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RESUMO 

Plasmodium falciparum  é um parasita da malária que pode infetar seres humanos. Quando o parasita 

replica dentro dos eritrócitos, eles tornam-se suscetíveis à eliminação pelo sistema imunológico. No 

entanto, para evitar esta eliminação, o parasita expressa proteínas de adesão na superfície de 

eritrócitos infetados. As proteínas de adesão ancoram os eritrócitos a receptores específicos no 

hospedeiro. Carboidratos designados de chondroitin sulfate (CS) estão presentes em diferentes tecidos 

no corpo humano. No entanto, na placenta humana está presente um CS com características muito 

específicas chamado oncofetal-CS (of-CS). Os eritrócitos infetados pelo parasita da malária expressam 

à superfície a proteína VAR2CSA que se liga especificamente a CS. A ligação entre VAR2CSA-CS 

provoca malária placentária, uma doença que pode ser mortal. 

As células da placenta e as células de cancro têm algumas características semelhantes, tais como: 

crescimento rápido de células, migração, invasão celular e CS com características específicas. A 

malária placental afeta uma grande parte da população mundial e por isso é muito importante 

encontrar uma possível vacina. A caracterização do CS presente especificamente na placenta e a 

caracterização da sua ligação à proteína VAR2CSA é fundamental, no entanto é muito difícil 

caracterizar as cadeias de CS através dos métodos comuns. O cancro também é uma doença mortal 

que afeta um grande número da população mundial. A caracterização de CS em células de cancro 

seria muito importante na patogênese, tratamento e diagnóstico. 

No presente trabalho foi utilizada uma amostra de placenta humana a partir da qual o CS foi extraído 

através de vários métodos de purificação de tecidos. Posteriormente, a amostra de CS foi analisada por 

métodos analíticos, tais como High Performance Liquid Chromatography (HPLC) e por Liquid 

Chromatography-Mass Spectrometry (LC-MS). A cadeia CS é uma combinação de muitas 

características o que a torna muito específica e difícil de caracterizar. No entanto, através do trabalho 

realizado verificou-se que a sulfatação de 4-O na cadeia CS é necessária para a sua ligação à proteína 

VAR2CSA. Esta pesquisa demonstrou que o fragmento de ligação de CS à proteína VAR2CSA apresenta 

pouca sulfatação. Este trabalho tem como objetivo contribuir para novos estudos de compostos 

terapêuticos e para o diagnóstico de câncer, bem como a possível vacina anti-malária. 
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ABSTRACT 

Plasmodium falciparum is a malaria parasite that can infect humans. When the parasite replicates 

inside the erythrocytes, they become susceptible to elimination by the immune system. However, to 

avoid this elimination, the parasite expresses adhesion proteins on the surface of infected erythrocytes 

(iEs). The adhesion proteins anchor erythrocytes to specific receptors in the host. Carbohydrate called 

chondroitin sulfate (CS) is present in different tissues in the human body. However, in the human 

placenta is present a CS with very specific characteristics called oncofetal-CS (of-CS). Erythrocytes 

infected by the malaria parasite express to the surface the VAR2CSA protein that specifically binds to of-

CS. The link between VAR2CSA-CS causes placental malaria (PM), a disease that can be deadly. 

The placenta cells and cancer cells have some similar characteristics, such as: rapid cell growth, 

migration, cell invasion and specific CS. PM affects a large part of the world's population and so it is 

very important to find a possible vaccine. The characterization of the CS present specifically in the 

placenta and the characterization of its binding to the VAR2CSA protein is fundamental, however it is 

very difficult to characterize CS through the common methods. Cancer is also a deadly disease that 

affects a large number of the world's population. The characterization of CS in cancer cells would be 

very important in pathogenesis, treatment and diagnosis. 

In the present work a human placenta sample was used from which CS was extracted through various 

methods of tissue purification. Posteriorly, the CS of the sample was analyzed by analytical methods, 

such as High Performance Liquid Chromatography (HPLC) and Liquid Chromatography-Mass 

Spectrometry (LC-MS). The CS chain is a combination of many characteristics that makes it specific 

and difficult to characterize. However, through the work performed it has been found that 4-O 

sulphation in the CS chain is required for its binding to the VAR2CSA protein. This search also 

demonstrated that the CS binding fragment to the VAR2CSA protein shows little sulfation. This work 

aims to contribute to new studies of therapeutic compounds and to the diagnosis of cancer, as well as 

to possible anti-malaria vaccine. 
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1. INTRODUCTION  

1.1 Extracellular matrix (ECM) and structure  

1.1.1 Proteoglycans (PGs) and glycosaminoglycans (GAGs) 

The ECM is a dynamic, non-cellular structure that comprises a lot of macromolecules, including elastin, 

tenascin, fibronectin, thrombospondin, PGs and Hyaluronan [1]. PGs are proteins that are modified with 

GAG, which contribute to important biological functions, like: function of ECM, regulation of cell growth, 

enzyme activities [2]. GAGs are linear biopolymers composed of repeating disaccharide units of 

hexosamine (N-acetyl-D-galactosamine (GalNAc), N-acetyl-D-glucosamine (GlcNAc)) and uronic acid (D-

glucuronic acid (GlcA) or L-iduronic acid (IdoUA)). In different subtypes of GAGs the repeating 

disaccharides can be differentially modified by N-acetylation and sulfation [3, 2], resulting in a highly 

heterogenous, negatively charged chains with a molecular weight which can be much higher than 

100kDa. GAGs can be divided into two categories based on whether or not the chain is sulfated. The 

non-sulfated GAGs include only hyaluronic acid (HA). As for the sulfated GAGs, they include chondroitin 

sulfate (CS), keratan sulfate (KS), heparin and heparan sulfate (HS) and dermatan sulfate (DS) (Figure 

1.1) [4, 5].  
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Figure 1.1 - Table representative of the composition and structures of the different GAGs. Possible 
sulfation sites are represented in the image with a red line [5] 

 

The general structure of GAGs is linear, and is made up of a O-sulfated polysaccharide backbone of 

alternating residues of uronic acid and distinct hexosamine: CS contain GlcA and GalNAc; DS contain 

IdoA and GalNAc; HS contain IdoA or GlcA and GlcNAc (Figure 1.2) [4, 6]. 
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Figure 1.2 -  Representation of the structural diversity of GAGs. Squares represent hexosamine 
(glucosamine or galactosamine), triangles represent uronic acid (GlcA or IdoUA), the circles represent 
galactose [7] 

 

 

Different patterns of sulfation allow different interactions with protein ligands, usually through ionic 

interactions [5]. Depending on the type of sulfation, the different disaccharides are called 0, A, B, C, D 

and E. However, in most cases the GAG chain is a mix of different types of sulfations [7].  Chondroitin 

sulfate A (CSA, also called C4S) is a specific type of CS that is characterized by the presence of 4-O-

sulfation on the majority of the GalNAC residues of a given CS chain (Figure 1.3) [8]. 
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Figure 1.3 - C4S structure that represents repeating units of GAGs (red: D-Glucuronic acid, blue: N-
acetyl-D-galactosamine, green: sulfate group). The GlcA residues link with N-acetylgalactosamine 
residues via β (1-3) glycosidic bonds, the N-acetylgalactosamine residues link to GlcA residues through 
β (1-4) linkages and also glycosidic [8] 

1.1.2 Biosynthesis of different  GAGs  

CS, DS, HS and heparin, synthesis starts with the formation of a tetrasaccharide linker that contains 
xylose, galactose and GlcA  (GlcA-β1,3-Gal-β1,3-Gal-β1,4-Xyl-O-) at a serine residue of the PG core 
protein (Figure 1.4) [5, 9]. 
 

 

Figure 1.4 -  HS, CS, DS modification site in a PG protein core with a tetrasaccharide linker sequence. 
In the figure are marked sulfation, phosphorylation and capping sites [9] 

 

The fifth sugar added (acetylated amino sugar) to the tetrasaccharide linker decides whether the chain 

will be HS / heparin or CS / DS. HS is formed if GlcNAc is added to the tetrasaccharide linker and CS 

is formed if GalNAc is added [9, 10].  

The CS N-acetylgalactosaminyltransferase-1 (CSGalNAcT-1) enzyme is responsible for catalyzing the 

transfer of a residue of GalNAc to form CS/DS and is very important in the chain initiation process of 

CS/DS. Exostosin like glycosyltransferase 2 (EXTL2) is in turn responsible for adding the first GlcNAc to 

form HS (Figure 1.5) [5, 11, 12]. The chain of CSA is elongated through the action of many enzymes 

and then the chain is sulfated through enzymes such as GalNAc 4 sulfotransferases (C4ST1L3) [13]. 
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Figure 1.5 - Various steps in the synthesis of CS, DS, HS and heparin GAG chains [5] 
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1.1.3 Chondroitin sulfate proteoglycan (CSPG) 

GAGs are post-translational modifications to PGs present in the cellular membrane and ECM. Different 

PGs have been identified in different human tissues. CSPG are a family of very diverse proteins with a 

lot of functions. As a protein can have one or up to 200 CS chains, CSPGs can have different functions 

like regulation of cellular processes (e.g. differentiation, invasion, adhesion, growth) and providing 

structural integrity  [14, 15]. The up/down regulation of CSPG expression is associated with 

pathological and physiological conditions. Some malignant tumors such as  testicular, breast, pancreas 

and colon tumors overexpress two major CSPGs - versican, decorin [15]. The CS chain is very 

important to the functions of CSPG because it can act as a scaffold for sustained proliferative signaling 

by providing growth factors to the membrane receptors [16]. Several specific biological effects, such as 

binding to growth factors and their receptors, may be due to structural changes in the CS chains. In 

addition, the specificity of CS to the protein ligands is different than that of HS [15]. 

1.2 CS as a receptor  

1.2.1 Malaria parasite – Plasmodium falciparum  

Plasmodium falciparum is a protozoan parasite [17] and this parasite can survive in different host 

organisms, such as vertebrates and invertebrates, both intracellularly and extracellularly. The life cycle 

of parasite is extraordinarily complex because it involves specialized protein expression [18]. So, the 

infection by the Plasmodium falciparum parasite can be very harmful. 

