions between CoI

ρ = U(1− Q)−1R + V. (95)

Notice, however, that the calculation of these transitions involves a ma-
trix inversion, which, if calculated numerically, may be ill-conditioned. Computing probabilities of

reaching a CoI is equivalent
to the computation of fixation
probabilities, with an
appropriate ajustment for
different rates at which the
different absortion processes
happen.

Nonetheless, when considering a one dimensional chain – which turns
out to be the cornerstone of the 1st-order approximation – this expression
becomes fairly simple and exempts the numerical inversion of matrices or
the eigenvector search. After presenting the general framework, we devote
a whole a section (Section 6.9) to explore this scenario.

6.5 using ρ to compute stationary distributions over coi

and the necessity of estimating the remaining distribu-
tion

Let us distinguish between the general process we defined, with transition
probability between configurations sk and sl, Tsksl , and the process that
happens only over the set of CoI that one gets from using ρ as its tran-
sition matrix. Because we calculate transitions between CoI, ρ, from the
microscopic transitions between all states, Tsksl , the two processes must be
related. Let us figure out that relation.

Consider the full Markov chain with transition probability between con-
figurations sk and sl, Tsksl . We have seen that we can write T as in Eq.(92)
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and, thus, according to the Master Equation [38], the stationary distribu-
tion of the system can be obtained as the vector p = {pb, pa} whose sum
of the entries is 1 and is given by

[
pb
pa

]
=

[
Q R

U V

]T [
pb
pa

]
. (96)

Solving Eq.(96) by substitution we get that, apart from normalization, the
probability of finding the system in the subset of configurations ai, pa, is
given by

pa = ρTpa. (97)

This equation for pa is exactly the equation of the stationary distribution
of the process concerning only the CoIs and ρ as its transition matrix, and
this defines the relation between the two processes.

This result shows that the transitions ρ, computed in the previous sec-
tion as Eq.(95), when used as transition matrices for the calculation of the
stationary distribution, turn out to give the probability of finding the full
system in each CoI apart from a normalization constant, which depends on
the neglected configurations. Consequently, i) the ratios between the prob-
abilities of being in each CoI can be easily computed as the ratios of the
unnormalized pa obtained in Eq.(97). Moreover, ii) correct normalization
of pa requires, at least, an estimate of the distribution over the neglected
configurations.

These points formally clarify my arguments of the first section. i) clari-
fies why using the SMA – or, in general, an approximation level lower in
hierarchy compared to the dimensionality of the system – is important, as
in this way we already collect crucial information on the process; ii), in
turn, calls for our comprehension of the shape of the distribution around
the CoI. That is precisely what we discuss next.

6.6 renormalization

Let us assume that we have |A| CoI, ai, of which S correspond to vertex
configurations (also called monomorphic, see Section 6.8), and |A|− S to
internal stable fixed points. We can write a continuous stationary proba-Renormalization is

appropriate when the
properties condidered are not

sensitive to the fluctuations
near the fixed points.

bility density for the state variable, x = (x1, . . . , xS−1), which we call P (x).
As shown already, we are able to compute p (ai), the non-normalized sta-
tionary distribution over configurations in A computed from the eigenvec-
tor of ρ, in Eq.(95). Since the probability of being in configuration ai is
α−1p(ai), where α−1 is a normalization constant, and given that this con-
figuration has a range of 1/Z in each of the S− 1 independent directions,
the probability density at that point must be α−1ZS−1p(ai). In other words,
P(ai/Z) = α

−1ZS−1p(ai), for i = 1, . . . , |A|. A simple way of collecting this
information is by writing
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P (x)α/ZS−1 =
|A|∑
i=1

p (ai)
fi (x)

fi (ai/Z)
. (98)

The fi (x) functions are normalized probability densities that are non-
zero in the neighborhood of x = ai/Z, D [ai].

In order to further simplify the procedure, let us compute the weight of
each peak, wai = ∫

D[ai]
P (x)dx, and then use it as the probability of being

in configuration ai.
Taking the weights of each peak as the value of the distribution in that

CoI and setting the remaining states as unoccupied, we may write a dis-
crete counterpart as

P (s) = α−1

|A|∑
i

p (ai)
ZS−1

fi (ai/Z)
δsai . (99)

We are left with computing a normalized function fi in a single point
that reflects the shape of the distribution around the CoI. Below we deduce
the expressions for different functions in two different dimensionalities.

6.7 pdf solution near an internal stable fixed point

Now that we have laid down the general framework, we can start making
some assumption in order to produce some closed form formulas.

Let us estimate the shape of the probability distribution function (PDF)
near an attractor that corresponds to a stable fixed point in the infinite
dynamics and show that it can be approximated by a Gaussian function.
To this end, let us keep considering a general phase space of arbitrary
dimension. The system moves from configuration sk to configuration sl, in
each step, with a probability Tsksl . In general this corresponds to an S− 1
dimensional process with the same properties.

The evolution of the PDF of the process x = i/Z, p (x, t), is given by the
Master Equation [38] below (see Chapter 2 for details).

p (x, t+ τ) − p (x, t) =
∑
δ

(
p (x + δ, t) T−δ (x + δ) − p (x, t) Tδ (x)

)
, (100)

where Tδ (x) ≡ TZx,Z(x+δ). This, in turn, can be expanded in power series
in δ ∼ 1/Z to give

∂p

∂t
(x, t) = −

∑
k

∂

∂xk

(
D

(1)
k (x)p (x, t)

)

+
∑
k

∑
k ′

∂2

∂xk∂xk ′

(
D

(2)
kk ′ (x)p (x, t)

)

+ . . . (101)
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where

D
(1)
k (x) = Tk+ (x) − Tk− (x) , with

Tk± (x) ≡
∑

δ:δk=±1/Z
Tδ (x) (102)

and

D
(2)
kk (x) =

1

2Z

(
Tk+ (x) + Tk− (x)

)
(103)

D
(2)
kk (x) = −

1

2Z

(
Tk→k

′
(x) + Tk

′→k (x)
)

,k 6= k ′ (104)

Here, Tt→t
′
corresponds to a transition with δ = {0, . . . , 0, δt = −1, 0, . . . , 0, δt ′ =

+1, 0, . . . , 0}.
If we neglect the remaining terms of the expansion, we get a Fokker-

Planck equation[95] as we did in Section 2.4. Thus, it is natural that the
system spends a lot a time around the attractive roots of D(1) as long
as diffusion is not too high. As a rough approximation, we linearize the
gradient of selection, D(1) (x) = J (x − x∗), with J the Jacobian matrix of
D(1) (x) at x∗ and set D(2) (x) = D(2) (x∗) = D as a constant. Using the
gradient, ∇ =

(
∂x1 , . . . ,∂xS−1

)
, and Hessian, H, operators, we can write

∂p

∂t
(x, t) = −∇. (J (x − x∗)p (x, t))

+Tr (H(p(x, t))D) (105)

which corresponds to a multidimensional Ornstein-Uhlenbeck process, whose
stationary solution is a multivariate normal distribution [38]. This gaussian
should, then, be plugged into Eq.(98) or Eq.(99) as the appropriate f func-
tion.

Below we explicitly write the equations and solutions of the normal dis-
tribution for 1D and 2D cases as a function of the transition probabilities,
as well as the particular expression for the population dynamics models
we used before, using results for the Drift and Diffusion of Chapter 3.

6.7.1 One dimensional case (two strategies)

The equation for a linear drift or gradient of selection, D(1) (x) = J (x− x∗),
and constant diffusion D is

0 = −
d

dx
(J (x− x∗)p (x)) +D

d2p

dx2
(x) , (106)

with solution p(x) = Normal
(
x; 〈x〉 = x∗,σ2x = −D/J

)
,
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where x∗ is such that T+ (x∗)−T− (x∗) = 0, J = d (T+ (x) − T− (x)) /dx|x=x∗
and D = (T+ (x∗) + T− (x∗)) / (2Z) deduce in Section 3.1 which we will re-
cover for the sake of completeness of the chapter

T+ (x) − T− (x) = (1− µ)
Z

Z− 1
x (1− x) tanh

(
β

2
∆f12

)
+ µ (1− 2x) , (107)

T+ (x) + T− (x) = (1− µ)
Z

Z− 1
x (1− x) + µ, (108)

with ∆f12 representing the fitness difference driving the update of players
of trait 1 in relation to trait 2. This completely defines the parameters of
the Gaussion function for any given ∆f12. For this particular 1D scenario,
the expression of the variance is fairly simple:

σ2x =
1

2

(
1−

1− µ

µ

Z

Z− 1

(
1
2 − x

∗) sinhβ∆f12(x∗) + x∗(1− x∗)
β∆f ′12(x

∗)
2

1+ coshβ∆f12(x∗)

)−1

(109)

6.7.2 Bi-dimensional case (three strategies)

In a population with three strategies, x = (x1, x2) is the configuration of
a population with a fraction of individuals x1 with strategy 1 and x2 in-
dividuals with strategy 2 (1 − x1 − x2 is the fraction of individuals with
strategy 3). If we let y = x − x∗, the equation for a linear drift or gradient
of selection, D(1) (y) = J (y), and constant diffusion D is

0 =−
∂

∂y1
(J11y1 + J12y2)p(y, t) −

∂

∂y2
(J21y1 + J22y2)p(y, t) (110)

+D11
∂2p(y, t)
∂y21

+ 2D12
∂2p(y, t)
∂y1∂y2

+D2
∂2p(y, t)
∂y22

,

with solution p(x, t) =
1√

π2detΣ
e−(x−x∗)TΣ−1(x−x∗), (111)

where

Σ11 =
(
2D12J12J22 −D22J

2
12 −D11

(
J222 + detJ

))
/ ((trJdetJ) /2) (112)

Σ12 = Σ21 = (2D12J11J22 −D11J21J22 −D22J11J12) / ((trJdetJ) /2) (113)

Σ22 =
(
2D12J21J11 −D11J

2
21 −D22

(
J211 + detJ

))
/ ((trJdetJ) /2) (114)

where

J =

[
∂x1

(
T1+ (x) − T1− (x)

)
∂x2

(
T1+ (x) − T1− (x)

)

∂x1
(
T2+ (x) − T2− (x)

)
∂x2

(
T2+ (x) − T2− (x)

)
]∣∣∣∣∣

x=x∗

, (115)
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D =
1

2Z

[
T1+ (x∗) + T1− (x∗) T1→2 (x∗) + T2→1 (x∗)

T1→2 (x∗) + T2→1 (x∗) T2+ (x∗) + T2− (x∗)

]
(116)

and x∗ is such that T1+ (x∗) − T1− (x∗) = 0∧ T2+ (x∗) − T2− (x∗) = 0.
Again, for a pairwise Fermi update rule, we can write

Tk+ (x) − Tk− (x) = (1− µ)
Z

Z− 1
xk tanh

(
β

2
∆fkl

) 3∑
l 6=1

xl +
µ

2
(1− 3xk)(117)

Tk+ (x∗) + Tk− (x∗) = (1− µ)
Z

Z− 1
x∗k (1− x

∗
k) +

µ

2
(1+ x∗k)(118)

T1→2 (x∗) + T2→1 (x∗) = (1− µ)
Z

Z− 1
x∗1x
∗
2 +

µ

2
(x∗1 + x

∗
2) ,(119)

with ∆fkl representing the fitness difference driving the update of play-
ers of trait k in relation to trait l. This set of equations completely defines
the parameters of the Gaussian for any given set of ∆fkl.

6.8 pdf solution near monomorphic configurations

In the previous section we gave functional forms for the functions that can
be used to weight the internal CoIs. Now we look at what happens in the
boundaries, which can also act as attractors and that is why some of its
configurations are usually included in the CoIs.

The boundaries are characterized by having at least one absent strategy,
while the remaining coexist. Notice that each direction is defined by a pair
of interacting strategies. This means that the shape of the function in the
directions of the coexisting strategies falls into the previous section, with
a reduced number of total strategies, since in those direction the CoIs are
internal. Thus, we are left with computing the shape of the function in the
directions where absent strategies invade others.

Because new strategies can only appear through mutation, and the bound-
aries are only occupied when mutation is small, the simplest shape we can
assume for the distribution around the CoI in the boundary is that it de-
cays immediately to zero, requiring no renormalization, as the range of the
function in that direction is 1/Z and thus its value is Z, canceling out. This
is the shape we implicitly used above.

However, one might want to improve this estimation. Whenever those
CoI act as attractors and mutation is non-zero a tail arises in the distri-
bution, conferring strength to configurations near the CoI. The solution is
to study the behavior of the system close to the boundaries, which will
depend on the system at hands.

Because the configurations corresponding to the vertices only have tran-
sitions into the edges, we can start analyzing the 1D case. There, the evolu-
tion of the PDF of the process i, p (i, t), is given by the appropriate Master
Equation (100),
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p (i, t+ τ) − p (i, t) =
∑
δ

(
p (i+ δ, t) T−δ (x+ δ) − p (i, t) Tδ (i)

)
, (120)

which has an analytical solution p(i), for its stationary distribution when
considering a one step process (that we have deduced and interpreted al-
ready in the end of Section 2.5),

p (i) = p (0)

i−1∏
l=0

T+l
T−l+1

, p (0) =

(
1+

Z∑
i=1

p(i)

)−1

. (121)

Typically, when a configuration from the CoI – in this case a monomor-
phic configuration – is an attractor, the stationary probability of the adja-
cent configuration is smaller than that of the CoI. In this case, and assum-
ing that the attractor is state 0, we have that p (0) > p (1) = p (0) T+0 /T

−
1 or

T+0 < T
−
1 or, equivalently, µ < T−1 , reflecting the balance between mutation

and selection of a mutant in a population.
Let us assume a resident (and dominant) strategy R and a mutant strat-

egy M. If i is the number of individuals with strategy R, the assumption
that configuration 0 is an attractor means that the fitness of a mutant in
the population is smaller than that of the individuals in the populations
by an amount ∆f. For simplicity, let us make it frequency independent (at
least in the region where the function decays). With these assumptions we
can calculate p (i) and use it to renormalize the probability of being in the
considered monomorphic state (i = 0).

Assuming a Fermi-update process, we have that T+i = Z−i
Z

(
i

Z−1
1−µ
1+eβ∆f

+ µ
)

and T−i = i
Z

(
Z−i
Z−1

1−µ
1+e−β∆f

+ µ
)

. Using Eq.(101) we obtain a decaying func-
tion. Recalling Eq.(99), we need both the value of the function, p(i), at 0 and
the cumulative function to guaranty a distribution (with a normalization
of one) in the selected range D[0]. In this case, the value of the distribution
at zero is a hypergeometric function,

p (0) = 2F1

[
−Z,

(
1+ e−β∆f

)
(Z− 1)

µ

1− µ
;−

(Z− 1)
(
1+ eβ∆fµ

)

1− µ
; eβ∆f

]−1
,(122)

which can be obtained using Eq.(121) and reads, approximately,
(
1− eβ∆f

)−(1+e−β∆f)Zµ.
The cumulative function must be used whenever the decay is not fast
enough and the function penetrates the domain of other attractors. With
the knowledge of the transition to be computed between CoI and the right
renormalizations to the distributions, we have shown all the ingredients
present in the discussion above.

In general, when there are several strategies in place, this means that,
in order to renormalize the probability of the monomorphic states, one
needs the fitness of each of the mutants. This fitness should be smaller
than that of the resident population and satisfy Tmutant→resident >

µ
S−1 ,
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Figure 13: Illustration of the transition and notation considered in this section
T denotes the one-step transition probabilities between any pair of ad-
jacent configurations, whereas ρ and P denote the long run transition
probabilities to configurations in A departing from, respectively, config-
urations in set A in set B.

for all the S − 1 mutant strategies. If this is not the case, the state will
not be an attractor and no renormalization is needed. The same procedure
can be used to calculate more accurately the shape of the attractor in any
boundary in the direction caused solely by a single mutation.

6.9 the one dimensional system : transition probabilities

between coi

As promised, we deduce next the expression for Eq.(95) in a one-dimensional
Markov chain.

For a one dimensional one-step Markov chain the phase space, of size
Z+1, is simply {0, 1, . . . ,Z}. This phase-space is a single line, corresponding
to an edge of a multi-dimensional problem. Because in 1st order only edge
points are included, the following treatment corresponds to the 1st order
correction to the SMA.

The one dimensional process is characterized by allowing transitions
only between adjacent states, contrary to what happens in the general sce-
nario of the previous section and the different notation in the labeling of
states is done to reflect that.

Consider |A| non-adjacent ordered CoIs
{
a1, . . . ,a|A|

}
, and, the remain-

ing, |B| = Z+ 1− |A| neglected configurations
{
b1, . . . ,b|B|

}
. Once again,

the goal is to reduce the Markov chain containing the whole phase space to
one containing only the CoIs {ai} and calculate the transition probabilities
ρaiaj between those configurations as a function of the one-step transi-
tion probabilities of the whole 1D chain Tkl. Notice that the new simpler
chain of CoI is also a 1D one-step Markov chain, in the sense that each
configuration has two transitions outward, apart from the two boundary
configurations that have only one.

Let T±k ≡ Tkk±1 and T0k ≡ Tkk, ρ±ai ≡ ρaia(i±1) and Pab ≡ Pba (see
Figure 13). In what follows we will use configurations and the value of the
process in that configuration interchangeably.

Given two non-adjacent configurations ai ≡ L < aj ≡ R (Left and Right),
we have
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ρ+L = T+L P
R
L+1, (123)

meaning that the probability of moving from L to R, requires a (one step)
transition to the right from configuration L (to the neglected configuration
L+ 1), T+L , and then eventually going to R from L+ 1, PRL+1. To calculate
this term, we write the equations for the probability of being absorbed by
R from any intermediate configuration b ∈ {L+ 1, . . . ,R− 1}

PRb = T−b P
R
b−1(1− δbL+1) + T

0
bP
R
b

+T+b P
R
b+1(1− δbR−1) + δbR−1T

+
b , (124)

which are known and whose solution is [58]

PRL+1 =


1+

R−1∑
j=L+1

j∏
k=L+1

T−k
T+k




−1

. (125)

With this we can define ρ+L as a function of the one step transitions.
Using the same procedure for ρ− we can finally write

ρ±ai = T
±
ai
P
a(i±1)
ai±1 = T±ai


1+

a(i±1)∓1∑
j=ai±1

j∏
k=ai±1

T∓k
T±k




−1

. (126)

Now the constraint to non-adjacent CoIs can be lifted, in which case we
may write ρ±ai = T

±
ai

for adjacent configurations.

6.10 the one dimensional system : an internal fixed point

example

Let us continue with the one dimensional case with phase space {0, 1, . . . ,Z},
of size Z+ 1. Let us assume that we have three CoI, the two monomorphic
configurations, a1 = 0 and a3 = Z and a coexistence (stable fixed point)
at a2. Following the general procedure, we can write a continuous station-
ary probability density for the fraction of individuals playing strategy σ1,
x = i/Z, which we call P (x). As shown already, we are able to compute
p (ai), the non-normalized stationary distribution over configurations in
A computed from the ρ±ai , in Eq.(126). Since the probability of being in
configuration ai is α−1p(ai), and given that this configuration has a range
of 1/Z, the probability density at that point must be α−1Zp(ai), where
α−1 is a normalization constant. In other words, P(ai/Z) = α−1Zp(ai), for
i = 1, 2, 3. A simple way of writing this is

P (x)α/Z = p (a1)
f1 (x)

f1 (a1/Z)
+ p (a2)

f2 (x)

f2 (a2/Z)
+ p (a3)

f3 (x)

f3 (a3/Z)
. (127)
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The fi (x) functions are normalized probability densities that are non-zero
in the neighborhood of ai/Z, D [ai]. The simplest choice for f1 (x) and
f3 (x) is to let them reflect the peaking in the monomorphic configurations
as a constant with value Z in a range 1/Z – see Section 6.8 for further
refinements – whereas for f2 (x) we consider a Normal distribution, N (x),
centered at point a2/Z with variance σ2. This defines an estimate of the
distribution. In order to further simplify the procedure, let us compute the
weight of each peak, wai = ∫

D[ai]
P (x)dx, and then use it as the probability

of being in configuration ai.

w1 =

∫1/Z
0

α−1Zp(a1)
1/Z

1/Z
dx = α−1p(a1), (128)

w2 =

∫1/Z
1−1/Z

α−1Zp(a2)
N(x)

N(a2/Z)
dx (129)

= α−1Zp(a2)
√
2πσ2

1

2

(
Erf
[
a2/Z− 1/Z√

2σ2

]
+ Erf

[
1− a2/Z− 1/Z√

2σ2

])
,

w3 =

∫1
1−1/Z

α−1Zp(a3)
1/Z

1/Z
dx = α−1p(a3). (130)

Notice that if 0 < a2/Z± 2σ < 1, then w2 ≈ α−1Zp(a2)
√
2πσ2. Taking

the weights of each peak, we may write a discrete counterpart as

P (i) = α−1
(
p (a0) δia0 +Z

√
2πσ2p (a1) δia1 + p (a2) δia2

)
(131)

where σ2 can be derived from the transition probabilities T+x and T−x
around a2/Z as σ2 = F/ |J| with J = d (T+x − T−x ) /dx|x=a2/Z and F =(
T+
a2/Z

+ T−
a2/Z

)
/ (2Z) (see Section 6.7.1).

Notice also that collapsing the weight of the distribution around the
fixed point is particularly useful if one is interested in computing the first
moment.

Furthermore, if 0 < a2/Z± 2σ < 1, then w2 = α−1Zp(a2)
√
2πσ2. Taking

the weights of each peak, we may write a discrete counterpart as

P (i) = α−1
(
p (a1) δia1 +Z

√
2πσ2p (a2) δia2 + p (a3) δia3

)
(132)

where α =
(
p (a1) +Z

√
2πσ2p (a2) + p (a3)

)
.

Indeed, for the average we get

〈i/Z〉 = α−1
(√
2πσ2p (a2)a2 + p (a3)

)
. (133)

Also, one could use Eq.(132) to compute the second moment, but since
we already know the variance of the Gaussian, we can use Eq.(127) to get
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an estimation of the variance of any 1D process with a single fixed point.
For 0 < a2/Z± 2σ < 1 the expression is can also be simplified to

vari/Z = α−1
(
〈i/Z〉2 p(a1) + σ3Z

√
2πp (a2) + (1− 〈i/Z〉)2p(a3)

)
. (134)

6.11 estimating neglected configurations with a grid

So far, in order to compute the stationary distribution at different orders of
µ (the mutation parameter), we estimate the behavior of that distribution
employing an approximation of the Master Equation as a Fokker-Planck
equation near the stable fixed points. As we show above, this consists in
using a normal distribution near the stable fixed points and delta – or
rapidly decaying – functions on the borders. Naturally, these estimates can
be improved by studying, for instance, the discrete version of the equa-
tions, or by taking into account the influence of the borders. Nonetheless,
this approach may not be so easy to do in general, especially for higher
orders in µ, which increase the dimensionality of the phase space taken in
consideration and, thus, make it more difficult to find all fixed points and
their stability. Under such circumstances, the method we now discuss may
prove rewarding. Selection of the appropriate

interpolation method can
reduce the number of
necessary CoI.

Let us go back to the first case presented in Section 6.2 – a one-dimensional
process with a single stable fixed point – and employ a straightforward
method to estimate the distribution. Instead of finding the polymorphic
stable fixed points and including these as CoIs, we define the CoIs by set-
ting up a homogeneous grid that includes 1, 3 or 5 intermediate configura-
tions. We compute the probability of being in each of these configurations,
using the standard method already described. The distribution over the
configurations not considered in the CoIs may be approximated assuming
a completely flat distribution between each of those configurations and the
middle points of its neighbors, creating a piecewise discontinuous func-
tion. Figure 14 depicts the average of the distribution estimated this way
and shows how with 5 intermediate CoIs the distribution already matches
the exact solution. In general, the number of points needed will vary de-
pending on the properties of the distribution (e.g. the asymmetry of the
distribution curve) and on the method for estimating the distribution. By
using this approach, we frame the problem as an interpolation exercise
(that in general is well studied), refraining from studying partial differen-
tial equations or their discrete equivalent, which usually require a case by
case analysis and study. On the other hand, it is worth pointing out the
advantage of the study of the differential equations as a way to minimize
the number of extra CoIs – in this example, we obtain the same quality
result with only 1 extra CoI, to the extent that this point is the fixed point.
Needless to say, mixed approaches can also be used.
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Figure 14: Estimating with a grid Same system as Figure 9 in Section 6.2 with
1,3 and 5 intermediate points assuming a flat distribution around each
CoI. With five equidistant points one is able to reproduce the full dis-
tribution in this scenario.

6.12 summary and general procedure

This approach attempts to describe the dynamics and steady state solution
of the system by following a series of systematic steps:

1. Study the system’s behavior based on the gradient of selection dy-
namics and understand the dimensionality of the hyperface contain-
ing the stable fixed points. Based on that, choose the desired order of
approximation (order n or Hn-approximation). The traditional SMA
is the H0-approximation.

2. Investigate the existence of stable fixed points in which at most n+ 1

strategies are present in the population. These configurations, to-
gether with the monomorphic configurations, are named configura-
tions of interest (CoIs) and compose the set called A.

