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Abstract 

A novel methodology is developed for predicting the load carrying capacity of elevated 

steel fibre reinforced concrete (E-SFRC) slab systems. In the proposed approach the 

depth of slab’s cross section is discretized into several layers, and the number of steel 

fibres per each layer is determined by considering the distribution of fibres along the 

depth of cross section. This information, together with the one obtained from the three-

point notched beam bending tests performed on four series of SFRC made of different 

concrete strength class and content of fibres, have provided the stress-crack width laws 

for defining the post-cracking behaviour of each layer. These constitutive laws are 

implemented in a numerical model developed based on the moment-rotation approach 

for determining the positive and negative resisting bending moment of the slab’s unit 

width cross section. By using the yield line theory, the load carrying capacity of E-

SFRC slab is predicted for the most current load conditions. Predictive performance of 

the proposed methodology is assessed comparing to the results recorded in experiment 

and the ones obtained by the numerical simulation. Finally the developed model is 

utilised in a parametric study to evaluate the influence of parameters that affect the 

load-carrying capacity of E-SFRC slabs. 
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1. Introduction 

Despite the noticeable potentialities of steel fibres as the fundamental reinforcement of 

slabs and shell type elements [1] and elevated steel fibre reinforced concrete (E-SFRC) 

slabs [2, 3], there is still a lack of a reliable and relatively simple approach for a 

comprehensive design of these types of SFRC applications. Elevated slab is considered 

a flat slab supported on reinforced concrete columns that can be made by SFRC, with or 

without self-compacting requisites, where the unique conventional reinforcement is 

placed at the bottom region of the slab’s cross section, in the alignment of the columns 

in order to avoid the occurrence of progressive collapse [4]. Traditional approaches for 

the design of reinforced concrete slabs often neglect the contribution of the post-

cracking tensile capacity of concrete. In case of SFRC, mainly when using a relatively 

high content of steel fibres, these design strategies underestimate noticeably the load 

carrying capacity of structures with redundant support conditions [5, 6], such is the 

general case of E-SFRC slabs  [7]. The ultimate load of reinforced concrete slabs can be 

determined by the yield line theory (YLT) [8]. The YLT was first presented by 

Ingerslev [9] and later extended by Johansen [10, 11]. In this theory it is assumed that 

the steel reinforcement crossing a yield line is fully yielded at failure, and the resisting 

bending moment of the slab’s cross section is uniformly distributed along the yield 

lines. The YLT was later extended to the design of fibre reinforced concrete (FRC) 

slabs supported on soil by considering the resisting bending moment of the slab’s cross 

section corresponding to a certain average crack width or curvature and adopting the 

contribution of post-cracking tensile capacity of FRC [8, 12]. In the case of E-SFRC 

slabs, since the longitudinal reinforcement is almost totally substituted by discrete 

fibres, the plastic resisting bending moment of the slab’s cross section is effectively 

influenced by the volume fraction and dispersion of fibres [13, 14]. In the present paper 

a novel methodology is developed capable of predicting the load carrying capacity of E-

SFRC slab based on the YLT, in which volume fraction of fibres and dispersion of 

fibres along the depth of the slab’s cross section are taken into consideration. These are 

the most relevant parameters that may influence the post-cracking behaviour of the 

SFRC in a material point of view. Predictive performance of the proposed methodology 

is assessed comparing to the results recorded in experiment and the ones obtained by the 

numerical simulation. Advanced numerical simulations demonstrated that when a 

correlation between fibre reinforcement mechanisms and the fracture energy of the 



SFRC is assured, by the increase of the load carrying capacity and ductility of E-SFRC 

slabs with the fracture energy, being possible to transform a brittle punching failure 

mode in a ductile flexural failure one [15]. In this regards, it was experimentally 

revealed that E-SFRC slabs fail mainly in bending [2, 16-18], and punching failure only 

occurs when relatively high percentage of conventional reinforcement is used [19], 

which is not the case of the E-SFRC treated in the present work. Therefore, in the model 

developed, punching failure is assumed not to occur. 

 

2. Yield line theory applied to E-SFRC 

2.1. Uniformly distributed load 

When subjected to uniformly distributed loads, an elevated slab is designed separately 

in two orthogonal alignments [20]. According to the yield line theory, the dominant 

ultimate failure mode of the interior and corner panels of an elevated slab under 

uniformly distributed load can be represented by the crack patterns depicted in Fig. 1(a) 

and (b), respectively.  

  

         (a)               (b) 

Fig. 1: Yield line patterns of (a) interior and (b) corner panel of E-SFRC slab under 

uniformly distributed load 

The interior panel has continuity on its all borders, while in the corner panel the two 

free borders are assumed providing simply support conditions, materialised by a border-

embedded beam supported in the adjacent columns.  



By adopting the principles of the YLT, the ultimate uniformly distributed load of the 

interior and corner panels of the E-SFRC slab is determined by Eqs. (1) and (2), 

respectively, whose deductions are presented in appendix A and B:   
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In the equations above, 
PxM   and PyM   are the positive resisting bending moment of the 

slab per unit width cross section along the x  and y  directions, respectively (Fig. 1), 

herein abbreviated by the plastic moment. The positive bending moment is assumed to 

impose tensile strains on the slab’s bottom surface. In Eqs. (1) and (2), hx  and 
hy  are 

the ratio of the negative to the positive plastic moment of the slab’s unit width cross 

section along the x  and y  direction, respectively. Furthermore, rxL  and 
ryL  are the 

effective lengths of the slab’s span in the x  and y  directions, respectively, representing 

the distance between two adjacent negative yield lines in the interior slab panel, 

determined according to schematic representation of Fig. 2 [20, 21]. In the corner panel 

the rxL  and 
ryL  are the distance in x  and y  directions, respectively, between the 

corresponding negative yield line and the opposite axis just close to the slab’s free edge 

(Fig. 1b). 

 

Fig. 2: Position of the negative yield lines of panel subjected to uniform load 

2.2. Quasi-point load 

The ultimate crack pattern of an interior and a corner panel of an E-SFRC slab under a 

load uniformly distributed in a relatively small area, designated herein by quasi-point 



load, can be represented by the pattern of yield lines depicted in Fig. 3(a) and (b), 

respectively. These patterns comprise radial positive yield lines (visible at the slab’s 

bottom surface in consequence of the positive plastic bending moment), and a 

circumferential negative yield line (visible at the slab’s top surface in consequence of 

the negative plastic bending moment). In case of corner panel, a half sector of the 

negative yield line is considered due to the simply support conditions assumed for the 

free borders as observed in experiment [2, 3].  