Plasmodium falciparum is a malaria parasite that can infect the human being. Malaria can be a deadly 

disease and affects a large number of the world's population. According to the "The Worls Malaria 

report" in the year 2015 there were 214 million cases of malaria globally, 438,000 deaths due to 

malaria disease. The worst is in the African region where 90% of deaths occurred. Children (under 5 

years) are very susceptible to infection, disease and death, and account for 70% of malaria deaths [19]. 

Pregnant women are also very susceptible to malaria. Each year, 125 million pregnancies are at risk of 

infection, with high levels of mortality rates. During pregnancy, malaria can cause different health 

complications, such as low birth weight (LBW) and intrauterine growth restriction, preterm birth (PTB) 

and other long-term effects [20, 21].  
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1.2.2 Life cycle of parasite  

The life cycle of Plasmodium falciparum parasite has two stages: an exogenous sexual phase with 

multiplication of parasites in Anopheles mosquitoes; and an endogenous sexual stage, where there is a 

multiplication of the parasites in the human host. Male Anopheles mosquito eat only nectar and plant 

sap, but females eat blood. After the female Anopheles mosquito ingests the blood of the human host, 

the sexual phase of the parasite begins, and the zygote is formed in the stomach. The zygote passes 

through the mosquito stomach cell layer and, in a sporogony process, hundreds of infected forms are 

formed (sporozoites). The sporozoites go to the salivary glands, and when the mosquito stings a human 

body the sporozoites pass to the human host. Thirty to sixty minutes after entering the blood, the 

sporozoites penetrate the liver cells and start mitotic activity and nuclear division. The multinucleate 

liver-stage schizont bursts within 9 to 16 days and releases thousands of merozoites in the blood. The 

merozoites then invade erythrocytes cells and take 72 hours to develop trophozoites and start a new 

phase of mitotic division originating erythrocytic-stage schizonts. When the infected red blood cells 

rupture, each schizonts liberates between 8 to 32 merozoites, which invade new erythrocytes. After a 

few cycles, some merozoites go to sexual stage called gametocytes. When gametocytes are ingested by 

feeding Anopheles mosquitoes, mature male and female gametes join to form a zygote in the midgut of 

the vector. The malaria parasite only has a diploid phase which is when there is the zygote formation 

and the only time there is meiosis shortly after formation of the zygote (Figure 1.6) [22, 23, 24, 25].  
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Figure 1.6 -  Life cycle of malaria parasite [22]   

1.2.3 Pathogenesis and Immunity   

Var, Rif and stevor are three multigene families in the genome of the parasite Plasmodium falciparum. 

These genes encode proteins known as Plasmodium falciparum erythrocyte membrane protein 1 

(PfEMP-1), repetitive interspersed family (rifin) and sub-telomeric variable open reading frame (stevor), 

respectively. The products of the var and rif genes are transported to the surface of infected iEs. These 

proteins are involved in the adhesion to host endothelial receptors, allowing the iEs to be sequestered to 

different organs [26].  

PfEMP1 is a family of proteins with a size between 200 and 350 kDa, encoded by the var genes. These 

proteins are known to be extremely important for the pathogenicity of the parasite, as it allows the iEs to 
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adhere to different receptors in the organism, preventing clearance by the spleen [27, 28]. This makes 

malaria caused by Plasmodium falciparum very difficult to eliminate. 

When an organism is exposed to repeated infections that cause immunity. With repeated infections the 

host immunize the many PfEMP1 proteins [29]. The worst cases of the disease are in children up to 

five years of age. The antigens that the parasites express at the surface of iEs are essential in the 

process of infection, because most often the host organism do not have IgG antibodies specific to them. 

Immunity developed by accumulation of different antibodies specific for PfEMP1 in some episodes of 

disease. The big problem is the great genetic variability, as members of PfEMP1 family are expressed 

by 50 to 60 different genes [30].  

1.2.4 PM 

PM is caused by the parasite Plasmodium falciparum. This disease causes severe heatlh complications 

both to the mother and the fetus, leading to LBW and severe maternal anemia. In Africa, aroud 

200,000 infants and 10,000 mothers die every year from PM [21]. Previously acquired immunity 

makes malaria less frequent in adults. However, pregnant women are susceptible to malaria, despite 

the previously acquired immunity. Additionally, this susceptibility is higher in their first pregnancy as 

immunity to this type of malaria is only obtained in successive pregnancies [31].  

Despite there being different types of PfEMP1 proteins, PM is characterized by a specific PfEMP-1 

protein, named variant surface antigen 2-chondroitin sulfate A (VAR2CSA) [31]. During the course of 

pregnancy, the IEs accumulate in the intervillous space in the placenta, and bind to the 

syncytiotrophoblast. Through a transcriptional analysis of genes, the VAR2CSA protein was shown to be 

responsible for the IE binding to the placenta [32]. This binding was shown to be to a specific type of 

CS named CSA. Such binding is highly specific, as studies have shown that IEs do not bind to other 

receptors (like cluster differentiation 36 (CD36) and Intercellular Adhesion Molecule 1 (ICAM 1)) that 

normally support adhesion of other IE forms [33]. IEs are then retained in the placenta, leading to 

severe inflammation [34]. 

1.2.5 VAR2CSA protein 

VAR2CSA belongs to the PfEMP1 family of proteins that are codied by var gene family, as previously 

mentioned. PfEMP1 proteins are made up of several Duffy domains (DBL) separated by Inter domains 

https://en.wikipedia.org/wiki/Intercellular_adhesion_molecule
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(ID), and it is the DBL domains that cysteine rich. These domains can bind different receptors like CSA, 

CD36 and complement receptor 1 (CR1). The composition of PfEMP1 protein family is quite similar: all 

have a small acid intracellular domain and a large extracellular part. The sequence of PfEMP1 protein is 

very important since it influences the binding to their receptors. All proteins contain a small acidic 

intracellular domain and a large extracellular part with N-terminal segment (NTS), DBL, cysteine-rich 

inter-region domains (CIDR) and interdomains (ID) [35]. VAR2CSA is different because this protein has 

six DBL domain, with an amino acid in the N-terminal sequence distinct from others PfEMP1s. These 

domains are called: DBL1x, DBL2x, e DBL3x (Figure 1.7). This protein have six Duffy binding-like 

domains, three DBLx and three DBLƐ, and a cysteine-rich inter-domain region between DBL2x and 

DBL3x, [8, 36, 37]. VAR2CSA is a large protein (350 kDa) with a complex structure and is difficult to 

mass-produce because of genetic variability.  

 

Figure 1.7 - Representative scheme of PfEMP1 and VAR2CSA. In the image are represented the 
domains DBL, the CIDR and the segments of interconnection (represented in black) [8] 

 

During pregnancy, VAR2CSA-expressing IEs bind to CSA present in the placenta, leading to 

accumulation of IEs and causing PM. The severity of PM stresses the need to find a treatment for PM, 

and efforts have been made in this direction. One of the treatments that is under development is a 

vaccine. PfEMP1 proteins can be essential to the development of the vaccine, but isolates of 

Plasmodim falciparum have a high degree of genetic variation and a high degree of antigenic switching. 

This can make the whole development process of a specific vaccine more complicated. Fortunately, PM 

is an exception since the VAR2CSA protein is highly conserved and is the only antigen in PM. A strategy 

is also possible because the surface molecules expressed in IEs have conserved epitopes [38]. 

As mentioned before, VAR2CSA is a large and complex protein, making it extremely difficult to produce 

recombinantly for vaccine development. There may be a problem when using a large protein for the 
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development of a vaccine, since the high size may lead to the formation of non inhibitory antibodies. 

Targeting a structural epitope that is not involved in the binding increases the likelihood of escape 

mutations. Thus, it is essential to cut the CSA chain to find the true CSA binding site, so that it can be 

targeted and to act as a vaccine (to induce the production of antibodies capable of blocking the 

adhesion to CSA) [21]. 

The first studies to find the CSA binding region focused on producing individual DBL domains  and 

studying them [39]. These studies showed that four VAR2CSA domains (DBL2x, DBL3x, DBL5Ɛ, 

DBL6Ɛ) bind specifically to CSA. The same DBL domains but from different VAR2CSA variants showed 

different affinities for binding. The recombinant protein with full length variant antigen 2-chondroitin 

sulfate A (FV2) proved to be highly specific in binding to CSA. This binding had much higher affinity 

than binding of single domains to CSA. So it is thought this evidence shows that VAR2CSA protein 

assumes a tertiary structure with all the domains interconnected. The interaction between the them 

forms the true CSA binding site [37, 40, 41]. The study of FV2 was really important to understand the 

structure and binding properties of the VAR2CSA protein. Full length VAR2CSA ectodomain binds 

specifically to CSA and the CSA binding site was shown to be within the DBL2x-CIDRPAM region. 

Additionally, some fragments have been shown to possess the same affinity to CSA as the protein in its 

full length: two overlapping fragments – DBL1x-CIDRPAM, ID1-DBL3x and DBL1x-DBL3x. Currently, we 

lack information on the structure of full length VAR2CSA because no crystal structure has been 

obtained. However, different studies show that VAR2CSA protein has a compact structure and that the 

binding site to CSA depends on several domains and regions between domains. Mutations in classic 

sulfate-binding sites in VAR2CSA proved that the interaction between VAR2CSA and CSA is partially 

dependent on ionic interactions. Several small fragments of VAR2CSA can produce antibodies that can 

interfere with the adhesion of IEs to CSA [37].  

GAGs that are found on the cell surface are used by many bacteria, parasites and viruses as adhesion 

receptors. Animal cells contain several types of GAGs but HS is the most studied GAG and is associated 

with pathogens. Some parasites are known to interact with CS chains including malaria parasites, 

herpes simplex virus, lymes disease spirochetes and Toxoplasma gondii [40, 41]. The VAR2CSA 

pathogen evolved to bind specifically to CSA, but we lack information on this specificity. A study 

demonstrated that parasites bind specifically to CSPGs present in the intervillous space in the placenta. 

