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1.1.Tomato Production in the World  

Tomato (Solanum lycopersicum) belongs to the Solanaceae family, which contains many 

important food crops such as potato, pepper and eggplant (Inga et al., 2006). The crop has a 

diploid chromosome number (2n=24) (Naika et al., 2005). It originated in the Andes, South 

America. The cultivated tomato was first taken to Europe by Spanish conquistadors in the 

16th century and then introduced into southern and eastern Asia, Africa, the Middle East and 

distributed throughout the world (Purseglove, 1968; Naika et al., 2005). The crop has 

developed into a great number of cultivated types suitable to different environments, methods 

of production, and food uses (Guillaume & Mathilde, 2012). Today tomato is considered as 

one of the most widely grown vegetable crops and constitutes a major agricultural industry 

(Foolad, 2007). It is undoubtedly the most popular garden crop too. World tomato production 

in 2013 was about 164.5 million tons from an estimated 4.7 million hectares. The top 5 

tomato producing countries in the same year were China, India, USA, Turkey and Egypt in 

descending order (FAOSTAT, 2014).  

The tomato fruit contains abundant and well balanced nutritional components which includes 

minerals (calcium, iron, phosphorus), vitamins (vitamin A, B, C), protein (essential amino 

acids), sugars, dietary fibers (pectin) and citric acid (Sekyewa, 2006). Tomatoes are major 

sources of lycopene, a dietary carotenoid found in high concentrations in processed tomato 

products (Di Mascio et al., 1998). This compound is an antioxidant known to combat cancer, 

heart diseases and premature aging (Wener, 2000). Fresh and processed tomatoes such as 

concentrates, puree and paste are increasingly in demand in the world where they form an 

essential part of the human diet (Guillaume & Mathilde, 2012).  

1.2. Tomato Production in Ethiopia 

It is believed that cultivated tomato was introduced into Ethiopian agriculture between 1935 

and 1940 (Gemechis et al., 2012). No local cultivars of tomato have evolved or been 

developed and hence all varieties grown are introduced (Yayeh, 1989). However, right after 

the establishment of the Ethiopian Institute of Agricultural Research (EIAR) in 1966, tomato 

was recognized as a commodity crop (Gemechis et al., 2012). Its versatility in fresh or 

processed form has played a major role in its rapid and widespread adoption as an important 

food commodity (Bezabeh et al., 2014). 
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The first record of commercial tomato cultivation dates back from 1980 with a production 

area of 80 ha (Lemma, 2006) in the upper Awash by Merti Agroindustry for both domestic as 

well as export markets. By 1993, its total area increased to 833 ha and later on the cultivation 

spread towards other parts of the country. Since 1994 up to 2014, tomato acreage increased to 

7,257.45 ha to produce 393,730.22 tons of tomatoes (FAOSTAT, 2014).  

 

Tomatoes constitute a major farming activity in Ethiopia due to the favourable ecological 

conditions, importance in daily diet and proximity for export marketing to the Republic of 

Djibouti and Middle East countries (Tadele & Mengistu, 2000). It is one of the most 

important regional export crops in the country (Joosten et al., 2011). Tomato is an important 

cash vegetable crop produced by both commercial and small-scale farmers (SSF) in Ethiopia 

(Mekete et al., 2003). Recently, due to expansion of state farms and private investments, 

commercial production of tomato both in terms of area and production is on the rise.  

 

Tomato is grown in many parts of Ethiopia: on large-scale basis under irrigation at Merti, 

Upper Awash Agro Industry Enterprise (UAAIE) and for fresh consumption in Melkasa, 

Koka, Meki, Zeway, Wondo-Genet, Guder, Bako, Wollo, Haragahe, Shawa, Jimma and 

Wallaga (Shimeles, 2000; Gemechis et al., 2012) and in areas where sufficient irrigation 

supplies are present. SSF are taking the lion share of the tomato production in the country. 

The smallholders are interested in tomato production more than in any other vegetables due 

to its multiple harvest potential and high profit per unit area (Bezabeh et al., 2014).  

 

Since 1969, more than 300 tomato varieties were tested for their agronomic qualities and 

disease resistance potentials. Most of the varieties tested showed susceptibility to late blight 

(Phytophthora infestans), powdery mildew (Oidium neolycopersici) and mosaic virus 

(Lemma, 2002) but no information was reported about their growth and yield when grown in 

soil infested with root-knot nematode (RKN) populations. Since the inception of its 

commercialization SSF have grown tomato to satisfy their livelihood needs. However, tomato 

growers have often been challenged by inconsistent tomato production and significant yield 

loss due to pests and diseases (Mandefro & Mekete, 2002). Different biotic and abiotic 

factors may be attributed for lower tomato production in Ethiopia. RKN are among the most 

damaging threats for tomato production due to their wide distribution and pathogenicity in 

tropical and sub-tropical climates coupled with their wide host range (Coyne et al., 2009). 

Despite several reports on the damage of RKN on tomato crop in Ethiopia there were no 
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management practices used by the SSF of Ethiopia. The average yield of tomato has always 

been low (8 tons/ha) compared with yield in the neighbouring country Kenya (21 ton/ha) and 

the average yields of 54, 42, 35, 20 and 35 tons/ha in America, Europe, Asia, Africa and the 

entire world (FAO, 2013) respectively.  

1.3. Tomato and Food Security 

In the 21st century, one of the most pressing issues for humanity is global food security 

(Sundström et al., 2014). That was why the first of the UN’s eight millennium development 

goals is to reduce the proportion of the world’s population that suffers from hunger by half 

between 1990 and 2015 (UN, 2015). Agricultural production is critical for achieving global 

food security (Nayyar & Dreier, 2012). More than half of the global population growth 

between 2015 and 2050 is expected to occur in Africa. Africa has the highest rate of 

population growth among major areas, growing at a pace of 2.55% annually in 2010-2015. 

Consequently, of the additional 2.4 billion people projected to be added to the global 

population between 2015 and 2050, 1.3 billion will be added in Africa. The population of 

Ethiopia is also projected to be 188 million by 2050 (UN Report, 2015), which means double 

from the current population (90million). It is clear that as the population grows, the land 

available for agricultural purposes will continue to decrease (Lemma, 2015). Boosting 

agricultural production in the face of a growing population is one of the major challenges of 

Sub-Saharan Africa (Gilbert et al., 2014). To meet the escalating demand for food owing to 

the growth of global population, a vertical increase in crop production is the only viable 

means in the decades to come. Agricultural intensification with the use of agricultural inputs 

and improved technologies such as high yielding and disease resistant crop varieties are 

highly needed (Pender et al., 2006). However, intensification of agriculture has its own 

drawbacks: the appearance of emerging diseases and the occurrence of virulent populations 

will be the most important threat of crop production (Tilman, 1999).  

In many countries, rapid urbanization is accompanied by increasing urban poverty, food 

insecurity and malnutrition (Lemma, 2015) and Ethiopia is not an exception. Improving SSF 

tomato production capacity would contribute to enhancing food security and alleviating 

poverty (Gemechis et al., 2012). Tomato production perfectly suits to urban agriculture and 

cultivation in small areas with water sources (such as gardens) and highly contributes to the 

economy of Ethiopia. The production of staple crop is small-scale in Ethiopian agriculture 

and is impacted by a number of factors, among which crop diseases are the most critical 
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(Abebe et al., 2015). Reducing the damaging effect of Meloidogyne spp. is one strategy that 

satisfies the needs of farmers, agricultural extension agents, decision makers, researchers and 

private and commercial tomato producers. Developing ecologically sustainable disease 

management strategies such as resistant cultivars will help in preserving the environment, 

avoiding toxic residues (Starr & Mercer, 2009) and further improve public health and 

livelihood through diet diversification and high financial return of tomato.  

 

1.4. Plant-Parasitic Nematodes on Tomato in Ethiopia 

In Ethiopia, only a few and sporadic surveys on plant-parasitic nematodes (PPN) have been 

conducted and the communication of findings to policy makers and stakeholders has always 

been poor (Abebe et al., 2015). The Earliest report of Meloidogyne species identification 

work was by Whitehead (1968) who was a nematologist based in East Africa Agriculture and 

Forestry Research Organization based in Kikuyu, Kenya. Survey and identification research 

conducted by O’Bannon (1975) reported nematode species belonging to the genera 

Helicotylenchus, Heterodera, Meloidogyne and Pratylenchus associated with vegetable 

crops. Out of 53 crops (including tomato) sampled, RKN were found on 40 (O’Bannon, 

1975). Following this finding, limited survey and identification effort was made and focused 

on different crops across the country (Abebe et al., 2015). The presence of RKN from 

Ethiopia mainly in vegetables growing areas has been documented (Stewart & Daganachew, 

1967; O’Bannon, 1975; Tadele & Mengistu, 2000; Mandefro & Dagne, 2000; Mekete et al., 

2003; Seid et al., 2015b). A survey was conducted to characterize the abundance and 

distribution of Meloidogyne species from different vegetable crops (tomato, pepper, onion, 

snap bean, cabbage, beetroot, carrot and potato) in Ethiopia (Mandefro & Mekete, 2002). The 

authors reported a 62% incidence of RKN on these vegetables. Pepper and tomato were 

found seriously infected with Meloidogyne species and the authors recommended an 

immediate research towards their management. More than a decade has already passed since 

these recommendations were forwarded and the productivity of tomato is still declining 

(personal communication with tomato growers and MARC-vegetable breeding unit).  

1.4.1. Meloidogyne species (Root-Knot Nematodes) 

RKN are obligate biotrophic pathogens that invade plant roots and establish prolonged and 

intimate relationships with their host (Niu et al., 2016). RKN are distributed worldwide 

(Jones et al., 2013). As of October 2016, there were 101 described species in the genus 

Meloidogyne and 22 of these were reported from Africa (Onkendi et al., 2014). Their 

vernacular name comes from the galls (root knots) induced by these nematodes on the roots 
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of their host plant (Fig 1.1). It is generally accepted that four major species, i.e., Meloidogyne 

incognita (Kofoid & White, 1919) Chitwood, 1949; M. javanica (Treub, 1885) Chitwood, 

1949; M. arenaria (Neal, 1889) Chitwood, 1949 and M. hapla (Chitwood, 1949), as well as a 

few emerging species such as M. enterolobii (Yang & Eisenback, 1983) and M. chitwoodi 

(Golden, O’Bannon Santo & Finley, 1980), cause damage on a vast majority of crops (Moens 

et al., 2009). In Africa, M. incognita, M. javanica and M. arenaria are considered the most 

dominant species, reported in 37, 36 and 26 different countries across the continent, 

respectively (De Waele & Elsen, 2007). These three species have collectively been reported 

to cause damage in many economically important crops including tomato (Onkendi et al., 

2014; Seid et al., 2015). Due to the fact that these three major species are widespread it could 

have led to bias against accurate identification of the emerging species. Several of the species 

considered as major species might have been inaccurately identified (Onkendi et al., 2014). 

The problem is even worse when one considers that the majority of these Meloidogyne 

species have been identified based solely on morphology before the advent of molecular 

tools. The occurrence of RKN species mixture is common which makes the problem even 

worse. For instance, both M. enterolobii and M. paranaensis for many years have been 

misidentified as M. incognita (Carneiro et al., 1996). It is possible that the potential impact of 

new and emerging species has been overlooked. The recent adoption of molecular diagnostic 

tools in many laboratories globally will most likely lead to an increase in the number of 

species due to the discovery of cryptic species, less misidentifications and new species 

identification (Onkendi et al., 2014). Accurate identification of Meloidogyne spp. inflicting a 

yield loss in any crop and in any given area is a prerequisite to devise a sound, sustainable 

and eco-friendly management approach. Information on the biodiversity, distribution, 

prevalence, economic importance and management of PPN, including RKN, in Ethiopia is 

limited. In Ethiopia, RKN, have largely been identified on the basis of female perennial 

pattern and second-stage juveniles (J2) morphometric and in few cases using cytological and 

biochemical methods (Mandefro & Dagne, 2000; Mekete et al., 2003). From these studies, 

M. incognita, M. ethiopica and M. javanica were reported on tomato in Ethiopia. There is 

little information available in the literature about Ethiopian RKN population identification 

using a combination of DNA-based and isozyme electrophoresis.  
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Figure 1.1. Typical damage symptoms caused by Meloidogyne spp. on roots of tomato 

(Solanum lycopersicum) A) Jittu farm-Ethiopia B) M. chitwoodi on tomato from a pot test  

1.4.2. Life Cycle of Root-Knot Nematodes 

A typical life cycle of the RKN (Meloidogyne spp.) is presented in Fig 1.2. The mature 

females lay eggs into gelatinous masses composed of a glycoprotein matrix produced by their 

rectal glands. This keeps the eggs together and protects them against environmental extremes 

and predation (Moens et al., 2009). The egg masses are usually found on the surface of galled 

roots or embedded within the gall tissue and can contain up to 1000 eggs (Jones et al., 2013). 

Within the egg, embryogenesis proceeds to the first-stage juvenile (J1), which moults to J2. 

J2 hatch from the egg and in general, hatching is dependent solely on suitable temperature 

and moisture conditions, with no stimulus from host plants being required (Karssen et al., 

2013; Moens et al., 2009; Jones et al., 2013). The emerged J2 are attracted to the roots of 

host plants by exudates emanating from the plant root and invasion of the roots takes place 

usually behind the root tip (Karssen et al., 2013). Juveniles (J2) then move through the root to 

initiate and develop a permanent feeding site, which consists of several giant cells. This 

feeding site serves as the only nutrient sink for the developing J2. The nematode growth and 

reproduction entirely depend on this established feeding site (Castagnone-Sereno et al., 

2013). Under favourable conditions, the J2 moults to the third-stage juvenile (J3) after about 
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14 days, then to the fourth-stage juvenile (J4), and finally to the adult stage (Moens et al., 

2009). The J3 and J4 do not feed. The adult females continue to feed and enlarge to become 

round to pear shaped. There is a tremendous variation exhibited in reproductive strategies of 

Meloidogyne species that ranges from amphimixis to obligatory mitotic parthenogenesis 

(Chitwood & Perry, 2009). Most species are parthenogenetic and males are only formed 

under adverse conditions. RKN have unbalanced sex ratios (Jones et al., 2013; Castagnone-

sereno et al., 2013). The life cycle of RKN takes three to six weeks to complete, depending 

on the species, the host plant and environmental conditions (Castagnone-sereno et al., 2013). 

This short life cycle enables RKN populations to survive well in the presence of a suitable 

host (Shurtleff & Averre, 2000) and their populations build up to a maximum usually as crops 

reach maturity. RKN have several generations in one cropping season (Karssen et al., 2013) 

and more generations could be produced in tropical conditions due to higher soil 

temperatures compared to temperate conditions. Many Meloidogyne species have a broad 

host range. The potential host range of Meloidogyne species encompasses from 3000 to 5500 

plant species (Trudgill & Blok, 2001; Abad et al., 2003). 

Figure 1.2.  Life cycle of RKN (Meloidogyne spp.) Diagram Courtesy of V. Brewster 

(Mitowski & Abawi, 2011)  
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1.4.3. Economic Importance of Root-Knot Nematodes 

In a recently conducted survey, researchers working on PPN ranked RKN first in the list of 

the top ten PPN based on scientific and economic importance (Jones et al., 2013). RKN 

(Meloidogyne spp.) are economically important pests of a wide range of vegetables 

throughout the world (Castagnone-Sereno, 2006). They are considered to be the most 

destructive and difficult pest to control in tropical and subtropical countries (Simpson & 

Starr, 2001). Moreover, their involvement in many disease complexes together with their 

ability to break down plant resistance made them a severe pest of vegetables (Luc et al., 

2005). Species of the RKN genus Meloidogyne are estimated to cause a global loss of US$ 

157 billion (Abad et al., 2008). With a 30-100% reported crop loss within Africa alone they 

are undermining the continent’s agriculture (Murungi et al., 2014). The RKNs alone result in 

60% yield loss of vegetable crops worldwide (Mateille et al., 2008). In Western Anatolia 

(Turkey) Meloidogyne spp. caused up to 80% yield losses in processing tomato-growing 

areas (Kaşkavalci, 2007). However, much higher percentages have been documented on 

tomato (see Chapter 2 of this thesis) in different regions, depending on species, population 

density, frequency of infestations and cultivars (Seid et al., 2015a).  

 

1.4.4. Management of Root-Knot Nematodes 

Owing to their polyphagous nature, management of RKN is a difficult task. Different RKN 

management options such as chemical, regulatory, biological, cultural, resistance and 

physical have been tried worldwide (see chapter 2). Host-plant resistance (HPR) has been 

given more attention over the other approaches as a major goal for pest management since it 

provides an effective, eco-friendly, sustainable and economical method for managing 

nematodes in both high and low value cropping systems (Starr et al, 2001). Moreover, it is a 

significant component of a solution to many nematode problems especially in tropical 

agriculture for the SSF and when used integrated with cultural management methods and 

traditionally grown crops (Luc et al., 2005). In developing countries with many SSF such as 

Ethiopia, there is a high demand to identify sources of resistance in tomato cultivars for seed 

multiplication or breeding against RKN (Cook & Starr, 2006). However, so far, no effort has 

been made to identify local sources of resistance from commercial tomato varieties and 

breeding lines against RKN. The variety Roma VFN has widely been grown in Ethiopia and 

is known to be resistant for some species of RKN. However, this variety became out of 

production due to its low agronomic qualities. Currently, in Ethiopia, several commercial 

farmers and some SSF are growing hybrid (for agronomic traits) varieties obtained from 
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various sources such as Israel, South Africa, The Netherlands, and Denmark (Gemechis et al., 

2012). However, the vast majority of SSF are also growing tomatoes from local retailers who 

retail both the hybrid and locally released varieties.  

1.5. Objectives 

The overall objectives of this research were to identify RKN problems from major tomato 

growing areas in Ethiopia and to develop management strategies that are easily adopted by 

resource poor farmers of Ethiopia. These objectives were further translated into the following 

specific objectives: 

i. To characterize the biodiversity of Meloidogyne species present in major tomato 

growing areas of Ethiopia with DNA-based and isozyme techniques. 

ii. To screen locally available tomato cultivars and breeding lines for resistance against 

local aggressive Meloidogyne species. 

iii.  To check the heat stability of potentially resistant tomato breeding lines under elevated 

soil temperatures.  

iv.  To investigate the reaction of tolerant tomato cultivars and breeding lines on 

Meloidogyne spp. infested fields.  

v. To determine damage threshold and tolerance limit of selected tomato genotypes against 

two M. incognita populations.  

vi. To study the relationship between Pi and Pf of two M. incognita populations on selected 

tomato cultivars and breeding line.  

 

1.6. Thesis Outline 

This thesis contains eight chapters.  

Chapter 1. Gives a general introduction of this research work. It introduces the context and 

significance of the study. It answers the question why tomato and RKN were selected for 

investigation in Ethiopia.  

Chapter 2. Tomato (Solanum lycopersicum L.) and root-knot nematodes (Meloidogyne 

spp.)- a century-old battle. This chapter describes a century-old battle between tomato and 

RKN. It highlights the history of the battle and the review of works done on the topic in this 

time span. It focuses more on RKN yield loss potential in view of tomato cultivars with Mi 

gene.  

Chapter 3. “Biodiversity of root-knot nematodes (Meloidogyne spp.) from major tomato 

growing areas of Ethiopia” presents the biodiversity of RKN on major tomato growing 

areas mainly Rift Valley, Upper Awash and East Hararghe of Ethiopia. Meloidogyne species 
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were identified using DNA-based and isozyme techniques. It documents the distribution of 

RKN across these sampled areas in Ethiopia.  

Chapter 4. “Resistance screening of breeding lines and commercial tomato cultivars for 

Meloidogyne incognita and M. javanica populations from Ethiopia” presents the 

aggressiveness of M. incognita and M. javanica populations collected from major tomato-

growing areas of Ethiopia. It shows the results of resistance screening of 33 tomato cultivars 

and breeding lines against four local aggressive populations (two from each) of M. incognita 

and M. javanica in growth chamber conditions. The experiment was completed with the 

investigation of resistance mechanisms of selected tomato cultivars or breeding lines based 

on the screening results against the populations tested.  

Chapter 5. “Heat stability of resistance in selected tomato breeding lines against 

Meloidogyne incognita and M. javanica populations under elevated soil temperatures” 

demonstrates the results of the experiments on the heat stability test of selected tomato 

cultivars in laboratory conditions (in a water bath) with different soil temperatures (28, 32 

and 36°C) and exposure time (24 hr and 48 hr).  

Chapter 6. “Tolerance and resistance of selected breeding lines and commercial tomato 

cultivars in Meloidogyne spp. infested fields in Eastern Ethiopia” shows the tolerance of 

selected tomato cultivars and breeding lines after growing them in two RKN infested hotspot 

field conditions in Ethiopia.  

Chapter 7. “Damage potential of Meloidogyne incognita populations on selected tomato 

genotypes in Ethiopia” presents the tolerance limit and minimum yield of selected tomato 

cultivars and a breeding line and the damage threshold on ‘Babile’ and ‘Jittu’ of M. incognita 

populations performed in bigger pot experiments on the open field at Tony farm, Dire Dawa, 

Ethiopia. 

Chapter 8. Presents the general discussion and future prospects of this thesis. It integrates 

the main findings of all the scientific chapters (3-7). It compares these findings in view of 

other related works performed elsewhere, and will point out some future prospects. It 

highlights the new findings of this study.  
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Abstract 

The encounter between Meloidogyne species and tomato is many centuries old. Meloidogyne 

species are known to cause high levels of economic loss worldwide in a multitude of 

agricultural crops, including tomato. This review was initiated to provide an overview of the 

damage potential of Meloidogyne spp. on cultivars of tomato (Solanum lycopersicum), and to 

compile the different studies done on the management of Meloidogyne spp. on tomato with 

particular emphasis on the Mi resistance gene. Numerous studies have been conducted to 

assess the damage potential of RKN on various tomato cultivars; its yield loss potential 

ranges from 25 to 100%. A range of management options from using synthetic nematicides to 

soilless cultures have been tried and are available for managing Meloidogyne spp. Resistant 

commercial cultivars and rootstocks carrying the Mi gene have been used successfully to 

manage Meloidogyne incognita, M. javanica and M. arenaria. However, virulent populations 

have been detected. Relying on a single RKN management strategy is an out-dated concept 

and different management options should be used in an integrated management context by 

considering the whole system of disease management. In future management of Meloidogyne 

species, care must be taken in directly extrapolating the tolerance limit determined elsewhere, 

since it is affected by many factors such as the type of initial inoculum and physiological 

races of Meloidogyne spp., environmental conditions, types of cultivars and experimental 

approaches used. 

Keywords – damage potential, durability, management, Mi gene, nematode control, pest 

management. 
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2.1. Introduction 

Tomato is a popular vegetable crop worldwide. Africa and Asia account for more than 80% 

of the global tomato production area, with about 70% of world output (FAO, 2012). It is 

ranked first in the world for vegetables and accounts for 14% of world vegetable production 

(US$ 1.6 billion market value) (FAO, 2010). Apart from being an important food crop, 

tomato is an acknowledged model species for evolutionary studies and research on fruit 

development and metabolite accumulation (Guillaume & Mathilde, 2012). However, there 

are many pests and diseases damaging both the quality and quantity of tomato production. 

PPN are one of them. They represent an important constraint on the delivery of global food 

security. Damage caused by PPN has been estimated at US$ 80 billion per year (Nicol et al., 

2011). This is likely to be a significant underestimate of the actual figure as many growers in 

developing nations are unaware of the existence of PPN (Jones et al., 2013). One of the major 

obstacles to the production of adequate supplies of food in many developing nations is 

damage caused by Meloidogyne spp. (Sasser, 1980).  

It is generally documented that the four major species (M. incognita, M. javanica, M. 

arenaria and M. hapla) as well as few emerging species such as M. enterolobii and M. 

chitwoodi, cause damage on a vast majority of crops (Moens et al., 2009). Meloidogyne 

species cause high levels of economic loss in a multitude of agricultural crops worldwide 

with dramatic yield losses being reported on vegetables in tropical and sub-tropical 

agriculture (Sikora & Fernandez, 2005). They are impacting both the quality and quantity of 

marketable yields. Next to direct losses due to nematode attacks, many indirect losses 

through loss of irrigation water and fertilisers can occur since damaged roots do not utilise 

water and fertiliser as efficiently as healthy roots (Mai, 1985). In addition, RKN interact with 

other plant pathogens, resulting in increased damage caused by other diseases, affecting 

world food supplies (Sasser, 1980). Numerous studies have been conducted to determine the 

damage potential of Meloidogyne species on several vegetable crops including tomato, and 

different management strategies have been proposed. With the phase-out of methyl bromide, 

in particular, the problem of Meloidogyne spp. on tomato gained new interest. However, 

these studies were not compiled and presented in a way to help different stakeholders. Thus, 

the objectives of this review were: i) to provide an overview of the damage potential of 

Meloidogyne spp. on tomato cultivars; and ii) to compile different studies on the management 

of Meloidogyne spp. on tomato with particular emphasis on the Mi-resistant gene. 
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2.2. Root-Knot Nematodes on Tomato 

Tomato is often referred to as a universal host for Meloidogyne species. However, from the 

101 described species in the genus, tomato is a non-host for several of them. Most likely the 

term ‘universal host’ comes from the fact that the economically most important species 

reproduce well on tomato. This was also shown in the North Carolina Differential Host 

Range test. Reports on Meloidogyne spp. infecting tomato plants date back to the end of the 

19th century. In the botanical garden of Pavia (Italy), tomato plants showed severe galling on 

the root system and after investigation this was ascribed to Heterodera radicicola (Cavara, 

1895), a former name for RKN. During the same period, similar symptoms were observed on 

tomatoes in a vegetable garden in the Sahara (Cavara, 1895). In 1889, ‘exceptionally knotty’ 

tomato roots were found near an agricultural experiment station in Auburn, Alabama (USA). 

Similar symptoms were observed on the roots of various plants. In a bulletin following these 

observations, Heterodera radicicola was identified as being the cause of the symptoms 

(Atkinson, 1889). Since then, many reports of RKN on tomato have become available and at 

present we know that several species can cause severe damage to the crop. 

2.3. Damage and Yield Losses of Tomato due to Meloidogyne Species 

RKN can cause severe damage to the roots of tomato. Symptoms are more prevalent with 

tropical species compared to temperate RKN (Fig 1.1). Tomato cultivars have different 

degrees of susceptibility towards different Meloidogyne spp. Damage and yield loss studies 

conducted so far have shown a considerable difference in degree of susceptibility among 

tomato cultivars. Moreover, different populations of the same species of Meloidogyne even 

exhibit different degrees of pathogenicity on a specific tomato cultivar. A tomato cultivar that 

is absolutely susceptible to one population may be moderately resistant to another population 

of the same species. Several studies report the damage potential of different Meloidogyne 

spp. on different tomato cultivars under pot, microplot and field experiment conditions 

throughout the world. Experiments were done in different conditions and localities with 

different experimental approaches, making it difficult to extrapolate the results. Many factors 

affect the results. These include: i) differences in laboratory extraction techniques and 

efficiency; ii) variations in soil type and environmental conditions that may affect nematode 

population development; iii) differing levels of resistance or tolerance among crops or crop 

varieties to be tested and cropping systems; iv) nematode species and population levels or 

inoculum densities; v) inoculum types and inoculation techniques used and vi) RKN species 
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mixtures (Greco & Di Vito, 2009; Nyczepir & Thomas, 2009). A frequently cited average 

yield loss due to Meloidogyne spp. is 10% (Koenning et al., 1999). Nevertheless, much 

higher percentages have been documented (Table 2.1) in different regions, depending on 

population level, genus, frequency of infestations and crop species. Yield losses of 22-30% 

have been reported on tomato due to M. incognita (Sasser & Carter, 1985). In Western 

Anatolia (Turkey) Meloidogyne spp. caused up to 80% yield losses in processing tomato-

growing areas (Kaskavalci, 2007). In north-eastern Spain, an initial population density in soil 

of 4750 juveniles 250 cm−3 of M. javanica caused a 61% yield reduction in tomato cropped 

in summer plastic houses (Verdejo-Lucas et al., 1994). 

2.4. Management Options 

Control refers to specific acts designed to reduce the number of nematodes, while 

management has the objective of minimising economic losses and considers the whole 

system of care and treatment of crop pests (Hooper & Evans, 1993). Different management 

options that are commonly used for PPN are applicable for Meloidogyne spp. on tomato as 

presented below. 

2.4.1. Prevention 

2.4.1.1. Quarantine 

Quarantine strategies are considered a preventive and not a curative approach in stopping the 

introduction and/or increased dissemination of economically important nematodes into a new 

site (Nyczepir & Thomas, 2009). With the aim of reducing the adverse impact of 

Meloidogyne spp. on agricultural crops, phytosanitary measures have major importance 

especially for resource poor farmers (Coyne et al., 2009). To avoid introduction of 

Meloidogyne spp. into a field, awareness and regulation are required (Wesemael et al., 2011). 

New nematode species to a country are often first intercepted by quarantine and inspection 

services, which assist in preventing the unintended spread of species to new areas (Coyne et 

al., 2009). The four major RKN species, M. arenaria, M. incognita, M. javanica and M. 

hapla, are generally not regulated because these species of economic concern are distributed 

globally. The temperate RKN, M. chitwoodi and M. fallax Karssen, 1996, are quarantine 

organisms in the EU (EC Directive 2000/29/EC) and the (sub) tropical M. enterolobii is 

placed on the EPPO A2 list as recommended for regulation as a quarantine pest (EPPO, 

2014). The latter is known to be highly aggressive and able to break the Mi resistance in 
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tomato and N and Tabasco resistance in pepper (Fargette et al., 1994; Brito et al., 2007; 

Kiewnick et al., 2009). 

2.4.1.2. Sanitation 

Sanitation is important to prevent new infestations (introduction into a production site) and to 

avoid secondary infestations (spreading within the production site). Human activities, such as 

the transport of infested planting material, soil, plant debris and irrigation water, can provide 

transfer channels between contaminated and healthy areas and easily spread Meloidogyne 

spp. (Collange et al., 2011). For tomato production in protected cultures and in the open field, 

introduction with planting material poses a risk. Transplants are mostly provided in growth 

media that are free of pests and diseases, and should be obtained from reliable nurseries and, 

if possible, certified nematode-free plants should be used. At the farm level, cleaning all 

agricultural machinery and tools can avoid transporting PPN with the soil. Irrigation water 

can also be a source of nematode infection or a means to spread it within the field (Hugo & 

Malan, 2010). Due to environmental concerns and reduced water availability, closed systems 

(= recycling of irrigation water) are preferable. Proper sanitation of this water is of paramount 

importance to avoid the spread of pests and diseases. Moens & Hendrickx (1990) showed that 

M. incognita present in drainage water could re-infect tomato plants. Potential and available 

control measures for PPN in irrigation water are chlorination, electrical discharge, filtration, 

heat treatment, hydrogen peroxide, ozonation, sedimentation and flocculation and UV 

radiation. However, each treatment comes with advantages and disadvantages (Hugo & 

Malan, 2010). 
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2.4.2. Physical Soil Treatments 

2.4.2.1. Steam heat and solarisation 

The effectiveness of soil solarisation and steam heat in managing Meloidogyne spp. under 

field and glasshouse conditions is dependent on soil temperature (Nyczepir & Thomas, 2009). 

A soil temperature considered sufficient to control PPN is 45°C (Sikora & Fernandez, 2005). 

Lethal effects on eggs and J2 of M. incognita have been observed below 45°C when 

nematodes were exposed to sub-lethal temperatures for a sufficient period of time (Wang & 

McSorley, 2008). In Florida, solarisation of a fine sandy soil for 3 months (July-September) 

suppressed M. incognita populations in tomato fields, resulting in increased yields (Overman 

& Jones, 1986). However, solarisation is more suited for annual crops, nurseries and raised 

beds (McGovern et al., 2002). Disadvantages limiting the use of solarisation for the control 

of Meloidogyne spp. include the non-specificity (McSorley, 1998), the duration of time 

needed, decreasing efficacy with increasing soil depth below 5 cm and the size of the area to 

be treated (Nyczepir & Thomas, 2009). 

The extensive use of steam heat in glasshouse conditions as a means to manage PPN has been 

limited in recent years, due to the high cost of heating fuel (Viaene et al., 2013), non-specific 

effects on non-target (beneficial) microorganisms, possible emission of phytotoxic chemicals 

into treated soil and change in soil pH (Nyczepir & Thomas, 2009). 

2.4.2.2. Flooding 

Flooding and bare fallow treatments lowered soil populations of the four major Meloidogyne 

species. Rhoades (1982) reported that flooding reduced the density of M. incognita but the 

optimal duration of flooding depended on air temperature. Alternating drying cycles and 

flooding appeared to be more effective than prolonged flooding (Noling & Becker, 1994). 

However, a 3-week flooding period followed by a 5-week drying and a second 3-week 

flooding period in winter was not successful to control RKN on tomato in Florida (Nelson et 

al., 2002). Time duration and salinity problems limit the use of flooding in tomato 

production.
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2.4.3. Rotation 

In general, a rotation of a minimum 3 years is recommended for tomato to reduce pests and 

diseases. Due to the wide host range of several important RKN species, rotation options are 

limited. Rotation with corn and velvet bean reduced M. incognita population levels and 

increased tomato yield in a field in Puerto Rico (Acosta et al., 1991). Rotation with Mi gene 

cultivars does not imply changes in farming systems or market supply (Ornat & Sorribas, 

2008) and can be a solution for intensive tomato production. 

2.4.4. Organic Amendments 

Organic amendments cover several sources and products, including green manures from 

cover crops or crop residues, industrial or town waste, animal manures, composted or not 

composted. They are incorporated into the soil or applied on top of the soil as mulches. In 

general, soil amendments improve the nutrient and water holding capacity of the soil, 

improve soil fertility and structure, reduce erosion and release specific compounds that may 

be nematicidal and stimulate microbial activity in the soil (Akhtar & Malik, 2000; Oka, 2010; 

Thoden et al., 2011). The results of studies on organic amendments to control RKN are not 

straightforward. Biofumigation with Brassica juncea and Eruca sativa showed promising 

results both in increased yield of tomato and reduction of M. incognita population in Italy 

(Colombo et al., 2008). By contrast, Noling & Gilreath (1999) found no reduced levels of M. 

incognita in amended plots compared to an untreated control, and lower tomato yields than in 

fumigated plots. There are studies that show increased RKN populations after application of 

the amendment (Thoden et al., 2011). This gave rise to the hypothesis that interactions 

between several factors may contribute to the results, including the dosage of organic 

amendment and the number of application years, the chemical characteristics of different 

products, such as release of nematotoxic compounds, physiological stages of the incorporated 

plant tissues, compost maturity and decomposition stage of organic matter, C/N ratios of the 

organic amendment and soil infestation level, and nematode community structures. 

2.4.5. Chemical Control 

Historically, chemical control has been the most important strategy to reduce Meloidogyne 

populations (Nyczepir & Thomas, 2009). According to Talavera et al. (2012), 78.3% of the 

farm advisors in south-eastern Spain mentioned chemical soil fumigation as the most 

commonly used management method for RKN, followed by non-fumigant nematicides 

(59.8%). A combination of nematicides with soil solarisation and grafting on resistant 
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rootstocks were considered to be the most effective methods of RKN management. 

Increasing environmental and health concerns resulted in the ban of methyl bromide, and 

chemical nematicides are being discouraged specifically as a sole management method. 

However, new generations of less harmful nematicides are becoming available as a result of 

renewed interest by the crop protection industry (Desaeger, 2014). 

2.4.6. Biological Control 

Natural enemies are promising for RKN control. Several fungi and bacteria have been 

identified and classified based on their nematophagous and antagonistic characteristics, 

respectively. Nematophagous fungi include trappers, endoparasites, egg parasites and toxin 

producers. The egg-parasitising Purpureocillium lilacinum was reported to reduce M. 

javanica and M. incognita on tomato crops (Goswami et al., 2006; Kumar et al., 2009) but 

results have been difficult to reproduce (Hallmann et al., 2009). A single pre-plant 

application of the fungus P. lilacinum strain 251 reduced root galling of M. incognita on 

tomato by 66% and egg mass formation by 74%, and also for M. hapla sufficient control was 

achieved on tomato (Kiewnick & Sikora, 2006). This strain of P. lilacinum has been 

commercialised in several countries. A one-off application of Pochonia chlamydosporia was 

able to slow down the build-up of M. javanica for at least 5-7 months in tomato and lettuce 

rotations in glasshouses (Van Damme et al., 2005). However, Tzortzakakis & Petsas (2003) 

reported that P. chlamydosporia did not show any effect on M. javanica on tomato in 

glasshouse studies in Greece, and also in a double cropping system of lettuce and tomato in 

Spain M. javanica could not be controlled (Verdejo-Lucas et al., 2003). Aspergillus spp. and 

Trichoderma spp. have shown potential to reduce populations of M. incognita on tomato 

(Goswami & Mittal, 2004; Goswami & Tiwara, 2007; Affokpon et al., 2011a). When 

inoculation of arbuscular mycorrhizal fungi (AMF) was done 3 weeks before M. incognita 

inoculation, tomato plants were protected against M. incognita and its reproduction reduced 

(Talavera et al., 2001). In a split-root experiment, Dababat & Sikora (2007) showed that 

Fusarium oxysporum Fo162 induced systemic resistance in tomato against M. incognita. In 

Benin (West Africa), a field application of AMF on a Meloidogyne-infested field increased 

tomato yields by 26% compared to the non-AMF control treatment (Affokpon et al., 2011b). 

Important for control with AMF is successful root colonisation before nematode attack 

(Talavera et al., 2001; Hallmann et al., 2009). 

The obligate endoparasitic bacteria Pasteuria penetrans effectively parasitised M. incognita 
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in rotations that included tomato, eggplant and common beans or cabbage (Amer-Zareen et 

al., 2004). In M. incognita infested microplot, the application of 5 × 10
10 spores m

-2 increased

tomato yield by 46% (Talavera et al., 2002). The efficacy of P. penetrans depends on soil 

conditions, temperature and nematode age (Talavera & Mizukubo, 2003). Moreover, its host 

specificity requires mixtures to enable proper management of mixed Meloidogyne infestation 

(Hallmann et al., 2009). Streptomyces spp. are important producers of antibiotics. 

Avermectins, which are produced by them, were found to have strong nematicidal effects 

(Hallmann et al., 2009). Bélair et al. (2011) showed in a glasshouse bioassay that a combined 

soil treatment with Streptomyces and chitin reduced M. hapla populations and galls on 

tomato. However, the high cost of the soil treatments and variability in the results prevent the 

use as an alternative control method. Seed treatments proved to be successful to manage M. 

incognita, M. arenaria and M. javanica on tomato (Cabreira, et al., 2009) and might be more 

promising compared to soil treatments. However, biological control agents alone rarely 

provide adequate management and should be integrated with other management methods 

such as resistant cultivars, crop rotations, trap crops or antagonistic plants, either to promote 

the establishment of biological control agents or to reduce nematode populations in the soil 

(Viaene et al., 2013).  

2.4.7. Soilless Culture Systems 

Soilless culture is a good alternative to soil-based culture particularly in glasshouse vegetable 

production. The use of soilless culture systems as a management strategy for PPN has long 

been tried. It is widely practised because it is more practical and cheaper than repeated soil 

fumigation (Hochmuth & Hochmuth, 2012). However, the development from growing plants 

in field soil to soilless culture systems has not resulted in the eradication of problems caused 

by PPN (Hallmann et al., 2005; Ornat & Sorribas, 2008). Meloidogyne incognita and M. 

arenaria were found on roses grown in soilless culture in Sicily (D’Errico & Ingenito, 2003). 

Meloidogyne hapla was found in rock wool and coconut-peat cultures of roses in Germany 

(Hallmann et al., 2004; Ornat & Sorribas, 2008). Almost all commonly used substrates are 

suitable for nematode infestation (Stapel & Amsing, 2004), and the most common sources of 

nematode infestation are infested planting material and irrigation water (Hallmann et al., 

2005). Control of PPN in soilless culture systems is extremely difficult. Nevertheless, heat 

treatment of circulation water (Evans, 1991; Runia & Amsing, 2001a, b), ultra violet 

radiation and filtration (Moens & Hendrickx, 1989; Amsing & Runia, 1995), resistance, plant 
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growth management, avoidance of nematode infestation, routine monitoring of planting 

material and recirculation water, and the use of certified planting material can substantially 

reduce nematode problems (Hallmann et al., 2005). In organic farming, hydroponics and the 

use of inorganic growing media are not allowed. 

2.4.8. Resistant Cultivars 

Nematologists use the term resistance and tolerance differently than other plant pathologists. 

Nematologists assess the resistance of a cultivar by its effect on nematode multiplications 

whereas other pathologists use disease symptoms to determine resistance (Trudgill, 1986; 

Starr & Mercer, 2009). In other branches of plant pathology, resistance is defined as the 

ability of a host plant restricting or hindering pathogen invasion, development, or 

multiplication while in nematology resistance does not imply non-invasion (Schafer, 1971). 

A highly resistant plant supports little or no nematode reproduction, whereas a susceptible 

plant supports abundant reproduction. A plant that supports an intermediate level of 

reproduction is considered partially or moderately resistant. Tolerance is defined as the 

ability of a host plant to survive nematode attack and gives satisfactory yields at a level of 

infection that causes economic loss to other varieties of the same host species (Robinson, 

1969). Tolerance is measured by the growth or yield parameters after infection (Starr & 

Mercer, 2009).  