  
      (a) (b) 

Fig. 3: Yield line patterns for (a) interior and (b) corner panel of E-SFRC slab under 

quasi-point load 

 

By adopting the principles of the YLT, the ultimate quasi-point load that can be applied 

to the interior and corner panels ( ,intultP  and ,ult corP , respectively) are determined by Eqs. 

(3) and (4), being their deduction available in appendix C and D, respectively:  
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where r  is the radius of the quasi-point load, and R  is the radius of the negative yield 

line that can be determined by the following equation: 



x yL L
R


  (5) 

 

3. Distribution of fibres along the height of slab’s cross section 

In the case of E-SFRC slabs, when a homogeneous distribution of fibres is considered, 

the positive and negative plastic moments of the slab’s cross section in the x  and y  

direction are the same. In this case the equal hx  and 
hy  parameters can be substituted 

by the general designation of h . This is a simplified assumption of the reality, since 

experimental research on the influence of the casting procedure of SFRC has 

demonstrated a tendency of fibres to line up perpendicularly to the concrete radial flow 

[22]. Furthermore, experimental research reveals a tendency for the increase of the 

percentage of steel fibres along the depth of the cross section, mainly when high 

vibration procedure is used [23]. The distribution of steel fibres along the height of an 

E-SFRC slab’s cross section can be evaluated by the fibres segregation degree 

parameter determined by the following equation [24]: 
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where jZ  is the coordinate of the gravity centre of the jth fibre with respect to the upper 

side of the section, and 
fN  is the total number of fibres crossing the h b  cross 

section (Fig. 4). When fibres are distributed uniformly, a value of 
seg  equal to 0.5 is 

determined by Eq. (6). The parameter tends to the unity by increasing the number of 

steel fibres towards the bottom part of the section.  

 

seg



 

Fig. 4: Segregation of fibres along the height of the slab’s cross section 

 

In practical applications, the fibres segregation degree on the E-SFRC cross section is 

influenced by the rheological properties of the SFRC, casting methodology, and the 

height of the slab’s cross section. Which can be assessed by an image analysis technique 

[25-27] applied to representative samples. 

 

                   (a)             (b) 

Fig. 5: (a) Layering the cross section along its height and (b) 

number of fibres per each layer 

In the developed methodology, for evaluation of the influence of the fibres segregation 

on the load carrying capacity of the E-SFRC slab, the height of the slabs’ cross section 

is discretized into Ln  layers of thickness h ( / Lh n ). The layers are enumerated from 

the top to the bottom, as depicted in Fig. 5(a), regarding which Eq. (6) can be rewritten 

as: 
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where i

fN  indicates the number of fibres positioned in the generic ith layer, and iZ  is 

the depth of the middle surface of the ith layer. Note that for the sake of simplicity, it is 

assumed the cross section is discretized in layers of small thickness that can be two 

times the maximum size of aggregates. Therefore the fibres of each layer can be 

assumed at the middle height of the layer, as schematised in Fig. 5(b). By assuming 

layers of equal small thickness, h , Eq. (7) is reduced to the following one: 
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Furthermore, by considering a uniform increase in the number of fibres from the top to 

the bottom layers of the section, i

fN  can be determined by the following equation: 
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where top

fN  and bot

fN  are the number of fibres of the top layer ( 1)i   and the bottom 

layer ( Li n ), respectively (Fig. 5b). Substituting i

fN  determined by Eq. (9) into Eq. 

(8) yields:   
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On the other hand, the total number of fibres crossing the section is equal to the 

summation of the number of fibres of each layer:  
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Substituting i

fN  from Eq. (9) into Eq. (11) results: 



1 1

1 1
1

1 1

L Ln n
bot top

f f f

i iL L

i i
N N N

n n 

    
     

    
   (12)  

Eqs. (10) and (12) constitute a 2 × 2 system of equations (13), whose intervening 

coefficients are defined by Eqs. (14) to (19): 
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The total number of fibres may cross a general section of Fig. 4 can be obtained by the 

following equation: 

1 1( ) x

f fN b h N             (b and h  in mm) (20)  

where 1 1x

fN  is the total number of fibres crossing a 1 × 1 area of the slab’s cross section, 

which can be estimated by the following equation [28]: 
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where 
fV  is the volume fraction of fibres, 

fd  is the fibre’s diameter, and   is the fibre 

efficiency factor [29]. Theoretically, in a one-dimensional dispersion, fibres are entirely 

aligned with the sample length, and the   parameter approaches the unitary value [30-

32]. In the case of thin shell elements, where the height of the section is small enough, 

dispersion of fibres is dominantly two-dimensional in plane. In this case, the fibre 

efficiency factor is equal to 2 /  [29]. Finally, for the general three-dimensional 

distribution of fibres, the values of   parameter of 0.5, 1/ , and  
2

2 /  have been 

proposed in the literature [32]. It is noted, however, that the actual number of fibres 

crossing a unit area is a random variable that should be calibrated regarding the type and 

geometry of the used fibres, as well as the casting methodology.  

By adopting the total number of fibres crossing the section (
fN ) and the degree of 

fibres segregation (
seg ) estimated from the representative samples, top

fN  and bot

fN  are 

determined by Eq. (13), by which the total number of fibres crossing the generic ith layer 

( i

fN ) is obtained by Eq. (9).   

 

4. Influence of the number of fibres on the post-cracking response of SFRC 

The influence of the number of fibres on the post-cracking response of SFRC was 

evaluated in a test programme carried out on four series of SFRCs designated by C15-

f45, C30-f45, C25-f60, and C45-f90. The numbers after letters “C” and “f ” represent, 

respectively, the target average compressive strength for the SFRC at an age of 28 days 

in MPa, and the content of fibres in kilogram per concrete cubic meter. The SFRCs 

were developed by adopting a three-step mixing method proposed by Barros, Pereira 

[33].  The proportions of the constituents of each series of the developed SFRCs as well 

as type and geometry of the used fibres are detailed in Table 1.  