The CSPG establishing the connection has specific characteristics, such as low sulfated and contains 

only 2-8% of 4-O-sulfated disaccharides [42]. The binding specificity of the IEs to the CSA chains is 
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dependent on units of non-sulfated disaccharides in combination with disaccharide units with 4-O 

sulfation. Then, dodecarides having four or five disaccharide units with 4-O sulfation and one or two 

units of non-sulphated disaccharides represent the minimum chain length to establish the specific 

binding between IEs and CSA [6, 43].  Information regarding the specific interaction between the 

VAR2CSA protein, expressed on the surface of the iEs, and CSA is still very incomplete. There are 

studies that explain the specificity of the interaction through a type of sulfation, conformation or specific 

modifications that the CSA can adopt. However, studies are very difficult because it is very difficult to 

use homogeneous CSA in some studies [6, 44, 45]. 

1.3 Cancer  

Cancer is one of the biggest threats to the world's population because it is one of the largest causes of 

death worldwide. In 2012 more than 8.2 million people died of cancer worldwide and in the coming 

decades these values are expected to increase [46, 47]. At this time the cancer treatment is mainly 

based on chemotherapy treatments, radiation therapy and surgery. Chemotherapy and radiotherapy are 

very nonspecific treatments for cancer cells and therefore have many unwanted side effects [48]. 

Surgery can not eliminate all metastatic cells, leading to relapse of cancer. Additionally, cancer is a 

heterogeneous disease which leads to an increased difficulty to find a universal therapy for all types of 

cancer. Thus, there is an urgent need for developing efficient and targeted therapies [49]. 

CS has several functions in the organs where it is present. For example in the placenta it is responsible 

for rapid cell proliferation (attracting chemokines, nutrients), for the trophoblast invasion of uterine 

tissue, a high mitotic index, and to establish a complex and the vasculature of the uterine tissue [50, 

51]. VAR2CSA binds to a specific type of CS exclusively expressed in the human placenta. Recently, the 

same specific type of CS was also shown to be present in cancer cells, thus allowing targeting with the 

recombinant VAR2CSA (rVAR2CSA). This binding can be used as a specific diagnosis and therapeutic 

strategy in cancer [52]. 

1.3.1 CSPGs and cancer 

CSPGs have a lot of physiological importance, and its dysregulation can be associated with many kind 

of diseases such as cancer, Alzheimer's disease, atherosclerosis, among others [53, 54]. CS and its 

PGs are involved in some major features of cancer, such as apoptosis, adhesion, mounting the ECM, 
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invasion, angiogenesis, proliferation, and migration [55]. Some of these functions are provided 

individually or through the interaction of CSPGs with integrins, metalloproteases or RTK [56, 57]. The 

expression outside the normal CSPGs have been detected in various cancers such as testicular cancer, 

breast, colon [58, 59, 60]. For example, CSPG4 is abnormaly expressed on melanoma, glioblastoma, 

and sarcomas [56, 57, 61]. The protein core of CSPGs has a great importance, but the CS chains are 

very critical in cancer development because they capture chemokines cytol, PGs and presents them to 

various membrane receptors functioning as a scaffold and oncogenic signaling [62, 16]. PGs that have 

CS/DS/HS may participate in the response that is given by basic fibroblast growth factor (FGF) that 

affects the growth of human melanoma and metastases [16, 63]. CS chains involved in the interaction 

between different CSPGs and cancer receptors as DS and CSE mediate binding of selectins (PDS, CSA, 

CS, CSD, CSE) that bind to CD44 [64, 65]. The creation of P selectin ligands on the cell surface of 

breast cancer is achieved by the action of CSPG4 and CHST11, which are involved in the formation of 

sulfation of GalNAc 4 (CSA) [66]. Other studies have shown that various types of changes to CS are 

associated in the development of cancer [15]. 

1.3.2 Targets for cancer therapy and VAR2CSA  

The presence of CS in most malignant situations places the CSPGs as an important target for cancer 

therapy. In fact, CSPG4 is currently one of the targets for cancer therapy. CSPG4 plays an important 

role in the growth and survival of cancer cells not only in melanoma cells but also in cells of various 

types of carcinoma and human sarcoma. Results demonstrated that CSPG4 is a suitable target for the 

monoclonal antibody (mAb) [67, 68, 69]. CS PGs are present in various tissues of the organism, 

chemical analysis has shown that the position and degree of chain sulfation allows them to be 

distinguished. The different sulfation composition can affect the properties of the GAG chain, and 

therefore interfere in the different associations and interactions with other components. Thus, there has 

been some difficulty in distinguishing CS with different types of sulfation in different tissues [70, 71]. 

Considering this, it is necessary to develop more efficient strategies for cancer diagnosis and therapy. 

The VAR2CSA protein binds specifically to the placenta, although little is known concerning the 

structure of the CS that mediaetes such binding. The most common features of cancer cells, such as 

rapid growth, invasion of surrounding tissues, and the capability to establish a new vasculature are 

common to trophoblastic cells and may be due to the CS expression [50, 51]. rVAR2CSA could be used 
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as a highly specific reagent for cancer and could be a strategic way to diagnosis and treatment, and 

realize the function of CS in cancer development and placenta.  

1.4 Purpose of this project  

The malaria parasite, Plasmodium falciparum, when it infects the erythrocytes of the human organism, 

causes the expression of the VAR2CSA protein on the surface of erythrocytes. Through the VAR2CSA 

protein, iEs adhere to a specific type of CS (of-CS) present in the human placenta. This binding allows 

iEs to escape from the body's elimination. 

Placenta cells and cancer cells have many similarities and one of them is the presence of CS with very 

specific characteristics. CS is an extremely modified and heterogeneous molecule. Therefore, despite 

the enormous research towards its characterization and the characterization of the VAR2CSA-CS link, 

there are still many essential details to realize. The characterization of the CS chain and its binding to 

VAR2CSA is very important in the diagnosis and therapy of cancer and in the development of a vaccine 

for malaria. Some features are already known, for example that the VAR2CSA protein binds to a specific 

type of CS with a 4-O and 6-O sulfation mixture. However, much research work needs to be done to 

define the characteristics of the binding epitope. 

The aim of the present work is to help define the structure of-CS and to understand what distinguishes 

it from the remaining CS present in other tissues of the human organism. In this work a human 

placenta sample was used from which CS was extracted by extraction / purification methods. 

Subsequently the CS sample was analyzed by HPLC and LC-MS methods. The study will provide 

information on a key target that may be of extreme importance in cancer and malaria.  
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2. EXPERIMENTAL PART 

2.1 Methods 

2.1.1 Sample and digesting enzymes  

The placenta was obtained from healthy pregnant women delivering by caesarean section at term at 

Rigshospitalet University Hospital in Copenhagen, Denmark. The placenta was scrapped with forceps 

and distributed through different tubes with phosphate-buffered saline (PBS). The blood was removed 

with successive centrifugations (3700 Heraeus) at 1000g. CS was extracted from tissue by a series of 

protease digestion and separated from other GAGs by the action of hyaluronidase and heparin lyases.  

In the work of purification of the CS a collagenase enzyme that is a protease was used. Collagenase has 

the function of the degradation of collagen fibers that are present in the connective tissues of the 

human organism [72]. According to its function it was the first enzyme to be used in the purification / 

extraction process. The benzonase enzyme is an endonuclease, its function is the degradation of DNA 

and RNA present in the sample. The enzyme degrades DNA and RNA, with single chain, double chain, 

linear or circular chain. Therefore, its use is essential for the removal of nucleic acids [73]. The pronase 

enzyme has the ability to digest denatured and native proteins into indicidual amino acids [74]. The 

hyaluronidase enzyme is specific for cleaving HA [75]. Heparinase enzymes are enzymes that have the 

ability to cleave the glycosidic bond between hexosamines and uronic acids in heparin and HS. When 

the heparinase I, II and III enzymes are used together, they cause a virtually complete degradation of 

heparin and HS [76]. The enzyme Chondroitinase ABC (ChABC) is used to digest the CS chains, acts 

efficiently on C4S, C6S and DS [94]. All enzymes used in the placenta sample had the common goal of 

extracting CS (Table 2.1) and therefore digestion of the remaining components of the tissue. 
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Table 2. 1 Enzymes used in the purification of the placenta sample 

 

Enzyme Amount From 

Collagenase 200U/ml ThermoFisher Scientific 

Benzonase 250U/µl Sigma-Aldrich 

Pronase 50U/ml Merck Millipore 

Hyaluronidase 300U Sigma-Aldrich 

Heparinase I, II, III 50mU Iduron 

ChABC  50mU/ml Sigma-Aldrich 

 

2.2 Sample digestion processes 

The placental CS was purified by various processes (Anexo I). Apart from digestion with enzymes (Table 

2.1), the following steps were used: DEAE HiPrep column (from GE Healthcare Life Sciences), dialysis 

(from ThermoFisher Scientific), lypholization and delipidization. All procedures were done to allow 

purification of CS from the placenta (Figure 2.1). 

 

 

Figure 2.1 - Scheme illustration of the purification steps of placental CS 
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2.2.1 Separation of proteins and other biomolecules 

HiPrep DEAE FF 16/20 column is used to perform ion exchange chromatography, allowing the 

separation of proteins and other biomolecules [77].  

The column is positively charged allowing binding of negatively charged compounds such as the GAG 

chains. During the first 10-15 minutes water was used with a low flow rate to allow removal of the 

ethanol (EtOH). The placenta sample was consecutively treated with 1xDPBS solution with 0.1% Triton 

X-100. The column was equilibrated with the same solution (1xDPBS with 0.1% Triton X-100, 1.5 mL / 

min). After equilibration of the column, the placenta was allowed to pass through the column overnight. 

When the entire sample from the placenta passed the column, the column was washed with DPBS for 

10-15 minutes. The wash solution was prepared (20mM sodium acetate (NaOAc), pH 5, 0.1M NaCl, 

1.5mL / min) and placed in the column to ensure that only the chains of negatively charged 

compounds are retained. Afterwards, the purified sample was eluted with 20mM NaOA, pH 5, 1M NaCl, 

1.5mL / min. 

2.2.2 Remove salts and small contaminants 

Slide-A-Lyser G2 dialysis cassettes (2K MWCO, 3mL) were used to remove salts and other small 

contaminants. The cassette is comprised of a cellulose membrane which has the ability to retain 

macromolecules like proteins, bigger than 2000 daltons [78]. 