Resistant cultivars are an economical and environmentally safe method for controlling 

Meloidogyne species. They are cultivated with a dual purpose; to reduce nematode population 

levels and to avoid crop damage by nematodes. Therefore, resistant cultivars also need to be 

tolerant to Meloidogyne species. It is particularly important for organic farming or integrated 

production since these systems do not allow, or they restrict, the use of chemical control 

(Ornat & Sorribas, 2008). Resistant cultivars do not require significant changes in farming 

operations or in market supply (Ornat & Sorribas, 2008). 

Resistance against Meloidogyne spp. has been reported in many agricultural crops (Cook & 

Starr, 2006; Starr & Mercer, 2009) but is not often used (Cook, 2004; Wesemael et al., 2011). 

Tomato is one of the few crops in which Meloidogyne resistance has been widely used, and 

commercial resistant cultivars and rootstocks are available for tomato (Ornat & Sorribas, 

2008). Resistance against M. incognita, M. javanica and M. arenaria has been developed in 

widely used tomato cultivars bearing the Mi gene (Ornat et al., 2001). Fruit yields of the 

susceptible tomato cv. Blitz were higher when grafted on cultivars Beaufort and Hypeel45 
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tomato rootstocks carrying the Mi gene and inoculated with different populations of M. 

incognita (Lopez-Perez et al., 2006). Nematode-resistant tomato rootstocks can be used for 

grafting desirable tomato scions. However, expression of resistance is affected by different 

factors such as soil temperature, species and populations of Meloidogyne, Mi dosage and 

tomato genetic background (Ornat & Sorribas, 2008). Thus, tomato cultivars should be 

carefully chosen, particularly when they are followed by nematode-susceptible crop (Lopez-

Perez et al., 2006). The use of the Mi gene and its limitations are discussed below. 

2.4.9. Genetics-Based Management 

2.4.9.1. Brief history of Mi gene from where to where? 

Resistance in tomato to RKN was first observed in the wild species Lycopersicon (the genus 

Lycopersicon is now a synonym of Solanum) peruvianum Mill. P.I.128657 by Bailey (1941). 

It was later introgressed into the cultivated S. lycopersicum (Smith, 1944) and has proved 

useful in the management of M. arenaria, M. incognita and M. javanica (Roberts, 1992), the 

aphid (Macrosiphum euphorbiae) (Rossi et al., 1998) and Bemisia tabaci biotypes Q 

(Nombela et al., 2001) and B (Jiang et al., 2001). Its resistance against M. incognita gave it 

its name-Mi gene (Williamson, 1998). Mi cultivars of tomato were introduced in the 1980s 

and have gained importance ever since. In California, USA, the majority of field-grown 

processing tomatoes have the Mi gene (Cook, 2004; Williamson and Roberts, 2009). 

2.4.9.2. Structure and mechanism of action of the Mi gene 

Although the exact numbers of responsible genes are unknown (Sidhu & Webster, 1975; 

Roberts et al., 1990), the resistance in tomato cultivars against Meloidogyne species is 

believed to be controlled by a single dominant gene (Gilbert & McGuire, 1956; Roberts & 

Thomason, 1989; Messeguer et al., 1991). The Mi gene was mapped to the short arm of 

tomato chromosome 6 near the centromere (Kaloshian et al., 1998). It belongs to the NBS-

LRR group of genes, which are characteristic of a family of plant proteins, including several 

that are required for resistance against bacteria, fungi and viruses (Milligan et al., 1998). Two 

homologues of this gene, Mi-1.1 and Mi-1.2, conferred resistance in an experimental assay 

(Milligan et al., 1998). The functional Mi-1.2 gene is referred to as ‘Mi’. Mi-mediated 

resistance triggers a hypersensitive reaction (Dropkin, 1969a) that involves cellular 

disorganisation, localised host-cell necrosis and restricted nematode development at the 

infection site near the vascular bundle. The tomato Mi resistance gene confers resistance, but 

not immunity, to M. arenaria, M. incognita and M. javanica (Roberts & Thomason, 1989), 
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since a few juveniles are able to infect roots, but they develop slowly, resulting in a 

reproduction rate smaller than on susceptible cultivars (Talavera et al., 2009). The same 

phenomenon was reported on alfalfa (Griffin & Elgin, 1977) and soybean (Pedrosa et al., 

1996). More detailed information about the structure and function of the Mi gene is given by 

Williamson (1998) and Williamson & Roberts (2009).  

2.4.9.3. Effectiveness and profitability of the Mi gene 

The Mi gene has been incorporated into many commercially available tomato cultivars 

(Devran et al., 2010) and is used against RKN in home gardens, tomatoes for the fresh 

market and processing tomato cultivars (Roberts & Thomason, 1989). For almost 70 years it 

has been the only source of resistance in all commercial tomato cultivars and it has been 

effective for RKN management, especially when used in combination with other 

management techniques such as rotation and sanitation (Roberts, 1992). In successive field 

trials, the resistant cultivars PSR 8991994 and Sanibel greatly suppressed root galling and M. 

javanica populations; fruit weight, number of fruit and weight per fruit as compared with the 

susceptible cv. Colonial increased significantly (Rich & Olson, 1999). Cultivars Monika (Mi-

resistant) and Durinta (susceptible) were cropped for three consecutive seasons in non-

fumigated soil and soil fumigated with methyl bromide at 75 g m−2 and at a cost of € 2.44 

m−2 to determine the effectiveness and profitability of the Mi gene. Growth of cv. Monika 

increased profits by € 30 000 ha−1 compared with cv. Durinta in non-fumigated soil 

(Sorribas et al., 2005a). The resistant cv. Monika increased yield with 5.6, 4.4 and 4.7 kg 

m−2 after one, two and three consecutive crops, respectively, compared with the susceptible 

cv. Durinta in nematode infested soil. The use of tomatoes with the Mi resistance gene was 

economically justified based on its cost efficacy (Sorribas et al., 2005b).  

A cropping cycle with Mi tomato genotypes reduced initial population density for the next 

crop, and the effect was similar to the use of nematicides on a susceptible crop (Tzortzakakis 

et al., 2000; Talavera et al., 2009). Maleita et al. (2011) reported that cv. Rapit can be used to 

control the three most common Meloidogyne spp. and inhibit the increase of M. hispanica 

populations. Four crop rotations including the Mi- resistant tomato cv. Monika and the 

susceptible cv. Durinta were assessed for three consecutive cropping seasons in three 

unheated plastic houses located in different parts of Spain. The Mi-resistant cv. Monika 

suppressed M. javanica, M. arenaria and M. incognita populations by more than 90% 



2 Tomato and RKN- A century Old Battle   

 32 

compared with the susceptible cv. Durinta. Substantial yield increase (+2.6 kg m−2 in the 

rotation including at least one resistant tomato cultivar and +6.1 kg m−2 when the resistant 

cultivar was cropped for 2 consecutive years) was only achieved when initial nematode 

populations were high and with suitable agroclimatic conditions for the resistant tomato 

cultivar (Talavera et al., 2009). After growing a tomato cultivar with Mi in M. javanica-

infested fields, yield losses of the succeeding cucurbit crop were significantly reduced (Ornat 

et al., 1997) and yield was similar to two treatments with fenamiphos on susceptible tomato 

(Tzortzakakis et al., 2000).  

2.4.9.4. Limitations of the Mi gene 

Despite its effectiveness and profitability, the resistance conferred by the Mi gene has some 

critical limitations. Planting a resistant crop for several consecutive years can increase the 

risk of selection of virulent nematode populations. This has been reported for the Mi gene in 

Morocco after 3-8 years (Eddaoudi et al., 1997), in Florida, USA, after five consecutive 

resistant tomato crops (Noling, 2000), and in Spain after three cropping cycles of resistant 

tomato rootstocks (Verdejo-Lucas et al., 2009). Meher et al. (2009) showed that continuous 

growing of 13 resistant tomato cultivars during 10 years resulted in a 6.6% higher infection 

by M. incognita compared with a susceptible control. The presence of naturally occurring 

resistance-breaking populations has also been reported (Roberts, 1992; Ornat et al., 2001; 

Maleita et al., 2011). In Spain, 48% of 29 field populations of Meloidogyne spp. were found 

virulent against the Mi gene (Verdejo- Lucas et al., 2012). It was unclear if the presence of 

virulent populations was due to selection pressure by repeated cultivation of resistant tomato 

cultivars. Virulent Meloidogyne spp. have been found in most tomato-growing areas 

(Castagnone-Sereno, 2006). Resistance mediated by Mi is broad with its effect on the tropical 

species M. arenaria, M. incognita and M. javanica. However, it is not effective against the 

aggressive M. enterolobii (Kiewnick et al., 2009) and the temperate M. hapla and M. 

chitwoodi (Brown et al., 1997; Liu and Williamson, 2006), all species that are known to 

infect tomato. Another constraint for the Mi gene is the irreversible breakage of resistance at 

high soil temperatures (>28°C) (Dropkin, 1969b; Haroon et al., 1993; Talavera et al., 2009). 

Mutation(s) in the Mi gene or a gene required in the Mi-mediated resistance pathway (Lopez-

Perez et al., 2006) and failed transcription due to DNA methylation (Liharska, 1998) can 

hamper the efficacy. The expression of the Mi gene is also affected by gene dosage, 

depending on whether the resistant cultivars are heterozygous (Mimi) or homozygous (MiMi) 
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as shown by Tzortzakakis et al. (1998). These authors found much greater reproduction of 

partially virulent populations of M. javanica on heterozygous compared to homozygous 

tomato genotypes. Despite these constraints Mi-resistant cultivars remain important for 

management of Meloidogyne spp. on tomato. 

2.4.10. Integrated Nematode Management 

The primary aims of integrated nematode management are to improve crop yield using a 

combination of management options, thereby targeting key nematode species such as 

Meloidogyne species (Nyczepir & Thomas, 2009) and consideration of the ecosystem 

(Barzman et al., 2015). The decision as to which management options will be part of the 

integrated nematode management strategy is governed by many factors such as Meloidogyne 

species present, perennial vs annual crops, economics, technology and societal considerations 

(Nyczepir & Thomas, 2009). To develop an effective integrated nematode management 

strategy, knowledge is needed on plant damage or crop loss caused by resident Meloidogyne 

species on the crop(s) that will be produced, population densities and population dynamics of 

RKN populations with and without the use of control measures, and the economic 

consequences associated with different control methods (McSorley & Phillips, 1993). In 

integrated nematode management strategies there are interactions within a soil system, 

among management options, and among microorganisms. According to Collange et al. 

(2011), there are at least four main processes for controlling Meloidogyne species using an 

integrated approach: killing nematodes in the soil with thermal or chemical agents, breaking 

the nematode biological cycle to limit or delay reproduction sequences, enhancing the 

competitions from other microorganisms in the soil to reduce nematode populations by 

predation, trophic competition, or parasitism, and limiting dissemination from a contaminated 

to an uncontaminated area. 

2.5. Future Considerations 

Given the withdrawal of effective nematicides, alternative management strategies for 

Meloidogyne spp. in tomato production are needed. Prevention, physical management 

methods, organic amendments, biological control, resistant cultivars and an integrated 

nematode management have proved to be effective but have their limitations. Innovations are 

limited and take time to be accepted and implemented. The most promising results have been 

achieved with the successful implementation of the Mi gene in commercial cultivars. In total, 

nine resistance genes (Mi 1-9) are now known in tomato. In six of them heat stability was 
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reported (Ammiraju et al., 2003; Jablonska et al., 2007; Wu et al., 2009; Wang et al., 2013) 

but these genes are not yet cloned or available in commercial cultivars. Pyramiding genes 

might be the key to overcome the problem of heat stability successfully. Techniques to cool 

soil temperature to below the critical 28°C through daily watering and the use of white plastic 

mulch (reflects the incoming solar radiation) until the canopy covers the soil proved to be 

successful (Rich & Olson, 1999) but seem impractical. 

The development of rootstocks containing a heat-stable gene should be a priority in order to 

control Meloidogyne spp. in tomatoes grown at high soil temperatures. The Mi resistance 

gene should also be used in an integrated management context to preserve its durability and 

prevent the selection of virulent populations of Meloidogyne due to variability in isolate 

reproduction, resistant genotypes, and environmental conditions. The use of tomato 

genotypes with the Mi gene can be optimised in a rotation sequence of a cropping system. 

It is advisable to evaluate the pathogenicity of local Meloidogyne populations associated with 

different environmental characteristics before growing the Mi-resistant tomato. Farmers can 

grow a few tomato plants in soil collected from their field to assess the presence of 

Meloidogyne and its aggressiveness under local circumstances. Response to temperature 

regimes or other abiotic factors, and system compatibility, including undesirable associations 

with other pests, diseases or agronomic traits, should also be assessed. The damage potential 

of RKN on tomato crops depends on many factors, such as initial population density, 

aggressiveness, environmental conditions, cultivar and experimental approach. Thus, the 

tolerance limit should be determined locally and care must be taken in extrapolating the 

tolerance limit determined elsewhere. An estimate of the tolerance level can be made by 

diluting infested soil with sterilised soil and growing tomato plants in a series of nematode 

densities. However, more precise evaluation will require the aid of a specialist and 

specialised equipment. All methods of control likely to be used in developing countries 

should be adaptable to the small-scale farmer with minimum financial resources. Awareness 

and support are necessary to allow sustainable tomato production both in intensive as 

subsistence agriculture. 
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Abstract 

RKN are among the biotic factors that limit tomato production worldwide. The objectives of 

this study were to assess the distribution and identify RKN (Meloidogyne spp.) and 

associated problems. A total of 212-rhizosphere soil and 123 root samples were sampled 

from 40 localities in major tomato growing areas of Ethiopia during 2012/13 growing season. 

A total of 646 respondents participated in the questionnaire survey to assess knowledge and 

practice of farmers and factors associated with RKN damage on tomato. Out of the 212 

composite soil samples collected, 100 samples (47.2%) were found infested by various 

Meloidogyne species eight weeks after the start of the bioassay test. Out of the 123 root 

samples collected, 80 of them (65%) had root galls. The highest prevalence (100%) of RKN 

was found on samples collected from Adami Tullu, Babile (Erer and Gende Sudan), Erer 

Gota, Hurso, Jittu, Tikur Wuha, Tepo Choronke, Zeway and Koka. The highest incidence 

(100%) of the RKN was found from Adami Tullu, Jara Weyo, Babile (Erer and Gende 

Sudan), Erer Gota, Hurso, Jittu, Tikur Wuha, Tony farm, Tepo Choronke, Zeway and Koka 

locations based on direct observation of galls on collected root samples. Out of the 646 

respondents, 280 (43.3%) of them reported to have RKN damage symptoms when shown the 

symptoms of RKN while 366 (56.7%) of them did not report damage. The highest significant 

effect on the dependent variable RKN damage on tomato roots comes from the previous crop, 

soil texture, awareness about RKN and source of irrigation water used. The presence of 

Meloidogyne incognita, M. javanica, M. arenaria and M. hapla on tomato was confirmed 

using a combination of SCAR primers and biochemical identification tools. The two tropical 

species, M. incognita and M. javanica, were identified as the most prevalent species. Both 

species were also co-infesting tomato plants. Meloidogyne hapla was detected for the first 

time in an open tomato production farmer’s field at ‘Zeway’ location with 1620 m.a.s.l. 

elevation. The occurrence of these Meloidogyne species alone, or in mixed populations from 

samples collected, clearly shows that RKN are widespread in major tomato growing areas of 

Ethiopia. In the near future, the economic importance of M. arenaria and M. hapla on tomato 

production in Ethiopian agriculture should be investigated.  

 

Key words: Damage, Distribution, Diversity, Meloidogyne hapla, Prevalence, Tomato 

 

 

 

 



3 Biodiversity of RKN from Major Tomato Growing Areas of Ethiopia  

 52 

3.1. Introduction 

Tomato is a widely consumed and popular vegetable crop worldwide (Naz et al., 2012). It 

provides a rich source of micronutrients necessary for a well-balanced human diet (Rice et al. 

1987) and can be used as a food security and poverty-alleviating crop (Gemechis et al., 

2012). Tomato is consumed in different ways and a co-staple food in some parts of Ethiopia 

(Gemechis et al., 2012). It is an important cash and profitable vegetable crop produced by 

both small-scale and commercial farmers in Ethiopia (Lemma et al., 1994). Ethiopia is 

endowed with favourable climatic conditions for the production of vegetables including 

tomato. Recently, many foreign and domestic investors are being engaged in large-scale 

tomato production. However, the average yield of tomato in Ethiopia has always been low, 8 

tons/ ha compared with the average yields of 54, 42, 35, 20 and 35 tons/ha in America, 

Europe, Asia, Africa and the entire world respectively (FAO, 2013). Farmers get lower yield 

mainly due to diseases and pests (Mandefro & Mekete, 2002; Balem, 2008). In East Africa, 

including Ethiopia, the knowledge of farmers about the presence and management of PPN is 

very limited (Maina et al., 2010; Mwesige et al., 2016). Moreover, studies that assess 

farmer’s knowledge and factors associated with RKN damage are lacking. Tackling the 

problem of PPN on agricultural production thus is highly dependent on increasing farmer’s 

awareness about PPN problems (Coyne, 2009).  

 

RKN are among the biotic factors that limit tomato production worldwide. Tropical 

conditions are more conducive for the RKN populations’ rapid build-up. Moreover, the 

limited availability of skilled manpower and suitable infrastructure makes the impact of RKN 

more severe in tropical developing countries (De Waele & Elsen, 2007). Whitehead (1968) 

and O’Bannon (1975) were among the first to document the occurrence of Meloidogyne spp. 

in Ethiopia. Since then different attempts have been made to study the distribution of the 

RKN genus (Mandefro & Mekete, 2002). However, there is still a lot unknown about the 

presence and distribution of this genus in Ethiopia. The study of its biodiversity in major 

tomato growing areas of Ethiopia is principal. Identification of Meloidogyne spp. inflicting a 

yield loss in any crop and in any given area is a prerequisite to devise a sound, sustainable 

and eco-friendly management approach. Meloidogyne spp. identification based only on 

classical approaches using morphology, morphometrics, and the North Carolina differential 

host race test is to some extent inaccurate, unreliable and laborious (Hartmann & Sasser, 

1985; Hunt & Handoo, 2009; Janssen et al., 2016). Though it depends on the age of the 

female nematode (egg-laying young female) used isozyme profiles can provide accurate, 
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routine diagnostic test for RKN (Esbenshade & Triantaphyllou, 1987; Carneiro et al., 2000). 

DNA-based methods can be used for various stages of nematode development, discriminate 

individual species from mixed populations, and supported by DNA voucher specimens that 

have been stored for several years (Moleleki & Onkendi, 2013). Recently, Janssen et al. 

(2016) developed a reliable identification method for RKN from clade I using mitochondrial 

haplotypes with Nad5 gene fragment that contains the largest number of variable positions.  

RKN in Ethiopia have largely been identified on the basis of morphology (female perennial 

pattern and J2 morphometrics) and in few cases using cytological and biochemical methods 

(Mandefro & Dagne, 2000; Mekete et al., 2003). There is little information available in the 

literature about identification of Ethiopian RKN populations using molecular tools (Meressa 

et al., 2015). The objectives of the present study were: 1) to study the distribution of RKN in 

major tomato growing regions of Ethiopia 2) to characterize RKN populations using DNA 

and isozyme tools from major tomato growing areas of Ethiopia and 3) to assess knowledge 

and practice of farmers and factors associated with RKN damage on tomato.  

 

3.2. Materials and Methods 

3.2.1. Survey, Sampling and Soil bioassay  

A total of 40 localities (Table 3.1 & Fig 3.1) in major tomato growing areas mainly from Rift 

Valley, Upper Awash and Eastern Hararghe were sampled during the 2012/13 growing 

season to assess and identify the distribution of RKN (Meloidogyne spp.) and possible 

associated problems. The proportions of samples in each major tomato growing areas were 

based on the agro-ecological zones of Ethiopia. This zonation was made based on the 

elevations and length of growing period, which includes the rain fall, potential evapo-

transpiration and soil moisture storage properties. In total, 212 rhizosphere soil samples were 

collected from all localities. A total of 123 root samples were also collected from most fields 

visited and kept separately from the soil samples. Less number of roots was sampled because 

some farmers were not willing to provide root samples. Every root sample corresponds with a 

soil sample. Ten to fifteen plants per 1/2 ha were collected in a zigzag fashion. 

Approximately, 1.5 kg of composite soil samples and 200 g feeder root samples were 

collected for each sample to a depth of 0-25 cm (Barker, 1985). The soil samples were placed 

in clean polythene bags and date, specific locations, tomato cultivar, previous crop and 

condition of the soil were noted on their labels. The soil and root samples were transported 

from the sampling areas to Haramaya University (HU) laboratory using insulated containers. 

The corer, hand shovels and footwear were cleaned after sampling each farm to avoid cross 
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contamination of soil samples and spread of PPN between farms. The samples were collected 

from a range of farms: from established commercial greenhouse tomatoes production to 

gardens (Table 3.1). The stages of the tomato crop during sampling ranged from seedlings in 

the nursery to senescing tomato plants in the field. The samples were taken from farms when 

the soil was not too wet or too dry as these extreme conditions make it difficult to collect and 

prepare samples for analysis (Shurtleff and Averre, 2000). 

Figure 3.1. Map showing the sampled localities of major tomato growing areas of Ethiopia. 

The population density from the original soil samples was not computed for two main 

reasons. Firstly, due to sampling, it took several days to collect the samples and ‘older’ 

samples might have already more dead nematodes. Secondly, not only absolute numbers 

matter but also the infectivity potential after growing a suitable host. As a result, soil samples 

collected from each field were tested for the presence of RKN with a bioassay test using 

tomato as an indicator plant. A three-week-old Meloidogyne spp. susceptible tomato cv. 

Moneymaker was grown in the collected soil samples. After eight weeks, the roots of the 

tomato plant were examined to determine the root gall index (RGI) and egg mass index 

(EMI). For the RGI and EMI, 0 to 5 rating index scale was used where 0 = no egg 

masses/galls; 1 = 1-2 egg masses/galls; 2 = 3-10 egg masses/galls; 3 = 11-30 egg 

masses/galls; 4 = 31-100 egg masses/galls and 5 =  >100 egg masses/galls (Taylor & Sasser, 

1978). Then from each pot, 100 cm3 soil and 10 g root were collected to analyse RKN 

population densities.  
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3.2.2. Extraction of Nematodes from Soil and Root 

Soil was thoroughly mixed and homogenized after the bioassay test and 100cm3 soil sub-

sample was used for nematode extraction using a modified Baermann funnel technique 

(Hooper et al., 2005). The recovered nematodes were counted using a stereomicroscope and 

the densities expressed as the number of nematodes per 100 cm3 of soil. Ten gram galled 

roots of the tomato plant from each pot were washed gently with tap water and cut into 

smaller pieces (1 to 2 cm long) and agitated for 1 min in 1% NaOCl. The suspension was 

passed through 75 and 25 μm nested sieves. Eggs and J2 collected on the 25μm sieve were 

washed several times with tap water, re-suspended and their density determined using a 

stereomicroscope (Hussey and Barker, 1973).  

3.2.3. Root-Knot Nematode Infestation Study 

The RGI and EMI were determined from both root samples directly collected during the 

survey and those obtained after eight weeks of soil bioassay test. For the bioassay test, an 

indicator susceptible tomato cultivar Moneymaker was planted in each collected soil sample. 

After eight weeks, the roots of this tomato cultivar were uprooted, washed carefully with tap 

water, blotted dry and gall and eggmass indices determined (Taylor & Sasser, 1978). Ten 

grams of roots were stained with Phloxin B (15 mg/L) for 15-20 min based on Daykin & 

Hussey (1985). The stained roots were then rinsed in tap water and egg masses and root galls 

were counted using a stereomicroscope.  

 

The prevalence (frequency of occurrence expressed as number of samples with RKNs per 

total number of samples surveyed) and incidence of the disease (number of plants galled per 

total number of plants sampled) were calculated. Except in a few localities with limited 

number of egg masses where 1 egg mass was used per plant; from the majority of localities 3 

to 5 egg masses per plant were collected for identification. Egg masses were collected from 

galled roots and a single egg mass was left on Petri dish to get enough J2 for the molecular 

studies and to start a pure culture. 

 

3.2.4. Molecular and Biochemical Identification of Meloidogyne species 

3.2.4.1 Molecular identification 

The DNA of RKN J2 was extracted based on Holterman et al. (2006). One to five J2 were 

added to 25μl sterile water in a PCR tube. Then, 25μl lysis buffer (0.2M NaCl, 0.2M Tris-

HCl (pH 8.0), 1% (v/v) b-mercaptoethanol, and 800μg/ml proteinase-K) was added to the 

tubes. The samples were then incubated for 1 hour and 30 minutes at 65°C followed by 5 min 
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incubation at 99°C in a thermo cycler. The presence and quality of the extracted DNA was 

checked using a universal primer set D2A (5'-ACAAGTACCGTGAGGGAAAGTTG-3') and 

D3B (5'-TCGGAAGGAACCAGCTACTA-3') based on De Ley et al. (1999). All DNA 

extracts giving a positive amplification with the D2A and D3B primer set were further 

processed using sequence-characterised amplified regions (SCAR) primers for the detection 

of Meloidogyne incognita, M. javanica and M. arenaria based on Zijlstra et al. (2000) (Table 

3.2.). For isolates with weak band problems after amplifications using the primers developed 

by Zijlstra et al. (2000), Nad5 gene fragment was used to confirm the identification (Janssen 

et al. 2016). The species-specific primers (SSP) sets developed by Wishart et al. (2002) were 

applied for the detection of M. hapla, M. chitwoodi, M. fallax and M. enterolobii. The PCR 

products of the D2D3 segment of 28S rDNA region was purified and sent for sequencing at a 

sequence facility (Macrogen Europe, the Netherlands). The products were sequenced bi-

directionally. The sequences were analysed using MEGA6 Software and aligned using the 

default parameters of clustal X (Tamura et al., 2013). The evolutionary history was inferred 

using the Maximum Likelihood method based on the Tamura 3-parameter model. Initial tree 

(s) for the heuristic search were obtained automatically by applying Neighbour-Join and 

BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite 

Likelihood (MCL) approach, and then selecting the topology with superior log likelihood 

value. The tree was drawn to scale, with branch lengths measured in the number of 

substitutions per site.  Evolutionary analyses were conducted in MEGA6. For the 28S rRNA 

region phylogenetic tree Pratylenchus penetrans was used as an out-group while for the Nad5 

mitochondrial region M. enterolobii was used as an out-group. 

3.2.4.2. Biochemical identification 

Biochemical identification (EST and MDH) was employed for the weak samples amplified 

using SCAR primers. These Meloidogyne populations were first propagated on the 

susceptible tomato cultivar ‘Marmande’ in the greenhouse. Infected tomato roots were placed 

in 0.9% NaCl solution and young egg-laying females were isolated under a stereomicroscope 

and placed in 0.9% NaCl solution till identification. The females were transferred from the 

NaCl solution to reagent-grade water on ice for a few minutes. After this desalting step eight 

sample wells were each filled with one female and 0.6μl-extraction buffer (20% sucrose, 2% 

Triton X-100, 0.01% Bromophenol Blue) (Esbenshade & Triantaphyllou, 1985). The females 

were then macerated using a small glass rod and 0.3μl of these samples were loaded onto 

each of two eight wells sample applicators. Both sample applicators were inserted into the 

cathode slot, one into the left, and the other into the right applicator arm of the PhastSystem 
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(Pharmacia, Sweden). Meloidogyne javanica was used as a reference. Electrophoresis was 

carried out with PhastGel gradient gels (8-25) in a discontinuous buffer system (Karssen et 

al., 1995). After electrophoresis the gels were stained in a staining box and placed in an 

incubator at 37 °C. For the EST (esterase) activity the gel was stained for 1hr while for MDH 

(malate dehydrogenase) activity it was only stained for 5 minutes. The gels were also double 

stained, first with Est followed by MDH. After staining, the gels were rinsed with distilled 

water and fixed for 5 min in a 10% acetic acid/10% glycerol/80% distilled water solution. 

The compounds of the staining solutions used for the activity of EST and MDH were based 

on Karssen et al. (1995). 

3.2.5. Farmers Knowledge and Practice towards Plant-Parasitic Nematodes 

A cross-sectional study was conducted from January 2013 till March 2013 to assess the 

knowledge and practice of farmers towards PPN. A total of 646 respondents (small-scale, 

state-owned and commercial farmers, and extension workers) from the major tomato growing 

areas of Ethiopia (Rift Valley, Upper Awash and East Hararghe) were included. The survey 

used closed ended questionnaires. The dependent variable used in the survey was RKN 

damage symptom (Fig 3.2). The independent variables included previous crop, soil texture, 

fertilizer used, source of irrigation water, owner of the field, source of seedling, awareness 

about PPN and pesticide used by farmers. Data were analysed using SPSS16.0 software. The 

frequency and percentage statistics were used to describe the sample population in relation to 

relevant variables. The binary logistic regression analysis (odds ratio with corresponding 

95% confidence interval) was performed to assess the presence and degree of association 

between the dependent and independent variables. P-value < 0.05 was considered for 

statistical significance association.  
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Figure 3.2. A) Greenhouse tomato production Jittu farm-Ethiopia B) RKN infected tomato 

roots C) Unhealthy tomato plant infected with RKN at Babile location D) Egg masses stained 

with Phloxin 'B' during the 2012/13 growing season from Ethiopia.  

3.3. Results 

3.3.1. Prevalence, Incidence and Density of Root-Knot Nematode  

Out of the 212 composite soil samples collected, 100 samples (47.2%) were found infested 

by various Meloidogyne species eight weeks after the start of the bioassay test. Out of the 123 

root samples collected, 80 of them (65%) had root galls. There was significant variability in 

the prevalence and incidence of RKN between sampled localities. The highest prevalence 

(100%) of RKN was found on samples collected from Adami Tullu, Babile (Erer and Gende 

Sudan), Erer Gota, Hurso, Jittu, Tikur Wuha, Tepo Choronke, Zeway and Koka. The highest 

incidence (100%) of RKN was found from Adami Tullu, Jara Weyo, Babile (Erer and Gende 

Sudan), Erer Gota, Hurso, Jittu, Tikur Wuha, Tony farm, Tepo Choronke, Zeway and Koka 

locations based on direct observation of galls on collected root samples. RKN were not 

recovered from the tomato growing areas such as Meki, Jeju and Nura Era. The highest EMI 

(=5) and RGI (=5) were recorded from 40% of the root samples directly collected from fields 
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(data not shown) and after the bioassay test (Table 3.1). Five soil samples were found 

positive after the bioassay test while their respective root sample directly collected from the 

field was not found infected. The RKN population densities varied among the sampled fields 

as enumerated after the bioassay test. RKN populations in the soil ranged from 0 (17 

locations) to 514 (Jittu farm), with an average of 136 (J2+eggs)/ 100 cm3 soil, and 0 (17 

locations) to 361 (Jittu farm), with an average of 81 (J2 + eggs) in 10 g of roots (Table 3.1). 
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3.3.2. Meloidogyne species Present on Tomato 

A total of 153 RKN isolates (from locations with positive samples) were studied and 

identified using molecular and biochemical tools. The presence of M. incognita, M. javanica, 

M. arenaria and M. hapla on tomato was confirmed using the SCAR primers (Zijlstra et al.,

2000) and Nad5 gene fragment primers (Janssen et al. 2016) (Table 3.3, Fig 3.3-3.7). Out of

these 153 isolates, 48.4% were found to be M. incognita (74), 41.2% M. javanica (63), 6.5%

M. arenaria (10), 3.3% unidentified Meloidogyne spp. (5) and 0.7% M. hapla (1). The 5

isolates i.e. Fedis-FED5, Gursum-GUR10, Tepochoronke-TEP5, Tibila-TIB9 and Zeway-

ZEW8 were unidentified despite trying a combination of molecular and biochemical

techniques. Meloidogyne chitwoodi, M. fallax and M. enterolobii were not detected using

their respective SSP. The two tropical species, M. incognita and M. javanica were identified

as the most prevalent species. Both species were also found co-infecting tomato plants after

the bioassay test.

A study of the 28S large subunit rDNA partial sequences of the isolates (Table 3.3) through 

BLAST search of GenBank did not give conclusive species identification since 99-100% 

were similar to M. incognita, M. javanica, M. arenaria, M. thailandica (Handoo, Skantar, 

Carta & Erbe, 2005) and M. floridensis (Handoo, Nyczepir, Esmenjaud, van der Beek, 

Castagnone-Sereno, Carta, Skantar & Higgins, 2004). From the complete set of the 28S 

rDNA partial sequences we only encountered a single variable site and a couple of 

heterozygous positions and three haplotypes. Even this single variable position does not 

coincide with M. incognita or M. javanica or M. arenaria. A phylogenetic tree was 

constructed using the three haplotypes including M. hapla obtained from the sequence 

analysis of the 28S rDNA region (Fig 3.8) and Ethiopian RKN isolates identified using Nad5 

gene fragment based on Janssen et al. 2016 (Fig 3.9).  
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Figure 3.3. Some examples of SCAR amplification patterns obtained using the primer 
Finc/Rinc (a product length of 1200bp) from infective J2 hatched from a single egg mass. A) 
Lane1-BGS6, 6-JIT5, 7-JIT9, 8-TEP6, 10-Negative control-water instead of DNA) while 
Lane 2, 3, 4, 5 & 9 were not amplified. B) Lane 3-ADT3, 4-ADT4, 6-ADT5, 9-BEF1, 10-
BEF7, 11-BGS2, 13-ERG2, 14-JIT10, 15-GUR1, 17-TIB6, 21-KER1, 23-positive control (M. 
incognita) and 24-Negative control while on Lane 1, 2, 5, 7, 8, 12,16,18,19,20 amplification 
was not found. C) Lane 2-CHL1, 4-ALM1, 9-BEF6, 10-BEF8, 13-BGS3, 14-BTL1, 15-
ERG5 while Lane 1,3,5,6,7,8, 11, 12 and 16 no product amplified, 17-negative control. D) 
Lane 1-FED1, 2-GUR 5, 3-GUR6, 4-HUR1, 5-INS2, 6-KOK3, 7-TEP1 & 8-negative control. 
L in A, B & C is a 100bp ladder (Promega) while the L in D is a 250bp ladder (Promega). 

Figure 3.4. Examples of SCAR Amplification patterns obtained using the primer Fjav/Rjav 
(a product length of 670bp) from infective J2 hatched from a single egg mass, in all PCR 
pictures L is a 100bp ladder (Promega). A) Lane 8-ZEW6 & 16-JIT7 while samples on Lane 
1 to 7, 9-15 & 17 were not amplified, 18-negative control. B) Lane 7-ADT2, 8-BTL2, 9-
GUR8, 10-INS1, 11-MRT2, 12-TIB4 while the remaining samples from lane 1 to 6 & 13 to 
19 not amplified, 20-negative control. C) Lane1-TNF3, 4-TKW3, 5-TKW5, 6-ADT1, 7-
SHN3, 8-BEF3, 9-BEF5, 10-BEF10, 11-ALM2, 12-ADT10, 13-GUR4, 14-CHL4, 18-BGS9, 
19-KUL2, 20-TEP3, 22- SHN4, 23-Positive control (M. javanica) and 24 is negative control
while samples on lane 2, 3, 15, 16, 17 & 21 did not amplify. D) Lane 2-TEP8, 3-TIB2, 4-
TIB3, 5-KOK6, 6- KOK7, 7-KOk10 & 8-negative control. E) Lane 3-ADT7, 5-BEF2, 8-
BGS4, 11-ERG4 while samples on lane 1, 2, 4, 6,7,9 & 10 were not amplified, 12-negative
control.
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Figure 3.5. An example of SCAR amplification patterns obtained using the primer Fare/Rare 
(a product length of 420bp) from infective J2 hatched using a single egg mass, in all PCR 
pictures L is a 100bp ladder (Promega). A) Lane 1-ADT6, lane 2-KOK9, 3-negative control  

 
 

Figure 3.6. Some examples of EST and MDH obtained from Meloidogyne species of 
Ethiopia. A) Lane1-ADT3 (I1), 2-JIT4 (I1), 3-JIT8 (I1), 4-Fed5 (unidentified), 5-M.javanica 
control, 6-KOK5 (I1), 7-BEF9 (J3) & 8- BGS9 (J3); B) Lane 1-JIT9 (I1), 2-TEP9 (I1), 3-
TEP10 (I1), 4-BTL1 (I1 too weak), 5-TIB7 (I1), 6-TKW1 (I1), 7-TKW4 (I1) & 8-ZEW3 
(I1); C) 1-No female was added, 2-ADT4 (I1), 3-GUR10 (unidentified), 4-TIB8 
(unidentified), 5-GUR4 (J3), 6-ADT5 (I1), & 7-CHL5 (I1) and D) Lane1-HUR2 (I1), 2-
KER4 (I1), 3-MRT5 (no pattern found), 4-ZEW8 (unidentified), 5-TEP5 (unidentified), 6-
GUR3 (J3) & 7-SHN3 (J3). The codes I1 & J3 in the brackets indicate the EST phenotype of 
M. incognita & M. javanica respectively  
3.3.3. Meloidogyne hapla  

The identity of M. hapla was determined using species-specific primers 5’-3’ 

(GGATGGCGTGCTTTCAAC/AAAAATCCCCTCGAAAAATCCACC) (Wishart et al., 

2002). A known M. hapla population was included as a positive control in the PCR. The PCR 

product size of 440bp was clearly and reproducibly amplified (Fig 3.7). The 28S large 

subunit rDNA partial sequence of our M. hapla population (deposited in a GenBank 
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accession number: KU587712) showed 99-100% sequence homology with accessions 

GQ130139, DQ328685, KP306534, KP306532, KJ755183, KF430798 and KJ645432 (Table 

3.4). Meloidogyne hapla was detected for the first time in Ethiopia in an open tomato 

production farmer’s field at Zeway location with 1620 m.a.s.l elevation. A soil sample 

collected from ‘Zeway’ area was found severely infested by a mixture of M. incognita, M. 

javanica, M. arenaria and M. hapla with a mixture of large and numerous small galls 

observed after the bioassay test.  

Figure 3.7. Amplification patterns obtained using the primer JMV1-5s/JMV-hapla (a product 
length of 440bp) from infective J2 hatched from a single egg mass, in all PCR pictures ‘L’ is 
a 100bp ladder (Promega). A product length of 440bp amplified for M. hapla from Zeway 
Ethiopia Lane-6 & 7-ZEW1 while the sample on Lane 3 & 8 were M. hapla positive control. 
Samples on lane 1-BGS6, 2-ZEW6, 4-BEF6, 5-GUR8, 9-JIT10 and 10-negative control were 
not amplified.    
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Figure 3.8.  Maximum parsimony tree inferred from the 28S rDNA sequences. The accession 
number of the Ethiopian isolates is KX752274 (Isolate-ERG3), KX752383 (Isolate-FED1), 
KX752327 (Isolate-ADT10), KX752271 (Isolate-INS5), KX752412 (Isolate-TEP5) and 
KU587712 (M.hapla-ZEW1) (see Table 3.3). Pratylenchus penetrans was used as an out-
group.  
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Figure 3.9. A phylogenetic tree inferred from the mitochondrial Nad5 gene fragment of 13 
M. incognita Ethiopian populations 278 1 14a (GUR2), 278 9 2c (ALM4), 279 19 10a (JIT6),
280 4 19a (KUL3), 280 22 25a (MRT4), 280 27 28c (ZEW9), 280 28 29a (ZEW10), 283 1 3
(ALM3), 283 5 7e (TNF5), 283 12 16 (TIB10), 287 2 8 (JIT1), 287 5 13 (HUR5), 287 6 15
(TIB5) and one M. javanica population 283 2 5 (BGS5). Meloidogyne enterolobii was used
as an out-group. The codes inside the brackets can be used to get the accession number of
each isolate as presented in Table 3.3
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3.3.4. Farmers Knowledge and Factors Associated with Root-Knot Nematode damage 

The effect of eight independent variables (previous crop, soil texture, fertilizer used, source 

of irrigation water, owner of the field, seedling source, awareness about RKN and pesticides 

used) on the dependant variable RKN damage on tomato roots was investigated using binary 

logistic regression analysis (Table 3.5).  

Out of the 646 respondents, 280 (43.3%) reported to have RKN damage symptoms when 

shown the symptoms of RKN, while 366 (56.7%) did not report damage. Even though all the 

independent variables had a significant (P < 0.01) effect on RKN damage, the highest effect 

on the dependent variable RKN damage on tomato roots comes from the previous crop and 

soil texture.  

Out of the 646 respondents, 242 (37.5%), 247 (38.2%), 9 (1.3%) and 148 (22.9%) indicated 

that their farm in the previous season was grown with solanaceous, non-solanaceous, kept 

fallow and subjected to natural flood respectively. From 242 respondents that used 

solanaceous as previous crop, 233 (96.3%) reported to have the RKN damage on their tomato 

production while 9 (3.7%) did not report nematode damage in their tomato field. From 148 

respondents with farms subjected to natural flood, 2 (1.4%) reported to have nematode 

damage on their tomato production while 146 (98.6%) did not report nematode damage in 

their field. Out of the 646 respondents, 271 (41.9%), 265 (41.1%) and 110 (17%) reported to 

have sandy, loam and clay soil texture in their farm respectively. From 271 respondents with 

sandy soil texture farms, 233 (86%) reported to have RKN damage on their tomato 

production while 38 (14%) did not report nematode damage on their field. Out of 110 

respondents with clay soil texture farms, 2 (1.8%) reported to have RKN damage on their 

tomato production while 108 (98.2%) did not report nematode damage in their field.  
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Table 3.5. Binary logistic regression analysis between the dependant variable (RKN damage 
symptom) and eight independent variables based on the crude odds ratio (COR) at P <0.05 
significance level.  

