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Abstract: In this paper, we study the Moore-Penrose inverses of differences and prod-

ucts of projectors in a ring with involution. Also, some necessary and sufficient conditions

for the existence of the Moore-Penrose inverse are given. Moreover, the expressions of the

Moore-Penrose inverses of differences and products of projectors are presented.
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1 Introduction

Throughout this paper, R is a unital ∗-ring, that is a ring with unity 1 and an involution

a 7→ a∗ satisfying that (a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗. Recall that an element

a ∈ R is said to have a Moore-Penrose inverse (abbr. MP-inverse) if there exists b ∈ R

such that the following equations hold [11]:

aba = a, bab = b, (ab)∗ = ab, (ba)∗ = ba.

Any b that satisfies the equations above is called a MP-inverse of a. The MP-inverse

of a ∈ R is unique if it exists and is denoted by a†. By R† we denote the set of all

MP-invertible elements in R.

MP-inverse of differences and products of projectors in various sets attracts wide at-

tention from many scholars. For instance, Cheng and Tian [1] studied the MP-inverses
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of pq and p − q, where p, q are projectors in complex matrices. Li [10] investigated how

to express MP-inverses of product pq and differences p − q and pq − qp, for two given

projectors p and q in a C∗-algebra. Later, Deng and Wei [3] derived some formulae for the

MP-inverse of the differences and the products of projectors in a Hilbert space. Recently,

Zhang et al. [12] obtained the equivalences for the existences of differences and products

of projectors in a ∗-reducing ring. More results on MP-inverses can be found in [7, 8, 11].

Motivated by [9], we investigate the equivalences for the existences of the MP-inverse of

differences and products of projectors in a ring with involution. Moreover, the expressions

of the MP-inverse of differences and products of projectors are presented. Some well-known

results in C∗-algebras are extended.

Note that neither dimensional analysis nor special decomposition in Hilbert spaces and

C∗-algebras can be used in rings. The results in this paper are proved by a purely ring

theoretical method.

2 Some lemmas

In 1992, Harte and Mbekhta [5] showed an excellent result in C∗-algebras, i.e., if a is

MP-invertible, then a∗c = ca∗ and ac = ca imply a†c = ca†. In 2013, Drazin [4] extended

this result to a ∗-semigroup case in Lemma 2.1 below.

Lemma 2.1. [4, Corollary 2.7] Let S be any ∗-semigroup, let a1, a2, d ∈ S, and suppose

that a1 and a2 each have Moore-Penrose inverses a†1, a†2, respectively. Then, for any d ∈ S,

da1 = a2d and da∗1 = a∗2d together imply a†2d = da†1.

The following result in C∗-algebras was considered by Koliha [6]. For the convenience

of the reader, we give its proof in a ring.

Lemma 2.2. Let a, b ∈ R† with ab = ba and a∗b = ba∗. Then ab ∈ R† and (ab)† = b†a† =

a†b†.

Proof. It follows from Lemma 2.1 that a†b = ba† and b†a = ab†. As b∗a = ab∗ and

b∗a∗ = a∗b∗, then b∗a† = a†b∗, which together with ba† = a†b imply a†b† = b†a†. Note

that aa† commutes with b and b†. Also, bb† commutes with a and a†. Hence, b†a† satisfies

four equations of Penrose. Indeed, we have
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(i) (abb†a†)∗ = (aba†b†)∗ = (aa†bb†)∗ = bb†aa† = aa†bb† = aba†b† = abb†a†.

(ii) (b†a†ab)∗ = (b†ba†a)∗ = a†ab†b = b†a†ab.

(iii) abb†a†ab = aa†bb†ab = aa†bb†ba = aa†ba = aa†ab = ab.

(iv) b†a†abb†a† = b†ba†ab†a† = b†ba†aa†b† = b†ba†b† = b†a†.

Therefore, ab ∈ R† and (ab)† = b†a† = a†b†.

Penrose [11, p. 408] presented the MP-inverse of A + B, where A and B are complex

matrices such that A∗B = 0 and AB∗ = 0. His formula indeed holds in a ring with

involution.

Lemma 2.3. Let a, b ∈ R† such that a∗b = ab∗ = 0. Then (a + b)† = a† + b†.

3 Main results

We say that an element p is a projector if p2 = p = p∗. Throughout this paper, the

elements p, q are projectors from the ring R.

Theorem 3.1. Let a, b ∈ R† with a∗p = pa∗ and b∗p = pb∗. Then ap + b(1− p) ∈ R† and

(ap + b(1− p))† = a†p + b†(1− p).