 

 

 

 



Table 1: Composition of the developed SFRCs (per 1 m3) 

SFRC indication  C15-f45 C30-f45 C25-f60 C45-f90 

Target compressive strength  [MPa] 15 30 25 45 

Cement                  [kg] 220 300 350 423 

Water                      [kg] 105 140 160 144 

Water-to-cement ratio  [-] 0.48 0.47 0.46 0.34 

Superplasticiser     [kg] 6.08 5.70 9.50 5.92 

Limestone filler [kg] - - - 362 

Fly-ash                    [kg] 100 200 150 - 

Fine river sand        [kg] 437 301 233 220 

Coarse river sand   [kg] 693 755 698 671 

Crushed granite       [kg] 615 503 580 491 

VMA a [g] 22 - 22 - 

Fibre type - HESF1b HESF2 HESF1 HESF1 

Supplier - IBERMIX RADMIX IBERMIX IBERMIX 

Content   [kg/m3] 45 45 60 90 

Volume fraction         [%] 0.6 0.6 0.8 1.1 

Fibre’s length             [mm] 35 30 35 35 

Fibre’s diameter         [mm] 0.55 0.40 0.55 0.55 

Aspect ratio                 - 63 75 63 63 

Tensile Strength    [MPa] 1300 1000 1300 1300 

a VMA: Viscosity modifying admixture 
b HESF: Hooked end steel fibres              

  

 

The average compressive strength of the SFRCs at an age of 28 days ( cmf ) are 

summarised in Table 2. The cmf  was obtained by performing compressive tests with 

cylinder specimens according to EN 206-1 [34]. In Table 2 are also included the 

average tensile strength ( ctmf ) SFRCs ( )cmE  determined by Eqs. (22) and (23), 

respectively [35]:  
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Table 2: Material properties of the SFRCs 

FRC 

indication 

cmf  ctmf  cmE  

[MPa] [MPa] [GPa] 

C15-f 45 13.12 1.31 23.31 

C30-f 45 26.18 2.54 29.63 

C25-f 60 23.57 1.74 28.62 

C45-f 90 44.42 2.53 35.23 

 

By following recommendations of the fib Model Code 2010 [35], the post-cracking 

response of the developed SFRCs was characterised by performing the three-point 

notched beam bending tests (TBT) according to the test setup schematised in Fig. 6. For 

each series of SFRC, the TBT was performed on ten prismatic beams with 600 mm 

length and 150 × 150 mm2 cross section. To promote crack localisation at the loaded 

section, a notch was executed in the mid-length of a lateral side, in parallel to the 

casting direction. The width and depth of the notch were 5 mm and 25 mm, 

respectively, in agreement with the recommendations of  fib Model Code 2010 [35]. 

 

Fig. 6: Three-point notched beam bending test (TBT) setup (dimensions in mm) 

 



 

  

(a) (b) 

  

(c) (d) 

Fig. 7: Force-CMOD relationships of the four series of specimens of three-

point bending tests: (a) C15-f45, (b) C30-f45, (c) C25-f60, and (d) C45-f90  

 

The envelope and average force-crack mouth opening displacement (F-CMOD) 

relationships obtained by the performed TBT are depicted in Fig. 7, from which the 

average flexural residual strength (
,Ri mf ) is determined by the following equation: 
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where 
,i mF  is the average force corresponding to CMODi equal to 0.5, 1.5, 2.5, and 3.5 

mm. The average values of the flexural residual strengths are summarised in Table 3.  
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Table 3: The average values of flexural residual strengths of the SFRCs 

SFRC series 
1,R mf  2,R mf  

3,R mf  
4,R mf  

[MPa] [MPa] [MPa] [MPa] 

C15-f 45 4.02 3.62 3.20 2.80 

C30-f 45 8.11 8.67 6.74 5.22 

C25-f 60 7.36 7.10 6.44 5.65 

C45-f 90 11.59 11.15 9.70 8.47 

 

The influence of the concrete strength class is quite visible by comparing the results of 

series C15-f45 and C30-f45. Since a significant increase was obtained for the 
,Ri mf   with 

the increase of fcm. The same conclusion can be retrieved by comparing the results from 

C30-f45 C25-f60 since in spite of the largest content of fibres of this last SFRC, its 

smallest compressive strength has prevailed in terms of the post-cracking performance 

of the SFRC.  

The linear stress-crack opening displacement of Fig. 8 is recommended by fib Model 

Code 2010 [35] to represent the post-cracking response of strain softening FRCs [36, 

37] in the evaluation of the behaviour of FRC structures. 

 

Fig. 8: Stress-crack opening relationship of FRC 

recommended in  fib Model Code 2010 [35] 

In Fig. 8, 
,Fts mf  and 

,Ftu mf  are the average value of the residual strength of FRC in the 

serviceability and ultimate limit states, respectively, that can be determined from the 

following equations [35]:  
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where uw  is the ultimate value of crack opening that depends on the level of required 

ductility for the FRC element. For design conditions at ultimate limit state (ULS), uw  

can be considered equal to 2.5 mm. By adopting this methodology, the post-cracking 

response of the developed SFRCs was characterised as represented in Fig. 9. 

 

 

Fig. 9: Post-cracking stress-crack width relationship of the SFRCs determined by 

following the recommendations of fib Model Code 2010 [35] 

 

When TBT was fulfilled, the total number of visible fibres (
fN ) were counted on the 

nominal fracture surface of 125 × 150 mm2 of tested beams (Fig. 6) through a visual 

inspection. Fig. 10 depicts the correlation between the total number of fibres counted on 

the fracture surface, and the normalised average flexural residual strength of the four 

series of SFRC corresponding to the a CMOD of 0.5 mm and 1.5 mm (
1,R mf  and 

3,R mf , 

respectively). According to Fig. 10, the normalised flexural residual strengths have a 

tendency to increase linearly with the number of fibres. 
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Fig. 10: Influence of the total number of fibres counted on fracture surface on the 

normalised flexural residual strength at CMOD of (a) 0.5 mm 
1,( / )R m ctmf f  and (b) 1.5 

mm 
3,( / )R m ctmf f   

By linear regression of the results represented in Fig. 10, the flexural residual strengths 

of a generic ith layer of Fig. 5 with a width of b and a height of h  crossed by a i

fN  

can be obtained by the following equations: 

1,

125 150
0.0204i i

R m f ctm
b

f N f
h

 
  

 
      (

1

i

R mf  in MPa, b  and h  in mm) (27) 

3,

125 150
0.0174i i

R m f ctm
b

f N f
h

 
  

 
     (

3

i

R mf  in MPa, b  and h  in mm) (28) 

Note that the constitutive law of SFRC recommended by the fib Model Code 2010 [35] 

is dependent on the nominal geometry of the fracture surface of the three-point notched 

beam bending test. Therefore, in Eqs. (27) and (28) the total number of fibres 

determined for the cross section of b h  is transformed into a 125 × 150 mm2 surface, 

which is the area of fracture plane above the notch’s apex in the standard three-point 

notched beam bending test. 

