
NFV Service Dynamicity with a DevOps Approach:
Insights from a Use-case Realization

Steven Van Rossem∗, Xuejun Cai†, Ivano Cerrato‡, Per Danielsson§, Felicián Németh¶,
Bertrand Pechenot‖, István Pelle¶, Fulvio Risso‡, Sachin Sharma∗, Pontus Sköldström‖ and Wolfgang John†

∗Ghent University iMinds, Department of Information Technology. Email: steven.vanrossem@intec.ugent.be
†Ericsson Research, Cloud Technologies, Sweden ‡Politecnico di Torino, Department of Control and Computer Engineering

§SICS Swedish ICT AB ¶Budapest University of Technology and Economics ‖Acreo Swedish ICT AB

Abstract—This experience paper describes the process of lever-
aging the NFV orchestration platform built in the EU FP7 project
UNIFY to deploy a dynamic network service exemplified by an
elastic router. Elasticity is realized by scaling dataplane resources
as a function of traffic load. To achieve this, the service includes
a custom scaling logic and monitoring capabilities. An automated
monitoring framework not only triggers elastic scaling, but also
a troubleshooting process which detects and analyzes anomalies,
pro-actively aiding both dev and ops personnel. Such a DevOps-
inspired approach enables a shorter update cycle to the running
service. We highlight multiple learnings yielded throughout the
prototype realization, focussing on the functional areas of service
decomposition and scaling; programmable monitoring; and auto-
mated troubleshooting. Such practical insights will contribute to
solving challenges such as agile deployment and efficient resource
usage in future NFV platforms.

I. INTRODUCTION

Using new possibilities enabled by SDN and NFV, a NFV
service production environment has been devised in the EU
FP7 project UNIFY1. It aims at unifying cloud and carrier
network resources in a common orchestration framework, used
to efficiently deploy and operate NFV-based services. The
platform needs to support new service dynamics, with more
flexibility compared to current available cloud platforms. Ser-
vices deployed in currently available cloud environments have
limited options to implement automated elasticity actions like
scaling. Commercial cloud providers are heavily focused on
web services handling requests and following an N-tier archi-
tecture (e.g. web server + databases). OpenStack also follows
these commercial cloud features, implementing horizontal and
vertical scalability described by its Heat template and triggered
by the Ceilometer engine[1]. These services follow a relatively
straightforward decomposition strategy where an auto-scaling
approach consists of cloning servers and putting a load bal-
ancer in front of them. This is in contrast to the NFV services
we intend to deploy in the UNIFY framework. There, part of
the service might be about rapid packet handling. Thus, adding
a load-balancer in front of the packet processing node is not
the most ideal scaling strategy to minimize processing delay.
Also stateful VNFs need to be supported, so state migration
is an important part of the scaling procedure. The scaling

S. Sharma has changed affiliation to NEC Labs Europe since project end.
1https://www.fp7-unify.eu/

of NFV services requires in-depth knowledge of the service,
and needs to be controllable/programmable by the service
developer. Furthermore, with the support of programmable
monitoring and troubleshooting tools, the service platform
becomes dynamically adapted to support specialized services.
Specialized metrics can be analyzed to optimize scaling trig-
gers and possible failures can be automatically detected and
debugged. This is inspired by DevOps principles, allowing
updates to the operational service in a very short loop. After
introducing the UNIFY NFV framework in Section II, we
outline the realization of the elastic router service within this
framework in Section III. The main contribution of this paper
is in Section IV, where we discuss the lessons learned by
implementing three main functionalities:
• A customized scaling procedure, made possible by the

UNIFY orchestration framework.
• A programmable monitoring framework, supporting the

deployed service in an automated way by triggering scaling.
• An automated troubleshooting process offering short up-

date cycles to fix service failures.