3. Calculate the transition probabilities ρaiaj between all configurations
in A.

4. Calculate the (un-normalized) stationary distribution given the re-
duced Markov chain whose configurations and transition probabili-
ties are, respectively, the configurations in A and the transitions cal-
culated in point 3.

5. Build a normalized stationary distribution by renormalizing the sta-
tionary distributions calculated in point 4 with a normalization factor
deduced from properly linearizing the system close to those points
(presented in the text and detailed in Sections 6.6, 6.7 and 6.8, above).

Each of these points encompasses advantages and limitations. Point 1 re-
flects the limitations of stopping the expansion. Whenever there are stable
fixed points more internal than the phase space considered in a given term
of the expansion, its validity only holds for lower mutation rates, which
was the original problem of the SMA. Nonetheless, we are able to incor-
porate, without significant increase in computational cost, the ability to
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take into account fixed points along the edges of the phase space. Together
with point 2, this evidences the fact that higher order approximations come
with a computational cost. It is worth mentioning that, in points 4 and 5,
we assume that the distribution near the monomorphic configurations ei-
ther adopts the shape of a delta function, or a decaying function resulting
from frequency independent mutant disadvantage. Moreover, we regard
the distribution near the stable fixed points as displaying the symmetry
properties of a Gaussian curve, which may not be the case. Ways to im-
prove both matters can be introduced in order to attain results with higher
precision, whenever necessary.

To conclude: As is well known in many areas of Science, a judicious
choice of the CoI proves instrumental in minimizing the workload neces-
sary to reach a good description of a system. In this chapter we show how
this concept applies to the dynamics of populations in which individuals
may be equipped with complex physical, biological or social repertoires.
We developed a hierarchy of approximations that exhibit an intuitive topo-
logical appeal. Topological criteria should be also employed in choosing
the CoI in those more complex cases where the calculation of interior
fixed points becomes too cumbersome. Starting from the SMA at zeroth-
oder, this hierarchical approach provides a description that allows one to
explicitly include the role of mutations while dramatically reducing the
complexity of the multi-dimensional Markov processes we aim to describe,
thus retaining analytical and/or numerical tractability. We believe that the
present formalism is general in scope, being of potential applicability in a
wide variety of problems that transcend pure Physics applications.

We are now in conditions to move on to the last part of this disserta-
tion and deal with what I believe to be one of the greatest challenges of
mankind.





Part III

P U B L I C G O O D S

Global coordination for the preservation of a common good,
such as climate, is one of the most prominent challenges of
modern societies. In this part, I use the framework of evolu-
tionary game theory and the tools developed so far to inves-
tigate whether a polycentric structure of multiple small-scale
agreements provides a viable solution to solve global dilemmas
as climate change governance. The text of this part is based
on the work I published with my coauthors, indicated at the
beginning of each chapter, and all of it originated from the Evo-
lutionary Game Theoretical model of climate change under risk
published in 2011 by Santos and Pacheco [112].





Polycentric governance is based on the concurrent learning and action
of multiple agents that pursue their interests and that act at a smaller scale
than that of the problem at stake.[90–92] In cases when a central, top-down,
large scale agreement or treaty fails to be sought, the polycentric approach
has been invoked[91] as a possible means to mitigate the issue or to pave
way to a global solution, bringing progress to the stalled process of res-
olution. From here on, I will show the work my coauthors and I have
develloped with, in turn, uses the framework developed in the previous
parts to investigate whether polycentricity provides a viable solution, that
is, whether polycentricity can be used to solve global dilemmas. In this
context, we will be focusing on N-person Public Goods Games (PGG), and
on the mechanisms that act to uphold cooperation based on joint decisions
made by groups. For what we have seen so far, EGT reveals itself as a
very appropriate tool to do this, given that it can make use of the learning
process of a multiplicity of interacting agents, facing problems of coopera-
tion. The individuals in these populations are able to revise their strategies
depending on their outcome but they have limited information, observing
only the acts of others and their final or average outcome, without ever
knowing the whole process: this is a challenging setup for cooperation,
making it hard to strive (see part II, Chapter 4). In what follows, we show
that polycentricity allows for cooperation to emerge even in this adverse
scenario. Mechanisms that act to

promote and maintain
cooperation based on joint
decisions made by groups
involving more than two
individuals have been
thoroughly investigated,
leading to the formulation of
N-person Public Goods games
(PGG), in which collective
action often depends on the
coordination, into
cooperation, of a threshold
number of group members.

Despite scientific consensus of its negative impacts in many natural
ecosystems, with immediate consequences in human life,[72, 129, 130] cli-
mate change is one of the examples in which global treaties have failed
so far and polycentricity comes up as an alternative. The dilemma over
climate issues comes from the fact that regions or nations are tempted to
make no effort themselves, while reaping the benefit from the possible ef-
forts of others. Besides this dilemma, akin to many others that humans
face, cooperation is sought by world leaders that every year try to reach
some consensus. The failure of these global summits has been attributed
to many factors, of which we distinguish: i) overall perception of risk is
too small, with decision makers not taking fully into account the effects of
missing the targets and discounting[65] its effects; ii) (scientific/political)
uncertainties regarding the exact values of the targets to be met[4, 6, 7, 86,
89, 134]; iii) conflicting policies between rich and poor parties, with a pos-
sible segregation of behaviors involving developed countries, on one side,
and developing countries, on the other and, iv) absence of institution(s) to
monitor and sanction those not abiding to agreements. Here we will see
how a polycentric approach may ameliorate the impact of this plethora of
effects.

With this in mind, the base model[112] considers a threshold N-person
game, in which individuals have to contribute a minimum to effectively
contribute to reduce Green-House-Gas (GHG) emissions. However, players
may perceive the negotiation devoid from risk: even if the threshold is
not met there may still be a chance that nothing catastrophic happens and
everyone keeps whatever they have; an effective value attributed to this risk



allows EGT to operate for a population under a given risk perception: high
levels of risk perception translate into a calculus where existing benefits
will likely be lost when contributions are below the threshold, the opposite
happening otherwise. Additionally, a second kind of uncertainty can be
present[6]: uncertainty in the threshold to be met that defines the collective
goal and concerns the amount of contributions required for individuals to
be sure to retain whatever they have.

In Chapter 7, we will analyze the combined impact of each of these
uncertainties when agreements are set at various scales, showing how a
polycentric approach to such a global problem helps in reducing the detri-
mental effect created by uncertainty. Subsequently, in Chapter 8, we will
augment the base model by splitting the population into two wealth classes
— those with high endowments, metaphorically representing the “rich”,
and those with low endowments, representing the “poor” — describing
the feedback dynamics between the poor and the rich, and how it acts to
build up or diminish the chances of reaching cooperation in each class. We
allow these classes to (partially or totally) segregate their behavior, and
hence we can study the impact of homophily between these classes. Fi-
nally, in Chapter 9 and 10, we will investigate the impact and adoption of
different kinds of sanctioning institutions to regulate the contribution to
GHG reduction, and explain how those institutions, created locally, with a
smaller range of effect, have a sizeable impact on the overall eagerness to
cooperate.



7
E F F E C T O F U N C E RTA I N T Y & S C A L E

This chapter is based in the manuscript "Evolutionary dynamics of Climate
Change Under Collective-Risk Dilemmas" by F.C. Santos et.al.[107], which
contains a detailed analysis of the the finite population dynamics of the
original model by Santos and Pacheco [112]. Appendix a

On the issues of environmental sustainability and mitigation of the im-
pacts of climate change, one must not overlook uncertainty. Especially
when looking at Environmental Agreements, which are typically non-binding,
[56, 86] uncertainty becomes ubiquitous, as collective investment and its
forecast becomes truly unknown: whether it is due to political hesitation or
to reservations regarding reversibility, the timings, goal temperatures and
even consequences of GHG induced climate change. Whereas the political
hesitations are somehow manageable, through negotiation and research,
the others, since they refer to future events, lead to a lot more discussion
resulting in (or from) a mindset in which the possibility that nothing dam-
aging happens is non-negligible. Thus, the study of collective action can-
not be detached from the overall perception of risk conveyed by climate
change,[50, 51] a remark that has been reinforced by recent experiments
[77, 134] and which the base model[112] captures as we will see next.

7.1 model

Consider a population of Z individuals. Groups of size N are randomly
sampled from that population. Each group is set to play a game in which a
target ofM contributions is to be met. Each individual starts with an initial
endowment b that can be used to contribute. We start with only two kinds
of players: those whose strategy is to contribute (only) to the public good,
paying a cost c, the Coopeartors (Cs), and those who don’t, Defectors (Ds).
Consider the possibility that a given group does not reach the predeter-
mined threshold: we call risk, r, the probability of losing one’s endowment
in that situation (0 6 r 6 1), such that r = 0 means endowments will never
be lost, whereas r = 1 means loss of endowment is certain. Hence, the
payoffs of players in a group with k Cs (and N− k Ds) can be written as Failure to reach a given

minimum contribution may
imply – also depending on the
risk (r) of disaster – that
cooperators invest in vain
and all endowments are lost.

ΠD(k) = bP+ (1− r)b(1− P)

ΠC(k) = ΠD(k) − c (135)

with P standing for the probability that the group achieves the threshold
and 1 − P the probability that it does not. We start with the case when
there is no uncertainty δ in the threshold, δ = 0. In that case, P = Θ(k−M)
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, where Θ(x) is the Heaviside function that is 1 for x > 0 and 0 otherwise.
Later in the chapter, we will relax this assumption.
As we have done so far, group interactions give individuals a certain payoff,
depending on their strategy, whose average value is designated by fitness.
We compute the fitness in a well-mixed scenario (the mean-field approxi-
mation), where each individual as a fixed (same) probability of interacting
with all others and, in a population with i Cs (and Z− i Ds), is given by
(see Chapter 3 for details)

fD(i) =

N−1∑
j=0

(
Z− 1

N− 1

)−1(
i

j

)(
Z− i− 1

N− 1− j

)
ΠD(k)

fC(i) =

N−1∑
j=0

(
Z− 1

N− 1

)−1(
i− 1

j

)(
Z− i

N− 1− j

)
ΠC(k+ 1). (136)

Assuming that time evolves in discrete steps, at every step one individual
A compares her/his average payoff with that of another randomly chosen
individual B and, the larger the payoff of individual B, selected as role
model, the more likely it is that A imitates her/his behavior, with a proba-
bility given by p(A,B) = (1+ eβ(fA−fB))−1, where β controls for learning
errors, which we have been calling intensity of selection. Additionally, in-
dividuals can explore the other strategies due to other exogenous factor(s)
—- technically equivalent to a mutation —- controlled by µ. If we let iA (iB)

be the number of individuals with strategy A (B), then the probability that
an individual with strategy A changes to the (different) strategy of B is

TA→B =
iA
Z

(
iB
Z− 1

(1− µ)p(A,B) + µ
)

. (137)

In light of the framework we have discussed, the configuration of the pop-
ulation will evolve according to a birth-death process in discrete time, a
Markov process with time invariant transitions, allowing us to describe
the dynamics by means of a Markov chain characterized by the transition
probabilities from a state with i Cs (and Z− i Ds) to a state with i ′ Cs, Ti ′,i.A dynamical approach, in

which individuals revise their
strategies through

peer-influence, copying others
whenever these appear to be

more successful, is a stamp of
social learning (in the sense

of cultural evolution),
allowing policies to change in

time as individuals are
influenced by the behavior

(and achievements) of others,
something one actually

witnesses in the context of
donations to public goods [16,

104].

The non-zero transitions are written in Eqs. 138.

Ti+1,i = TD→C
Ti−1,i = TC→D

Ti,i = 1− TD→C − TC→D (138)

7.2 impact of risk

We analyze the stationary distribution, given by the eigenvector of matrix
Ti ′,i, corresponding to the eigenvalue one.[57] Additionally, we compute
the most likely direction of evolution of the system (also called the gradi-
ent of selection[96, 107, 115]) as the first Kramers-Moyal coefficient of the
expansion of the M-Equation of the process (the drift term). The remaining
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coefficients tend to zero as the population increases which means that it
governs the dynamics in very large populations.[95, 138] This coefficient is
computed as the difference of the probabilities that the number of individ-
uals of a given strategy goes up and that it goes down, in each independent
direction. In this case, it is just g(i) = Ti+1,i − Ti−1,i (see part I, Section 2.5
for deduction of this result). Stochastic effects do play an

important role, in particular,
for the case of the world
summits where group and
population sizes are
comparable and of the order of
the hundreds. They facilitate
the tunneling through the
coordination barrier.

Figure 15 depicts the dynamics and average behavior of a population
of individuals for different values of risk for a dilemma played in groups
of different sizes. Naturally, in the absence of risk of disaster, there is no
point in contributing and thus, apart from random contributions due to
some exogenous reason (µ > 0), the dynamics will favor the demise of Cs,
with the gradient of selection being always negative, a scenario akin to our
first description of the prisoners’ dilemma. As the risk increases, it leads to
the emergence of two internal roots of the gradient, corresponding to un-
stable and stable mixed internal equilibria of the deterministic dynamics: a
coordination between individuals to cooperate is necessary before a stable
fraction is able to be robust to changes in strategy. Above a critical value,
the unstable fixed point, the average fraction of Cs will increase steadily up
to a certain value, the stable root. Furthermore, under high-risk, this collec-
tive coordination becomes easier to achieve, lowering the critical value for
the transition to occur, and the final level of cooperation is also higher, in-
creasing the final stable coexistence. These results, together with available
behavioral experiments,[77, 134] demonstrates the key role played by risk
perception in favoring the dynamics of Cs.

7.3 impact of scale

Given the intrinsic global nature of the problem of Climate Change, it is
natural to extend this analysis to different group sizes. Larger group sizes
implicitly consider less partitioning and, thus, decisions that involve si-
multaneously a larger and larger fraction of the population. In practice,
one can think about group size as the scale at which the decision is being
made: smaller group sizes consider several local decisions as opposed to
a single large group with the world’s fate on its hands. In this model no
relation has been established between the level at which the decision is
happening and the risk perception, considering both independent param-
eters. With this in mind, we can compare, for a given level of risk, if large
groups do better or worse than small ones. Cooperation is better dealt

with within small groups,
contrary to modern world
attempts to solve the climate
change problem.

Figure 15 covers two different groups sizes with a threshold fixed at 50%
of Cs in the group and it is very clear that smaller groups do better. Not
only the transition into a level of high cooperation happens for a lower
value of risk for the smaller group but also the overall level that Cs attain
is higher. Our results confirms that when the group size becomes com-
parable to the population size (N=Z), cooperation is effectively harder to
achieve, suggesting that present world summits may set harder conditions
for cooperation than, for instance, a combination of multiple, small-scale,
agreements.[115] This effect becomes particularly relevant when collective
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Figure 15: Effect of risk and scale of the agreement Evolution occurs in popula-
tions for different values of risk and group size (N). The dotted lines
represent the average fraction of Cs. The solid and dashed lines, to-
gether with the arrows, are determined by the gradient of selection
which rules the deterministic dynamics. Following the average fraction
of Cs, one finds a rapid transition for a critical value of risk, bellow
which there is no cooperation. This transition is triggered by the ap-
pearance of a stable fixed point in the deterministic dynamics. The blue
and red data denote groups of different sizes, with larger groups being
less cooperative both in the value of the transition and in the level of
cooperation for high risk. Model parameters: Z = 200, M = N/2, b = 1,
c = 0.1, β = 5, µ = 1/Z.

perception of risk is low, and when,e. g., economic and technologic con-
straints still require sizeable costs from the parties involved, as it is most
likely the case in climate negotiations.

7.4 thershold uncertainty

Before closing the chapter, a different type of uncertainty must be ad-
dressed. As discussed in the preamble to part III, the role played by un-
certainties associated with incomplete information regarding targets is an
unavoidable issue. Experiments observed that uncertainty in the thresh-
old required for the achievement goal (and its respective benefit) is detri-
mental to cooperation.[6, 7] This is distinguishable from risk, since it acts
not on the consequence of not achieving the threshold but in the thresh-
old itself. Let us see how the model can easily capture this feature. With
all else kept the same, let us now introduce variability on the thresh-
old which is now being sampled from a uniform distribution, u(x), with
range [M− δ/2,M+ δ/2] (other distributions would produce identical re-
sults as it shall be clear next), leading to a change in P, in Eqs. 135, such
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Figure 16: Effect of threshold uncertainty The solid (dashed) lines correspond to
stable (unstable) fixed points of the deterministic dynamics. The color
scheme represents the time the population spends in each configura-
tion, given by the stationary distribution. Model Parameters: Z = 200,
N = 5, M = N/2, b = 1, c = 0.1, r = 0.4, β = 5, µ = 1/Z. Uncertainty is
represents as δ/N.

that P =
∫
u(m)Θ(k −m)dm =

∫M+δ/2
M−δ/2

1
δΘ(k −m)dm, which is 0 for

k < M − δ/2, 1 for k > M + δ/2, and 1
δ(k −M + δ/2) otherwise. This

changes the average payoffs of the players, and necessarily their behavior,
introducing a region where individuals cannot know what will happen.
This region’s size in the number space of Cs is δ. As this range increases,
we change the game from a coordination plus coexistence into a prisoners’
dilemma, a result that is the same independently of the distribution cho-
sen for the uncertainty in threshold. This is an immediate consequence of
Eq.65 in Chapter 4.

Looking at Figure 16, we see that when uncertainty increases the prob-
ability that the population remains in the state with high levels of coop-
eration drops. This corroborates the impetus of the recent report of the
Intergovernmental Panel for Climate Change[129] emphasizing research in
order to narrow down the amount of threshold uncertainty, besides indicat-
ing that humans are the main cause of climate change and, consequently,
our actions directly affect the levels needed to reach the targets.

7.5 discussion

When dealing with environmental sustainability one cannot overlook the
uncertainty associated with the outcome of a collective investment. The
simple form used to describe this problem and study its impact in behav-
ioral evolution, is able to obtain an unambiguous agreement with recent ex-
periments[77], together with several concrete predictions. This is achieved
in the framework of non-cooperative N-person evolutionary game theory,
an unusual mathematical tool within the framework of modeling of polit-
ical decision-making. The new N-person game where both the risk of col-
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lective failure and threshold uncertainty is explicitly introduced by means
of a simple collective dilemma. Moreover, instead of resorting to complex
and rational planning or rules, individuals revise their behavior by peer-
influence, creating a complex dynamics akin to many evolutionary systems.
This framework allowed us to address the impact of risk in several configu-
rations, from large to small groups. Overall, we saw how the emerging be-
havioral dynamics depends heavily on the perception of risk and threshold
uncertainty. The impact of risk is enhanced in the presence of small behav-
ioral mutations and errors and whenever global coordination is attempted
in a majority of small groups under stringent requirements to meet co-
active goals. This result calls for a reassessment of policies towards the
promotion of public endeavors: Instead of world summits, decentralized
agreements between smaller groups (small N), possibly focused on region-
specific issues, where risk is high and goal achievement involves tough
requirements (large relative M), are prone to significantly raise the prob-
ability of success in coordinating to tame the planet’s climate. The model
provides a "bottom-up" approach to the problem, in which collective coop-
eration is easier to achieve in a distributed way, eventually involving, e. g.,
regions, cities, NGOs and, ultimately, all citizens. Moreover, by promoting
regional or sectoral agreements, we are opening the door to the diversity of
economic and political structure of all parties, which, as showed before[114,
116] can be beneficial to cooperation.

Naturally, a model as simple as this has room for improvement. Next
chapter, we will look at the effects of introducing one possible kind of
heterogeneity, considering a division between rich and poor players.



8
E F F E C T O F H O M O P H I LY A N D W E A LT H I N E Q U A L I T Y

This chapter is based on the manuscript "Climate policies under wealth
inequality" by Vítor V. Vasconcelos, Francisco C. Santos, Jorge M. Pacheco
and Simon A. Levin, published in the Proceeding of the National Academy
of Science (PNAS). Appendix c

Besides risk and uncertainty, lack of consensus in climate summits has
also been attributed to conflicting policies between developed and devel-
oping countries. My coauthors and I have introduced wealth inequality in One of the greatest challenges

in addressing global
environmental problems such
as climate change, which
involves public goods and
common-pool resources, is
achieving cooperation among
peoples. There are great
disparities in wealth among
nations, and this
heterogeneity can make
agreements much more
difficult to achieve.

the contributions to the Public Good, mimicking the world’s patent wealth
inequality and diversity of roles played by different countries. In the light
of what was previously found in experiments,[77, 134] one might investi-
gate how these roles influence both the distribution of contributions and
the effect of homophily in the behavioral dynamics [18, 147]. The economic
experiments of, e. g., Tavoni et. al [134] involved groups of 6 students from
western, educated, industrialized, rich, and democratic (WEIRD) countries.
They were performed by distributing endowments unequally among those
groups of people who could reach a fixed target sum through successive
money contributions, knowing that if they were to fail, they would lose all
their remaining money with 50% probability. In this way, using a similar
PGG to that we used in the previous chapter, they introduced different
kinds of players: Rich and Poor, whose initial endowment was higher and
lower, respectively. All groups were composed by half of poor individu-
als and the other half rich individuals, and showed that in some cases rich
would compensate for the smaller tendency to cooperate by the poor. In the
model that follows, we will consider a population with a 1:4 distribution
of rich to poor players, roughly reflecting the present-day status in what
concerns the wealth asymmetry of nations. Additionally, instead of a per-
fectly homogeneous imitation, let us allow for the two classes of wealth to
limit their individuals’ sphere of influence,[34, 71, 99] what is often called
homophily [34, 71, 99]: high homophily means rich (poor) players only in-
fluence and are influenced by rich (poor) players, whereas low homophily
means every player is equally likely to influence every other player, in-
dependently of their wealth status. This creates a weighted network of
influence that results in the homogeneous influence scenario as homophily
goes to zero.

8.1 model

More specifically, when we introduce wealth inequality, we split the Z in-
dividuals into ZR rich and ZP = Z− ZR poor; b and c, in Eqs. 135, now
depend on the class, with bR (bP) and cR (cP) standing for the initial en-
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dowment and cost paid by the rich (poor), respectively. The payoffs of the
classes X = R,P are thus written as

ΠXD(kR,kP) = bXP+ (1− r)bX(1− P)

ΠXC(kR,kP) = ΠXD(kR,kP) − cX. (139)

The different contributions must now add up to a certain value instead of
to a number of contributors. This amounts to a change in P and, since we
will ignore the effects of threshold uncertainty. In a group with kR Rich Cs
and kP Poor Cs, we may write

P = Θ(kRcR + kPcP −Mc̄), (140)

with Zc̄ = ZRcR + ZPcP. The two classes also introduce a splitting in the
sampling for the calculus of the fitness. Notice we do not restrict the frac-
tion of Rich and Poor in the groups, despite the results being robust to that
change.

fRD(iR, iP) =
N−1∑
j=0

N−1−j∑
l=0

(
Z− 1

N− 1

)−1(
iR
j

)(
iP
l

)(
Z− iR − iP − 1

N− 1− j− l

)
ΠRD(j, l)

fRC(iR, iP) =
N−1∑
j=0

N−1−j∑
l=0

(
Z− 1

N− 1

)−1(
iR − 1

j

)(
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)(
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ΠRC(j+ 1, l)

fPD(iR, iP) =
N−1∑
j=0

N−1−j∑
l=0

(
Z− 1

N− 1
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j

)(
iP
l

)(
Z− iR − iP − 1

N− 1− j− l
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fPC(iR, iP) =
N−1∑
j=0

N−1−j∑
l=0

(
Z− 1

N− 1

)−1(
iR
j

)(
iP − 1

l

)(
Z− iR − iP
N− 1− j− l

)
ΠPC(j, l+ 1)

(141)

The imitation dynamics occurs in two sub-populations, eventually re-
stricted by the homophily parameter, h, that incorporates the idea that
individuals of a given class X = P,R may be more likely to choose to imi-
tate individuals of the same class than individuals of the opposite class Y.
Thus, we can build the transition matrix such that going from a state with
a given number of rich and poor Cs (iR, iP) to (i ′R, i ′P) , T(i ′R,i ′P)(iR,iP) , can
be written using T(iR±1,iP)(iR,iP) = T

±
R and T(iR,iP±1)(iR,iP) = T

±
P , with

T+X =
ZX − iX
Z

((
iX

Z− 1− hZY
p(DX,CX) +

(1− h)iY
Z− 1− hZY

p(DX,CY)
)
(1− µX) + µX

)

T−X =
iX
Z

((
ZX − iX

Z− 1− hZY
p(CX,DX) +

(1− h)(ZY − iY)

Z− 1− hZY
p(CX,DY)

)
(1− µX) + µX

)
.

(142)
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Figure 17: Effect of homophily in heterogeneous populations The solid lines rep-
resent the total average contribution per group normalized by the av-
erage maximum possible contribution of the groups. The dashed and
dotted lines correspond to the decoupling of the total contribution into
what is contributed by the rich and poor, respectively. Z = 200,ZR =

40,N = 6,M = 3cb̄, c = 0.1,bR = 1.7,bP = 0.3, (b̄ = 1),β = 5,µX =

1/ZX.

