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Abstract: Multi-state models can be successfully used to model complicated
event history data, for example, describing stages in the disease progression of a
patient. In these models one important goal is the estimation of the transition
probabilities since they allow for long term prediction of the process. There have
been several recent contributions for the estimation of the transition probabilities.
Recently, de Uña-Álvarez and Meira-Machado (2015) proposed new estimators
for these quantities, and their superiority with respect to the competing estima-
tors has been proved in situations in which the Markov condition is violated.
In this paper, we propose a modification of the estimator proposed by de Uña-
Álvarez and Meira-Machado based on presmoothing. Simulations show that the
presmoothed estimators may be much more efficient than the completely non-
parametric estimator.
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1 Introduction

In many medical studies individuals can experience several events across
a follow-up study. Analysis of such studies can be successfully performed
using a multi-state model (Meira-Machado et al., 2009). This paper intro-
duces and studies a feasible estimation method for the transition probabil-
ities in a progressive multi-state model.
Fully non-Markov estimators for the transition probabilities were intro-
duced for the first time in Meira-Machado et al. (2006). Recently, this
problem has been reviewed, and new sets of estimators have been pro-
posed (de Uña-Álvarez and Meira-Machado, 2015). This method proceeds
by considering specific subsets of individuals (namely, those observed to
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be in a given state at a pre-specified time point) for which the ordinary
Kaplan-Meier survival function leads to a consistent estimator of the target.
Superiority with respect to the competing estimators has been proved.
A multi-state model is a stochastic process (X(t), t ∈ T ) with a finite state
space, where X(t) represents the state occupied by the process at time t.
For simplicity, in this paper we assume the progressive illness-death model
and we assume that all the subjects are in State 1 at time t = 0. The illness-
death model describes the dynamics of healthy subjects (State 1) who may
move to an intermediate “diseased” state (State 2) before entering into a
terminal absorbing state (State 3). Many longitudinal medical data with
multiple endpoints can be reduced to this structure.
The illness-death model is characterized by the joint distribution of (Z, T ),
where Z is the sojourn time in the initial state 1 and T is the total survival
time. Both Z and T are observed subject to a random univariate censoring
C assumed to be independent of (Z, T ). Due to censoring, rather than

(Z, T ) we observe (Z̃, T̃ ,∆1,∆2) where Z̃ = min(Z,C), ∆1 = I(Z ≤ C),

T̃ = min(T,C), ∆2 = I(T ≤ C), where I(·) is the indicator function. The
target is each of the five transition probabilities pij(s, t) = P (X(t) = j |
X(s) = i), where 1 ≤ i ≤ j ≤ 3 and s < t are two pre-specified time points.

2 Estimators

The transition probabilities are functions involving expectations of particu-
lar transformations of the pair (Z, T ). In practice, we only need to estimate
three transition probabilities since the others can be expressed from these
ones; namely,

p11(s, t) =
E [I(Z > t)]

E [I(Z > s)]
, p13(s, t) =

E [I(s < Z, T ≤ t)]

E [I(Z > s)]
,

p23(s, t) =
E [I(Z ≤ s < T ≤ t)]

E [I(Z ≤ s < T )]
.

Because of space limitation we will focus on the transition probability
p13(s, t) = P (T ≤ t | Z > s). Given the time point s, to estimate this
quantity, the analysis can be restricted to the individuals with an observed
first event time greater than s. This is known as the landmark approach
(van Houwelingen et al. 2007). The corresponding estimator (KMW) is

given by p̂13(s, t) = 1 − Ŝ
(s)
T (t) where Ŝ

(s)
T (t) denote the Kaplan-Meier

estimator computed from the given sub sample. Similarly, the transition
probability p23(s, t) = P (T ≤ t | Z ≤ s < T ) can be estimated by consider-
ing specific subsets of individuals (namely, those observed to be in a state
2 at a pre-specified time point s, i.e. those for which Z ≤ s < T ) for which
the ordinary Kaplan-Meier survival function leads to a consistent estimator
(see de Uña-Álvarez and Meira-Machado (2015) for further details).
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The standard error of the estimators introduced by de Uña-Álvarez and
Meira-Machado may be large when censoring is heavy, particularly with
a small sample size. Interestingly, the variance of this estimator may be
reduced by presmoothing. This ‘presmoothing’ is obtained by replacing
the censoring indicator variables in the expression of the Kaplan-Meier
weights (used by the authors), by a smooth fit. This preliminary smooth-
ing may be based on a certain parametric family such as the logistic, or
on a nonparametric estimator of the binary regression curve. The (semi-
parametric) Kaplan-Meier Presmoothed Weighted estimator (KMPW) is

given by p̂?13(s, t) = 1 − Ŝ
(s?)
T (t) where Ŝ

(s?)
T (t) denotes the presmoothed

Kaplan-Meier estimator in the same sub sample.
Note that, unlike the estimator by de Uña-Álvarez and Meira-Machado
(2015), the semiparametric (presmoothed) estimator can attach positive
mass to pair of event times with censored total time. However, both esti-
mators attach a zero weight to pairs of event times for which the first event
time is censored. In the limit case of no presmoothing, the two estimators
are equivalent.

3 Simulation study

In this section we investigate the performance of the proposed estimators
through simulations. The simulated scenario is the same as that described
in Amorim et al. (2011). To compare the performance of the methods we
compute the mean square error (MSE), bias and standard deviation (SD).
For completeness we also included the estimator by Meira-Machado et al.
(2006).
Figure 1 depicts the boxplots of the estimated MSE over 1000 simulated
datasets. From this plot it can be seen that with exception of the (LIDA)
estimator by Meira-Machado et al. (2006) the remaining two estimators
(KMW and KMPW) perform well, approaching their targets as the sample
size increases. Besides, simulation results also reveal that the new pro-
posal perform favorably when compared with the competing methods. Our
simulation results reveal relative benefits of presmoothing in the heavily
censored scenarios or small sample sizes.
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FIGURE 1. Mean square error for the three estimators.
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