II. THE UNIFY FRAMEWORK

The base platform to deploy the NFV-based service is a PoC
following an ETSI NFV MANO-conform architecture - i.e. the
UNIFY architecture [2] shown in Fig. 1. Compared with ETSI
MANO (left side of Fig. 1), the VNF Manager (VNFM) and
Network Function Virtualization Orchestrator (NFVO) support
the same high-level functionality. VNFM is responsible for
life-cycle management of individual VNFs, whereas the life-
cycle management of the whole service is delegated to the
NFVO. ETSI’s Virtualized Infrastructure Managers (VIMs),
i.e., the controllers/managers of compute, storage and net-
work resources, are replaced by the UNIFY Orchestration
Layer [3], logically centralizing all resource management
functions. Within the UNIFY framework however, it is argued
that a central management entity such as the VNFM or NFVO
at the service layer is too generic to implement optimized
resource control for any service [4]. Therefore an interface
connecting the Virtual Network Function (VNF) directly to
the Orchestrator is installed. This is depicted in Fig. 1 and
enables a fully closed control loop allowing VNF and ser-
vice developers to autonomously control their resource needs,



Fig. 1. Basic UNIFY architecture (right side) compared to ETSI NFV-MANO
(left-side). The control loop interface enables network services to dynamically
control its resources.

closer and more adapted to the actual execution environment
of the service. This enables new service dynamics, different
from current (commercially) available cloud platforms. In the
following section, we describe how this platform is used to
support an elastic network service with custom scaling and
DevOps-inspired monitoring and troubleshooting support [5].

III. THE ELASTIC ROUTER SERVICE

From a top-level perspective (Fig. 2), the Elastic Router
(ER) example is a service that routes traffic between four
Service Access Points (SAPs), described by a Service Graph
(SG). The SG is translated into a Network Function-Functional
Graph (NF-FG) by the Service Layer. This NF-FG is a more
practical description of the service, describing the discrete
VNFs, SAPs and links to be deployed. The derived NF-
FG also contains annotated instructions how to deploy and
configure monitoring components (expressed as monitoring
intents we call MEASURE [5]). The Orchestration Layer in
Fig. 2 deploys the NF-FG on the available infrastructure. In
this integrated prototype, both Service and Orchestration Layer
are implemented in the ESCAPE2 orchestration software [6].
The infrastructure nodes are Universal Nodes (UN) [3], also
developed in UNIFY3. A UN is a high performing compute
node enabling the deployment of different VNF types (e.g.,
various container and VM versions), well suited to run on
commodity hardware in data centers and even on resource-
constrained hardware such as home/SOHO CPEs. Each UN
has a local orchestrator (LO), which deploys the received
NF-FG locally. We extend an early ER prototype [7] to
be deployed on the UNIFY platform supported by our SP-
DevOps monitoring and troubleshooting framework [5]. More
implementation details about the complete prototype can be
found in [8].

In addition to decomposition at the deployment time of
the service, automatic scaling is possible at any time, with

2Source code available: https://github.com/hsnlab/escape
3Source code available: https://github.com/netgroup-polito/un-orchestrator

no noticeable impact or interruption of the service’s quality.
During the service’s lifetime, the control plane (Ctrl App VNF)
is responsible to determine how to scale in/out data plane
components, implemented as Open vSwitch processes (ovs
VNFs). The scaling trigger is based on load measurements
by the monitoring framework. The actual resource allocation is
performed in the UNIFY architecture through the Orchestrator
via the control loop interface.

The lifetime of the ER service in our prototype implemen-
tation consists of distinct stages, as illustrated in Fig. 2:
1) At initial service deployment, a SG is sent to the Service

Layer. This SG is a high-level description of the elastic
router (i.e., the external interfaces connected to a mono-
lithic router function).

2) At instantiation, the Service Layer generates an NF-FG
based on the SG, supported by the Network Function
- Information Base (NF-IB), a database containing the
decomposed topology of the ER (see Section IV-A).

3) The NF-FG is passed to a (global) orchestrator which
calculates the infrastructure mapping, deciding where the
VNFs will be deployed. The local orchestrator (LO) in
the infrastructure will deploy the VNFs and trigger the
deployment of the monitoring components defined in the
monitoring intents (MEASURE) annotated to the NF-FG
(see Section IV-B).