8.2 splitting of contributors

The stochastic evolutionary dynamics of the population occurs in the pres-
ence of errors, both in terms of errors of imitation and in terms of be-
havioural mutations, the latter accounting for a free exploration of the pos-
sible strategies. We calculate the pervasiveness in time of each possible be-
havioural composition of the population, using the stationary distribution,
which allows the computation of the average fraction of groups that suc-
cessfully produce (or maintain) the public good – a quantity we designate
as group achievement, ηG.

Figure 17 shows that, under the premises of our model, and in agree-
ment with existing experiments,[75, 134] the rich generally contribute more
than the poor. This effect is even stronger in the presence of high ho-
mophily, given that the contribution of the poor is very sensitive to ho-
mophily and tends to go down in that case. This, in turn, means that the
rich will often compensate for the lower contribution of the other class, a
feature which will happen to a limited extent, being dependent on risk.
Overall, this also indicates that homophily, if widespread, may lead to a
collapse of cooperation, especially in the transition of low to high risk. In experiments, games

comprised groups of fixed size
where participation were
equally split between rich and
poor individuals, whose
different wealth resulted from
two different start-up
amounts of money made
available to group
participants.

Figure 18 shows that, even in the absence of significant homophily bias
(h 6 0.5) a higher fraction of rich contribute (with average values of 57%
for r = 0.2 and 78%, for r = 0.3), compared with the poor (with average
values of 46% for r = 0.2 and 69% for r = 0.3), thus also protecting their
greater wealth. This result does not depend on risk; however, for low risk,
the overall contribution is limited, increasing significantly after a slight
increase in overall risk perception. Indeed, in the absence of homophily,
cooperation may prevail in a wealth-unequal world (e.g., Figure 18D).
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Figure 18: Stationary distribution and gradient of selection for different values
of risk r and of the homophily parameter h (A–F) Each panel con-
tains all possible configurations of the population (in total ZR × ZP),
each specified by the number of rich (iR) and poor (iP) it contains and
represented by a gray-colored dot. Darker dots represent those config-
urations in which the population spends more time, thus providing
a contour representation of the stationary distribution. The curved ar-
rows show the so-called gradient of selection, which provides the most
likely direction of evolution from a given configuration. We use a color
code in which red lines are associated with higher speed of transitions.
The behavioral dynamics of the population depend on the homophily
parameter h in a nonlinear way. For h 6 0.5, the results remain qual-
itatively similar to those depicted for h = 0, in which case everybody
influences and is influenced by everybody else. In this case, the contri-
bution of the rich is sizeable, which also leads the poor to contribute.
For h > 0.5 the behavior changes abruptly, and one witnesses the rapid
collapse of cooperation among the poor and, for low risk (r = 0.2, A–C),
an ensuing disappearance of contributions to the overall PGG, with the
population spending most of the time in full defection, leading to a
dramatic impact on the overall group achievement ηG, indicated below
each contour plot. However, a slight increase in overall risk percep-
tion (here r = 0.3, D–F) actually impels the rich to contribute, despite
the fact that the poor still do not cooperate. Other parameters: and .
Z = 200,ZR = 40,N = 6,M = 3cb̄, c = 0.1,bR = 2.5,bP = 0.625, (b̄ =

1),β = 5,µX = 1/ZX.
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Qualitatively, one can now understand the results in Figure 17 if one
takes into account that, in most cases, the dynamics both among the rich
and among the poor can become dominated by basins of attraction that
lead to a coexistence between Cs and Ds. Whenever the risk is moderate to
high, there is an increase of the size of such basins, with a corresponding
increase of the stationary fraction of cooperators, such that the feedback
dynamics between the poor and the rich act to build up the cooperation
levels among both subpopulations.

As also shown in Figure 18, this positive feedback between the two
subpopulations is interrupted whenever homophily becomes dominant
(h ≈ 1). When rich and poor cease to be able to sway one another, we
observe two distinct scenarios: At low risk (r = 0.2 in Figure 17) overall
cooperation collapses. With a slight increase in risk perception, however
(r = 0.3), the rich contribute, despite the fact that the poor do not. Together
with risk, a lack of homophily plays an important role: As soon as the ho-
mophily constraint is relaxed – by adopting h < 1 – poor individuals start
to be nudged by the successes of the rich, effectively inducing the poor
players to contribute to the common good.

However, even in the absence of homophily (h = 0), this positive feed-
back between the two subpopulations does not always lead to an increase
of cooperation – thus we obtain the coexistence dynamics shown in Fig-
ure 18. Indeed, whenever most poor opt for cooperation, the dynamics
drive rich countries toward less cooperation, given that they may now
profit from the larger overall contributions stemming from the poor. Simi-
lar dynamics may also occur among the poor. This reduction, however, not
only does not prevent the majority of rich from engaging in cooperation,
but also does not compromise the overall group achievement values. As a
result of these coupled dynamics, the population will stay most of the time
nearby a coexistence equilibrium (interior attractor, Figure 18 A, D, and E).

The result of less contribution by the poor has been identified in eco-
nomics as the exploitation of the big by the small[87]. However, the effect
of homophily and its impact on this is novel and shows how segregation
between rich and poor policies worsens contributions to the public good.

This said, we are all aware that some individuals may be more receptive
than others to change their mind, based on the influence of their peers. In
fact, some individuals—for various reasons, as witnessed in the world sum-
mits on climate change that have taken place to date—may maintain the
same behavior irrespective of their sphere of influence. Given the small size
of the overall population, such an obstinate behavior may lead to sizable
effects in the global dynamics. In the following we investigate how such
obstinate behaviors (in both wealth classes) affect the overall dynamics. For
simplicity, we assume that, in all cases, obstinate behavior amounts to 10%
of individuals in one subpopulation—which corresponds to the same fixed
contribution to the PGG, considering either rich or poor obstinate players.

Figure 19 shows that obstinate poor cooperators provide impressive
improvements in the aggregate propensity of the population to achieve
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Figure 19: Stationary distribution and gradient of selection for populations
comprising 10% of individuals exhibiting an obstinate cooperative
behavior Same notation as in Figure 18 is used. Whenever 10% of
individuals exhibit obstinate cooperative behavior (Center and Right
contours), the number of configurations of the population in which
the evolutionary dynamics proceed is correspondingly reduced (white
areas in contours). The Left contour contains no obstinate individu-
als and is displayed for reference. In the Center contour, 10% of the
rich individuals behave as obstinate cooperators; that is, they never
change their behavior. In the Right contour, 10% of poor individu-
als exhibit such behavior. A small fraction of obstinate rich and ob-
stinate poor cooperators lead to very different outcomes, also for the
average group achievement ηG. Indeed, the chances of success are
significantly enhanced whenever obstinate cooperator behavior occurs
among the poor. The effect is most pronounced whenever individ-
uals are homophilic, as is the case here (h = 1). Other parameters:
Z = 200; ZR = 40; ZP = 160; c = 0.1; N = 6; M = 3cb̄; bP = 0.625;
bR = 2.5; r = 0.2; β = 5.0; pkmax = {pAmax,pBmax,pCmax} = {76, 4, 2}× 10−3
and ∇kmax = {∇Amax,∇Bmax,∇Cmax} = {3, 3, 4} × 10−2. (b̄ = 1), β = 5,
µX = 1/ZX.
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coordination (ηG = 0.581 in the presence of obstinate individuals com-
pared with ηG = 0.004 in the absence of obstinate individuals), larger than
obstinate rich cooperators, who lead to less pronounced enhancements
(ηG = 0.223). This effect, which extends qualitatively to all values of h,
is more pronounced when h = 1, as is the case in Figure 19.

8.3 discussion

Homophily generally impels the rich to compensate for the poor. Given
that contributions from the poor are crucial to solving the climate change
problem we face, it is then imperative that homophilic behavior is avoided.
Moreover, a small fraction of obstinate poor cooperators leads to sizeable
increases in the overall prospects for success, mostly when homophily
rules.

Conventional wisdom would lead one to believe that wealth inequal-
ity and homophily would constitute important obstacles regarding over-
all cooperation in climate change negotiations. Our results predict that,
as long as (i) risk perception is high; (ii) climate negotiations are parti-
tioned in smaller groups agreeing on local, short-term targets; and (iii)
individuals are influenced by their more successful peers, whom they imi-
tate—irrespective of their wealth class—and making errors while doing so,
the prospects are not that grim. On the contrary we find that, under such
conditions, cooperation may outcompete defection. Moreover, the qualita-
tive nature of the results obtained here remains robust if we assume that,
instead of proportional contributions, poor and rich contribute the same
amount, when cooperating[147].

In this chapter, however, we ignored an important factor: that the thresh-
olds may be intrinsically uncertain. As we have seen, this uncertainty, if
sizeable, can destroy cooperation. Likely, to the extent that agreements aim
at short-term targets involving smaller groups, it will also be easier to nar-
row down threshold uncertainties.

Finally, the recent report of the Intergovernmental Panel for Climate
Change[129], besides emphasizing that climate change is real and humans
are the main cause of it, urging countries to stop the warming of the planet,
has also attempted to narrow down the threshold uncertainty. However,
given that risk perception is low and that a bottom–up approach – as de-
fended by the late Elinor Ostrom[91] and also by the results collected in
the present dissertation – has yet to spread globally, it is perhaps not sur-
prising that today’s prospects remain gloomy. Clearly it is urgent that in-
dividuals become aware of the true risk that we face. Indeed, an increase
in risk perception will surely promote the development of local initiatives
that may foster overall cooperation by extending the bottom–up approach
to all players of the global game.

Next chapters introduce the approach of sanctioning to solve this global
dilemma.





9
S A N C T I O N I N G I N S T I T U T I O N S

This chapter is based on the manuscript "A bottom-up institutional ap-
proach to cooperative governance of risky commons" by Vítor V. Vasconce-
los, Francisco C. Santos and Jorge M. Pacheco. Appendix b

To conclude the list of effects I proposed to address, let us explore the
effects of global punishment institutions versus locally arranged ones and
investigate at which scale sanctioning should happen and discuss these
two major configurations addressed by my coauthors and I.[145] Natu-
rally, given the pros and cons of some procedures against others, agreeing
on the way punishment should be implemented is far from reaching a con-
sensus.[140] Institutions need not be global (such as the United Nations),
supported by all members willing to punish/sanction, or punishers, that
overview all group interactions in the population; they may also be local,
group-wide institutions, created to enforce cooperation within a particular
group of individuals [90]. While the establishment of global institutions
will depend on the total number of those willing to sanction in the popu-
lation, setting up local institutions relies solely on those that exist within
a group. Moreover, one does not expect that all the parties (e. g.countries,
regions or cities) will be willing to incur in a cost in order to sanction oth-
ers, despite being willing to undertake the necessary measures to mitigate
the climate change effects (or, in the language used so far, to cooperate). In
other words, one may expect to witness, in general, the three behaviors si-
multaneously in the population. Figure 21 represents these three behaviors,
cooperate, defect and punish as C, D and P providing an overall portrait
of the evolutionary dynamics of the population, in the presence of these
three possible behaviors.

9.1 model

With this in mind, in this section we go back to a population comprising
players of the same average wealth and explore the effects of this additional
strategy, the punishers (Ps). As before, Cs, but now also, Ps contribute a cer-
tain fraction of their endowment, in order to reach a common goal, whereas
Ds do not contribute. Ps will also contribute to an institution incurring in
an additional cost cs (cost of sanctioning) adding to that associated with
cooperation. This cost is paid to the institution to make it able to punish de-
fectors by an amount p (punishment fine), whenever the institution reaches
a total of contributions MIcs. This creates a second game, by introducing
an additional efficiency threshold that must be achieved, now in terms of
punishers that contribute both to the public good and to the sanctioning
institution. Thus, the punishment institution acts as a second order public
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good that indirectly increases the investment in the original public good,
which, as before, is seen as the health and stability of climate. This leads to
a modification of the payoffs in Eqs. 135 such that for a group with kC Cs,
kP Ps and N− kC − kP Ds the payoffs are

ΠD(kC,kP) = bP+ (1− r)b(1− P) −Πscale

ΠC(kC,kP) = bP+ (1− r)b(1− P) − c

ΠP(kC,kP) = ΠC(kC,kP) − cs (143)

with P = Θ(kC + kP −M) and the scale being either local or global. In the
first case, Πlocal = pΘ(kP−MI) and in the later Πglobal = pΘ(iP−MI), with
iP being the number of Punishers in the whole population. The averages
are also computed with the hypergeometric sampling for a given number
of Cs, iC, and Ps, iP (and Ds, iD = Z− iC − iP) in the population:

fD(iC, iP) =
N−1∑
j1=0

N−1−j1∑
j2=0

(
Z− 1

N− 1

)−1(
iC
j1

)(
iP
j2

)(
Z− iC − iP − 1

N− 1− j1 − j2

)
ΠD(j1, j2)

fC(iC, iP) =
N−1∑
j1=0

N−1−j1∑
j2=0

(
Z− 1

N− 1

)−1(
iC − 1

j1

)(
iP
j2

)(
Z− iC − iP
N− 1− j1 − j2

)
ΠC(j1 + 1, j2)

fP(iC, iP) =
N−1∑
j1=0

N−1−j1∑
j2=0

(
Z− 1

N− 1

)−1(
iC
j1

)(
iP − 1

j2

)(
Z− iC − iP
N− 1− j1 − j2

)
ΠP(j1, j2 + 1)

(144)

Finally, the transitions that build the transition matrix are given by the
transition between any pair of strategies. The probability that an individual
with strategyA = C,D,P changes to another strategy, B, is given by Eq. 137,
with the mutation term iA/Zµ now divided by two. This, again, allows us
to build the transition matrix from which the stationary distribution is
extracted.

9.2 acting locally

Using the same measure of group success used in the previous chapter, the
average group achievement (ηG), we can compare the effectiveness of the
institutions. The empirical results obtained for the risk dependence[77] (in
the absence of any sanctioning) show that the group achievement increases
with the value of risk, correlating nicely with the dependence shown in Fig-
ure 20 with black lines and symbols that establishes the baseline compari-
son. Indeed, in Figure 20 the behavior of ηG as a function of risk is shown
in the absence of any institutions (in black), under one global institution
(in red) and under local institutions (in blue).

Comparison of the black and red curves shows that global institutions
provide, at best, a marginal improvement compared with no institutions at
all. This result is surprising, given that most climate agreements attempt to
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Figure 20: Group achievement The average fraction of groups that attain the pub-
lic good (ηG) as a function of perception of risk (r). Sanctions are en-
acted by a global institution (red lines and squares) or by local institu-
tions (blue lines and circles). Black lines and triangles: results obtained
in the absence of any institution. Unlike global institutions, often as-
sociated with marginal improvements of cooperation, local institutions
promote group coordination to avoid a collective disaster, mostly for
low perception of risk. The coordination threshold M is set to 75% of
the group size, whereas local (global)institutions are created whenever
25% of the group (population) contributes to its establishment. Other
parameters: Z = 100,N = 4,c/b = 0.1, µ = 1/Z, p = 0.3, cs = 0.03.
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involve all countries at once[4, 5], in which case a single, global institution
constitutes the most natural candidate.

On the contrary, under local, group-wide, sanctioning institutions, asso-
ciated with a distributed scenario in which global sanctions will result from
the joint role of a variety of institutions, group achievement is substantially
enhanced, in particular when it is most needed: for low values of the per-
ception of risk and whenever individuals face stringent requirements to
avoid a collective disaster, as has been pointed out to be the case in the
context of climate treaties[4]. This aspect is particularly important, as the
group size (N) now defines both the scale at which agreements should be
attempted and the overall scope of each institution as the local institutions
are more efficient than the global one.Local institutions prevail for

longer periods than a (single)
global one, promoting

systematically more
widespread cooperation than

global ones.

The success of local institutions is closely connected with their resilience.
Figure 21 contains the key elements of the dynamics of this complex sys-
tem. In the depicted case, the local institutions are able cancel the effect
of the attractor close to the configuration where everyone defects, pushing
the population to a cooperative state with the average number of punish-
ers just over the threshold. On the other hand, the global institution keeps
that attractor, since it exists when the institution is not working. For high
risk though, the institution seems to work quite on the verge, allowing for
sequences of small invasions of defectors before becoming effective, creat-
ing three areas of behavior: full defection, on one side and, on the other,
full cooperation with enough punishers to maintain the institution which
sequentially goes to a mixed state of defectors and Cs that goes back to
an effective institution. Thus, local institutions act as a second order public
good, thus being more effective locally.

Before I conclude, I will dedicate a last chapter extending this analysis
and explore the adoption of agreements that include punishing institu-
tions.

9.3 discussion

These results support the conclusion that a decentralized, polycentric, bottom-
up approach, involving multiple institutions instead of a single global one,
provides better conditions both for cooperation to thrive and for ensuring
the maintenance of such institutions. This is particularly relevant when-
ever perception of risk of collective disaster, alone, is not enough to ensure
global cooperation. In this case, local sanctioning institutions may provide
an escape hatch to the tragedy of the commons humanity is facing. This
is a consequence of the institution providing a second order public good,
thus have similar properties of the climate public good.

In this context, it is worth stressing that the mechanisms discussed here
operate optimally whenever groups are small. Present-day local initiatives,
such as the Western Climate Initiative, have started with a small group of
US states. As time went by, the Western Climate Initiative group size has
grown to include additional Canadian states and Mexican provinces. Al-
though the reasons and motivations for such an evolution are comprehen-
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Figure 21: Effect of local versus global sanctioning institutions Left panels repre-
sent the dynamics with local institution and right panels the dynamics
with global institutions, with the orange line representing the thresh-
old in the creation of the institution. The top panels are evaluated for
low risk and the bottom panels for high risk. The gradient of selection
is represented as a stream indicating in each point the most likely di-
rection and which corresponds, in the deterministic dynamics, to paths
of the behavior of the population. Z = 200, µ = 0.05, N = 8, M = 6,
c = 0.1, b = 1, β = 5, MI = 25%, cs = 0.03, p = 0.3, r = 0.2 (low risk),
r = 0.5 (high risk).
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sible, one should not over look that larger groups are more difficult to
coordinate into widespread cooperation. Similar dynamics, in which co-
operation nucleating in a small group expands into a larger and larger
group, can be found in policies beyond climate governance with mixed re-
sults, from the major transitions in evolution[125] to the recent evolution of
the European Union, stressing the common ground shared by governance
and a variety of ecosystems[68]. In this context, it might be easier to seek
a multi-scale (and multi-step) process, in which coordination is achieved
in multiple small groups or climate blocks[101], before aiming, if needed,
at agreements encompassing larger groups (or, alternatively, inter-group
agreements). Hence, although most causes of climate change result from
the combined action of all inhabitants of our planet, the solutions for such
complex and global dilemma may be easier to achieve at a much smaller
scale[91].



10
C O N T R A C T S A N D S P I L L O V E R S E F F E C T S I N C L I M AT E
C H A N G E D I L E M M A S

This chapter is based on the work that is being developed with Francisco
C. Santos, Alessandro Tavoni and Jorge M. Pacheco.

The failure of consecutive attempts to reach global cooperation and avoid
effects of climate change has been associated with a lack of sanctioning in-
stitutions and lack of other mechanisms to deal with those who do not
contribute to the welfare of the planet or fail to abide by agreements[4,
101, 146, 148, 152]. These agreements, when empirically successful, tend
to occur in the form of clubs or other polycentric structures and are seen
as effective means of producing public goods, despite spillovers [46]. This
contrasts with the previous chapter since there we lack an explicit agree-
ment with an associated cost and benefit and the mechanism to sanction
defectors was assumed universal, in the sense that it was applied to all
defectors within the chosen setting (global or local), something that will
unlikely happen in reality. Contracts adjacent to the club structure are of-
ten voluntary and impose mechanisms to prevent free riding, acting as a
signaling mechanism for a naturally cooperative club [8, 9, 41–43]. The legally-binding Oslo

(1972) and Paris (1974)
Conventions, known
collectively since 1992 as the
OSPAR Convention, sought
to reduce ship, aircraft and
land-based pollution among
European countries in the
north-east Atlantic.
Achieving significant
cooperative agreements on the
North Sea, seen as a
particularly pressing area of
environmental concern, was
hobbled by these conventions’
unanimous consent
requirements. Non-North Sea
states including Spain and
Portugal, which had little
interest in North Sea
pollution, and the U.K.,
which was the largest North
Sea polluter, objected to
stronger binding
protections.[46]

Using the Collective Risk Dilemma we have been discussing so far, let
us incorporate the effects of pre-play contracts and spillovers or synergistic
club interactions to systematize club dynamics for public good provision-
ing and to understand the importance of the signaling systems introduced
by such constructions. My coauthors and I have investigated the emergence
and impact of voluntary pre-play contracts to deter non-cooperative behav-
ior in climate agreements. Here, I will show that i) voluntarily signing a
binding agreement and contributing can be a robust strategy ii) Cooper-
ation even if stable is never global, with defectors outside the agreement
reaping the benefits of the spillovers produced within the agreement, iii) in-
complete cooperation within the agreement is a transient state with defec-
tors leaving and iv) the contract may resolve the second order free riding,
acting as an auto-organized signaling mechanism, boosting cooperation
through voluntary participation. Finally, we analyze the adoption behavior
over time of such agreements, finding a rapid growth of the number of
signatories after a broad transient state.

10.1 the model

We again model a population in which players are asked to contribute to
a common good but now to either do it within a binding agreement setup
with enforced supervision or outside it. Thus, players act upon two de-
cisions: signing the agreement and cooperating. This can be systematized
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defining a strategy in two steps, X = (s, c), where s stands for, the first, sign-
ing the contract (s = 1) or not (s = 0) and, the second, c, for cooperating
(c = 1) or defecting (c = 0). Overall we can have four strategies: Signatories
Cooperators, C = (1, 1), Signatories Defectors D = (1, 0), Non-signatories
Cooperators, C̃ = (0, 1), and Non-signatories Defectors, D̃ = (0, 0). The
common good is shared among all players with the possibility of enhance-
ment for the members who choose to be within the contract. In turn, the
contract consists of a punishment mechanism to defectors within the club,
given that the club is big enough. Notice that this is a scenario more de-
manding (and also more realistic [46]) than, for instance, forcing insiders’
contributions to go directly to the good and, thus, providing more public
good.

Individuals will interact in groups of size N and receive a payoff de-
pending on their own and on the others’ strategies. Each group contains
players signing the contract (s = 1) and those that do not (s = 0). Every-
one will get the benefit produced, b P, which may be none, when P = 0,
depending on how many contributed. Those who sign the contract will
always pay a cost cs which may provide an excludable benefit increment,
α, and an institution to enforce the contract if and only if the number of
signatories ns is greater than Ms. Cooperators (c = 1) as usual contribute
to the good an amount cc and if the total contribution, nc cc, is greater
than Mc cc, then P = 1, providing the benefit. As in the previous chapters,
and as given by the original model of Santos and Pacheco [112], players
perceive the risk of disaster with probability r leading to a modified prob-
ability of getting the benefit, P = Θ (nc −Mc) + (1− r)(1−Θ (nc −Mc)),
with Θ (x) = {1 for x > 0, 0 o.w. the Heaviside function. The payoffs can
be written as

ΠC=(1,1) (ns,nc) = −cs − cc + b (1+α Θ (ns −Ms))P (nc) , (145)

ΠD=(1,0) (ns,nc) = −cs + b (1+α Θ (ns −Ms))P (nc) − pΘ (ns −Ms) ,
(146)

ΠC̃=(0,1) (ns,nc) = −cc + b P (nc) , (147)

ΠD̃=(0,0) (ns,nc) = b P (nc) , (148)

where p stands for the punishment that may be induced on Ds when the
contract is enforced.

In each time step, an individual with strategy X = {C,D, C̃, D̃} may revise
their strategy comparing their average payoff (or fitness), fX, with that of
another individual with strategy Y, fY , and change strategy with a probabil-
ity p (X, Y) = (1+ expβ (fX − fY) )

−1. Furthermore, exogenous factors can
induce a change of strategy with probability µ and, thus, the probability
that some individual changes from strategy X to Y is (1− µ) iXZ

(
iY
Z−1p (X, Y) + µ/3

)
,

where iX is the number of individuals with strategy X. Again, for further
description see Chapter 3.
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10.2 dynamics

The complete dynamics happens in a simplex represented in a tetrahedron
of which each of the four vertex represents a configuration of the popula-
tion in which all individuals have the same strategy (all C, all D, all C̃, all
D̃). In order to gain intuition of the complete dynamics, let us analyze what
happens between each pair of strategies, studying the edges of the tetrahe-
dron, where only two of the strategies coexist at any given time (Figure 22).
Due to the continuity properties of the gradient of selection, the properties
on the edges condition the behavior of the population on the faces, where
three strategies are present at each time, and consequently the behavior on
the interior, where all strategies coexist. Thus, some critical parameters of
the game can be obtained through this pairwise analysis. For simplicity,
we set Z→∞ and use Eq.(65) to get the pairwise dynamics.
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Figure 22: Conditions that govern the interactions of the pairs of strategies ᾱ
and ¯̄α are critical values of α and f and g are scaling factors between 0
and 1.