Initially, the cassette was hydrated for 2 minutes by dipping it in water (water can be used because the 

goal of this step is the separation of sugars, which requires no special buffer). The sample was then 

placed inside the cassette (halfway) with a pipette. The air that was inside the cassette was previously 

removed so that the surface area / volume is maximum. The cassette was placed in water and stood 

overnight. Subsequently, the sample was carefully removed using a pipette and placed in a 50ml falcon 

tube. 

2.2.3 Dehydration of the sample 

The lyophilization process aims to reduce the amount of water in the sample. Lyophilization is 

dehydration of the material by freezing and sublimation processes [79]. The placenta sample (50mL) 

was distributed in falcon tubes and frozen at -80 ° C. When frozen, the vials were covered with parafilm 

and placed in the lyophilizer for two days. 



 

30 

2.2.4 Removal of lipids  

The lipid or lipid groups were removed from the sample through a placenta delipidization process. For 

this procedure were used different ratios of chloroform (ChCl3) and methanol (MeOH): 

 50mL (2:1 v/v) ChCl3 : MeOH, overnight 
(The supernant was removed) 

 50mL (1:1 v/v) ChCl3 : MeOH, overnight 
(The supernant was removed) 

 50mL (1:2 v/v) ChCl3 : MeOH, overnight 
(The supernant was removed) 

The placenta sample was placed in a glass container with the first proportion ChCl3: MeOH (2: 1). The 

solution was in complete rest overnight. The buffer was removed and the following ratio buffers added. 

The compound (CS) of interest will remain in the form of pellets. After the addition of different 

proportions (ChCl3: MeOH) MeOH was added to the last wash. The sample was then dried at 55ºC in 

falcon tubes. 

2.2.5 EtOH precipitation 

In order to further remove impurities, the delipidized sample was re-dissolved in 20mL ddH2O and 

subjected to EtOh precipitation. The placenta sample was precipitated by a solution of EtOH saturated 

with NaOAc. The EtOH solution saturated with NaOAc solid was prepared in a 50mL falcon tube and 

then added to the sample until precipitation of the placental CS (a volume ratio of 2:1). The sample was 

left at 4ºC overnight. Then, it was centrifuged (Thermo Scientific Heraeus Fresh 21) at 4 ° C, 10000g 

for 30 minutes. The EtOH was removed and the sample was dried at 55°C again. 

2.3 Enriching of-CSA on VAR2CSA columns  

CSA purification in the placenta sample was made possible with the use of an N-hydroxysuccinimidyl 

(NHS) activated column covalently coated with VAR2CSA proteins (Anexo II). This column is activated 

through the esters to capture primary amines. The retention of non-specific compounds is not 

significant because of the hydrophobic matrix properties. The column is packed with pre-NHS which is 

an ester that reacts directly with the amine group in the molecules [80]. In this purification procedure 

two columns were used: both columns were coated with VAR2CSA protein, but the second column 

contained ChABC after initial capture of CS on rVAR2. Thus, in the first column the entire GAG chain 



 

31 

will be retained but in the second column only the GAG binding segment to the VAR2CSA protein will be 

retained in the column because what is not in the binding site will be digested by the enzyme ChABC. 

The column (with a maximum volume of 1mL) was placed in an iron stand with a glass underneath. 

The cover that was on top of the column was removed and a drop of ice cold 1mM hydrochloric acid 

(HCl) was added to the top of the column. The application of solutions such as HCl was made with a 

syringe (2mL) and extreme care was taken not to let any air into the column. The snap-off end of the 

column out-let was removed. Before use the column was washed with 6mL of ice cold 1mM HCl, with a 

flow rate of 1mL / min (1/2 drop / sec) to remove the isopropanol used for storage. The washing 

process was performed in three parts using a 2ml syringe. The purification column was first loaded with 

a spycatcher (13kDa, 14mg / mL) in a volume of 1mL, which allows the binding of the VAR2CSA 

protein (121kDa) to the column, since the protein contains a spytag that binds directly to the 

spycatcher. The column was sealed with parafilm for 30 minutes at room temperature. The buffers A 

(0.5M Ethanolamine, 0.5M NaCl, pH 8.3) and B (0.1M Sodium actetate, 0.5M NaCl, pH 4) were 

prepared. Buffers were made to wash away the protein which has not been retained in the column and 

to deactivate any excess active groups that are not coupled. The first washing of the column was made 

in the following order: 6 ml Buffer A, 6 ml buffer B, 6 ml buffer A. The column was sealed for 30 

minutes at room temperature and then another wash was made in the following order : 6 mL buffer B, 

6mL buffer A, 6mL buffer B and 4mL of PBS. The placenta sample and the sample from Sigma CSA 

were prepared to be enriched. The placenta sample (100ug / mL) was diluted in 2.5mL of amonium 

acetate (because it is a volatile substance). As for the Sigma CSA sample, 2mL of a 1.5mg / mL 

solution in amonium acetate were prepared. Before the samples were placed inside the column, 100ul 

of each of the samples were stored for analysis (Input sample - sample that never into the column). The 

placenta sample was injected into the column with a 2mL syringe, and the run-through (i.e. the sample 

that did not bind to the column, that was not retained) was collected. This step was repeated five times 

and the last run-through was collected for further analysis. The column was washed with 10mL PBS 

and the run-through (PBS wash) was collected for further analysis. The sample was eluted with 2.5mL 

of elution buffer (0.25M, 1M, 2M of ammonium acetate (NH4OAc)). For each of the elution buffer the 

eluted samples were taken for further analysis. The column was washed with 10mL of PBS to be 

prepared for the Sigma CSA sample. The process was repeated in the same way as described above. At 

the end of this process the column was washed with 2mL of PBS. In parallel, CSA samples were 

passed through a different VAR2CSA column following the same procedure described. After the PBS 
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wash step, 10mU of ChABC was loaded into the column and allowed to digest the bound CSA for 2 h at 

room temperature. The column was then washed again with PBS and eluted in the same way described 

above. 

 

Separations of proteins and biomolecules (larger than 500Mr) 

PD MiniTrap G-10 column (from GE Healthcare) is used to make fast separations of proteins and 

biomolecules larger than 500Mr. However, the same column can also be used for removal of 

compounds with low weight and desalting. In this case the column was used to remove excess salt 

from the samples. Through the process of gel filtration chromatography, molecules can be separated 

based on their sizes [81]. The column was placed in an iron stand with a glass underneath. The top cap 

of the column was removed and the storage buffer in the column was removed. Column washing 

elution was performed with water and the flow-through discarded. The column was filled with water and 

the fixed instrument of the column was placed inside it to later add the samples. Samples were added 

and water was added to fill a final volume of 0.7mL (Table 2.2). The elution buffer was used, and the 

eluate was collected. The samples were placed in the speed vacuum over night. 

 

Table 2. 2 Sample values added to the MiniTrap G10 column 

 

[NH4OAc] Sample (µl) H2O (µl) Total (µl) 

100mM 270 430 700 

250mM 250 450 700 

1M 300 400 700 

2M 300 400 700 

 

2.4 Analysis processes 

2.4.1 HPLC 

The process of HPLC allows separation of chemical species that are present in the sample. Because of 

different molecular structures, functional groups and migration speeds, the different molecules can be 
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distinguished. The substance with higher affinity towards the column is eluted the last, and the one 

which elutes first has the lowest affinity to the column [82]. 

The standard samples of CS/DS disaccharides (from Iduron) – D0A0, D0A4, D0A6, D0A10 were used 

to quantify the placental sample and also as a standard sample for identification of the different 

disaccharide peaks of the placenta sample on HPLC chromatograms (Figure 2.2). The sample of CS 

from bovine trachea (Sigma CSA) (from Sigma-Aldrich) was used as a standard sample CS.  

 

 

 

 

Figure 2.2 - Structure of CS/ DS disaccharides used as sample standards 

 

HPLC analysis was first ran on the standard samples (D0A0, D0A4, D0A6, D0A10) and then on 

samples of purified placental CS and Sigma CSA. Before standard samples are placed in the HPLC 

(Thermo Scientific Dionex Ultimate 3000) they must be treated in order to achieve a good analysis 

(Anexo III). In this process we used the substance 2-aminoacridone (AMAC) to label the GAGs reducing 

ends (its adds to sensitivity because flourescence is stronger than absorbance at 232nm). By marking 

the GAGs with AMAC, it is possible to separate them using a C18 X-Bridge column Shield column in 

HPLC. Separation of the AMAC-labeled CS disaccharides by reverse phase chromatography is possible. 

The separation depends on the hydrophobic binding of the solute molecule from the mobile phase to 

the immobilized hydrophobic ligands attached to the stationary phase, i.e., the sorbent. The column 

used in HPLC shows Hydrophobic chains and AMAC, which is marking the CS, has hydrophobic 

characteristics. So it is possible to separate the disaccharides since these are retained on the HPLC 

column when the AMAC binds C18 chains (Figure 2.3). 

 

 

 
D0A0 D0A4 D0A6 D0A10 
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Figure 2.3 - AMAC labeling scheme after ChABC activity. The AMAC labeling allows visualization of the 
disaccharide peaks in HPLC (Anexo III) 

 

The buffers (A and B) that were prepared previously were placed on the HPLC and the column and a 

UV detector were also placed. During the first 50 minutes it is necessary to balance the machine with a 

gradient in a range of 2-30% of the solvent B (equilibration solution) (Table 2.3). 

