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Abstract

Economical, technical and strategic reasons make unreplicated exper-
imental designs necessary and popular in industrial and management set-
tings. This paper investigates the legitimate use of well known methods
that appoint effects as significant when they are larger than a defined
threshold. We found that established estimation methods, such as Lenth’s
method and Dong’s method, are too tolerant and a larger threshold should
be used before an effect can be determined as influencing. This comparing
analysis was done by using the degree of freedom that is available when
the resolution of the design is one less than the maximum value. Using
the Pareto Principle we suggest a more accurate threshold estimator for
significantly influencing factors and/or interactions based on analysis of
variance.

Keywords: design of experiments; significant effect; sum of squares;
factorial design; experimental error

1 Introduction

DOE (Design of Experiments) [1] provides a powerful means to achieve break-
through improvements in product quality and process efficiency [8, 6]. From
the viewpoint of manufacturing fields, DOE can reduce the number of required
experiments when taking into account the numerous factors or treatments pos-
sibly affecting experimental results. DOE strives to carry out the fewest number
of experiments while maintaining the most important information. When there
are no replications the experimental error cannot be measured without addi-
tional assumptions. Consequently the traditional methods based on analysis
of variance (ANOVA) are useless without these additional assumptions. The
traditional solution to this problem is the construction of normal plots of the
estimated effects [4] in case of the specific type of designs where all of the ef-
fects are orthogonal to each other (and hence can be estimated separately) .
Those that depart from linearity by a substantial distance are determined as
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Table 1: k main factors (2 ≤ k ≤ 4) and their interactions lead to a design with
m columns or possibly active effects.

main interactions
k m effects 1-way 2-way 3-way
2 3 A B AB
3 7 A B C AB AC BC ABC
4 15 A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD

significant. In order to eliminate the subjectivity of this graphical methods
for detecting significant effects, other methods were proposed, such as Lenth’s
method [7] and Dong’s method [5]. Here a sharp distinction between the signif-
icant and non-significant effect is provided, based on the pseudo standard error,
as explained in section 3.1 and section 3.2. The statistical software program
Minitab [12] uses Lenth’s threshold to distinguish the significant factors and/or
their interactions.

Our contribution consists in evaluating the quality of Lenth’s and Dong’s
threshold. In section 3.3 we elaborate an alternative based on the Pareto Prin-
ciple, i.e. a large proportion of process variation is associated with a small pro-
portion of the process variables [3]. This assumption of effect sparsity makes it
possible to use the highest order interaction to estimate the experimental error,
as it has the smallest probability to be active. The observations at the different
levels of that inactive highest order interaction may be regarded as replicates at
each combination of levels of the other, possibly active factors. This alternative
threshold is numerically evaluated in section 4 for a management example. The
numerical results show that a larger threshold than the estimates of Lenth and
Dong should be used to separate the inactive from the active factors and/or
their interactions.

2 Full factorial and fractional factorial screening

designs

A popular design when screening a large amount of factors, uses only two lev-
els (low and high) for each factor, assuming that there is no curvature in the
range of the factor of interest. In a 2k-design where k is the number of factors,
m = 2k − 1 possibly active effects of factors (=main effect) and their interac-
tions of different orders are under consideration (see Table 1). Here 2k refers
to the number of possible combinations of factor settings. When analyzing
factorial experiments with replicated measurements at each treatment combi-
nation, an estimate of internal variance or noise may be calculated from the
replicates at each treatment combination. The most important contribution of
DOE is modeling the dependency of the response variable on the active factors
and/or interactions with a limited number of experiments. Full factorial designs
include all factors and their interactions, while fractional factorial designs [2]
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use confounding patterns that express the relation between the effects. The
shorter the defining relations or confounding patterns, the lower the resolution
of the design. This makes that we have to carry out fewer fractional factorial
experiments compared to a full factorial experiment. Famous fractional facto-
rial designs are Plackett and Burman designs [9], Taguchi designs [10, 11] and
others. Taguchi designs use orthogonal arrays as design schedules and also, the
optimal conditions are determined by analyzing the S/N ratio (Signal-to-Noise
ratio) as a performance measure.

With fractional factorial designs a compromise between experimental effort
and results is chosen. The number of trials n varies between k+1 and 2k−1 (half
of a full factorial design, so one replication for each setting of factors), with k
the number of factors. The minimal value of n = k + 1 is used by Taguchi’s
designs and de Plackett-Burman (PB) designs. These saturated designs are very
useful for economically detecting large main effects, assuming all interactions
are negligible when compared with the few important main effects.

3 Thresholds in a Pareto plot

A Pareto plot (see Figure 1) is a graphical overview of the process factors and/or
interactions of influence, in ranking order of the most influencing down to the
least influencing. A threshold separates the influencing and non-influencing
ones.

Figure 1: a Pareto plot as produced by Minitab

3.1 Lenth’s Pareto threshold

Lenth’s pseudo standard error (PSE) [7] is used for calculating a threshold

or critical value E
[L]
c for the effects when there are no replicates. It is based

on the fact that the standard deviation of a sample from a Gaussian N(0, σ)
distribution may be estimated as M = 1.5×median(absolute values of the Ei-

values). Here Ei (1 ≤ i ≤ m) is the ith effect or the difference of the mean output
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value at the higher level of the factor/interaction and the mean output value at
the lower level of the factor/interaction. A refinement is made by deleting effects
that exceed 2.5 times this estimate and by recomputing the median. The critical
value for the effects associated with a confidence of (1−α) 100% and expressed
in (1), equals the PSE multiplied by the critical value for a t-distribution with
m/3 degrees of freedom, where m is the number of effects being assessed.