We can understand what governs the dynamics of cooperation by look-
ing at the fitness difference between cooperative and non-cooperative strate-
gies. In fact, apart from risk perception and uncertainty, cooperation is
driven by the usual settings of the agreements, namely, group size N and

thresholdMc, with γ =

(
N− 1

Mc − 1

)(
Mc−1
N−1

)Mc−1(N−Mc

N−1

)N−Mc

control-

ling what are high or low cost-to-benefit ratios (see condition A/B and C/D
in Figure 22). In the same way, the dynamics of signing or not the contract
can be grasped by analyzing the pairs of strategies that change signing be-
havior (see conditions E/F). This analysis reveals that the enhancement the
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contract provides to the generated good (α) – or equivalently but opposite,
the amount of spillover the players outside the contract identify coming
from the good generated by the contract – governs signing. Hence, if there
is no enhancement or there is full spillover (α = 0), players tend not to sign
the contract. This reveals that individuals need to effectively obtain addi-
tional outcome for being part of the contract, with reinforcement through
the institution being insufficient to provide such marginal benefit right
away. Effects that capture α > 0 can be achieved, for instance, through ex-
pectations, as discussed in Chapter 4, with individuals inside the contract
estimating an increased benefit; or can be thought as a political reinforcing,
strengthening of relationships between signatories. Naturally, interplay be-
tween these two decisions, cooperating and signing, is a non-linear one
(see conditions G/H/I/J and K/L/M and Figure 23).

Overall, one can notice that the pairwise conditions show how, when
the game is not favorable outside the contract, the contract can serve its
purpose and pave way for a favorable setting. In fact, the contract not only
establishes a coordination of signing, typical of contracts, but it imposes
both an effective reduction of costs of cooperation together with an in-
creased benefit that can counterbalance the effect of a reduced risk (with
an effective risk of r (1+α)).Excludable benefits can

sustain incomplete
agreements and are central to

both hegemonic stability
theory and the dominant

actor models of cooperation.

With that in mind, we can pose the question of whether signing and con-
tributing can or cannot be a robust strategy. Furthermore, we would like
to understand what kind of dynamics allows for this. Figure 23 shows the
dynamics of the population on the faces of the simplex, where each trio of
strategies is represented under conditions of stable cooperation (conditions
A, E and G/H in Figure 22) with high risk (r = 1) and without exogenous
factors (µ = 0). Under these conditions, we can identify two distinct sce-
narios: one in which cooperation both inside and outside of the contract is
somewhat stable, coexisting with defection, and the other where coopera-
tion is stable only inside the contract.

When the game is less stringent, whether for higher risk or smaller cost
to contribution, there are two coordination problems, those of cooperation
and of signing, leading to three different stable configurations of the popu-
lation (right panel). These configurations consist of full defection (D̃), a mix
of cooperation and defection in the absence of contracts (D̃ and C̃) or a mix
of cooperation and defection within the contract (C andD). As cooperation
becomes less favorable (left panel), cooperation will tend to only happen
within the contract (C): full cooperation outside the contract (C̃) starts by
leading to defection, but with some players joining the club as defectors
(D) before either becoming cooperators within the club (C) or before they
leave (D̃). On the other hand, signing the contract for those who do not
contribute (D̃) becomes a coordination problem: a certain amount of con-
tributors and signatories is needed for them to join the contract, creating
a bistability on the population. Depending on the marginal advantages of
the contract, there can be a tendency for the absence of non-signatories
but, generally, a mixed scenario of non-signatories defectors (D̃) and sig-
natories (C and D) arises, in one hand, due to the slow dynamics on the
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face comprising those strategies and, on the other, due to exogenous fac-
tors (µ > 0) as random exploration pushes the dynamics to the inside of
the simplex, as we saw in Chapter 6.

Altogether, this means that cooperation within the contract can then
emerge and be stable though never global, with defectors outside the con-
tract reaping the benefits of the spillovers produced. We are now ready to
show how the previous analyzes hold in the general setting of the four
strategies interplaying.

Tri-stability

D D

D

C

D C
~ ~

Bi-stability

D D

D

C

C~ ~
D

Figure 23: Tristability and Bistability of the population represented on the faces
of the tetrahedron The arrows represent the most likely direction of
evolution of the population composed of a finite number of individuals,
the gradient of selection. Z = 50,n = 5,µ = 0,Mc = 3,cc = 1,β = 1,
Ms = 3,p = 0.5, r = 1, ε = δ = 0, cs = b/10. Left: b = 10, α = 0.25.
Right: b = 5,α = 0.3. Conditions A, E and G in Figure 22 are fulfilled.

10.3 the perks of ambiguous strategies

In the previous section we saw that, apart from all D̃, the two remaining
stable fixed points occur in the edges containing only strategies that sign
or do not sign the contract. Even though we can weigh the probability
that the players are inside and outside the contract, this, in one hand, does
not allow us to immediately grasp the general difference from a scenario
without contracts or, more precisely, where there is no option of entering
or leaving a contract (like in Chapter 7). On the other hand, the ability to
choose to ratify a contract has been shown to promote cooperation (see [8]
and for a review see [23]). One of the reasons pointed out for this effect is
related with the ability of the players to perceive the choice as a signal for
the players’ preferences and their intended behavior.
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In order to understand the importance of the contract, we need to take
into account the complete dynamics of the system, allowing for all the
strategies to be present in the population. We then compare the achieve-
ment of the two scenarios: i) ability to contribute outside the contract or
defect inside it and ii) contributing implies signing. For this, we use the av-
erage group achievement of the full dynamics (the complete tetrahedron)
and that of the dynamics that happens only between Cs and D̃s. Figure 24
depicts that unclear strategies, where players can cooperate outside the
contract or can defect even though paying to guarantee cooperation, allow
for the promotion of cooperation when compared to a scenario in which
players either cooperate inside the contract of defect outside.
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Figure 24: Average group achievement in the complete dynamics (a) Group
achievement as a function of risk (blue is full dynamics, orange is dy-
namics with only Cs and D̃s). (b) Group achievement dependence of
spillovers (the color gradient grows from blue (0.0) to light orange(1.0)).
Z = 45, N = 5, µ = 2/15, Mc = 3, cc = 2, β = 10, b = 10, cs = 0.5,
Ms = 4, p = 0.5, α = 0.1, ε = δ = 0.

10.4 growth of a structure

The initiation of cooperation commonly involves a grouping of coopera-
tors, in a process akin to the formation of coalitions. In this model this
is reflected by the coordination barrier illustrated in Figure 23 and that
is also present in the dynamics between D̃s and Cs – it is only when the
coalition grows to a certain point that others will systematically join, up to
a certain point. Thus, in a scenario where cooperation can strive, we expect
to see cooperation burst after a period of where a core of members is being
created.

Two possible scenarios are depicted in Figure 25, where we can distin-
guish between trajectories that overcome the coordination barrier by the
end of the simulation time, the blue shade, and those that did not, the or-
ange shade. The time it takes the groups to form a critical mass of signato-
ries can be very large and its distribution is broad. In order to characterize
the time series growth rate, we analyze the time of passage at half way
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Figure 25: Temporal dynamics of membership The membership dynamics con-
tains a coordination point, resulting in two types of trajectories: those
in which no players adhere to the agreement and those in which most of
the groups are constituted by signatories (inset). In the left panel three
different trajectories are highlighted to show the triggering effect char-
acteristic of a coordination threshold. The solid black line represents
a sigmoidal function, max−min

1+e−ρ(t−m) +min, with the average parameters.
As one can see from the inset, the time it takes to reach the coordi-
nation threshold, m, has a very broad distribution, going far beyond
the generations considered. On the right panels we see the distribution
of the different parameters: (top) the membership before growth (min)
has a very narrow distribution close to zero and the membership af-
ter growth (max) settles at high levels of adoption possibly reaching
100%; (bottom) the rate of adoption (ρ) is very high as soon as the
threshold is reached with an average growth of 50% per generation.
Z = 45, N = 5, µ = 2/Z,Mc = 3, cc = 1,β = 1,b = 10, cs = 1,Ms =

3,p = 0.5,α = 0.25, r = 1, iC (0) = iD (0)=iC̃ (0) = 2, ε = δ = 0

and allow for an exponential growth to saturation, obtaining a distribution
of growth rates with an average close to 50% of adoption per generation,
which consists in a very fast adoption of the agreement once the coordina-
tion threshold is met.

10.5 discussion

The demand for cooperative behavior in the international system is high,
though designing effective institutions to enable and sustain cooperation
is complex. The problem structure of climate change makes it particularly
challenging, given demands for sharp reductions in emissions that will
be costly, and incentives by individual countries to free-ride on the miti-
gation actions of others. The diversity inherent in climate change politics
complicates efforts to achieve a deep centralized agreement. Despite these
challenges, history offers a range of examples where clubs initially com-
posed of a few countries did succeed in cooperating to achieve shared
goals despite free-riding risks, but initially motivated by partially exclud-
able club goods[46]. This model supports the hypothesis of the contract
as a coordination problem in which a certain amount of signatories is re-



106 contracts and spillovers effects in climate change dilemmas

quired to stabilize it. Indeed, some excludability in the good produced, i. e.,
a portion of the good produced that is exclusive to the signatories (α > 0)
partially solves the second order free riding problem. This can be thought
as political reinforcing, strengthening of relationships between signators,
or increased payoff expectation.

While simplifying to homogenous actors with simple preferences and
representing an ideal type of agreement formation (bottom-up club growth
vis-à-vis top-down inclusive construction, as we saw in last chapter), the
model lends more optimism to the potential for small agreements with
managed growth to achieve substantial provision of both excludable (do-
mestic) benefits as well as non-excludable public goods. In fact, it shows
that cooperation inside the contract is easier with the enhancement it pro-
vides reducing the effective risk and punishment reducing the effective
cost. Nonetheless, even though signing and contributing can be a robust
strategy, incomplete cooperation within the contract is a stable state, mak-
ing cooperation, even if stable, never global, with defectors in or outside
the contract reaping the benefits of the spillovers produced by the contract.

The analysis shown, in which agreements start small before growing,
is conceptually consistent with the stated goals of the building blocks ap-
proach, the dynamics being a mix between coordination and coexistence.
For this, the group size tends to increase as soon as a significant amount
of signatories is reached. This recalls the importance of contracts which
can strengthen relations between the actors and allow for the formation of
coalitions that can then overcome the coordination point. Firstly, though
domestic interests that motivate coalitions may be limited in the long term,
they nonetheless may catalyze sufficient participation to surpass coordina-
tion points that attract outsiders to reap the rewards of fuller cooperation.
Secondly, while keeping agreements small may lead to redundancy, it is
also likely that overlapping institutions in the sequential construction of
an international agreement allows actors to build trust and networks, and
exploit synergies that can overcome the eventual challenge of aggregation
into a single universal agreement.

Overall, this supports the idea of club formation and of polycentricity:
voluntary clubs are a means of creating a signaling mechanism for future
cooperation of its members. As long as the club has the right structure,
being small and creating enough excludable benefits to its members, they
will remain cooperative and they will sprawl. The important work for poli-
cymakers will be to find issue areas where opportunities for new building
blocks exist.

In light of all our results, the widely repeated motto "Think globally, act
locally" would hardly seem more appropriate.
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C O N C L U S I O N S

In this dissertation I started by laying down the framework of Evolution-
ary Game Theory on finite well-mixed populations. I use it to developed
intuition and to serve as base to build new tools.

First, I elaborate on a framework to study discounting and forecasting
which, so far, only served as a means to assess the different assumptions
that are usually implicit in the equations. Indeed, I have shown that the
traditional framwork is exactly recovered only when either discounting
is very high or when forecasting is invariant to the present. I have also
shown that the simplest form of rationality maps exactly into the typical
evolutionary player when groups are smaller than the population.

Then, I proposed an equation to describe the evolution of continuous
traits in the presence of imitation errors and mutations and used it to show
that if selection is high, quantitatively specifying high, the evolutionary
populations with continuous traits tend to collapse in specific values of
those traits.

Finally, I expose a framework particularly useful to access the invariant
distribution when the number of strategies is high. It consists of a hierarchy
of approximations that exhibit an intuitive topological appeal. Topological
criteria is employed in choosing "Configurations of Interest", providing a
description that allows one to explicitly include the role of mutations while
dramatically reducing the complexity of the multi-dimensional Markov
processes.

This part consisted on my contribution to the field in a more pure form,
laying down the tools, thoughts and reasoning developed to study dis-
counting, rationality, continuous strategies and exploration of large phase-
spaces, in the familiar framework of EGT with the objective of creating a
reference frame and to open up new research questions or to revisit old
ones.

In the final part of this dissertation, I use the mathematical framework
of Evolutionary Game theory to study what has been coined as “polycen-
tric governance”[90, 91]. The results show that high levels of cooperation
can indeed be reached globally via such a polycentric approach, when a
multiplicity of small groups face local dilemmas.[107, 115] However, this
mechanism is not bullet proof and suffers from fragilities which are of
the same stance as those stemming from the usual top-down approach. I
discuss this in the context of Climate Change negotiations and introduce
four of the main issues that are pointed as causes to their failure. I show
how uncertainty is a key factor to this threshold game, whether in terms
of the perception of disaster or in terms of the targets to be met. Both
low levels of risk perception or high threshold uncertainty induce a critical
transition into a state where everyone involved ceases to cooperate. Addi-
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tionally, I consider the possibility that individuals have different abilities to
contribute, taking into account wealth inequality. I show how homophily
in terms of the network of influence of the Rich and the Poor leads to an
added effort from the Rich and, is some cases, to a collapse of cooperation.
In any of these cases, all of which are detrimental to cooperation, the co-
operative state is more robust the smaller the groups, an observation that
strongly supports the polycentric approach. Finally, I study the possibility
of supervision of these dilemmas via institutions and contracts and, again,
pose the question of at which scale should it be implemented. First, com-
paring, in the setup of EGT, the efficiency of a global institution overview-
ing all interactions versus that of locally arranged ones, then analyzing the
dynamics of voluntary agreement. The results show that polycentric sanc-
tioning is more efficient in monitoring the multiple interactions. Then, I
studied the creation of climate contracts and show that the fact that enter-
ing the agreement is voluntary tends to increase overall cooperation, es-
pecially in smaller groups, where those remain cooperative and can, then,
proliferate.

In any case, the chance of failing to solve the climate change problem is
still very high, specially taking into account that the general dynamics is a
mix between coordination and coexistence. This also reinforces the impor-
tance of contracts which can strengthen relations between the actors and
allow for the formation of coalitions that allow overcoming the coordina-
tion point.

Furthermore, cooperation can be slightly amended whenever demand-
ing thresholds are adopted.[107, 115] Moreover, if intermediate tasks are
designated,[77] or if individuals have the opportunity to pledge their con-
tribution before actual action,[134] cooperation is also more prominent.

Nonetheless, some of these results need to be tested in the field. This
should happen not only in terms of their validity but also in order to pur-
sue the identification of the critical parameters that define the regime we
are in. How close are we to the transition in terms of risk perception in
a specific issue? How much can we reduce threshold uncertainty? Up to
which scale can we implement local institutions and keep the cost:size pro-
portionality? Answering these practical questions is what, ultimately, will
render feasible the empirical implementation of these results.



Part V

A P P E N D I X

Collective writing produces much more mature texts. Because
I believe this thesis should also reflect the stage of my writing
skills (or lack of them), I chose – while admittedly reaping some
of what my coauthors and I have written – to put the detailed
and matured documents in this final part.
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Below follows the print of the document "Evolutionary dynamics of cli-
mate change under collective-risk dilemmas" by Francisco C. Santos, Vítor
V. Vasconcelos, Marta D. Santos, P. N. B. Neves and Jorge M. Pacheco, pub-
lished in Mathematical Models and Methods in Applied Sciences in 2012, in
volume 22 1140004.
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VÍTOR V. VASCONCELOS, MARTA D. SANTOS and P. N. B. NEVES
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1. Introduction

In a dance that repeats itself cyclically, countries and citizens raise significant expec-

tations every time a new International Environmental Summit is settled. Unfortu-

nately, few solutions have come out of these colossal and flashy meetings, challenging

our current understanding and models on decision-making, so that more effective

levels of discussion, agreements and coordination become accessible. From Montreal

and Kyoto to Copenhagen summits, it is by now clear how difficult it is to coordi-

nate efforts.1,2 Often, individuals, regions or nations opt to be free riders, hoping

to benefit from the efforts of others while choosing not to make any effort them-

selves. Cooperation problems faced by humans often share this setting, in which

the immediate advantage of free riding drives the population into the tragedy of

the commons,3 the ultimate limit of widespread defection.3–12

To address this and other cooperation conundrums, ubiquitous at all scales and

levels of complexity, the last decade has witnessed the discovery of several core

mechanisms responsible to promote and maintain cooperation at different levels of

organization.3,5,10,13–26 Most of these key principles have been studied within the

framework of two-person dilemmas such as the Prisoner’s dilemma, which consti-

tutes a powerful metaphor to describe conflicting situations often encountered in

the natural and social sciences. Many real-life situations, however, are associated

with collective action based on joint decisions made by a group often involving

more than two individuals.3,5,13,27 These types of problems are best dealt with in

the framework of N -person dilemmas and Public Goods games, involving a much

larger complexity that only recently started to be unveiled.5,14,22,28–33 The welfare

of our planet accounts for possibly the most important and paradigmatic example

of a public good: a global good from which everyone profits, whether or not they

contribute to maintain it.

One of the most distinctive features of this complex problem, only recently tested

and confirmed by means of actual experiments,9 is the role played by the perception

of risk that accrues to all actors involved when making a decision. Indeed, exper-

iments confirm the intuition that the risk of collective failure plays central role in

dealing with climate change. Up to now, the role of risk has remained elusive.1,2,11

In addition, it is also unclear what is the ideal scale or size of the population engag-

ing in climate summits — whether game participants are world citizens, regions

or country leaders, such that the chances of cooperation are maximized. Here we

address these two issues in the context of game theory and population dynamics.

The conventional Public Goods game — the so-called N -person Prisoner’s

dilemma — involve a group of N individuals, who can be either Cooperators (C)

or Defectors (D). Cs contribute a cost “c” to the public good, whereas Ds refuse to

do so. The accumulated contribution is multiplied by an enhancement factor that

returns equally shared among all individuals of the group. This implies a collec-

tive return which increases linearly with the number of contributors, a situation

that contrasts with many real situations in which performing a given task requires
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the cooperation of a minimum number of individuals of that group.28–30,33–38 This

is the case in international environmental agreements which demand a minimum

number of ratifications to come into practice,1,2,9,39–42 but examples abound where

a minimum number of individuals, which does not necessarily equal the entire

group, must simultaneously cooperate before any outcome (or public good) is

produced.28,29 Furthermore, it is by now clear that theN -person Prisoner’s dilemma

fails short to encompass the role of risk, as much as the nonlinearity of most col-

lective action problems.

Here we address these problems resorting to a simple mathematical model,

adopting unusual concepts within political and sustainability science research, such

as peer-influence and evolutionary game theory.14,43,44 As a result we encompass

several of the key elements stated before regarding the climate change conundrum

in a single dynamical model.

In the following we show how small groups under high risk and stringent require-

ments toward collective success significantly raise the chances of coordinating to

save the planet’s climate, thus escaping the tragedy of the commons. In other words,

global cooperation depends on how aware individuals are concerning the risks of

collective failure and on the pre-defined premises needed to accomplish a climate

agreement. Moreover, we will show that to achieve stable levels of cooperation, an

initial critical mass of cooperators is needed, which will then be seen as role models

and foster cooperation.

We will start by presenting the model in Sec. 2. In Sec. 3, we discuss the situation

in which evolution is deterministic and proceeds in very large populations. In Sec. 4

we analyze the evolutionary dynamics of the same dilemma in finite populations

under errors and behavioral mutations. Finally, in Sec. 5 we provide a summary

and concluding remarks.

2. Model

Let us consider a large population of size Z, in which individuals engage in an

N -person dilemma, where each individual is able to contribute or not to a common

good, i.e. to cooperate or to defect, respectively. Game participants have each an

initial endowment b. Cooperators (Cs) contribute a fraction c of their endowment,

while defectors (Ds) do not contribute. As previously stated, irrespectively of the

scale at which agreements are tried, most demand a minimum number of contrib-

utors to come into practice. Hence, whenever parties fail to achieve a previously

defined minimum of contributions, they may fail to achieve the goals of such agree-

ment (which can also be understood as the benefit “b”), being this outcome, in the

worst possible case, associated with an appalling doomsday scenario. To encompass

this feature in the model we require a minimum collective investment to ensure

success: If the group of size N does not contain at least MCs (or, equivalently, a

collective effort of Mcb), all members will lose their remaining endowments with a

probability r (the risk); otherwise everyone will keep whatever they have. Hence,
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M < N represents a coordination threshold,9,28 necessary to achieve a collective

benefit. As a result, the average payoff of a D in a group of size N and kCs can be

written as

ΠD(k) = b{θ(k −M) + (1− r)[1 − θ(k −M)]}, (1)

where θ(x) is the Heaviside step function (θ(x < 0) = 0 and θ(x ≥ 0) = 1).

Similarly, the average payoff of a C is given by

ΠC(k) = ΠD(k)− cb. (2)

The risk r is here introduced as a probability, such that with probability (1 − r)

the benefit will be collected independent of the number of contributors in a group.

This collective-risk dilemma represents a simplified version of the game used

in the experiments performed by Milinski et al.9 on the issue of the mitigation

of the effects of climate change, a framework which is by no means the standard

approach to deal with International Environmental Agreements and other problems

of the same kind.1,2,39,40 The present formalism has the virtue of depicting black

on white the importance of risk and its assessment in dealing with climate change,

something that Heal et al.41,45 have been conjecturing for quite awhile. At the

same time, contrary to the experiments in Ref. 9, our analysis is general and not

restricted to a given group size.

Additionally, and unlike most treatments,1 our analysis will not rely on individ-

ual or collective rationality. Instead, our model relies on evolutionary game theory

combined with one-shot Public Goods games, in which errors are allowed. In fact,

our model includes what we believe are key factors in any real setting, such as

bounded rational individual behavior, peer-influence and the importance of risk

assessment in meeting the goals defined from the outset.

We assume that individuals tend to copy others whenever these appear to be

more successful. Contrary to strategies defined by a contingency plan which, as

argued before,46 are unlikely to be maintained for a long time scale, this social

learning (or evolutionary) approach allows policies to change as time goes by,22,47,48

and likely these policies will be influenced by the behavior (and achievements) of

others, as previously shown in the context of donations to public goods.44,49,50 This

also takes into account the fact that agreements may be vulnerable to renegotia-

tion, as individuals may agree on intermediate goals or assess actual and future

consequences of their choices to revise their position.1,2,7,39,40,45

3. Evolution of Collective Action in Large Populations

In the framework of evolutionary game theory, the evolution or social learning

dynamics of the fraction x of Cs (and 1− x of Ds) in a large population (Z → ∞)

is governed by the gradient of selection associated with the replicator dynamics

equation14,28,51

g(x) ≡ ẋ = x(1− x)(fC(x)− fD(x)), (3)
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which characterizes the behavioral dynamics of the population, where fC(fD) is

the fitness of Cs (Ds), here associated with the game payoffs. According to the

replicator equation, Cs (Ds) will increase in the population whenever g(x) > 0

(g(x) < 0). If one assumes an unstructured population, where every individual

can potentially interact with everyone else, the fitness (or social success) of each

individual can be obtained from a random sampling of groups. The latter leads to

groups whose composition follows a binomial distribution. Hence, we may write the

fitness of Cs, fc, and Ds, fD, as28–30

fC(x) =

N−1∑

k=0

(
N − 1

k

)
xk(1− x)N−1−kΠC(k + 1) (4a)

and

fD(x) =

N−1∑

k=0

(
N − 1

k

)
xk(1 − x)N−1−kΠD(k), (4b)

where ΠC(k)(ΠD(k)) stands for the payoff of a C(D) in a group of size N and kCs,

as defined above in Eqs. (1) and (2).

Figure 1 shows that, in the absence of risk, g(x) is always negative. Risk, in

turn, leads to the emergence of two mixed internal equilibria, rendering coopera-

tion viable: for finite risk r, both Cs (for x < xL) and Ds (for x > xR) become

disadvantageous when rare. Co-existence between Cs and Ds becomes stable at

a fraction xR which increases with r. Collective coordination becomes easier to

achieve under high-risk and, once the coordination barrier (xL) is overcome, high

levels of cooperation will be reached.