Buffer A: 60mM NH4OAc, pH 5.6 and Buffer B: Acetonitrile 

 

Table 2. 3 Description of the solvents used in HPLC and equilibrium gradients 

 

 CS/DS/HA  

Column C18 column X-Bridge Shield 

Solvent A 60mM NH4OAc, pH 5.6 

Solvent B Acetonitrile 

Equilibrate solution 2% solvent B 

Gradient 2-30% solvent B over 50 min  

 

Ser 

ChABC 

AMAC labeling 

- - - - --- - - -
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The wavelength to be used is decided after measuring the absorption spectrum of the AMAC. It was 

found that it had a maximum absorption wavelength of 487nm. Before running the standard samples, a 

blank test with water only was made. The standard samples were then placed in HPLC in solution, both 

together and also separately. The procedure was done for the CS from Sigma CSA (10ug). About 10µg 

of Sigma CSA was digested by ChABC in a 80µl, 12.5mM NaOAc and 80mU of ChABC. The reaction 

was incubated overnight at 37ºC. After the enzyme was inactivated with a boiling water bath for 10 

minutes.  The solution was centrifuged at 12,000g for 10 minutes, and the supernant was used for the 

following steps. The supernant was placed on dry ice for 50 minutes to freeze. Initially, a solution of 

0.1M AMAC in glacial acetic acid: dimethyl sulfoxide (DMSO) 3:17 (v/v) (25mg of AMAC, 0.225mL of 

acetic acid: 1.275mL of DMSO) was prepared. After 50 minutes to freeze it was placed on the 

lyophilizer for 5 hours to later proceed with the addition of 5µl of AMAC labelling reagents dissolved 

glacial acetic acid and DMSO in a volume ratio of 3:17 (v/v). The solution was incubated at room 

temperature for 15 minutes. Then a 1M solution of sodium cyanoborohydride (NaBH3CN) was prepared 

and added. The mixture was centrifuged at 10,000g for 1 minute at room temperature. The reaction 

mixture was incubated at 45°C for 4 hours. On dilution mixture was made into 200ng /µl using DMSO 

and ultrapure water at 1: 1 ratio (v/v). First test with Sigma CSA sample was made without acetone 

(C3H6O) precipitation but afterwards C3H6O was used to remove excess of AMAC after lyophilization. 

The placenta samples, Sigma CSA purified on HiTrap NHS columns subjected to the same procedures. 

The remaining samples followed the same procedure, taking into account the following values: 

 

 

Sigma CSA input: 

14.5µl of sample, 25µl of 0.2M NaOAc, 5µl um/µl ChABC, 55.5µl HPLC water 

Placenta CS RT, Placenta CS PBS wash, Sigma CSA RT, Sigma PBS wash: 

5µl of sample, 25µl of 0.2M NaOAc, 5µl um/µl ChABC, 65µl HPLC water 

Placenta CS input, Placenta CS (0.25M, 1M, 2M), Sigma CSA (0.25, 1M, 2M), Digested samples 

(100mM, 250mM, 1M, 2M): 

25µl of 0.2M NaOAc, 5µl um/µl ChABC, 70µl HPLC water 
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2.4.2 LC-MS  

LC-MS is a method that combines the HPLC technique with mass spectrometry (MS). It is an analytical 

technique that contains the ability to separate HPLC with the mass detection capabilities of MS. The LC-

MS technique has several applications in the separation, in the ability to identify products with very 

specific masses because it has a very high sensitivity. Through the LC-MS process it is possible to 

identify non-reducing disaccharide and with only HPLC is not possible to identify this [83, 84]. Samples 

were analyzed using this method. The same HPLC systems described above was used to deliver the 

AMAC labelled samples into a Orbitrap Fusion mass spectrometer (Thermo Scientific). The eluents were 

sprayed using a Thermo Scientific Ion Max interface. The spray voltage was set at 3000 V in the 

negative mode and the transfer tube temperature was set at 300°C. Typically 0.1 to 0.5µg of GAG 

samples prior to digestion were injected in a volume of 30µL. 

2.5 Results 

The HPLC separation method was applied to the Sigma CSA, standards of CS and placenta samples. 

This method allows the separation of the various compounds that are present in the samples. By doing 

so, it is possible to identify several peaks corresponding to the different CS disaccharides. The first 

sample to be analyzed on HPLC was the Sigma CSA sample, which was used as a control CS sample 

(100pmol of sample were injected). After labelling of the Sigma CSA sample with the AMAC fluorescent 

marker it is possible to identify peaks corresponding to D0A10, D0A4, D0A6, D0A0. The designations 

D0A10, D0A4, D0A6 and D0A0 correspond to different disaccharides with their respective sulfation at 

different sites in the chain. D0A0 represents a disaccharide which has no sulfation, D0A4 has a 

disaccharide having a sulfation at the 4-O position, D0A6 represents a disaccharide having a sulfation 

at 6-O and D0A10 represents a disaccharide with two sulfation at the 4,6-O. The different disaccharides 

are identified because they have different retention times according to their greater or lesser affinity to 

the column (with C18 chains) used in this method. The chromatogram corresponding to the Sigma CSA 

sample, as well as all other samples, was analyzed at a wavelength of 428nm (Figure 2.4).  
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Figure 2.4 - HPLC chromatogram of the standard samples (A) and chromatogram of Sigma CSA (B). 
The peaks D0A10, D0A4, D0A6, D0A0 were identified in the figure by UV absorption at 428nm. In the 
HPLC chromatogram on the x-axis the retention time corresponding to each peak (minutes) is shown, 
and on the y-axis is shown mini absorption units (ABS) (mAU), wich is a dimensionless unit based on 
the Beers' law 

 

The peaks corresponding to the disaccharides present in the Sigma CSA sample were identified. The 

disaccharide D0A10≈46.5 minutes, D0A4≈47minutes, D0A6≈48.5 minutes and D0A0≈50minutes. 

Further analysis of the chromatogram allows the identification of peaks that represent noise. These 

peaks are beyond the peaks of the disaccharides of interest and do not represent sugars. It is possible 

to identify noise picks in the remaining chromatograms of the other samples. However, the same 

sample was subjected to C3H6O precipitation after the lyophilization process and before being placed on 

the HPLC. This procedure aimed to remove the excess of AMAC that could be present in the sample 

and, consecutively, allow a better identification of the peaks. When comparing the two HPLC 

chromatograms (Figure 2.5 B, C) it was possible to identify the same peaks (D0A0, D0A4, D0A6, 

D0A10). However, the identification of the peaks is more clear in Figure 2.5 C. As expected, the 

retention times of the different disaccharides were the same with or without C3H6O precipitation. Since 
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the precipitation process proved to be quite effective with regard to the removal of excess AMAC from 

the sample, this step was applied to the remaining samples before analysing them on the HPLC. 

 

 

 

 

Figure 2.5 - HPLC chromatogram of the Sigma CSA without C3H6O precipitation (B) and with C3H6O 
precipitation (C) after lyophilisation with the precipitation is possible to see de peacks more clean. The 
peaks D0A0, D0A4, D0A6, D0A10 were identified in the figure by UV absorption at 428nm. In the 
HPLC chromatogram on the x-axis the retention time corresponding to each peak (minutes) is shown, 
and on the y-axis is shown mini absorption units (ABS) (mAU), wich is a dimensionless unit based on 
the Beers' law 
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The addition of C3H6O to the samples to be analyzed in HPLC results in the formation of a precipitate 

corresponding to the labeled oligosaccharide. The C3H6O precipitation reduces the excess AMAC that 

was present in the sample solution [85]. The precipitation result is visible in the chromatogram of the 

Sigma CSA sample after precipitation with C3H6O (Figure 2.5 C). When comparing the two 

chromatograms before and after precipitation (Figure 2.5 B, C) it is found that in the latter, the same 

peaks are identified more clearly and practically without noise. The C3H6O precipitation process was 

repeated for standard samples of CS/DS disaccharides and for the placenta sample. The 

chromatograms of all the samples were analyzed at a wavelength of 428nm, since it was the value at 

which a better identification of the peaks was obtained. 

Several fractions of the Sigma CSA and placenta samples were collected during the purification 

process, which were subsequently analyzed by HPLC. Standard samples of the CS disaccharides were 

also analysed by HPLC (Figure 2.6).  

 

 

Figure 2.6 - HPLC chromatogram of standard samples. The peaks D0A0, D0A4, D0A6, D0A10 were 
identified in the figure by UV absorption at 428nm. In the HPLC chromatogram on the x-axis the 
retention time corresponding to each peak (minutes) is shown, and on the y-axis is shown mini 
absorption units (ABS) (mAU), wich is a dimensionless unit based on the Beers' law 

 

After the Sigma CSA sample, standard disaccharide samples of CS/DS were analyzed on HPLC. These 

samples were used to quantify the placenta sample and also as standard samples. The chromatogram 
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of the standard sample was read at a wavelength of 428 nm, as in the Sigma CSA sample and the 

placenta samples. Through its analysis (Figure 2.6 D) it is possible to identify the peaks D0A4, D0A6, 

D0A0 by their different retention times. Comparison of the chromatogram of the standard samples with 

the chromatogram of the placenta sample facilitates identification of the different picks.  

Purification of CSA from the placental sample in NHS columns gave rise to different sample fractions 

which were analyzed on HPLC. The different fractions of analyzed samples provided different 

information, the sample of placenta input represents the sample before the purification and so when 

analyzed we perceive which disaccharides make the sample of the placenta before the purification. In 

the input fraction of the placenta sample it was possible to identify the peaks D0A4, D0A6, D0A0. This 

identification of the peaks is facilitated by the comparison of the chromatogram of standard 

disaccharide samples of CS (Figure 2.7 D) with the chromatogram of the placenta input sample (Figure 

2.7 E). The retention times of each of the peaks is approximately the same as that of the Sigma CSA 

sample chromatogram (Figure 2.5 C). 
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Figure 2.7 - HPLC chromatogram of standard sample (D) and the placenta input (E). The peaks D0A0, 
D0A4, D0A6 were identified in the figure by UV absorption at 428nm. The peaks of the disaccharides 
from the placenta input sample are identified by comparison with the chromatogram peaks of the 
standard sample samples. In the HPLC chromatogram on the x-axis the retention time corresponding to 
each peak (minutes) is shown, and on the y-axis is shown mini absorption units (ABS) (mAU), wich is a 
dimensionless unit based on the Beers' law 

 

The run-through fraction of the placenta sample (i.e. the sample that did not bind in the column) was 

analyzed on HPLC. When comparing the chromatogram of the standard sample with the chromatogram 

of the run-through sample it was possible to identify all the different peaks D0A0, D0A4, D0A6, D0A10 

(Figure 2.8). 
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Figure 2.8 - HPLC chromatogram of the standard sample (D) and placenta run-through (F). The peaks 
D0A0, D0A4, D0A6 were identified in the figure by UV absorption at 428nm. The peaks of the 
disaccharides from the placenta run-through sample are identified by comparison with the 
chromatogram peaks of the standard sample samples.  In the HPLC chromatogram on the x-axis the 
retention time corresponding to each peak (minutes) is shown, and on the y-axis is shown mini 
absorption units (ABS) (mAU), wich is a dimensionless unit based on the Beers' law 

 

In the NHS column, used for the enrichment of the of-CSA from the samples, was added spycatcher 

(13kDa, 14mg / mL) which allows the binding of the VAR2CSA protein (121kDa) to the column. 