It is also noted that Eqs. (27) and (28) were obtained for the SFRCs reinforced with 

hooked end steel fibres of 35 mm length with an aspect ratio of 63 (Table 1). Therefore, 

for other types of fibre these equations need to be updated, but the methodology can be 

the same proposed in the present work. By following this methodology, the constitutive 

laws of the layers of the cross section of Fig. 5 can be obtained regarding the number of 

fibres counted on each layer ( i

fN ) through the algorithm depicted in Fig. 11.  
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Fig. 11: Algorithm to determine the post-cracking constitutive laws of the ith layer of 

cross section 

 

 

 



5. Prediction of the plastic moment of SFRC slab  

The constitutive laws determined for the layers of the slab’s cross section are adopted in 

the model developed for prediction of the positive and negative plastic moments of the 

slab’s unit width cross section (
PM   and 

PM  , respectively). In the developed model, the 

nonlinear response of a cracked region of a SFRC element is represented by a nonlinear 

hinge with a length of hL  considered around the localised crack. By following the 

recommendation of fib Model Code 2010 [35], when an element of FRC does not 

include conventional reinforcement, hL  can be assumed equal to the height of its cross 

section. A layered model, capable of considering all the main mechanisms of a cracked 

FRC, was developed to predict the moment-rotation response of a nonlinear hinge [38]. 

In Fig. 12(a) the nonlinear hinge is depicted under pure bending moment ( )M  that 

imposes an overall rotation ( )  on its boundary cross sections. The nonlinear hinge is 

assumed to have a width varying along its depth symmetrically with respect to the 

section vertical axis, as depicted in Fig. 12(b). 

The height of the beam’s cross section is discretized into Ln  layers. Each layer can have 

an individual material property in compression and tension. The width, the thickness, 

and the depth of the generic ith layer (with respect to the top surface of the section) is 

designated, respectively, by ib , it , and id  (Fig. 12b).    

 

                        (a)         (b)   

Fig. 12: Nonlinear hinge under pure bending; (a) schematic 

deformational configuration, and (b) layered section 

 

 

 



5.1. Constitutive laws of FRC assigned to the nonlinear hinge 

Compressive behaviour  

The compressive behaviour of FRC adopted in the model is the stress-strain relationship 

( )cc cc   schematically represented in Fig. 13. This is a representation of the model 

proposed by Vipulanandan and Paul [39] modified later, by Barros and Figueiras [40] 

for concrete reinforced with hooked end steel fibres.  

 

 

Fig. 13: Typical compressive behaviour of fibre reinforced concrete 

It is noted that beyond the peak point, the coalescence of internal microcracks into 

macro-cracks determines the damage and strain localisation, converting the fracture of 

concrete into a localised phenomenon. This invalidates the use of strain as a state 

variable in constitutive laws for compressive concrete [41]. The post-peak behaviour of 

FRC in compression can be analysed by wedge sliding mechanism [38]. Nevertheless, 

due to the lack of longitudinal tensile reinforcement in the E-SFRC slab systems 

considered in the present work, the tensile crack localisation is the dominant failure 

mode of the FRC elements. Consequently, the post-peak behaviour of FRC in 

compression is of minor importance to the overall response of the FRC element. 

Therefore, for the sake of simplicity, in the present approach FRC in post-peak 

compression stage is still considered a continuous material, and the approach proposed 

by Barros and Figueiras [40] was adopted: 



 
   

,

1

, ,

/

(1 ) / /

cc cc p

cc cc cc q

p
cc cc p cc cc p

f

p q q p

 
 

   




   

 (29) 

where ,cc p  is the strain corresponding to the concrete compressive strength ( ccf ) 

obtained by the equation below:  

, , 0.0002PC

cc p cc p fW    (30) 

where 
fW  is the weight percentage of the used fibres, and ,

PC

cc p  is the strain at the 

compressive strength of the plain concrete of the same strength class [35]. In Eq. (29) 

,seccE  is the secant modulus of elasticity of concrete ( / )cc ccf  , and cE  is the concrete 

elastic modulus determined by Eq. (23). In Eq. (29), p  and q  are also an empirical 

coefficient that can be obtained from the following equations: 

 1.0 0.919exp 0.394 fp W     (31) 

,sec 1
1 , ]0,1[ , 0

c

c

E q
q p p q

E p


       (32) 

In the case that hooked ends steel fibres are not the reinforcement system, Eq. (30) and 

(32) should be calibrated.  

Tensile behaviour  

The tensile behaviour of FRC can be decomposed in the pre-peak and the post-peak 

stages represented in Figs. 14(a) and (b), respectively.  

 

  

(a)         (b) 



Fig. 14: Tensile behaviour of FRC; (a) pre-peak stress-strain relationship, (b) multi-

linear post-peak stress-crack width relationship  

The pre-cracking response of FRC is represented by a bilinear stress-strain relationship 

determined by the following equation: 
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(33a) 

(33b) 

where crf  is the cracking strength that is equal to the mean axial tensile strength ( ctmf ) 

of the concrete matrix determined by the Eq. (22). The second ascending branch 

adopted in Fig. 14(a) is representative of the increase in the post-cracking stress of the 

strain hardening FRCs [32], whose tensile capacity increases up to the tensile strength (

ctf ) and corresponding strain (
,ct p ). Note that in case of strain softening FRCs, ctf  

coincides with the cracking strength ( crf ), and the second branch of Fig. 14(a) is 

eliminated.  