Proof. As a∗p = pa∗, then ap = pa since p is a projector. Similarly, bp = pb. We

have (ap)∗b(1 − p) = 0. Indeed, (ap)∗b(1 − p) = pa∗(1 − p)b = a∗p(1 − p)b = 0. Also,

ap(b(1−p))∗ = 0. By Lemma 2.2, it follows that (ap)† = a†p and (b(1−p))† = b†(1−p). In

view of Lemma 2.3, we obtain ap+b(1−p) ∈ R† and (ap+b(1−p))† = a†p+b†(1−p).

Recall from [8] that an element a ∈ R is ∗-cancellable if a∗ax = 0 implies ax = 0

and xaa∗ = 0 implies xa = 0. A ring R is called ∗-reducing ring if all elements in R are

∗-cancellable. We get the following result, under the condition of ∗-cancellabilities of some

elements, rather than ∗-reducing rings in [12].

Proposition 3.2. Let p(1−q) and q(1−p) be ∗-cancellable. Then the following conditions

are equivalent:

(1) 1− pq ∈ R†, (2) 1− pqp ∈ R†, (3) p− pqp ∈ R†, (4) p− pq ∈ R†, (5) p− qp ∈ R†,

(6) 1− qp ∈ R†, (7) 1− qpq ∈ R†, (8) q − qpq ∈ R†, (9) q − qp ∈ R†, (10) q − pq ∈ R†.
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Proof. (1) ⇔ (6) Note that a ∈ R† if and only if a∗ ∈ R†. Hence, it is sufficient to prove

that (1)− (5).

(1)⇔ (2) By [12, Theorem 4].

(2)⇒ (3) Noting p−pqp = p(1−pqp) = (1−pqp)p, it is an immediate result of Lemma

2.2.

(3)⇒ (2) Since 1− pqp = p(p− pqp) + 1− p and (p− pqp)∗ = p− pqp, it follows from

Theorem 3.1 that 1− pqp ∈ R†.

(3) ⇔ (4) Note that a ∈ R† ⇔ aa∗ ∈ R† and a is ∗-cancellable by [8, Theorem 5.4].

As p(1− q)(p(1− q))∗ = p− pqp ∈ R† and p− pq is ∗-cancellable, the result follows.

(4)⇔ (5) As (p− pq)∗ = p− qp and a ∈ R† ⇔ a∗ ∈ R†, then p− pq ∈ R† ⇔ p− qp ∈

R†.

Recall that an element a ∈ R is normal if aa∗ = a∗a. Further, if a normal element a is

MP-invertible, then aa† = a†a by Lemma 2.2.

In 2004, Koliha, Rakočević and Straškraba [9] showed that p− q is nonsingular if and

only if 1− pq and p+ q− pq are both nonsingular, for projectors p, q in complex matrices.

It is natural to consider whether the same property can be inherited to the MP-inverse in

a ring with involution. The following result illustrates its possibility.

Theorem 3.3. Let p − q, p(1 − q) and q(1 − p) be ∗-cancellable. Then the following

conditions are equivalent:

(1) p− q ∈ R†,

(2) 1− pq ∈ R†,

(3) p + q − pq ∈ R†.

Proof. (1)⇒ (2) Note that p− q is normal. It follows from Lemma 2.2 that ((p− q)2)† =

((p− q)†)2. As p(p− q)2 = (p− q)2p = p− pqp, then 1− pqp = (p− q)2p+ 1− p and hence

1− pqp ∈ R† according to Theorem 3.1. So, 1− pq ∈ R† by [12, Theorem 4].

(2) ⇒ (1) By [12, Theorem 4], we know that 1 − pq ∈ R† implies 1 − pqp ∈ R†. Let

p = 1 − p and q = 1 − q. Note that p(1 − q) is ∗-cancellable. We have 1 − pq ∈ R† ⇒

p − pq = q − p q ∈ R† by (1) ⇒ (4) in Proposition 3.2. Also, as q(1 − p) = p(1 − q) is

∗-cancellable, then q − p q ∈ R† implies 1 − q p ∈ R† by (10) ⇒ (6) in Proposition 3.2,
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which means 1 − p q ∈ R† since a ∈ R† ⇔ a∗ ∈ R†. Again, applying [12, Theorem 4], it

follows that 1− p q p ∈ R†.