Independent variable RKN Damage Symptom COR a 95% CI b P value 
Yes NO 

Previous crop 
    Solanaceous 
    Non solanaceous 
    Fallow 
    Flooded 

n=280 
233 (96.3) 
43 (17.4) 
2 (22.2) 
2 (1.4) 

n=366 
9 (3.7) 
204 (82.6) 
7 (77.8) 
146 (98.6) 

20.8 
1.890 
15.387 
1.00 

2.55-170 
402.70-8.86 
3.68-64.53 

<0.001 
<0.001 
<0.001 

Soil Texture 
    Sandy 
    Loam 
    Clay 

n=280 
233 (86.0) 
45 (17) 
2 (1.8) 

n=366 
38 (14.0) 
220 (83.0) 
108 (98.2) 

331.11 
11 
1.00 

78.44-1.39 
2.63-46.38 

<0.001 
<0.001 

Fertilizer used 
    Organic 
    Inorganic 

n=280 
7 (26.9) 
273 (44.0) 

n=366 
19 (73.1) 
347 (56.0) 

0.468 
1.00 

0.19-1.13 <0.01 

Source of irrigation 
  River 
  Underground water 
  Lake 

n=280 
38 (56.7) 
219 (43.5) 
23 (30.7) 

n=366 
29 (43.3) 
285 (56.5) 
52 (69.3) 

2.963 
1.737 
1.00 

1.48-5.89 
1.03-2.92 

0.002 
0.038 

Owner of the field 
Farmer 
State owned 
Investors (foreign/domestic) 

n=280 
78 (24.1) 
34 (33.0) 
168 (76.4) 

n=366 
245 (75.9) 
69 (67.0) 
52 (23.6) 

0.099 
0.153 
1.00 

0.06-0.147 
0.09-0.25 

<0.001 
<0.001 

Seedling source 
  Same field 
  Separated nursery 

n=280 
157 (33.2) 
123 (71.1) 

n=366 
316 (66.8) 
50 (28.9) 

0.20 
1.00 

0.14-0.29 <0.001 

Awareness about PPN 
  Yes 
  No 

n=280 
195 (87.4) 
85 (20.1) 

n=366 
28 (12.6) 
338 (79.9) 

27.69 
1.00 

17.44-43.96 <0.001 

Pesticide used 
  Nematicides 
  Insecticides 
  Herbicides 
  Fungicides 

n=280 
21(100) 
23 (13.5) 
0 (0) 
236 (52.7 

n=366 
0 (0) 
147 (86.5) 
7 (100) 
212 (47.3) 

1.451E9 
0.141 
0.000 
1.00 

0.08-0.23 <0.001 

a Crude odds ratio 
b 95% confidence interval 
c P-value at 5% level of significance 

3.4. Discussion 

In this study, the occurrence of M. incognita, M. javanica, M. arenaria and M. hapla alone, 

or in mixed populations from samples collected across 40 tomato production localities, 

clearly showed that RKN are widespread in major tomato growing areas of Ethiopia. The 

occurrence of M. incognita and M. javanica co-infesting almost all the positive samples 

detected in the present study is not a surprise. Meloidogyne incognita and M. javanica have 

previously been reported as the most common and widespread species on vegetable 

production in Ethiopia (Tadele & Mengistu, 2000; Mandefro & Dange, 2000; Mandefro & 
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Mekete, 2002). These two species were also cited as the most common and widespread 

species on food plants in East Africa particularly in Kenya, Uganda and Tanzania 

(Whitehead, 1969; IITA 1981; Bridge et al., 1991; CABI 2002; Nono-Womdim et al., 2002; 

Coyne et al., 2003; Onkendi et al., 2014; Kimani et al., 2015). The occurrence of M. arenaria 

and M. hapla is less documented in Ethiopia and based on the obtained results it should be 

given due attention especially in determining its economic importance for tomato production. 

 

Accurate identification of the population and genetic diversity of Meloidogyne species 

present in a given tomato field is the first step in designing proper pest management programs 

(Powers et al., 2005). This can be achieved through a regular, comprehensive and accurate 

survey of Meloidogyne species across tomato growing regions (Moleleki & Onkendi, 2013). 

However, a single identification technique will not always be dependable especially when 

processing large number of samples. Proper identification of RKN requires a combination of 

morphological (perineal pattern, J2 morphometrics), cytological, isozyme and DNA-based 

tools. Quite recently, several DNA based reliable identification tools for different 

Meloidogyne species are being developed such as the new qPCR tool for M. enterolobii 

(Braun-Kiewnick et al., 2016), using mitochondrial haplotype to identify M. haplanaria 

(Joseph et al., 2016) and using Nad5 gene fragment for tropical RKN or MIG group (Janssen 

et al., 2016).  

 

In our study, we used the 28S rDNA region partial sequence homology, SCAR primers 

developed by Zijlstra et al. (2000) for the detection of M. incognita, M. javanica and M. 

arenaria and Nad5 gene fragment sequence for M. javanica and M. incognita by Janssen et 

al. 2016; Wishart et al. (2002) to check for M. hapla, M. chitwoodi, M. fallax and M. 

enterolobii. To our knowledge, this is the first comprehensive molecular characterization of 

RKN populations originating from agricultural crop fields (specifically from tomato) in 

Ethiopia. 

 

Based on the 28S rDNA partial sequences all the isolates studied fall under Clade I of the 

tropical RKN species except the single M. hapla isolate. Sequence analysis of the PCR 

products generated with the D2A and D3B primers showed the highest similarity between M. 

incognita, M. javanica and M. arenaria. Diagnostic resolution of D2-D3 expansion segments 

of 28S rDNA is insufficient to discriminate between some of the most closely related, 

problematic and economically damaging tropical RKN species (Naz et al., 2012; McClure et 
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al., 2012; Landa et al., 2008). The complete 28S rDNA dataset of our isolates only confirmed 

that this region could not be used for identification of tropical RKN species. For these 

reasons, SSP were tried and found well suited for the sampled areas in Ethiopia. A higher 

proportion of molecular identification of M. incognita and M. javanica from our PCR results 

over the other species of RKN were found indicating the higher prevalence of these species in 

the study localities. SSP are simple to perform and can successfully be used to any 

developmental stage of the nematode (Blok & Powers, 2009). Despite SCAR primers being 

simple to use, there are still some challenges associated with this method such as lower 

sensitivity or specificity of SPP, lack of reproducibility, the need to use large amount of DNA 

and appearance of weak bands (Adam et al., 2007; Blok & Powers, 2009; Onkendi et al., 

2014). The recently developed method by Janssen et al. (2016) using Nad5 gene fragment 

reliably identified M. incognita and M. javanica isolates. However, as reported by Janssen et 

al (2016) the relatively uncommon, closely related linages of Meloidogyne incognita group 

(MIG) such as M. ethiopica and some populations of M. arenaria were found clustered in one 

Nad5 haplotype indicating lack of identification resolution for these species. Biochemical 

identification can successfully fill the deficiencies of DNA-based identification techniques 

and can be used as a confirmation tool when weak bands amplified using SSP. However, this 

method is female age dependent (egg laying young female) and sometimes it is difficult to 

determine and differentiate band sizes between different species (Onkendi et al., 2014). In 

this study, the esterase phenotype (EST) was more clearly amplified than the malate 

dehydrogenase (MDH) phenotype, which was almost always found with an additional 

unspecified double band. The EST phenotype (J3) for M. javanica populations and the EST 

phenotypes (I1) for M. incognita were diagnostic (Carneiro et al., 2000) and helped to 

confirm samples that showed weak amplifications with the SSP. The unspecified double band 

obtained after MDH showed that the gels were double stained for EST and MDH. The 

amount of extraction buffer loaded (0.6 μl) to the 8 well sample applicator might have been 

low given the fact that Karssen et al. (1995) used this volume for the smaller 12 well sample 

applicator. Nevertheless, there was no reproducibility problem, bands were observed and  

confirmed the weak bands obtained using SSP. 

The higher prevalence and incidence (100%) of RKN in samples collected from Adami 

Tullu, Babile, Jittu, Tikur Wuha, Tepo Choronke, Zeway and Koka is probably due to the 

fact that these areas have long been known for their intensive tomato production. These areas 

also have a sandy soil which is known to be favourable for Meloidogyne species (Karssen et 
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al., 2013) as supported in the questionnaire. The high prevalence and incidence of RKN 

suggests their importance as a potential threat in tomato production (Naz et al., 2012). 

Several reasons could be mentioned for the high incidence of RKN in these areas: tomato 

monoculture, favourable climate (especially temperature), and use of susceptible rotation 

crops or intercropping with other Solanaceous crops. 

 
The information obtained from growers indicated that most of the fields sampled had been 

under vegetable cultivation for several years. Localities such as Meki, Jeju and Nura Era are 

also known for their intensive tomato production along the Rift Valley and Upper Awash 

basin. However, RKN were not detected from these areas during the survey. These areas 

were subjected to natural flood for more than 3 months during 2011/12 cropping season. 

Fields with minimum infestation of RKN had silt loam and clay soil types as indicated by 

growers in the questionnaire survey and the climate in surrounding areas were dry and at 

times very hot. The lack of visible root damage symptoms by Meloidogyne spp. on a given 

plant is not necessarily an indication of its absence from the rhizosphere soil. The appearance 

of damage symptoms on an indicator tomato plant after the bioassay test performed on soil 

samples from which their respective root samples collected directly from field were not found 

infected proved this.  

  

The highly damaging northern RKN, M. hapla was reported in Ethiopia in open tomato field 

at Zeway location. It is not clear if M. hapla is distributed in other tomato growing areas or if 

it is only restricted to Zeway. A systematic sampling approach, specifically in Zeway area, is 

needed to find this out. According to Whitehead (1969), M. hapla only flourishes at altitudes 

above 1829 m.a.s.l in East Africa (Kenya, Tanzania and Uganda), despite the abundance of 

host plants at lower altitudes. In this study, M. hapla is reported at a significantly lower 

altitude 1620 m.a.s.l indicating that M. hapla can flourish at lower altitudes too. There is no 

adequate information about its economic importance on tomato crops in Ethiopia. However, 

of concern is the fact that M. hapla was identified in a farm where it has the history of 

intensive vegetables production including tomato and pepper, thus this is likely to have 

considerable consequences for vegetables production at large and on tomato in particular. In 

2014, M. hapla was reported in protected greenhouses in rose plantation in Ethiopia (Meressa 

et al., 2014). To our knowledge, this is the first report of M. hapla in farmer’s open tomato 

production field in Ethiopia. The presence of this species in an Ethiopian protected rose 

plantation was suspected to be due to the introduction of infected planting materials imported 
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from abroad. However, its presence in an open tomato field suggests that this nematode may 

be indigenous in Ethiopia or was introduced in the past. Hence, this species should be given 

due attention given the location from which it was found is known for its intensive tomato 

production.  
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Abstract 

Soil and root samples were collected from major tomato growing areas of Ethiopia during the 

2012/2013 growing season to identify RKN problems. DNA-based and isozyme techniques 

revealed that Meloidogyne incognita and M. javanica were the predominant Meloidogyne 

species across the sampled areas. The aggressiveness of different populations of these species 

was assessed on tomato cultivars Marmande and Moneymaker. The two most aggressive 

populations of each species were selected and further tested on 33 tomato genotypes. The 

resistance screening and mechanism of resistance was performed after inoculation with 100 

freshly hatched (<24 hr.) second-stage juveniles (J2). After eight weeks of inoculation, the 

number of egg masses produced on each cultivar was assessed. For the resistance mechanism 

study, J2 penetration and their subsequent development inside the tomato roots were 

examined at 1, 2, 4 and 6 weeks after inoculation. On both cultivars, Marmande and 

Moneymaker, all M. incognita and M. javanica populations formed a high number of egg 

masses indicating highly aggressive behaviour. Populations from ‘Jittu’ and ‘Babile’ for M. 

incognita and ‘Jittu’ and ‘Koka’ for M. javanica were selected as most aggressive. None of 

the 33 tomato genotypes were immune for these M. incognita and M. javanica populations. 

However, several tomato genotypes were found to have a significant effect (p < 0.05) on the 

number of egg masses produced indicating possible resistance. For M. javanica populations 

there were more plants from cultivars or breeding lines on which no egg masses were found 

compared to M. incognita populations. The lowest number of egg masses for both 

populations of M. incognita was produced on cultivars Bridget40, Galilea, and Irma while 

for M. javanica it was on Assila, Eden, Galilea, Tisey, CLN-2366A, CLN-2366B and CLN-

2366C. Tomato genotypes, time (weeks after inoculation) and their interaction were 

significant sources of variation (p < 0.05) for J2 penetration and their subsequent 

development inside the tomato roots. Differential penetration was found in breeding lines 

such as CLN-2366A, CLN-2366B and CLN-2366C, but many of the selected tomato 

genotypes resistance for the tested M. incognita and M. javanica populations were expressed 

by delayed nematode development. Therefore, developing a simple screening technique to be 

used by local farmers or extension workers is crucial to facilitate selection of a suitable 

cultivar.  

 

Key words: Aggressiveness, Breeding, Differential Penetration, Root-Knot Nematodes, 

Resistance, Screening 
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4.1. Introduction 

In Ethiopia, tomato (Solanum lycopersicum) is a widely grown vegetable crop ranking 8th in 

terms of annual national production (Jiregna et al., 2013). However, its production is 

threatened by many insect pests and diseases, which are damaging both quality and quantity 

of tomato production. Among them, PPN represent an important constraint on the delivery of 

global food security (Jones et al., 2013). One of the major obstacles to the production of 

adequate supplies of food in many developing nations is damage caused by RKN 

(Meloidogyne spp.) (Sasser, 1980; Coyne et al., 2009). Particularly Meloidogyne incognita 

and M. javanica are economically important on tomato (Belan et al., 2009).  

 

Owing to their polyphagous nature, management of RKN is a difficult task. Chemical 

nematicides, resistant varieties and rootstocks are commonly used to manage RKN (Devran 

et al., 2010). Environmental safety, high costs and problems regarding nematicide use forced 

many scientists to look for alternative methods for control (McSorley, 2011). Plant resistance 

is considered an alternative environment-friendly method to manage soil-borne pathogens 

including RKN. Cultivated tomato varieties are naturally susceptible to Meloidogyne spp. but 

some accessions of the related tomato species, Solanum peruvianum possess a single 

dominant gene (Mi) which confers resistance to M. incognita, M. javanica and M. arenaria 

(Roberts & Thomason 1986). This Mi-gene has been incorporated into many commercially 

available tomato cultivars (Devran et al., 2010) and is used against RKN for tomato plants 

grown in home gardens, fresh market, and processing tomato cultivars (Roberts & Thomason, 

1989). For over 70 years, it has been the only source of resistance in all commercial tomato 

cultivars (Seid et al., 2015). It has been effective to manage RKN especially when used in 

combination with other management techniques such as rotation and sanitation (Roberts, 

1992). Despite its effectiveness and profitability, the resistance conferred by this gene has 

some critical limitations. Planting a resistant crop for several consecutive years can increase 

the risk of selection of virulent nematode populations (Verdejo-Lucas et al., 2009). The Mi 

mediated resistance breaks down when the soil temperature is at and above 28 °C (Dropkin, 

1969). Moreover, resistant tomato cultivars with the Mi-gene are not available for SSF and 

sub-tropical countries because of the high cost and due to temperature limitations and poor 

adaptation to local commercial production (Roberts et al., 1998). Its performance varies 

across different local climatic conditions. Searching for a resistance gene (s) from local 

cultivars that are adapted to the prevailing climatic conditions is therefore crucial. Hence, the 

objectives of this work were, to evaluate the host suitability of 23 commercial tomato 
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cultivars including the most common (such as Chochoro, Marglobe, Melkasalsa, Melkashola 

and Fetane) and 10 breeding lines to aggressive M. incognita and M. javanica populations 

from Ethiopia, and to determine root penetration rates and subsequent development of these 

populations on selected tomato cultivars and breeding lines to further understand the 

mechanisms of resistance. 

4.2. Materials and Methods 

4.2.1. Selection of Aggressive M. incognita and M. javanica Populations 

During the 2012/2013 growing season, soil and root samples were collected from major 

tomato growing areas of Ethiopia. All of the populations collected were maintained on a 

susceptible tomato cultivar Marmande at HU greenhouse located at ‘Raree’ experimental 

station. Meloidogyne species were identified using DNA-based and isozyme based (esterase 

and malate dehydrogenase) techniques. Meloidogyne incognita and M. javanica were found 

to be the predominant RKN species across the sampled areas (see chapter 3). Consequently, 

the aggressiveness of 26 M. incognita and 25 M. javanica populations was assessed on two 

susceptible tomato cultivars Marmande and Moneymaker. The tomato seedlings of the 

susceptible cultivars were raised separately in a plastic tray (54 cm x 28 cm x 6 cm). A single 

seedling was transplanted at four-leaf stage into 200 cm3 plastic cups (8 cm x 4 cm x 6.3 cm). 

Each plastic cup was inoculated with 200 infective second-stage juveniles (J2) (<24 h old) of 

all the M. incognita or M. javanica populations with five replications in a completely 

randomized design at HU ‘Raree’ greenhouse. Plants were watered daily as required using an 

atomiser. At eight weeks after inoculation, the cups with the plants were soaked in water and 

the soil was removed gently from the roots. The roots were then submerged in a Phloxin ‘B’ 

solution (0.15g/L tap water) for 15-20 min to stain the gelatinous matrix of the egg masses 

produced by the female RKN on the root surfaces (Daykin & Hussey, 1985). After 15-20 min 

of staining, the roots were rinsed with tap water to get rid of residual stain on the roots. The 

number of egg masses per plant was counted using a stereomicroscope. The two most 

aggressive populations from each M. incognita and M. javanica i.e. those with the highest 

mean number of egg masses on both susceptible cultivars, were selected and further used for 

resistance screening of locally available commercial tomato genotypes and breeding lines.  

4.2.2. Resistance Screening of 33 Tomato Genotypes 

4.2.2.1. Sources of tomato cultivars and breeding lines 

The two most aggressive populations of M. incognita (‘Jittu’ and ‘Babile’) and M. javanica 

(‘Jittu’ and ‘Koka’) were used to screen 23 commercial tomato cultivars and 10 tomato 

breeding lines for resistance. The tomato cultivar Marmande was included as a susceptible 
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control. The list and sources of the tomato genotypes, growth habit and their pedigree are 

described in Table 4.1.  

4.2.2.2. Experimental approach for the resistance screening 

For each cultivar 30 plants were screened. Each plant was raised individually in 66 cm3 

volume plastic tubes (16 cm x 2.5 cm, low density with UV stabilizers, Stuewe & Sons, Inc. 

USA). The experimental set up was blocked per cultivar and per population assuming that the 

environmental factors are stable in a controlled growth chamber. Individual tubes were filled 

with sterilized (100 °C, 16h) sandy soil (74% sand, 17% sandy loam, 3% loam, 6% clay). In 

each tube, two seeds were sown; thinning was performed when both germinated to keep one 

seedling per tube. The tubes were kept in a growth chamber (18-27°C) with a daily 16 h light 

period. The temperature was recorded every hour using a data logger (Testo 175T2) 

throughout the experiment. At the four-leaf stage, each individual plant was inoculated with 

100 J2 (<24 h old) of M. incognita ‘Jittu’ or ‘Babile’ populations and M. javanica ‘Jittu’ or 

‘Koka’ populations. At eight weeks after inoculation, the number of egg masses produced per 

plant was counted using a stereomicroscope as described above. Designation of resistance 

was made based on the egg mass production on all the cultivars and breeding lines tested. ‘S’ 

(susceptible) was used for plants on which mean egg mass production was more than 50% of 

the egg mass production on the known susceptible cultivar Marmande. ‘SR’ (slightly 

resistant) was used for plants on which mean egg mass production was 25-50% compared to 

cv. Marmande; ‘MR’ (moderately resistant) was used for plants when egg mass production

was 10-25%; ‘VR’ (very resistant) when egg mass production was 1-10%; ‘HR’ (highly

resistant) when egg mass production was <1%; and ‘IM’ (immune) when nematodes entered

the roots but did not reproduce or were killed (Hadisoeganda & Sasser, 1982). The degree-

days (DD) for M. incognita and M. javanica populations to complete their life cycle were

calculated using a base temperature of 10.1 °C and 13.1°C respectively (Ploeg & Maris,

1999). Then the base temperature of the respective species was subtracted from the hourly-

recorded actual temperature. The daily average degree-days (DD) were calculated and later

the daily average temperature was summed up for the entire eight weeks.
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4.2.3. Assessment of Resistance Mechanisms  

Four commercial tomato cultivars and seven breeding lines were selected to monitor the 

penetration and development of the respective M. incognita ‘Babile’ and M. javanica ‘Jittu’ 

and ‘Koka’ populations to which they possessed potential resistance (Table 4.2). The criteria 

of selection was a combination of many factors such as the result of the screening 

experiment, availability of enough tomato seeds to initiate the experiment, availability of 

enough inoculum, farmers preference for specific cultivars and a future potential for genetic 

improvement (more breeding lines were checked over the commercial cultivars). 

Meloidogyne incognita ‘Babile’ population was used due to its virulence behaviour on 

tomato cultivars with the Mi-gene during the resistance screening work. Most of the breeding 

lines were found VR or HR for ‘Koka’ M. javanica population while ‘Jittu’ M. javanica 

population was included for comparison purposes. Breeding lines that only showed resistance 

for one population of the same species (M. incognita or M. javanica) were included to check 

for their possible difference between the two populations of the same species in penetration 

and development. Cultivar Marmande was used as a susceptible cultivar. For each 

cultivar/breeding line 40 plants were grown per population per species in plastic tubes as 

mentioned above. The experiment was blocked per cultivar/breeding line per population. 

When seedlings reached the four-leaf stage, each individual plant was inoculated with 100 

freshly hatched J2 (<24 h old) of M. incognita or M. javanica. At 1, 2, 4 and 6 weeks after 

inoculation, 10 plants per cultivar/ breeding lines were taken to monitor the presence and the 

developmental stages of M. incognita and M. javanica inside the roots. Plants were 

submerged in water and the adhering soil was gently removed from the roots. The nematodes 

inside the roots were stained with acid fuchsin using the method described by Byrd et al. 

(1983) for the detection of nematodes inside plant tissues. After staining, root fragments were 

kept at 4 °C in glycerol in a small petri dish until counting. The stained nematodes were 

counted using a stereomicroscope. The nematodes were classified into: vermiform (J2), 

swollen (J2, J3 and J4) juveniles and adult females (young females included). The total 

number of nematodes/per plant was calculated to check if there was any emigration of J2 

after penetration between the time periods checked.  

4.2.4. Data Analysis 

The screening data were analysed using Genstat 13th Edition, VSN International Ltd software 

2010. Mean numbers of egg masses were statistically compared using Fisher’s unprotected 

LSD at P < 0.05. Nematode penetration and their development assessment data were analysed 

using SAS 9.4 software and the penetration counts were Log 10 (x+1) transformed for 
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analysis to fulfil the criteria for normality. Mean separation for juvenile penetration and their 

subsequent development was done using Fisher’s unprotected LSD at P < 0.05.  

 Table 4.2. The overview of tomato cultivars/ breeding lines used for the mechanism study 
against one M. incognita and two M. javanica populations.  

Tomato cultivars or breeding lines M. incognita

‘Babile’

M. javanica

‘Jittu’

M. javanica

‘Koka’

Chochoro   

Roma VF   

Marglobe  

Melkashola  

CLN-2366A   

CLN-2366B   

CLN-2366C   

CLN5915-206-D4-2-2   

CLN-2037A   

CLN-2037B   

CLN-2037H   

Marmande    

4.3. Results 

4.3.1. Selection of Aggressive M. incognita and M. javanica Populations 

All populations of M. incognita and M. javanica reproduced well on both susceptible 

cultivars. The mean minimum and maximum number of egg masses produced by M. 

incognita populations on the cultivars Moneymaker ranged from 66 to 148 and on Marmande 

from 67 to 168, respectively. The mean minimum and maximum number of egg masses 

produced by M. javanica population ranged from 67 to 132 on Moneymaker and from 79 to 

158 on Marmande, respectively. In general, for all tested populations more egg masses were 

found on cv. Marmande but there was no significant difference with cv. Moneymaker. 

Meloidogyne incognita populations ‘Babile’ (BGS6) and ‘Jittu’ (JIT6) and M. javanica 

populations ‘Jittu’ (JIT7) and ‘Koka’ (KOKA8) were highly aggressive on both susceptible 

cultivars Marmande and Moneymaker as shown by the high number of egg masses formed 
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(Fig 4.1 & 4.2). Therefore, these populations were chosen as the most aggressive and 

maintained continuously on cv. Marmande for the subsequent screening work.  

 

Figure 4.1. Mean number of egg masses of 26 M. incognita populations collected across the 
major tomato growing areas of Ethiopia on two susceptible tomato cultivars: ‘Marmande’ 
and ‘Moneymaker’ eight weeks after inoculation with 200 J2. 

 

 
 

Figure 4.2. Mean number of egg masses of 25 M. javanica populations collected across the 
major tomato growing areas of Ethiopia on two susceptible tomato cultivars: ‘Marmande’ 
and ‘Moneymaker’ eight weeks after inoculation with 200 J2. 
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4.3.2. Resistance Screening of 33 Tomato Genotypes 

The mean number of egg masses of ‘Jittu’ and ‘Babile’ M. incognita and ‘Jittu’ and ‘Koka’ 

M. javanica populations per plant eight weeks after inoculation with 100 J2 are shown in

Table 4.3. None of the 33 tomato genotypes were immune for any of the M. incognita and M.

javanica populations tested. However, several tomato genotypes had a significant effect (P <

0.05) on the number of egg masses produced. Four commercial tomato cultivars (Metadel,

Miya, H-1350 and Melkasalsa) and one breeding line (CLN-2037C) were found equally

susceptible for the four populations tested. Among the tested tomato genotypes, Tisey was the

only cultivar found resistant for the four populations tested.

Fifteen tomato genotypes were found susceptible, four moderately resistant (Assila, Eden,

Mersa and VL-642) and three very resistant (Bridget40, Galilea and Irma) against ‘Jittu’ M.

incognita population while 23 susceptible and two highly resistant (Bridget40 and Irma)

against ‘Babile’ M. incognita population. The ‘Jittu’ M. incognita population produced the

highest number of egg masses (53) on the control Marmande and on the genotype Miya (47)

while the lowest number (2) was found on the genotype Galilea. The ‘Babile’ M. incognita

population produced the highest number of egg masses (43) on the clone CL5915-206-D4

while the lowest number (1) was produced on the genotypes Bridget40 and Irma. Galilea was

found susceptible for ‘Babile’ M. incognita population.

Seventeen tomato genotypes were found susceptible, two moderately resistant (Mersa and 

VL-642), six very resistant (CLN-2037B, CLN-2037H, CLN-2366A, CLN-2366B, CLN-

2366C, CL5915-206-D4-2) and five highly resistant (Assila, CLN-2037A, Eden, Galilea and 

Tisey) against ‘Jittu’ M. javanica population while thirteen susceptible, one moderately 

resistant (Irma), three very resistant (Bridget40, Galilea, and Marglobe) and eight highly 

resistant (Assila, CLN-2366A, CLN-2366B, CLN-2366C, Eden, Melkashola, Tisey and VL-

642) against ‘Koka’ M. javanica population. The ‘Jittu’ M. javanica population produced the

highest number of egg masses (53) on the genotype Marglobe while the lowest number (1)

was found on the genotypes Assila, Eden, Galilea, Tisey and CLN-2037A. The ‘Koka’ M.

javanica population produced the highest number of egg masses (45) on the clone CLN-

2037A while the lowest number (1) was found on the genotypes Assila, Eden, Vl-642, CLN-

2366A, CLN-2366B and CLN-2366C.

The highest percentages of plants without egg masses were found on very resistant and 

highly resistant tomato genotypes. The ‘Koka’ M. javanica population produced no egg 
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masses on 93% of the plants of the tomato cultivar Assila and 90% plants of Eden, VL-642 

and CLN-2366B. The ‘Jittu’ M. javanica population produced no egg masses on 70% plants 

of the tomato cultivar Assila and Tisey and 67% plants of Eden (Table 4.3). The maximum 

percentage of plants (17%) without egg masses by ‘Jittu’ M. incognita population was on 

Galilea. In general, for M. javanica populations there were more plants on which no egg 

masses were found compared to M. incognita populations. The DD for M. javanica and M. 

incognita during the screening experiment were 505.16 and 672.41, respectively. 



4 
Re

si
st

an
ce

 S
cr

ee
ni

ng
  

  
98 

T
ab

le
 4

.3
. T

he
 m

ea
n 

nu
m

be
r o

f e
gg

 m
as

se
s 

pe
r p

la
nt

, p
er

ce
nt

ag
e 

of
 p

la
nt

s 
w

ith
ou

t e
gg

 m
as

se
s, 

an
d 

de
si

gn
at

io
n 

of
 re

si
st

an
ce

 fo
r M

el
oi

do
gy

ne
 

in
co

gn
ita

 ‘
Ji

ttu
’ 

an
d 

‘B
ab

ile
’ 

an
d 

M
. j

av
an

ic
a 

‘J
itt

u’
 a

nd
 ‘

K
ok

a’
 p

op
ul

at
io

ns
 o

n 
33

 to
m

at
o 

(S
ol

an
um

 ly
co

pe
rs

ic
um

 L
.) 

ge
no

ty
pe

s 
ei

gh
t w

ee
ks

 
af

te
r i

no
cu

la
tio

n 
w

ith
 1

00
 J2

.  

 
   

 

G
en

ot
yp

es
 

M
el

oi
do

gy
ne

 in
co

gn
ita

 p
op

ul
at

io
ns

 
M

el
oi

do
gy

ne
 ja

va
ni

ca
 p

op
ul

at
io

ns
 

‘J
itt

u’
 

‘B
ab

ile
’  

‘J
itt

u’
  

‘K
ok

a’
 

PP
 (%

)a  
A

E
M

b  
D

R
c  

PP
 

A
E

M
 

D
R

 
PP

 
A

E
M

 
D

R
 

PP
 

A
E

M
 

D
R

 
M

et
ad

el
 

0 
31

 e
f 

S 
0 

38
 b

 
S 

0 
39

 b
c 

S 
7 

29
 d

 
S 

M
iy

a 
0 

47
 b

 
S 

0 
16

 k
lm

no
 

S 
0 

25
 fg

h 
S 

0 
22

 fg
 

S 
M

on
ey

m
ak

er
 

0 
47

 b
 

S 
0 

23
 e

f 
S 

0 
31

 d
e 

S 
10

 
16

 h
i 

SR
 

C
ha

li 
0 

30
 f 

S 
0 

19
 g

hi
jk

 
S 

0 
17

 jk
 

SR
 

0 
14

 ij
 

SR
 

M
ar

gl
ob

e 
0 

43
 b

c 
S 

3 
18

 ij
kl

m
 

S 
0 

53
 a

 
S 

70
 

3 
kl

 
V

R
 

C
ho

ch
or

o 
3 

23
 g

hi
j 

SR
 

3 
12

 o
pq

 
SR

 
0 

20
 ij

 
S 

0 
18

 h
 

S 
M

el
ka

sh
ol

a 
0 

27
 fg

h 
S 

0 
15

 lm
no

p 
SR

 
0 

23
 h

i 
S 

77
 

1 
l 

H
R

 
Fe

ta
ne

 
0 

29
 f 

S 
0 

15
 n

op
 

SR
 

0 
29

 e
f 

S 
0 

13
 ij

 
SR

 
Es

he
te

 
0 

32
 e

f 
S 

0 
12

 p
q 

SR
 

0 
28

 e
fg

 
S 

0 
33

 b
c 

S 
Bi

sh
ol

a 
0 

40
 c

d 
S 

0 
15

 m
no

p 
SR

 
0 

22
 h

i 
S 

0 
27

 d
e 

S 
Ro

m
a 

VF
 

0 
20

 ij
k 

SR
 

0 
10

 q
 

SR
 

0 
14

 k
 

SR
 

0 
13

 ij
 

SR
 

AR
P-

To
m

at
o 

d2
 

0 
35

 d
e 

S 
0 

20
 e

fg
hi

j 
S 

0 
20

 ij
 

S 
0 

12
 j 

SR
 

H
-1

35
0 

0 
27

 fg
 

S 
0 

19
 h

ijk
 

S 
0 

26
 fg

h 
S 

0 
30

 c
d 

S 
M

el
ka

sa
ls

a 
0 

30
 f 

S 
0 

19
 ij

kl
 

S 
0 

32
 d

e 
S 

0 
43

 a
 

S 
M

ar
m

an
de

 (C
on

tr
ol

)  
0 

53
 a

 
S 

0 
31

 c
 

S 
0 

35
 c

d 
S 

0 
35

 b
 

S 
Vi

rg
ili

o 
F1

 H
yb

ri
d 

0 
38

 d
 

S 
0 

32
 c

 
S 

0 
25

 g
h 

S 
0 

11
 j 

SR
 

Ir
m

a 
7 

4 
pq

 
V

R
 

60
 

1 
r 

H
R

 
0 

25
 g

h 
S 

13
 

6 
k 

M
R

 
Br

id
ge

t4
0 

10
 

4 
q 

V
R

 
67

 
1 

r 
H

R
 

0 
25

 fg
h 

S 
7 

3 
kl

 
V

R
 

G
al

ile
a 

17
 

2 
q 

V
R

 
0 

16
 lm

no
 

S 
40

 
1 

m
 

H
R

 
13

 
3 

kl
 

V
R

 
As

si
la

 
0 

9 
no

p 
M

R
 

0 
23

 e
fg

h 
S 

70
 

1 
m

 
H

R
 

93
 

1 
l 

H
R

 



Ch
ap

te
r  

4 
  

99 

                 
   

   
   

 

   
   

   
   

 a
 PP

 is
 p

er
ce

nt
ag

e 
of

 p
la

nt
s  

 b
AE

M
 is

 A
ve

ra
ge

 E
gg

 M
as

s;
 D

at
a 

ar
e 

m
ea

ns
 o

f 3
0 

re
pl

ic
at

es
 (u

nt
ra

ns
fo

rm
ed

 d
at

a)
  

 c
D

R 
is

 d
es

ig
na

tio
n 

of
 re

sis
ta

nc
e,

 S
 (S

us
ce

pt
ib

le
) e

gg
 m

as
s p

ro
du

ct
io

n 
m

or
e 

th
an

 5
0%

 o
f t

ha
t o

n 
th

e 
su

sc
ep

tib
le

 c
ul

tiv
ar

 ‘M
ar

m
an

de
’; 

SR
 

(S
lig

ht
ly

 R
es

is
ta

nt
) w

ith
 e

gg
 m

as
s p

ro
du

ct
io

n 
25

-5
0%

; M
R 

(M
od

er
at

el
y 

Re
si

st
an

t) 
w

he
n 

eg
g 

m
as

s p
ro

du
ct

io
n 

10
-2

5%
; V

R 
(V

er
y 

Re
si

st
an

t) 
w

he
n 

eg
g 

m
as

s p
ro

du
ct

io
n 

1-
10

%
; H

R 
(H

ig
hl

y 
Re

si
st

an
t) 

w
he

n 
eg

g 
m

as
s p

ro
du

ct
io

n 
<

 1
%

; a
nd

 IM
 (i

m
m

un
e)

 p
la

nt
s o

n 
w

hi
ch

 n
em

at
od

es
 

di
d 

no
t r

ep
ro

du
ce

 o
r w

er
e 

ki
lle

d 
ba

se
d 

on
 H

ad
is

oe
ga

nd
a 

&
 S

as
se

r (
19

82
). 

  
   

   
  *

M
ea

ns
 in

 c
ol

um
ns

 fo
llo

w
ed

 b
y 

a 
si

m
ila

r l
et

te
r a

re
 n

ot
 st

at
is

tic
al

ly
 d

iff
er

en
t a

t 5
%

 le
ve

l b
y 

Fi
sh

er
’s

 u
np

ro
te

ct
ed

 le
as

t s
ig

ni
fic

an
ce

 d
iff

er
en

ce
. 

 

Ed
en

 
0 

7 
op

q 
M

R
 

0 
20

 e
fg

hi
j 

S 
67

 
1 

m
 

H
R

 
90

 
1 

l 
H

R
 

M
er

sa
 

0 
13

 lm
n 

M
R

 
0 

19
 fg

hi
j 

S 
7 

4 
lm

 
M

R
 

10
 

12
 j 

SR
 

Ti
se

y 
0 

14
 lm

 
SR

 
0 

11
 jk

lm
n 

SR
 

70
 

1 
m

 
H

R
 

50
 

1 
l 

H
R

 
VL

-6
42

 
0 

11
 m

no
 

M
R

 
0 

20
 e

fg
hi

j 
S 

13
 

7 
l 

M
R

 
90

 
1 

l 
H

R
 

C
L5

91
5-

D
4-

2-
2-

0 
0 

24
 g

hi
 

SR
 

0 
23

 e
fg

 
S 

0 
16

 jk
 

SR
 

0 
23

 f 
S 

C
L5

91
5-

20
6-

D
4-

2-
2 

0 
22

 h
ij 

SR
 

0 
27

 d
 

S 
33

 
2 

m
 

V
R

 
0 

24
 e

f 
S 

C
LN

-2
36

6B
 

0 
18

 jk
l 

SR
 

0 
22

 e
fg

hi
 

S 
23

 
3 

m
 

V
R

 
90

 
1 

l 
H

R
 

C
LN

-2
03

7B
 

0 
21

 ij
 

SR
 

0 
22

 e
fg

hi
 

S 
27

 
2 

m
 

V
R

 
0 

29
 d

 
S 

C
LN

-2
03

7A
 

0 
21

 ij
*  

SR
 

0 
32

 c
 

S 
57

 
1 

m
 

H
R

 
0 

45
 a

 
S 

C
LN

-2
03

7H
 

0 
15

 k
lm

 
SR

 
0 

9 
q 

SR
 

37
 

2 
m

 
V

R
 

0 
29

 d
 

S 
C

LN
-2

36
6A

 
0 

22
 ij

 
SR

 
0 

20
 e

fg
hi

j 
S 

13
 

3 
m

 
V

R
 

67
 

1 
l 

H
R

 
C

LN
-2

36
6C

 
0 

20
 ij

k 
SR

 
0 

23
 d

e 
S 

27
 

2 
m

 
V

R
 

80
 

1 
l 

H
R

 
C

LN
-2

03
7C

 
0 

37
 d

 
S 

0 
36

 b
 

S 
0 

39
 b

 
S 

0 
19

 g
h 

S 
C

L5
91

5-
20

6-
D

4 
0 

40
 c

d 
S 

0 
43

 a
 

S 
0 

41
 b

 
S 

0 
14

 ij
 

SR
 



4 Resistance Screening 

100 

4.3.3. Assessment of Resistance Mechanism 

Tomato genotypes (cultivars and breeding lines) and time (weeks after inoculation) had a 

significant effect (p < 0.05) on J2 penetration and their subsequent development inside the 

root tissue. A significant interaction was found between the two factors for the detection of 

the majority of different developmental stages inside the root tissue for all the three 

populations tested. The mean numbers of vermiform juveniles (VJ), swollen juveniles (SJ) 

(J2, J3 & J4) and adult females (AF) (young females considered) of M. incognita ‘Babile’ 

and M. javanica ‘Jittu’ and ‘Koka’ populations that were detected in the roots of tomato 

cultivars and breeding lines at different weeks after inoculation are presented Fig 4.5 - 4.7.  

4.3.3.1. Meloidogyne incognita ‘Babile’ population 

The tomato genotypes and time had a significant effect on the numbers of VJ (Fgenotypes = 

3.433, p = 0.036; Ftime = 815.598, p < 0.01), SJ (Fgenotypes = 36.617, p < 0.01; Ftime  = 141.399, 

p < 0.01) and AF (Fgenotypes = 39.395, p < 0.01; Ftime = 549.368, p < 0.01) of M. incognita 

‘Babile’ population detected inside the plant roots. The interaction between both was 

significant for SJ (F = 6.810, p < 0.01) and AF (F = 7.395, p < 0.01). The J2 of M. incognita 

‘Babile’ population penetrated, and further developed into egg laying adult females on the 

two genotypes tested (Fig 4.5). 

4.3.3.2. Meloidogyne javanica ‘Jittu’ and ‘Koka’ populations 

The tomato genotypes and time had a significant effect on the numbers of VJ (Fgenotypes = 

37.896, p < 0.01; Ftime = 312.933, p < 0.01), SJ (Fgenotypes = 65.095, p < 0.01; (Ftime = 77.962, 

p < 0.01) and AF (Fgenotypes = 109.018, p < 0.01; Ftime = 364.193, p < 0.01) of M. javanica 

‘Jittu’ population detected inside the plant roots. The interaction between both was significant 

for VJ (F = 21.621, p <0.01); SJ (F = 4.856, p < 0.01) and AF (F = 15.169, p < 0.01). 