E[L]
c = PSE . t1−α/2(m/3) with P (u > t1−α/2(m/3)) = 1− α/2, u : t(m/3)

(1)

3.2 Dong’s Pareto threshold

Just like Lenth, Dong [5] used an adaptive standard error based on the trimmed
mean of squared contrasts rather than the trimmed median of the unsigned
contrasts:

E[D]
c =

√

√

√

√

1

minactive

∑

|Ei|<2.5M

E2
i . t(1+0.981/m)/2(minactive) (2)

where Ei is the ith calculated effect and minactive is the number of effects that
exceed 2.5 times M with M defined in section 3.1.

3.3 The Pareto threshold based on ANOVA

Let X be a factor or interaction included in a design, where only two levels (+
and −) are examined. The effect EX of X defined by (3) as the difference
between the mean outcome for X at higher and lower level respectively, is
directly related to the sum of squares SSX, as shown in (4). Here a balanced
design is assumed, so exactly half of the sample values are measures for X at
level +.

EX = ȳ+ − ȳ− (3)

SSX =
n

2
((ȳ+ − ȳ)2 + (ȳ− − ȳ)2)

=
n

2

(

(ȳ+ −
ȳ+ + ȳ−

2
)2 + (ȳ− −

ȳ+ + ȳ−
2

)2
)

=
n

4
(ȳ+ − ȳ−)

2

=
n

4
E2

X (4)

SSX is a traditional tool to construct the F -value (5) with a F (1, dfE)-
distribution,

FX =
SSX/1

SSEr/dfEr
(5)
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Table 2: Factors assessed in a study on revenue per year

Factor Low(-) High(+)
A: quality control no yes
B: packing price 10 12
C: marketing budget 50 80

used to decide whether the nulhypothesis

H0 : the factor/interaction X has no significant influence on the outcome y

is accepted or rejected with a confidence of 100 (1− α)%.

Here SSEr =
∑n/2

i=1(yi,+− ȳ+)
2+

∑n/2
i=1(yi,−− ȳ−)

2 represents the residual sum
of squares with dfEr = 1 degree of freedom.

The factor or interaction X is statistically considered as being significantly
influencing if FX > Fα(1, dfEr), where P (v > Fα(1, dfEr)) = α with v :
F (1, dfEr). This is equivalent to (6) when (4) and Fα(1, ν) = (t1−α/2(ν))

2

are taken into account.

EX > 2

√

SSE

ndfEr
t1−α/2(dfEr) = E[F ]

c (6)

The degrees of freedom are noticed between brackets for the F -distribution as

well as for the t-distribution. E
[F ]
c is the improved pareto plot threshold for X

to be significantly influencing.

4 Numerical example

As part of building an underlying business model, the effects of changing three
process input factors on revenue per year were studied in a 23 experiment. The
factors included in the study, along with their experimental levels, are explained
in Table 2.

A design with 3 factors, 6 possibly active effects, resolution 3 and 8 runs as

described in Table 3 at the right, is used to determine E
[F ]
c where the interaction

column ABC is omitted compared to the full factorial design. Figure 2 and Fig-
ure 3 give a scatter plot of Lenth’s threshold and Dong’s threshold respectively

(horizontally) and our threshold E
[F ]
c (vertically) for the effects when 100 trials

are used. In the experimental setup for one factor an effect of magnitude 35σ
is imposed. A successrate of more than 85% is reached for both, defined as the
ratio of the number of trials where the correct active effect is detected over the
total number of trials.

Figure 2 and Figure 3 suggest that Lenth’s threshold is often too tolerant and
should be refined. This means that also in cases where no alternative threshold
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Table 3: Taguchi’s method L4 or geometric 3-factor PB design (left) and a
fractional factorial resolution 3 design with 3 factors (right)

factor
run A B C
1 + + +
2 + - -
3 - + -
4 - - +

factor interaction
run A B C AB AC BC
1 + + + + + +
2 + + - + - -
3 + - + - + -
4 + - - - - +
5 - + + - - +
6 - + - - + -
7 - - + + - -
8 - - - + + +

estimation method is available due to lack of replicates (such as the Taguchi L4

method or the geometric PB design as described in Table 3 at the left), Lenth’s
method assigns too much effects as being significant.
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Figure 2: Scatter plot of the points (E
[L]
c , E

[F ]
c ) for 100 trials with effect=35σ.

Table 4 shows the success rate for 100 samples for different values of the
maximum effect E and learns that the more separated the distribution of the
largest effect from a zero effect, the higher the success rate of Lenth’s threshold.
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Figure 3: Scatter plot of the points (E
[D]
c , E

[F ]
c ) for 100 trials with effect=35σ.

Table 4: Success rate of Lenth’s and Dong’s threshold for different values of the
maximum effect size

E = 10σ 20σ 30σ 40σ 50σ
Lenth’s success rate= 60% 82% 85% 87% 88%
Dong’s success rate= 64% 83% 86% 89% 90%

5 Conclusion

The thresholds of the pareto plot designed by Lenth and Dong were partly de-
termined ad hoc and appear to be too tolerant: they notice too easily factors
and/or interactions as significantly influencing. When no replications are sup-
plied in the experiment, we suggest an improved threshold estimate by omitting
the highest order interaction. This gives the opportunity to evaluate the exper-
imental error, which is a crucial element in the estimation of the pareto plot
threshold.
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