Fig. 1. For each fraction of Cs, if the gradient g(x) is positive (negative) the fraction of Cs will
increase (decrease). Increasing risk (r) modifies the population dynamics rendering cooperation
viable depending on the initial fraction of Cs (N = 6, M = 3 and c = 0.1). The five curves
correspond, from top to bottom to, r = 1, 0.75, 0.5, 0.25, 0.
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The appearance of two internal equilibria under risk can be studied analytically,

as the roots of the fitness difference Q(x) ≡ fC(x)− fD(x) determines the occur-

rence of nontrivial equilibria of the replicator dynamics. From the equations above

we may write, after some algebra, that

Q(x) = b

[(
N − 1

M − 1

)
xM−1(1− x)N−Mr − c

]
. (5)

Defining the cost-to-risk ratio γ = c/r, i.e. the ratio between the fraction of

the initial budget invested by every C and the risk of losing it, the sign of Q(x) is

conveniently analyzed by using the polynomial

p(x) =

(
N − 1

M − 1

)
xM−1(1 − x)N−M − γ, (6)

which, in turn, can be used to determine the critical value γ̄ below which an interior

fixed point x∗ ∈ (0, 1) emerges. Indeed, we can prove the following theorem.

Theorem 1. Let Γ(x) =
(
N − 1
M − 1

)
xM−1(1 − x)N−M . For 1 < M < N, there exists

a critical cost-to-risk ratio γ̄ = Γ(x̄) > 0 and fraction of Cs 0 < x̄ < 1 such that :

(a) If γ > γ̄, the evolutionary dynamics has no interior equilibria.

(b) If γ = γ̄, then x̄ is a unique interior equilibrium, as this equilibrium is unstable.

(c) If γ < γ̄, there are two interior equilibria {xL, xR}, such that xL < x̄ < xR, xL,

is unstable and xR stable.

Proof. Let us start by noticing that

dΓ(x)

dx
= −

(
N − 1

M − 1

)
xM−2(1− x)N−M−1s(x),

where s(x) = 1 + (N − 1)x − M . Since N > 2 and 1 < M < N , then dΓ(x)/dx

has a single internal root for x̄ = (M − 1)/(N − 1). In addition, s(x) is negative

(positive) for x < x̄ (x > x̄), which means that Γ has a global maximum for x = x̄.

(a) and (b) can now easily follow. Since Γ has a maximum at x̄, it follows that

Γ(x) = 0 has no solutions for γ > γ̄ and a single one, at x̄, for γ = γ̄. Moreover,

both when x → 0 and x → 1, p(x) < 0, making x = 0 a stable fixed point and

x = 1 an unstable one. Therefore, if x̄ is a root, it must be unstable.

To prove (c), we start by noticing that Γ(0) = Γ(1) = 0. From the sign of s(x)

(see above), Γ(x) is clearly monotonic increasing (decreasing) to the left (right) of

x̄. Hence, there is a single root xL(xR) in the interval 0 < x < x̄ (x̄ < x < 1). Since

x = 0 is stable and x = 1 unstable, xR must be stable and xL unstable.

Theorem 2. For M = 1, if γ < γ̄, there is one stable interior equilibrium point in

the interval 0 < x < 1.

Proof. If M = 1, Γ(x) = (1−x)N−1, which is a monotonic decreasing function for

0 < x < 1. This means that the function p(x) has only one zero in that interval,
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equilibria (x*)
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Fig. 2. (a) Classification of all possible dynamical scenarios when evolving an infinitely large
population of Cs and Ds as a function of γ, M and N . A fraction x of an infinitely large population
adopts the strategy C; the remaining fraction 1 − x adopts D. The replicator equation describes
the evolution of x over time. Solid (open) circles represent stable (unstable) equilibria of the
evolutionary dynamics; arrows indicate the direction of selection. (b) Internal roots x∗ of g(x)
for different values of the cost-to-risk ratio γ = c/r, at fixed group size (N = 6) and different
coordination thresholds (M). For each value of γ one draws a horizontal line; the intersection of
this line with each curve gives the value(s) of x∗, defining the internal equilibria of the replicator
dynamics. The empty circle represents an unstable fixed point (xL) and the full circle a stable
fixed point (xR) (M = 4 and γ = 0.15 in example).

i.e. there is only one x̄ (0 < x̄ < 1) such that p(x̄) = 0. Given that p(x) is positive

(negative) for x < x̄ (x > x̄) then x̄ is a stable equilibrium point.

Theorem 3. For M = N, if γ < γ̄, there is one unstable interior equilibrium point

in the interval 0 < x < 1.

Proof. If M = N , Γ(x) = xN−1, which is a monotonic increasing function for

0 < x < 1. This means that the function p(x) has only one zero in that interval,

i.e. there is only one x̄ (0 < x̄ < 1) such that p(x̄) = 0. Given that p(x) is negative

(positive) for x < x̄ (x > x̄) then x̄ is an unstable equilibrium point.

In Fig. 2(a), we provide a concise scheme of all possible dynamical scenarios

that emerge from collective-risk dilemmas, showing how the coordination threshold

and the level of risk play a central role in dictating the viability of cooperation.

Figure 2(b) also shows the role played by the threshold M : for fixed (and low) γ,

increasing M will maximize cooperation (increase of xR) at the expense of making

it more difficult to emerge (increase of xL).

4. Evolution of Collective Action in Small Populations

Real populations are finite and often rather small, contrary to the hypothesis under-

lying the dynamics portrayed in Sec. 3. In particular, this is the case of the famous
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world summits where group and population sizes are comparable and of the order

hundreds, as individuals are here associated with nations or their respective lead-

ers. For such population sizes, stochastic effects play an important role and the

deterministic description of the previous section may be too simplistic.52

For finite, well-mixed populations of size Z, the binomial sampling in Eqs. (4)

is replaced by a hypergeometric sampling (sampling without replacement). As a

result, the average fitness of Ds and Cs in a population with kCs, is now written as

fD(k) =

(
Z − 1

N − 1

)−1 N−1∑

j=0

(
K

j

)(
Z − k − 1

N − j − 1

)
ΠD(j) (7)

and

fC(k) =

(
Z − 1

N − 1

)−1 N−1∑

j=0

(
k − 1

j

)(
Z − k

N − j − 1

)
ΠC(j + 1), (8)

respectively. We adopt a stochastic birth–death process53 combined with the pair-

wise comparison rule54 in order to describe the social dynamics of Cs (and Ds) in a

finite population. Under pairwise comparison, each individual i adopts the strategy

of a randomly selected member of the population j with probability given by the

Fermi function (from statistical physics)

pij =
1

1 + e−β(fj−fi)
. (9)

Here β controls the intensity of selection. For β � 1, selection is weak and individual

fitness is but a small perturbation to random drift in behavioral space. Under this

regime one recovers the replicator equation in the limit Z → ∞.54 For arbitrary

β, the quantity g(x) of Eq. (3), specifying the gradient of selection, is replaced in

finite populations by54

G(k) ≡ T+(k)− T−(k) =
k

Z

Z − k

Z
tanh

{
β

2
[fC(k)− fD(k)]

}
, (10)

where k stands for the total number of Cs in the population and

T+(k) =
k

Z

Z − k

Z
[1 + e∓β[fC(k)−fD(k)]]−1 (11)

for the probabilities to increase and decrease the number of Cs in the population.

4.1. Fixation probabilities

The fact that, in finite populations, the continuous gradient of selection g(x) is

replaced by a discrete G(k/Z) has implications in the overall evolutionary dynamics

of the population. Importantly, in the absence of mutations evolutionary dynamics

in finite populations will only stop whenever the population reaches a monomorphic
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state.52,54 Hence, in addition to the analysis of the shape of G(k/Z), often one of the

quantities of interest in studying the evolutionary dynamics in finite populations

is the probability φk that the system fixates in a monomorphic cooperative state,

starting from, for instance, a given number k of Cs. The fixation probability of

kCs (φk) depends on the ratio λj = T−(j)/T+(j), being given by53

φk =

k=1∑

i=0

i∏

j=1

λj

/
Z−1∑

i=0

i∏

j=1

λj . (12)

Under neutral selection (that is, in the limit β → 0) the fixation probability

trivially reads φN
k = k/Z, providing a convenient reference point.17,53–55 For a

given k, whenever φk > φN
k , natural selection will favor cooperative behavior, the

opposite being true when φk < φN
k .

In Fig. 3 we plot the fixation probability as a function of the initial fraction of

Cs for different values of risk, and a population of 50 individuals. Even if cooper-

ators remain disadvantageous for a wide range of the discrete frequency of Cs (see

Fig. 1), the fixation probability of kCs outperforms φk (picture as a dashed grey

line) for most values of k/Z. This is due to the stochastic nature of the imitation

Fig. 3. Evolutionary dynamics for different values of risk in finite populations. In panel (a), we
show the fixation probabilities for different values of risk (r) as a function of the number of Cs
(Z = 50, c = 0.1, N = 6 = 2M, β = 1.0). In panels (b) and (c), we show the average number
of generations (tj/Z)57,58 needed to fixate an initial fraction of 0.5 of cooperators, as a function
of the intensity of selection β (panel (b)) and population size Z (panel (c)). We consider the case
of maximum risk (r = 1) for both (b) and (c) panels and c = 0.1, N = 6 = 2M. Even if high
risk can turn the fixation of cooperators almost certain (as shown in panel (a)), the time the
population takes to reach such state can be arbitrarily long.
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process, which allows the fixation of rare cooperators, even when they are initially

disadvantageous. Hence, even without random exploration of strategies,56 simple

errors in the imitation process (finite β) are enough to overcome the unstable fixed

point shown in Fig. 2 and reach a more cooperative basin of attraction on the right-

hand side of the gradient (see Fig. 3). As a result, for high values of risk and large,

but finite, populations, cooperation is by far the strategy most favored by evolution

irrespectively of the initial fraction of cooperators.

As discussed above, in finite populations the evolutionary dynamics becomes

stochastic. Yet, even if fixation in one of the two absorbing states is certain (k = 0

and k = Z), the time required to reach it can be arbitrarily long. This is particularly

relevant in the presence of basins of attraction with polymorphic stable configura-

tions, which correspond to finite population analogues of co-existence equilibria

in infinite populations. For high intensities of selection and/or large populations,

the time required for fixation (tj) can increase significantly. Following Antal and

Scheuring,57 the average number of updates tj the population takes to reach full

cooperation, starting from j cooperators, can be written as57,59

tj = −t1
φ1

φj

N−1∑

k=j

k∏

m=1

λm +

N−1∑

k=j

k∑

l=1

φl

T+(j)

k∏

m=l+1

λm, (13a)

where

t1 =
N−1∑

k=j

k∏

l=1

φl

T+(l)

k∏

m=l+1

λm. (13b)

This is illustrated in Figs. 3(b) and 3(c), where we compute average number of

generations (tj/Z) needed to attain monomorphic cooperative state as a function

of the intensity of selection and population size, starting from 50% of Cs and Ds for

a dilemma with highest risk (r = 1). These panels clearly indicate that even if high

risk can turn the fixation of cooperators almost certain (as shown in the left panel),

the time the population takes to reach such state can be arbitrarily long. In other

words, while the computation of the fixation probabilities can be mathematically

attractive, its relevance may be limited for large intensities of selection and/or large

Z. In other words, the stochastic information built in φk shows how unstable roots

of G may be irrelevant; however, the lack of time information in φk ignores the key

role played by the stable roots of G.

Moreover, stochastic effects in finite populations can be of different nature, going

beyond errors in the imitation process. One can also consider mutations, random

exploration of strategies or any other reason that leads individuals to change their

behavior, in addition to social learning by imitation dynamics.56 In the simplest

scenario, this creates a modified set of transition probabilities, with an additional

random factor encoding the probability of a mutation (µ) in each update step.

Under these circumstances, the population will never fixate in none of the two

possible monomorphic states.
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4.2. Stationary distributions

As discussed in the previous section, the existence of a stable equilibrium may turn

the analysis of the fixation probability misleading. Not only fixation probabilities

fail to characterize in a reasonable way the evolutionary dynamics under general

conditions, if one considers other forms of stochastic effects as random exploration

of strategies, the system will never fixate.

A proper alternative which overcomes the drawbacks identified in both φk and

G consists in the analysis of the stationary distributions of the complete Markov

chain P (k/Z) (of size Z + 1). The probabilities entering the tridiagonal transition

matrix S = [pij ]
T are defined as pk,k±1 = T±

µ (k) and pk,k = 1 − pk,k−1 − pk,k+1,

where T±
µ stands for the transition probabilities for an arbitrary mutation rate

µ, which are given by T+
µ (k) = (1 − µ)T+(k)+µ(Z − k)/Z for the probability to

increase from k to k+1 Cs and T−
µ (k) = (1−µ)T−(k)+µk/Z for the probability to

decrease to k−1.56 The stationary distribution is then obtained from the eigenvector

corresponding to the eigenvalue 1 of S.53,60

In Fig. 4 we show the stationary distributions for different values of risk, for a

population of size Z = 50 where N = 2M = 6. While the finite population gradient

of selection G(k/Z) shown in the inset exhibits a behavior qualitatively similar to x

in Fig. 1, the stationary distributions show that the population spends most of the

time in configurations where Cs prevail, irrespective of the initial condition. This is

a direct consequence of stochastic effects, which allow the “tunneling” through the

Fig. 4. Prevalence of cooperation in finite populations. The main panel pictures the stationary
distribution corresponding to the prevalence of each fraction of Cs that emerges from the discrete
gradient of selection G shown in inset. Whenever risk is high, stochastic effects turn collective
cooperation into a pervasive behavior, rendering cooperation viable and favoring the overcome of
coordination barriers, irrespective of the initial configuration (Z = 50, N = 6, M = 3, c = 0.1,
µ = 0.005).
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(a)

(b) (c)

Fig. 5. Population size dependence for N = 6 = 2M. (a) Roots of the gradient of selection
for different values of the cost-to-risk ratio and population sizes. (b) Fixation probabilities for
different values of the population size for a fixed cost-to-risk ratio (γ = 0.1) as a function of the
number of Cs (β = 5.0). (c) We introduce a small mutation (µ = 0.005) to show the stationary
distribution for the same game parameters in (b) and different population sizes. As the population
size increases, the system spends increasingly less time close to the monomorphic configurations.
The three curves correspond, from top to bottom to, Z = 150, 100, 50.

coordination barrier associated with xL, rendering such coordination barrier (xL)

irrelevant and turning cooperation into the prevalent strategy. On the other hand,

the existence of a stable fixed root of G is triggered in P with a maximum at this

position, unlike what one observes with φk.

Yet, until now the effect of the population size on the game itself remains

uncharted. In Fig. 5(a), we plot the roots of G(k) as a function of the cost-to-

risk ratio for different values of population size Z. For large Z the general picture

described for infinite populations remains qualitatively valid. As before, two interior

roots of G(k) characterize the evolutionary dynamics of the population. However,
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Fig. 6. Group size dependence for M = 3. (a) Roots of the gradient of selection for different
values of the cost-to-risk ratio and group sizes. (b) Stationary distribution for different group sizes
and c/r = 0.15. Cooperation will be maximized in small groups, where the risk is high and goal
achievement involves stringent requirements.

the position of the interior fixed points can be profoundly altered by the population

size. The range of k/Z in which Cs are advantageous is also strongly reduced for

small populations. Moreover, while x̄ (see Sec. 2) remains almost unchanged as we

move from infinite to finite populations, the critical γ̄ is drastically reduced for

small populations that, in turn, reduces the interval of cost-to-risk ratios for which

a defection dominance dilemma is replaced by a combination of coordination and

co-existence dilemmas. In other words, the smaller the population size the higher

the perception of risk needed to achieve cooperation. The population size also plays

an important role on the shape of the stationary distribution: In Fig. 5(c) we plot

the stationary distribution for r = 1 and c = 0.1, for different population sizes.

Whenever the population size increases, a higher number of errors is needed to

escape the equilibrium between Cs and Ds, leading the system to spend a higher

fraction of time on the internal stable root of G(k).

Naturally, the assessment of the effects of the population size should be carried

out in combination with the number of parties involved in collective-risk dilem-

mas, i.e. the group size. Whether game participants are world citizens, world

regions or country leaders, it remains unclear at which scale global warming

should be tackled.40,61 Indeed, besides perception of risk, group size may play

a pivotal role when maximizing the likelihood of reaching overall cooperation.

As shown by the stationary distributions in Fig. 6, cooperation is better dealt

with within small groups, with the proviso that for higher M/N values, coordina-

tion is harder to attain, as shown by the position of the roots of G (see inset of

Fig. 6).
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5. Conclusions

Dealing with environmental sustainability cannot overlook the uncertainty associ-

ated with a collective investment. Here we propose a simple form to describe this

problem and study its impact in behavioral evolution, obtaining an unambiguous

agreement with recent experiments,9 together with several concrete predictions.

We do so in the framework of non-cooperative N -person evolutionary game the-

ory, an unusual mathematical tool within the framework of modeling of political

decision-making. We propose a new N -person game where the risk of collective

failure is explicitly introduced by means of a simple collective dilemma. Moreover,

instead of resorting to complex and rational planning or rules, individuals revise

their behavior by peer-influence, creating a complex dynamics akin to many evolu-

tionary systems. This framework allowed us to address the impact of risk in several

configurations, from large to small groups, from deterministic towards stochastic

behavioral dynamics.

Overall, we have shown how the emerging behavioral dynamics depends heavily

on the perception of risk. The impact of risk is enhanced in the presence of small

behavioral mutations and errors and whenever global coordination is attempted in a

majority of small groups under stringent requirements to meet co-active goals. This

result calls for a reassessment of policies towards the promotion of public endeav-

ors: Instead of world summits, decentralized agreements between smaller groups

(small N), possibly focused on region-specific issues, where risk is high and goal

achievement involves tough requirements (large relative M),62 are prone to signifi-

cantly raise the probability of success in coordinating to tame the planet’s climate.

Our model provides a “bottom-up” approach to the problem, in which collective

cooperation is easier to achieve in a distributed way, eventually involving regions,

cities, NGOs and, ultimately, all citizens. Moreover, by promoting regional or secto-

rial agreements, we are opening the door to the diversity of economic and political

structure of all parties, which, as showed before32,63 can be beneficial to cooperation.

Naturally, we are aware of the many limitations of a bare model such as ours,

in which the complexity of human interactions has been overlooked. From higher

levels of information, to non-binary investments, additional layers of realism can

be introduced in the model. Moreover, from a mathematical perspective, several

extensions and complex aspects common to human socio-economical systems could

be further explored.64–67 On the other hand, the simplicity of the dilemma intro-

duced here, makes it generally applicable to other problems of collective coopera-

tive action, which will emerge when the risks for the community are high, some-

thing that repeatedly happened throughout human history,68,69 from ancient group

hunting to voluntary adoption of public health measures.59,70,71 Similarly, other

cooperation mechanisms,10,13,15,18,22–26 known to encourage collective action, may

further enlarge the window of opportunity for cooperation to thrive. The existence

of collective risks is pervasive in nature, in particular in many dilemmas faced by

humans. Hence, we believe the impact of these results go well beyond decision-

making towards global warming.
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A bottom-up institutional approach to cooperative
governance of risky commons
Vítor V. Vasconcelos1,2,3, Francisco C. Santos1,3 and Jorge M. Pacheco1,4,5*

Avoiding the effects of climate change may be framed as a
public goods dilemma1, in which the risk of future losses is
non-negligible2–7, while realizing that the public good may be
far in the future3,7–9. The limited success of existing attempts
to reach global cooperation has been also associated with a
lack of sanctioning institutions and mechanisms to deal with
those who do not contribute to the welfare of the planet or
fail to abide by agreements1,3,10–13. Here we investigate the
emergence and impact of different types of sanctioning to
deter non-cooperative behaviour in climate agreements. We
show that a bottom-up approach, in which parties create local
institutions that punish free-riders, promotes the emergence
of widespread cooperation, mostly when risk perception is
low, as it is at present3,7. On the contrary, global institutions
provide, at best, marginal improvements regarding overall
cooperation. Our results clearly suggest that a polycentric
approach involving multiple institutions is more effective than
that associated with a single, global one, indicating that such a
bottom-up, self-organization approach, set up at a local scale,
provides a better ground on which to attempt a solution for
such a complex and global dilemma.

To investigate the role of sanctioning institutions, let us consider
a finite (and small1,3) population of sizeZ where individuals interact
through what has been coined the collective-risk dilemma (CRD),
a threshold public goods game—akin to an N -person stag-hunt
or coordination game14—that mimics the problem at stake2–4,6.
Individuals organize groups of size N , in which each participant
may act as a cooperator (C), defector (D) or punisher (P). Each
individual starts with an initial endowment or benefit b. Cs and Ps
contribute a fraction c of this benefit, the cost, to reach a common
goal, whereas Ds do not contribute. If the overall contribution in
the group is insufficient—that is, if the joint number of Cs and Ps
in the group is below npg—everyone in that group will lose their
remaining endowments with a probability r (here understood as
the perception of risk of collective disaster2); otherwise, everyone
will keep whatever they have.

The scenario of present-day summits, in which all countries
meet in a single group with the aim of establishing long-term
goals and commitments by which all must abide3, is known to be
detrimental to cooperation6. Hence, it is better to establish smaller
groups focused on overcoming shorter-term goals, meant to be
revised and reassessed frequently. To this end, we model individual
decision-making as an interacting dynamical process, where indi-
viduals are embedded in a behavioural ecosystem15–17, such that
decisions and achievements of others influence one’s own decisions

1ATP-Group, CMAF, Instituto para a Investigação Interdisciplinar, P-1649-003 Lisboa, Portugal, 2Centro de Física da Universidade do Minho, 4710-057
Braga, Portugal, 3INESC-ID and Instituto Superior Técnico, Universidade Técnica de Lisboa, IST-Taguspark, 2744-016 Porto Salvo, Portugal, 4Centro de
Biologia Molecular e Ambiental, Universidade do Minho, 4710-057 Braga, Portugal, 5Departamento de Matemática e Aplicações, Universidade do Minho,
4710-057 Braga, Portugal. *e-mail: pacheco@cii.fc.ul.pt

through time18–21 (Methods and Supplementary Information for
further details). Behavioural experiments4,5,22, as well as other theo-
retical models23,24, have implemented thresholds through repeated
interactions, and other authors have highlighted the role played
by pledges and communication during negotiations1,5,25, bringing
about additional layers of complexity to this problem (details and
comparisonwith othermodels in the Supplementary Information).

Besides contributing to this public good, Ps also contribute with
a punishment tax (⇡t) to an institution that, whenever endowed
with enough funding (np⇡t) will effectively punishDs by an amount
�. Hence, establishing an institution stands as a second-order
public good17,20, which is only achieved above a certain threshold
number of contributors np (ref. 14). The fact that, in both cases,
contributors may pay a cost in vain increases the realism (and the
inherent complexity) of the decision processmodelled here.

The institution need not be a global one (such as the United
Nations)—supported by all Ps in the population—that overviews all
group interactions in the population. Institutions may also be local,
group-wide, created by Ps within each group to enforce cooperation
in that group of individuals. Herewe shall consider both cases.

In the absence of Ps, thismodel reduces to the evolutionary game
theoreticalmodel6 developed to investigate the general role of risk in
climate change agreements, and inspired in economic experiments4
that provided evidence on the unavoidable role of risk perception
in the context of climate change. Indeed, the theoretical model
not only corroborates the results of the economic experiments4,
but also allows one to extend the analysis to arbitrary group size,
risk perception and even group-networked agreements6. The new,
fundamental changes stemming from the introduction of Ps in this
behavioural ecosystem will allow us to assess the role of sanctioning
institutions in the presence of risk, a feature that has not been
studied before, neither theoretically nor experimentally.

The stochastic evolutionary dynamics of the population occurs
in the presence of errors, both in terms of errors of imitation21

and in terms of behavioural mutations26, the latter accounting
for a free exploration of the possible strategies. We calculate the
pervasiveness in time of each possible behavioural composition
of the population, the so-called stationary distribution (Methods),
which allows the computation of the average fraction of groups that
successfully produce (or maintain) the public good—a quantity we
designate as group achievement, ⌘G—and the prevalence in time
of a given type of institution—that is, the fraction of time the
population witnesses the presence of sanctioning institutions (local
or global)—a quantity we designate as institutions prevalence,
⌘I. It is important to note that both quantities can be directly
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Figure 1 |Group achievement ⌘G and institutions prevalence ⌘I. a,b, The average fraction of groups that attain the public good (⌘G) as a function of
perception of risk (r; a) and behavioural exploration probability (µ; b). Sanctions are enacted by a global institution (red lines and squares) or by local
institutions (blue lines and circles). Black lines and triangles: results obtained in the absence of any institution. c,d, Results for ⌘I as a function of risk r (c)
and exploration µ (d). Unlike global institutions, often associated with marginal improvements of cooperation, local institutions promote group
coordination to avoid a collective disaster, mostly for low perception of risk. The coordination threshold npg is set to 75% of the group size, whereas local
(global) institutions are created whenever 25% of the group (population) contributes to its establishment. Other parameters: Z= 100, N= 4, c/b= 0.1,
µ = 1/Z, ⇡f = 0.3, ⇡t = 0.03 and r= 0.3.

compared with data extracted from experiments2,4. In particular,
the empirical results obtained for the risk dependence4 (in the
absence of any sanctioning) show that the group achievement (⌘G in
our model) increases with the value of risk, correlating nicely with
the dependence shown in Fig. 1awith black lines and symbols.