Similarly, tomato genotypes and time had a significant effect on the numbers of VJ (Fgenotypes 

= 52.058, p < 0.01; Ftime = 812.262, p < 0.01), SJ (Fgenotypes = 62.293, p < 0.01; (Ftime = 

45.356, p < 0.01) and AF (Fgenotypes = 201.619, p < 0.01; Ftime = 849.461, p < 0.01) of M. 

javanica ‘Koka’ population detected inside the plant roots. The interaction between both was 

significant for VJ (F = 34.844, p < 0.01); SJ (F = 9.345, p < 0.01) and AF (F = 27.788, p < 

0.01). The tomato breeding lines CLN-2366A, CLN-2366B and CLN-2366C were effective in 

reducing J2 penetration rate and their subsequent development for both M. javanica ‘Jittu’ 

and ‘Koka’ populations as compared to the cv. Marmande (Fig 4.3A & Fig 4.4).  
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Figure 4.3. A comparison of penetration and developmental stages of Meloidogyne incognita 
and M. javanica populations detected inside the tomato roots after 1, 2, 4 and 6 weeks of 
inoculation with 100J2 in a growth chamber experiments. A) CLN-2366A, CLN-2366B & 
CLN-2366C breeding lines after inoculation with M. javanica ‘Jittu’ and ‘Koka’ populations; 
B) the cv. ‘Melkashola’ after inoculation with M. javanica ‘Koka’ population; C) the cv. 
‘Chochoro’ after inoculation with M. incognita ‘Babile’ population; and D) the cv. 
‘Marmande’ (susceptible control) after inoculation with M. javanica ‘Jittu’ and ‘Koka’ and 
M. incognita ‘Babile’ population showed similar reactions. 
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Figure 4.4. Mean numbers of total nematodes/ plant of different developmental stages 
(vermiform juveniles, swollen juveniles and adult females) of M. incognita ‘Babile’ and M. 
javanica ‘Jittu’ and ‘Koka’ populations inside roots of selected tomato genotypes. The bars 
on the graphs indicate the standard deviation of the mean. 

 

In general, at 4 and 6 weeks after inoculation there were no VJ detected in none of the tomato 

genotypes studied against M. incognita ‘Babile’ population and ‘Jittu’ and ‘Koka’ M. 

javanica populations (Fig 4.5-4.7). At 1 week after inoculation, females from these tested 

populations were not detected in all genotypes including on the cv. Marmande. At 2 weeks 

after inoculation, a few females were able to develop on a few genotypes (Fig 4.5 - 4.7). 

Swollen juveniles were found at all times 1, 2, 4 and 6 weeks after inoculation though on the 

first week it was only detected in few genotypes (Fig 4.6 & Fig 4.7).  
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Figure 4.5. Mean number (nematodes/plant) of different developmental stages of M. 
incognita ‘Babile’ population inside roots of three tomato cultivars at different times after 
inoculation (n = 10). 
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Figure 4.6. Mean number (nematodes/plant) of developmental stages of M. javanica ‘Jittu’ 
population inside roots of ten tomato cultivars and breeding lines at different times after 
inoculation (n = 10). 
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Figure 4.7. Mean number (nematodes/plant) of developmental stages of M. javanica ‘Koka’ 
population inside roots of ten tomato cultivars and breeding lines at different times after 
inoculation (n = 10). 

 
4.4. Discussion 

In this study, the host suitability and mechanism of resistance of 33 commercial tomato 

cultivars and breeding lines against Ethiopian local aggressive RKN populations were 

examined. Several of the tested tomato genotypes had varying degrees of resistance against 

the selected populations of M. incognita and M. javanica. Tisey (with Mi-gene) has shown a 

spectrum of resistance against the four populations tested, which indicates the performance of 

the contained resistance genes. However, in all the other tomato genotypes a variation for 
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resistance was found against the different populations of the same species that may emphasis 

the importance of population based nematode management strategies. The tomato cultivars 

(Metadel, Miya, H-1350 and Melkasalsa) frequently used by SSF of Ethiopia were found 

equally susceptible for the four tested populations. Care should be given not to grow these 

cultivars in nematode infested soils. Interestingly, CLN-2037C was also found equally 

susceptible for the four populations tested while other breeding lines with the same pedigree 

(CLN-2037H and CLN-2037B) were found having different levels of resistance. The tomato 

cultivars that are commonly grown by SSF of Ethiopia (mainly in the Rift Valley and Upper 

Awash areas) such as Marglobe and Melkashola were found susceptible for the two 

populations of M. incognita and ‘Jittu’ M. javanica population but these cultivars were found 

very resistant and highly resistant for ‘Koka’ M. javanica respectively. This proves the need 

to consider population based differences while recommending resistance cultivars as a 

management tool. The tomato cultivars and breeding lines such as Assila (with Mi-gene), 

CLN-2366A, CLN-2366B, CLN-2366C, Eden (with Mi-gene), Mersa, VL-642 (with TYLCV 

resistance gene with some degree of nematode resistance) and Galilea (with Mi-gene) were 

found resistant (though with different levels) for ‘Jittu’ M. incognita and ‘Jittu’ and ‘Koka’ 

M. javanica populations but surprisingly they all were found susceptible for ‘Babile’ M. 

incognita population. This may indicate that ‘Babile’ M. incognita population might have 

been dominated by virulent individuals which were able to overcome or break the contained 

resistance genes. The cultivars Bridget40 and Irma showed resistance against both 

populations of M. incognita and ‘Koka’ M. javanica population but both were found 

susceptible for ‘Jittu’ M. javanica population. The cultivar ‘Virgilio F1 Hybrid’ that was 

reported to be resistant for several isolates of M. incognita, M. javanica, M. arenaria and 

some unidentified isolates of Meloidogyne species from Uganda (Mwesige, 2013) showed 

susceptible reaction for the tested four populations of M. incognita and M. javanica from 

Ethiopia. Thus, searching for a possible resistance in tomato cultivars or breeding lines 

should therefore be against population levels rather than at species level. The current study is 

in agreement with earlier studies conducted on host suitability of tomato genotypes for M. 

incognita and M. javanica (Hadisoeganda & Sasser, 1982; Singh & Khurma, 2007; Khah et 

al., 2011; Kesba et al., 2015). 

   

Due to the polyphagous nature of Meloidogyne species, decisions on the choice of crops for 

crop rotations in infested fields are difficult and have to be taken carefully (Wesemael et al., 

2011). This screening experiment showed that the tested genotypes of tomato were poor to 
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very good hosts to both M. incognita and M. javanica populations used. The information 

generated is important in designing crop rotation schemes and cropping systems to avoid 

yield losses due to nematode infested soil.  

 

The presence of egg masses on all tomato genotypes indicates that none of them is immune 

for the tested populations of M. incognita and M. javanica. Nevertheless, significant 

differences in the number of egg masses produced on the tomato genotypes indicate different 

degrees of susceptibility. The degree of susceptibility is controlled by the presence of 

resistance genes such as Mi gene and genetic background of the tomato genotypes 

(Castagnone-Sereno, 2006). The heterozygous or homozygous state of the Mi locus has been 

reported to affect the degree of resistance to Meloidogyne species with the genotypes having 

the heterozygous form of the Mi gene being more susceptible over homozygous genotypes 

(Seid et al., 2015; Kesba et al., 2015). The variation in the degree of susceptibility in this 

study to the tested RKN populations in all the 33 tomato genotypes is likely to be due to the 

genetic differences between the genotypes (Singh & Khurma, 2007; Kesba et al., 2015). 

Knowing the genetic difference present in the genotypes will have important implications on 

the yield and economic returns and thereby to farmers while selecting the tomato varieties for 

planting on Meloidogyne spp. infested fields. As observed in some genotypes used in this 

study and supported by other researchers, several plants may have numerous galls (Bridget40 

and Irma) caused by RKN with little or no reproduction (could be used as a trap crop) and 

much reproduction may occur on some plants with few or no galls (Chali and Bishola)(data 

not shown) (Fassuliotis, 1979; Cook & Evans, 1987).  

 

In the resistance screening experiment, variation in resistance was found between different 

commercial tomato cultivars and breeding lines even between different populations of the 

same species. There were tomato cultivars or breeding lines with a high percentage of plants 

on which no egg masses were produced. The absence of egg masses does not necessarily 

imply J2 penetration failure J2 may enter the plant root but fail to develop into adult females 

or after penetration they may be killed by hypersensitive reaction or they may emigrate out of 

the root to search for a new host (Silva et al., 2013). In order to elucidate this more, the 

resistance screening study was followed by resistance mechanism study. Moreover, knowing 

the proper mechanism of resistance of cultivars or breeding lines will also help in designing 

appropriate management strategies. Mechanisms for nematode resistance in plants are of two 

types, pre-infection resistance, in which the nematodes cannot enter the plant roots possibly 
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due to the presence of pre-formed chemicals such as toxic or antagonistic to nematodes 

(Bendezu & Starr, 2003) and post-infection resistance, which is manifested after nematodes 

penetrated roots due to failed development (Anwar & Mckenry, 2000) and the later being the 

most common type (Fassuliotis, 1979). The applicability of statistical significance values in 

practical terms is limited when we use the ANOVA analysis result, however, this method 

detects small difference in egg mass production between tomato genotypes. Resistance 

designation using scales or ranges is more applicable but it is not robust enough to take into 

consideration the small differences in egg masses production.  

 

From the two (tomato genotypes and time) main effects, time had the highest significant 

effect on the number of VJ, SJ and AF detected inside the tomato roots and this information 

will have a practical management significance. Their interaction effect was also found 

significant but it was less important compared to the main effects. In our study differential 

penetration was found on breeding lines such as CLN-2366A, CLN-2366B and CLN-2366C as 

compared to the control Marmande. Many of the selected tomato genotypes resistance 

against the M. incognita and M. javanica population used was expressed by delayed 

nematode development rather than differential penetration such as in Marglobe and 

Melkashola against the M. javanica ‘Koka’ population. Similar penetration of resistant and 

susceptible cultivars by infective J2 of Meloidogyne spp. has also been found in cucumber 

(Walters et al., 2006), coffee (Silva et al., 2013), common bean (Sydenham et al., 1996; 

Wesemael & Moens, 2012), alfalfa (Reynolds et al., 1970), maize (Windham & Williams, 

1994), cotton (Creech et al., 1995), tobacco (Schneider, 1991), tomato (Hadisoeganda & 

Sasser, 1982), and soybean (Herman et al., 1991).  

 

The most common and preferred tomato commercial cultivar Chochoro by the SSF of 

Ethiopia was found susceptible for both M. javanica populations but slightly resistant for 

both M. incognita populations. Both M. incognita and M. javanica multiplied on this cultivar 

though with different degrees and therefore appropriate crop rotation schemes need to be 

designed to minimize losses for the subsequent crops. The tomato breeding lines CLN-2366A, 

CLN-2366B and CLN-2366C were found highly resistant. Further breeding efforts (preferably 

used as a rootstock) to improve these breeding lines will allow their use in RKN infested soil, 

particularly in areas where M. javanica populations are prevalent such as ‘Babile locations’ 

in eastern Hararghe districts. Simple screening techniques that suit SSF are vital. Planting 

different tomato cultivars on selected nematode hot spot areas to serve as demonstration plots 
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so that farmers can easily compare the performance of different tomato cultivars in their local 

settings is recommended. For the future work on assessment of crop resistance against RKN 

populations, the inclusion of number of eggs produced per eggmass as one parameter on top 

of number of egg masses produced per plant will have a practical significance and a reliable 

prediction of the nematode populations present in the soil at the end of a cropping season and 

thereby in designing crop rotation schemes. There should also be an effort to study the 

genetic background of the crop under consideration for resistance screening. 

 

Acknowledgement 

This research was financially and technically supported by VLIR-UOS (ICP-PhD 

Scholarship) from Belgium. 

4.5. References 

Anwar, S.A. & Mckenry, M.V. (2000). Penetration, development and reproduction of 

Meloidogyne arenaria on two new resistant Vitis spp. Nematropica 30, 9-17.  

Belan, L.L., Fonseca, S.O., Alves, F.R., Junior, W.C.J., Matta, E.P., Cabral, P.D.S., Rabello, 

L.K.C. & Rodrigues, A.A. (2009). Screening of Cherry tomato genotypes for resistance to 

Meloidogyne incognita and M. javanica. Nematologia Brasileira Piracicaba (SP) Brasil 

33(3), 256-259.  

Bendezu, I.F. & Starr, J. (2003). Mechanism of resistance to Meloidogyne arenaria in the 

peanut genotype COAN. Journal of Nematology 35, 115-118. 

Byrd, D.W., Kirkpatrick, T. & Barker, K.R. (1983). An improved technique for clearing and 

staining plant tissues for detection nematodes. Journal of Nematology 15,142-143. 

Castagnone-Sereno, P. (2006). Genetic variability and adaptive evolution in parthenogenetic 

root-knot nematodes. Heredity 96, 282-289. 

Cook, R. & Evans, K. (1987). Resistance and tolerance in: Principles and Practice of 

Nematode Control in Crops, ed. by Brown RH and Kerry BR, Academic Press, London, 

UK, pp. 179-231. 

Coyne, D.L., Fourie, H.H. & Moens, M. (2009). Current and future management strategies in 

resource-poor farming in: Root-knot nematodes, ed. By Perry RN, Moens M and Starr JL, 

CAB International, Wallingford, UK, pp. 444-475. 



4 Resistance Screening 

110 

Creech, R.G., Jenkins, J.N., Tang, B., Lawrence, G.W. & McCarty, J.C. (1995). Cotton 

resistance to root-knot nematode. I: Penetration and reproduction. Crop Science 35, 365-

368. 

Daykin, M.E. & Hussey, R.S. (1985). Staining and histopathological techniques in 

nematology, in: An advanced Treatise on Meloidogyne, Volume II Methodology, ed. by 

Barker KR, Carter CC and Sasser JN. North Carolina State University Graphics, 

Raleigh, NC, pp. 39-48. 

Devran Z., Sogut, M.A. & Mutlu, N. (2010). Response of tomato rootstocks with the Mi 

resistance gene to Meloidogyne incognita race 2 at different soil temperatures. 

Phytopathologia Mediterranea 49,11-17. 

Dropkin, V.H. (1969). The necrotic reaction of tomatoes and other hosts resistant to 

Meloidogyne: Reversal by temperature. Phytopathology 59, 1632-1637. 

Esbenshade, P. & Triantaphyllou, A. (1985). Use of enzyme phenotypes for identification 

of Meloidogyne species. Journal of Nematology 17, 6-20.  

Fassuliotis, G. (1979). Plant breeding for root-knot resistance, In:  Lambert F, Taylor CE 

(eds). Root-knot Nematodes (Meloidogyne species) systematics, biology and control. 

Academic Press New York, pp. 425-453. 

Hadisoeganda, W.W. & Sasser, J.N. (1982). Resistance of tomato, bean, Southern pea and 

garden pea genotypes to root-knot nematodes based on host suitability. Plant Diseases 

66,145-150. 

Herman, M., Hussey, R.S. & Boerma H.R. (1991). Penetration and development of 

Meloidogyne incognita on roots of resistant soybean genotypes. Journal of Nematology 

23,155-161. 

Holterman, M., Van Der Wurff ,A., Van Den Elsen, S., Van Megen, H., Bongers,T., 

Holovachov, O., Bakker, J. & Helder, J. (2006). Phylum-wide analysis of SSU rDNA 

reveals deep phylogenetic relationships among nematodes and accelerated evolution 

toward crown clades. Molecular Biology and Evolution 23, 1792-1800. 

Janssen, T., Karssen, G., Verhaeven, M., Coyne, D. & Bert, W. (2016). Mitochondrial coding 

genome analysis of tropical root-knot nematodes (Meloidogyne) supports haplotype based 

diagnostics and reveals evidence of recent reticulate evolution. Scientific reports 6, 22591, 

doi:10.1038/srep22591. 

Jiregna, T.D. (2013). Evaluation of agronomic performance and Lycopene variation in 

tomato (Lycopersicon esculentum Mill.) genotypes in Mizan, Southern Ethiopia. World 

Applied Sciences Journal 27 (11), 1450-1454. 



Chapter  4  

 111 

Jones, J.T., Haegeman, A., Danchin, E.G.J., Gaur, H.S., Helder, J., Jones, M.G.K., Kikuchi, 

T., Rose, M.L., Palomares-Rius, J.E., Wesemale, W.M.L. & Perry, R.N. (2013). Review 

of top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant 

Pathology 14, 946-961. 

Kesba, H.H., Hasnin, N.M.M., Mahmoud, A.M.A. & Ali, A.H.H. (2015). Evaluation of Some 

Tomato Genotypes to Meloidogyne incognita Resistance. American-Eurasian Journal of 

Agriculture and Environmental Sciences 15(7), 1402-1410. 

Khah, E.M., Rumbos, C.I. & Sabir, N. (2011). Response of local and commercial tomato 

cultivars and rootstocks to Meloidogyne javanica infestation. Australian Journal of Crop 

Sciences 5(11), 1388-1395. 

McSorley, R. (2011). Overview of organic amendments for management of plant-parasitic 

nematodes, with case studies from Florida. Journal of Nematology 43(2), 69-81. 

Mwesige, R. (2013). Identification and pathogenicity of root-knot nematodes from tomatoes 

grown in Kyenjojo and Masaka districts in Uganda. MSc Thesis, Ghent, Belgium.   

Ploeg, A.T. & Maris, P.C. (1999). Effect of temperature on suppression of Meloidogyne 

incognita by Tagetes Cultivars. Supplement to the Journal of nematology 31(4S), 709-714. 

Reynolds, E.S., Carter, W.W. & O’Bannon, J.H. (1970). Symptomless resistance of alfalfa to 

Meloidogyne incognita acrita. Journal of Nematology 2,131-134. 

Roberts, P.A. (1992). Current status of the availability, development and use of host plant 

resistance to nematodes. Journal of Nematology 24, 213-227. 

Roberts, P.A., Matthews, W.C. & Veremis, J.C. (1998). Genetic mechanisms of host-plant 

resistance to nematodes. In: K.R. Barker, G.A. Pederson, and G.L. Windham (eds.), Plant 

and nematode interactions p209-238. Amer. Soc. Agro., Crop Sci. Soc. Amer., and Soil 

Sci. Soc. Amer. Madison, Wisc. 

Roberts, P.A. & Thomason, I.J. (1986). Variability in reproduction of isolates of M. incognita 

and M. javanica on resistant tomato genotypes. Plant disease 24, 547-551.  

Roberts, P.A. & Thomason, I.J. (1989). A review of variability in four Meloidogyne spp. 

measured by reproduction on several hosts including Lycopersicon. Agricultural Zoology 

Reviews 3, 225-252.  

Sasser, J.N. (1980). Root-knot nematodes: A Global Menace to Crop Production. Plant 

Disease 64, 36-41. 

Schneider, S.M. (1991). Penetration of susceptible and resistant tobacco cultivars by 

Meloidogyne juveniles.  Journal of Nematology 23, 225-228. 



4 Resistance Screening   

 112 

Seid, A., Fininsa, C., Mekete, T., Decraemer, W. & Wesemael, W.M.L. (2015). Tomato 

(Lycopersicon esculentum L.) and root- knot nematodes (Meloidogyne spp.)-A Century 

Old Battle. Nematology 17(9), 995-1009. 

Silva. R.V., Oliveira, R.D.L., Ferreira, P.S., Ferreira, A.O. & Rodrigues, F.A. (2013). 

Defence responses to Meloidogyne exigua in resistant coffee cultivar and non-host plant. 

Tropical Plant Pathology 38, 114-121. 

Singh S.K. & Khurma, U.R. (2007). Susceptibility of six tomato cultivars to the root-knot 

nematode, Meloidogyne incognita. The South Pacific Journal of Natural Science, pp. 73-

77. 

Sydenham, G.M., McSorley, R. & Dunn, R.A. (1996). Effects of resistance in Phaseolus 

vulgaris on development of Meloidogyne species. Journal of Nematology 28, 485-491. 

Verdejo-Lucas, S., Cortada, L., Sorribas, F.J. & Ornat, C. (2009). Selection of Virulent 

populations of Meloidogyne javanica by repeated cultivation of Mi resistance tomato 

rootstocks in a plastic house. Plant Pathology 58, 990-998. 

Walters, S.A., Wehner, T.C., Daykin, M.E. & Barker, K.R. (2006). Penetration rates of root-

knot nematodes into Cucumis sativus and C. metuliferus roots and subsequent histological 

changes. Nematropica 36, 231-242. 

Wesemael, W.M.L. & Moens, M. (2012). Screening of common bean (Phaseolus vulgaris) 

for resistance against temperate root-knot nematodes (Meloidogyne spp.). Pest 

Management Sciences 68, 702-708. 

Wesemael, W.M.L., Viaene, N. & Moens, M. (2011). Root-knot nematodes (Meloidogyne 

spp.) in Europe. Nematology 13, 3-16. 

Windham, G.L. & Williams, W.P. (1994). Penetration and development of Meloidogyne 

incognita in roots of resistant and susceptible corn genotypes. Journal of Nematology 26, 

80-85. 

 

 

 

 



 

113  

 

 

 

Chapter 5: Heat stability of 
resistance in selected tomato 

breeding lines against 
Meloidogyne incognita and 

Meloidogyne javanica 
populations under elevated soil 

temperatures 

 
 
 

 

 

 

 

 

 

Awol Seid, Chemeda Fininsa, Tesfamariam Mekete, Wilfrida Decraemer, And Wim M. L. 

Wesemael, (2016). Heat stability of resistance in selected tomato breeding lines against 

Meloidogyne incognita and M. javanica populations under elevated soil temperatures.  

Prepared to be submitted for the Russian Journal of Nematology.  

 

 

 

 



5 Heat Stability of Resistance   

 114 

Abstract 

In tomato, the only commercially available source of resistance to RKN is the Mi-1 gene that 

confers resistance to Meloidogyne incognita, M. javanica, and M. arenaria. However, its 

effectiveness was found limited in higher soil temperatures. A study was initiated with the 

objective to check the durability of the potential resistance genes found in some tomato 

breeding lines after screening in controlled greenhouse conditions ≤ 27°C by exposing them 

into higher soil temperatures at 28, 32 and 36°C for 24 and 48hrs period. The aggressive Jittu 

and Babile M. incognita and Jittu and Koka M. javanica populations originally collected from 

Ethiopia were used. When seedlings reached the four-leaf stage, each tube was inoculated 

with 50 freshly (≤ 24hrs) hatched infective second-stage juveniles (J2). Immediately after 

inoculation, the seedlings were exposed continuously for 24 and 48hrs in a warm water bath 

at 28, 32 and 36°C respectively. A control was kept separately in ambient temperature (24°C 

± 2°C). The external ambient temperature and the soil temperature inside the tube while in 

the water bath were simultaneously recorded using a TESTO data logger. Temperature, 

tomato breeding lines and time had a significant (P < 0.01) effect on the number of J2 of M. 

incognita Jittu and Babile and Jittu and Koka M. javanica populations penetrated the plant 

roots. The utility of the potential resistance found in our breeding lines during the controlled 

growth chamber resistance screening experiment was found limited at higher soil 

temperatures especially at 32 and 36°C. At 36°C there was no significant difference found on 

the mean number of penetrated J2 of Jittu and Babile M. incognita and Jittu and Koka M. 

javanica populations inside the roots of all the tested breeding lines compared to Marmande 

after 48hrs of heat exposure after inoculation. More J2 were found in the roots of the tested 

breeding lines after 48hrs compared with 24hrs heat exposure after inoculation for each soil 

temperature level tested and for both populations of M. incognita. It is clear from our 

observations that local tomato breeding lines with resistance potential can be used when soil 

temperatures remain below 32°C. Differences were observed between breeding lines 

depending on the RKN population at higher temperatures and this knowledge can help in 

further optimizing the development of sustainable resistance under local Ethiopian 

circumstances. 

 

Key words: resistance, breeding lines, Mi-1, heat stability, soil temperature, and 

Meloidogyne species  
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5.1. Introduction 

Tomato (Solanum lycopersicum) is among the most valuable agricultural crops worldwide 

(Carvalho et al., 2015). A considerable portion of the tomato production takes place in warm 

and hot climates (Verdejo-Lucas et al., 2013) where RKN are important endoparasitic pests 

(Ammiraju et al., 2003) and its infestation causes serious crop losses (Carvalho et al., 2015). 

Tomato yield reduction as severe as 100% have been reported (Seid et al., 2015) (see chapter 

2).  

Management of RKN is a challenging task due to its wider host range which hinders the 

practice of crop rotation (Chen et al., 2006). Soil fumigants, systemic and contact 

nematicides, resistant rootstocks, resistant cultivars and cultural practices are commonly 

employed to control RKN (Devran et al., 2010, Seid et al. 2015). After the withdrawal of the 

effective and widely used soil fumigant methyl bromide from the market due to its negative 

effect on stratospheric ozone (Rosskopf et al., 2005) and risks for non-target organisms 

(Ploeg, 2002; Devran et al., 2010), HPR appeared as a powerful and sustainable tool for crop 

protection including the management of RKN (Devran et al., 2010).  

 

In tomato, the single dominant gene Mi-1 confers resistance but not immunity to the three 

most damaging species: Meloidogyne incognita, M. javanica, and M. arenaria (Milligan et 

al., 1998) with M. incognita and M. javanica reported in the Ethiopian agriculture (Mandefro 

& Mekete, 2002). This gene has been the only commercially available source of resistance to 

RKN for the last 70 years globally (Seid et al., 2015). Mi-1 gene was found in Solanum 

peruvianum and interogressed into S. lycopersicum (Rodriguez, 2013). The effectiveness of 

the Mi-1 gene varies with RKN species and population, tomato cultivar, and environmental 

conditions, particularly soil temperature (Devran et al., 2010; Verdejo-Lucas et al., 2013; 

Seid et al., 2015). Even though there is inconsistency in literature, increased gall formation 

has been reported in plants exposed to soil temperatures above 28°C (Haroon et al., 1993; 

Wang et al., 2009; Devran et al., 2010; Verdejo-Lucas et al., 2013). The Mi-1 resistance was 

lost after 4 days at ≥ 33°C in 1 to 3 days old seedlings exposed to heat treatment after 

inoculation with M. incognita and subsequently held at 27°C for 1 month (Dropkin, 1969). 

Climatic heterogeneity is a general characteristics of Ethiopia and in areas where tomato is 

largely produced soil temperature at times rises above 28°C (Alemayehu, 2002). Under field 

conditions, it is possible that plants are subjected to environmental and daily soil temperature 

fluctuations (Verdejo-Lucas et al., 2013). Consequently, the expression of the resistance 
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phenotype may or may not be similar to that observed under constant (generally < 28 °C) 

temperature conditions. The incorporation of heat-stable resistance to Meloidogyne spp. 

would be a valuable genetic improvement in tomato. Thus, checking the heat stability of the 

potential resistance gene in higher soil temperatures after screening tomatoes against RKN 

populations in a controlled environment is crucial. Therefore, the objective of this study was 

to check the durability of the potential resistance genes found in some tomato breeding lines 

after screening in controlled greenhouse conditions ≤ 27°C by exposing them to higher soil 

temperatures at 28, 32 and 36 °C for 24 and 48 hrs period.  

5.2. Materials and Methods  

5.2.1. Tomato Breeding Lines 

Based on the results of the screening experiment (see chapter 4) and the availability of 

enough seeds to initiate the experiment, seven tomato breeding lines (CLN-2366A, CLN-

2366B, CLN-2366C, CLN-2037H, CLN-2037A, CLN-2037B and CL5915-206-D4-2-2) 

obtained from AVRDC were selected to check the heat stability of their potential resistance 

at 28, 32 and 36°C soil temperatures. The tomato cultivar Marmande was used as a 

susceptible control.  

5.2.2. Meloidogyne incognita and Meloidogyne javanica Culture 

The aggressive Jittu and Babile M. incognita and Jittu and Koka M. javanica populations 

originally collected from Ethiopia (see chapter 4) were used. The culture of these populations 

was maintained on tomato cv. Marmande in the glasshouses at ILVO. Inoculum was prepared 

from the infected tomato roots. Therefore, roots were carefully washed and cut into smaller 

pieces and placed on a Baermann funnel in a mistifier. Freshly hatched (≤ 24hrs) infective J2 

were collected and used as inoculum.  

5.2.3. Heat Stability Experiment  

A plastic tube (15 ml volume, 95mm height, 15mm diameter) was filled with sterilized 

(100°C, 16hrs) soil (74% sand, 14% sandy loam, 6% clay, 5% loam, 1% organic matter 

content and a neutral pH). A single seed was allowed to grow per tube. Plants were watered 

daily and maintained at 23°C ± 2°C (11hrs day), 20°C ± 1°C (13hr night), with 60 to 65% 

relative humidity for three consecutive weeks in a growth chamber at ILVO. When the 

seedlings reached the four-leaf stage, they were brought to the laboratory and kept in the 

ambient temperature overnight. Then, each tube was inoculated with 50 freshly (≤ 24hrs) 

hatched infective J2. Immediately after inoculation, the seedlings were exposed continuously 

for 24hrs and 48hrs in a warm water bath at 28, 32 and 36°C, respectively. A control was 
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kept separately in ambient temperature (24°C ± 2°C). The external ambient temperature and 

the soil temperature inside the tube while in the water bath were simultaneously recorded 

using a data logger (Testo 175T2) (Fig 5.1). After the exposure period, the seedlings were 

returned to the growth chamber. The experiment was arranged in a completely randomized 

design with eight replications. Eight days after inoculation, the nematodes inside the root 

were stained with acid fuchsin using the method described by Byrd et al. (1983).  

 
Figure 5.1. A) Plastic tubes with tomato seedlings; B) the experimental set up for the heat 
stability test in a awarm water bath with simultanously recording of the soil temperatures 
using adata longer (TESTO).  

 
5.2.4. Data Analysis 

The heat stability data were analysed using Statistica Version7 Software. Mean numbers of 

J2 that penetrated the tomato roots after being exposed to different soil temperature regimes 

(25, 28, 32 and 36°C) and time (24 and 48hrs) was subjected to factorial ANOVA and 

statistically compared using Fisher’s unprotected LSD at P < 0.05. One-way ANOVA was 

used to analyse the penetration of J2 in the roots of each clone separately for each 

temperature after inoculation followed by a post-hoc test using Tukey HSD at P < 0.05. J2 
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penetration counts were Log 10 (x+1) transformed for analysis to fulfil the criteria for 

normality. All graphs were drawn using Sigmaplot13 statistical software.  

5.3. Results 

5.3.1. Jittu and Babile M. incognita Populations  

5.3.1.1. The effect of temperature, breeding lines and time  

Temperature, tomato breeding lines and time had a significant effect on the numbers of J2 

(Ftemperature = 118.06, p < 0.01; Fbreeding lines = 41.30, p < 0.01 and Ftime = 23.01, p < 0.01) of M. 

incognita Jittu population that penetrated the plant roots. The interaction between breeding 

lines*temperature, temperature*time and breeding lines*temperature* time was significant 

for M. incognita Jittu J2 penetration (F = 2.26, p < 0.01; F = 5.96, p < 0.01 and F = 1.63, p < 

0.01 respectively) but the effect was less evident compared to the main effects. Similarly, 

temperature, breeding lines and time had a significant effect on the numbers of J2 (Ftemperature 

= 134.35, p < 0.01; F breeding lines = 47.17, p < 0.01 and Ftime = 26. 44, p < 0.01) of M. incognita 

Babile population that penetrated the plant roots. The interaction between breeding lines 

*temperature, breeding lines*time, temperature*time and breeding lines*temperature*time

was significant for M. incognita Babile population J2 penetration (F = 4.12, p < 0.01; F=

2.05, p < 0.05; F = 8.75, p < 0.01 and F = 1.92, p < 0.01, respectively) but the effect was

again less compared to the main effects.

5.3.1.2. The effect of temperature levels 

After 24hrs heat exposure to 28°C, the number of J2 of M. incognita Babile population inside 

the roots of CLN-2366C and CLN-2366A were significantly higher compared to the control 

(25°C). The number of J2 of this population inside the roots of CLN-2366C, CLN-2366A, 

CLN-2037A, CLN-2037B and CL5915-206-D4-2-2 were significantly higher after 48hrs 

exposure to 28°C compared to 25°C. For the Jittu M. incognita population, the number of J2 

detected in the roots of CLN-2366B, CLN-2366A and CLN-2037H after 24hrs exposure to 

28°C were significantly higher compared to 25°C. The number of J2 found inside the roots of 

all the tested breeding lines after 48hrs exposure to 28°C were significantly higher compared 

to 25°C for Jittu M. incognita population.  

The number of J2 for Babile M. incognita population detected inside the roots of all the tested 

tomato breeding lines was considerably higher after 24 and 48hrs exposure to 32°C compared 

to 25°C (Fig 5.3.). Remarkably higher number of J2 were found inside the roots of all the 
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tested breeding lines after inoculation with Jittu M. incognita population and 24hrs exposure 

to 32°C compared to 25°C with the exception of CLN-2037A. A significantly higher number 

of J2 entered the roots of all the tested breeding lines for M. incognita Jittu population after 

48hrs heat exposure to 32°C compared to 25°C (Fig 5.2). A higher number of J2 was found 

in roots of all the tested breeding lines for both M. incognita populations after 24 and 48hrs 

exposure to 36°C compared to 25°C. Except on CLN-2366C, significantly higher number of 

J2 were entered in the roots of all the tested breeding lines after inoculation with Babile M. 

incognita population and exposure to 32°C compared with the exposure to 28°C. For the 

Babile M. incognita population, the number of J2 in the roots of CLN-2366B, CLN-2366A, 

CLN-2037H and CLN-2037A after 48hrs exposure to 32°C were significantly higher 

compared to the exposure at 28°C.  

 

After 24hrs exposure to 36°C, the number of J2 for M. incognita Babile population in the 

roots of CLN-2366A, CLN-2366C, CLN-2037H, CLN-2037A, CLN-2037B and CL5915-206-

D4-2-2 were significantly higher compared to the exposure at 28°C. The Babile M. incognita 

population J2 detected inside the roots of CLN-2366A, CLN-2366B, CLN-2366C, CLN-

2037H and CLN-2037A after 48hrs exposure to 36°C were significantly higher compared 

with 28°C (Fig 5.3). The number of J2 of M. incognita Jittu population that was found in the 

roots of all the tested breeding lines was significantly higher after both exposure times to 

36°C compared to the exposure at 28°C. However, after 24hrs exposure to 36°C, the number 

of J2 detected inside the roots of CLN-2366A, CLN-2037A and CL5915-206-D4-2-2 for M. 

incognita Jittu population was significantly higher compared to the exposure at 32°C. 

Moreover, the J2 of M. incognita Jittu population entered the roots of CLN-2366A, CLN-

2366B, CLN-2366C, CLN-2037H and CLN-2037B with higher number after 48hrs exposure 

to 36°C compared to the exposure at 32°C (Fig 5.2). The breeding lines CLN-2366C, CLN-

2037H and CLN-2037B supported a significantly higher number of Babile M. incognita J2 

penetration after 24hrs of exposure to 36°C compared to the exposure at 32°C. The J2 of 

Babile M. incognita population found inside the roots of CLN-2366B, CLN-2366C, CLN-

2037H and CLN-2037A after 48hrs exposure to 36°C were considerably higher compared to 

the exposure at 32°C.  

 

In general, after 24 and 48hrs of heat exposure to 28, 32 and 36°C, the J2 of both M. 

incognita populations penetrated the roots of all the tested breeding lines with significantly 
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higher number compared to 25°C (the control temperature). There was no significant 

difference in J2 penetration to the roots of all the tested breeding lines for both M. incognita 

populations after 24 and 48hrs of exposure to 36°C compared to Marmande (susceptible 

control). A considerably higher number of J2 was detected in the roots of all the tested 

tomato breeding lines for both M. incognita populations after 48hrs heat exposure compared 

to the 24hrs heat exposure for each soil temperature level studied.  

Figure 5.2. Mean number of J2 of M. incognita ‘Jittu’ population penetrated to the tomato 
roots after 24 and 48hrs of inoculation at soil temperatures of 25, 28, 32 and 36°C. 

Figure 5.3. Mean number of J2 of M. incognita ‘Babile’ population penetrated to the tomato 
roots after 24 and 48hrs of inoculation at soil temperatures of 25, 28, 32 and 36°C. 
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5.3.2. Jittu and Koka M. javanica Populations 

5.3.2.1. The effect of temperature, cultivar and time  

Temperature, tomato breeding lines and time had a significant effect on the numbers of J2 

(Ftemperature = 464.24, p < 0.01; F breeding lines = 208.40, p < 0.01 and Ftime = 115.60, p < 0.01) of 

M. javanica Jittu population that penetrated the plant roots. The interaction between breeding 

lines*temperature, breeding lines*time, temperature*time and breeding 

lines*temperature*time was significant for M. javanica Jittu penetration (F = 14.49, p < 0.01; 

F = 7.76, p < 0.01; F = 32.88, p < 0.01 and F = 1.96, p < 0.01 respectively) but the effect was 

again less pronounced compared to the main effects. Likewise, temperature, cultivar and time 

had a significant effect on the numbers of J2 (Ftemperature = 218.69, p < 0.01; F breeding lines = 

143.67, p < 0.01 and Ftime = 49.90, p < 0.01) of M. javanica Koka population that penetrated 

the plant roots. The interaction between breeding lines*temperature, temperature*time and 

breeding lines*temperature*time was significant for M. javanica Koka population 

penetration (F = 7.834, p < 0.01; F= 5.55, p < 0.01 and F = 2.84, p < 0.01 respectively) but 

the effect was less pronounced compared to the main effects.  

5.3.2.2. The effect of temperature levels  

There was no significant difference found in the number of penetrated J2 for M. javanica 

Jittu population inside the roots of the tested breeding lines (except on CLN-2037A) after 24 

and 48hrs exposure to 28°C compared to 25°C (Fig 5.4). After 24hrs exposure to 28°C, the 

number of J2 of M. javanica Koka population found inside the roots of all tested breeding 

lines was not significantly different compared to 25°C. However, after 48hrs exposure to 

28°C, the J2 from M. javanica Koka population inside the roots of CLN-2366B, CLN-2366C, 

CLN-2037H and CL5915-206-D4-2-2 were significantly different compared to 25°C (Fig 

5.5). After 24 and 48hrs exposure of both M. javanica populations to 32°C, the number of J2 

detected in the roots of all tested breeding lines was significantly higher compared at 25°C 

except on the CLN-2037H (after 48hrs exposure with M. javanica Koka population). The 

number of J2 detected inside the roots of all the tested breeding lines was significantly higher 

for both M. javanica populations after both exposure times to 36°C compared to the control 

(25°C) (Fig 5.4 & 5.5).  After both exposure times to 32°C and 36°C, the number of J2 that 

entered the roots of all the tested breeding lines for both M. javanica populations was 

significantly different compared to the exposure at 28°C. The number of J2 detected inside 

the roots of all the tested breeding lines was significantly higher for M. javanica Jittu 

population after 24hrs exposure to 36°C compared to 32°C (except on the CLN-2366B and 
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CL5915-206-D4-2-2). Furthermore, the number of J2 found in the roots of all the tested 

breeding lines (except on CL5915-206-D4-2-2) was significantly higher for M. javanica Jittu 

population after 48hrs exposure to 36°C compared to the exposure at 32°C. The roots of 

CLN-2366B, CLN-2366C and CLN-2366A were found penetrated with a higher number of J2 

from both M. javanica populations after both exposure times to 36°C compared to the 

exposure at 32°C (Fig 5.4 & Fig 5.5). Generally, a significantly higher mean number of J2 

from both M. javanica populations penetrated the roots of all tested breeding lines after 48hrs 

exposure to 36°C to compared the 24hrs exposure time. 

Figure 5.4. Mean number of J2 of M. javanica ‘Jittu’ population penetrated to the tomato 
roots after 24 and 48hrs of inoculation at soil temperatures of 25, 28, 32 and 36°C. 

Figure 5.5. Mean number of J2 of M. javanica ‘Koka’ population penetrated to the tomato 
roots after 24 and 48hrs of inoculation at soil temperatures of 25, 28, 32 and 36°C. 
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5.4. Discussion  

All the tested tomato breeding lines in this study have shown resistance gene inactivation for 

Jittu and Babile populations of M. incognita after exposure to 28, 32 and 36°C during 24 and 

48 hrs. For Jittu and Koka populations of M. javanica this effect was only seen after 24 and 

48hrs at 32 and 36°C. This finding is in agreement with several reports of Mi-1 gene 

inactivation characterized by higher egg masses and root gall production above 28°C soil 

temperature both in greenhouse and field conditions (Dropkin 1969; Ammati et al., 1986; 

Tzortzakakis & Gowen 1996; Noling 2000; Wang et al., 2009; Devran et al., 2010). The Mi-

1 mediated resistance was found inactivated by M. incognita in the cultivar Motelle and 

VFNT at 32°C (Ammiraju et al., 2003). The utility of the potential resistance found in our 

breeding lines during the controlled growth chamber resistance screening experiment is found 

limited at higher soil temperatures especially at 32 and 36°C. Hence, we suggest that soil 

temperatures at 32 and 36°C will reduce the effectiveness of the potential resistance genes 

contained in the tested tomato breeding lines. Tomato breeding lines such as CLN-2366A, 

CLN-2366B and CLN-2366C can be used as a potential resistance gene source after genetic 

improvement especially at soil temperatures below 32°C and in areas where M. javanica is 

the predominant Meloidogyne species. In our study, J2 of all M. incognita and M. javanica 

populations penetrated the breeding lines tested after 24 and 48hrs heat exposure irrespective 

of the soil temperature levels. Higher numbers of J2 were found after 48hrs of exposure 

compared to 24 hrs exposures. This exposure time could be comparable to field-like heat 

exposures in tropical agriculture (including Ethiopia) during the day and the night. Soil 

temperatures fluctuate monthly, daily and even at times hourly mainly by variations in air 

temperature and solar radiations (Cheon et al., 2014). In the face of global warming and 

climate change this is even more evident. A single mid-day heat exposure of 35°C during 

3hrs was sufficient to break the Mi-1 gene resistance in cv. Amelia by an M. incognita 

population (Carvalho et al., 2015). Similarly in our study all the tested tomato breeding lines 

resistance was lost after 24 or 48hrs of exposure to 36°C and there was no significant 

difference found between the tested breeding lines and the susceptible control Marmande. 