Subsequently, the placenta sample was passed on the NHS column and the run-through sample was 

collected. When analyzing this sample in the HPLC, the peaks of the disaccharides D0A4, D0A6 and 

D0A0 were identified in the chromatogram (Figure 2.8 F). Identification was facilitated by comparison 

with the standard sample chromatogram (Figure 2.8 D, F). Once the same peaks were identified in the 

placental input sample (Figure 2.7 E), the chromatograms of the placenta sample input were compared 

with the run-through sample chromatogram (Figure 2.9 E, F). It can be verified that the amount of 

D0A4 disaccharide decreases by decreasing the area of the peak in the last chromatogram. 
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Figure 2.9 - HPLC chromatogram of the placenta input (E) and placenta run-through (F). The peak 
D0A4 was identified in the figure by UV absorption at 428nm. In the chromatogram of the run-through 
placenta sample, a decrease in the D0A4 disaccharide peak is observed. In the HPLC chromatogram 
on the x-axis the retention time corresponding to each peak (minutes) is shown, and on the y-axis is 
shown mini absorption units (ABS) (mAU), wich is a dimensionless unit based on the Beers' law 

 

 This comparison shows that in the chromatogram of the placenta run-through sample there is a 

decrease in the percentage of D0A4 disaccharide. The decrease can be observed by the reduction of 

peak area corresponding to D0A4 in the chromatogram of the placental run-through sample (Figure 2.9 

E 

D0A4 

F D0A4 

D0A6 

D0A0 

E D0A4 



 

44 

F). Decreasing D0A4 disaccharide after passage into the NHS column, enriched with VAR2CSA protein, 

was expected since the run-through placenta sample is the sample that passed through the column but 

was not retained. The D0A4 disaccharide was retained, thus showing VAR2CSA protein binding 

specificity.  

After passing the placenta and Sigma CSA samples through the purification column, the sample that 

was trapped inside the column was eluted with elution buffer. The elution buffer used contained three 

different salt (NH4OAc) concentrations (0.25M, 1M, 2M). The first concentration (0.25M) is too low to 

elute the sample efficiently, the latter concentration (2M) is too high. So, was chosen a lower 

concentration (1M) to minimize the salt contamination. When comparing the chromatogram of the 

placenta sample that was eluted with 1M salt (Figure 2.10 G), with the standard sample chromatogram, 

(Figure 2.10 D) it was possible to notice that the peak that is visible after elution, corresponds to the 

D0A4 disaccharide. 
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Figure 2.10 - HPLC chromatogram of the standard sample (D) and the placenta CSA, 1M of NH4OAc 
(G). The peaks D0A4 was identified in the figure G by UV absorption at 428nm. The D0A4 disaccharide 
peak in the chromatogram of the CSA placental sample eluted with a 1 M of NH4OAc solution was 
identified by comparison with the chromatogram of the standard samples. In the HPLC chromatogram 
on the x-axis the retention time corresponding to each peak (minutes) is shown, and on the y-axis is 
shown mini absorption units (ABS) (mAU), wich is a dimensionless unit based on the Beers' law 

 

The elution solution contains the NH4OAc salt because it breaks the bonds between the VAR2CSA 

protein, which is in the column, and the disaccharide binding element to the protein in the column. 

Thus, it is possible to elute only the sample retained in the VAR2CSA protein (with the 1M of NH4OAc) 

and to analyze which type of disaccharide has specificity for this binding. When the chromatogram of 

the standard sample was compared with the chromatogram of the placenta sample eluted at the 

concentration of 1M of NH4OAc, it was possible to identify a signal for the D0A4 disaccharide (Figure 

2.10 D, G). The same was done for the Sigma CSA sample after it passed the purification column.  

The chromatogram of the Sigma CSA sample which was also eluted from the column at a salt 

concentration of 1M showed high similarity to the chromatogram of the placenta sample eluted at the 

same concentration (Figure 2.11 G, H). 
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Figure 2.11 - HPLC chromatogram of the placenta CSA, 1M of NH4OAc (G) and sigma CSA, 1M of 
NH4OAc (H). The peak D0A4 was identified in the figure by UV absorption at 428nm. Both 
chromatograms show the same peak corresponding to the disaccharide D0A4. In the HPLC 
chromatogram on the x-axis the retention time corresponding to each peak (minutes) is shown, and on 
the y-axis is shown mini absorption units (ABS) (mAU), wich is a dimensionless unit based on the Beers' 
law 

 

In addition to the HPLC analysis, the samples were analyzed by LC-MS. This method combines HPLC 

analysis with mass chromatography analysis. Initially, the Sigma CSA sample was analysed (Figure 

2.12). By analyzing with the LC-MS method it is possible to identify non-reducing end disaccharides, 

which would not be possible with HPLC alone. However, it is difficult to accurately match the mass to a 

specific type of disaccharide because some have the same mass value.  
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Figure 2.12 - Chromatograms corresponding to the Sigma CSA sample at LC-MS analysis. In the LC-MS 
chromatogram it is possible to identify non-reducing end disaccharides. In the fugura, the different 
values of mass corresponding to the different disaccharides are observed 

 

Afterwards, the placenta sample was analyzed by the same LC-MS method. Analysis was performed on 

the sample after the purification of CSA in the first column, without digestion enzymes (Figure 2.13 I), 

and the placenta sample that was used in the column with digestion enzyme (ChABC) (Figure 2.13 J). 
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Figure 2.13 - Chromatograms corresponding to the placenta sample at LC-MS analysis. The I - after the 
purification of CSA in the first column and J- placenta sample that was used in the column with 
digestion enzyme. In I increased the percentage of the peak corresponding to the disaccharide D0A0 
and decreases the percentage of the peak corresponding to the disaccharide D0A6 and the 
corresponding peak to the unsulfated disaccharide. In J the peak corresponding to the poorly sulfated 
disaccharide resisted the salt wash and was eluted 

 

Thus, it was concluded by HPLC analysis that the disaccharide retained on the column when the Sigma 

CSA sample and placenta sample were passed was D0A4. In addition to HPLC analysis, samples were 

analyzed by LC-MS. This process combines the properties of HPLC and of mass MS. When the LC-MS 

chromatogram of the Sigma CSA sample was analyzed, it was concluded that it was possible to identify 

different CS disaccharides present in the sample and to identify non-reducing monosaccharides. The 

correspondence of the exact disaccharide to each identified peak is not easy, since different 
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disaccharides have equal mass values (Figure 2.12). When analyzing the LC-MS chromatograms of the 

sample which was eluted from NHS columns with elution buffer with and without digestion enzyme 

enrichment (ChABC) some data was obtained. In the sample eluted in the column without digestion 

enzyme. The percentage of D0A4 disaccharide was increased and the percentage of D0A6 disaccharide 

and non-sulphated disaccharides (D0A0) was decreased. This information is in accordance with the 

information collected in the HPLC analysis. However, in the analysis of the sample eluted in the NHS 

column with digestion enzymes, it is perceived that it was a fraction of low sulfated CS that was 

retained in the column and later eluted. In the second NHS column only the binding fragment of CS to 

VAR2CSA protein was retained, since the remaining disaccharide chain was digested by the enzyme. 

2.6 Discussion 

PM causes severe health complications for the mother and the fetus, such as: LBW, maternal anemia, 

abortion, pre-eclampsia and death [37]. The disease is caused by the binding of the VAR2CSA protein, 

expressed on the surface of erythrocytes infected by the Plasmodium falciparum malaria parasite, to 

the human placenta [86, 87, 32, 88]. This protein interacts specifically with CSA, which is expressed in 

the intervillous space of the placenta and in the syncytiotrophoblast [42, 89]. It is known that the 

VAR2CSA protein is the main intervenient in the protective immunity that is acquired during the multiple 

pregnancy [32, 90]. Therefore, the creation of a malaria vaccine is possible based on the VAR2CSA 

protein. 

CS is a sulfated GAG that is present in several tissues of the human body. The placenta and cancer 

cells show some similarities in terms of proliferation, migration and invasion [50, 51]. It was recently 

shown that cancer cells express the same modification of of-CS where as normal cells do not [52]. It is 

important to define the exact structure of of-CS and characterize the VAR2CSA-CS binding because it 

may be a specific target of cancer in pathogenesis, treatment and diagnosis. Despite extensive research 

regarding the nature of the interaction between VAR2CSA-CS, the structure of the binding epitope 

remains unclear. However, data point to the of-CSA as a long structure with mostly 4-O-sulfation [8, 91]. 

The exact determination of the specificity of VAR2CSA allows a better understanding of this epitope and 

may be very important in the prevention and treatment of PM and cancer. The human placenta 

contains three types of CSPGs: CSPGs that are associated with the cells, extracellular CSPGs that are 

located in the intervillous spaces, and DS / CSPGs that are located in the matrix [42]. In the intervillous 
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spaces are CS chains with specific characteristics, sulfated in 4-O (CSA). These specific chains 

establish the binding between erythrocytes infected by the malaria parasite which express the VAR2CSA 

binding protein to the surface [32, 33, 42].  

The present work aims to characterize the CS that was isolated from the human placenta [91]. Several 

purification techniques were used for the isolation of the CS chains. The purification process proved to 

be very specific and time-consuming because it takes several strenuous steps. After purification of the 

CS chains, these were analyzed by HPLC and LC-MS methods. The isolated disaccharide chains were 

labeled with a fluorescent label (AMAC) at the reducing end (is a disaccharide which has the ability to 

act as a reducing agent because it consists of an aldehyde group or a free ketone group). The aromatic 

fluorescent label provides better detection on HPLC. After the use of HPLC, the sulfated disaccharides 

were analyzed by LC-MS, a method that combines the properties of HPLC and MS in the same line of 

analysis (Anexo III) [92].  