In Fig. 1a the behaviour of ⌘G as a function of risk is shown in the
absence of any institutions (in black), under one global institution
(in red) and under local institutions (in blue). Comparison of the
black and red curves shows that global institutions provide, at best,
a marginal improvement compared with no institutions at all. This
result is surprising, given that most climate agreements attempt
to involve all countries at once1,3,27, in which case a single, global
institution constitutes the most natural candidate (further details
in the Supplementary Information).

On the contrary, under local, group-wide, sanctioning insti-
tutions, associated with a distributed scenario in which global
sanctions will result from the joint role of a variety of institutions,
group achievement is substantially enhanced, in particular when it
is most needed: for low values of the perception of risk and when-
ever individuals face stringent requirements to avoid a collective
disaster (Fig. 1a), as has been pointed out to be the case in the
context of climate treaties1. One can also show (Supplementary

Information) that this result is even more pronounced in a scenario
encompassing (many) small groups (and institutions). This aspect
is particularly important, as the group size (N ) defines both the
scale at which agreements should be attempted and the overall
scope of each institution.

The success of local institutions is closely connected with
their resilience. As shown in Fig. 1c, local institutions prevail
for longer periods than a (single) global one, always promoting
more widespread cooperation than global ones. The efficiency and
prevalence of both kinds of institution, however, can be significantly
enhanced for high behavioural mutations (Fig. 1b,d), associated
with situations in which participants change their decisions more
frequently. This scenario may be relevant, given the multitude
of (often conflicting) factors that contribute to the process of
decision-making12,13,19.

The dynamics associated with each type of institution is best
characterized by the full stationary distributions, plotted in Figs 2
and 3 and covering the entire configuration space mapped onto
the triangular simplexes, in which each (discrete) configuration
is represented by a circular dot. Darker dots indicate those
configurations visited more often, according to the colour gradient
scale indicated in each panel. In each dot the relative frequencies

2 NATURE CLIMATE CHANGE | ADVANCE ONLINE PUBLICATION | www.nature.com/natureclimatechange
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to coordinate their action, even in the absence of institutions (Fig. 1a).

of Cs, Ds and Ps sum up to one, whereas each vertex of the
triangle is associated with monomorphic configurations. Arrows in
each simplex represent the most probable direction of evolution,
obtained from the computation of the two-dimensional gradient of
selection (Methods). We used a continuous colour code associated
with the likelihood of such transitions.

The two panels of Fig. 2 show representative examples of the
behavioural dynamics of Cs, Ds and Ps under global institutions
(Fig. 2a) and local institutions (Fig. 2b), for low values of the
perception of risk (r = 0.2). For global institutions (Fig. 2a) and
whenever the population starts below nP (the punishment or
institution threshold value indicated by a horizontal, orange dashed
line), behavioural mutations allow the appearance of Ps in the
population (Supplementary Information for further details), such
that whenever the composition of the population lies above the
threshold line, Ps rapidly outcompete Ds (see arrows), leading the
population towards full cooperation, associatedwith theCP-edge of

the simplex.Once in this situation, however, Pswill be outcompeted
by Cs as now they contribute to support an institution that has
become useless. Hence, the global institution becomes unstable,
leading the population (slowly, as shown by the blue arrows along
the whole path) to a configuration that falls below the threshold
line again. Thus, for low perception of risk, a global institution
cannot be maintained for long periods (Fig. 1c) and, as shown by
the stationary distributions, the population will remain most of the
time under widespread defection. This, in turn, leads to the small
value of ⌘G reported in Fig. 2a.

For local institutions, however, the situation is quite different,
as shown in Fig. 2b. Comparison between Fig. 2a and Fig. 2b shows
that the role of the threshold line is not so pronounced in this case.
Considering that we need the same fraction of Ps (compared to
Fig. 2a) to make the institution efficient (25% in this example), but
now at the level of the group (and no longer at the level of the
population), it is possible that some (although not all) groups have

NATURE CLIMATE CHANGE | ADVANCE ONLINE PUBLICATION | www.nature.com/natureclimatechange 3
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enough Ps for sanctions to become effective. This leads to a marked
increase of ⌘G, as in this case the population evolves towards regimes
of widespread cooperation. This happens because the population
will stabilize in configurations comprising a sizeable amount of Cs
together with enough Ps to prevent Ds from invading. The fact that
this happens for low values of risk r is important, given that, at
present, the perception of risk regarding climate issues is low3,7.

For high values of the perception of risk, shown in Fig. 3
(r = 0.5), both local and global institutions marginally enhance
the positive prospects for cooperation already attained in the
absence of any institution, as for high risk the dynamics occurs
in the vicinity of the CD-edge of the simplex (Supplementary
Information). Notwithstanding, and because local institutions are
easier to emerge, they work as catalysers of collective action,
while helping to prevent the invasion of Ds, as shown in Fig. 2.
Neither local nor global institutions are robust to free-riding, a
result that has been recently confirmed experimentally28. Finally,
behavioural mutations enhance the prevalence of configurations in
the inner part of the simplex, which in turn increases the chances
of having enough Ps to establish institutions and cooperation, as
previously shown in Fig. 1.

Our results support the conclusion that a decentralized,
polycentric, bottom-up approach10, involving multiple institutions
instead of a single global one, provides better conditions both for
cooperation to thrive and for ensuring the maintenance of such
institutions. This result is particularly relevant whenever perception
of risk of collective disaster, alone, is not enough to ensure global
cooperation. In this case, local sanctioning institutionsmay provide
an escape hatch to the tragedy of the commons humanity is facing.
In this context, it is worth stressing that the mechanisms discussed
here operate optimally whenever groups are small. Present-day local
initiatives, such as the Western Climate Initiative29, have started
with a small group of US states. As time went by, the Western
Climate Initiative group size has grown to include additional
Canadian states and Mexican provinces. Although the reasons and
motivations for such an evolution are comprehensible, one should
not overlook that larger groups aremore difficult to coordinate into
widespread cooperation (Supplementary Information). Similar
dynamics, in which cooperation nucleating in a small group
expands into a larger and larger group, can be found in policies
beyond climate governance with mixed results, from the major
transitions in evolution30 to the recent evolution of the European
Union, stressing the common ground shared by governance and
a variety of ecosystems15. In this context, it might be easier to
seek a multi-scale (and multi-step) process, in which coordination
is achieved in multiple small groups or climate blocks12, before
aiming, if needed, at agreements encompassing larger groups
(or, alternatively, inter-group agreements). Hence, although most
causes of climate change result from the combined action of all
inhabitants of our planet, the solutions for such complex and global
dilemma may be easier to achieve at a much smaller scale10. In light
of our results, the widely repeatedmotto ‘Think globally, act locally’
would hardly seemmore appropriate.

Methods
We consider a population of Z individuals, who set up groups of size N , in which
they engage in the CRD public goods game4,6, being capable of adopting one of the
three strategies: C, P and D. Following the discussion in the main text, the payoff
of an individual playing in a group in which there are jC Cs, jP Ps and N � jP � jC
Ds, can be written as 5C = �c+b2(jC + jP �n

pg

)+ (1� r)b[1�2(jC + jP �n

pg

)],
5P = 5C �⇡t and 5D = 5C + c �1 for Cs, Ps and Ds, respectively. In the
equations above, 2(k) is the Heaviside function (that is, 2(k)= 1 whenever
k � 0, being zero otherwise), 0< n

pg

N is a positive integer not greater than
N , and r (the perception of risk) is a real parameter varying between 0 and 1;
the parameters c , ⇡t and b are all real positive; 1 corresponds to the punishment
function, which depends on whether the institution is global or local. For local
institutions, punishment acts at the group level, and 1 yields 1local = ⇡f2(jP �nP),
which means that a punishment fine ⇡

f

is applied to each D in the group whenever

N � jP � nP � 0. For global institutions, punishment acts at the population
level; in a population with iC Cs, iP Ps and Z � iP � iC Ds, the punishment
function for global institutions can be written as 1global = ⇡

f

2(iP �nP), applying
a punishment fine ⇡

f

now to every D in the population, whenever Z � iP � nP � 0.
Finally, the fitness f

X

of an individual adopting a given strategy, X , will be
associated with the average payoff of that strategy in the population. This can be
computed for a given strategy in a configuration i= {iC,iP,iD} using a multivariate
hypergeometric sampling (without replacement; Supplementary Information
for details). The number of individuals adopting a given strategy will evolve in
time according to a stochastic birth–death process combined with the pairwise
comparison rule21, which describes the social dynamics of Cs, Ps and Ds in a
finite population. Under pairwise comparison, each individual of strategy X
adopts the strategy Y of a randomly selected member of the population, with
probability given by the Fermi function (1+ e�(f

X

�f

Y

))�1, where � controls the
intensity of selection (� = 5.0 in all figures). In addition, we consider that, with
a mutation probability µ, individuals adopt a randomly chosen strategy. As the
evolution of the system depends only on its actual configuration, evolutionary
dynamics can be described as a Markov process over a two-dimensional space.
Its probability distribution function, p

i

(t ), which provides information on the
prevalence of each configuration at time t , obeys a master equation, a gain–loss
equation involving the transition rates between all accessible configurations.
The stationary distribution ¯

p

i

is then obtained by reducing the master equation
to an eigenvector search problem (Supplementary Information for details).
Another central quantity, which portrays the overall evolutionary dynamics in
the space of all possible configurations, is the gradient of selection 1

i

. For each
configuration i, we compute the most likely path the population will follow,
resorting to the probability to increase (decrease) by one the number of individuals
adopting a strategy S

k

, TS

k

+
i

(TS

k

�
i

) in each time step. In addition, for each possible
configuration i, we make use of multivariate hypergeometric sampling to compute
both the (average) fraction of groups that reach n

pg

contributors, that is, that
successfully achieve the public good—which we designate by aG(i)—and the
(average) fraction of groups that reach n

p

punishers (for local institutions) or
whether for that configuration i a global institution will be formed—in both
cases, we designate this quantity by a

I

(i). Average group achievement—⌘G—and
institution prevalence—⌘I—are then computed averaging over all possible
configurations i, each weighted with the corresponding stationary distribution:
⌘
G

=P
i

¯

p

i

a

G

(i) and ⌘
I

=P
i

¯

p

i

a

I

(i).
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1. Collective risk dilemma and pool punishment 

Following the discussion in the main text the payoff an individual within a group of jC  

Cs, jP  Ps and N − jP − jC
 Ds, can be written as  

ΠC = −c + b Θ( jC + jP − npg ) + (1 − r)b 1 − Θ( jC + jP − npg )[ ]                           (1) 

ΠP = ΠC − π t                                                                                                      (2) 

ΠD = ΠC +c − ∆                                                                                                 (3) 

     In the Equations above, Θ(k) = {1(k≥0)
0 (k < 0) is the Heaviside function, 0 < npg ≤ N a 

positive integer, and r is a real number between 0 and 1; the parameters c , tπ , and b  are 

all positive real numbers. In Eq. 3, ∆  corresponds to the “punishment function”, which 

depends on whether the institution is global or local. For local institutions punishment 

acts at the group level, and ∆  yields  

                                               (4) 

which means that a punishment fine fπ  is applied to each D in the group whenever 

jP ≥ np .  

     For global institutions punishment acts at the population level; in a population with iC  

Cs, iP  Ps and Z − iP − iC
 Ds, the punishment function for global institutions can be 

written as 

∆ = π f Θ(iP − np )                                                (5) 

applying a punishment fine fπ  now to every D in the population, whenever iP ≥ np . 

     If one models individual decision process as purely rational (as is usually done in 

conventional game theoretical analysis), one will ignore existing evidence that peer-

influence plays a determinant role in strategy revision1-3. Hence, we assume here a 

simpler, short-term behavioural revision process conveniently modelled in the framework 
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of evolutionary game theory. As a result, our framework allows agreements to become 

vulnerable to (or to benefit from) such short-term behavioural updates, as individuals 

assess the consequences of their choices. Thus, our approach contrasts with that 

implemented in behavioural experiments4-7 and alternative theoretical models8,9, where a 

repeated-game scenario is implemented, involving a wide repertoire of strategies and 

contingency plans4-14. As a result, theoretical models are no longer amenable to be dealt 

with analytically8.  

     In fact, short-term commitments and strategy revision are presumably more realistic. 

The fact that different countries (and different political actors in each country) do not 

agree on long term policies15, suggests that defining short term time scales may prove 

beneficial, giving decision makers more room to change their mind and (hopefully) reach 

a consensus. This is also the best framework in which to adopt an evolutionary game 

theoretical approach, as we do here. Such an approach has been employed before, 

although sanctioning institutions have not been analysed16,17. Needless to say, other 

mechanisms are certainly relevant, and may even prove crucial, given the time frame at 

stake18, as discussed at length in Refs.10,12,19-30. In this context, our work provides the 

barest framework establishing conditions that naturally favour widespread cooperation in 

attempting to mitigate the adverse effects of global warming.  

     The variable npg imposes a minimum number of contributions needed to achieve a 

common goal5,17 or an intermediate climate target7.  In line with a previous model17, 

individuals engage in several (preferably small scale) CRD games with the aim of 

coordinating to establish short term goals in each of them. The extent to which 

individuals cooperate in these games will ultimately dictate the solution (or not) of the 

(long term) problem of Climate Change.  
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     To let the entire population form a single group engaging in the CRD is detrimental to 

cooperation17, and hence it is much better to establish smaller (eventually local) groups 

focussing on coordinating to overcome more modest, common interest and shorter term 

targets. Short-term commitments are meant to be revised and re-assessed frequently in 

subsequent instances of the CRD game, whereby individual decisions may naturally 

change in time. Because individual decisions are known to all in the population, it is 

natural to assume that previous decisions will influence future decisions, which also 

means that communication between participants actually takes place in such a setting. 

Although such type of communication is different from, e.g., that studied explicitly in 

Ref.11, there is some correspondence between these two forms of “pre-play” 

signalling31,32. Needless to say, a detailed theoretical model of the process of pre-play 

communication would require signalling to be explicitly incorporated (honest signalling 

would perhaps suffice, in face of the results of Ref. 11), which would render the model 

analytically intractable31. In this sense, the present model, making information of 

individuals’ successes and failures available to all between different games, can be 

understood as a first (and much simpler) step in that direction. For this reason, we model 

individual decision making as an interacting dynamical process, such that decisions and 

achievements of others may influence one’s own decisions through time3,33-38. Such 

(stochastic) dynamical system is discussed in detail in the following section. 

 

2. Evolutionary dynamics in finite populations 

We consider a population of Z individuals. Each individual can adopt one of 1+s  

strategies: S1,...,Ss+1
, such that, at each time-step t, we have a given configuration (or 

state) i(t) = {i1,!,ik ,!,is} 
of a population, specified by the number of individuals 
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adopting each particular strategy (we need only the first s strategies ! and hence, an s-

dimensional simplex ! as the frequency of players using strategy s+1 can be obtained 

through normalization). The fitness of a strategy will be associated, as usual39, with the 

average payoff of any individual using this strategy. Let },,,,{= 1 sk jjj !!j  be the 

configuration of players in a group of size N  and (j; jk=q) designating any group 

configuration in which there are specifically q players with strategy jk; with these 

definitions, we may write down the average fitness of a strategy kS  in a population 

characterized by configuration i , )(i
kSf , as9,17,40-43  

fSk
(i) =

Z −1

N −1

! 

" 
# 

$ 

% 
& 

−1

(j ; jk =0)

(j ; jk =N −1)

' ΠSk
(j)

ik −1

jk

! 

" 
# 

$ 

% 
& 

l =0
( l ≠k )

s+1

∏
il

jl

! 

" 
# 
$ 

% 
&                                         (6) 

where )( j
kSΠ  stands for the payoff of a strategy Sk in a group with composition j.  

     For each configuration i, we may also compute other population-wide variables of 

interest making use of variants of Eq. 6. In particular, the average fraction of groups aG(i) 

that reach npg contributors (see Methods and previous section) is obtained replacing 

)( j
kSΠ  by Θ( jC + jP − npg ) in Eq. 6 for the case of 3 strategies (s=2, Cs, Ps and Ds) and 

by )( pgC nj −Θ  for the case 2 strategies (s=1, Cs and Ds). Similarly, the average fraction 

of groups aI(i) that reach np punishers (for local institutions) is also provided by Eq. 6 

with )( j
kSΠ  replaced by Θ( jP − np ). For global institutions, aI(i) is simply given by 

Θ(iP − np ) , as described in the previous section and main text.  

     Strategies evolve according to a mutation-selection process. At each time step, the 

strategy of one randomly selected individual X is updated. With probability µ , X 

undergoes a mutation, adopting a strategy drawn randomly from the space of available 

strategies. With probability µ−1 , another randomly selected individual Y acts as a 
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potential role model of X. The probability that X adopts the strategy of Y equals 

[ ] 1)(1
−−+= YX ffeβϕ , whereas X maintains the strategy with probability ϕ−1 . We use Xf  

and Yf  to denote the fitness of individual X and Y, respectively. This update rule is 

known as the pairwise comparison rule35,44. The parameter 0≥β , measures the 

contribution of fitness to the update process, i.e., the selection pressure. In the limit of 

strong selection ( ∞→β ), the probability ϕ  is either zero or one, depending on how Xf
 

compares with Yf . In the limit of weak selection ( 0→β ), ϕ  is always equal to 21 , 

irrespective of the fitness of X and Y.  

    For the sake of mathematical convenience, analysis of evolutionary dynamics in finite 

populations and arbitrary number of strategies have been mostly dealt with either in the 

limit of rare mutations9,38,40,45-47 — in which the population will never contain more than 

two different strategies simultaneously — and/or in the limit of weak selection 

( 0→β )34,35,44,48-54. Here we do not restrict our analysis to any of these approximations. 

Instead, as the pairwise comparison relies solely on the present configuration of the 

population35, the dynamics of },...,{=)(i 1 siit  corresponds to a Markov process over a 

s!dimensional space35,46,50,55-57, and hence its probability density function, )(tpi , i.e., the 

prevalence of each configuration at time t, evolves in time according to the Master-

Equation55,  

)}()({=)()( '''
'

tpTtpTtptp iiiiii
i

ii −−+ !τ                                  (7) 

a gain-loss equation that allows one to compute the evolution of )(tpi  given the 

transition probabilities per unit time between configurations i  and 'i , ii 'T and 'iiT . The 

stationary distribution ip  analysed in the main text, is obtained by making the left side 
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zero, which transforms Eq. 7 into an eigenvector search problem55, namely, the 

eigenvector associated with the eigenvalue 1 of the transition matrix Λ = Tij
!" #$

T
.  

Besides providing the prevalence in time of each configuration i, the stationary 

distribution ip  also allows the direct computation of an average measure of group 

achievement (!G) and institution prevalence (!I) given by ηG = piaG (i)
i

%  and 

ηI = piaI (i)i
% , respectively, where aI(i) and aG(i) were defined before. 

     We are then left with the task of computing the transition probabilities among all 

possible configurations that define Λ. The nature of the birth-death process we defined 

imposes that, if the configuration of strategies at a given time is  

}...=,,...,{= 111 sss iiNiii −−−+i , 

it can only move to a configuration 

},...,{=}...=',,...,{= 1111111 ++′′+′′ ++−−−′
sssss iiiiNiii δδi , 

where either all kδ  are zero, or only two of them are non-zero being, respectively, 1 and 

1− . When all 0=kδ , the configuration remains unchanged, ii =' , and the transition 

probability corresponding to this event can be calculated from the remaining transitions 

as iiiiii ''
1= TT % ≠

− . The missing transition probabilities are associated with events in 

which an element with a given strategy, lS , changes into another specific strategy, kS , 

which, for the pairwise comparison rule with an arbitrary mutation rate µ, is given by 

( ) ( )( )
sZ

i
e

Z

i

Z

i
T lffkl

kSlS
kSlS µµ

β
+&$
#

'"
!

+
−

−
−−

→

1

1
1

1= .                              (8) 
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     Hence, for a given configuration },...,{= 1 siii , we can compute the probability to 

increase (decrease) by one the number of individuals adopting a strategy kS , which we 

denote by 
+kS

Ti  and 
−kS

Ti , as 

},1,,,1{

,'1,'1,,1

=
sikii

sikikii

kS
TT

′±′
′+−′

± ! !!
!!

ii  .                              (9) 

     These transitions constitute a central quantity to compute the gradient of selection 

(∇i ) — i.e., the most likely path the population will follow when leaving configuration i 

— as pictured in the main text.  

     In a 2-strategy case, each configuration i — e.g., i Cs and Z-i Ds — would have two 

neighbours, and therefore two possible transitions, one with one C more ( 1+→ ii ) and 

another with one C less ( i →i −1). Hence, we will have )()( iTiT DCCD →→ −=∇i , where 

( ) ( )( )
Z

iZ
e

Z

iZ

Z

i
iT CD ff

CD

−
+"#

$
%&
'

+
−

−
−=

−−
→ µµ β 1

1
1

1)(  for the probability to increase from i 

to i+1 Cs and ( ) ( )( )
Z

i
e

Z

iZ

Z

i
iT DC ff

DC µµ β +"#
$

%&
'

+
−

−
−=

−−
→

1
1

1
1)(  for the probability to 

decrease to i-158. 

     For the 3-strategy case − e.g., when configurations are given by },{= PC iii , standing 

for the number of Cs, Ps (and Z!iC!iP Ds) — the evolutionary dynamics occurs in a 2-

dimensional simplex (see Figures 2 and 3 in the main text). To every adjacent 

configuration 'i  in the simplex (the ones accessible in a single update), we associate a 

vector with magnitude ii 'T  and with the direction of ii −' . Performing the sum of these 

vectors leads to a new local vector, i∇ , which contains information about all possible 

transitions, and which can be written as  

PiiCiii uu )()(= −+−+ −+−∇ PPCC TTTT                                      (10) 
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where uC (up) are unit vectors defining a basis of the 2 dimensional simplex in which 

evolution proceeds (see Fig. S1). The entries of ∇i  
correspond to a balance of transitions 

along each direction and, therefore, we call i∇  the gradient of selection (or drift)*. 

 

Figure S1 | Local representation of the phase space and possible transitions for a bi-dimensional 

one-step process. A vector can be associated with every transition between the element i and each 

adjacent element. The sum of these vectors corresponds to the gradient of selection, i∇ , in the 

configuration i, i.e., the drift (see above). 

 

                                                
* It can be shown that i∇  corresponds to the first coefficient of the Kramers-Moyal expansion of 

the Master Equation for this birth-death process which, in the limit N→+∞, gives the drift term of 
the Fokker-Planck equation and the corresponding meaning of the most probable direction. 
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3. Evolutionary dynamics in populations with two strategies 

A natural first step to describe the role of sanctioning defectors is to understand in detail 

the evolutionary dynamics of populations in which only one of the cooperating strategies 

is present in the population — namely Ps and Ds, and Cs and Ds. In the absence of Ps, 

we recover the N-person CRD game recently proposed17, where the risk of collective 

failure is explicitly introduced and where it is was shown how the perception of risk 

plays a central role in the emergence of cooperation. The different panels in Fig. S2 show 

the stationary probability distribution function together with the gradient of selection ∇i  

for populations in which only 2 strategies are present ! Cs and Ds (left) and Ps and Ds 

(right). Whenever ∇i = 0
 
is zero, at *

Ci , the transition probabilities to a configuration with 

more Ds and to a configuration with fewer Ds are the same. Furthermore, if the 

configuration to the right (decreasing the number of Ds) has a negative (positive) ∇ i  
and 

the one to the left has a positive (negative) ∇i , this system is preferentially pushed into 

(pulled out of) this configuration. Intuitively, the configurations with less Cs, to the left 

of *
Ci , tend to have their number of Cs increase (decrease), whereas the configurations to 

the right, with more Cs, tend to have less (more). In this sense, those configurations 

associated with *
Ci  

are analogous to the stable (unstable) fixed points obtained from the 

replicator equation39, the stable analogues being probability attractors (repellers). Hence, 

the maximum of the stationary distribution is nearly coincident with the configuration *
Ci , 

whenever the gradient crosses zero with negative slope. Consequently, the population 

will spend most of the time around *
Ci . 

     Fig. S2 shows how risk (decreasing from top to bottom) plays a crucial role in the 

overall population dynamics, given the sensitivity of cooperation to risk. The left panels 
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reproduce the scenarios obtained in the absence of Ps17, which will be used here as 

references.  

 

Figure S2 | The role of risk in populations made of Cs and Ds (left), and Ps and Ds (right) under 

local institutions. From top to bottom, each panel shows the stationary distributions (black 

vertical lines) and respective gradients of selection (blue solid curves) for r = 0.5, r = 0.25 and r 

= 0. (Z=40, N=10, npg=5, b=1, c=0.1, !t=0.02, !f=0.1, np=3,  "=1/Z and # = 5).  

 

     The right panels show the impact of punishment on the levels of cooperation — 

implemented here in the local institution version, see Eq. 4 — as Ps now co-evolve with 

Ds in the population. In the absence of risk (bottom), the gradient of selection is nearly 

half as negative compared to the reference scenario. This means that the strength with 
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which the population is driven into defection is smaller and, as a result, the stationary 

distribution grows a heavy tail towards punishment, meaning that the population actually 

spends a significant amount of time in configurations with less than 50% Ds. This is a 

rather impressive result, revealing the power of punishment20 in hindering (in this case) 

defection. As we increase risk (center and top panels) populations adopt more and more 

the punishment behaviour. 