The Mi-1 resistance was hypothesised either to acclimatize or recovers from exposure to high 

temperatures (Zacheo et al., 1995; Carvalho et al., 2015). There is still some inconsistency in 

the literature and several authors have reported as Mi-1 conferred resistance was found 

effective at temperatures ≥ 34°C (Abdul-Baki et al., 1996; Verdejo-Lucas et al., 2013). The 

Mi-9 obtained from the S. peruvianum complex and a homologue of Mi-1 gene was found 
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unaffected by temperature (Bleve-Zacheo et al., 2007) but it is not yet commercially 

available. As confirmed with the tested tomato breeding lines in this study and reported in 

different crop species such as bean (Mullin et al., 1991), pepper (Thies & Fery, 2000), sweet 

potato (Jatala & Russell, 1972), alfalfa (Griffin, 1969) and cotton (Carter, 1982) temperature 

sensitivity is a characteristic of several RKN resistance genes.  

Checking the heat stability of resistance genes in time at higher temperatures and assessing 

whether the resistance genes could be reversed or not is crucial for further development of 

sustainable cultivars. Adjustment of planting date to avoid planting at the hottest season when 

monthly soil temperature rises above 28°C is also very important especially in areas with 

enough irrigation potential in the vicinity. Systematically designed crop rotation schemes in 

which plants are included that can reduce the soil temperature (i.e. using crops with higher 

canopy coverage) and the nematode population (a non-host crop) should be developed and 

used. A mechanism to increase soil aeration and thereby cools down the soil temperature 

might also be reliable especially till the plant successfully establishes in the field right after 

transplanting. It is also recommended to soften the soil between the plants without affecting 

the tomato roots so that soil will be aerated and soil temperature cools down. Most of the 

tomato growing areas in Ethiopia are characterized by sandy soil (less thermal conductivity 

and diffusivity) and it can be feasible to look for alternatives to cool down the soil 

temperatures. We also recommend checking the soil temperature prior to transplanting 

tomato seedlings using a simple soil thermometer and avoid too dry and too wet extreme field 

conditions. It is clear from our observations that local tomato breeding lines with resistance 

potential can be used when soil temperatures remain below 32°C. Differences were observed 

between breeding lines depending on the RKN population at higher temperatures and this 

knowledge can help in further optimizing the development of sustainable resistance under 

local Ethiopian circumstances.  
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Abstract 

RKN are widely distributed in Ethiopian agriculture and often found dramatically reducing 

the yield of tomato. One of the best management strategies for RKN is to use resistant crop 

varieties. However, tomato resistance screening against Meloidogyne spp. has often been 

performed in controlled greenhouses, which does not represent the actual tomato production 

conditions. A study was initiated to assess the tolerance and resistance of selected tomato 

cultivars under local conditions on two Meloidogyne spp. infested fields (Dire Dawa-Tony 

farm and Babile-Fethiya Farm) in eastern Ethiopia. A total of seven tomato genotypes 

(Assila, CLN-2366A, CLN-2366B, Chochoro, Eden, Moneymaker and Tisey) were grown in 

both locations. A randomized complete block design (RCBD) was used with four replications 

for each cultivar at both locations. The plant parameters that were considered as a measure of 

varieties tolerance were found significantly (p < 0.01) different among the tomato varieties. 

Except the initial population densities (Pi) at planting, all nematode related parameters that 

were used as a measure of varieties resistance such as the final population density, root galls 

per root system, egg mass per root system, mean number of eggs per egg mass, root gall 

index, egg mass index and multiplication rate were found statistically (p < 0.01) different 

among the tested tomato genotypes. Positive correlation of plant data parameters indicated 

that total number of fruits per plant, fruit set percentage, number of fruits per cluster, number 

of fruit clusters per plant and shape index were the most important fruit yield components 

contributing to fruit yield per hectare. A similar performance trend was obtained among the 

tested tomato genotypes at both locations though the level of damage was found dependant 

on the initial population densities present in the soil. A cultivar potentially tolerant or 

resistant at Dire Dawa (Tony farm) was also found performing nearly similar at Babile 

(Fethiya farm). The tomato varieties Assila and Eden are recommended in nematode infested 

areas with strict crop rotation. The tomato cultivar Tisey was found to be the most susceptible 

while the local cultivar Chochoro was found to be tolerant. The tomato breeding lines CLN-

2366A and CLN-2366B were found good in reducing the nematode populations but they need 

some critical genetic improvement  (preferably they can be used as a rootstock).  

 

Key words: tolerance, resistance, sustainability, tomato, Meloidogyne spp., and hotspot areas 
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6.1. Introduction 

Tomato (Solanum lycopersicum) can adapt to diverse environmental conditions (Rice et al., 

1987). Tomato has also been extensively used as a model plant for resistance studies through 

genetic and biotechnological approaches (Ercolano et al., 2012). In Ethiopia, more emphasis 

is being given to tomato production both as a source of income and food security (Mulualem 

& Tekeste, 2014). However, tomato production is constrained by many insect pests and 

diseases. Plant-parasitic nematodes (PPN) are recognized as one of the major problems to 

tomato production worldwide. Alone or in combination with other soil borne pathogens, 

PPN, attack almost every part of the plant including roots, leaves, fruits and seeds (Handoo, 

1998). Globally, PPN account for an estimated 14% of yield losses, which is translated into a 

$ 100 billion dollars annually (Mitkowski & Abawi, 2003). In order to manage such a 

significant yield loss, an estimated amount of US$500 million was spent on nematode control 

worldwide (Keren-Zur et al., 2000). When this yield loss figure is translated into economic 

terms, it covers nine years annual budget for Ethiopia (the second most populous African 

country) based on the 2015/16 fiscal year approved budget. Among the PPN, RKN are 

regarded as a universal problem due to their polyphagous nature attacking more than 3000 

host species (Harris et al., 2003; Abad et al., 2003; Jones et al., 2013). RKN are widely 

distributed in Ethiopian agriculture and often dramatically reduce the yield of vegetables 

including tomato (Mandefro & Mekete, 2002). Meloidogyne spp. cause severe damage to the 

roots of tomato and consequently impacting the quantity and quality of marketable yields. 

Yield reductions as severe as 100% have been reported due to RKN on tomato (see chapter 

2).  

 

Nematode management including chemical treatments have been used for years to combat 

the harmful effects of PPN (Lambert & Bekal, 2002). Without the use of nematicides, many 

crops cannot be grown economically (Sikora & Fernandez, 2005). However, due to 

increasing concerns about their adverse effects and environmental impacts, many products 

have been pulled from the market (Starr et al., 2001). Their use has also been limited for 

subsistence farmers due to high prices (Luc et al., 2005). As a result one of the best 

alternative ways to manage PPN is to use resistant crop varieties. Resistant crops provide an 

effective and economical method for managing nematodes in both high and low-cash value-

cropping systems (Khan & Mukhopadhyay, 2004). Host-plant resistance (HPR) provides a 

safe solution for nematode problems. With the availability of germplasm that have nematode 
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resistance genes and high tech molecular transfer techniques, resistant cultivars are becoming 

a primary management tactic in nematode management (Barker, 1997).  

When new diseases emerge or new races of existing RKN become established screening for 

resistance is a major goal. HPR has been prioritized over other management practices 

including chemical control because it provides a sustainable, eco-friendly, effective and 

economical method for managing PPN including RKN in both high and low value cropping 

systems (Jaiteh et al., 2012). It also allows crop rotation to be shortened and to make best use 

of land (Roberts, 1992). Genetic resistance in tomato against Meloidogyne spp. is efficient in 

reducing their population densities and thereby reducing the need for nematicides application 

(Khan, 1994). However, in tropical and subtropical countries, most sources of heightened 

resistance in tomato are not available because of high temperature and poor adaptation to 

commercial production (Roberts et al., 1998). Most often, tomato resistance screening against 

Meloidogyne spp. has been performed in controlled greenhouses, which doesn’t represent the 

actual tomato production conditions. Screening tomato cultivars against aggressive local 

Meloidogyne populations under the actual prevailing environmental and edaphic field 

conditions will have practical significance. In Ethiopia, no research has been done on tomato 

resistance screening against local aggressive Meloidogyne spp. at farmer’s field conditions. 

There is an increased demand to identify more sources of resistance in tomato cultivars for 

seed multiplication or breeding against Meloidogyne spp. Therefore, this study was initiated 

with the objective to assess the tolerance and resistance level of selected tomato cultivars 

against Meloidogyne spp. under two Ethiopian field conditions: Dire Dawa (Tony farm) and 

Babile (Fethiya farm). 

6.2. Materials and Methods 

6.2.1. Tolerance and Resistance under Field Conditions 

Both experimental fields were located in eastern Ethiopia approximately 550km east from 

Addis Ababa. The first field is situated at Dire Dawa (Tony farm), which is the field research 

site of HU. Tony farm is located at the eastern escarpment of the Rift Valley 9.6°N 41.8°E 

while the second site at Babile (Fethiya farm) is situated between 9.2°N and 42.26°E. The 

altitude of Tony farm and Fethiya farm is 1196 and 1334 m.a.s.l respectively. The distance 

between these two experimental fields is approximately 70km. The experiment was 

conducted from October 2015 through May 2016 at both locations. The monthly average 

temperature and relative humidity during these experimental months are presented in Table 

6.1. Six tomato genotypes (Assila, CLN-2366A, CLN-2366B, Chochoro, Eden and Tisey) 

were selected based on the screening result (see chapter 4), farmer’s choice, success stories of 
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neighbouring countries such as Kenya, Tanzania and Uganda in using some of these cultivars 

with Mi-gene. The cv. Moneymaker was included as a susceptible control. The genotypes 

were raised and nursed in separate plastic trays containing sterilized soil till they reached the 

four-leaf stage. 

Table 6.1. Average monthly maximum and minimum air temperature and relative humidity 
at Dire Dawa (Tony farm) and Babile (Fethiya farm) during 2015/16 growing season.  

Experimental 

Months 

Dire Dawa: Tony farm Babile: Fethiya farm 

MaxTempa 

(°C) 

MinTempb 

(°C) 

RHc 

(%) 

MaxTemp 

(°C) 

MinTemp 

(°C) 

RH 

(%) 

October 2015 35.2 20.3 61.5 33.4 19.6 59.6 

November 2015 31.8 17.6 73.4 32.9 21.4 71.8 

December 2015 30.1 16.4 75.7 29.7 17.5 76.3 

January 2016 31.4 16.8 80.2 32.1 18.3 75.7 

February 2016 31.7 16.4 69.9 30.8 17.4 72.1 

March 2016 36.4 21.7 34.0 34.8 20.0 43.6 

April 2016 31.9 20.4 55.2 35.6 22.7 58.3 

May 2016 35.4 22.3 49.7 36.3 23.9 39.5 

aAverage monthly maximum temperature in (°C), bAverage monthly minimum temperature in 
(°C) and cAverage monthly relative humidity in (%).  
Source: The Tony farm temperature data was obtained from the National Meteorology and 
Jigjiga Meteorology Directorate while the Fethiya farm temperature data was obtained from 
Haramaya University, Babile Meteorology Centre.  

The fields were slashed, ploughed, levelled and ridges were made at 75 cm between rows and 

60 cm between plants (Fig 6.1). The total surface area (length x width) of the two 

experimental fields was 184 m2 for each. Twelve plants per cultivar were transplanted on one 

row and for each cultivar 4 replicates (= rows) were used. Cultivars were organised in RCBD. 

Two additional buffer rows were included from the top and bottom edges from which data 

were not collected. Per row plants number one and twelve were not considered for data 

collection. Plant number two, five, eight and eleven from each row were uprooted 

destructively to take the growth and biomass plant data parameters i.e. fresh shoot weight, 

fresh root weight and dry shoot weight exactly in the same manner from both field locations. 

Entire yield, yield components and nematode data parameters were considered from plants 

number three, four, six, seven, nine and ten from each row exactly in the same manner at both 
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locations. Around the field experimental areas maize was planted to repel some insect pests. 

Sticky yellow insect traps were placed both around and inside the experimental fields to 

reduce and detect different insect pest populations on tomato. Plants were watered with 

furrow irrigation and fertilized with NPK based on the nationally recommended rate i.e. 60-

120 kg N, 60-140 kg P2O5 and 60-120 kg K2O per hectare (Balem, 2008). Weeding was done 

manually on a weekly basis. The initial population (Pi) densities were determined from the 

two field locations one day before transplanting the tomato seedlings. In May 2016 plants 

were harvested and different plant and nematode parameters collected. 

  
Figure 6.1. (A) Field and ridges preparation (B) Field lay-outing (C) Furrow irrigation before 
seedling transplanting (D) Irrigated field one day before transplanting   
6.2.2. Plant and Nematode Data Parameters Collected 

A list of plant data parameters were collected and analysed during this experiment. However, 

to keep the focus of this chapter on nematode tolerance and resistance only a selected number 

of plant parameters as a measure of tolerance are discussed from both field locations: Dire 

Dawa (Tony farm) and Babile (Fethiya farm). The descriptions of all plant parameters 

recorded and the result of its analysis (both discussed and not discussed in this chapter) are 

presented in the appendix.   
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Table 6.2. Selected plant and nematode parameters used as a measure of nematode tolerance 
and resistance in two field conditions in Eastern Ethiopia during 2015/16 growing season. 

Plant parameter used as a measure of nematode 

tolerance 

Nematode parameter as a measure of 

resistance  

Plant height (PH) The initial population densities (Pi) 

Number of leaves (NL) The final population densities (Pf) 

Number of flowers per plant (NFPP) The reproduction factor (RF) 

Total fruit number per plant (TFr) Number of root galls per plant (Galls/RS) 

Marketable fruit number per plant (MFr) Number of egg masses per plant (EM/RS) 

Unmarketable fruit number per plant (UnFr) Root Gall Index (RGI) 

Single fruit weight (SFW) Egg Mass Index (EMI) 

Marketable yield (MY) (ton/ha) Mean number of eggs per eggmass (Meggs/EM) 

Fruit set percentage (FSP) 

Root size (RS) 

Root length (RL) 

Fresh shoot weight (FSW) 

Dry shoot weight (DSW) 

Fresh root weight (FRW) 

Nematode parameters used as a measure of tomato genotypes resistance 

The initial population densities (Pi): three subsamples were combined per row to make one 

sample (approximately 1kg) in total 28 separate soil samples to represent 28 planting rows 

per location (Table 6.3). After homogenizing each sample, nematodes were extracted using a 

modified Baermann funnel from two (100 cm3 each) subsamples and counted using a 

stereomicroscope. The Pi was expressed per 100cm3 soil.  

The final population (Pf): The final Pf was determined from the mean number of J2s and 

eggs estimated from the whole root system after extracting nematodes from a subsample of 

10gram roots per plant and after a proper homogenization of the rhizosphere soil per plant 

using a sub sample of 100cm3-rhizosphere soil from the pre-tagged plants per row. The soil 

sample was extracted using a modified Baermann funnel and it was left for 10 days. 

Nematodes were collected every two days and counted. Nematodes from root samples were 

extracted based on Hussey and Barker (1973). 

The reproduction factor (RF):  this was determined by dividing the Pf by Pi. 
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Number of root galls per plant (Galls/RS): the total number of galls present per plant root 

system was counted and their mean was computed.  

Number of egg masses per plant (EM/RS): the total number of egg masses present per 

plant root system was counted and their mean was computed.  

Root Gall Index (RGI) and Egg Mass Index (EMI): these indices were determined per 

plant from the pre-tagged plants based on Taylor and Sasser (1978). Scoring was done on a 0 

to 5 scale; where 0 = no galls/egg masses; 1 = 1-2 galls/egg masses; 2 = 3-10 galls/egg 

masses; 3 = 11-30 galls/egg masses; 4 = 31-100 galls/egg masses and 5 =  >100 galls/egg 

masses. 

Mean number of eggs per eggmass (Meggs/EM): three to 5 egg masses (when available) 

were randomly picked per plant and the number of eggs per egg mass was determined and 

their mean was computed. 

Table 6.3. A) Dire Dawa - Tony farm and (B) Babile –Fethiya farm field plot arrangement 
and its initial population density (Pi) as determined one day before seedling transplanting 
during 2015/16 growing season. 

A. Dire Dawa-Tony Farm B. Babile Farm-Fethiya Farm
RNa Randomized  

Cultivars 
Pi (expressed per 
100cm3 soil) per row 

RN Randomized  
Cultivars 

Pi (expressed per 
100cm3 soil) per row 

1 Eden-R4 5 1 Tisey-R4 31 

2 Tisey-R3 5 2 Assila-R2 14 

3 Eden-R1b 10 3 Chochoro-R1 19 

4 Chochoro-R2 10 4 Tisey-R2 39 

5 CLN-2366A-R4 9 5 Eden-R4 24 

6 Moneymaker-R2 8 6 Chochoro-R3 26 

7 Chochoro-R1 8 7 CLN-2366B-R2 22 

8 Moneymaker-R1 6 8 CLN-2366B-R4 46 

9 Assila-R1 7 9 Eden-R1 38 

10 Tisey-R4 8 10 Tisey-R1 23 

11 CLN-2366A-R3 5 11 CLN-2366A-R1 42 

12 Tisey-R2 11 12 Moneymaker-R1 19 

13 CLN-2366B-R2 4 13 Eden-R3 36 

14 CLN-2366A-R1 13 14 Moneymaker-R3 42 

15 Eden-R2 6 15 Eden-R2 17 

16 CLN-2366A-R2 7 16 Assila-R1 21 
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17 Chochoro-R4 13 17 Assila-R3 35 

18 Tisey-R1 6 18 Moneymaker-R4 15 

19 CLN-2366B-R1 11 19 Chochoro-R2 47 

20 Eden-R3 11 20 Chochoro-R4 49 

21 CLN-2366B-R4 7 21 Assila-R4 41 

22 Moneymaker-R4 4 22 Moneymaker-R2 30 

23 Chochoro-R3 6 23 CLN-2366A-R2 21 

24 Moneymaker-R3 11 24 Tisey-R3 17 

25 Assila-R4 13 25 CLN-2366A-R4 37 

26 Assila-R3 10 26 CLN-2366B-R1 51 

27 CLN-2366B-R3 12 27 CLN-2366A-R3 16 

28 Assila-R2 6 28 CLN-2366B-R3 46 

aRN is row number, bR1=replication1, R2=replication2, R3=replication3, R4=replication4 

6.2.3. Data Analysis  

A one-way ANOVA was performed between the tomato varieties for each plant and 

nematode data parameters used to measure the tolerance and resistance level of the varieties 

at 5% level of significance using SPSS 22 statistical software package. A Tukey post hoc test 

was performed for each significant parameter to detect where the significant difference 

among the studied cultivars lied. A factorial ANOVA was used to compare these parameters 

between the two locations. Data were log transformed when they failed to satisfy the 

assumption of ANOVA. Bivariate Pearson’s correlation among the plant and nematode data 

parameters was also analysed. Significant letters assigned in tables of this chapter and the 

appendix are read per farm not across farm.  

6.3. Results 

During the survey work, a 100% incidence of RKN was found in Tony farm and Fethiya farm 

(Babile) locations. Both experimental fields were found infested with the two most 

predominant RKN species Meloidogyne incognita and M. javanica based on the DNA-based 

and isozyme identification (see chapter 3). During the Pi determination (using soil samples) 

prior to seedling transplanting for the field trial both species were detected. Moreover, during 

the Pf determination (from both soil and roots of all cultivars) after field experiments the 

presence of mixtures of these two species on both fields was confirmed. However, the 

population density for each species separately was not determined. The Pi at Babile was 

found higher as compared to Pi at Tony farm (Table 6.3).  
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6.3.1. Dire Dawa (Tony farm) Location 

6.3.1.1. Plant parameters used as a measure of nematode tolerance  

Results for plant parameters used as measure of tolerance are shown in Table 6.4. The PH (F 

= 20.32) and NL (F = 11.63) were significantly (p < 0.001) different between the tested 

tomato varieties. The mean value for the PH ranged from 60 cm (Eden) to 88 cm 

(Moneymaker) while the mean NL laid between 55 (Chochoro) to 106 (Moneymaker). The 

NFPP (F = 25.25) was found significantly (p < 0.001) different among the tested tomato 

varieties. The highest mean NFPP (110) was recorded on CLN-2366A while the lowest mean 

NFPP (58) was counted from Eden. The TFr (F = 13.08), MFr (F = 14.99), UnFr (F = 23.10), 

SFW (F = 42.72), MY (F = 37.87) and FSP (F = 54.79) were found significantly (p < 0.001) 

different among the tomato varieties tested. The mean TFr ranged from 36 (Eden) to 52 

(Chochoro). The mean MFr was ranged from 35 (Eden and Moneymaker) to 51 (Chochoro). 

The highest mean UnFr (6) was obtained from the cultivar Assila while the lowest (0) was 

from Eden. The highest mean SFW were 133 g (Tisey), 121 g (Eden) followed by 118 g 

(Chochoro) while the lowest was obtained from CLN-2366B (61 g). The highest mean MY 

was obtained from Chochoro (60 ton/ha) followed by Tisey (50 ton/ha) while the lowest was 

recorded from CLN-2366B (26 ton/ha). The highest mean FSP (80%) was found from the 

tomato cultivar Chochoro while the lowest mean FSP (41%) was obtained from CLN-2366B. 

The RS (F = 2.20, p = 0.08) was not found significantly different among the studied tomato 

varieties. The RL (F = 2.80) was found significantly different at p < 0.05 between the tomato 

varieties. The shortest mean RL (20 cm) was measured from Tisey and Moneymaker while 

the longest mean RL (24 cm) was recorded from Assila. The FSW (F = 8.99), DSW (F 

=10.18) and FRW (F = 21.21) were found significantly (p < 0.001) different among the tested 

tomato varieties. The highest mean FSW was recorded from the cultivar Assila (103 g) and 

Eden (101 g) while the lowest was recorded from Tisey (53 g). The mean DSW ranged from 

8 g (Tisey) to 19 g (Assila). The mean FRW ranged from 6 g (Tisey) to 16 g (Assila).  

 

The highest mean number of FFP (5) was obtained from Chochoro while the lowest mean 

number of FFP (4) was recorded from the tomato cultivars Assila, Tisey and Moneymaker. A 

gradual change in the colour, firmness and appearance of fruits was observed. The breaker 

stage fruits turned to red ripe stage within 4 to 32 days depending on the commercial tomato 

cultivar or clone. The shelf life of CLN-2366A and CLN-2366B was found too short (7days) 

under room temperature. While the shelf life of Assila (21days), Moneymaker (24days), Tisey 
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(25days), Chochoro (27days) and Eden (32days) was found in increasing order. The average 

daily room temperature in the lab was recorded as 26 ± 2°C.  

Figure 6.2. Fruit diversity of the tested tomato cultivars. A) Tisey while in the field, B) Eden 
C) CLN-2366A D) Assila-branched fruits quite often observed, E) fully matured Tisey and F)
CLN-2366B

6.3.1.2. Nematode parameters as a measure of varieties resistance 

Results for nematode parameters are summarized in Table 6.5. At Dire Dawa (Tony farm) the 

Pi was not found statistically different between the tomato varieties tested (F = 0.22, p = 

0.96). The Pf (F = 84.39), RF (F = 15.85), Galls/RS (F = 10.22), EM/RS (F = 8.08), RGI (F 

= 8.82), EMI (F = 8.30) and Meggs/EM (F = 80.56) were found significantly different at p < 

0.001 between the different tomato varieties used. The mean number of Pi ranged from 7 (J2 

+ eggs)/100 cm3 soil (Moneymaker) to 9 (J2 + eggs)/100cm3 soil (Chochoro). The mean

number of Pf of nematodes among the varieties tested was 262 (Assila), 280 (CLN-2366A),

328 (Eden), 347 (CLN-2366B), 662 (Chochoro), 2006 (Tisey) and 3525 (J2 + eggs)/100 cm3

soil (Moneymaker) in an increasing order. The highest RF (Pf/Pi) was found on Moneymaker

(567) followed by Tisey (276) while the lowest was calculated from cultivar Assila (29). The

mean number of galls/RS ranged from 2 (Assila) to 21 (Moneymaker) while the RGI ranged

from 1 (Assila) to 3 (Moneymaker). The mean number of EM/RS ranged from 1 (Assila) to
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15 (Moneymaker) while EMI was found in a range of 1 (Assila) to 3 (Moneymaker). The 

highest mean number of eggs/EM was found in Tisey (185) while the lowest was in CLN-

2366B (60). 

6.3.2. Babile (Fethiya farm) Location 

6.3.2.1. Plant parameters used as a measure of nematode tolerance  

Results for plant parameters used as a measure of nematode tolerance are shown in Table 6.4. 

The PH (F = 53.57) and NL (F = 46.91) were significantly (p < 0.001) different between the 

tested tomato varieties. The mean value for the PH ranged from 58 (Eden) to 83 cm (CLN-

2366A) while the mean NL laid between 57 (Chochoro) to 96 (Moneymaker). The number of 

flowers per plant (NFPP) (F = 54.80) was found significantly (p < 0.001) different among the 

tested tomato varieties. The highest mean NFPP (106) was recorded on the CLN-2366A while 

the lowest mean NFPP (59) was counted from Eden. The TFr (F = 12.57), MFr (F = 15.18), 

UnFr (F = 4.59), SFW (F = 63.67), MY (F = 38.27) and FSP (F = 44.69) were found 

significantly (p < 0.001) different among the tomato varieties. The mean TFr ranged from 33 

(Moneymaker) to 50 (Chochoro). The mean MFr ranged from 31 (Moneymaker) to 49 

(Chochoro). The highest mean UnFr (2) was obtained from the cultivars Assila and 

Moneymaker while the lowest (1) was from Eden and CLN-2366B. The highest mean SFW 

were 130 g (Tisey), 119 g (Eden) followed by 113 g (Chochoro) while the lowest was 

obtained from CLN-2366B (60 g). The highest mean MY was obtained from Chochoro (55 

ton/ha) followed by Tisey (45 ton/ha) while the lowest was recorded from CLN-2366B (24 

ton/ha). The highest mean FSP (76%) was found from cultivar Chochoro while the lowest 

mean FSP (39%) was obtained from CLN-2366B. The highest mean number of FFP (5) was 

obtained from Chochoro while the lowest mean number of FFP (4) was recorded from the 

cultivars Assila, Tisey and Moneymaker. The RS (F = 0.96, p = 0.47) and RL (F = 1.42, p = 

0.25) were not found significantly different among the studied tomato varieties. The FSW (F 

= 4.26), DSW (F = 4.08) and FRW (F = 4.79) were found significantly (p < 0.05) different 

among the tested tomato varieties. The highest mean FSW was recorded from the cultivar 

Assila (93 g) and Eden (90 g) while the lowest was recorded from Tisey (53 g). The mean 

DSW ranged from 8 g (Tisey) to 15 g (Assila). The mean FRW ranged from 6 g (Tisey) to 13 

g (Assila). The mean number of days to 50FL ranged from 32 (Chochoro) to 42 

(Moneymaker) while the mean number of days to first harvest (DFrH) was ranged from 67 

(CLN-2366A and CLN-2366B) to 79 days (Moneymaker). 
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6.3.2.2. Nematode parameters as a measure of varieties resistance 

Results for nematode parameters used as a measure of resistance are summarized in Table 

6.5. The Pi (F = 0.36) was not found significantly different (p = 0.90) between the tomato 

varieties tested. The final Pf (F = 11.89), RF (F = 142.01), Galls/RS (F = 18.46), EM/RS (F 

= 10.47), RGI (F = 14.46), EMI (F = 7.00) and Meggs/EM (F = 12.58) were found 

significantly different at p < 0.001 between the different tomato varieties. The mean Pi 

ranged from 27 (J2 + eggs)/100 cm3 soil (Moneymaker) to 36 (J2 + eggs)/100cm3 soil (CLN-

2366B). The mean Pf of nematodes among the varieties tested was 517 (Assila), 695 (CLN-

2366A), 787 (Eden), 818 (CLN-2366B), 1117 (Chochoro), 2662 (Tisey) and 4358 (J2 + 

eggs)/100 cm3 soil (Moneymaker) in an increasing order. The highest mean RF was found on 

Moneymaker (170) followed by Tisey (95) while the lowest was calculated from cultivar 

Assila (18). The mean number of galls/RS was found ranged from 3 (Assila) to 30 

(Moneymaker) while the RGI ranged from 2 (Assila) to 4 (Moneymaker). The mean number 

of EM/RS ranged from 4 (Assila) to 26 (Moneymaker) while EMI was found in a range of 2 

(Assila and CLN-2366A) to 3 (Moneymaker). The highest Meggs/EM was found in 

Moneymaker (158) while the lowest was in CLN-2366A and CLN-2366B (125). 

 
 
Figure 6.3. A) Representatives of farmer groups personnel from the agricultural offices of 
eastern Hararghe visiting the Tony farm experimental plot, (B) The researcher is explaining 
the aim, why he is doing the research and how, (C) Checking the damage and population 
dynamic studied on bigger pots (see chapter 7) and (D) A visitor taking pictures to show for 
farmers group. 



Ch
ap

te
r 

6 

141 

T
ab

le
 6

.4
. P

la
nt

 p
ar

am
et

er
s u

se
d 

as
 a

 m
ea

su
re

 o
f t

om
at

o 
va

rie
tie

s t
ol

er
an

ce
 a

ga
in

st
 a

 m
ix

tu
re

 o
f M

el
oi

do
gy

ne
 in

co
gn

ita
 a

nd
 M

el
oi

do
gy

ne
 

ja
va

ni
ca

 p
op

ul
at

io
ns

 a
t D

ire
 D

aw
a 

(T
on

y 
Fa

rm
) a

nd
 B

ab
ile

 (F
et

hi
ya

 F
ar

m
) l

oc
at

io
ns

 d
ur

in
g 

20
15

/1
6 

gr
ow

in
g 

se
as

on
 

L
oc

at
io

n 
T

om
at

o 
G

en
ot

yp
es

 
PH

 
N

L
 

N
FP

P 
T

Fr
 

M
Fr

 
U

nF
r 

SF
W

 
M

Y
 

FS
P 

R
S 

R
L

 
FS

W
 

D
SW

 
FR

W
 

D
ire

 D
aw

a 
(T

on
y 

fa
rm

) 
As

si
la

 
65

a 
64

 a
 

69
 a

 
47

 b
 

42
 b

 
6 

b 
96

 b
 

40
 b

 
68

 c
 

21
a 

24
 b

 
10

3 
c 

19
 c

 
16

 c
 

C
LN

-2
36

6A
 

83
 b

 
85

 b
 

11
0 

b 
47

 b
 

46
 b

 
1 

a 
76

 a
 

35
 b

 
43

 a
 

17
 a

 
22

 a
b 

71
 b

 
9 

a 
10

 b
 

C
LN

-2
36

6B
 

83
 b

 
78

 b
 

10
8 

b 
43

 a
 

42
 b

 
1 

a 
61

 a
 

26
 a

 
41

 a
 

18
 a

 
21

 a
b 

72
 b

 
12

 b
 

9 
b 

C
ho

ch
or

o 
62

 a
 

55
 a

 
65

 a
 

52
 c

 
51

 c
 

1 
a 

11
8 

c 
60

 d
 

80
 d

 
19

 a
 

22
 a

b 
66

 b
 

10
 a

 
13

 b
c 

Ed
en

 
60

 a
 

61
 a

 
58

 a
 

36
 a

 
35

 a
 

0 
a 

12
1 

c 
43

 b
 

62
 c

 
18

 a
 

22
 a

b 
10

1 
c 

15
 b

c 
11

 b
c 

M
on

ey
m

ak
er

 
88

 b
 

10
6 

c 
71

 a
 

37
 a

 
35

 a
 

2 
ab

 
10

5 
b 

37
 b

 
53

 b
 

19
 a

 
20

 a
 

67
 b

 
12

 b
 

8 
b 

Ti
se

y 
81

 b
 

70
 b

 
68

 a
 

39
 a

 
38

 a
 

1 
a 

13
3 

d 
50

 c
 

58
 b

 
18

 a
 

20
 a

 
53

 a
 

8 
a 

6 
a 

B
ab

ile
  

(F
et

hi
ya

 fa
rm

) 
As

si
la

 
61

 a
 

64
 a

 
66

 a
 

42
 b

 
40

 b
 

2 
b 

95
 b

 
38

 b
 

64
 c

 
19

 a
 

22
 a

 
93

 c
 

15
 c

 
13

c 
C

LN
-2

36
6A

 
83

 c
 

82
 b

 
10

6 
b 

44
 b

 
43

 b
 

1 
a 

73
 a

 
32

 b
 

42
 a

 
17

 a
 

20
 a

 
66

 b
 

9 
a 

9 
b 

C
LN

-2
36

6B
 

83
 c

 
79

 b
 

10
6 

b 
41

 b
 

40
 b

 
1 

a 
60

 a
 

24
 a

 
39

 a
 

18
 a

 
20

 a
 

66
 b

 
11

 b
 

9 
b 

C
ho

ch
or

o 
59

 a
 

57
 a

 
65

 a
 

50
 c

 
49

 c
 

1 
a 

11
3 

c 
55

 d
 

76
 d

 
21

 a
 

20
 a

 
64

 b
 

11
 b

 
10

 b
 

Ed
en

 
58

 a
 

60
 a

 
59

 a
 

36
 a

 
35

 a
 

1 
a 

11
9 

c 
41

 b
 

61
 c

 
20

 a
 

21
 a

 
90

 c
 

14
 c

 
11

bc
 

M
on

ey
m

ak
er

 
82

 c
 

96
 c

 
70

 a
 

33
 a

 
31

 a
 

2 
b 

10
2 

b 
31

 b
 

48
 b

 
21

 a
 

19
 a

 
67

 b
 

9 
a 

7 
a 

Ti
se

y 
71

 b
 

70
 b

 
66

 a
 

36
 a

 
35

 a
 

1 
a 

13
0 

d 
45

 c
 

56
 b

 
19

 a
 

19
 a

 
53

 a
 

8 
a 

6 
a 

PH
-p

la
nt

 h
ei

gh
t i

n 
(c

m
), 

N
L-

nu
m

be
r o

f l
ea

ve
s, 

N
FP

P-
nu

m
be

r o
f f

lo
w

er
 p

er
 p

la
nt

, T
Fr

-to
ta

l f
ru

it 
nu

m
be

r p
er

 p
la

nt
, M

Fr
-m

ar
ke

ta
bl

e 
fr

ui
t n

um
be

r p
er

 p
la

nt
, 

U
nF

r-
un

m
ar

ke
ta

bl
e 

fr
ui

t n
um

be
r p

er
 p

la
nt

, S
FW

-s
in

gl
e 

fr
ui

t w
ei

gh
t, 

M
Y-

m
ar

ke
ta

bl
e 

yi
el

d 
pe

r h
ec

ta
re

 (t
on

/h
a)

, F
SP

-fr
ui

t s
et

 p
er

ce
nt

ag
e,

 R
S-

ro
ot

 si
ze

 (g
), 

RL
- r

oo
t l

en
gt

h 
(c

m
), 

FS
W

-fr
es

h 
sh

oo
t w

ei
gh

t (
g)

, D
SW

-d
ry

 sh
oo

t w
ei

gh
t (

g)
 a

nd
 F

RW
-fr

es
h 

ro
ot

 w
ei

gh
t (

g)
. M

ea
ns

 w
ith

in
 th

e 
sa

m
e 

co
lu

m
n 

th
at

 sh
ar

ed
 th

e 
sa

m
e 

le
tte

r (
on

ly
 p

er
 fa

rm
 n

ot
 a

cr
os

s f
ar

m
) a

re
 n

ot
 si

gn
ifi

ca
nt

 a
t p

 ≤
 0

.0
5 

ba
se

d 
on

 T
uk

ey
 H

SD
.  



6 
To

le
ra

nc
e 

an
d 

Re
si

st
an

ce
 o

f T
om

at
o 

G
en

ot
yp

es
 in

 M
el

oi
do

gy
ne

 s
pp

. i
nf

es
te

d 
fie

ld
s 

142 

T
ab

le
 6

.5
. N

em
at

od
e 

da
ta

 p
ar

am
et

er
s u

se
d 

as
 a

 m
ea

su
re

 o
f t

om
at

o 
va

rie
tie

s r
es

is
ta

nc
e 

po
te

nt
ia

l t
o 

R
K

N
 a

t D
ire

 D
aw

a 
(T

on
y 

fa
rm

) a
nd

 B
ab

ile
 

(F
et

hi
ya

 F
ar

m
) f

ie
ld

 e
xp

er
im

en
ts

 d
ur

in
g 

20
15

/1
6 

gr
ow

in
g 

se
as

on
 

L
oc

at
io

ns
 

T
om

at
o 

ge
no

ty
pe

s 
Pi

 
Pf

 
R

F 
(P

f/P
i) 

G
al

ls
/R

S 
R

G
I 

E
M

/R
S 

E
M

I 
M

eg
gs

/E
M

 
D

ire
 D

aw
a 

(T
on

y 
fa

rm
) 

As
si

la
 

9 
a 

26
2 

a 
29

 a
 

2 
a 

1 
a 

1 
a 

1 
a 

85
 a

 
C

LN
-2

36
6A

 
9 

a 
28

0 
a 

33
 a

 
3 

a 
2 

a 
2 

a 
1 

a 
65

 a
 

C
LN

-2
36

6B
 

9 
a 

34
7 

a 
44

 a
 

5 
a 

 
2 

a 
3 

a 
1 

a 
60

 a
 

C
ho

ch
or

o 
9 

a 
66

2 
a 

73
 b

 
6 

a 
2 

a 
2 

a 
1 

a 
13

0 
b 

Ed
en

 
8 

a 
32

8 
a 

40
 a

 
4 

a 
2 

a 
2 

a 
1 

a 
86

 a
 

M
on

ey
m

ak
er

 
7 

a 
35

25
 c

 
56

7 
d 

21
 b

 
3 

b 
15

 b
 

3 
b 

18
4 

c 
Ti

se
y 

8 
a 

20
07

 b
 

27
6 

c 
8 

a 
2 

a 
5 

a 
2 

ab
 

18
5 

c 
B

ab
ile

  
(F

et
hi

ya
 fa

rm
) 

As
si

la
 

28
 a

 
51

7 
a 

18
 a

 
3 

a 
2 

a 
4 

a 
2 

a 
12

9 
a 

C
LN

-2
36

6A
 

29
 a

 
69

5 
a 

23
 a

 
6 

a 
2 

a 
5 

a 
2 

a 
12

6 
a 

C
LN

-2
36

6B
 

36
 a

 
81

8 
ab

 
23

 a
 

6 
a 

2 
a 

6 
ad

 
2 

ab
 

12
5 

a 
C

ho
ch

or
o 

35
 a

 
11

17
 b

 
32

 a
 

8 
a 

2 
a 

8 
ad

 
2 

ab
 

13
5 

a 
Ed

en
 

29
 a

 
78

7 
ab

 
27

 a
 

7 
a 

2 
a 

5 
ad

 
2 

ab
 

13
3 

a 
M

on
ey

m
ak

er
 

27
 a

 
43

58
 d

 
17

0 
c 

30
 c

 
4 

b 
26

 c
e 

4 
cd

 
15

8 
b 

Ti
se

y 
28

 a
 

26
62

 c
 

95
 b

 
18

 b
 

3 
ab

 
17

 b
de

 
3 

bd
 

15
3 

b 

Pi
-in

iti
al

 p
op

ul
at

io
n 

de
ns

ity
 in

 th
e 

so
il,

 P
f-f

in
al

 p
op

ul
at

io
n 

de
ns

ity
 a

t h
ar

ve
st

, a
 (P

f/P
i)-

re
pr

od
uc

tio
n 

ra
te

, g
al

ls
/R

S-
nu

m
be

r o
f g

al
ls

 p
er

 ro
ot

 sy
st

em
, R

G
I-

ro
ot

 
ga

ll 
in

de
x,

 E
M

/R
S-

 n
um

be
r o

f e
gg

 m
as

se
s p

er
 ro

ot
 sy

ste
m

, E
M

I-
 e

gg
 m

as
s i

nd
ex

, M
eg

gs
/E

M
- m

ea
n 

nu
m

be
r o

f e
gg

s p
er

 e
gg

 m
as

s. 
 M

ea
ns

 w
ith

in
 th

e 
sa

m
e 

co
lu

m
n 

th
at

 sh
ar

ed
 th

e 
sa

m
e 

le
tte

r a
re

 n
ot

 si
gn

ifi
ca

nt
 a

t p
 ≤

 0
.0

5.
 S

ig
ni

fic
an

t d
iff

er
en

ce
 le

tte
rs

 sh
ou

ld
 b

e 
re

ad
 o

nl
y 

pe
r l

oc
at

io
n 

no
t a

cr
os

s l
oc

at
io

n.
 



Chapter 6  

 143 

6.3.3. Plant and Nematode Data Parameters Compared between Locations 

The PH (F = 9.19), TFr (F = 9.83), MFr (F = 9.74), MY (F = 14.11), FSP (F = 9.36) and RL 

(F = 10.30) were found significantly (p < 0.01) different between the study locations. The 

FRW (F = 4.92) was also found statistically significant at p < 0.05. All the other plant data 

parameters studied were not found significant at p < 0.05 between the two locations. 

However, all the nematode data parameters Pi (F = 79.12), Pf (F = 9.45), RF (F= 40.30), 

mean number of Galls/RS (F = 13.68), RGI (F = 10.71), EM/RS (F = 24.40), EMI (F = 

30.94) and Meggs/EM (F = 77.90) that were considered as a measure of resistance were 

found statistically (p < 0.01) different between both locations.  