4) At runtime, the service can scale elastically. A scaling
condition derived from the MEASURE annotations triggers
the ER Ctrl App VNF to generate a new, scaled version of
the NF-FG. Via the control loop interface, the new NF-FG
is sent to the orchestrator, which can deploy the new VNFs
on the available infrastructure (see Section IV-A).

5) During its lifetime, the service is continuously monitored.
Besides scaling, also failure conditions are detected and
used to trigger automated troubleshooting (Section IV-C).

IV. EXPERIENCES AND INSIGHTS

The following subsections present the challenges encoun-
tered while implementing this demonstrator prototype and
integrating the service and monitoring/troubleshooting compo-
nents with the UNIFY orchestration platform and UNs4. We
present the learnings structured along three functional areas:
service decomposition and scaling; programmable monitoring;
and automated troubleshooting.

A. Customized Decomposition and Scaling

Customizable service decomposition and scaling required
the integration of several different interfaces and descriptor
formats in this prototype. At deployment, customized decom-
positions of the SG can be stored in the NF-IB, while during
the service’s lifetime, the Ctrl App communicates different
service updates over the control loop interface. In addition to
this, also monitoring-related aspects need to be included in the
service descriptors. These different decomposition and scaling

4See also the related demo paper [9] and a video of the demo deployment
at https://youtu.be/jSxyKBZkVes



Service Layer

Orchestration Layer (Escape)

Infrastructure (UN)

Monitoring 

Framework

control 

loop

interface

Local OR 

(LO)

SAP1 SAP2 SAP3 SAP4

NFIB

Service Graph ER

Ctrl 

App

scaled out ER NF-FG

ovs2

ovs4

ovs3

ovs5

Ctrl 

App

Infrastructure network

ovs

Ctrl 

App

ER NF-FG

MEASURE

MEASURE

Ctrl App Decomposition:

generated NF-FG from custom scaling logic

NFIB Decomposition: 

lookup in database

Elastic Router

Troubleshooting 

Tools

ovs

Fig. 2. The UNIFY architecture incl. monitoring and troubleshooting tools, implementing a service-specific scaling mechanism of an Elastic Router (ER).

procedures are illustrated in Fig. 2. A short description of the
different main interface formats is given here:
• The NF-IB is a Neo4j DB which requires a dedicated API

and formalism to store and retrieve service decompositions.
• The UNIFY framework defines an XML-based NF-FG

format, based on a YANG model, described in [10].
• Both ESCAPE and the UN use two (syntactical) JSON-

based formalisms to describe the service to be deployed.
• Service-specific monitoring intents are annotated to the NF-

FG in the MEASURE language.
• A novel, secure and carrier-grade message bus (Dou-

bleDecker [11]) is used for communication between orches-
tration, service, monitoring, and troubleshooting compo-
nents in the UNIFY platform (more details in Section IV-B.)
This also shows that further standardization regarding ser-

vice descriptors is needed. Existing efforts (such as TOSCA,
ETSI [12]) are still work in progress, while UNIFY proposed a
novel format - the NF-FG [8]. Implementing the entire service
platform gave further insights on how to use the UNIFY NF-
FG to enable the needed service flexibility and configurations.

Learning 1: Enable VNF configuration. For the ER use
case, we used Docker as lightweight virtualization environ-
ment to run the Ctrl App and ovs VNFs; this allows the
VNF configuration mechanism to be entirely implemented
in the Local Orchestrator (LO) without introducing, in the
Service Layer, a module dedicated for this purpose. Two
types of configuration were necessary to deploy this service:
configuration of the IP addresses of the VNF virtual interfaces,
and configuration of the VNF software executed inside the
Docker container. Both kinds of information must be specified
in the NF-FG, and are set up in the container by the LO
during the instantiation of the container itself; particularly,
VNF-specific configuration is provided by means of Linux
environment variables. This means that to fully implement the
closed control loop, also configuration mechanisms beyond
resource control are needed in the Orchestration Layer.