     An overall view of the results is provided in Fig. S3, where we plot the internal roots 

of the gradient of selection for different values of r. We compare again the two strategies 

against Ds: Cs and Ps with local institutions. 

 

Figure S3 | Interior roots iC
* of the gradient of selection for populations made of Cs and Ds (red 

lines), and Ps and Ds (blue lines) under local institutions. For each value of r, the solid (dashed) 

lines represent the finite analogues of stable (unstable) fixed points, that is, probability attractors 

(repellers). (Z=40, N=10, npg = 5, b=1, c=0.1, !t = 0.02, !f = 0.1, np = 3, " = 1/Z and # = 5).  

 

     The CRD played between Cs and Ds, shows two kinds of behaviours. In the first 

scenario, for low values of the perception of risk, the system is driven into a 

configuration in which defection dominates. As one increases the perception of risk, one 

reaches a critical value above which the analogues of stable and unstable fixed points 
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emerge, allowing the system to spend longer periods of time in more cooperative 

configurations. Note that the stable point drives the population into configurations in 

which Ds are a minority. 

 

Figure  S4 | Effect of punishment under local institutions and sensitivity to risk. The top panels 

show the internal roots of i∇  as functions of the punishment fine !f ; the bottom panels show the 

same quantity now as a function of the punishment tax, !t; left panels show results for low  !t  

(top) and low !f ,(bottom), respectively, whereas right panels show results for high values of these 

parameters. Different line colours represent increasing values of risk: r=0 with black lines, r=0.5 

with red lines and r=1 with blue lines, respectively. (Z=40, N=10, c=0.1, b=1, npg=5, np=3, β=5.0 

and µ=1/Z).  

 

     Whenever Ps co-evolve with Ds, we also obtain a change in the relative size of the 

basins of attraction, in particular for low values of risk, as the critical perception of risk r 

needed to create a cooperative basin of attraction decreases. Furthermore, with Ps, the 

stable equilibrium where few Ds co-exist with Ps occurs for lower fraction of Ds. 
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Overall, this means that the population will spend a greater amount of the time in a more 

cooperative configuration. Additionally, and compared to Cs, Ps also push the unstable 

fix point to lower fractions of Ds, rendering collective coordination an easier task. 

In Fig. S4 we adopt the same notation scheme of Fig. S3 to show the dependence of the 

position of the internal roots of i∇  on the punishment fine !f and punishment tax !t. This 

analysis is repeated for different values of risk (low risk, r=0.0, black lines; intermediate 

risk, r =0.5, red lines; high risk, r =1.0, blue lines).  

     In the top panels we see how !f  affects the positions of the fixed points, for both low 

(left panel) and high (right panel) punishment fine !t. As expected, if the taxes for the 

maintenance of institutions are low, a considerable amount of punishers pervades; 

however, as we increase the tax, punishment eventually fades. When the punishment fine 

applied to the Ds is smaller, punishment vanishes for smaller values of the tax (left 

panel).  

     In the bottom panels we show how the punishment tax !t affects the positions of the 

internal roots of i∇ , for both low (left panel) and high (right panel) punishment fine !f. If 

the tax for the punishment institution is low enough, a small punishment fine leads to the 

appearance of a coexistence root further away from the full defection configuration. 

However, if the punishment fine is high, once again we regain the two different 

scenarios: for very low (or none) punishment tax, the population falls into the tragedy of 

the commons, whereas above a critical value the coexistence point will arise. Both left 

and right panels show that a small increase on the punishment tax can drastically wipe-

out defection. As a final point, all panels contain the location of the internal roots for the 

three values of risk indicated before, showing the importance of risk in the emergence 

collective action. 
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4. Group size dependence in the 3-strategy case 

As discussed in the main text, one does not expect that all the parties (e.g. countries, 

regions or cities59) will be willing to pay in order to punish others, despite being perhaps 

willing to undertake the necessary measures to mitigate climate change effects (Cs). In 

other words, an analysis of a 2-strategy case fails to provide a complete overview of the 

overall dynamics, as players who are willing to pay towards mitigating the climate 

change effects may free-ride in a 2nd order cooperation dilemma, by refusing to pay a tax 

in order to create an institution (local or global), able to punish defectors. Consequently, 

in the main text we discussed the evolutionary dynamics of the population considering 

the entire set of strategies (Cs, Ps and Ds), from which we showed that the adoption of 

multiple institutions instead of a single, global one provides better conditions for 

cooperation to thrive.  

     In this context, the group size N constitutes an important variable, as it defines not 

only the scale at which agreements should be tried but also the overall dimension and 

scope of each institution. In particular, a local sanctioning system converges to a single 

global institution whenever ZN → . Hence, one should expect that the evolutionary 

advantage provided by a polycentric approach vanishes for increasing N. Fig. S5 shows, 

however, that the results in the main text are robust, as local institutions provide a 

significant advantage in the promotion of cooperation for a wide range of values of N, 

when compared with a global institution. Furthermore, for a given group size, local 

institutions are always able to promote higher group achievements for lower values of 

risk. 
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Figure S5 | Group achievement for different group sizes and institution types. Group 

achievement — !G —standing for the average fraction of groups that are able to attain the public 

good, is shown as a function of the perception of risk (r) for global institutions (dashed lines) and 

local institutions (full lines). Each colour corresponds to a different group size, as indicated. The 

coordination threshold (npg) is set to 75% of the group size, whereas local (global) institutions are 

created whenever 25% of the group (population) contributes to its establishment. Punishment tax 

is !t=0.03, whereas the punishment fine for defecting is !f=0.3. Other parameters: Z=100, N=4, 

c/b=0.1, µ=1/Z=0.01. 
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Taming the planet’s climate requires cooperation. Previous failures
to reach consensus in climate summits have been attributed, among
other factors, to conflicting policies between rich and poor countries,
which disagree on the implementation of mitigation measures. Here
we implement wealth inequality in a threshold public goods di-
lemma of cooperation in which players also face the risk of potential
future losses. We consider a population exhibiting an asymmetric
distribution of rich and poor players that reflects the present-day
status of nations and study the behavioral interplay between rich
and poor in time, regarding their willingness to cooperate. Individ-
uals are also allowed to exhibit a variable degree of homophily,
which acts to limit those that constitute one’s sphere of influence.
Under the premises of our model, and in the absence of homophily,
comparison between scenarios with wealth inequality and without
wealth inequality shows that the former leads to more global co-
operation than the latter. Furthermore, we find that the rich gener-
ally contribute more than the poor and will often compensate for
the lower contribution of the latter. Contributions from the poor,
which are crucial to overcome the climate change dilemma, are
shown to be very sensitive to homophily, which, if prevalent, can
lead to a collapse of their overall contribution. In such cases, how-
ever, we also find that obstinate cooperative behavior by a few poor
may largely compensate for homophilic behavior.

collective action | global warming | governance of the commons |
environmental agreements | evolutionary game theory

Despite existing scientific consensus that anthropogenic green-
house gas emissions (GHGE) perturb global climate patterns

with negative consequences for many natural ecosystems (1–3),
reaching a global agreement regarding reduction of GHGE remains
one of the most challenging problems humans face (4). Interna-
tional climate negotiations have largely failed to reach consensus (5,
6), evidencing a conflict between rich and poor countries, which
often do not agree on the urgency of emission reduction measures,
given the scientific uncertainty regarding the impacts of climate
change (7–10). Indeed, in the aftermath of the 15th Conference of
Parties in Copenhagen/2009 one has observed a tendency of several
governments to regard climate change as a problem of a distant
future—2050—hence discounting (4) the actual risk of collective
disaster—despite predictions that severe climate change conse-
quences, such as increased occurrence of heat waves and droughts,
for instance, may happen sooner (1).
The issue of reducing GHGE has been addressed recently, both

experimentally and theoretically, by means of a threshold Public
Goods Game (PGG) in which success requires overall cooperative
collective action, and decisions must be made knowing that failure
to cooperate implies a risk of overall collapse (10–18). Like many
social dilemmas of collective action, any participant that curbs
emissions pays a cost whereas the benefits are shared among ev-
eryone. Thus, the rational choice is to free ride on the benefits
produced by others at their own expense (through abatement),
leading to the well-known tragedy of the commons, where selfish
behavior results in overexploitation of the public good (19, 20).

Both theory and experiment agree that risk perception plays
a central role in escaping the tragedy of the commons (12, 13).
Besides risk, the role of wealth inequality among participants has
been recently investigated by means of economic experiments
involving students from western, educated, industrialized, rich, and
democratic (WEIRD) countries (a feature that may induce biases
regarding behavior of subjects taking the role of poor countries)
(10, 11). Games comprised groups of fixed size (N = 6) where
participation was equally split between rich and poor individuals,
whose different wealth resulted from two different start-up amounts
of money made available to group participants. The insights pro-
vided by these experiments (10, 11) (using different methodologies
and assumptions while using the same PGG) converge on the idea
that resolution of the climate change policy problem stems from the
rich compensating for the smaller contribution by the poor and,
even when risk is very high (something that does not seem to apply
to the present situation), there is still a very significant chance of
failing to solve the climate change dilemma, a situation that is
ameliorated whenever intermediate tasks are designated (11) or
whenever individuals have the opportunity to pledge their contri-
bution before actual action (10).
Here we address the issue of wealth inequality from a theo-

retical perspective. The model we extend here to deal with
wealth inequality (13, 17) has been shown to lead to predictions
that correlate nicely with previous economic experiments carried
out in the absence of any wealth inequalities (10), with the added
value of allowing a full exploration of how success in addressing
the climate change dilemma depends on other important param-
eters, such as risk, group size, introduction of sanctioning insti-
tutions of global or local nature, etc. It is important to stress that,
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despite the limited number of scenarios realizable in the labo-
ratory, data stemming from behavioral experiments have pro-
vided crucial insights, not only because they unravel human
behavior when confronted with climate change issues, but also
because they provide important guidelines that help in calibrat-
ing theoretical models, such as the one we use here. Indeed, here
we model climate change negotiations in the framework of Evo-
lutionary Game Theory, where individuals exhibit a well-defined
behavior (C or D), as a result of which they accumulate a certain
payoff resulting from the game group interactions. Regularly, every
individual A compares her/his payoff with that of a randomly
chosen individual B, imitating (or not) the behavior of B with a
probability that is a growing function of the payoff difference
between B and A. Naturally, the larger the payoff of individual B
(randomly) selected as role model, the more likely it is that A
imitates her/his behavior (see Methods for specific details of the
update rule).
Let us consider a population of finite size Z of which ZR

individuals are rich and ZP = Z − ZR individuals are poor.
Individuals are randomly sampled from the population and or-
ganize into groups of size N. Each rich individual starts with an
initial endowment bR whereas each “poor” individual starts with
bP, with bR > bP. These endowments may be used (or not) by an
individual to contribute to reducing GHGE in her own group.
We distinguish two types of behavior: (i) cooperators (Cs), who
contribute a certain fraction c of their endowment to help solve
the group task, and (ii) defectors (Ds) that do not contribute
anything to solve the group task. Hence, the endowment is di-
rectly related to what each participant will lose if the next in-
termediate target is not met: Cs will lose bR=Pð1− cÞ whereas Ds
will lose the entire endowment bR=P. If the overall amount of
contributions in the group is above a certain threshold Mcb
(where b is the average endowment of the population), the target
will be met. Otherwise, with a probability r—the perception of
risk of collective disaster (10, 12, 13)—individuals in the group
will lose whatever they have.
This framework creates an interdependent behavioral ecosys-

tem, where each player in a group knows what all other members
of the group will do and where decisions and achievements of
others influence one’s own decisions (21–24). In particular,
decisions taken by the poor can be potentially influenced by the
actions and achievements of the rich (and vice versa), adding an
additional coupling between these two subpopulations (details
in Methods). In standard conditions, anyone in this population
may influence and be influenced by anyone else. This, however,
may not always be the case, in the sense that individuals may be
more receptive to the behavior and decisions of those in the
same wealth class, thus selecting preferentially those of their
wealth class as peers. To this end we define a homophily pa-
rameter (0≤ h≤ 1), such that when h= 1, individuals are re-
stricted to influence (and be influenced) by those of the same
wealth status, whereas when h= 0, no wealth discrimination
takes place. Naturally, such influence dynamics occur in the
presence of action errors (24) as well as other stochastic effects,
such as random exploration of the strategy space, akin to be-
havioral mutations (25).
In SI Text, we show that in populations with a mixed composition

of rich and poor (and for different combinations of Cs and Ds in
each wealth group), the nature of the overall public goods di-
lemma faced by the rich subpopulation differs qualitatively from
that faced by the poor subpopulation. In these limiting cases
where a decoupling of the timescales associated with the dy-
namics of the rich and of the poor takes place, the rich generally
face an N-person coordination dilemma between Cs and Ds,
whereas (for most combinations of parameters) poor Cs and
poor Ds engage in a coexistence dilemma. Such a diversity in the
nature of the games played—due to, e.g., heterogeneous in-
teraction patterns or resource distributions—will have strong

implications on the emerging social dynamics, often promoting
the chances of achieving cooperation in structured populations
(13, 26, 27).
In practice, however, no reason other than mathematical sim-

plicity may justify such extreme scenarios. When analyzing the fully
coupled dynamics on the entire configuration space represented by
a two-dimensional simplex (see, e.g., Fig. 2), in which the y axis
(x axis) portrays the fraction of Cs among the poor (rich), it is
natural to ask to which extent the existence of rich and poor alters
the dynamics of the risky PGG at stake, compared with the stan-
dard model where no wealth inequality is explicitly considered. To
answer this question, we start by recognizing that 20% of the
world’s wealthier countries produce approximately the same gross
domestic product as the remaining 80%. Thus, we break the pop-
ulation into two wealth classes, such that the poor comprise 80% of
the population, whereas the rich constitute the remaining 20%.
Concomitantly, we assume that poor countries contribute an
amount proportional to their wealth (as reflected in their initial
endowment) and similarly with the rich. As a result, different
groups will exhibit, on average, different ratios of rich and poor,
reflecting the intrinsic wealth asymmetry that one observes in the
real world.
In Fig. 1 we compare the average group achievement (ηG),

that is, the fraction of time a group succeeds in achieving Mcb
as a function of risk (Methods), in the cases when there is no
wealth inequality (gray line) and in the presence of wealth in-
equality (blue and red lines). The results show unequivocally that
wealth inequality may promote group success. This result, how-
ever, depends strongly on the level of homophily (h): Whenever
the rich and poor are evenly influenced by anyone else (no homo-
phily, h = 0, blue line), group achievement is enhanced for all
values of risk (r). However, when the rich (poor) influence and are
influenced by rich (poor) only (homophily h = 1, red line), the
chances of success are generally below those attained in the ab-
sence of wealth inequality.
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Fig. 1. Average group achievement ηG as a function of risk. The gray line
shows the average group achievement in the case of no wealth inequality;
that is, all individuals have an initial endowment b=b= 1 and the cost of
cooperation is 0.1b. The blue line shows results for wealth inequality with
the homophily parameter h = 0, whereas the red line shows results for h = 1.
We split the population of Z = 200 individuals into ZR = 40 rich (20%) and
ZP = 160 poor (80%); initial endowments are bR = 2.5 and bP = 0.625, en-
suring that the average endowment b remains b =1 (used to generate the
gray line); the cost of cooperation also remains, on average, 0.1b, which
means cR = 0.1bR and cP = 0.1bP. The results show that wealth inequality
significantly enhances the average chance of group success in the absence of
homophily (h = 0), whereas under homophily (h = 1) the fact that only like
influences like brings the overall chances of success to levels generally below
those under wealth equality. Other parameters (Methods) are N = 6 andM = 3.
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Fig. 1 also shows that ηG depends strongly on homophily, a fea-
ture that plays a central role in the overall dynamics, as is discussed
in more detail below. However, it is also important to understand
how the contributions are split between the rich and the poor,
a feature that is not possible to grasp directly from ηG. To this end
we now study in detail the stationary distributions associated with
the dynamics of the two-subpopulation model. The results are
shown in Fig. 2. Each (discrete) configuration is represented by
a small circle, colored in gray tones. Darker circles indicate
those configurations visited more often, providing a repre-
sentation of the full stationary distribution (p, Methods), i.e.,
the prevalence in time of each possible configuration of the
population. Arrows in each simplex represent, in turn, the
most probable direction of evolution starting from a given
configuration (the gradient of selection ∇, Methods). For each
arrow, we adopt a continuous color code associated with the
likelihood of such a transition (brighter colors indicate more
likely transitions).
Fig. 2 shows that, even in the absence of significant homophily

bias (h ≤ 0.5) a higher fraction of rich contribute (with average
values of 57% for r = 0.2 and 78%, for r = 0.3), compared with the
poor (with average values of 46% for r = 0.2 and 69% for r = 0.3),
thus also protecting their greater wealth. This result does not de-
pend on risk; however, for low risk, the overall contribution is
limited, increasing significantly after a slight increase in overall risk
perception. Indeed, in the absence of homophily, cooperation may
prevail in a wealth-unequal world (e.g., Fig. 2D).
Qualitatively, one can now understand the results in Fig. 1 if

one takes into account that, in most cases, the dynamics both
among the rich and among the poor can become dominated by
basins of attraction that lead to a coexistence between Cs and Ds
(SI Text). Whenever the risk is moderate to high, there is an

increase of the size of such basins, with a corresponding increase
of the stationary fraction of cooperators, such that the feedback
dynamics between the poor and the rich act to build up the co-
operation levels among both subpopulations. In other words, the
poor pave the way for the rich to cooperate, which, in turn, feeds
back into the poor, also increasing their levels of cooperation.
This feedback occurs because, perhaps counterintuitively, not
only the poor imitate the rich, but also the rich imitate the poor.
In fact, it is easy to prove that, for the model considered, the rich
imitate the poor more often than the poor imitate the rich.
As also shown in Fig. 2, this positive feedback between the two

subpopulations is interrupted whenever homophily becomes
dominant (h ∼ 1). When rich and poor cease to be able to sway
one another, we observe two distinct scenarios: At low risk (r =
0.2 in Fig. 2) overall cooperation collapses. With a slight increase
in risk perception, however (r = 0.3), the rich contribute, despite
the fact that the poor do not. Together with risk, a lack of
homophily plays an important role: As soon as the homophily
constraint is relaxed—by adopting h < 1—poor individuals start
to be nudged by the successes of the rich, effectively inducing the
poor players to contribute to the common good.
However, even in the absence of homophily (h = 0), this

positive feedback between the two subpopulations does not always
lead to an increase of cooperation—thus we obtain the coexistence
dynamics shown in Fig. 2. Indeed, whenever most poor opt for
cooperation, the dynamics drive rich countries toward less co-
operation, given that they may now profit from the larger overall
contributions stemming from the poor. Similar dynamics may also
occur among the poor. This reduction, however, not only does not
prevent the majority of rich from engaging in cooperation, but also
does not compromise the overall group achievement values. As
a result of these coupled dynamics, the population will stay most
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Fig. 2. Stationary distribution and gradient of selection for different values of risk r and of the homophily parameter h. (A–F) Each panel contains all possible
configurations of the population (in total ZR × ZP), each specified by the number of rich (iR) and poor (iP) it contains and represented by a gray-colored dot. Darker
dots represent those configurations in which the population spends more time, thus providing a contour representation of the stationary distribution. The curved
arrows show the so-called gradient of selection (∇), which provides the most likely direction of evolution from a given configuration. We use a color code in which
red lines are associated with higher speed of transitions. The behavioral dynamics of the population depend on the homophily parameter h in a nonlinear way.
For h ≤ 0.5, the results remain qualitatively similar to those depicted for h = 0, in which case everybody influences and is influenced by everybody else. In this case,
the contribution of the rich is sizeable, which also leads the poor to contribute. For h > 0.5 the behavior changes abruptly, and one witnesses the rapid collapse of
cooperation among the poor and, for low risk (r = 0.2, A–C), an ensuing disappearance of contributions to the overall PGG, with the population spending most
of the time in full defection, leading to a dramatic impact on the overall group achievement ηG, indicated below each contour plot. However, a slight increase
in overall risk perception (here r = 0.3, D–F) actually impels the rich to contribute, despite the fact that the poor still do not cooperate. Other parameters:
Z = 200; ZR = 40; ZP = 160; c = 0.1; N = 6; M = 3cb (b = 1); bP = 0.625; bR = 2.5; pk
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F
maxg= f2,  40, 75, 3, 2, 20g× 10−3; and ∇k
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maxg= f16,  6, 2, 16, 6, 3g× 10−2.
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of the time nearby a coexistence equilibrium (interior attractor,
Fig. 2 A, D, and E).
This said, we are all aware that some individuals may be more

receptive than others to change their mind, based on the in-
fluence of their peers. In fact, some individuals—for various
reasons, as witnessed in the world summits on climate change
that have taken place to date—may maintain the same behavior
irrespective of their sphere of influence. Given the small size of
the overall population, such an obstinate behavior may lead to
sizeable effects in the global dynamics. In the following we in-
vestigate how such obstinate behaviors (in both wealth classes)
affect the overall dynamics. For simplicity, we assume that, in all
cases, obstinate behavior amounts to 10% of individuals in one
subpopulation—which corresponds to the same fixed contribu-
tion to the PGG, considering either rich or poor obstinate
players—see SI Text for a more detailed analysis.
Fig. 3 shows that obstinate poor cooperators provide impres-

sive improvements in the aggregate propensity of the population
to achieve coordination (ηG = 0.581 compared with ηG = 0.004 in
the absence of obstinate individuals), larger than obstinate rich
cooperators, who lead to less pronounced enhancements (ηG =
0.223). This effect, which extends qualitatively to all values of h,
is more pronounced when h = 1, as is the case in Fig. 3.
The trend shown in Fig. 3 is qualitatively inverted in the case

of obstinate defectors who, in general, are detrimental to overall
cooperation and group achievement (details in SI Text). These
results are largely independent of the parameters chosen and

highlight the important role that obstinate defectors among the
rich and obstinate cooperators among the poor may play in the
outcome of climate negotiations.
In summary, homophily generally impels the rich to compen-

sate for the poor. Given that contributions from the poor are
crucial to solving the climate change problem we face, it is then
imperative that homophilic behavior is avoided (it is noteworthy
that it is enough that overall behavior is not purely homophilic for
homophily to be effectively avoided). Moreover, a small frac-
tion of obstinate poor cooperators leads to sizable increases in
the overall prospects for success, mostly when homophily rules.
Perhaps unsurprisingly, when the contribution of the poor is
widespread, the rich refrain from contributing. Certainly, David
Hume would not be impressed by this feature that emerges from
the game dynamics.
Conventional wisdom would lead one to believe that wealth

inequality and homophily would constitute important obstacles
regarding overall cooperation in climate change negotiations.
Our results predict that, as long as (i) risk perception is high;
(ii) climate negotiations are partitioned in smaller groups
agreeing on local, short-term targets; and (iii) individuals are
influenced by their more successful peers, whom they imitate—
irrespective of their wealth class—and making errors while
doing so, the prospects are not that grim. On the contrary we
find that, under such conditions, cooperation may outcompete
defection, benefiting from wealth inequality. Thus, hope remains
that the problem may be overcome. Moreover, the qualitative
nature of the results obtained here remains robust if we assume
that, instead of proportional contributions, poor and rich con-
tribute the same amount, when cooperating.
Our model, however, ignores an important factor: that the

thresholds may be intrinsically uncertain. This uncertainty, if
sizeable, can destroy cooperation, as sharply demonstrated
recently, both theoretically and experimentally (9). Likely, to
the extent that agreements aim at short-term targets involving
smaller groups, it will also be easier to narrow down threshold
uncertainties. Nonetheless, and in the absence of wealth inequality,
introducing threshold uncertainty into our model leads to the same
scenarios predicted (and confirmed) in ref. 9 (SI Text).
Finally, the recent report of the Intergovernmental Panel for

Climate Change (28), besides emphasizing that climate change is
real and humans are the main cause of it, urging countries to
stop the warming of the planet, has also attempted to narrow
down the threshold uncertainty. However, given that risk per-
ception is low and that a bottom–up approach [as defended by
the late Elinor Ostrom (29) and also, indirectly, by the results of
the present model] has yet to spread globally, it is perhaps not
surprising that today’s prospects remain gloomy. Clearly it is
urgent that individuals become aware of the true risk that we
face. Indeed, an increase in risk perception will surely promote
the development of local initiatives that may foster overall co-
operation by extending the bottom–up approach to all players of
the global game.

Methods
We consider a population of Z individuals, ZR of which are considered rich
(initial endowment bR) and ZP considered poor (initial endowment bP ) who,
together, set up groups of size N, in which they engage in the climate change
threshold PGG (12, 13). Each individual is capable of adopting one of the two
strategies: C and D. Following the discussion in the main text, and given that
rich Cs contribute cR = cbR whereas poor Cs contribute cP = cbP , the payoff of
an individual playing in a group in which there are jR rich Cs, jP poor Cs, and
N− jR − jC Ds, can be written as ΠD

R=P =bR=PfΘðΔÞ+ ð1− rÞ½1−ΘðΔÞ�g and
ΠC

R=P =ΠC
R=P − cR=P (Δ= cRjR + cPjP −Mcb), for rich/poor Ds and Cs, respectively.