 

Both a positive and negative correlation was found between the parameters studied (see 

appendix for the detailed presentation). However, here, only the correlation between selected 

plant and nematode parameters is presented. A positive significant correlation was found 

between the PH and Galls/RS (r = 0.42) and EM/RS (r = 0.43); NL and Pf (r = 0.43), 

Galls/RS (r = 0.54) and EM/RS (r = 0.54); DFrH and Pf (r = 0.76), Galls/RS(r = 0.82) and 

EM/RS(r = 0.77); RS and Pi (r = 0.72); Pf with Galls/RS(r = 0.96), EM/RS (r=0.98); 

Galls/RS with EM/RS (r = 0.98) and Meggs/EM with Pf (r = 0.69), Galls/RS (r =0.71) and 

EM/RS (r = 0.77). There was also a significant negative correlation found between the 

parameters checked at both Dire Dawa and Babile farms. The full detailed Pearson’s 

correlation result of twenty plant and nematode data parameters performed for both field 

locations are presented in the Appendix (Table A3). 
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6.4. Discussion 

The majority of the quantitative characters used as a measure of tolerance and resistance were 

found more affected in Babile (Fethiya farm) compared to Dire Dawa (Tony farm). This 

might be allocated to the fact that initial Meloidogyne Pi was higher at Babile location as 

compared to Dire Dawa. A similar performance trend was obtained among the tested tomato 

breeding lines or cultivars at both locations though the level of damage was found dependant 

on the Pi present in the soil. A cultivar potentially tolerant or resistant at Dire Dawa (Tony 

farm) was also found performing the same at Babile. In this study, for the majority of the 

plant data parameters used a highly significant (p < 0.01) difference was found among the 

studied breeding lines and commercial tomato cultivars. This is in agreement with several 

studies that reported significant differences for all characters studied among the tomato 

genotypes used (Pradeepkumar et al., 2001; Mohanty & Prusti, 2001; Golani et al., 2007; 

Regassa et al., 2012; Chernet & Zibelo, 2014).  

 

The cultivar Tisey was found having quality fruit (Fig 6.2) characteristics such as highest 

SFW, higher MY per hectare and longer SL. However, Tisey productivity will be hampered 

in areas infested with mixtures of M. incognita and M. javanica species which is largely the 

case in field situations and this even with smaller Pi value. Although a significant difference 

was obtained between the cultivar Tisey and Moneymaker (the susceptible control) towards 

supporting reproduction, the absolute values of the Pf on Tisey were consistently high as on 

Moneymaker at both locations. On this cultivar RL, FSW, RS (at maturity) and FRW were 

found highly affected by the Pi compared to the other tomato cultivars studied indicating the 

importance of these parameters as a measure to nematode tolerance. A reduced rate of 

nutrient and water uptake was observed due to nematode damage on the root system (Anwar 

& Din, 1986). Plants top growth was found substantially reduced due to reduced nutrient and 

water uptake (Davis et al., 2003) and root length was reported to have a direct impact on 

foliage growth (Kamran, 2013). Tisey (out of the 33 tomato genotypes screened for 

resistance) was the only cultivar found resistant for the four aggressive populations screened 

under the growth chamber experiment. Tisey (with Mi-gene) was found from SR to HR 

during the growth chamber screening experiment for the tested populations (see chapter 4). 

However, the reaction of Tisey was found susceptible in both field trials (locations). The 

higher number of Pf, Galls/RS, EM/RS and more importantly Meggs/EM measured its 

susceptibility. The following four main reasons could be cited: firstly, the resistance found in 

the growth chamber experiment was only when it was challenged by a single population of 
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M. incognita or M. javanica species but in the field trials there were mixtures of these two 

species which could have led to synergistic reaction; secondly, the Mi-resistance in Tisey 

might have been broken due to the fact that the two field experimental locations were found 

with reasonably constant air temperatures above 28°C (threshold limit for the Mi-gene is 

28°C soil temperature); thirdly, virulent individuals could have been present in the field and 

subsequently overcome the Mi-gene present in Tisey; and fourthly, apart from the nematode 

there are also many other biotic and abiotic factors involved in field conditions, which are 

impossible to control. Thus, with its current sensitive performance in M. incognita and M. 

javanica species mixtures Tisey is not a preferred cultivar to recommend for SSF of Ethiopia. 

However, Tisey has a very good fruit quality (for both consumption and commercial 

production) and it can be used as a scion with a nematode resistance rootstock.  

The tomato cultivars Assila and Eden were found having the same resistance reaction for the 

four aggressive M. incognita and M. javanica populations tested under a growth chamber 

test. Both cultivars (with Mi-gene) had MR, S, HR and HR reactions against Jittu (M. 

incognita), Babile (M. incognita), Jittu (M. javanica) and Koka (M. javanica) populations 

respectively (see chapter 4). However, on the field trials, the Pf, RF, Galls/RS, RGI, EM/RS 

and Meggs/EM were slightly higher on the cultivar Eden over Assila even though there were 

no statistical differences between these two cultivars. Despite the contained Mi gene in these 

two cultivars they were found susceptible for the M. incognita Babille population during the 

growth chamber experiments (see chapter 4). However, in the Babile field trial (from which 

the Babile M. incognita population originated) it seems that this population was not found 

virulent as it had been found aggressive under the growth chamber trials for both cultivars. It 

could be that there might have been antagonistic reaction during the invasion of these two 

cultivars from other populations of the same species or other species. The cultivars Assila and 

Eden were found potential tomato cultivars to be promoted for tomato growers in Ethiopia. 

These cultivars can easily adapt to climatic and edaphic conditions of Ethiopia as these 

cultivars have already been successfully used in the neighbouring countries such as Kenya, 

Uganda and Tanzania through Seminis (MONSANTO). These cultivars were found resistant 

to the tomato yellow leaf-curling virus (TYLCV), which causes a common bottleneck for 

tomato production in Ethiopia (Eyasu, 2010). However, from our study, the cultivar Assila 

was observed with a higher unmarketable fruit number as compared to other cultivars. The 

problem of blossom end rot on their fruit and being preferred by birds over the other tomato 

cultivars are major reasons. It should therefore be recommended with extreme care and done 
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along with a soil fertility test. The blossom end rot is often linked to Calcium deficiency. 

Owing to the higher fruit quality and nematode resistance potential we recommend the 

cultivar Assila to be used for commercial greenhouse production (to get rid of the damage by 

birds and deficiency of calcium in soil). Thus, in areas with lower calcium soil content, Assila 

will be of limited importance especially if meant for commercial production. The cultivar 

Eden was with a higher MFr with no UnFr. The cultivar Eden could be promoted along with 

some crop rotation advices since it was not found resistant it supported nematode 

reproduction with reasonably high Meggs/EM.  

The cultivar Chochoro was found supporting a medium level of nematode reproduction as 

measured by the Pf, Galls/RS, EM/RS and Meggs/EM in comparison with the susceptible 

check. Chochoro was found with higher MFr number and the highest MY per hectare despite 

supporting a good nematode reproduction. However, the MY was lower in Babile (Fethiya 

farm) as compared to Dire Dawa (Tony farm). There could be one main reason for the 

relative lower yield (55 ton/ha) at Babile compared to Dire Dawa (60 ton/ha). During the 

identification work (see chapter 3) on Babile location (Babile Erer and Babile Gende Sudan) 

M. javanica was found dominant over M. incognita though they both were also found co-

infesting some samples. During the resistance screening in a growth chamber (see chapter 4)

Chochoro was found susceptible for both M. javanica populations while it was SR for both

M. incognita populations. Thus, the dominance of M. javanica might have brought the lower

yield of Chochoro at Babile. Ethiopian SSF are widely producing Chochoro and

representatives of Eastern Hararghe farmer’s also recognized Chochoro during their visit (Fig

6.3). In agreement with the current study, this cultivar was previously found with higher MFr,

longer SL, SFW and less UnFr (Chernet & Zibelo, 2014). Nevertheless, some advises should

be forwarded to the growers not to grow ‘Chochoro’ continuously without proper crop

rotation practice with Meloidogyne non-host plants. This cultivar was found tolerant but not

resistant (reasonable Meggs/EM was produced) (see chapter 4 and 7).

The breeding lines CLN-2366A and CLN-2366B were found potentially resistant as they 

allowed lower nematode multiplication and hampered the final Pf next to the cultivar Assila. 

During the growth chamber resistance screening these two breeding lines were found having 

resistance for the three populations tested except against Babile M. incognita population for 

which they were both susceptible (see chapter 4). However, more genetic improvement work 

is needed for these breeding lines. The FSP was far lower as compared to the commercial 
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tomato cultivars used. It has a shorter SL as its fruit was observed rotting 4 days after harvest 

if kept in the field conditions. A longer shelf life from 15 to 40days in different tomato lines 

was recently reported (Sinha et al., 2014). These breeding lines have a significantly lower 

SFW and FFP was almost daily and there was a minimal period between days to first harvest 

and final harvest. According to Chernet et al. (2014) these breeding lines were placed in 

Cluster I which was characterized by less number of fruit clusters per plant, low fruit set 

percentage, lower number of pickings, less single fruit weight and low total fruit yield per 

hectare. In our study, these breeding lines were also found sensitive to the aerial temperature 

in field conditions and needed a continuous supply of irrigation water. Generally, these 

breeding lines need to be genetically improved further before they go for commercial 

production and should fit to the tropical agriculture production conditions (climatic and 

edaphic) such as to Ethiopia. One of the greatest contributions of modern plant breeding is 

the genetical improvement of tomato varieties with increased disease resistance potential 

(Foolad, 2007). Some future genetic works are required to confirm the nature of resistant 

genes present in these breeding lines using a molecular marker and further transfer into the 

potential cultivars such as Chochoro. These two breeding lines can also be used as a 

rootstock on which a higher yielding tomato variety such as Tisey can be grafted.  

 

In general, the parameters used to measure resistance seem to be straightforward as compared 

to parameters used to assess the tolerance of a cultivar. Nematode parameters can easily be 

used to measure the resistance potential of a tomato genotype. Particularly the mean number 

of eggs/EM was found a good measure of resistance from this study. The cultivar Tisey had a 

higher Meggs/EM while Assila, CLN-2366A and CLN-2366B had the lowest Meggs/EM 

compared to the susceptible check in both field locations. Surprisingly, there seems to be a 

variation in Meggs/EM between locations. For example except Tisey and Moneymaker, all 

the other five tomato genotypes were found having a higher Meggs/EM in Fethiya farm as 

compared to Tony farm. From these field trials, we have learnt that there is an urgent need to 

properly choose plant parameters that could reliably be used to measure the tolerance of a 

given cultivar for nematode infection. The nematode parameters used to measure resistance 

of the cultivar Tisey and the breeding lines CLN-2366A and CLN-2366B were straightforward 

comparing the reproduction on these genotypes. To assess their tolerance level, it was hard to 

find a straightforward plant parameter that could be used reliably across different tomato 

cultivars. If we consider for example the MY per hectare as a measure of tolerance, it will 

truly be misleading as it depends on the MFr number and SFW. The SFW of Tisey is much 
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higher compared to SFW of CLN-2366A and CLN-2366B. The difficult task on the measure 

of tolerance is at least from two directions: difficulty of assessing the genetic differences 

already present in a genotype and controlling the effect of other biotic and abiotic factors on 

the plant parameters used to assess the tolerance of a genotype for nematode infection. 

Especially, if we do not compare across locations, it will be challenging to single out the 

genotypes genetic difference per farm alone. From this study, the MY, PH, RL, FRW, FSP, 

TFr and MFr were found different across locations which may indicate the importance of 

these parameters as a measure of nematode tolerance. These parameters were found reduced 

in Babile (Fethiya farm) compared to Dire Dawa (Tony farm) which could be linked with the 

higher Pi at Babile.  

 

Positive correlation of plant data parameters indicated that total number of fruits per plant, 

fruit set percentage, number of fruits per cluster, number of fruit clusters per plant and shape 

index are the most important fruit yield components which contribute to fruit yield per 

hectare (see Appendix Table). Thus, in tomato improvement programs fruit yield selection 

based on these data parameters is useful (Chernet & Zibelo, 2014). A highly positive 

correlation of RS and Pi, RL with FSW and FRW, FSW and FRW, Pf with Galls/RS and 

EM/RS, Galls/RS with EM/RS and Meggs/EM with Pf, Galls/RS and EM/RS at both 

locations that may indicate the importance of these characters as a measure of nematode 

tolerance and/or resistance. Even though there was a variation between the Pi values in the 

soil at the two locations, we did not find a significant difference towards nematode 

reproduction on the tested tomato cultivars. This has been shown by the inverse relationship 

between the Pi in the soil and nematode reproduction on the host plants (Charganei et al., 

2012). However, several studies reported a positive relationship between the Pi of the 

nematode in the soil and the damage caused to host plants (Greco & Di Vito, 2009). This is 

also confirmed in our study where some plant parameters were found more affected in Babile 

compared to Dire Dawa. This field experiment was replicated once in time but more 

replications in time are necessitated as observed from a few data parameters that had a higher 

standard error. To sum up, tomato production in infested fields can be possible if further 

efforts are made towards resistance and tolerance breeding.   
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Abstract 
In Ethiopia, no information is available on the effect and relationship between initial 
population densities (Pi) of M. incognita and damage to tomato cultivars. Reliable data are 
required to relate the effect of a range of Pi on plant growth, biomass and yield for specific 
crop-nematode associations under local conditions. The effect of a series of Pi of Babile and 
Jittu Meloidogyne incognita populations on four tomato cultivars (Assila, Chochoro, 
Moneymaker and Tisey) and one clone (CLN-2366B) for growth and yield and the 
relationship with final population densities (Pf) were studied. Each tomato cultivar was 
inoculated with a geometric series of Pi (0, 0.125, 0.5, 1, 2, 4, 8, 16, 32, 64, 128 and 256 J2/ 
100 gram of dry soil) and was allowed to grow till the crop reaches senescing. The 
relationship between Pi and Pf was fitted to the Seinhorst population dynamics model (Pf = 
(M * Pi) / (Pi + M/a) while the effect of Pi on different plant parameters considered was 
fitted to the Seinhorst yield model (Y = Ymax*(m + (1 - m)* Z^((Pi-T)/T)). Based on the 
damage model fitted to the data all the tested plant parameters were found negatively affected 
by both populations of M. incognita. The Jittu M. incognita population was found having 
more effect on the majority of parameters compared to Babile M. incognita population. As 
the reproduction factors (RF) obtained for the tested tomato cultivars were high the tested 
cultivars were considered as good host for both populations of M. incognita. The highest RF 
for M. incognita populations was obtained at lower Pi (0.125 J2/100 gram of dry soil) and 
reduced with increasing Pi on all the tested cultivars. Severity of root galling and number of 
egg masses per root system were increased with increasing inoculum levels of both 
populations of M. incognita. The tomato genotypes, M. incognita population and initial 
population density (Pi) had a highly significant (P < 0.001) effect on all the plant and 
nematode data parameters considered. The seedlings of all the tested tomato genotypes were 
dead at the higher Pi value (256 J2/100 gram of dry soil) except for the cultivar Assila of 
which seedlings survived even with the higher Pi values for both M. incognita populations. 
Among all the cultivars tested Tisey was found highly susceptible to both Babile and Jittu 
populations and all the seedlings were dead at (Pi ≥ 16 J2/100 gram of dry soil) which was 
worse than the susceptible control Moneymaker where seedlings died at Pi ≥ 64 J2/100 gram 
of dry soil. For all the plant parameters studied Tisey was found to have a lower damage 
threshold T while Assila (except for the parameter root weight) was having a higher T. A 
difference was observed for the tested tomato genotypes on their minimum yield (m) for the 
different plant parameters studied against Babile and Jittu M. incognita populations. 
Determination of T and m of a given crop variety for the prevailing Meloidogyne species in 
fields to be planted (local setting) is vital. 
Keywords: damage, extrapolation, local setting, tolerance limit, minimum yield, 

Meloidogyne incognita, initial population density  
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7.1. Introduction 

In Ethiopia, tomato (Solanum lycopersicum) is widely cultivated in both the rainy and dry 

season (using irrigation), on a range of farms (Mekete et al., 2003) and represents among the 

most profitable vegetable crops for small-scale farmers (Lemma et al., 1992). Nonetheless, 

the major RKN (Meloidogyne incognita, M. javanica and M. ethiopica) are found associated 

with tomato and often dramatically reduce its yield (Mandefro & Mekete, 2002; Abebe et al., 

2015). However, little work has been done to determine the relationship between initial 

population densities (Pi) of M. javanica and damage to tomato and pepper in Ethiopia in 

small pots (Mekete et al. (2003). This finding also did not provide any information on the 

effect of these nematodes on yield and yield components of tomato genotypes. Information 

on crop-nematode relationship is vital for farmers to decide on economically feasible 

management strategies within their own crop production systems (Kamran et al, 2013). Such 

information is a prerequisite to design nematode management strategies and advisory 

programs (Barker & Nusbaum, 1971). Hence, reliable data are required to relate the effects of 

a range of initial nematode densities to plant growth, biomass and yield for specific crop-

nematode associations under local conditions. Therefore, the objectives of this study were: 1) 

to determine the damage thresholds of Meloidogyne incognita populations originating from 

Babile and Jittu locations of Ethiopia on tomato cultivars and one clone for growth and yield 

reduction, and 2) to study the initial (Pi) and final population (Pf) relationship of M. 

incognita populations on different tomato genotypes quantitatively. 

 

7.2. Materials and Methods 

7.2.1. Tomato genotypes and Soil Solarisation 

Tomato genotypes Assila, CLN-2366B, Chochoro and Tisey were chosen based on their 

resistance potential from the growth chamber experiment assay (see chapter 4), preference by 

SSF of Ethiopia and the field tolerance and resistance trial. The tomato cv. Moneymaker was 

used as a susceptible control. For this experiment a field soil was collected, placed on and 

covered with a large polythene sheet for 10 consecutive weeks for solarisation at Tony farm, 

Dire Dawa. The soil was inverted and homogenized every two weeks and covered again with 

the polythene sheet. The average daily soil temperature inside the polythene sheet was 

calculated as 38°C during this period. After solarisation, the presence or absence of any PPN 

were checked after extracting 10 different subsamples (100gram). The absence of live PPN in 

the soil was confirmed before commencing the actual experiment.  
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7.2.2. Culturing and Inoculation of Meloidogyne incognita Populations  

The aggressive ‘Jittu’ and ‘Babile’ populations of M. incognita (see chapter 4) were used to 

examine damage potential and Pi-Pf relationship on selected tomato genotypes. A stock 

culture of these M. incognita populations originating from Ethiopia were reproduced on 

tomato (Solanum lycopersicum) cv. Moneymaker in bigger pots (8000 cm3 capacity) 

containing steam sterilized soil (121°C for 2hrs) and maintained in a greenhouse adjusted to 

23 ± 3°C for ten weeks. Then, inoculum was prepared from heavily galled tomato roots after 

chopping them into smaller pieces (approximately 2cm) being placed on a modified 

Baermann funnel using locally available plastic pans. Every 24hrs, hatched J2 were collected 

for 6 subsequent days and stored at 10°C in the refrigerator until use. Every 24hrs the water 

in the pan was replenished with fresh tap water to maintain the J2s fitness and facilitate 

aeration. Tomato seedlings were raised on a seedling tray using steam sterilized soil (121°C 

for 2hrs). The four leaf-stage tomato seedlings were transplanted into 6000cm3 soil volume 

capacity pots. Two seedlings were transplanted per pot and later thinning was performed 

when both established to obtain one plant per pot. Plants were watered as required. The pots 

were kept in the open field Tony Farm (Dire Dawa). The average maximum temperature 

recorded during the experimental period was 36.4 °C (see chapter 6). Ten days after 

transplanting, the pots were inoculated at a geometric series of 12 nematode densities (Pi) of 

M. incognita ‘Jittu’ and ‘Babile’ populations ranging from 0, 0.125, 0.5, 1, 2, 4, 8, 16, 32, 64,

128 to 256 J2s per 100 gram of dry soil (Norshie et al., 2011). Three holes were bored around

the four-leaf stage tomato plant and 15 ml of the nematode suspension per plant was directly

injected into the three holes using a calibrated pipette. Control plants received a similar

volume of fresh tap water. The pots were arranged in a completely randomized design. Each

Pi was replicated four times for both populations of M. incognita on each tomato genotype.

7.2.3. Data Collection

The following nematode and plant data parameters were recorded:

Nematode data parameters:-

Final population density (Pf): The final Pf was estimated from organic (root) and mineral

fraction (soil) per pot. The mean number of J2 and eggs in the roots was estimated from the

whole root system after extracting nematodes from a subsample of 5gram roots per plant

based on Hussey and Barker (1973. The mean number of J2 and eggs from the 6000cm3 soil

was estimated after proper homogenization of the soil using a sub-sample of 100cm3 soil per

pot. Nematodes from soil samples were extracted using a modified Baermann funnel

technique. It was expressed as (J2+eggs) per 100 gram of dry soil.
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Reproduction factor (RF): determined by dividing Pf by Pi. 

Number of root galls per plant (Galls/RS): the total number of galls present per plant root 

system per pot was counted.  

Number of egg masses per plant (EM/RS): the total number of egg masses present per 

plant root system per pot was counted.  

Root gall index (RGI) and egg mass index (EMI): these indices were determined per plant 

from each pot and based on Taylor & Sasser (1978) scored from 0 to 5 scale; where 0 = no 

galls/egg masses; 1 = 1-2 galls/egg masses; 2 = 3-10 galls/egg masses; 3 = 11-30 galls/egg 

masses; 4 = 31-100 galls/egg masses and 5 =  >100 galls/egg masses. 

Plant parameters:- 

Plant height (PH): measured from the soil level to the main apex of the plant and mean 

values were expressed in centimetres.  

Number of flowers per plant (NFPP): the total number of flowers per plant per pot was 

counted. 

Root weight (RW): the total weight of roots per plant was taken after removing the adhering 

soil and expressed in grams. RW was measured after the final fruit harvesting time.  

Root length (RL): the adhering soil from the roots was gently washed away using tap water 

and excess water was removed after blotting with tissue paper. The root length per plant was 

measured from the soil level to the tip of roots and expressed in centimetres.    

Total fruit number per plant (TFr): the total number of fruits (including marketable and 

unmarketable fruits) per plant per pot was counted. 

Marketable fruit number per plant (MFr): the number of healthy fruits that were free from 

any visible damage symptom starting from the first harvest to the final harvest per plant per 

pot was counted and later their mean was computed.  

Single fruit weight (SFW): three tomato fruits per plant per pot were randomly picked, their 

weight was measured separately using a sensitive balance and their mean was expressed in 

grams.  

Number of seeds per fruit (NSPF): the three randomly picked fruits to determine SFW 

were used to extract seeds and counted separately and later their mean was calculated.  

7.2.4. Data Analysis and Model Fitting 

Non-linear regression analysis was carried out to estimate parameters of the yield, damage 

and Pi-Pf relationship using a script written in Tinn-R version 4.0.2.1 and run in R version 

3.2.2. The relationship between ranges of initial population densities (Pi) and the plant 

growth damage of the two (Babile and Jittu) aggressive M. incognita populations was 
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described using the Seinhorst yield loss model (Seinhorst, 1986; Schomaker & Been, 2013). 

The model (Equ.1) was fitted to the data using least square methods to estimate the 

parameters of plant damage.  

 

Y = Ymax*(m + (1 - m)* Z^((Pi-T)/T)) when Pi ≥ T, and Y= Ymax (Pi ≤ T)…. (Equation 1) 

Where ‘Y’ is the relative average value of plant weight; ‘m’ the relative minimum value of Y 

at a very large Pi; ‘T’ the tolerance limit (the initial nematode density below which plant 

growth is not affected); and ‘Z’ a constant < 1 indicating nematode damage in which Z-T = 

0.95. The coefficient of determination (R2) adjusted for degrees of freedom (df) was used to 

indicate the goodness-of-fit of the model. The population dynamics model for migratory 

nematodes with multiple generation developed by Seinhorst (1970) and as described by 

Schomaker & Been (2013) was used to fit the model (Equ.2) to the data of the final 

population density (Pf) and estimate population dynamics parameters; the maximum 

multiplication rate (a) and maximum population density (M) using the least square methods.  

 

The population dynamics model used is Pf = (M * Pi) / (Pi + M/a)…(Equation 2).  

A one-way ANOVA was performed between the tomato varieties and each growth, biomass, 

yield, yield component and nematode data parameter to measure the damage of the tomato 

varieties and population dynamics of M. incognita populations at 5% level of significance 

using SPSS 22 statistical software package. A factorial ANOVA was also performed between 

tomato genotypes, M. incognita populations and initial population densities (Pi) at 5% level 

of significance. Data were log transformed when they failed to satisfy the assumption of 

ANOVA.  

7.3. Results 

7.3.1. Nematode Parameters 

The tomato genotype, M. incognita populations and initial population densities (Pi) had a 

highly significant effect on Pf (F = 1121.74, p < 0.001; F = 358.63, p < 0.001; F = 950.83, p 

< 0.001), RF (F = 3110.68, p < 0.001; F = 652.92, p < 0.001; F =2212.00, p < 0.001), 

Galls/RS (F = 629.09, p < 0.001; F = 204.28, p < 0.001; F = 313.30, p < 0.001) and EM/RS 

(F = 1005.14, p < 0.001; F = 202.54, p < 0.001; F = 321.13, p < 0.001) respectively. The 

interaction effect was significantly lower compared to the main effects.  

 

The highest RF for both M. incognita populations was obtained on all the tested cultivars at 

lower Pi (0.125 J2/ 100 gram of soil) and reduced with increasing Pi. The RF of Babile M. 
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incognita population ranged from 1.80 (at Pi = 256 J2/100 gram of soil to 62.87 (Pi = 

0.125J2/100 gram of soil) for Assila, 5.80 (Pi = 128 J2g) to 103.30 (Pi = 0.125J2) for CLN-

2366B, 2.00 (Pi = 128J2) to 145.50 (Pi = 0.125) for Chochoro, 33.30 (Pi = 32 J2) to 990.30 

(Pi = 0.125J2) for Moneymaker and 63.00 (Pi = 16J2) to 793.00 (Pi = 0.125J2) for the 

cultivar Tisey. Similarly, the RF of Jittu M. incognita population was found in a range of 3.00 

(Pi = 256J2/100 gram of soil to 148.50 (Pi = 0.125J2/100 gram of soil) for Assila, 6.00 (Pi = 

128 J2g) to 280.30 (Pi = 0.125J2) for CLN-2366B, 10.00 (Pi = 64 J2) to 256.00 (Pi = 0.125) 

for Chochoro, 37.00 (Pi = 32 J2) to 1358.30 (Pi = 0.125J2) for Moneymaker and 122.00 (Pi = 

8 J2) to 1229.50 (Pi = 0.125J2) for the cultivar Tisey. The highest value for all the nematode 

data parameters considered (Pf, number of Galls/RS, number of EM/RS, RGI and EMI) were 

found at their respective higher Pi values while the lowest was recorded from the lower Pi 

(0.125J2/100gram of dry soil) value. The severity of root galling and number of egg masses 

per root system were found increased with increasing inoculum levels of both populations of 

M. incognita. The RGI (= 5) and EMI (= 5) were found to be highest in Tisey (at Pi ≥ 8 for 

Babile and at Pi ≥ 4 for Jittu population) and Moneymaker (at Pi ≥ 4 for both populations). 

The RGI (= 4) and EMI (= 4) were found high on Assila and CLN-2366B at Pi ≥ 128 for both 

Jittu and Babile populations of M. incognita. The values of the population dynamics 

parameters (a and M) are presented in (Table 7.1). The population dynamics model fitted to 

the data are presented in Fig 7.1. Based on the population dynamics model curve all the 

tested tomato cultivars are a host for the studied populations. 

 

Table 7.1. Parameter estimations of the population dynamics model for Meloidogyne 
incognita (Babile and Jittu) populations on five selected tomato varieties 

Tomato 
Cultivar 

M. incognita 
populations 

N a M SEa SEM R2 
 

df 
 

Assila Babile 11 12.59 356.62 1.83 81.63 0.96 9 
Jittu 11 36.94 371.75 5.39 59.00 0.96 9 

CLN2366B Babile 10 23.26 556.41 3.62 154.38 0.96 8 
Jittu 10 89.24 372.87 11.00 41.28 0.97 8 

Chochoro Babile 9 56.16 278.73 6.87 37.64 0.97 7 
Jittu 9 68.96 311.53 9.75 46.72 0.96 7 

Moneymaker Babile 8 235.04 274.03 84.08 64.98 0.75 6 
Jittu 8 276.82 274.32 106.32 64.49 0.72 6 

Tisey Babile 7 151.89 395.96 31.24 95.84 0.92 5 
Jittu 6 294.23 348.26 91.04 100.88 0.84 4 

 
‘N’, number of observations; ‘a’ maximum rate of multiplication; ‘M’ maximum population 
density; SEa, standard error for a; SEM, standard error for M; ‘R2’-coefficient of determination 
and ‘df’-degree of freedom 
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Figure 7.1. The relationship between Pi and Pf of Meloidogyne incognita (Babile and Jittu) 
populations on five tomato genotypes: Assila, CLN-2366B, Chochoro, Moneymaker and 
Tisey. The data were fitted to the equation Pf = (M * Pi) / (Pi + M/a), where ‘Pf’ is the final 
population density, ‘M’ the maximum population density and ‘a’ maximum multiplication 
rate of the nematode. Solid lines in each graph represent 50% quintile of the M. incognita 
(Babile and Jittu) populations as marked with different colours. The dotted line is the 
equilibrium line where Pf =Pi. 
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7.3.2. Plant Parameters 

The tomato genotypes, M. incognita populations and initial population densities (Pi) had a 

significant effect on PH (F = 236.29, p < 0.001; F = 98.64, p < 0.001; F = 409.37, p < 0.001), 

NFPP (F = 723.85, p < 0.001; F = 43.49, p < 0.001; F = 237.28, p < 0.001), RW (F = 344.01, 

p < 0.001; F = 7.79, p < 0.001; F = 484.89, p < 0.001); RL (F = 110.84, p < 0.001; F = 0.30, 

p = 0.586; F = 382.39, p < 0.001), TFr (F = 134.71, p < 0.001; F = 29.78, p < 0.001; F = 

276.56, p < 0.001), MFr (F = 181.84, p < 0.001; F = 34.88, p < 0.001; F = 273.59, p < 

0.001), SFW (F = 474.75, p < 0.001; F = 4.61, p < 0.05; F = 295.49, p < 0.001) and NSPF (F 

= 29.38, p < 0.001; F = 0.16, p = 0.691; F = 24.60, p < 0.01) respectively.  

 

The interaction effect of these factors was not significant for some of the plant parameters, 

however, when found it was much lower compared to the main effects. The effect of the Pi 

ranges and M. incognita populations on the different plant parameters of the tested tomato 

cultivars are presented from Fig 7.2 through Fig 7.9. Based on the damage model fitted to the 

data all the tested plant parameters were found negatively affected by both populations of M. 

incognita. The Jittu M. incognita population was found having more effect on the majority of 

parameters compared to Babile M. incognita population.  
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Figure 7.2. The relationship between the initial population density (Pi) of Meloidogyne 
incognita populations and tomato cultivars: plant height (PH) in centimetres (cm). Plants 
were grown in big pots in the open field experimental station at Tony farm, Dire Dawa. 
Plants were harvested after 90days and each data point in the graph represents a mean of four 
plants and the line is the predicted function obtained when the data were fitted to the 
Seinhorst Model (Y = Ymax*(m + (1 - m)* Z^((Pi-T)/T)), where ‘Ymax’ is the maximum 
yield at Pi ≤ T and ‘Y’, is yield in terms of any weight, ‘m’ the minimum relative yield, ‘T’ 
the tolerance limit and ‘Z’ a constant <1.  
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Figure 7.3. The relationship between the initial population density (Pi) of Meloidogyne 
incognita populations and tomato cultivars: number of flowers per plant (NFPP). Plants were 
grown in big pots in the open field experimental station at Tony farm, Dire Dawa. Plants 
were harvested after 90days and each data point in the graph represents a mean of four plants 
and the line is the predicted function obtained when the data were fitted to the Seinhorst 
Model (Y = Ymax*(m + (1 - m)* Z^((Pi-T)/T)), where ‘Ymax’ is the maximum yield at Pi ≤ 
T and ‘Y’, is yield in terms of any weight, ‘m’ the minimum relative yield, ‘T’ the tolerance 
limit and ‘Z’ a constant <1.  
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Figure 7.4. The relationship between the initial population density (Pi) of Meloidogyne 
incognita populations and tomato cultivars: root weight (RW) in grams (g). Plants were 
grown in big pots in the open field experimental station at Tony farm, Dire Dawa. Plants 
were harvested after 90days and each data point in the graph represents a mean of four plants 
and the line is the predicted function obtained when the data were fitted to the Seinhorst 
Model (Y = Ymax*(m + (1 - m)* Z^((Pi-T)/T)), where ‘Ymax’ is the maximum yield at Pi ≤ 
T and ‘Y’, is yield in terms of any weight, ‘m’ the minimum relative yield, ‘T’ the tolerance 
limit and ‘Z’ a constant <1. 
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Figure 7.5. The relationship between the initial population density (Pi) of Meloidogyne 
incognita populations and tomato cultivars: root length (RL) in centimetres (cm). Plants were 
grown in big pots in the open field experimental station at Tony farm, Dire Dawa. Plants 
were harvested after 90days and each data point in the graph represents a mean of four plants 
and the line is the predicted function obtained when the data were fitted to the Seinhorst 
Model (Y = Ymax*(m + (1 - m)* Z^((Pi-T)/T)), where ‘Ymax’ is the maximum yield at Pi ≤ 
T and ‘Y’, is yield in terms of any weight, ‘m’ the minimum relative yield, ‘T’ the tolerance 
limit and ‘Z’ a constant < 1. 
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Figure 7.6. The relationship between the initial population density (Pi) of Meloidogyne 
incognita populations and tomato cultivars: total number of fruits per plant (TFr). Plants were 
grown in big pots in the open field experimental station at Tony farm, Dire Dawa. Plants 
were harvested after 90days and each data point in the graph represents a mean of four plants 
and the line is the predicted function obtained when the data were fitted to the Seinhorst 
Model (Y = Ymax*(m + (1 - m)* Z^((Pi-T)/T)), where ‘Ymax’ is the maximum yield at Pi ≤ 
T and ‘Y’, is yield in terms of any weight, ‘m’ the minimum relative yield, ‘T’ the tolerance 
limit and ‘Z’ a constant <1.   
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Figure 7.7. The relationship between the initial population density (Pi) of Meloidogyne 
incognita populations and tomato cultivars: marketable fruit number per plant (MFr). Plants 
were grown in big pots in the open field experimental station at Tony farm, Dire Dawa. 
Plants were harvested after 90days and each data point in the graph represents a mean of four 
plants and the line is the predicted function obtained when the data were fitted to the 
Seinhorst Model (Y = Ymax*(m + (1 - m)* Z^((Pi-T)/T)), where ‘Ymax’ is the maximum 
yield at Pi ≤ T and ‘Y’, is yield in terms of any weight, ‘m’ the minimum relative yield, ‘T’ 
the tolerance limit and ‘Z’ a constant <1.  
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Figure 7.8. The relationship between the initial population density (Pi) of Meloidogyne 
incognita populations and tomato cultivars: single fruit weight (SFW) in grams (g). Plants 
were grown in big pots in the open field experimental station at Tony farm, Dire Dawa. 
Plants were harvested after 90days and each data point in the graph represents a mean of four 
plants and the line is the predicted function obtained when the data were fitted to the 
Seinhorst Model (Y = Ymax*(m + (1 - m)* Z^((Pi-T)/T)), where ‘Ymax’ is the maximum 
yield at Pi ≤ T and ‘Y’, is yield in terms of any weight, ‘m’ the minimum relative yield, ‘T’ 
the tolerance limit and ‘Z’ a constant <1. 
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Figure 7.9. The relationship between the initial population density (Pi) of Meloidogyne 
incognita populations and tomato cultivars: number of seeds per fruit (NSPF). Plants were 
grown in big pots in the open field experimental station at Tony farm, Dire Dawa. Plants 
were harvested after 90days and each data point in the graph represents a mean of four plants 
and the line is the predicted function obtained when the data were fitted to the Seinhorst 
Model (Y = Ymax*(m + (1 - m)* Z^((Pi-T)/T)), where ‘Ymax’ is the maximum yield at Pi ≤ 
T and ‘Y’, is yield in terms of any weight, ‘m’ the minimum relative yield, ‘T’ the tolerance 
limit and ‘Z’ a constant <1. 
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7.3.3. The Tolerance Limit (T) and Minimum Yield (m)  

For the plant height, the highest T was attained by the cultivar Assila (9.59 and 7.72J2/100 

gram of dry soil) for Babile and Jittu M. incognita populations respectively. The lowest T was 

recorded from Tisey (0.12 and 0.06J2/100 gram of dry soil) for Babile and Jittu M. incognita 

populations respectively. Similarly for NFPP, the highest T was obtained from Assila (1.66 

and 0.88J2/100 gram) while the lowest was from Tisey (0.20 and 0.47J2/100 gram of dry 

soil) for Babile and Jittu M. incognita populations respectively. For the parameter RW, the 

highest T was attained on CLN-2366B (0.83 and 0.67J2/100 gram of dry soil) while the 

lowest was from Tisey (0.13 and 0.22/100 gram) for Babile and Jittu M. incognita 

populations respectively. For RL, the highest T was obtained on Assila (0.38 and 0.83J2/100 

gram of dry soil) while the lowest was on Tisey (0.11 and 0.09J2/100 gram of dry soil) for 

Babile and Jittu M. incognita populations respectively. The highest T for the parameter 

TFrNPP was obtained from Chochoro (0.57J2/100 gram of dry soil) and the lowest T was 

from Tisey (0.09J2/100 gram of dry soil) by Jittu M. incognita population. The highest T for 

MFrNPP was recorded on Assila (0.52 and 0.69J2/100 gram of dry soil) and the lowest on 

Tisey (0.15 and 0.12J2/100 gram of dry soil) for Babile and Jittu M. incognita populations 

respectively. The highest T for SFW was from Assila (0.60 and 2.12/100 gram) and CLN-

2366B (1.79 and 1.17/100 gram) while the lowest T was on Tisey (0.15 and 0.14J2/100 gram 

of dry soil) for Babile and Jittu M. incognita populations respectively.  The highest T for 

NSPF was obtained on Assila (1.00J2/100 gram of dry soil) while the lowest T was obtained 

from Chochoro (0.11J2/100 gram dry soil) for Babile M. incognita population. In general, for 

all the plant parameters studied Tisey was found with a lower T while Assila (except for the 

parameter RW) was having a higher T.  

The highest minimum yield (m) for the parameter PH was obtained on CLN-2366B (0.72) 

while the lowest m was from Chochoro (0.31) for Babile M. incognita population. For the 

parameter NFPP, the highest m was obtained from Chochoro and CLN-2366B (0.63) for 

Babile M. incognita population while the lowest m was on Tisey (0.26) for Jittu M. incognita 

population. For the parameter RW, the highest m (0.56) was obtained from cultivar Assila for 

Babile M. incognita population while the lowest m was on Tisey (0.25) for Jittu M. incognita 

population. For the parameter RL, the highest m was from Chochoro (0.47) while the lowest 

m was from Moneymaker (0.30) for Babile M. incognita population. The highest m for 

TFrNPP was obtained from Assila (0.57) while the lowest m was recorded on Tisey (0.32) for 

Babile M. incognita population. For MFrNPP, the highest m was achieved from Assila (0.58) 

while the lowest m was from Moneymaker (0.27) for Babile M. incognita population. The 
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highest m for SFW was obtained from Assila (0.71) for Babile M. incognita while the lowest 

m was from Moneymaker (0.44) for Jittu M. incognita population. The highest m for NSPF 

was from CLN-2366B (0.89) for both Babile and Jittu M. incognita populations while the 

lowest m was from Chochoro (0.76) Jittu M. incognita population. A difference was observed 

for the tested tomato genotypes on their tolerance limit (T) and minimum yield (m) for the 

different plant parameters studied against Babile and Jittu M. incognita populations (Table 

7.2). 

Table 7.2. Parameter estimates of the tolerance limit (T) and minimum relative yield (m) of 
the Seinhorst equation for the relationship between plant weight with a range of initial 
population densities of two (Babile and Jittu) aggressive M. incognita populations originated 
from Ethiopia on five selected tomato cultivars.  