Regarding the fictitious crack model proposed by Hillerborg [42], the tensile post-peak 

response of FRC is represented by a stress-crack width relationship ( ct w  ), like the 

one schematically represented in Fig. 14(b). A multi-linear ct w   diagram was 

adopted since it can capture, with high accuracy, the softening behaviour of FRCs in 

tension [43]. The stress versus crack width relationship of Fig. 14(b) can be represented 

by the following equation: 

 1 1

1

( ) ( )m
ct m m m ct m m

m m

w w
w a a a f w w w

w w
  



 
     

 
 (34) 

where m is a counter ranging between 0  and the number  n  of the considered post-

cracking branches. The 
,m ct m cta f  is the normalised stress parameter corresponding 

to the crack width mw . Furthermore, 0 0( , )a w  and ( , )n na w  are equal to (1,0)  and 

(0, )uw , respectively, where uw  is the ultimate crack width.  

 

 



5.2. Algorithm to predict the moment-rotation response of the nonlinear hinge 

In a developed incremental-iterative algorithm, for a kth generic step of computation, the 

overall rotation of the hinge ( k ) is increased symmetrically by a constant rate of  : 

k k    (35) 

Correspondingly, the axial elongation of the ith layer ( k

iD ) is determined regarding the 

depth of the layer ( id ) and the considered depth of the neutral axis ( NAd ): 

 k

i k i NAD d d   (36) 

The effective strain in the ith layer is then determined from the following equation: 

,

k
k i
ef i

h

D

L
   (37) 

For the layers positioned above the neutral axis, ( i NAd d ), the compressive force 

,( )k

cc iF  is obtained from equation below: 

 , ,

k k

cc i cc ef i i iF bt   (38) 

where ,( )k

cc ef i   is determined by Eq. (29). The tensile force ( ,

k

ct iF ) of the layers below 

the neutral axis, ( i NAd d ) is determined by the following equation: 
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(39a) 
 

 

(39b) 

where  k

ct iw  is obtained by solving iteratively Eq. (40):  

 
, 0

k

ct ct ik k

i ct p h i

c

f w
D L w

E




 
    
  

 (40) 

To deduce Eq. (40) it is assumed that when the crack crosses the ith layer, the total 

elongation of the layer ( k

iD ) is a superimposition of the widening of the crack ( k

iw ) 



and the elastic deformation of the layer 
,( ( ( )) / )k

ct p ct ct i cf w E   along the hinge, as 

described in Fig. 15.  

 

Fig. 15: The components of the effective strain of the ith layer in tension 

By imposing the equilibrium of the axial forces determined for the layers over the 

height of the cross section, the depth of the neutral axis ( )NAd  is determined for the 

overall rotation  ( k ) applied to the nonlinear hinge. For this equilibrium configuration, 

the bending moment is determined: 

1

Ln

k i i

i

M F d


  (41) 

where Ln  is the number of layers of the cross section. The explained procedure is 

described in the flowchart of Fig. 16, which defines a point of the moment-rotation 

relationship ( )k kM  .  

The positive plastic moment ( )PM   of the slab’s cross section is considered as the 

maximum value of the bending moment in the determined M   relationship. The 

proposed computational procedure can also be used for determining the negative plastic 

moment (
PM  ) by reversing the order of the layers’ enumeration. The determined 

positive and negative plastic moment of the slab’s cross section can then be substituted 

in Eq. (1) to (4), developed based on the yield line theory, for determining the load 

carrying capacity of the interior and corner panels of E-SFRC slab under uniformly 

distributed and quasi-point loads.  



 

Fig. 16: Flowchart of the algorithm of the model developed for 

determining the moment-rotation response of FRC nonlinear hinge  

6. Assessment of predictive performance of the developed model 

The predictive performance of the developed model is evaluated by comparing to the 

test results registered in the experimental programme conducted on an E-SFRC slab of a 

quarter-scale prototype made entirely by a concrete of 65 MPa compressive strength 

and reinforced with 1.1% of volume fraction of hooked end steel fibres. The test 



program is explained in detail elsewhere [2]. The prototype was made of six 1.2 × 1.0 m 

panels supported on 12 columns of 100 × 100 mm2 cross section. The load carrying 

capacity of a 1.2 × 1.0 m corner panel was evaluated under quasi-point load applied on 

a 200 × 200 mm2 area at the panel centre. The thickness of the panel was 75 mm. The 

ultimate crack pattern of the loaded panel is depicted in Fig. 17(a) and is idealised in 

Fig. 17(b) where the equivalent circular yield line of the negative plastic moment with a 

radius ( R ) of 618.1 mm diameter was determined by Eq. 5. Furthermore, the centrally 

loaded area was transformed into an equivalent circular area of radius ( r ) equal to 

112.9 mm.  

 

(a)        (b) 

Fig. 17: (a) Ultimate crack pattern of the tested elevated SFRC slab under 

concentric load [2] and (b) idealised ultimate crack pattern (dimensions in mm) 
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Fig. 18: (a) Stress-crack width relationship obtained by the inverse analysis of the 

test conducted on the E-SFRC slab prototype and (b) predictive performance of the 

proposed model compared to the test results 

 

The average post-cracking response of Fig. 18(a) is assigned to the layers of the slab’s 

cross section. This stress-crack width diagram was obtained by inverse analysis by 

fitting with the minimum error as possible the force-central deflection registered 

experimentally in the tested prototype (Fig. 18b) as described in detail elsewhere [2]. In 

the performed inverse analysis the test was simulated by finite element method (FEM) 

based on a smeared crack model implemented in FEMIX V4.0 software [44] that is 

described in details elsewhere [45]. The finite element mesh of Fig. 19 was adopted, 

where the E-SFRC slab’s thickness was discretized in 20 layers of eight nodes finite 

elements according to the Mindlin-shell theory with Gauss-Legendre (G-L) integration 

scheme of 2 × 2 Integration Points (IP). The same type of finite elements was also used 

to simulate the foundations. The columns were simulated by solid elements of 20 nodes 

with 2 × 2 × 2 G–L IP, while T cross arrangements of three dimensional (3D) 

Timoshenko beam elements were utilised with 1 × 3 IP with a relative large flexural 

stiffness to assure rotational compatibility between the shell and solid elements in the E-

SFRC slab/column connections (Fig. 19). 