Learning 2: Scaling without service interruption through
the control loop. To achieve zero-downtime, the scaled to-

pology cannot be sent as a single NF-FG update, but must
consist out of several incremented updates, via a make-before-
break procedure. This ensures that the service’s packet flows
can be seamlessly re-routed to a set of newly scaled, pre-
deployed and pre-configured VNFs. The old, un-scaled VNFs
and traffic routes are removed after the new ones are in place.
An intermediate topology is created during the scaling pro-
cedure where the new, additional data planes (ovs VNFs) are
deployed next to the original ones. The control loop interface
allows the Orchestrator to receive the different NF-FG updates,
calculated by the Ctrl App during this make-before-break
scaling procedure. The LO calculates the difference between
the currently deployed and the new version of the NF-FG,
hence leaving unaffected VNFs and flow rules to continue
their operations during the service scaling. Finally, after state
transfer, the old data planes are removed, and traffic from the
SAPs is re-routed to the newly scaled data plane topology.

Learning 3: Optimizing scaling speed. In our implementa-
tion, scaling-out time was in the order of 25 secs (scaling one
ovs VNF to four on a single UN hardware node, as illustrated
in Fig. 2, see also [9]). This time can be subdivided in:

1) Deploying/removing new compute resources (ovs VNFs).
2) State transfer between the old and the newly scaled VNFs.
3) Deploying network updates (updating flow-rules).

The most time is spend on point 3: processing the multiple
NF-FG updates and installing the changed service graph edges
during the scaling (re-connecting the SAPs and new VNFs).
State transfer will also take longer if large flow-tables need
to be transferred between ovs VNFs, but we did not examine
this in our experiment. From an implementation point of view,
the processing of the NF-FGs (creating XML-files in the Ctrl
App and translating them to flow-rule updates in the LO) is
the largest bottleneck which we need to examine further.

Learning 4: Modifications to the Service Description
(NF-FG). The original NF-FG representation[10] had to be
extended in order to support the ER use case. This consol-
idates the previous two learnings. Particularly, we added the
possibility: (i) to specify a configuration for the VNFs that are



Universal Node (UN)

Troubleshooting node

15/09/2016 Unify Integrated Demo: Elastic Router 1

EPOXIDE

AutoTPG

Recursive 

Query Engine

Local Orchestrator

Un-orchestrator

Monitoring 

Management Plugin

OpenTSDB+Aggregator

cAdvisor+RAMON

Elastic Router

Ctrl App

Docker

Daemon

SAP1 SAP2 SAP3 SAP4

Service Layer

Global Orchestrator

(Escape)

1

2

3

4

5

1

Secure message bus (DoubleDecker)Secure message bus

2
1. Imbalance detected by 

monitoring tools

2. Send troubleshooting trigger

3. Check the problem persistence

4. Check routing tables

5. Show the problematic flow 

table

Troubleshooting procedure:

Fix the configuration

Deployed NFFG

Monitoring tools

Doubledecker connection

IP connection

OpenFlow connection

Global Orchestrator node

Elastic Router

ovs

Fig. 3. The detailed system architecture of the prototyped UNIFY orchestration platform, including monitoring and troubleshooting framework.

part of the service; (ii) to specify a service-specific monitoring
intent (in the MEASURE language) and (iii) to require that one
(or more) VNF(s) is connected to the control loop interface.

We chose a generic approach by making the LO agnostic
to the configuration parameters and monitoring configuration.
This allows VNFs to define their own configuration parameters
(in the form key=value pairs) and any update to annotated
parts of the NF-FG, like the MEASURE language, can be
supported smoothly in the UNIFY architecture.