Initially, HPLC was used with Sigma CSA samples and the results were compared later with the results 

of the placenta sample, because both samples are made up of CS. In the HPLC chromatogram 

corresponding to the Sigma CSA sample, it was possible to identify the peaks corresponding to the 

disaccharides D0A10, D0A4, D0A6 and D0A0 (Figure 2.4). The different disaccharides represented by 

the different peaks have different retention times, which allows their identification in the 

chromatograms. In this work a UV detector was used in the HPLC. However, as the disaccharides were 

labeled with a fluorescent marker, the use of a fluorescence detector (FD) would allow the visualization 

of the peaks more clearly. In the current work, a sufficient amount of sample was injected into the 

HPLC, which makes it possible to visualize the peaks even with the noise of other peaks. Although it is 

possible to identify the peaks, it is not possible to quantify the different amounts of disaccharides 

(D0A10, D0A4, D0A6, D0A0). The amount of disaccharide is calculated by the value of the area of the 

peak, which in this case, is not possible to calculate because of noise interference. The quantification is 

done as follows: a small fraction of the placenta sample is taken (for example 0.01%), and disaccharide 

analysis is performed. After identification of the D0A10, D0A4, D0A6 and D0A0 peaks, the area of 

those peaks 0.01% of the placenta sample is calculated, and is divided by the signal of 100pmol of 

disaccharide standard. This allows the calculation of how many mg there was in the beginning with the 

mass of those disaccharide standards.  

In order to improve the visualization of the peaks in the chromatogram and to be able to quantify the 

disaccharides using a UV detector, the samples were precipitated before being placed on the HPLC for 
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analysis. We first did the precipitation of the Sigma CSA sample. The detection sensitivity of the peaks, 

corresponding to the different disaccharides, depends on the reaction and the quality of the sample 

being used. Excessive fluorescent marker (AMAC) may negatively interfere with peak visualization in the 

chromatogram. Considering this, sample precipitation was done with C3H6O [85] to remove excess 

AMAC that could be present in the sample. C3H6O is an organic, polar compound that is often used in 

the precipitation of sugars.  

The run-through placenta sample is the sample that passed through the purification column but was not 

retained inside, thus providing information on disaccharides that are not retained (Figure 2.8). The 

placental sample retained on the column was eluted through a 1M solution of NH4OAc, this sample 

provides information on the disaccharide which was retained in the column by binding to the VAR2CSA 

protein that was inside. The first fraction to be studied was the placenta input, which is the sample that 

has never entered the column and therefore was not enriched for the VAR2CSA epitope. In the 

chromatogram corresponding to the placenta input sample the peaks of the D0A4, D0A6 and D0A0 

disaccharides were identified (Figure 2.7 E). The comparison with the chromatogram of the standard 

sample allowed the identification of the different disaccharides mentioned (Figure 2.7 D, E).  

During purification of CSA (in NHS columns) from the placenta and Sigma CSA samples, two 

purification columns were used. The first column was enriched just with VAR2CSA protein, and second 

column was enriched with VAR2CSA protein and digestion enzymes (ChABC). After passage of the 

placenta sample into the column. These enzymes allowed the long chain disaccharide to be digested, 

with only the disaccharide binding element being retained in the column to the VAR2CSA protein. After 

elution of the sample on the column with an elution buffer (100mM, 0.25M, 1M, 2M of NH4OAc) it 

would be possible to characterize the disaccharide binding element to the VAR2CSA protein. In addition 

to identifying the disaccharide retained in the VAR2CSA containing column, it is important to 

characterize the specificity of the binding epitope. Figure 2.10 shows that the disaccharide retained in 

the column corresponds to D0A4.  

For analyzing the samples, HPLC followed by an LC-MS analysis method, as described before. First, the 

Sigma CSA sample was analyzed by the LC-MS method (Figure 2.12). When analyzing the LC-MS 

chromatogram of the Sigma CSA sample it was found that the method is capable of extracting different 

types of CS and non-reducing monosaccharides. However, it is difficult to match each peak to a specific 

disaccharide, since different disaccharides have equal mass values. It is only possible to assign 

correspondence possibilities to each peak (Figure 2.12). By comparing the results obtained with 
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standard samples corresponding to the LC-MS method the identification of the peaks could be 

facilitated and more rigorous. Next, the placenta sample that was eluted from the first NHS column 

(without digestion enzymes) and the placenta sample that was eluted after passage through the second 

NHS column (with digestion enzymes) were analyzed on LC-MS. Both columns were enriched with the 

VAR2CSA protein and both were eluted at a concentration of 1M of NH4OAc. The extracted ion 

chromatograms of the input and eluated samples show the compositions of the CSA changed after the 

enrichment. Without on-column digestion, simple enrichment increased the 4-O- sulfation percentage 

and decreased 6-O-sulfation and unsulfated disaccharides. Surprisingly, after the on-column digestion 

with digestion enzymes (ChABC), a lowly-sulfated CS fraction survived the salt wash and got eluted 

(Figure 2.13). In this work salt was used to disrupt the GAG/ protein interaction, wich is ionic in nature, 

highly-sulfated chains have a tendency to stay on the VAR2CSA column longer. In other words, highly-

sulfated chains might not have a very specific interactions with VAR2CSA, the 4-O-sulfation might only 

provide a weak interaction, wich adds up in a long, undigested CS chain. When CS was digested in 

column it was expected the VAR2CSA binding motif will be protected by VAR2CSA during the ChABC 

digestion. Also, the accumulation of weak/ non-specific interaction is no longer important for the 

digested oligosaccharides. Therefore, it is belived this method, if proved to be working, should give us 

more information of the VAR2CSA binding site. Thus, it was observed that in the NHS column with 

ChABC enzyme a fraction of CS with low sulfation content was retained in the column. This purification 

column only retains the CS binding fragment to the VAR2CSA protein, since the rest of the chain was 

digested by the enzyme. This type of analysis provides information relatively to the CS binding epitope. 

The results obtained through the processes of digestion, extraction and analysis of the placenta proved 

to be very important for the characterization of the specific binding that exists between VAR2CSA-CS. 

The study of this link is of extreme importance for the development of an antimalarial vaccine and for a 

specific target in cancer, pathogenesis, treatment and even diagnosis. The research on this subject is 

vast but still many details are to be analyzed. 
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3. GENERAL CONCLUSION 

3.1 Conclusion 

This work aimed to help define the structure of of-CS and to perceive what distinguishes this CS from 

other CS located in several tissues in the human body. The characterization of this specific type of CS 

can become very important in the development, control and prevention of two deadly diseases: PM and 

cancer. These two diseases, in addition to sharing other characteristics, share the presence of the 

same specific CS. Therefore, understanding the structure and binding epitope of this CS could lead to 

the development of an anti-malarial vaccine, and also provide information about a specific cancer target 

[93].  

Throughout the various methods and techniques used in the current work it was possible to extract of-

CS from the placenta tissue. This extraction process proved to be very meticulous and long, since it was 

necessary to resort to different digestion enzymes and specific separation techniques. After extracting 

the CS from the placenta, an NHS column was used to enrich the of-CS. For this work, two NHS 

columns were used: the first one was coupled with VAR2CSA protein, and the second one coupled with 

VAR2CSA protein and with a later on-colum digestion with ChABC. After enrichment in the VAR2CSA 

columns, the different fractions of the CS were analyzed by HPLC and LC-MS. With the HPLC analysis it 

was possible to identify the types of disaccharides that were present in the sample being analyzed. In 

the Sigma CSA sample, the D0A0, D0A4 and D0A6 disaccharides were identified, like in the placenta 

input sample. In the placenta run-through sample, the same disaccharides, D0A0, D0A4 and D0A6 

were identified. However, when comparing the chromatogram of the placenta input sample with the 

chromatogram of the placental run-through sample, it was verified that the amount of D0A4 

disaccharide decreased in the placenta run-through sample. This is due to the retention of the D0A4 

disaccharide within the column and consecutively to the VAR2CSA protein. The sample that was 

reatined in the inside of the purification column was analyzed by HPLC. The chromatogram showed that 

the disaccharide retained in the column by binding to the VAR2CSA protein had been D0A4. 

Interestingly, after the enriched CS was subjected to on-column digestion of ChABC, only a low-sulfated 

fraction was survived and got eluted from the VAR2CSA column. Assuming the binding of the of-CS to 

the VAR2CSA protein protected the binding motif from being digested by ChABC, this result might 

suggest the CS epitope of VAR2CSA has a low-sulfated composition. 
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The present work was important to help characterize the specific CS found in the placenta. However, 

much work still needs to be done to completely elucidate the specificity of this CS that allows VAR2CSA 

protein binding. After the laboratory work done in this study, further work is necessary to fully 

understand the nature of VAR2CSA binding. First of all, further efforts are necessary to characterize the 

exact structures of the VAR2CSA-binding motif, including the size of the epitope, the position of the 

sulfate groups in the sequence, and the epimerization of the uronic acids. The CS fraction surviving the 

on-column digestion will be subjected to further MS analysis and potentially NMR studies. Second, it 

would be of interest to test binding capacity of identified oligosaccharides by inhibition of binding in 

enzyme linked immunosorbent assay (ELISA), flow cytometry and biosensors, and once an optimal 

oligosaccharide has been selected this will be used in co-crystalization with rVAR2. It is also of extreme 

importance to understand how CS is produced and how its regulation is made in order to understand 

what leads to the formation of the specific type of CS in most cancer cells. With regard to malaria, the 

anti-malaria vaccine taking into account the VAR2CSA-CS binding specificity would be one of the 

positive developments with regard to this deadly disease. 
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5. ANEXOS 

ANEXO I  

Protocol - Purification of CS in placenta sample 
 
Sample preparation 

One piece of human placenta: ~75g 
Soaked with 1x DPBS (without Ca, Mg) on ice ON 
Discard supernant 
(Repeat a few times to bleed the tissue. Press the tissue with a forceps to help the bleeding) 
The tissue was then minced into small pieces by cutting, transferred into four 50mL falcon tubes, 
soaked in 1xDPBS (without Ca, Mg) 20mL per tube. Centrifuged at 1000g, 5min, 4 degrees, 
discard supernant 
(Repeat a few times to further bleed the tissue) 
 