  

Fig. 19: Finite element mesh of the prototype 



In the material nonlinear analysis with smeared crack constitutive models implemented 

under the framework of FEM, the stress-crack width was converted to a stress-strain 

diagram, which simulates the fracture mode I propagation, by using of the concept of 

crack bandwidth  ( bl ) [46]: 

/cr

nn bw l   (42) 
 

where 
cr

nn  is the strain normal to the smeared cracks and  bl  is  assumed equal to the 

square root of the area of the corresponding integration point to ensure results 

independent of the mesh refinement [47].  

By assuming a unitary value for h  parameter, the load carrying capacity of the E-SFRC 

slab was determined by the proposed model as indicated by the dashed line in Fig. 18(b) 

according to which prediction of the model is desirably 8% lower than the average peak 

load recorded in the experiment. The developed FEM based model was also used to 

assess the reliability of the proposed model for a case study, where a square E-SFRC 

panel of 6300 mm edge and a thickness of 200 mm is supported on four reinforced 

concrete columns of 3000 mm height and 300 × 300 mm2 cross section. The columns 

are assumed to be supported by four square foundations of 1500 mm edge and 350 mm 

thickness. The geometry of this structure is depicted in Fig. 20. 

 

 

Fig. 20: Geometry of the E-SFRC slab considered for evaluation of the predictive 

performance of the developed model (dimensions in mm) 



The considered slab is made of a concrete of compressive strength of 65 MPa, 

reinforced with 0.8% of volume fraction (
fV ) of hooked end steel fibres of 35 mm 

length and an aspect ratio of 63. The segregation degree of fibres along the section’s 

depth ( )seg and the fibre efficiency factor    is assumed 0.6 and 1/ , respectively. 

The thickness of the slab’s cross section is discretized in 20 layers ( )Ln  of 10 mm 

thickness each ( )h . By following the methodology described in the algorithm of Fig. 

11, the post-cracking constitutive law of the layers was determined as depicted in Fig. 

21(a). Correspondingly, the positive and negative moment-rotation relationships of the 

unit width of the slab’s cross section, shown in Fig. 21(b), were evaluated by applying 

the algorithm described in the flowchart represented in Fig. 16.  

 

  

(a) (b) 

Fig. 21: (a) Stress-crack width diagram of the layers of the slab’s cross section and (b) 

moment-curvature relationship of the unit width of the E-SFRC slabs  

 

The maximum value of the positive and negative moments-rotation relationship of Fig. 

21(b) was considered as the positive and negative plastic moment of the unit width of 

the slab’s cross section (
PM   and 

PM  ), respectively. These values are indicated in Table 

4. The ultimate uniformly distributed load and quasi-point load supported by an interior 

and corner panel of the E-SFRC slab, with the same geometry depicted in Fig. 20, were 

determined by Eq. (1) to (5), respectively. These values are also included in Table 4. 

Note that a 300 × 300 mm2 area was considered for the quasi-point load. 
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Table 4: Ultimate uniform and quasi-point load of the interior and corner panel  

PM   
PM   h  rx ryL L  

,ult intq  ,ult corq  ,ult intP  ,ult corP  

[kN.m/m] [kN.m/m] [-] [m] [kN/m2] [kN/m2] [kN] [kN] 

173 107 0.62 5.80 62.18 49.60 1818.80 1471.62 

 

By using the concept of crack bandwidth ( )bl [46], the constitutive laws of the layers in 

terms of stress-crack width relationship (Fig. 21a) were converted to the crack normal 

stress versus crack normal strain diagram that simulates the mode I fracture of the 

smeared cracks formed in integration points of the finite element. Furthermore, a linear 

and elastic behaviour was assigned to the concrete of the columns and foundations. To 

simulate the behaviour of the interior panel, the rotation of the points located on each 

border was restrained, while in case of corner panel two perpendicular sides of the panel 

were kept free to rotate. In Fig. 22 and 23, the load versus central deflection relationship 

of the panel, determined by the FEM simulation, is compared to the ultimate value of 

the load predicted by the proposed model for the uniformly distributed and quasi-point 

load, respectively. When compared to the FEM simulation, the ultimate load predicted 

by the model has a difference of 11% and 16% in case of the interior panel subjected to 

uniformly distributed and quasi-point load, respectively, while a difference of 2% and 

18.5% was obtained for the corner panel under uniformly distributed and quasi-point 

load, respectively, which reveals good prediction of the model.  
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Fig. 22: Evaluation of the model prediction by the FEM simulation in case of (a) 

interior and (b) corner panel under uniformly distributed load  

 

  

           (a)                    (b) 

Fig. 23: Evaluation of the model prediction by the FEM simulation in case of (a) 

interior and (b) corner panel under quasi-point load 

 

7. Parametric study on the load-carrying capacity of E-SFRC slabs 

By using the developed model, the influence of parameters that affect the load-carrying 

capacity of E-SFRC slabs was evaluated by executing a parametric study. The 

considered parameters and their range of values are summarised in Table 5. For the sake 

of simplicity, an equal effective span length is assumed for the E-SFRC slab in the x  

and y directions, and a homogeneous dispersion of fibres is assumed over the slab 

surface and, consequently, hx  = 
hy  = h . 

 

Table 5: Range of values for the considered parameters in the parametric study 

Variables Range of values Increment of value 

Height of cross section ( h  ) [150 mm – 350 mm] 50 mm 

Effective span length (
rx ryL L ) [2.5 m - 7 m] 0.5 m 

Volume fraction of fibres (
fV ) [0.6% - 1.2%] 0.1 % 

Degree of segregation  (
seg ) [0.5 - 1.0] 0.1 

Fibre efficiency factor ( )  1/   - 

Diameter of fibre cross section ( fd ) 0.50 mm - 
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Compressive strength of concrete ( cf ) [30 MPa – 80 MPa] 10 MPa 

Position of panel Interior/Corner - 

Load configuration 
Uniform 

distributed/Concentric 
- 

r  (for quasi-point loading) / 1.0r h   - 

 

 

7.1. Influence of the fibres segregation on h  parameter 

In Fig. 24 the influence of the fibres segregation (
seg ) on the negative-to-positive 

plastic moment ratio ( )h P PM M   is depicted. As expected, when the fibre 

distribution is uniform along the depth of the slab’s cross section ( 0.5seg  ), an equal 

negative and positive plastic moment of the FRC section is determined ( 1)h  . The 

h  parameter, however, reduces with the increase in the fibres segregation degree, 

regardless of the height of slab’s cross section, compressive strength class of concrete, 

and volume fraction of the fibres.  