Learning 5: Security aspects of the control loop. The NF-
FG specifies a port for the Ctrl App VNF that is connected
to control loop interface. This interface is not connected
to the rest of the NF-FG, but it is attached to the UN’s
public interface to the Internet. This security threat would be
mitigated if the control loop interface would be implemented
through proper connections in the NF-FG. It allows to connect
the control loop interface to multiple VNFs, through a firewall
that only enables the VNF to talk with the allowed entities (e.g.
orchestration, monitoring, and troubleshooting components).

B. A Programmable Monitoring Framework

The ER Ctrl App takes scaling decisions based on triggers
from monitoring components. The monitoring framework we
apply is a realization of an SP-DevOps observability process
as discussed in [5] and is composed of multiple components
(see Fig. 3): (i) A Monitoring management plugin (MMP)
represents a monitoring orchestrator inside a UN. It supports
the LO by receiving the MEASURE monitoring intents and
translating them accordingly into dynamically instantiated and
configured monitoring components (yellow in Fig. 3) realized
as Docker containers. (ii) DoubleDecker, our secure, scalable
and carrier-grade messaging system based on ZeroMQ. In this
use case, DoubleDecker5 is set up with a two-layer broker
hierarchy, enabling transport of opaque data between clients
in the infrastructure (i.e. the UN), the global orchestration
layers and the troubleshooting node. (iii) A novel, probabilistic
monitoring tool (RAMON6) used to estimate the overload

5Source code available: https://github.com/Acreo/DoubleDecker
6Source code available: https://github.com/nigsics/ramon/

risk of links. It does so by keeping lightweight counters in
the data plane (i.e. at the port) and models a probability
distribution of the traffic in the control plane to estimate the
overload risk [13]. In this setup, RAMON monitors the ER
ports representing the external SAPs. (iv) The OpenSource
Docker resource monitoring tool cAdvisor, used to gather
CPU and memory usage data of the VNF components (ER
containers, green in Fig. 3). (v) An aggregator, realizing a
generic local aggregation function for monitoring results. This
component aggregates raw metrics streamed via DoubleDecker
from local monitoring functions (RAMON and cAdvisor) and
generates events (e.g., scaling or troubleshooting triggers) that
in turn are published on DoubleDecker. (vi) A monitoring
database (realized in OpenTSDB) which stores all raw-metrics
generated by the monitoring functions. It is used as a local
logging facility allowing Root Cause Analysis (RCA) during
troubleshooting processes (Section IV-C).

By integrating this monitoring framework into our prototype
of a UNIFY service platform, we gained valuable practical
insights, which we are summarizing below:

Learning 6: Tight integration of VNF and monitor-
ing orchestration and management. In our initial system
design we planned to perform orchestration of VNFs and
MFs separately: next to the LO responsible for deploying
service VNFs (e.g. the ER containers) we utilize a MMP
for orchestration and management of monitoring. During the
integration work, however, it became apparent that a tighter
integration between VNF and monitoring orchestration would
be favorable. The following issues had to be dealt with during
prototype development:

(i) As an NF-FG contains abstracted representations of
VNFs, the final mapping onto infrastructure realization of the
VNF can only happen at the infrastructure layer (e.g. a com-
pute/network controller or the UN LO). Thus, for each newly
deployed/updated VNF, the LO has to inform the MMP about
dynamically assigned realization details such as container ID,
IP and port assignments. Only after receiving these details,
the MMP is able to properly deploy and configure monitoring
functions to observe the relevant service components.



(ii) Dynamic VNFs (like the ER Ctrl App) need to be
connected with monitoring components to receive events (like
scaling triggers). This requires the LO to match VNF moni-
toring requirements with available monitoring capabilities and
metrics managed by the MMP.

(iii) There are resource dependencies, since both service
(VNFs) and monitoring components utilize the same infras-
tructure resources. This implies that decisions to deploy moni-
toring components by the MMP effect the resource availability
assumed by the LO.

(iv) As Monitoring represents infrastructure capabilities
which need to be mapped to service requirements (e.g. SLAs
or policies), they need to be taken into account already during
service deployment and thus need to be exposed to higher
orchestration and service layers alongside other resource de-
scriptions (like compute, storage or network capabilities).