Setting a = 1 − pqp and b = 1 − p q p, then a∗p = pa∗ and b∗p = pb∗. Since

(p − q)2 = ap + b(1 − p), we obtain (p − q)2 = (p − q)(p − q)∗ ∈ R† by Theorem 3.1 and

hence p− q ∈ R† from [8, Theorem 5.4].

(1)⇔ (3) In (1)⇔ (2), replacing p, q by 1− p, 1− q, respectively.

Next, we mainly consider the representations of the MP-inverse by aforementioned

results.

Theorem 3.4. Let p− q ∈ R†. Define F , G and H as

F = p(p− q)†, G = (p− q)†p, H = (p− q)(p− q)†.

Then, we have

(1) F 2 = F = (p− q)†(1− q),

(2) G2 = G = (1− q)(p− q)†,

(3) H2 = H = H∗.

Proof. (1) We first prove F = (p− q)†(1− q).

As (p − q)∗ = p − q and p − q ∈ R†, then (p − q)2 ∈ R† by Lemma 2.2. Moreover,

((p− q)2)† = ((p− q)†)2. Also, (p− q)(p− q)† = (p− q)†(p− q). From p(p− q)2 = (p− q)2p

and p((p− q)2)∗ = ((p− q)2)∗p, we have p((p− q)†)2 = ((p− q)†)2p using Lemma 2.1.

Hence,

(p− q)†(1− q) = ((p− q)†)2(p− q)(1− q) = ((p− q)†)2p(1− q)

= ((p− q)†)2p(p− q) = p((p− q)†)2(p− q)

= p(p− q)†

= F.

We now show F 2 = F . Since p(p− q)† = (p− q)†(1− q), one can get

F 2 = (p− q)†(1− q)p(p− q)†

= (p− q)†(1− q)(p− q)(p− q)†
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= p(p− q)†(p− q)(p− q)†

= p(p− q)†

= F.

(2) By F ∗ = G.

(3) It is trivial.

Under the same symbol in Theorem 3.4, more relations among F , G and H are given

in the following result.

Corollary 3.5. Let p− q ∈ R†. Then

(1) q(p− q)† = (p− q)†(1− p),

(2) qH = Hq,

(3) G(1− q) = (1− q)F.

Proof. (1) can be obtained by a similar proof of Theorem 3.4(1).

(2) Taking involution on (1), it follows that (1− p)(p− q)† = (p− q)†q and hence

qH = q(p− q)(p− q)† = q(p− 1)(p− q)†

= −q(p− q)†q = −(p− q)†(1− p)q

= −(p− q)†(q − p)q

= Hq.

(3) We have

G(1− q) = (p− q)†(p− q)(1− q) = (p− q)†p(p− q)

= (1− q)(p− q)†(p− q)

= (1− q)F.

Keeping in mind the relations in Theorem 3.4 and Corollary 3.5, we give the following

equalities, where a denotes 1− a.
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Corollary 3.6. Let p− q ∈ R†. Then

(1) Fp = pG = pH = Hp,

(2) qHq = qH = Hq = HqH,

(3) qF = Gq = qFq,

(4) (p− q)† = F + G−H.

In general, p−q ∈ R† can not imply p+q ∈ R†. Such as, take R = Z and 1 = p = q ∈ R,

then p− q = 0 ∈ R†, but p + q = 2 /∈ R† since 2 is not invertible.

The next theorem presents the necessary and sufficient conditions for the existence of

(p + q)†.

Theorem 3.7. Let 2 be invertible in R. Then the following conditions are equivalent:

(1) pH = p,

(2) (p + q)H = (p + q),

(3) p + q ∈ R† and (p + q)† = (p− q)†(p + q)(p− q)†.

Proof. (1)⇒ (2) If pH = p, then qH = q by the symmetry of p and q. Hence (p + q)H =

(p + q).

(2)⇒ (1) Note that H = (p− q)(p− q)† and p− q is normal. We have (p− q)H = p− q

and p + q = (p + q)H = (q − p)H + 2pH = −(p − q) + 2pH, which implies 2pH = 2p.

Hence, pH = p since 2 is invertible.

(2)⇒ (3) Let x = (p− q)†(p + q)(p− q)†. We prove that x is the MP-inverse of p + q

by checking four equations of Penrose.

(i) ((p + q)x)∗ = (p + q)x. Indeed,

(p + q)x = (p + q)(p− q)†(p + q)(p− q)†

= (p− q)†(1− q + 1− p)(p + q)(p− q)†

= (p− q)†(p− q)2(p− q)†

= (p− q)(p− q)†.