 

Fig. 24: 
h seg   relationship 

According to Fig. 24, the reduction of the h  parameter by the increase of the fibre 

segregation is more pronounced up to a fibres segregation value of 0.7, beyond which 

the 
h seg   curve tends asymptotically to 0.2. Fig. 25 shows that by increasing the 

fibres segregation parameter the positive plastic moment of the unit width of slab’s 

cross section increases linearly, while the negative plastic moment decreases almost 

linearly up to 
seg 0.7 and then by tends to an asymptotic value. In fact, above this 
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fibres segregation limit, the number of fibres in the cracked layers tends to zero, leading 

to null residual flexural tensile strengths, and, therefore, the negative plastic moment 

coincides with the moment at cracking initiation. 

 

Fig. 25: Influence of the fibres segregation on the positive and negative plastic moment 

of the slab’s unit width cross section 

 

 

 

7.2. Influence of volume percentage of fibres 

The influence of the volume percentage of fibres ( )fV  
 
on the ultimate uniformly 

distributed and the quasi-point load of E-SFRC slab, is depicted in Fig. 26 and 27, 

respectively. According to these figures an increase of around 80% in the load carrying 

capacity of the E-SFRC slab is achieved by increasing the volume of fibres from 0.6% 

to 1.2%, for each load configuration and type of the loaded panel.  
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         (a)          (b) 

 

Fig. 26: Influence of the volume percentage of fibres on the ultimate uniform load 

applied to the panel of E-SFRC slab at: (a) interior, and (b) corner  

 

  

       (a)         (b) 
 

 

Fig. 27: Influence of the volume percentage of fibres on the ultimate quasi-point load 

applied to the panel of E-SFRC slab at (a) interior, and (b) corner  

 

According to Fig. 26(a) and 27(a), the influence of the fibres segregation when ranging 

between 0.5 and 0.7 is almost marginal on the ultimate load of the interior panels. Fig. 

25 shows that for this range of variation of the 
seg  parameter, the linear increase in the 

positive plastic moment is neutralised by the linear reduction in the negative plastic 

moment. Therefore, for this case Eqs. (1) and (3) lead a marginal increase in the load 

carrying capacity of the interior panels. However, for values of the 
seg  parameter larger 

than 0.7, the negative plastic moment of the section remains constant, while the positive 

plastic moment is increasing almost linearly, leading to a significant increase of the 

ultimate load of the interior panel. Due to the simply support conditions assumed for the 

free edges of the  corner panels, the contribution of the negative plastic moment on the 

ultimate load is not so significant as it is in the interior panels, and, consequently, the 

ultimate load of the corner panel increases more pronouncedly with the fibres 

segregation (Fig. 26b and 27b).    

   

7.3. Influence of the height of cross section  
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The influence of the height of slab’s cross section on the ultimate uniform and 

concentrated load of E-SFRC slab is represented in Figs. 28 and 29, respectively. For 

the considered values of intervening parameters, the load carrying capacity of the E-

SFRC slab is increased almost four times by the increase in the height of the slab’s 

cross section from 150 mm to 350 mm. 

  

      (a)         (b) 

Fig. 28: Influence of the height of slab’s cross section on the ultimate uniform load applied to 

the panel of E-SFRC slab at (a) interior, and (b) corner 

 

  

         (a)             (b) 

Fig. 29: Influence of height of slab’s cross section on the ultimate quasi-point load applied to 

the panel of E-SFRC slab at (a) interior, and (b) corner  

 

7.4. Influence of the concrete compressive strength 
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Figs. 30 and 31 show that the load carrying capacity of the E-SFRC slab under 

uniformly distributed load and quasi-point load increases with the concrete compressive 

strength. The increase of the ultimate load of the interior and corner panels is around 

two times when compressive strength of concrete increases from 30 MPa to 80 MPa.  

 

  

         (a)           (b) 

Fig. 30: Influence of the concrete compressive strength on the ultimate uniform load applied to 

the panel of E-SFRC slab at (a) interior, and (b) corner 

 

  

(a) (b) 

Fig. 31: Influence of the concrete compressive strength on the ultimate quasi-point load applied 

to the panel of E-SFRC slab at (a) interior, and (b) corner 

 

7.5. Influence of the effective span length 
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Fig. 32 represents the decrease of the ultimate uniformly distributed load of the E-SFRC 

slab with the increase of the span’s effective length of the panel. For the considered 

values of the intervening parameters, a reduction of about seven times is achieved in the 

ultimate uniformly distributed load of the interior and corner panel when the effective 

span length of the slab increases from 2.5 m to 7 m. However, Fig. 33 shows that for the 

same increment of the span’s effective length, the reduction of the slab’s load carrying 

capacity under quasi-point load does not exceed 7%. 

  

      (a)      (b) 

Fig. 32: The influence of the panel span length on the ultimate uniformly distributed load 

applied to the panel of E-SFRC slab at (a) interior, and (b) corner  

 

  

     (a)        (b) 

Fig. 33: The influence of the panel span length on the ultimate quasi-point load applied to the 

panel of E-SFRC slab at (a) interior, and (b) corner  
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8. Conclusions 

In the present paper, a novel methodology was presented to take into account the 

volume fraction of the fibres, as well as the fibres segregation degree parameter to 

determine the positive and negative plastic bending moment per unit width of the E-

SFRC slab’s cross section. The determined plastic moments were used in equations 

developed based on the yield line theory to predict the load carrying capacity of the 

interior and corner panels of E-SFRC slab under uniformly distributed and quasi-point 

loads. The predictive performance of the proposed model was assessed by the FEM 

simulation of the E-SFRC slab system. 