Tomato 
cultivars 

M. 
incognita 
population 

Plant Height (cm) 
m T Ymax SEm SET SEYmax R2 df 

Assila Babile 0.51 9.59 66.71 0.18 5.79 1.21 0.89 10 
Jittu 0.52 7.72 67.94 0.10 3.03 0.98 0.94 10 

CLN-2366B Babile 0.72 0.49 70.15 0.03 0.23 1.66 0.93 9 
Jittu 0.65 1.29 62.38 0.06 0.79 1.72 0.89 9 

Chochoro Babile 0.31 4.94 65.67 0.18 1.54 0.47 0.98 8 
Jittu 0.54 2.38 67.21 0.12 1.01 0.93 0.95 8 

Moneymaker Babile 0.65 0.49 78.62 0.02 0.10 0.86 0.98 7 
Jittu 0.67 0.37 78.32 0.05 0.18 2.05 0.93 7 

Tisey Babile 0.59 0.12 76.78 0.03 0.04 2.06 0.97 6 
Jittu 0.67 0.06 69.93 0.06 0.04 4.15 0.85 5 

Number of Flowers Per Plant 
Assila Babile 0.50 1.66 68.05 0.09 1.35 3.38 0.86 10 

Jittu 0.53 0.88 63.70 0.06 0.59 3.03 0.88 10 
CLN2366B Babile 0.63 0.51 103.49 0.06 0.47 5.47 0.82 9 

Jittu 0.45 1.81 88.94 0.11 1.07 3.48 0.89 9 
Chochoro Babile 0.63 0.85 57.46 0.05 0.29 1.12 0.95 8 

Jittu 0.59 0.92 58.86 0.06 0.35 1.38 0.93 8 
Moneymaker Babile 0.48 0.54 64.82 0.12 0.33 2.83 0.88 7 

Jittu 0.37 0.52 69.65 0.12 0.26 3.09 0.91 7 
Tisey Babile 0.57 0.20 60.29 0.06 0.08 2.00 0.94 6 

Jittu 0.26 0.47 54.30 0.50 0.43 2.47 0.86 5 
Root Weight (g) 

Assila Babile 0.56 0.16 21.73 0.05 0.13 1.56 0.86 10 
Jittu 0.50 0.30 21.59 0.05 0.17 1.24 0.90 10 

CLN2366B Babile 0.44 0.83 15.31 0.06 0.35 0.60 0.93 9 
Jittu 0.41 0.67 17.76 0.06 0.27 0.74 0.93 9 

Chochoro Babile 0.54 0.34 20.78 0.05 0.15 0.81 0.93 8 
Jittu 0.50 0.31 22.52 0.05 0.13 0.92 0.93 8 

Moneymaker Babile 0.37 0.44 17.16 0.11 0.22 0.84 0.92 7 
Jittu 0.47 0.23 17.50 0.09 0.17 1.16 0.89 7 

Tisey Babile 0.39 0.13 17.41 0.04 0.03 0.59 0.97 6 
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Jittu 0.25 0.22 17.49 0.12 0.07 0.52 0.98 5 
Root Length (cm) 

Assila Babile 0.40 0.38 27.87 0.07 0.29 2.28 0.86 10 
Jittu 0.34 0.83 29.15 0.08 0.49 1.80 0.90 10 

CLN2366B Babile 0.36 0.27 28.68 0.07 0.17 2.28 0.89 9 
Jittu 0.28 0.35 29.88 0.05 0.10 1.32 0.96 9 

Chochoro Babile 0.47 0.09 29.07 0.05 0.05 2.04 0.90 8 
Jittu 0.40 0.21 24.78 0.09 0.17 2.32 0.84 8 

Moneymaker Babile 0.30 0.13 27.31 0.05 0.04 1.30 0.96 7 
Jittu 0.38 0.14 29.22 0.06 0.06 1.75 0.93 7 

Tisey Babile 0.31 0.11 26.77 0.07 0.04 1.76 0.94 6 
Jittu 0.35 0.09 26.22 0.13 0.06 2.36 0.88 5 

Total Fruit Number Per Plant 
Assila Babile 0.57 0.37 21.59 0.06 0.37 1.57 0.82 10 

Jittu 0.46 0.45 20.64 0.06 0.24 1.16 0.90 10 
CLN2366B Babile 0.35 0.35 31.43 0.07 0.19 2.13 0.91 9 

Jittu 0.38 0.35 27.02 0.04 0.12 1.14 0.95 9 
Chochoro Babile 0.50 0.25 22.83 0.05 0.11 1.00 0.93 8 

Jittu 0.37 0.57 21.34 0.10 0.30 1.18 0.89 8 
Moneymaker Babile 0.36 0.14 26.25 0.08 0.08 2.08 0.90 7 

Jittu 0.40 0.17 25.41 0.09 0.13 2.15 0.87 7 
Tisey Babile 0.32 0.23 20.75 0.10 0.09 0.98 0.94 6 

Jittu 0.48 0.09 19.92 0.04 0.02 0.53 0.98 5 
Marketable Fruit Number per Plant 

Assila Babile 0.58 0.52 19.23 0.06 0.38 1.00 0.86 10 
Jittu 0.42 0.69 17.70 0.09 0.54 1.31 0.83 10 

CLN2366B Babile 0.34 0.36 31.35 0.07 0.21 2.17 0.91 9 
Jittu 0.38 0.35 27.02 0.04 0.12 1.14 0.95 9 

Chochoro Babile 0.51 0.23 22.02 0.04 0.08 0.87 0.94 8 
Jittu 0.34 0.62 20.04 0.09 0.29 1.01 0.91 8 

Moneymaker Babile 0.27 0.28 22.57 0.08 0.12 1.28 0.94 7 
Jittu 0.31 0.20 25.07 0.09 0.11 1.94 0.90 7 

Tisey Babile 0.37 0.15 20.36 0.12 0.10 1.74 0.84 6 
Jittu 0.52 0.12 17.85 0.04 0.03 0.45 0.98 5 

Single Fruit Weight (g) 
Assila Babile 0.71 0.60 86.11 0.03 0.28 2.06 0.92 10 

Jittu 0.67 2.12 78.99 0.12 2.64 4.64 0.53 10 
CLN2366B Babile 0.52 1.79 60.99 0.07 0.77 1.61 0.93 9 

Jittu 0.66 1.17 64.22 0.05 0.53 1.48 0.92 9 
Chochoro Babile 0.57 0.26 109.34 0.05 0.15 5.11 0.91 8 

Jittu 0.55 0.27 110.62 0.05 0.14 4.90 0.92 8 
Moneymaker Babile 0.51 0.39 96.74 0.05 0.12 2.49 0.96 7 

Jittu 0.44 0.49 92.14 0.09 0.22 3.57 0.93 7 
Tisey Babile 0.58 0.15 123.08 0.07 0.09 5.70 0.91 6 

Jittu 0.52 0.14 125.33 0.07 0.05 4.06 0.95 5 
Number of Seed per Fruit 

Assila Babile 0.83 1.00 175.39 0.04 0.55 4.32 0.70 10 
Jittu 0.78 0.39 193.17 0.06 NaN 7.40 -0.41 10 
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CLN2366B Babile 0.89 0.84 151.46 0.04 NaN 3.04 -0.03 9 
Jittu 0.89 0.65 149.10 0.02 0.35 2.15 0.75 9 

Chochoro Babile 0.79 0.11 189.77 0.05 0.10 9.21 0.72 8 
Jittu 0.76 0.18 201.54 0.04 0.19 9.15 0.83 8 

Moneymaker Babile 0.84 0.46 174.24 0.05 0.39 3.98 0.73 7 
Jittu 0.82 0.21 184.91 0.03 0.09 3.78 0.87 7 

Tisey Babile NA NA 176.45 NA NA 2.15 0.01 6 
Jittu NA NA 344.74 NA NA 1239.26 0.51 5 

Ymax is the yield at densities below T; m, minimum Yield; T, tolerance limit (J2/100gram of 
dry soil), SEYmax, Standard Error for Ymax; SEm: Standard Error for m; SET, Standard Error 
for T; R2, coefficient of determination, df-degree of freedom 

The seedlings of all the tested tomato cultivars were dead at the higher Pi value 

(256J2/100gram soil) except on the cultivar Assila for which all the seedlings survived even 

with the higher Pi values of both M. incognita populations (Fig 7.10). The seedlings of the 

local tomato cultivar Chochoro were found tolerant till Pi ≤ 64 for the Jittu population while 

for the Babile population this was till Pi ≤ 128. At Pi = 256 the seedlings of CLN-2366B were 

not able to survive for both populations of M. incognita. Among all the cultivars tested Tisey 

was found highly susceptible to both Babile and Jittu populations and all the seedlings were 

dead at (Pi ≥ 16) which was worse than the susceptible control Moneymaker where seedlings 

died at Pi ≥ 64J2/100 gram of soil. 
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Figure 7.10. The damage of different initial population densities (Pi) on five tomato 
genotypes 10 days after inoculation with Meloidogyne incognita Jittu and Babile populations 
in pot experiments at Dire Dawa (Tony farm).  
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7.4. Discussion 

The Seinhorst model perfectly fitted to all the plant parameter data considered in this damage 

study. This implied the negative effect of Pi on the studied plant data parameters. The 

population dynamics model showed that the tested tomato cultivars are a host for the studied 

M. incognita populations. As the RF obtained for the tested tomato cultivars were high the

tested cultivars are consider as good host for both populations of M. incognita. Based on the

T values generated from this study, Tisey is not a preferred tomato cultivar in areas infested

with RKN. The tolerance limit (T) of Tisey was consistently lower for all plant data

parameters considered compared to the other genotypes including the susceptible control

(Moneymaker). While Assila, CLN-2366B and Chochoro showed a higher tolerance limit

indicating that these genotypes could be used in nematode infested areas if integrated with

other cultural management options such as crop rotation with cereals. The regression analysis

performed showed that root galling, Pf, Galls/RS, EM/RS, RGI and EMI were positively

correlated to an increase in Pi. Root galling severity and number of egg masses per root

system were found to increase with the increase of inoculum level of both populations of M.

incognita indicating their aggressiveness on the tested genotypes. This is in agreement with

several other studies (Zahid et al., 2001; Mekete et al., 2003; Charegani et al., 2012; Kankam

& Adomako, 2014; Dammini Premachandra & Gowen, 2015).

All the four tomato genotypes (Assila, CLN-2366B, Chochoro and Tisey) used in the current 

study to check the relationship between Pi-Pf were found having some degree of resistance 

during the growth chamber resistance screening for the M. incognita Jittu populations while 

for the Babile M. incognita population Assila and CLN-2366B were found susceptible 

whereas Chochoro and Tisey were slightly resistant (see chapter 4, Table 4.2). However, in 

this current study the Pi-Pf relation pointed out that all these genotypes are a good host for 

both populations surprisingly more for the Jittu M. incognita populations compared to the 

Babile M. incognita populations. This difference might have been due to the range of 

inoculum levels used in the current study as compared to the screening performed in the 

growth chamber using only one inoculum level. Hence, this result suggests that it is very 

crucial to consider a geometric series of inoculum levels rather than just using one inoculum 

level while screening for nematode resistance.   

The severity of tomato crop damage caused by Meloidogyne species may depend on species 
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and the level of nematode population densities present in the soil at the time of planting 

(Sasanelli, 1994), populations of RKN, the occurrence of species mixture and the tomato 

genotypes used (see chapter 2). The Pi of Babile and Jittu M. incognita populations 

negatively affected the plant growth, biomass and yield parameters of the tested cultivars. For 

example, SFW was found negatively affected by increasing Pi. This parameter of tomato is 

important especially when considered for tomato factories (De Vito et al., 1991). This is an 

indication that if tomato growers want to guarantee better tomato production they need 

reliable information on the initial nematode densities in the soil before establishing their crop 

(Dammini Premachandra & Gowen, 2015).  

It is not recommended to extrapolate T and m determined elsewhere (see chapter 2). The field 

where the damage experiment is conducted is one of the main factors that determine the value 

of T and m. For example, the T and m determined in drought prevailing areas should not be 

extrapolated to areas with ideal growing conditions. Drought was found favoring the damage 

of crops by nematodes and it may reduce the minimum yield and the tolerance limit 

compared to damage studies under ideal growing conditions (Wallace, 1973). In ideal 

conditions nematodes may cause only moderate damage whereas under periods of drought or 

other related stress factors, they may cause considerable damage reducing the value of T and 

m. Moreover, in the face of climate change and tropical agriculture, damage threshold 

determination studies should be locally studied and extrapolation should be handled with care 

(if needed). Additionally, the value of T and m is not equal when they are determined in fields 

with a history of nematode management practices used and in fields where there were not any 

management practices. In the former case, the T and m value may be higher so that to 

extrapolate and use this value for advisory or predication purpose for fields that did not have 

any management history will be truly misleading. Therefore, determination of T and m of a 

given crop variety for the prevailed Meloidogyne species in fields to be planted (local setting) 

is vital. 

Determining the T and m using naturally infested fields with different nematode population 

levels is more ideal than determining in artificially inoculated pot studies and it has several 

advantages. Firstly, growers could easily observe the difference as the experiment is 

conducted in their local settings that serve as a demonstration plot. Secondly, it will represent 

the ideal climatic (aerial temperature, relative humidity, temperature, wind) and edaphic (soil 

texture, soil moisture, soil temperature) conditions for both the crop and the nematode. 
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Thirdly, the parameter estimates of the yield loss (T and m) are more close to the true 

estimate and can be reliably used for any advisory purpose or to predict the population 

dynamics for the future crop to be planted. Fourthly, the roots of plants grown for damage 

assessment at field conditions will freely grow, not bounded as in a pot study.  
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8.1. Brief Overview 

In this PhD research, the biodiversity and distribution of RKN (Meloidogyne species) from 

major tomato growing localities of Ethiopia were investigated. The presence of RKN was 

earlier reported from vegetable growing localities of Ethiopia (Mandefro & Mekete, 2002). 

Surveys have mostly been concentrated in the central rift valley areas where most of the 

commercial vegetable growers, including tomato producers, are found. Meloidogyne species 

were largely identified based solely on morphology and in very limited cases using 

cytological and biochemical studies (Mandefro & Dagne, 2000; Mekete et al., 2003). These 

studies were mainly focused on identification and distribution of RKN (Abebe et al., 2015). 

A reliable research report on any effort for sustainable management of RKN and easily 

affordable technology for resource poor farmers of Ethiopia is lacking. The level of tomato 

growers’ awareness about the economic importance or even the existence of PPN including 

RKN was not properly reported. Hence, this PhD thesis included a survey on 40 major 

tomato growing localities (Rift Valley, Upper Awash and Eastern Hararghe), used different 

molecular tools to identify Meloidogyne species associated with tomato and developed 

management strategies that are easily adopted by resource poor farmers of Ethiopia. The 

tomato growers and extension workers level of awareness towards RKN was assessed using a 

closed ended questionnaire. This PhD research work was initiated with the null hypothesis 

that tomato production is threatened by different RKN and different local tomato genotypes 

are resistant and/or tolerant to the prevailed RKN species. This PhD research output 

confirmed the fulfilment of the original null hypothesis.  

 

8.2. Awareness about Plant-Parasitic Nematodes in Ethiopia  

During my survey work, I have found that 65.5% of the tomato growers participating in the 

questionnaire survey were not aware of even the existence of PPN in general and RKN in 

particular (see chapter 3). During the survey, in ‘Babile Erer’, ‘Babile Gende Sudan’, ‘Erer 

Gota’ and ‘Gursum’ localities I witnessed a 100% tomato yield loss due to nematode damage. 

Tomato plants were wilting when they were about to start flowering. When farmers where 

asked about the possible causes of their tomato plants death they all mentioned unequivocally 

the Orobanche (broomrape) parasitic higher plant present in their field as the top reason. 

When I showed them the root damages (a totally rotten root system and roots with big and 

numerous galls) of their tomato plants due to RKN they all knew the damage symptom but it 

was hard for them to associate it with any known pathogen or insect. They were all asking me 

if I could be of help for a nematicide to apply and save their tomatoes and other vegetables.  



8 General Discussion and Future Prospects 

182 

Plant Nematology is the least studied and recognized science compared to other components 

(such as plant mycology, plant virology, plant bacteriology, agricultural entomology) of plant 

protection sciences in Ethiopia. This is equally true both in the eyes of the agricultural policy 

makers and even within the plant protection professionals (Abebe et al., 2015). Plant 

Nematology related courses were not offered to the plant protection (Plant Pathology, 

Agricultural Entomology and Integrated Pest Managemnet) students except for a brief 

overview as a sub-chapter at both undergraduate and postgraduate levels in many local 

universities. This clearly proved Plant Nematology indeed is an orphan science in Ethiopia. 

In order to fill such a huge gap, this PhD thesis played a role and created more awareness 

from the inception of the proposal development. I have been actively participating and 

presenting a paper on general nematology related topics and more specifically the output of 

this PhD research on the annual conferences of professional societies such as Plant Protection 

Society of Ethiopia, Annual Research Review Workshops of local universities and research 

institutes at national level. My active participation on the publication of the forum article 

published on the current status and future prospects of EPN and PPN in Ethiopia (Abebe et 

al., 2015) was meant to inform the agricultural policy makers about the economic importance 

of nematodes in Ethiopia and was part of the awareness creation package. 

8.3. Survey of Root-Knot Nematode Problems in Tomato 

The highest prevalence (100%) of RKN was found on samples collected from Adami Tullu, 

Babile (Erer and Gende Sudan), Erer Gota, Hurso, Jittu, Tikur Wuha, Tepo Choronke, Zeway 

and Koka. The highest incidence (100%) of the RKN was found from Adami Tullu, Jara 

Weyo, Babile (Erer and Gende Sudan), Erer Gota, Hurso, Jittu, Tikur Wuha, Tony farm, 

Tepo Choronke, Zeway and Koka locations based on direct observation of galls on collected 

root samples (see chapter 3). This clearly shows the wider distribution of RKN species in 

tomato growing areas of Ethiopia. The higher prevalence and incidence of RKN from these 

localities was hypothesized due to the previous crop used (mostly solanaceous without crop 

rotation) and the prevailing sandy or sandy loam type soil, which favours nematode infection. 

The majority of small-scale farmers did not practice weeding (especially once flowering 

started) on tomato and which may result in the higher RKN incidence or prevalence. In the 

present study, the presence of M. incognita, M. javanica, M. arenaria and M. hapla on 

tomato was confirmed using a combination of DNA-based and biochemical identification 

tools. The two tropical species, M. incognita and M. javanica, were identified as the most 

prevalent species. The presence of M. incognita and M. javanica is not surprising since they 
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have frequently been reported using morphological studies (Tadele & Mengistu, 2000; 

Mandefro & Dagne, 2000; Mandefro & Mekete, 2002). Both species were also found co-

infesting tomato plants. The occurrence of these Meloidogyne species alone, or in mixed 

populations from samples collected, clearly shows that RKN are widespread in major tomato 

growing areas of Ethiopia. Investigating the nature of these two major species interaction 

when present together could be of an interest in the near future.  

 

The absence of RKN from some major tomato growing areas of Ethiopia (Meki, Jeju and 

Nura era) during my survey work should not mislead the readers, as if the area is free of RKN 

(see chapter 3). Different reasons could be cited for it. Firstly, the nature of nematode 

distribution in the soil is not always uniform unless the field is artificially infested or grown 

with the host crop for several consecutive years without crop rotation. The distribution of 

RKN in the soil is patchy (Duncan & Phillips, 2013). Secondly, the probability of detecting 

RKN in one round sampling in areas where nematodes follow a patchy distribution is low 

(Chen et al., 2011). Finally, some natural and cropping system variation may create a passive 

state for the entire RKN soil populations. The absence of Meloidogyne species in Meki (one 

of the major tomato growing areas) was allocated to the natural flood that stayed for 3 

months during 2011/12 growing season (see chapter 3). It supports the significance of 

flooding as a nematode management option for the resource poor farmers in areas with 

excess water in the vicinity. However, water is always found to be the most limiting factor 

for the small-scale farmers to grow crops in Eastern Africa including Ethiopia (Adhikari et 

al., 2015). It should also be noted that flooding might bring a higher risk as it disperse 

nematodes through the runoff unless it is followed for a reasonable longer dry environmental 

condition.   

 

Ethiopia is a big country and it is not feasible to include all the tomato-growing areas in a 

PhD project in one round sampling. I have covered comprehensive major tomato growing 

areas in the southern and central rift valley, upper Awash and eastern Hararghe. However, a 

significant amount of tomato production comes from the Northern part of Ethiopia (for 

example in 2013/14 growing season in the western lowland of Tigray 1655 ha was grown 

(Chernet & Zibelo, 2014). There is no exact figure on the amount of tomato production from 

the entire Northern part of Ethiopia reported. There is no report on any PPN related survey 

work on any crop from this Northern region (Abebe et al., 2015). These areas are 

characterized by different climatic and edaphic factors compared to the central rift valley 
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(Birhane et al., 2011). Therefore, an immediate survey should be initiated which will be of 

help in mapping the distribution of Meloidogyne species at country level. This mapping will 

serve as a basic reference point for any further management efforts and advisory services to 

be sought and to avoid redundancy of efforts.  

 

8.4. Biodiversity of Root-Knot Nematode in Tomato  

One of the most important prerequisites for any nematode management is correct 

identification (Powers et al., 2005). This crucial information ultimately determines the 

success of any management effort to reduce RKN populations in the soil. To this end, in this 

PhD thesis, a comprehensive study that started from identifying the RKN problems in tomato 

production areas to finding a solution for the prevailed RKN problems through a holistic 

local tomato varieties resistance screening effort was explored. As far as my knowledge goes, 

this is the first comprehensive characterization of RKN species from agricultural open 

farmers fields using molecular tools in the country and the first comprehensive resistance 

screening that covers greenhouse and field conditions. Different DNA-based molecular tools 

i.e. SCAR primers, D2-D3 expansion fragments of 28S rDNA sequence homology, NAD 5 

gene fragment sequences and biochemical tests (isozyme and malate dehydrogenase) were 

used to identify 153 RKN isolates collected across the major tomato growing localities (see 

chapter 3).  

 

Out of the 153 isolates used for molecular or biochemical identification, 48.4% of them were 

found to be M. incognita (74), 41.2% M. javanica (63), 6.5% M. arenaria (10), 3.3% 

unidentified Meloidogyne spp. (5) and 0.7% M. hapla (1). Meloidogyne fallax, M. chitwoodi 

and M. enterolobii, were not detected despite using their respective SSP. I was able to 

identify 72.5% of the collected RKN isolates accurately with the SCAR primers developed 

by Zijlstra et al. (2000) and Wishart et al. (2002) after rounds of PCR running work. From 

the unidentified populations with SCAR (due to weak bands), 24.2% was identified using 

NAD 5 gene fragment sequence based on Janssen et al. (2016) and isozyme (Esbenshade & 

Triantaphyllou, 1987; Carneiro et al., 2000) to come up with a total of 96.7% identification of 

the populations. The remaining 3.3% (5) were unidentified with any of the molecular and/or 

biochemical tools used (see chapter 3).  

 

The 5 isolates i.e. Fedis-FED5, Gursum-GUR10, Tepochoronke-TEP5, Tibila-TIB9 and 

Zeway-ZEW8 were unidentified despite trying a combination of molecular and biochemical 
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techniques (see chapter 3). The 28S rDNA of these samples were clearly amplified using the 

D2D3 primers and the quality of the DNA was considered perfect. However, there was no 

amplification using SSP, Nad5 gene fragment and the biochemical (isozyme and malate 

dehydrogenase) tests. The 28S rDNA sequence homology did not give a conclusive 

identification for these isolates either. These isolates might have been a new species and this 

is a solid proof that accurate diagnosis requires a combination of molecular and 

morphological characters (Skantar et al., 2008). Unfortunately, while trying all these 

molecular tools the cultures of these isolate were not found in good conditions and we were 

not able to proceed to identify them morphologically. Nevertheless, the GPS coordinates and 

the exact locations from which these isolates were brought had already been registered and 

known and re-surveying will be considered in the near future.  

 

The efforts made in these species identification indicate huge vacuum and well-suited and 

reproducible molecular markers to identify the tropical RKNs are needed urgently. From this 

study, I have learnt that to correctly identify tropical RKN species employing a combination 

of tools is not a choice when processing large number of samples. Even the routinely used 

and relatively established molecular tools such as the SSP were not found consistently 

amplifying the samples in one PCR run. After running several PCR with many samples 

mostly a few of them were found amplified and in some cases no amplification was done or 

weak bands were shown including for the positive control. Adjusting the PCR master mix 

combinations or the amount of DNA or the primer dilutions might be strategies to try to solve 

encountered problems.  

 

Diagnostic resolution of D2-D3 expansion segments of 28S rDNA is insufficient to 

discriminate between some of the most closely related, problematic and economically 

damaging tropical RKN species (Naz et al., 2012; McClure et al., 2012; Landa et al., 2008). 

The complete 28S rDNA dataset of our isolates only confirmed that this region couldn’t be 

used for identification of tropical RKN species. SSP are simple to perform and can 

successfully be used to any developmental stage of the nematode (Blok & Powers, 2009). 

However, there are some challenges associated with this method such as lower sensitivity or 

specificity of SSP, lack of reproducibility, the need to use large amount of DNA and 

appearance of weak bands (Adam et al., 2007; Blok & Powers, 2009; Onkendi et al., 2014).  
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As confirmed in this study, the recently developed method by Janssen et al. (2016) worked 

well especially for M. incognita and M. javanica isolates. However, as reported by Janssen et 

al (2016) the relatively uncommon, closely related linages of MIG such as M. ethiopica and 

some populations of M. arenaria were found clustered in one Nad5 haplotype indicating lack 

of identification resolution for these species. Biochemical identification can successfully fill 

the deficiencies of DNA-based identification techniques and can be used as a confirmation 

tool when weak bands amplified using SPP. However, this method is female age dependent 

and as found in this study it is difficult to determine and differentiate band sizes between 

different species. In this study, the esterase phenotype (EST) was more clearly amplified than 

the malate dehydrogenase (MDH) phenotype, which was almost always found with 

additional and unspecified double band. 

8.5. Detection of M. hapla in Farmers Tomato Field: A surprise 

The detection of M. hapla in the open tomato production farmer’s field at Zeway, Ethiopia, 

for the first time at 1620 masl elevation came as a surprise. It was believed that M. hapla only 

flourishes at altitudes above 1829 masl in East Africa (Kenya, Tanzania and Uganda), despite 

the abundance of host plants at lower altitudes (Whitehead, 1969). However, in this study, M. 

hapla is reported at a significantly lower altitude (1620 masl) indicating M. hapla can 

flourish at lower altitudes too. However, it is not clear if this species is distributed in other 

major tomato growing areas or if it is only restricted to Zeway area. A systematic and timely 

sampling approach is needed to collect as many information as possible and to find out more 

about M. hapla. There is no adequate information about the M. hapla economic importance 

on tomato crops in Ethiopia. However, of concern is the fact that it was identified in a farm 

where it has the history of intensive vegetable production including tomato and pepper, thus 

this is likely to have considerable consequences for tomato production. The economic 

importance of M. arenaria and M. hapla on tomato production in Ethiopian agriculture is 

awaiting investigation. 

8.6.  Searching for Sustainable and Eco-friendly Management Option 

From this study, M. incognita and M. javanica were found predominantly present in the 

major tomato growing areas of Ethiopia. This urged the need to look for a sustainable, safe 

and easily applicable RKN management option for the resource poor farmers of Ethiopia.  A 

management option (searching a resistance source from local tomato varieties and breeding 

lines) that can easily be adopted by the resource poor farmers of Ethiopia to these major 
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Meloidogyne species was investigated in this PhD thesis. A total of 26 populations of M. 

incognita and 25 populations of M. javanica originating from different tomato growing 

localities of Ethiopia were checked for their aggressive behaviour on two susceptible tomato 

cultivars Moneymaker and Marmande at Haramaya University (Raree) under glasshouse 

conditions prior to the actual screening experiment. All populations multiplied well on both 

cultivars indicating their aggressive behaviour. Two populations from each major 

Meloidogyne species ‘Babile’ and ‘Jittu’ from M. incognita and ‘Jittu’ and ‘Koka’ from M. 

javanica that multiplied best on both cultivars were chosen for the subsequent screening 

work. The most common tomato varieties used by the local farmers were carefully chosen in 

consultation with tomato breeding unit of MARC in Ethiopia. Additional commercial tomato 

cultivars were also obtained from MONSANTO (The Netherlands) and breeding lines from 

AVRDC (Taiwan). A total of 33 tomato cultivars and breeding lines were screened against 

Babile and Jittu M. incognita and Jittu and Koka M. javanica populations for their resistance 

(see chapter 4). In none of the cultivars immunity was found. However, partial resistance was 

found in several breeding lines and cultivars although not with the same degree of resistance 

for all tested populations between or within the species. This indicates that population based 

screening and population based management recommendations are highly needed. The 

mechanism of resistance in these potential breeding lines and cultivars were also studied and 

differential penetration was found only on CLN-2366A and CLN-2366B but delayed 

development into the adult female was considered as a mechanism of resistance for most of 

the genotypes studied (see chapter 4). The delay in the adult female development may be 

important if used as a trap crop though it is not feasible to use tomatoes as a trap crop. 

Checking the genetic background (Heterozygous or Homozygous) of the genotypes and 

breeding lines with some potential resistance using a molecular marker is the immediate 

recommendation from this PhD thesis.  

 

8.7. Heat Stability of Tomato Resistance in Tropical Agriculture 

The Mi-1 gene confers resistance but not immunity to the three most damaging species: M. 

incognita, M. javanica, and M. arenaria (Milligan et al., 1998). It has been the only 

commercially available source of resistance to RKN in tomato for the last 70 years globally 

(see chapter 2). The utility of this gene was found limited at higher soil temperature (Devran 

et al., 2010; Verdejo-Lucas et al., 2013). Climatic heterogeneity is a general characteristics of 

Ethiopia and in areas where tomato is largely produced soil temperature at times rises above 

28°C (Alemayehu, 2002). The incorporation of heat-stable resistance to Meloidogyne spp. 
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would be a valuable genetic improvement in tomato. In this PhD thesis, I have checked the 

durability and heat stability of the potential resistance found on some tomato breeding lines at 

(≤ 27°C) in the growth chamber by exposing further to 28, 32 and 36°C soil temperatures for 

24 and 48 hrs period. It was confirmed that local tomato breeding lines with resistance 

potential can be used when soil temperatures remain below 32°C. The utility of the resistance 

was also found totally limited at 36°C. The differences observed between breeding lines 

depending on the RKN population at higher temperatures can help in further optimizing the 

development of sustainable resistance under local Ethiopian circumstances (see chapter 5). 

 

 As confirmed with the tested tomato breeding lines in this PhD study and reported earlier in 

different crop species such as bean (Mullin et al., 1991), pepper (Thies & Fery, 2000), sweet 

potato (Jatala & Russell, 1972), alfalfa (Griffin, 1969) and cotton (Carter, 1982) temperature 

sensitivity is a characteristic of several RKN resistance genes. The Mi-9 gene obtained from 

the S. peruvianum complex and a homologue of Mi-1 gene was found unaffected by 

temperature (Bleve-Zacheo et al., 2007) but it is not yet commercially available. It is highly 

advisable to engineer the Mi-9 heat stable gene to commercially available tomato varieties 

commonly grown in tropical agriculture including Ethiopia. Any effort to facilitate this 

commercialization process of tomato seeds with the Mi-9 gene should be encouraged. The 

tomato breeding lines (such as CLN-2366A and CLN-2366B) found to be resistant and 

somehow stable till 32°C soil temperature lacked the good yield and yield components and 

agronomic plant parameters (see chapter 5 & 6). There should be some genetic improvement 

on these breeding lines and the vegetable breeding unit of MARC could take the assignment 

and accordingly improve the agronomic quality of these breeding lines.  

 

8.8. Performance of Selected Tomato Genotypes in Meloidogyne spp. Infested Fields  

The practical and applied component of any screening effort is checking the performance of 

the potential genotypes with resistance in field and farmers growing conditions. Hence, in 

this PhD work, performance of six tomato genotypes (Assila, CLN-2366A, CLN-2366B, 

Chochoro, Eden and Tisey) under local conditions at Tony (Dire Dawa) and Fethiya (Babile) 

farms were checked. These farms were known from the initial survey to be infested with both 

M. incognita and M. javanica populations. The tomato cultivars Tisey and Assila were new to 

Ethiopian field conditions although widely grown in the neighbouring east African countries 

(Kenya, Uganda and Tanzania) (Onduso, 2014). The cultivar Eden is being grown for 

commercial purpose in commercial glasshouses (such as Jittu farm) in Ethiopia. Chochoro, 
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mostly used as a processing tomato, is a widely available local variety and preferred by many 

tomato growers in Ethiopia (Tegen et al., 2015). The cultivar Assila and Eden were found 

potentially tolerant tomato cultivars to be promoted for growers of tomato in RKN infested 

areas of Ethiopia with a reasonable crop rotation interval. These cultivars can easily adapt to 

the climatic (temperature, relative humidity) and edaphic conditions (soil texture) of Ethiopia 

as these cultivars have already been successfully used in the neighbouring countries through 

MONSANTO. In Ethiopia, there is a relatively good extension system and farmers could 

easily adopt these strategies. However, soil analysis should be integrated with growing Assila 

in a new area as it was found with massive blossom end rot. Calcium deficiency in the soil 

has long been known to cause blossom end rot. The breeding lines (CLN-2366A and CLN-

2366B) were found partially resistant but were not giving good harvest data. However, these 

breeding lines might be used as rootstocks on which high yielding varieties are grafted. In 

general, this work confirmed that tomato varieties that were found SR or HR under the 

growth chamber screening (see chapter 4) became susceptible under field conditions (see 

chapter 6) and tolerance level and minimum yield determination experiment using a series of 

Pi (see chapter 7). In this PhD work, resistant screening under growth chamber, pot and field 

trials were not consistent indicating the importance of screening under field conditions. 

Resistance screening performed under ideal tropical tomato growing conditions (in the open 

farmers field) need to be encouraged rather than in artificial conditions using a limited range 

of inoculum and controlled conditions. In ideal tomato growing conditions, a lot of biotic and 

abiotic factors may interact and the utility of a cultivar that is found resistant under such 

condition will have a higher significance compared to the one obtained under artificially 

controlled conditions.  

 

In Ethiopia, as a means of food security, farmers usually practice intercropping. I recommend 

that farmers should practice intercropping with great care since the host status of the RKN 

populations present in Ethiopia is not yet known. In tomato genotypes performance study in 

the field, the biggest challenge comes from other co-infesting pathogens. Under field 

conditions, a plant is never found infected with a single pathogen (Johnson & Nusbaum, 

1970). The nematode will never be the single factor to be considered. A field with relative 

uniform infestation or a hot spot area is preferred to check the performance (see chapter 2). 

This work has gained reasonable attention. Tomato growers in eastern Ethiopia and farmer 

representatives and officers from agricultural offices visited the tomato varieties performance 

and damage threshold determination trial at Dire Dawa (Tony farm), which is a step forward 
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in disseminating the information. Due to time limitation, this field trial was not replicated in 

time and it was only performed during one season and I will further repeat this field trial 

provided with enough funding. One major challenge faced during the greenhouse and field 

resistance screening experiments in Ethiopia was from the devastating insect Tuta absoluta.  

8.9. Determination of T and m on Selected Tomato Genotypes under Local Settings  

For any advisory purpose or to design control strategies, it is highly recommended to 

determine the minimum yield (to be expected when higher nematode populations are present 

in a soil during planting) and a tolerance limit (the level of the nematode population below 

which there is no economic yield loss) under local conditions for any crop-nematode 

combinations (Jamali et al., 2012). Nematode threshold densities determined in one 

geographic location is not extrapolated to other locations (Barker et al., 1976). In this study, 

though it was not in my original PhD proposal, the tolerance limit (T) and minimum yield (m) 

of selected tomato cultivars (Assila, CLN2366B, Chochoro, Tisey and Moneymaker 

(susceptible control) was determined against Babile and Jittu M. incognita populations (see 

chapter 7). The result perfectly supplemented the tomato varieties performance studied under 

the two field conditions (see chapter 6). I have also noticed that all penetrated J2 may not 

form feeding sites and thereby form root galls, as many J2 were recovered during root 

extraction without visible root galls in their root surfaces from the damage pot test. It may 

imply that J2 might not find suitable nourishment from the plant tissues to establish feeding 

sites. It may also be possible that 2nd generation J2 just entered the root (though it is unlikely 

since it was found from roots with less root galls from the 1st generation). This indicates that 

root gall is a poor indicator of crop resistance or susceptibility.  

Based on the damage model fitted to the data all the tested plant parameters were found 

negatively affected by both populations of M. incognita. As the reproduction factor (RF) 

obtained for the tested tomato cultivars were high we can consider the tested cultivars as a 

good host for both populations of M. incognita and monocropping should be avoided. In 

general, for all the plant parameters studied Tisey was found with a lower T (as lower as 

0.09J2/ 100 gram dry soil) while Assila (except for the parameter RW) was having a higher T 

(as high as 9.59J2/100 gram dry soil). The difference observed for the tested tomato 

genotypes to their minimum yield (m) for the different plant parameters studied against 

Babile and Jittu M. incognita populations indicate that this critical parameter should 

preferable be determined at population levels and in local settings. The history of the field 
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(management or prevailed species), climatic conditions of the field (drought or ideal 

conditions), temperate or tropical agriculture and the type of soil on which the damage 

experiment is being conducted are very important factors to consider while determining T and 

m.  

8.10. Conclusions 

In general, in this PhD thesis, I confirmed a consistent population difference in 

aggressiveness through all the screening steps involved i.e. in greenhouse screening, 

mechanism study, heat stability determination, field performance study and damage and 

population dynamics investigation. The Jittu M. incognita population was the most 

aggressive compared to Babile M. incognita and Jittu and Koka M. javanica populations. 

This is a clear indication that there should always be extra care while treating RKN 

populations. Moreover, in this PhD work, screening for nematode resistant under growth 

chamber, pot and field trials were not consistent indicating the importance of screening under 

ideal tomato growing field conditions. The tomato genotypes Assila, Eden, CLN-2366A and 

CLN-2366B (after genetic improvement or could be used as a rootstock for high yielding 

tomato varieties) and the tolerant local genotype (Chochoro) are recommended as a 

management option in tropical agriculture with some non-host (mostly cereals) rotation 

schemes. These resistance sources (Assila, CLN-2366A and CLN-2366B) could also be used 

in protected agriculture where the M. incognita and M. javanica problem is prevalent 

(Kiewnick et al., 2011) such as in the glasshouses and protected tomato production in Europe 

where tropical RKN are also found to be present. A general schematic procedure for 

resistance screening against PPN more importantly RKN is presented in Fig 8.1.  
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Figure 8.1. Schematic presentation of resistance screening procedures for plant-parasitic 
nematodes case example RKN.  
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8.11. Future Prospects: What is for the Future? 

The future prospects and recommendations from this study are: 

 Launching postgraduate Plant Nematology program at least at two universities known 

for their agricultural research expertise could help using the limited human and resource 

facilities at hand. Training technically equipped nematologists that can work at 

universities, research institutes and as agricultural extension agents may be helpful. 

There should be a workable national plan to launch, strengthen and improve 

Nematology education, research and extension services in Ethiopia.  

 Agricultural universities and research institutes should at least be well equipped with a 

controlled greenhouse and growth chambers to be used for research purposes. The 

occurrence and problem of Tuta absoluta during my Ethiopian screening effort in the 

glasshouses of Haramaya University proved the lack of such infrastructures.  

 Create linkages between local, east African and foreign universities and local research 

institutes so that the output of the basic research performed at the universities will be 

forwarded to the research institutes for the applied component and extension services.  

 Writing projects on nematode problems on economically important crops and avail 

these projects for postgraduate Crop Protection, Plant Pathology, Agricultural 

Entomology and IPM students across different universities in the country which will 

generate a reliable research information about RKN and create more awareness will help 

a lot.  

 Nematologists should focus on the damage potentials of economically important PPNs 

identified from economically important crops of Ethiopia and thereby focus on 

management practices that are affordable by the resource poor farmers.  

 Ethiopia is known as centre of diversity for many food crops and management practices 

aiming breeding for resistance and/or tolerance cropping system could be rewarding. 

 Awareness creating projects can be designed to reach SSF, investors, extension workers 

and policymakers about the economic importance of PPN and more specifically RKN 

on vegetables including tomato.  

 A survey on RKN problems of tomato from the Northern part of Ethiopia will help in 

mapping the distribution of Meloidogyne species at country level.  

 Tomato growers can be advised on efficient and wise use of resistant and tolerant 

tomato varieties. Growers could be advised to practice well-designed and appropriate 

crop rotation schemes. The agricultural research extension scientists in Ethiopia can 

specifically address and train the resource poor farmers to use a solarized soil to raise 
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their tomato seedlings for transplanting. This is at least affordable to obtain healthy 

planting material.  

 Heat stability should be considered as an integral part of any nematode resistance 

screening effort for tropical crops including tomato in the future.  

 Easy access should be facilitated for the tomato growers to get Meloidogyne species 

resistant tomato seeds or rootstocks.  

 Priority should be given for locally feasible and economical management options such 

as resistant cultivars.   

 Farmers can be trained to check the presence of nematodes in their fields by using soil 

from their fields and growing a susceptible plant in it in a pot.  

 It will be also helpful if the government opens nematode diagnostic services for 

checking samples of nematode problems.  

 Morphological identification should also be useful if combined with the DNA-based and 

isozyme profiles.  

8.10. References 

Abebe, E., Mekete, T., Seid, A., Meressa, B.H, Wondafrash, M., Addis, T., Getaneh, G. & 

Abate, B.A. (2015). Research on plant-parasitic and entomopathogenic nematodes in 

Ethiopia: a review of current state and future direction. Nematology 17, 741-759. 

Adam, M.A.M., Phillips, M.S. & Blok, V.C. (2007). Molecular diagnostic key for 

identification of single juveniles of seven common economically important species of 

root-knot nematode (Meloidogyne spp.). Plant Pathology 56, 190-197. 

Adhikari, U., Nejadhashemi, A.P. & Woznicki, S.A. (2015). Climate change and eastern 

Africa: a review of impact on major crops. Food and Energy Security 4(2), 110-132.  

Alemayehu, M. (2002). Forage Production in Ethiopia: A case study with implications for 

livestock production. Ethiopian Society of Animal Production (ESAP), Addis Ababa, 

Ethiopia pp 1-125. 

Barker, K.R., Shoemaker, P.B. & Nelson, L.A. (1976). Relation- ships of initial population 

densities of Meloidogyne incognita and M. hapla to yield of tomato. Journal of 

Nematology 8, 232-239. 