In the equations above, ΘðkÞ is the Heaviside function [that is, ΘðkÞ= 1
whenever k≥ 0, being zero otherwise], 0<M≤N is a positive integer, b is the
average endowment (Z   b= ZRbR + ZPbP ), and r (the perception of risk) is
a real parameter varying between 0 and 1; the parameters c< 1, b, bR, and
bP are all positive real numbers. Finally, the fitness fX of an individual adopting
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Fig. 3. Stationary distribution and gradient of selection for populations
comprising 10% of individuals exhibiting an obstinate cooperative behavior.
Same notation as in Fig. 2 is used. Whenever 10% of individuals exhibit ob-
stinate cooperative behavior (Center and Right contours), the number of
configurations of the population in which the evolutionary dynamics proceed
is correspondingly reduced (white areas in contours). The Left contour contains
no obstinate individuals and is displayed for reference. In the Center contour,
10% of the rich individuals behave as obstinate cooperators; that is, they never
change their behavior. In the Right contour, 10% of poor individuals exhibit
such behavior. A small fraction of obstinate rich and obstinate poor coopera-
tors lead to very different outcomes, also for the average group achievement
ηG. Indeed, the chances of success are significantly enhanced whenever obsti-
nate cooperator behavior occurs among the poor. The effect is most pro-
nounced whenever individuals are homophilic, as is the case here (h = 1). Other
parameters: Z = 200; ZR = 40; ZP = 160; c = 0.1; N = 6; M = 3cb (b = 1); bP =
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a given strategy, X, will be associated with the average payoff of that
strategy in the population. The average payoff can be computed for a
given strategy in a configuration i= fiR,iPg, using a multivariate hyper-
geometric sampling (without replacement) (details in SI Text). The number
of individuals adopting a given strategy will evolve in time according to a
stochastic birth–death process combined with the pairwise comparison rule
(24, 30), which describes the social dynamics of rich Cs, poor Cs, rich Ds, and
poor Ds in a finite population. Under pairwise comparison, each individual
of strategy X adopts the strategy Y of another member of the population,
with probability given by the Fermi function ð1+eβðfX − fY ÞÞ−1, where β con-
trols the intensity of selection (β = 3 in Figs. 1 and 2, β = 5 in Fig. 3). In the
absence of homophily, the strategy Y is chosen at random with uniform
probability. For a finite value of the homophily parameter h, individuals of
the same wealth class are chosen with probability 1 whereas individuals of
the other wealth class are chosen with probability 1 − h; thus, when homophily
is maximum, the choice occurs only among the individuals of the same wealth
class (rich or poor) (details in SI Text). Additionally, we consider that, with
a mutation probability μ (μ = 1/Z in Figs. 1–3), individuals adopt a randomly
chosen strategy. As the evolution of the system depends only on its actual
configuration, evolutionary dynamics can be described as a Markov pro-
cess over a two-dimensional space. Its probability distribution function,
piðtÞ, which provides information on the prevalence of each configuration at
time t, obeys a master equation (details in SI Text), a gain–loss equation
involving the transition rates between all accessible configurations (24, 31,

32). The stationary distribution pi is then obtained by reducing the master
equation to an eigenvector search problem (31) (details in SI Text). Another
central quantity that portrays the overall evolutionary dynamics in the space
of all possible configurations is the gradient of selection ∇i. For each con-
figuration i, we compute the most likely path the population will follow,
resorting to the probability to increase (decrease) the number of indi-
viduals adopting a strategy Sk, T

Sk+
i (TSk−

i ) in each time step. Additionally, for
each possible configuration i, we make use of multivariate hypergeometric
sampling to compute the (average) fraction of groups that reach a total of
Mcb in contributions, that is, that successfully achieve the public good—
which we designate by aG(i). Average group achievement—ηG—is then
computed, averaging over all possible configurations i, each weighted with
the corresponding stationary distribution ηG =

P
ipiaGðiÞ.
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Theoretical and Experimental Studies of Behavior Regarding
Climate Change
Several experiments have been performed to understand human
behavior in dealing with global warming (1–4). Social dilemmas
involving collective action were set up in a repeated game
framework, where a given threshold had to be surpassed—
otherwise, there was a variable risk (externally defined) of
everyone losing all their endowments. The first results have
shown that, most of the time, disaster was not avoided (1), risk
being an important factor in promoting disaster avoidance.
Later on the possibility to make pledges was introduced in the same
repeated threshold public goods game, showing that pledges led to an
increase of cooperation (despite the possibility of acting differently
from what was pledged) (2). However, when the same treatments
were run using players with different wealth, this improvement was
demoted (2). Using the same game settings, two time horizons were
introduced into the dilemma (3), showing that fixing intermediate
goals in climate agreements is beneficial, although the final target is
reached less often than the intermediate target. More recently,
a nonrepeated threshold public goods game experiment was per-
formed in which the effects of both impact uncertainty (where in-
dividuals could lose a random amount of money if the threshold was
not met) and threshold uncertainty (where the threshold was a ran-
dom value) were investigated (4). The authors set up the experiment
based on results from a theoretical analysis of such a game (assuming
fully rational individuals engaging in a one-shot threshold public
goods game) that predicted the existence of a critical value for the
threshold uncertainty above which cooperation would collapse. Ex-
periments fully confirmed this catastrophic prediction.
Despite the limited number of scenarios realizable in the labo-

ratory, data stemming from behavioral experiments have provided
crucial insights, not only because they unravel human behavior when
confronted with climate change issues, but also because they provide
important guidelines toward developing theoretical models (5–9).
Indeed, a dynamical approach to the problem of cooperating to
tame the planet’s climate was developed, inspired by the intriguing
results that experiments were revealing (5–7), allowing one not only
to generalize the experimental settings to scenarios that are more
difficult to realize in the laboratory, but also to predict what the
impact of different approaches to the solution of the climate change
problem may bring. Namely, the effect of risk perception and the
disruptive power of uncertainty have been captured in the models
(SI Text, Threshold Uncertainty). Theoretical models also extended
the experimental insights by predicting the importance of small
groups and stringent requirements in improving cooperation, as
well as the role and scale of sanctioning institutions in supervising
agreements. In keeping with this discussion, the present model
brings additional information to this important subject.
In particular, although conventional wisdom would lead one to

believe that wealth inequality and homophily would constitute
important obstacles regarding overall cooperation in climate change
negotiations, the present model predicts that, as long as (i) risk
perception is high; (ii) climate negotiations are partitioned into
smaller groups agreeing on local, short-term targets; and (iii) in-
dividuals are influenced by their more successful peers, whom they
imitate—irrespectively of their wealth class—and making errors
while doing so, the prospects are not that grim. On the contrary we
find that, under such conditions, cooperation may outcompete
defection, benefiting from wealth inequality. On the other hand,
and to the extent that agreements aim at short-term targets in-

volving smaller groups, it may also become easier to narrow down
threshold uncertainties that, if large, do haunt overall cooperation
(4) (SI Text, Threshold Uncertainty).

Evolutionary Dynamics in Finite Populations Under Wealth
Inequality, Uncertainty, and Homophily
Let us consider a population of Z individuals. As stated in the main
text, each individual adopts one of the two possible strategies
X ∈ fC;Dg and belongs to one of two possible wealth classes
k∈ fR;Pg. Let us assume there are ZR rich (with initial endowment
bR) and ZP poor individuals (with an initial endowment bP). These
numbers will remain fixed. Individuals are given an initial endow-
ment (with bP < bR) and play the climate threshold Public Goods
Game (PGG) (1, 5), engaging in groups of size N. Following the
discussion in the main text, and given that rich Cs contribute
cR = cbR whereas poor Cs contribute cP = cbP, the payoff of an
individual playing in a group in which there are jR rich Cs, jP poor
Cs, and N − jR − jP Ds can be written as

∏D
R=Pð jR; jPÞ= bR=P

�
Θ
�
cR jR + cPjP −Mcb

�
+ ð1− rÞ�1−Θ

�
cR jR + cPjP −Mcb

���
and ΠC

R=PðjR; jPÞ=ΠD
R=PðjR; jPÞ− cR=P, for rich/poor Cs and Ds, re-

spectively. In the equations above, ΘðkÞ is the Heaviside function
[that is, ΘðkÞ= 1 whenever k≥ 0, being zero otherwise],
0<M ≤N is a positive integer, b is the average endowment
(Z  b=ZRbR +ZPbP), and r (the perception of risk) is a real pa-
rameter varying between 0 and 1; the parameters 0< c< 1, b, bR,
and bP are all real positive. Finally, the fitness f Xk of an individual
adopting a given strategy X in a population of wealth class k will
be associated with the average payoff of that strategy in the
entire population. This can be computed for a given configura-
tion of strategies and wealth classes specified by i= fiR; iPg, using
a multivariate hypergeometric sampling (without replacement):

f CR ðiÞ=
�
Z− 1
N − 1

	−1XN−1

jR= 0

XN−1−jR

jP=0

�
iR − 1
jR

	�
iP
jP

	

3

�
Z− iR − iP

N − 1− jR − jP

	
∏C

Rð jR + 1; jPÞ [S1a]
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R ð jR; jPÞ [S1b]

f CP ðiÞ=
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P ð jR; jP + 1Þ [S1c]
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The number of individuals adopting a given strategy will evolve
in time according to a stochastic birth–death process combined
with the pairwise comparison rule (10, 11), which describes the
social dynamics of rich Cs, poor Cs, rich Ds, and poor Ds in
a finite population. Under pairwise comparison, each individual
of strategy X adopts the strategy Y of a randomly selected
member of the population, with probability given by the Fermi
function ð1+eβðf Xk − f Yl ÞÞ−1, for any wealth class fk; lg∈ fR;Pg,
where β controls the intensity of selection. Additionally we
consider that, with a mutation probability μ, individuals adopt
a randomly chosen different strategy, in such a way that when
μ= 1, the individual does change strategy. As the evolution of
the system depends only on its actual configuration, evolu-
tionary dynamics can be described as a Markov process over
a two-dimensional space. Its probability distribution function,
piðtÞ, which provides information on the prevalence of each
configuration at time t, obeys a master equation of the form

piðt+ τÞ− piðtÞ=
X
i′
fTii′pi′ðtÞ−Ti′ipiðtÞg; [S2]

a gain–loss equation that allows one to compute the evolution of
piðtÞ given the transition probabilities per unit time τ from the
configuration i to i′, Ti′i (11–13). The stationary distribution pi
analyzed in the main text is obtained by making the left-hand
side equal to zero, which transforms Eq. S2 into an eigenvector
search problem (12), namely, the eigenvector associated with the
eigenvalue 1 of the transition matrix W (12) whose matrix ele-
ments Wqp are built from the transition probabilities per unit
time Ti′i in the following way: Let us enumerate each of all
possible configurations i= fiR; iPg of the population by an integer
number—we do so by defining a bijective function V such that p =
V(i) and q = V(i′) and, therefore, i = V−1(p) and i′ = V−1(q).
Then, we may write Wqp = Ti′i. The transition probabilities Ti′i
can all be written in terms of the following expression, which
gives the probability that an individual with strategy X ∈ fC;Dg
in the subpopulation k∈ fR;Pg changes to a different strategy
Y ∈ fC;Dg, both from the same subpopulation k and from the
other population l (that is, l = P if k = R, and l = R if k = P):

Thus, if the homophily is maximum (h = 1), the imitation occurs
only between individuals of the same wealth class (rich or poor),
whereas h = 0 means that everyone influences and may be influ-
enced by anyone else.
Another central quantity—which portrays the overall evolution-

ary dynamics in the space of all possible configurations—is the
gradient of selection ∇i (GoS). For each configuration i= fiR; iPg,
we compute the most likely path each subpopulation k∈ fR;Pg will
follow, resorting to the probability to increase (decrease) by one, in
each time step, the number of cooperators for that configuration
i of the population, which we denote by T+

i;k (T−
i;k), such that

∇i =
n
T+
i;R −T−

i;R;  T
+
i;P −T−

i;P

o
:

Finally, for each possible configuration i, we make use of multi-
variate hypergeometric sampling (Eq. S1) to compute the (average)
fraction of groups that reach a total ofMcb in contributions, that is,

that successfully achieve the public good—which we designate by
aG(i). Average group achievement—ηG—is then computed by av-
eraging over all possible configurations i, each weighted with the
corresponding stationary distribution ηG =

P
i piaGðiÞ.

Timescale Separation: Games Among the Rich and Among
the Poor
To assess what games the rich play in the presence of the poor (Cs
and Ds) and the poor play in the presence of the rich (Cs and
Ds), we let each subpopulation evolve assuming that the rate of
evolution of the other subpopulation is zero. The results are
shown in Fig. S1, where we compute the gradient of selection (∇)
that governs the evolutionary dynamics of the rich in the pres-
ence of frozen, mixed configurations of the poor (Fig. S1 A and
B) and vice versa (Fig. S1 C and D). We consider the cases in
which the population is subdivided into subpopulations of equal
size (ZP = ZR, Fig. S1 A and C) or not (ZP = 4ZR, as in the main
text, Fig. S1 B and D).
The results in Fig. S1 show that the rich tend to be more co-

operative as the difference between the endowments of both
classes increases, whereas cooperation among the poor largely
remains unaffected. Moreover, whereas the poor engage in a
coexistence game in which overall cooperation decreases as co-
operation among rich decreases, the dynamics of the rich are
influenced by the relative size of the poor subpopulation. In
general, the rich engage in an N-player stag-hunt game (14) with
different degrees of coordination and coexistence, depending on
the (fixed) fraction of poor cooperators. As a result, different
combinations of parameters may transform the original N-player
stag-hunt dilemma (14)—characterized by two internal roots—
into a pure coordination or coexistence dilemma or even a de-
fection dominance dilemma (Fig. S1 A and C). However, as
discussed before (5, 6) and illustrated in Fig. 2 of the main text,
the unstable fixed point can be overcome by stochastic effects—
such as errors in imitation and random exploration of the
strategy space—such that the population spends most of its time
in the vicinity of the coexistence points. Thus, the prevalent
levels of cooperation among the rich will be ultimately defined
by the size of the cooperative basin attraction and the position of

the respective coexistence root, both influenced by the dynamics
occurring among the poor. It is also noteworthy that the gradients
of the rich are 10 times smaller than those of the poor. This
means the rate of response of the rich to changes is (on average)
slower than that of the poor. In practice, the poor will adjust their
behavior more rapidly to changes of the configuration of the rich,
thus quickly shifting between the corresponding levels of co-
existence between poor Cs and Ds.

Evolutionary Dynamics for the Same Amounts of Rich and
Poor
In all experimental settings carried out to date, the fraction of
rich and poor in each group was kept equal. Here we compute
the analog situation in our model; that is, we compute the
stationary distribution in the case when ZP = ZR. The results are
shown in Fig. S2.
Comparison with Fig. 2 in the main text shows unequivocally

that, for low risk (r = 0.2), rich and poor populations of the same

TX→Y
k =

iXk
Z

 
ð1− μÞ



iYk

Zk − 1+ ð1− hÞZl

�
1+ eβðf Xk − f Yk Þ

�−1
+

ð1− hÞiYl
Zk − 1+ ð1− hÞZl

�
1+ eβðf Xk − f Yl Þ

�−1

+ μ

!
:
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size lead to more pessimistic prospects concerning overall co-
operation (compare the values of ηG below each panel). For
a corresponding increase of risk perception (Fig. 2), we observe
that, overall, cooperation remains below that observed for asym-
metric subpopulation sizes. In particular, the rich cooperate less and
are no longer able to compensate for the collapse of cooperation
among the poor, a feature that becomes more pronounced with
increasing homophily.

Threshold Uncertainty
In the absence of wealth inequality, all individuals are equivalent.
This has been, to date, the most studied situation in the laboratory.
In particular, in ref. 4 it has been demonstrated how, in a situation
that all individuals in the group are equivalent, threshold un-
certainty has a disruptive effect on the overall chances of co-
operation. Below we show that this is also the case in our model.
Therefore, we modify the individual payoffs so that the games

played have a random threshold, with a value drawn from a uni-
form probability distribution in the interval [Mcb− δ, Mcb+ δ].
The larger the value of δ is, the larger the uncertainty associated
with the threshold. Fig. S3A shows how this uncertainty induces
a regime shift in the overall behavior of the population, from an
N-player coordination game (5, 14, 15) where cooperators do
have a chance toward a defection dominance dilemma. This shift
leads, in turn, to a radical change in the profile of the stationary
distribution, also shown in Fig. S3B. The impact of this threshold
uncertainty on group achievement, ηGðrÞ, is shown in Fig. S4,
corroborating the results obtained in ref. 4. The study of the ef-
fects of threshold uncertainty in the presence of wealth inequality,
which is more complex given the problem that the threshold does
not affect in the same way the rich and the poor, will be deferred
to a future study.

Evolutionary Dynamics in the Presence of Obstinate
Cooperators and Defectors
Here we investigate in more detail the role played by obstinate
individual behavior in the population. We assume that a fixed
fraction of individuals in the population exhibits obstinate behavior;

that is, these individuals are not susceptible to changing their be-
havior in time. We compute, for all possible combinations, the
overall group achievement ηG (Methods and SI Text, Evolutionary
Dynamics in Finite Populations Under Wealth Inequality, Un-
certainty, and Homophily) shown in Fig. S5 for three different
values of risk (0.2, 0.3, and 0.4, each associated with a differ-
ent line color) and for the fractions of obstinate individuals
indicated in Fig. S5 A–G, Insets.
We carry out this analysis as a function of the homophily

parameter h. The results corroborate the idea that obstinate
Cs generally lead to positive effects in what concerns overall group
achievement, whereas obstinate Ds lead to negative effects. Among
these, obstinate poor Cs play a crucial role in sustaining coop-
eration, mostly when homophily is high (h ∼ 1), whereas obstinate
Ds are generally detrimental to overall cooperation.

Robustness of Results as a Function of N
In the following we investigate the dependence of our model
results when we change group size and group threshold. To this
end we compute, as a function of risk, the same curves that we plot
in Fig. 1 of main text, for two group sizes (N = 6 and N = 12) and
for several combinations of M and N, leading to six different
scenarios. We use the same parameters as those used in Fig. 1;
namely, we split the population of Z = 200 individuals into ZR =
40 rich (20%) and ZP = 160 poor (80%); initial endowments are
bR = 2.5 and bP = 0.625, ensuring that the average endowment
b remains b = 1 (used to generate the gray line in Fig. 1 and
Fig. S6); the cost of cooperation also remains, on average,
0.1b, which means cR = 0.1bR and cP = 0.1bP. The results are
shown in Fig. S6. Clearly, group size constitutes a very important
parameter, because smaller groups lead to higher chances of
success (5). Nonetheless, what we observe, in all cases, is that the
message contained in Fig. 1 remains valid for all combinations of
parameters shown: Wealth inequality without homophily (blue
line) systematically fosters overall cooperation for lower values
of risk than what is observed under wealth equality (gray line).
Finally, homophilic and wealth-unequal subpopulations lead to
the grimmest prospects for overall cooperation.
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Fig. S1. Rich and poor play different games. (A–D) The gradient of selection (∇, Methods) in the case when one subpopulation (rich or poor) evolves while the
rate of evolution of the other subpopulation is zero, in this way assessing which effective game each subpopulation engages in. (A and B) Number of poor (ZP)
and the fraction of Cs (iP/ZP) in the poor population are kept constant (at three different values, legend at Right) while the fraction of Cs (iR/ZR) and Ds in the
rich population is allowed to evolve. (C and D) Here we reverse the timescales and evolve the poor subpopulation, freezing the composition of the rich
subpopulation. For each case we consider two regimes associated with different ratios for the initial endowments of rich and poor: bR > bP (bR = 1.35) and
bR >> bP (bR = 1.75); imposing that ðbRZR +bPZPÞ=Z =b= 1 fixes the values of bP for each case. (A and C) ZP = ZR. (B and D) ZP = 4ZR. Other model parameters:
Z = 200, N = 10, M = 3, β = 10, h = 0, r = 0.3, cR = 0.1bR, and cP = 0.1bP.
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Fig. S2. Evolutionary dynamics for equal fractions of rich and poor. (A–F) The gradient of selection (∇,Methods) in the case when each subpopulation (rich or poor)
evolves with the same number of individuals (compare with Fig. 2). Other model parameters: Z = 200, ZP = ZR, N = 6, M = 3cb, β = 5, μ = 1/Z, cR = 0.1bR, cP = 0.1bP,
bR = 1.7, and bP = 0.3, ensuring that ðbRZR +bPZPÞ=Z =b= 1; pk=A...F

max = f4:2; 5:3; 3:4; 0:2; 0:7; 1:6g× 10−2; and ∇k=A...F
max = f0:25; 0:12; 0:02; 0:25; 0:12; 0:02g.
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F L A S H B A C K A N D O T H E R W O R K S

Being part of an interdisciplinary group as the ATP-group provided me
opportunities that I could not even dream of before joining in. Some of the
opportunities I was able to grasp, many others I was not, but I was always
immersed in a creative, diverse and fruitful environment.

In fact, in the day I officially started my Ph.D., I was with my advisors,
Jorge M. Pacheco and Francisco C. Santos, and also Flávio L. Pinheiro, at
the time another Ph.D. student and ATP-group member as I was, in a Pro-
gram at the Kavli Institute for Theoretical Physics, at the University of
California Santa Barbara. There, I had the chance to meet people with di-
verse interests and ability to speak the language of different subjects. In no
time, I was involved in both computing parities of numbers in sequences,
with Greg Huber, and, at the same time, studying and trying to compre-
hend the biology of choanoflagellates, and the origins of multicellularity,
in a problem introduced Mimi Koehl. In that same trip, I had the pleasure
to share an office with my advisor, Jorge Pacheco, and directly work with
Brian Skyrms at the Department of Logic and Philosophy of Science, Uni-
versity of California Irvine. Out of those discussions – that would many
times happen with the taste of a cappuccino – a paper was born:

Jorge M. Pacheco, Vítor V. Vasconcelos, Francisco C. Santos, and Brian
Skyrms. «Co-evolutionary Dynamics of Collective Action with Signaling
for a Quorum.» In: PLoS Comput Biol 11.2 (2015), e1004101.

The knowledge I acquired during this project was immense, and the tech-
nical part was my hands-on Small Mutation Approximation. Only later, I
would find out that it was crucial in the development on the hierarchi-
cal approach we have now developed to extend it and that is part of this
dissertation.

Clearly, those are not the only examples of the opportunities I had. I can
recall that about a year later, this time at Princeton University, while I was
working with Phillip M. Hannam on a model he and Jorge M. Pacheco
developed with Simon A. Levin[46], I had the pleasure to co-advise, with
Simon A. Levin, a senior undergraduate student Kashyap Rajagopal in a
project called "Homophily in Climate Change Negotiations: A Probabilistic
SIR Model". Even though I was familiar with the Climate Negotiations by
then, it was fun to learn some connections between the EGT models and
epidemic models. From those days, I remember one evening at the hall of
Simon’s Lab trying to sketch a proof for the dependence of diffusion on an
N-step process. It was when Lisa C. McManus showed up and we talked
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172 flashback and other works

about her project. An unexpected discussion, about coral and how it grows
in a network of reefs, ended up in an on-going collaboration,

Lisa C. McManus, James R. Watson, Vítor V. Vasconcelos, Simon A. Levin,
«Larval Dispersal as a mechanism for coral persistence on reef communi-
ties» at 13th International Coral Reef Symposium.

During most of the period of my Ph.D., the office was never one place,
whether in location, or configuration of ideas. It had Physicists, a Com-
puter Scientist and a Geographer – and their collaborators. Lots of conver-
sations always flowed, on different topics, whether at office hours, lunch
time, or coffee time. I ended up getting interested in a lot of topics, but
also in other branches or approaches of the study of cooperation:

Flavio L. Pinheiro, Vitor V. Vasconcelos, Francisco C. Santos, Jorge M.
Pacheco. «Self-organized game dynamics in complex networks.» In: Ad-
vances in Artificial Life, ECAL 12 pp61-62;

Flávio L. Pinheiro, Vítor V. Vasconcelos, Francisco C. Santos, Jorge M.
Pacheco. «Evolution of All-or-None Strategies in Repeated Public Goods
Dilemmas.» In: PLoS Comput Biol 10.11 (2014), e1003945.

I cannot say how much I enjoyed all the small things I did, like learning
how to run parallel simulations in the ATP-group’s cluster; implementing
fractal analysis tools for cities with Sara Encarnação; how to program co-
operatively – and, after all, my thesis is about cooperation – using tools
like github to develop packages with Fernando P. Santos; or simply all the
discussions the whole ATP-group I know had.

Overall, and even though I remember the times of studying, program-
ming and bug finding, writing and rewriting, I still feel like all of those
successful projects and collaborations happened naturally and I know this
was only possible for being where I was and with the people with whom I
was.
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