Collagenase digestion 
Then the tissue was soaked in 1x DPBS (with Ca, Mg) 20mL per tube, add ~0.74mg/mL 
collagenase (~200U/mL) 
(37 degrees, end-to-end mix or rock, ON 16h) 
The cells were pelleted down at 3000g, 15min, collect the supernant 
The pellet was washed with 1x DPBS (without Ca, Mg) 20mL per tube 
The pellet was then pelleted down again and the supernant was combined with the collagenase 
supernant 
 

Trypsinization 
The pellet was treated with 1x Trypsin/EDTA without phenol red (20mL per tube) 37 degrees, 
end-to-end mix or rock, 2h 
The cells were pelleted down at 4000g, 10min (high speed if available, our centrifuge can only 
reach 4000 g maximum) 
The pellet was washed with 5~10mL DPBS (without Ca, Mg), then pelleted down at 4000g, 
15min 
All the supernants were combined 
Add Triton X-100 to final concentration 1%. 
Add Mg2+ to final concentration 2mM 
 

Benzonase digestion 
Add 10uL 250U/uL benzonase 
37 degrees, incubate, ON 
 

Pronase digestion 
Add in 50U/mL  
37 degrees, incubate, ON. 
Heat inactivation, boil, 10min 
Centrifugation: high speed >4500rpm, 30min, remove pellet 
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Adjust to 60mM NaOAc, pH6.0, 100mM NaC 
 

Hiprep DEAE 
Column: Hiprep DEAE FF 16/20 
Sample Preparation: filter the sample on a 0.45 um filter  
Column equilibration: 1mL/min 1x DPBS (without Ca, Mg) with 1% Triton X-100 
Load samples: 0.5~1mL/min by peristaltic pump  
Wash: 1. 60mL 1x DPBS (without Ca, Mg) with 1% Triton X-100 at ~1.5mL/min  
            2. 60mL 20mM NaOAc, pH6, 100mM NaCl at ~1.5mL/min 
Elute: 40mL/min 20mM NaOAc, pH6, 1M NaCl at ~1.5mL/min 
 

Dialysis 
Dialyze against ddH2O using two of the following 30mL dialysis cassettes. 
change water every 12 hours for a total of three times to get rid of all the salts. 
 

Lypholization 
Collect the dialyzed sample into two 50mL falcon tubes 
Freeze at -80 degrees 
Lypholize to dryness 
 

Delipidization 
Transfer the dried sample into a glass separatory funnel  
Use MeOH to wash the tubes to make sure everything gets transferred. 
 
Add 50mL 2:1 v:v ChCl3: MeOH , shake a few minutes, and let it sit overnight 
Remove the supernant 
Add 50mL 1:1 v:v ChCl3: MeOH , shake a few minutes, and let it sit overnight 
Remove the supernant 
Add 50mL 1:2 v:v ChCl3: MeOH , shake a few minutes, and let it sit overnight 
Remove the supernant 
 The sample was then dried at 55 degrees. 
 

Hyaluronidase digestion 
The sample was re-dissolved into 40mL 20mM NaOAc, pH6.0, then add 30U of the following 
hyaluronidase. 
 37 degrees, incubate ON  
 

Heparin lyases treatment 
Adjust to in 40 mM Tris, pH7.0, 4mM CaCl2 
then added 50mU heparinase I, 50mU heparinase II, and 50mU heparinase III 
37 egrees, incubate, ON. 
 

Hiprep DEAE 
Column: Hiprep DEAE 16/20 
Column equilibration: 20mM NaOAc, pH6.0, 100mM NaCl 
Load: 0.5~1mL/min by peristaltic pump  
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Wash: 60mL 20mM NaOAc, pH6.0, 100mM NaCl 
Elute: HPLC flow rate: 1.5mL/min  
           A: 20mM NaOAc, pH6.0, 100mM NaCl 
           B: 20mM NaOAc, pH6.0, 1M NaCl 
           Gradiet:0-30min,  0%B 
                          30-90min, 0~100% B linear gradient 
                          90-120min, 100%B 
                          120-130min, 100~0%B linear gradient 
                          130-160min, 0%B 
  
Combine fractions from 55 to 120min  
 

EtOH precipitation 
Aliquoted the combined fractions into centrifuge tubes 
Add 3 volume of EtOH saturated with NaOAc 
4 degrees,  ON (~16h) 
Centrifugation, 4 degrees, >10,000 g, 30min 
After removing the EtOH, the sample was dried at 55 degree oven 
 

Finishing up 
Dissolve the pellet into 1.6mL ddH2O 
Centrifugation, 15000rpm for 10min, 
remove whatever precipitate that might show up. 
Store the sample at -20 degrees 
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ANEXO II 

 

Protocol - CS purification using NHS column 
 

NHS-activated HP columns are designed for covalent coupling of ligands containing primary 
amino group. Non-specific adsorption of proteins to HiTrap columns are negligible due to the 
hydrophobic properties of the base matrix. 
 

Buffers 
 
 Coupling Buffer: 0.2M NaHCO3, 0.5M NaCl, pH 8.3 (coupling can be done at a pH range of 6.5-9, 

but optimal coupling at pH8); 
 Buffer A: 0.5M Ethanolamine (Light sensitive), 0.5M NaCl, pH 8.3; 
 Buffer B: 0.1M Sodium Acetate, 0.5M NaCl, pH 4; 
 PBS; 
 Elution Buffer: 0.25M, 0.5M, 1M and 2M NaCl; 
 Neutralization buffer: 1M HCl, pH 9.0; 
 Storage buffer: 0.05M Na2HPO4, 0.1% NaN3, pH7.  

 

Protein Buffer Exchange using PD-10 Desalting Column 
 
1. PD-10 Desalting column preparation 

 Remove the top cap and pour off the column storage solution; 
 Cut the sealed end of the column at notch.  

 

2. Column equilibration 

 Fill up the column with equilibration buffer (=coupling buffer) and allow the equilibration buffer 
to enter the packed bed completely; 

 Repeat 4 times; 
 Discard the flow-through. 

Note: about 25mL equilibration buffer should be used in total for all three steps.  
 

3. Sample application 

 Add maximum 2.5 ml of protein (1.5mg protein) to the column; 
 For sample volumes less than 2.5mL, add equilibration buffer to adjust the volume up to 

2.5mL after the sample has entered the packed bed completely; 
 Let the sample or equilibration buffer enter the packed bed completely; 
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 Discard the flow-through.  
 

4. Elution 

 Place a test tube for sample collection under the column; 
 Elute with 3.5mL buffer (=coupling buffer) and collect the eluate. 

 

Up-concentration of the protein 
 
1. Add 1mL PBS to the 10.000MWO spin column (mark where is 1mL); 
2. Spin for 5 minutes at 3700 rcf; 
3. Remove PBS just before adding sample (do not allow column to dry!!); 
4. Add protein and spin for 5 minutes at 3700 rcf each time, until volume lowers to 1mL (pipette up 

and down between each spin. If volume goes beneath 1mL, add coupling volume to a final volume 
of 1mL); 

5. Check protein concentration in nano-drop.  

 
Coupling of protein to column 
 
6. Place the NiTrap NHS-activated HP column (1mL) in an iron stand and place a glass underneath; 
7. Remove the top cap of the column and apply a drop of ice cold 1mM HCl to the top of the column; 
8. Screw on the supplied HiTrap luer connector (red with a hole going through); 
9. Remove the snap-off end at the column out-let; 
10. Wash out the isopropanol (storage buffer) with 6mL 1mM HCl, ice cold. Use a 2mL syringe and be 

sure not to exceed a flow-rate of 1mL/min (1/2 drop/sec). This can irreversibly damage the 
column. Remember this throughout the entire procedure; 

11. Immediately inject 1mL of the protein solution onto the column; 
12. Seal the column with parafilm and let it stand for 30 minutes at RT (or 4hours at 4C).  
 
 

Washing and deactivation of the column 
 
13. Deactivate any excess active groups that have not coupled to the ligand and wash out the non-

specifically bound protein by injecting: 
6mL Buffer A; 
6mL Buffer B; 
6mL Buffer A.  

14. Seal the column and let it stand for 30 minutes at RT (or 4hours at 4C); 
15. Wash column by injecting: 
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6mL Buffer B; 
6mL Buffer A; 
6mL Buffer B; 
4mL PBS  
 

Purification 

 

16. Prepare samples to be purified: 

 First we will purify the placental CS. We will dilute the samples to 2.5mL in PBS (if necessary).  
As for the Sigma CSA, we want to add 3mg into the column. So we will prepare 2mL of a 1.5mg/ml 
solution in PBS. Save 100ul of Input for each sample! 

17. Inject sample Placental CS solution to the column using a 2mL syringe. Collect the run-through in a 
tube and re-run the sample 5 times. The last run-through is saved for later analysis; 

18. Wash the column by injecting 10mL PBS. Collect the wash run-through for later analysis; 
19. Elute the samples with 2.5mL of each of the elution buffers (0.25M, then 0.5M, then 1M and lastly 

2M). For each elution buffer, collect the run-through in a tube for later analysis. Remember that the 
first 0.5mL are from the previous elution!! 

20. Wash the column by injecting 10mL PBS in order to prepare the column for a new sample; 
21. Repeat steps 2-5 with Sigma CSA; 
22. In order to store the column, inject 5mL storage buffer.  

 
Sample storage 

 

23. After the purification, add 5M NaCl to a final concentration of 0.5M NaCl to the 0.25M, wash and 
run-through samples; 

24. Add 2 volumes of 96% EtOH to let the samples precipitate, either for 1hour at RT or O.N. +4C; 
25. Spin samples at 10000 rcf, 30 minutes; 
26. Remove supernatant and let pellet dry O.N. 
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ANEXO III 

Nature Protocol - Analysis of glycosaminoglycan-derived, precolumn, 2-aminoacridone-labeled 
disaccharides with LC-fluorescence and LC-MS detection 
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