The developed model was used in a parametric study, in which the influence of the most 

relevant intervening parameters was evaluated on the load carrying capacity of the E-

SFRC slabs. The obtained results demonstrated an increase of 80% of the load carrying 

capacity of the E-SFRC slab with the increase in the volume fraction of fibres from 

0.6% to 1.2%, regardless of the load configuration and position of the loaded panel. It 

was also revealed that the load carrying capacity of the E-SFRC slab is increased, in 

general, with the increase in the fibres segregation parameter ( )seg . This means that 

considering a uniform dispersion of fibres on the height of slab’s cross section is a 

conservative assumption in a design methodology. Nevertheless, when 
seg  parameter 

ranges between 0.5 and 0.7, its influence on the load carrying capacity of the interior 

panel is marginal. For the range of variables considered in the performed parametric 

study, the ultimate load of the E-SFRC slab increased two times when the compressive 

strength of concrete augmented from 30 MPa to 80 MPa. Furthermore, an increase of 

four times was obtained for the ultimate load when the height of the slab’s cross section 

increased from 150 mm to 350 mm. A reduction of around 7 times of the ultimate 

uniformly distributed load of the interior and corner panel was obtained with the 

increase of the span’s effective length of the slab from 2.5 m to 7 m, while for the same 

increment of the span’s effective length, the reduction of the load carrying capacity of 

slab under quasi-point load is restricted to 6.5%. 
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Appendix A:  

 

Fig. A.1: Deformation of an interior panel of the elevated slab submitted to uniformly 

distributed load 

 

Deformation of an interior panel of elevated slab under uniformly distributed load of 

,intultq  is depicted in Fig. A.1 where the effective span of the slab is subdivided into AB 

and BC segments with overall rigid rotation of AB  and BC , respectively.  According to 

Fig. A.1 which the internal work ( IW ) and the external work ( EW ) executed for the 

slab’s unit width cross section are obtained by the following equations:  

For segment AB:   
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For segment BC:   
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(A.4) 

where 0x  is the distance of the positive yield line with respect to the negative yield line 

at the left extremity, rxL  is the effective length of the slab’s span in the x  direction,  

and PyM   and PyM  are the positive and negative plastic moments of the unit width of the 

slab’s cross section along the y direction, respectively. Furthermore, 

0 0 )( ( )AB rx BCLx x     is the deflection of the slab at the positive yield line. By 

equating the external work and the internal work it can be written:   
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where 
hy is the ratio of the negative to the positive plastic moment ( /Py PyM M  ) in the 

y direction. By solving Eqs (A.5) and (A.6) the 0x  parameter of 0.5 rxL  is determined. 

Then by substituting 0x into Eq. (A.5), it can be rewritten: 
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Similarly, the slab’s positive plastic moment of the slab’s cross section in the x  

direction is determined by the following equation:  
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where 
ryL is the effective length of the slab’s span in the y  direction,  and 

PxM   and 

PxM  are the positive and negative plastic moments of the unit width of slab’s cross 

section along the x  direction. The minimum values of the uniform load determined 

from Eqs. (A.7) and (A.8) is considered as the ultimate uniformly distributed load of the 

interior panel:  
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Appendix B: Load Carrying Capacity of a Corner Panel of the E-Slab under 

Uniform Load 

 

Fig. B.1: Deformation of a corner panel of the elevated slab submitted to uniformly 

distributed load 

 

In Fig. B.1 deformation of a corner panel of the elevated slab subjected to a uniformly 

distributed load of ,ult corq  are depicted. Accordingly, the internal work ( IW ) and the 

external work ( EW ) accomplished for the slab’s unit width cross section can be 

obtained by the following equations:  

For segment AB:   
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For segment BC:   
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(B.4) 

where the intervening parameters have the same meaning explained before. By adopting 

the principles of the work method, Eqs. (B.5) and (B.6) are obtained by equating the 

external work and the internal work for the AB and BC segments, respectively: 

2

, 0

2

ult cor

Py Py
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M M                 (for segment AB) (B.5) 
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Eq. (B.5) can be deduced to:   
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By solving Eqs. (B.6) and (B.7) the 0x  parameter is determined by the following 

equation: 
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By substituting 0x into Eq.  (B.7), it can be rewritten: 
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Similarly, regarding the yield lines propagate along the x  direction it can be written: 

  
2

, 2

2 1 1
 

Px hx

ult cor

ry

M
q

L

  
  (B.10) 

The minimum values of the uniform load determined from Eqs. (B.9) and (B.10) is 

considered as the ultimate uniformly distributed load of the interior panel:  
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Appendix C: Load Carrying Capacity of an Interior Panel of the E-Slab Under 

Concentric Load 

  

Fig. C.1: The yield lines and deformation of an interior panel of the elevated slab 

submitted to a concentric load 

 

In Fig. C.1 the yield lines of an interior panel of elevated slab subjected to a concentric 

load of 
,intultP  are depicted, according to which the external and internal work, ( EdW  

and IdW , respectively) corresponding to a finite sector with angle of d  is determined 

by the following equations: 
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where, a  is the radius of the concentric load, R  is the radius of the negative yield line, 

  is the overall rotation of the positive yield line, and  is the deflection of the centre 

of the loaded area of the considered finite sector by Eq. (C.3): 
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 (C.3) 

By substituting Eq. (C.3) and designating the ratio of the negative to the positive plastic 

moment by  h , the total internal and external works are determined from Eqs.(C.4) and 

(C.5), respectively: 
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By adopting the work method the external and internal works are equated leading to Eq. 

(C.6): 
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Appendix D: Load Carrying Capacity of a Corner Panel of the E-Slab under 

Concentric Load 

 

Fig. D.1: The yield lines and deformation of a corner panel of the elevated slab submitted to a 

concentric load 

 

In Fig. D.1 the yield lines of an interior panel of elevated slab subjected to a concentric load 

of 
,intultP  are depicted, according to which the external and internal work, ( EdW and IdW , 

respectively) corresponding to a finite sector with angle of d  is determined by the 

following equations: 
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where, a  is the radius of the concentric load, R  is the radius of the negative yield line,   is 

the overall rotation of the positive yield line, and   is the deflection of the centre of the 

loaded area of the considered finite sector by Eq. (D.3): 
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 (D.3) 

By substituting Eq. (D.3), the total internal and external works are determined by Eqs. (D.4) 

and (D.5), respectively: 
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By adopting the work method the external and internal works are equated leading to Eq. 

(D.6): 
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where h  
is the ratio of the negative to the positive plastic moment of the slab unit width of 

cross section.  

 