(ii) (x(p + q))∗ = x(p + q). By similar proof of (i), we have x(p + q) = (p− q)†(p− q).

(iii) Note that the relations pH = Hp and qH = Hq in Corollary 3.6. Then

(p + q)x(p + q) = (p− q)(p− q)†(p + q)
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= H(p + q) = (p + q)H

= p + q.

(iv) It follows that x(p + q)x = (p− q)†(p + q)(p− q)†(p− q)(p− q)† = x.

(3)⇒ (2) As p + q ∈ R† with (p + q)† = (p− q)†(p + q)(p− q)†, then

p + q = (p + q)(p + q)†(p + q) = (p + q)(p− q)†(p + q)(p− q)†(p + q)

= (p + q)(p− q)†(p− q)†(1− q + 1− p)(p + q)

= (p + q)(p− q)†(p− q)†[(1− q)p + (1− p)q]

= (p + q)(p− q)†(p− q)†[(p− q)p + (q − p)q]

= (p + q)(p− q)†(p− q)†(p− q)p− (p + q)(p− q)†(p− q)†(p− q)q

= (p + q)(p− q)†(p− q)(p− q)†p− (p + q)(p− q)†(p− q)(p− q)†q

= (p + q)(p− q)†p− (p + q)(p− q)†q

= (p + q)(p− q)†(p− q)

= (p + q)H.

Next, we give a new necessary and sufficient condition of the existence of (p + q)†.

Theorem 3.8. Let p, q ∈ R with pq = qp. Then p + q ∈ R† if and only if 1 + pq ∈ R†.

In this case, (p + q)† = (1 + pq)†p + q(1− p) and (1 + pq)† = (p + q)†p + 1− p.

Proof. Suppose p+ q ∈ R†. As 1 + pq = p(p+ q) + 1− p, then (1 + pq)† = (p+ q)†p+ 1− p

by Theorem 3.1.

Conversely, let x = (1 + pq)†p + q(1 − p). We next show that x is the MP-inverse of

p + q.

(i) [(p + q)x]∗ = (p + q)x. We have

(p + q)x = (p + q)[(1 + pq)†p + q(1− p)]

= (1 + pq)†p + (1 + pq)†pq + q(1− p)

= (1 + pq)†(1 + pq)p + q(1− p).
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Hence, [(p + q)x]∗ = (p + q)x.

(ii) It follows that [x(p + q)]∗ = x(p + q) since p and q commute.

(iii) (p + q)x(p + q) = p + q. Indeed,

(p + q)x(p + q) = (p + q)[(1 + pq)†(1 + pq)p + q(1− p)]

= (1 + pq)†(1 + pq)p + (1 + pq)†(1 + pq)pq + q(1− p)

= (1 + pq)†(1 + pq)p(1 + pq) + q(1− pq)

= p(1 + pq) + q(1− pq)

= p + q.

(iv) By a similar way of (3), we get x(p + q)x = x.

Thus, (p + q)† = (1 + pq)†p + q(1− p).

The next theorem, a main result of this paper, admits proficient skills on F , G and H,

expressing the formulae of the MP-inverse of difference of projectors.

Theorem 3.9. Let p− q ∈ R†. Then

(1) (1− pqp)† = p((p− q)†)2 + (1− p),

(2) (1− pq)† = p((p− q)†)2 − pq(p− q)† + 1− p,

(3) (p− pqp)† = p((p− q)†)2,

(4) If p− pq is ∗-cancellable, then (p− pq)† = (p− q)†p,

(5) If p− pq is ∗-cancellable, then (p− qp)† = p(p− q)†.

Proof. (1) As 1− pqp = p(p− q)2 + 1− p, then (1− pqp)† = p((p− q)†)2 + 1− p according

to Theorem 3.1.

(2) It follows from Theorem 3.3 that p − q ∈ R† implies 1 − pq ∈ R†. Let x =

p((p− q)†)2 − pq(p− q)† + 1− p. We next show that x is the MP-inverse of 1− pq.

(i) We have

(1− pq)x = (1− pq)[p((p− q)†)2 − pq(p− q)† + 1− p]

= (p− pqp)((p− q)†)2 − (1− pq)pq(p− q)† + (1− pq)(1− p)

= p(p− q)2((p− q)†)2 − (p− pqp)(p− q)†(1− p) + (1− pq)(1− p)

= p(p− q)(p− q)† − p(p− q)2(p− q)†(1− p) + (1− pq)(1− p)
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= p(p− q)(p− q)† − p(p− q)(1− p) + (1− pq)(1− p)

= p(p− q)(p− q)† + 1− p

= pH + 1− p.