Birhane, E., Aynekulu E., Mekuria, W., and Endale D. (2011).  Management, use and 

ecology of medicinal plants in the degraded dry lands of Tigray, Northern Ethiopia.  

Journal of Medicinal Plants Research 5(3), 309-318 



Chapter 8  

 195 

Bleve-Zacheo, T., Melillo, M.T. & Castagnone-Sereno, P. (2007). The contribution of 

biotechnology to root-knot nematode control in tomato plants. Pest Technology 1, 1-16. 

Blok, V.C. & Powers, T.O. (2009). Biochemical and molecular identification. In: Perry RN, 

Moens M, Starr JL, eds. Root-knot Nematodes. Wallingford, UK: CAB International, 98-

118. 

Carneiro, R.M.D.G., Almeida, M.R.A.& Quénéhervé, P. (2000). Enzyme phenotypes of 

Meloidogyne spp. isolates. Nematology 2, 645-654. 

Carter, W.W. (1982). Influence of soil temperature on Meloidogyne incognita resistant and 

susceptible cotton. Journal of Nematology 14, 343-346. 

Chen, P., Liu, S.H., Liu, H.I., Chen, T. W., Chiang, K.S. (2011). Probability of detecting 

nematode infestations for quarantine sampling with imperfect extraction efficacy. Journal 

of Nematology 43(1), 16-24.  

Chernet, S. & Zibelo, H. (2014). Evaluation of tomato varieties for fruit yield and yield 

components in western lowland of Tigray, Northern Ethiopia. International Journal of 

Agricultural Research 9, 259-264. 

Devran, Z., Sogut, M.A. & Mutlu, N. (2010). Response of tomato rootstocks with the Mi 

resistance gene to Meloidogyne incognita race 2 at different soil temperatures. 

Phytopathologia Mediterranea 49,11-17. 

Duncan, L.W. & Phillips, M.S. (2013). Sampling for root-knot nematodes. In: Root Knot 

Nematodes. Perry, R.N., Maurice, M. & Starr J.L (ed.) edited. Nosworthy way, 

Wallingford, UK CABI publishing, pp-275-295.  

Esbenshade, P. R. & Triantaphyllou, A. C (1987). Enzymatic relationships and evolution in 

the genus Meloidogyne (nematoda: tylenchida). Journal of Nematology 19, 8-18.  

Fortuner, R., 1989. A new description of the process of identification of plant parasitic 

nematode genera. In: Fortuner, R. (Ed.), Nematode Identification and Expert System 

Technology, New York, Plenum Publishing Corporation, pp. 65-76. 

Goftishu, M., Seid, A. & Dechassa, N. (2014). Occurrence and population monitoring of a 

new species of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), 

in Eastern Ethiopia. East African Journal of Sciences  8(1), 59-64. 

Griffin, G.D. (1969). Effects of temperature of Meloidogyne hapla in alfalfa. Phytopathology 

59, 599-609. 

Jamali, S., Pourjam E. & Safai N. (2012). Determining the Relationship between Population 

Density of White Tip Nematode and Rice Yield. Journal of Agricultural Sciences 

Technology 14, 195-203.  



8 General Discussion and Future Prospects  

 196 

Janssen, T., Karssen, G., Verhaeven, M., Coyne D. & Bert, W. (2016). Mitochondrial coding 

genome analysis of tropical root-knot nematodes (Meloidogyne) supports haplotype based 

diagnostics and reveals evidence of recent reticulate evolution. Scientific reports 6, 22591, 

doi:10.1038/srep22591. 

Jatala, P. & Russell, C.C. (1972). Nature of sweet potato resistance to Meloidogyne incognita 

and the effects of temperature on parasitism. Journal of Nematology 4, 1-7. 

Johnson A.W. & Nusbaum, C.J. (1970). Interactions Between Meloidogyne incognita, M. 

hapla, and Pratylenchus brachyurus in Tobacco. Part of a PhD thesis, North Carolina 

State University, USA.  

Kiewnick, S., Wolf, S. & Frey J. E. (2011). Identification of the tropical root-knot nematode 

species Meloidogyne incognita, M. arenaria and M. javanica by a multiplex PCR 

protocol. Phytopathology 101(6), 16. 

Landa, B.B., Rius, J.E.P., Vovlas N., Carneiro, R.M.D.G., Maleita, C.M.N., Abrantes, 

I.M.de.O. & Castillo, P. (2008). Molecular characterization of Meloidogyne hispanica 

(Nematoda, Meloidogynidae) by phylogenetic analysis of genes within the rDNA in 

Meloidogyne spp. Plant Disease 92, 1104-1110, doi: 10.1094/Pdis-92-7-1104.  

Mandefro, W. & Dagne, K. (2000). Cytogenetic and esterase isozyme variation of root-knot 

nematode populations from Ethiopia. African Journal of Plant Protection 10, 39-47. 

Mandefro, W. & Mekete, T. (2002). Root-knot nematodes on vegetable crops in Central and 

Western Ethiopia. Pest Management Journal of Ethiopia 6, 37-44. 

McClure, M. A., Nischwitz, C., Skantar, A. M., Schmitt,M. E., & Subbotin, S.A. (2012). 

Root-knot nematodes in golf course greens of the western United States. Plant Diseases 

96, 635-647. 

Mekete, T., Mandefro, W. & Greco, N. (2003). Relationship between initial population 

densities of Meloidogyne javanica and damage to pepper and tomato in Ethiopia. 

Nematologia Mediterranea 31, 169-171. 

Milligan, S.B., Bodeau, J., Yaghoobi, J., Kaloshian, I., Zabel, P. & Williamson, V.M. (1998). 

The root-knot nematode resistance gene Mi from tomato is a member of the leucine 

zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10, 

1307-1319. 

Mullin, B.A., Abawi, G.S. & Pastor-Corrales, M.A. (1991). Modification of resistance 

expression of Phaseolus vulgaris to Meloidogyne incognita by elevated soil temperatures. 

Journal of Nematology 23,182-187. 



Chapter 8  

 197 

Naz, I., Juan, E. P.R, Blok, V., Saifullah, Ali S. & Ahmed M. (2012). Prevalence, incidence 

and molecular identification of root-knot nematodes of tomato in Pakistan. African 

Journal of Biotechnology Vol. 11(100): 16546-16556. 

Onduso, J.N. (2014). Management of Bacterial Wilt of Tomato by Use of Resistant Rootstock. 

Msc Thesis, University of Nairobi, Kenya.  

Onkendi, E.M., Kariuki, G.M., Marais, M. & Moleleki, L.N. (2014). The threat of root-knot 

nematodes (Meloidogyne spp.) in Africa: a review. Plant Pathology 63, 727-737. 

Powers, T.O., Mullin, P.G., Harris, T.S., Sutton, L.A. & Higgins, R.S. (2005). Incorporating 

molecular identification of Meloidogyne spp. into a large-scale regional nematode survey. 

Journal of Nematology 37, 226-235. 

Skantar, A.M., Carta, L.K. & Handoo, Z.A. (2008). Molecular and Morphological 

Characterization of an Unusual Meloidogyne arenaria Population from Traveler’s Tree, 

Ravenala madagascariensis.  Journal of Nematology 40(3), 179-189.  

Tadele, T. & Mengistu, H. (2000). Distribution of Meloidogyne incognita (Root-Knot 

Nematode) in Some Vegetable Fields in Eastern Ethiopia. Pest management Journal of 

Ethiopia 4, 77-84. 

Taylor (1987). Identification And Estimation of Root-Knot Nematode Species In Mixed 

Populations. Florida Department Of Agriculture & Consumer Services. Bulletin 12 

Contribution Number 335.  

Tegen, H., Mohammed, W. & Dessalegn, Y. (2015). Physicochemical attributes of Tomato 

(Lycopersicon esculentum Mill.) varieties under Polyhouse and Mulching Conditions. 

Mediterranean Journal of Biosciences 1(1), 38-49. 

Thies, J.A. & Fery, R.L. (2000). Heat Stability of Resistance to Meloidogyne incognita in 

Scotch Bonnet Peppers (Capsicum chinense Jacq.). Journal of Nematology 32(4), 356-

361.  

Verdejo-Lucas, S., Blanco, M., Cortada, L. & Sorribas, J.F. (2013). Resistance of tomato 

rootstocks to Meloidogyne arenaria and Meloidogyne javanica under intermittent elevated 

soil temperatures above 28°C. Crop Protection 46, 57-62. 

Wallace, H.R (1973). Nematode ecology and plant disease. London, UK, Arnold, p.228. 

Whitehead, A.G. (1969). The distribution of root-knot nematodes (Meloidogyne spp.) in 

tropical Africa. Nematologica 15, 315-33. 

Wishart J, Phillips MS, Blok VC (2002) Ribosomal intergenic spacer: a polymerase chain 

reaction diagnostic for Meloidogyne chitwoodi, M. fallax, and M. hapla. Phytopathology 

92, 884-892. 



8 General Discussion and Future Prospects 

198 

Zijlstra C, Donkers-Venne DTHM, Fargette M (2000) Identification of Meloidogyne 

incognita, M. javanica and M. arenaria using sequence characterized amplified region 

(SCAR) based PCR assays. Nematology 2, 847-853. 



 

199  

Summary 
The biodiversity, distribution and associated problems of root-knot nematodes (Meloidogyne 

spp.) in major tomato growing areas of Ethiopia were studied. A total of 212-rhizosphere soil 

and 123 root samples were sampled from 40 localities in tomato growing areas of Ethiopia 

(Rift valley, Upper Awash and Eastern Hararghe) during the 2012/13 growing season (see 

chapter 3). This is the first comprehensive survey (in terms of area coverage on the basis of a 

single vegetable crop-tomato) conducted in Ethiopia. The presence of Meloidogyne 

incognita, M. javanica, M. arenaria and M. hapla on tomato was confirmed using a 

combination of SCAR primers and biochemical identification tools. Meloidogyne incognita 

and M. javanica were the predominant Meloidogyne species across the sampled areas. Both 

species were also found co-infesting tomato plants. Meloidogyne hapla was detected for the 

first time in an open tomato production farmer’s field at ‘Zeway’ location with 1620 masl 

elevation. The occurrence of these Meloidogyne species alone, or in mixed populations, 

clearly showed that root-knot nematodes are widespread in major tomato growing areas of 

Ethiopia.  

 

A bioassay test was conducted in the greenhouse on the 212 soil samples collected from 

different tomato growing localities (see chapter 3). Out of the 212 composite soil samples 

collected, 100 samples (47.2%) were found infested by various Meloidogyne species eight 

weeks after the start of the bioassay test. Out of the 123 root samples collected directly from 

the fields, 80 of them (65%) had root galls. There was significant variability in the prevalence 

and incidence of root-knot nematodes between sampled localities. The highest incidence 

(100%) of RKN was found in Adami Tullu, Jara Weyo, Babile (Erer and Gende Sudan), Erer 

Gota, Hurso, Jittu, Tikur Wuha, Tony farm, Tepo Choronke, Zeway and Koka locations 

based on direct observation of root galls on collected root samples. The highest prevalence 

(100%) of RKN was found on samples collected from Adami Tullu, Babile Erer, Babile 

Gende Sudan, Erer Gota, Hurso, Jittu, Tikur Wuha, Tepo Choronke, Zeway and Koka.  

 

For the molecular and biochemical identification of Meloidogyne species a total of 153 

isolates were used. Out of the 153 isolates studied, 48.4% of them were found to be M. 

incognita (74), 41.2% M. javanica (63), 6.5% M. arenaria (10), 3.3% unidentified 

Meloidogyne spp. (5) and 0.7% M. hapla (1). Five isolates i.e. Fedis (FED5), Gursum 
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(GUR10), Tepo Choronke (TEP5), Tibila (TIB9) and Zeway (ZEW8) were unidentified 

despite trying a combination of molecular and biochemical techniques (see chapter 3).  

 

A questionnaire with a total of 646 respondents was conducted to assess the knowledge and 

practice of farmers and factors associated with RKN damage on tomato. Out of the 646 

respondents, 280 (43.3%) of them reported to have RKN damage symptoms when shown the 

symptoms of RKN while 366 (56.7%) of them did not report damage. The highest effect on 

RKN damage on tomato roots was found to be the previous crop, soil texture, awareness 

about RKN and source of irrigation water used (see chapter 3). 

 

The two predominant RKN (M. incognita and M. javanica) were used to screen for resistance 

using local tomato varieties and breeding lines (see chapter 4). The aggressiveness of 26 

populations of M. incognita and 25 populations of M. javanica was assessed on tomato 

cultivars Marmande and Moneymaker prior to the resistance screening experiment. On both 

cultivars Marmande and Moneymaker all M. incognita and M. javanica populations formed a 

high number of egg masses indicating highly aggressive behaviour. The two most aggressive 

populations of M. incognita (‘Babile’ and ‘Jittu’) and M. javanica (‘Jittu’ and ‘Koka’) were 

selected and used for further testing on 33 tomato genotypes. The resistance screening and 

mechanism of resistance was performed after inoculation with 100 freshly hatched (<24 hr.) 

second-stage juveniles (J2). Eight weeks after inoculation, the number of egg masses 

produced on each cultivar was assessed. For the resistance mechanism study, J2 penetration 

and their subsequent development inside the tomato roots were examined at 1, 2, 4 and 6 

weeks after inoculation. None of the 33 tomato genotypes were immune for M. incognita and 

M. javanica populations used. However, several tomato genotypes were found to have a 

significant effect (p < 0.05) on the number of egg masses produced indicating possible 

resistance. For M. javanica populations more plants from cultivars or breeding lines on which 

no egg masses were found compared to M. incognita populations. The lowest number of egg 

masses for both populations of M. incognita was produced on cultivars Bridget40, Galilea, 

and Irma while for M. javanica it was on Assila, Eden, Galilea, Tisey, CLN-2366A, CLN-

2366B and CLN-2366C. Cultivar, time (weeks after inoculation) and their interaction were 

significant sources of variation (p < 0.05) for J2 penetration and their subsequent 

development inside the tomato roots. Differential penetration was found in breeding lines 

such as CLN-2366A, CLN-2366B and CLN-2366C. However, many of the selected tomato 

genotypes resistance for the tested M. incognita and M. javanica populations was expressed 
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by delayed nematode development. Developing a simple screening technique to be used by 

local farmers or extension workers was found crucial to facilitate selection of a suitable 

cultivar. In chapter 2 an overview is given of the damage potential of RKN on tomato 

(Solanum lycopersicum) and the different management strategies of Meloidogyne spp. on 

tomato with particular emphasis on the Mi resistance gene. The effectiveness of the only 

commercially available RKN resistance gene (the Mi-gene) was reported to be limited in 

higher soil temperatures. In chapter 5, a study was initiated with the objective to check the 

durability of the potential resistance genes found in seven (CLN-2366A, CLN-2366B, CLN-

2366C, CLN-2037H, CLN-2037A, CLN-2037B and CL5915-206-D4-2-2) tomato breeding 

lines after screening in controlled greenhouse conditions ≤ 27°C (see chapter 4) by exposing 

them to higher soil temperatures at 28, 32 and 36°C for 24 and 48hrs period. The aggressive 

Babile and Jittu M. incognita and Jittu and Koka M. javanica populations originally collected 

from Ethiopia were used. Temperature, cultivar and time had a significant (P < 0.01) effect 

on the numbers of second-stage juveniles of Babile and Jittu M. incognita and Jittu and Koka 

M. javanica populations that penetrated the plant roots. The utility of the potential resistance 

found in our breeding lines during the controlled growth chamber resistance screening 

experiment was found limited at the higher soil temperatures of 32 and 36°C. For both Babile 

and Jittu M. incognita populations a significantly higher number of J2 was found in the roots 

of all the tested tomato breeding lines after 48hrs heat exposure compared to the 24hrs heat 

exposure for each soil temperature level studied. For both Jittu and Koka M. javanica 

populations after 48hrs exposure to 36°C the mean number of J2 that penetrated the roots of 

all tested breeding lines was significantly higher compared to the 24hrs exposure time. From 

our observations it was found clear that local tomato breeding lines with resistance potential 

can be used when soil temperatures remain below 32°C. Differences were observed between 

breeding lines depending on the RKN population at higher temperatures and this knowledge 

can help in further optimizing the development of sustainable resistance under local 

Ethiopian circumstances. 

Tomato resistance screening against Meloidogyne spp. has often been performed in 

controlled greenhouses, which does not represent the actual tomato production conditions. A 

study was initiated to assess the tolerance and resistance of selected tomato cultivars under 

local conditions on two Meloidogyne spp. infested fields (Dire Dawa-Tony farm and Babile-

Fethiya Farm) in eastern Ethiopia (see chapter 6). A total of seven tomato varieties (Assila, 

CLN-2366A, CLN-2366B, Chochoro, Eden, Moneymaker and Tisey) were grown in both 

locations. A randomized complete block design was used with four replications for each 
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cultivar at both locations. The plant growth, biomass, yield and yield component data that 

were considered as a measure of varieties tolerance were found significantly (p < 0.01) 

different among the tomato varieties. Except the initial population densities (Pi) at planting, 

all nematode related parameters (final population density, root galls per root system, egg 

mass per root system, mean number of eggs per egg mass, root gall index, egg mass index 

and reproduction factor) that were used as a measure of varieties resistance were found 

statistically (p < 0.01) different among the tested tomato genotypes. Positive correlation of 

plant data parameters indicated that total number of fruits per plant, fruit set percentage, 

number of fruits per cluster, number of fruit clusters per plant and shape index were the most 

important fruit yield components contributing to fruit yield per hectare. A similar 

performance trend was obtained among the tested tomato genotypes across both locations 

though the level of damage was found dependant on the Pi present in the soil. A cultivar 

potentially tolerant or resistant at Dire Dawa (Tony farm) was also found performing nearly 

similar at Babile (Fethiya farm). The tomato varieties Assila and Eden are recommended in 

nematode infested areas with strict crop rotation. The tomato cultivar Tisey was found to be 

the most susceptible while the local cultivar Chochoro was found to be tolerant. The tomato 

breeding lines CLN-2366A and CLN-2366B were found good in reducing the nematode 

populations but they need some critical genetic improvement (preferably they can be used as 

a rootstock). 

Reliable data are required to relate the effect of a range of Pi on plant growth, biomass and 

yield for specific crop-nematode associations under local conditions. In chapter 7, the effect 

of a series of Pi of Babile and Jittu Meloidogyne incognita populations on four tomato 

cultivars (Assila, Chochoro, Moneymaker and Tisey) and one clone (CLN-2366B) for growth 

and yield and the relationship with final population densities (Pf) were studied. Each tomato 

cultivar was inoculated with a geometric series of Pi (0, 0.125, 0.5, 1, 2, 4, 8, 16, 32, 64, 128 

and 256 J2/ 100 gram of dry soil) and was allowed to grow till the crop reaches senescing. 

The relationship between Pi and Pf was fitted to the Seinhorst population dynamics model 

(Pf = (M * Pi) / (Pi + M/a) while the effect of Pi on different plant parameters considered 

was fitted to the Seinhorst yield model (Y = Ymax*(m + (1 - m)* 0.95^((Pi-T)/T)). Based on 

the damage model fitted to the data all the tested plant parameters were found negatively 

affected by both populations of M. incognita. The Jittu M. incognita population was found 

having more effect on the majority of parameters compared to Babile M. incognita 

population. As the reproduction factors (RF) obtained for the tested tomato cultivars were 
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high we can consider the tested cultivars as good host for both populations of M. incognita. 

The highest RF for M. incognita populations was obtained at lower Pi (0.125 J2/100 gram of 

dry soil) and reduced with increasing Pi on all the tested cultivars. Severity of root galling 

and number of egg masses per root system increased with increasing inoculum levels of both 

populations of M. incognita. The cultivar, M. incognita population and initial population 

density (Pi) had a highly significant (P < 0.001) effect on all the plant and nematode data 

parameters considered. The seedlings of all the tested tomato genotypes were dead at the 

higher Pi value (256 J2/100 gram dry soil) except for the cultivar Assila of which seedlings 

survived even with the higher Pi values for both M. incognita populations. Among all the 

cultivars tested Tisey was found highly susceptible to both Babile and Jittu populations and 

all the seedlings were dead at (Pi ≥ 16) which was worse than the susceptible control 

Moneymaker where seedlings died at Pi ≥ 64J2/100 gram of soil. For all the plant parameters 

studied Tisey was found to have a lower damage threshold T while Assila (except for the 

parameter root weight) was having a higher T. A difference was observed for the tested 

tomato genotypes on their minimum yield (m) for the different plant parameters studied 

against Babile and Jittu M. incognita populations. Determination of T and m of a given crop 

variety for the prevailing Meloidogyne species in fields to be planted (local setting) is vital. 

 

In conclusion, this PhD thesis presented for the first time the biodiversity of Meloidogyne 

species associated with tomato using a combination of molecular and biochemical tools. The 

experiments on aggressiveness, resistance screening, mechanism of resistance, heat stability, 

field performance and damage potential showed a consistent Meloidogyne spp. population 

difference in aggressiveness. Promising cultivars or breeding lines should be carefully tested 

with local populations and under local circumstances to provide clear-cut solutions for 

Ethiopian tomato farmers.   
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Samenvatting 
De biodiversiteit, de verspreiding en de problemen met wortelknobbelnematoden 

(Meloidogyne spp.) in belangrijke tomaatproducerende gebieden van Ethiopië werden 

bestudeerd. Een totaal van 212 bodemmonsters en 123 wortelmonsters werden verzameld op 

40 locaties in de Rift-vallei, Upper Awash en Oost Hararghe tijdens het groeiseizoen 2012-

2013 (zie hoofdstuk 3). Dit is het eerste uitgebreide onderzoek in termen van dekkingsgraad 

op basis van één enkele teelt (tomaten) uitgevoerd in Ethiopië. De aanwezigheid van 

Meloidogyne incognita, M. javanica, M. arenaria en M. hapla op tomatenplanten werd 

bevestigd met een combinatie van SCAR primers en biochemische identificatiemiddelen. 

Meloidogyne incognita en M. javanica waren de overheersende Meloidogyne soorten in de 

bemonsterde gebieden. Beide soorten werden ook samen aangetroffen op tomatenplanten. 

Meloidogyne hapla werd voor het eerst ontdekt in het open veld in Ethiopië op tomaat 

(Solanum lycopersicum). Dit was op de locatie 'Zeway' die zich op 1620 meter boven 

zeeniveau situeert. De uitgevoerde bemonstering toonde duidelijk aan dat 

wortelknobbelnematoden wijdverspreid zijn in belangrijke tomaatproducerende gebieden van 

Ethiopië en opbrengstderving veroorzaken. Een werd een biotoets uitgevoerd in de kas op de 

212 bodemmonsters die werden verzameld (zie hoofdstuk 3) en in 100 monsters (47,2%) 

werden acht weken na de start van de biotoets wortelknobbelnematoden gevonden op de 

tomatenplanten. Van de 123 wortelmonsters die werden verzameld op de velden bleek 80 van 

hen (65%) knobbels te vertonen. Er was aanzienlijke variatie in de aanwezigheid van 

besmetting alsook in de grootte van de besmetting tussen de bemonsterde plaatsen. De 

hoogste incidentie (100%) van Meloidogyne spp. werd gevonden in Adami Tullu, Jara Weyo, 

Babile (Erer en Gende Sudan), Erer Gota, Hurso, Jittu, Tikur Wuha, Tony farm, Tepo 

Choronke, Zeway en Koka locaties op basis van directe observatie van knobbels op de 

wortels.  

Voor de moleculaire en biochemische identificatie van Meloidogyne soorten werden in totaal 

153 isolaten gebruikt. Daarvan bleken er 48,4% M. incognita (74) te zijn, 41,2% M. javanica 

(63), 6,5% M. arenaria (10), 0,7% M. hapla (1) en 3,3% (5) kon niet geïdentificeerd worden 

ondanks het combineren van moleculaire en biochemische technieken (zie hoofdstuk 3).  

Er werd een enquête uitgevoerd bij de tomatenboeren om te achterhalen in welke mate ze 

kennis hebben over wortelknobbelnematoden en de schade die ze kunnen veroorzaken aan 

hun gewas. Van de 646 respondenten gaf 280 (43,3%) van hen aan schade te hebben nadat 
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hen de symptomen (knobbels) werden getoond, 57,7% gaf aan geen schade te hebben. Er 

bleek een sterke link te zijn tussen het voorkomen van schade en het voorgaande gewas, de 

bodemtextuur, de gebruikte bron voor irrigatie en hun kennis over wortelknobbelnematoden. 

(zie hoofdstuk 3). 

De twee meest aangetroffen wortelknobbelnematoden, M. incognita en M. javanica, werden 

gebruikt voor het screenen van lokale tomatenrassen en klonen op resistentie (zie hoofdstuk 

4). Daarvoor werd eerst de agressiviteit van 26 populaties van M incognita en 25 populaties 

van M. javanica beoordeeld op tomatencultivars Marmande en Moneymaker. Op beide 

cultivars vormden alle M. incognita en M. javanica populaties een groot aantal eipakketjes. 

De twee meest agressieve populaties van M. incognita ('Babile' en 'Jittu) en M. javanica (' 

Jittu 'en' Koka ') werden geselecteerd voor de resistentiescreening van 33 tomaat genotypes. 

Acht weken na inoculatie met 100 vers uitgekomen (<24 uur) tweedestadiumjuvenielen (J2) 

werd het aantal eipakketjes dat gevormd werd op elke cultivar beoordeeld. Om het 

resistentiemechanisme te onderzoeken werd penetratie en de verdere ontwikkeling in de 

tomatenwortels onderzocht op 1, 2, 4 en 6 weken na inoculatie. Geen van de 33 tomaat 

genotypes waren immuun voor M. incognita en M. javanica. Er werden echter wel bij 

verschillende genotypen een significant (p <0,05) lager aantal eipakketjes vastgesteld wat 

wijst op mogelijke resistentie. Er waren meer planten bij de verschillende cultivars en klonen 

waarbij voor M. javanica geen eipakketjes werden aangetroffen in vergelijking met M. 

incognita. Het laagste aantal eipakketjes voor beide populaties van M. incognita werd geteld 

op cultivars Bridget40, Galilea, en Irma terwijl voor M. javanica dit was op Assila, Eden, 

Galilea, Tisey, CLN-2366A, CLN-2366B en CLN-2366C. Cultivar, tijd (weken na inoculatie) 

en hun interactie waren belangrijke bronnen van variatie (p < 0,05) voor J2 penetratie en de 

verdere ontwikkeling in de tomatenwortels. Lagere penetratie werd gevonden in klonen CLN-

2366A, CLN-2366B en CLN-2366C maar het was voornamelijk een vertraagde ontwikkeling 

van de M. incognita en M. javanica populaties die werd geobserveerd in de geselecteerde 

genotypes. Het ontwikkelen van een eenvoudige screening techniek die kan gebruikt worden 

door boeren of voorlichters is essentieel om de keuze van een geschikte cultivar te 

vereenvoudigen. 

In hoofdstuk 2 wordt een overzicht gegeven van het schadepotentieel van Meloidogyne spp. 

op tomaat en de verschillende strategieën voor controle met bijzondere nadruk op de Mi-

resistentie. Het Mi-gen is het enige commercieel beschikbare resistentiegen en is niet 

hittebestendig bij hogere bodemtemperatuur. In hoofdstuk 5 werd onderzocht in welke mate 

de potentiële resistentiegenen gevonden in zeven klonen (CLN-2366A, CLN-2366B, CLN-
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2366C, CLN-2037H, CLN-2037A, CLN-2037B en CL5915-206-D4-2-2) hitte bestendig zijn 

door ze gedurende 24 en 48 uur bloot te stellen aan hogere bodemtemperatuur (28, 32 en 36 

°C). Temperatuur, cultivar en tijd hadden een significant (p <0,01) effect op het aantal J2 van 

‘Babile’ en ‘Jittu’ M. incognita en ‘Jittu’ en ‘Koka’ M. javanica populaties die de 

plantenwortels penetreerden. Bij de hogere bodemtemperaturen (32 en 36°C) bleek de 

potentiële resistentie verloren te zijn gegaan. Voor beide M. incognita populaties werd een 

aanzienlijk hoger aantal J2 gevonden in de wortels van alle geteste tomatenklonen na 48u 

blootstelling aan hitte (28, 32 en 36°C) in vergelijking met de 24 uur hitteblootstelling. Voor 

de beide M. javanica populaties was dit enkel het geval bij 36°C. Er werden verschillen 

waargenomen tussen de klonen afhankelijk van de Meloidogyne populatie. Op basis van de 

resultaten kan worden gesteld dat lokale klonen met resistentiepotentieel kunnen gebruikt 

worden bij bodemtemperaturen beneden de 32°C. Deze kennis kan helpen bij de 

ontwikkeling en optimalisatie van duurzame resistentie onder lokale Ethiopische 

omstandigheden. 

Resitentieonderzoek en screening met Meloidogyne spp. wordt vaak uitgevoerd in 

gecontroleerde omstandigheden in incubatoren of kassen en dit geeft geen getrouwe 

weergave van de lokale omstandigheden waaronder tomaten in Ethiopië worden geteeld. 

Daarom werden resistentie en tolerantie van selecteerde tomatencultivars onderzocht onder 

de plaatselijke omstandigheden op twee Meloidogyne spp. besmette percelen (Dire Dawa-

Tony farm en Babile-Fethiya Farm) in het oosten van Ethiopië (zie hoofdstuk 6). Een totaal 

van zeven tomatenrassen (Assila, CLN-2366A, CLN-2366B, Chochoro, Eden, Moneymaker 

en Tisey) werden gekweekt op beide locaties. De plantengroei, biomassa, opbrengst en 

opbrengstfactoren die als maat voor tolerantie werden beschouwd waren significant (p <0,01) 

verschillend tussen de tomatenrassen. Met uitzondering van de initiële populatiedichtheid 

(Pi) bij de aanplant waren alle nematodenparameters (eindpopulatie Pf, aantal knobbels per 

wortelstelsel, eipakketjes per wortelstelsel, gemiddeld aantal eitjes per eipakketje, 

wortelknobbelindex, eipakketjesindex en reproductiefactor) die werden gebruikt als maat 

voor resistentie statistisch (p <0,01) verschillend tussen de geteste genotypes tomaat. Een 

gelijkaardige trend werd gezien op beide locaties voor de verschillende geteste tomaten 

genotypes. De ernst van de schade was wel afhankelijk van de Pi. Een cultivar met potentiële 

tolerantie of resistentie in Dire Dawa (Tony farm) gaf dezelfde resultaten in Babile (Fethiya 

farm). De tomatenrassen Assila en Eden worden aanbevolen in wortelknobbelnematoden 

besmette gebieden op voorwaarde dat aan vruchtwisseling wordt gedaan. De tomaten cultivar 

Tisey bleek het meest gevoelig te zijn terwijl de lokale cultivar Chochoro tolerant was. De 
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tomaatklonen CLN-2366A en CLN-2366B presteerden goed in het verminderen van de 

nematodenpopulatie  maar ze moeten een aantal kritische genetische verbetering ondergaan. 

Bij voorkeur kunnen ze nu worden gebruikt als onderstam. 

In hoofdstuk 7 werd het effect van een oplopende reeks van Pi van ‘Babile’ en ‘Jittu’ M. 

incognita populaties op de groei en de opbrengst en de relatie met de uiteindelijke 

eindpopulatie (Pf) op vier tomatencultivars (Assila, Chochoro, Moneymaker en Tisey) en een 

kloon (CLN-2366B) onderzocht. Elke cultivar werd geïnoculeerd met een geometrische reeks 

Pi (0, 0,125, 0,5, 1, 2, 4, 8, 16, 32, 64, 128 en 256 J2/100 gram droge grond). De planten 

werden onderhouden tot ze afstierven onder lokale omstandigheden in Dire Dawa (Tony 

farm). De relatie tussen Pi en Pf werd bepaald met het Seinhorst populatiedynamiekmodel 

(Pf = (M * Pi)/(Pi + M/a), terwijl het effect van Pi op verschillende plantparameters werd 

berekend met het Seinhorst opbrengstmodel (Y = Ymax * (m + (1 - m) * 0,95 ^ ((Pi-T)/T)). 

Alle geteste plantenparameters werden negatief beïnvloed door beide populaties van M. 

incognita op basis van het opbrengstmodel. De ‘Jittu’ M. incognita populatie had een grotere 

negatieve invloed op de meeste parameters in vergelijking met de ‘Babile’ M. incognita 

populatie. De reproductiefactoren (Rf) voor de geteste tomatencultivars waren hoog wat 

betekent dat de geteste cultivars als goede gastheer voor beide populaties M. incognita 

kunnen worden beschouwd. De hoogste Rf voor de M. incognita populaties werd verkregen 

bij lagere Pi (0,125 J2/100 gram grond) en verminderde met toenemende Pi voor alle geteste 

cultivars. Wortelknobbelvorming en het aantal eipakketjes per wortelstelsel namen toe met 

toenemende Pi voor beide populaties van M. incognita. De cultivar, M. incognita populatie 

en initiële populatie (Pi) hadden een sterk significant (P <0,001) effect op alle gemeten 

nematodenparameters. De zaailingen van alle geteste tomaat genotypes waren dood bij de 

hogere Pi waarde (256 J2/100 gram grond) met uitzondering van de cultivar Assila waarvan 

zaailingen overleefden, zelfs met de hogere Pi-waarden voor beide M. incognita populaties. 

Van alle geteste cultivars bleek Tisey zeer gevoelig voor zowel ‘Babile’ en ‘Jittu’ M. 

incognita populatie en de zaailingen stierven af bij Pi ≥ 16 terwijl bij de controlecultivar 

Moneymaker pas bij Pi ≥ 64 J2/100 gram grond was. Voor alle plantenparameters bleek Tisey 

een lagere schadedrempel T te hebben terwijl Assila (behalve voor de parameter 

wortelgewicht) de hoogste T liet optekenen. Voor de geteste tomaat genotypes werd een 

verschil waargenomen in hun minimale opbrengst (m) voor de verschillende  

plantenparameters die onderzocht werden bij besmetting met ‘Babile’ en ‘Jittu’ M. incognita 

populaties. Bepaling van de T en m van een cultivar van een gewas voor de lokale 
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Meloidogyne soorten in van essentieel belang om aangepast advies te kunnen geven over 

gewasopbrengst. 

In dit proefschrift werd voor de eerste keer de biodiversiteit van Meloidogyne soorten 

geassocieerd met tomaat in Ethiopië onderzocht met een combinatie van moleculaire en 

biochemische technieken. De experimenten op agressiviteit, resistentiescreening, 

resistentiemechanisme, hittebestendigheid, veldprestaties en potentiële schade toonden aan 

dat er belangrijke verschillen zijn tussen populaties van Meloidogyne spp. Veelbelovende 

cultivars, lijnen of klonen moeten zorgvuldig worden getest met de lokale Meloidogyne 

populaties onder plaatselijke omstandigheden om onderbouwd advies te kunnen geven aan 

Ethiopische tomatenboeren.  
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Appendix  
Table A1. Plant parameters (recorded from the pre-tagged plants per row in a consistent 
manner at both experimental locations) used as a measure of nematode tolerance  

Plant Parameters Description 

Plant height (PH) It was measured from the soil level to the main apex of the 

plant and mean values were expressed in centimetres.  

Number of leaves (NL) The number of leaves per plant was counted and thereby its 

mean calculated. 

Number of flowers per plant 

(NFPP) 

The total number of flowers per plant was counted and their 

mean was calculated. 

Total fruit number per plant 

(TFr) 

The total number of fruits (including marketable and 

unmarketable fruits) per plant was counted and their mean was 

calculated.  

Marketable fruit number per 

plant (MFr) 

The number of fruits that were free from any visible damage 

symptoms per plant was counted and later their mean was 

computed. 

Unmarketable fruit number per 

plant (UnFr) 

Includes fruits with cracks, damaged by insects, diseases, birds, 

too small and sunburn were counted (Lemma, 2002). 

Single fruit weight (SFW) Three tomato fruits per plant were randomly picked, their 

weight was measured separately using a sensitive balance and 

their mean was expressed in grams.  

Marketable yield (MY) (ton/ha) This is determined based on the total number of marketable 

fruit weight and single fruit weight and then converted into ton 

per hectare.  

Fruit set percentage (FSP) Calculated by dividing the total number of fruits per plant 

(TFrNPP) by the total number of flowers per plant (NFPP) and 

multiplied by 100 to express as a percentage (%). 

Root size (RS) The total weight of roots per plant was taken after removing the 

adhered soils and after the final fruit harvesting time and their 

mean expressed in grams. The difference between RS and FRW 

is that the latter was taken early flowering (when about to start) 

while the earlier was from senescence plants. 
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Root length (RL) The adhered soil from the roots was gently washed away using 

tap water and excess water was removed through blotting with 

tissue paper. The root length per plant was measured from the 

soil level to the tip of roots and their mean was expressed in 

centimetres.    

Days to 50% flowering (50FL) Number of days from the date of transplanting to the 

appearance of 50% flowering.  

Frequency of fruit picking (FFP) The total frequency of fruit harvest per cultivar was recorded. 

Fresh shoot weight (FSW): Taken from the pre-tagged plants per row and taken with 

destructive sampling when plants were about to start flowering 

and their mean was expressed in grams.  

Dry shoot weight (DSW) After taking the FSW, the same shoots were chopped into 

smaller fragments and oven dried at 72°C for 72hrs to measure 

their dry weight and their mean was expressed in grams.   

Fresh root weight (FRW) FRW was taken per plant using a destructive sampling. The 

roots were washed gently with tap water and all the adhering 

soil was carefully removed. The roots were then blotted using 

tissue papers to remove excess water from the roots and their 

mean was expressed in grams.  

Stem diameter (SD) Measured per plant (from the point where the first primary 

branch arises) from the pre-tagged plants per row and their 

mean was expressed in centimetres (cm). 

Number of primary branches 

(NPB) 

The number of primary branches per plant from the pre-tagged 

plants was counted at the maturity stage and later means were 

computed. 

Days to first harvest (DFrH): Number of days from the date of transplanting to the first fruit 

harvest date from the pre-tagged plants.  

Number of flowers per cluster 

(NFPc) 

Counted from the bottom, middle and upper parts per plant 

from the pre tagged plants and then their mean was computed. 

Number of flower clusters per 

plant (NFcPP) 

The number of flower clusters per plant was counted from the 

pre-tagged plants per row and later their mean was computed. 

Number of fruits per cluster 

(NFrPc) 

Counted from the bottom, middle and upper parts per plant 

from the pre-tagged plants and then their mean was computed.  
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Number of fruit clusters per 

plant (NFrcPP) 

the number of fruit clusters per plant was counted from the pre-

tagged plants per row and later their mean was computed. 

Shelf life (SL) In order to check the tomato breeding lines or cultivars’ shelf 

life, the days taken by fruits from the breaker stage until the 

firmness of the fruits was totally lost were recorded. The fruits 

were harvested at the breaker stage and kept under room 

temperature at Haramaya University laboratory. The 

temperature was recorded in the morning, mid-day and later in 

the evening to make the daily average temperature. 

Fruit polar diameter (FPD) Three randomly picked fruits per plant from the pre-tagged 

plants were used to determine the polar (from the stem to the 

blossom end) diameter of the fruits using a Vernier Caliper. 

Mean values were expressed in millimetres (mm).  

Fruit equatorial diameter (FED):  The same fruits that were used to determine the FPD were 

measured for their equatorial (transverse diameter) and mean 

values were expressed in millimetres (mm). 

Shape index (SI) It was calculated by dividing the mean of FPD by the mean of 

FED.  

Number of seeds per fruit (NSPF) Three randomly chosen fruits were picked per plant from the 

pre-tagged plants and their seed was extracted and counted 

separately and later their mean number was calculated.  

Mean ten fruit weight (M10FrW) The mean weight of ten fruits per plant from the pre-tagged 

plants per row were taken and expressed in kilograms (Kg). 

Total soluble solids (TSS) It was determined from fruits used for measuring FPD and 

FED. The juice of these fruits was extracted using a juice-

extracting machine and their total soluble solid was measured 

with a digital refractometer (ATAGO PR-101, Tokoyo, Japan) 

and expressed in °Brix. 
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Figure A1. A) Plant growth, yield and yield component data collection from the pre-tagged 
plants, B) Fresh shoot weight (g), C & F) Shelf life of tomato genotypes under room 
temperature at Haramaya University Plant Pathology laboratory D) Fresh root weight (g) and 
E) Fruit weight in gram.
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Figure A2. Fruit equatorial and polar diameter being measured; A) Chochoro, B) 
Moneymaker, C) A collection of the tested tomato fruits from field to home and D, E, & F) 
The juice of the fruit on preparation for TSS and NSPF.   
 

 
  
Figure A3.  A) Stalking on preparation from locally available wood, B) Weeding, loosening 
the soil and fertilizer application to follow-Tony farm, C) Unhealthy tomato plants (Babile-
Fethiya farm), D) A closer look to check the presence of Orobanche or broomrape parasitic 
higher plants, E) Weed free field and with stalking-Tony farm, F) Aerial view of the Tony 
farm experimental field, G) Tony farm at flowering stage and H) Babile-Fethiya farm tomato 
plants don’t look normal compared to Tony farm.  
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Figure A4. The Tony farm experimental field as visited by Prof. dr Chemeda Fininsa the 
local co-promoter and president of Haramaya University (left), the Belgian co-promoter Prof. 
dr ir Wim Wesemael (Middle) and The researcher (Mr. Awol Seid). (A) A photo taken with 
the logo of the participating institutions for this research and VLIR-UOS the funding 
organizations, (B & C) The research is accompanied by his local and Belgian promoters both 
in the middle and edge of the Tony farm research field and D) The researcher following the 
damage and population dynamics experiments on bigger pots in outdoor.  