Hence, ((1− pq)x)∗ = (1− pq)x since pH = Hp and H∗ = H.

(ii) We get x(1− pq) = p(p− q)†p + 1− p. Hence, (x(1− pq))∗ = x(1− pq).

(iii) (1− pq)x(1− pq) = 1− pq. Indeed,

(1− pq)x(1− pq) = (pH + 1− p)(1− pq) = Hp(1− pq) + (1− p)(1− pq)

= Hp(p− pq) + 1− p = pH(p− pq) + 1− p

= pHp(p− q) + 1− p = pH(p− q) + 1− p

= p(p− q) + 1− p

= 1− pq.

(iv) x(1− pq)x = 1− pq. Actually, we can obtain this result by a similar proof of (iii).

(3) Since p− pqp = p(p− q)2 = (p− q)2p, we get (p− pqp)† = p((p− q)†)2 by Lemma

2.2.

(4) Keeping in mind that a† = a∗(aa∗)† = (a∗a)†a∗, we have (p−pq)† = (p− qp)p((p−

q)†)2 = (p− q)((p− q)†)2p = (p− q)†p.

(5) Note that a is ∗-cancellable if and only if a∗ is ∗-cancellable. It follows from

(a∗)† = (a†)∗ that (p− qp)† = p(p− q)†.

Corollary 3.10. Let p− pq be ∗-cancellable and let 1− pq ∈ R†. Then p− q ∈ R† and

(p− q)† = (1− pq)†(p− pq) + (p + q − pq)†(pq − q).

Proof. From Theorem 3.3, we have p− q ∈ R† ⇔ 1− pq ∈ R†.

By Theorem 3.9 (2), we have (p+q−pq)† = (1−p)((p−q)†)2+(1−p)(1−q)(p−q)†+p.

It is straight to check that (1− pq)†(p− pq) + (p+ q− pq)†(pq− q) satisfies four equations

of Penrose.

The following result is motivated by [2], therein, Deng considered the Drazin inverses

of difference of idempotent bounded operators on Hilbert spaces.
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Theorem 3.11. Let pq − qp be ∗-cancellable. Then

(1) (p− q)† = p− q if and only if pq = qp,

(2) If 6 is invertible in R, then (p + q)† = p + q if and only if pq = 0.

Proof. (1) If pq = qp, it is straightforward to check (p− q)† = p− q.

Conversely, (p − q)† = p − q implies (p − q)3 = p − q, we get pqp = qpq and hence

(pq − qp)∗(pq − qp) = 0. It follows that pq = qp since pq − qp is ∗-cancellable.

(2) Suppose pq = 0. Then p∗q = pq∗ = 0 since p, q are projectors. Then (p+q)† = p+q

by Lemma 2.3.

Conversely, (p+q)† = p+q concludes (p+q)3 = p+q. By direct calculations, it follows

that 2pq + 2qp + pqp + qpq = 0. (3.1)

Multiplying the equality (3.1) by p on the left yields 2pq + 3pqp + pqpq = 0. (3.2)

Multiplying the equality (3.1) by q on the right gives 2pq + 3qpq + pqpq = 0. (3.3)

Combining the equalities (3.2) and (3.3), it follows that pqp = qpq since 3 is invertible.

As pq − qp is ∗-cancellable, then pqp = qpq implies pq = qp. Hence, equality (3.1) can be

reduced to 6pq = 0.

Thus, pq = 0.

Theorem 3.12. Let 1− p− q ∈ R†. Then

(1) pqp ∈ R† and (pqp)† = p((1− p− q)†)2 = ((1− p− q)†)2p,

(2) If pq is ∗-cancellable, then pq ∈ R† and (pq)† = qp((1− p− q)†)2.

Proof. (1) Since (1 − p − q)∗ = 1 − p − q, we have ((1 − p − q)2)† = ((1 − p − q)†)2 by

Lemma 2.2. As pqp = p(1− p− q)2 = (1− p− q)2p, then pqp ∈ R† from Lemma 2.2 and

hence (pqp)† = p((1− p− q)†)2 = ((1− p− q)†)2p.

(2) Note that 1 − p − q ∈ R† implies pqp ∈ R†. As pqp = pq(pq)∗ and pq is ∗-

cancellable, then pq ∈ R† by [8, Theorem 5.4]. The formula a† = a∗(aa∗)† guarantees that

(pq)† = qp((1− p− q)†)2.
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