(v) Synchronization between LO and MMP is required in
order to avoid monitoring of components that are not active.
For instance, the LO must inform the MMP about new,
updated, or removed VNFs to avoid generation of false alarms
by pausing or reconfiguration of monitoring functions.

Learning 7: VNF/MF life-cycle issues. We ran into issues
concerning life-cycle management of individual components
(i.e. VNFs) and the service they form. The state of a deployed
VNF has to be tracked in order to avoid race conditions e.g.,
in configuration or activation. For instance, the starting time of
a container/VM is not fixed nor bounded, hence the exact time
in which that VNF can be configured or activated may vary.
Consequently, we learned that the component needs to inform
the LO about its current state, i.e. that the application itself has
to report when it is actually ready. This becomes very relevant
when orchestrating multiple, interdependent components as
part of a dynamic service where even small synchronization
glitches may lead to errors such as packet losses.

The tracking required for the orchestration, configuration,
and activation to function correctly can likely be general-
ized for both VNFs and monitoring functions to a simple
state machine (e.g. STARTING, READY, ACTIVE, PAUSED,
STOPPING). The ACTIVE state could also be used to monitor
the components liveness, preferably with some watchdogs,
as liveness cannot be assessed only by monitoring contain-
ers/VMs from the outside world.

Learning 8: Management of the messaging system. Even
if the developed messaging system greatly simplified the
networking code needed for interconnecting the various com-
ponents, many problems appeared regarding its management.

For instance, the current pub/sub mechanism does not
mandate any registration to use a particular topic - each client
can create any topic by simply publishing on it. While this
simplifies the use of the messaging system, it makes much
simpler to create (by mistake) the wrong topic. This could
potentially be solved by tracking active topics or having a
separate topic creation and registration process.

Another management related issue is the distribution of
public/private keys for authentication with the bus and end-to-
end encryption between clients. The keys are currently stored

Sept, 2016 Unify Integrated Demo: Elastic Router 1

OVS5 SAP4

SAP1

SAP3

SAP2OVS2 OVS3

OVS4

Fig. 4. The effect of a routing table bug in OV S5 on the traffic load: SAP1
and SAP3: decreased overload risk; OV S2 and OV S4: decreased CPU
load; SAP2: increased overload risk; OV S3: increased CPU load; OV S5:
unchanged CPU load; SAP4: unchanged overload risk.

in files which have to be added to the containers either at
build time or during start-up. This makes the system somewhat
fragile and it is difficult to move containers between different
environments or tenants. It is not clear how to best solve this
problem, especially in shared virtualized environment where
different tenants may not trust each other.

Learning 9: Complex metrics require special care. An
innovation used in this prototype is probabilistic monitoring by
RAMON. The advantage of this approach is higher scalability,
lower overhead and better observability compared to com-
mon monitoring practices. However, probabilistic metrics (e.g.
overload risk) are more complex to understand and interpret by
a human users, so care needs to be taken when presenting these
metrics to make them intuitively understandable and useful.

C. Automated Troubleshooting Mechanisms

The ER Ctrl App balances traffic between its datapath
instances (i.e. ovs VNFs). To demonstrate and test a UNIFY
SP-DevOps troubleshooting process [5], we introduced a bug
in the routing table of an ovs instance to cause an erroneous
imbalance (Fig. 4). In real scenarios, this can be caused by
an error in the Ctrl App that migrated the routing tables after
scaling, the data plane software, or switch firmware.

In order to debug such a complex system, we relied on our
EPOXIDE troubleshooting framework [14]. This Emacs based
software7 harnesses the power of special purpose troubleshoot-
ing tools by offering an integrated platform to automate certain
parts of the troubleshooting process. EPOXIDE is controlled
by a troubleshooting graph (TSG)—a formal description of
troubleshooting processes—where graph nodes are wrappers
for troubleshooting tools or processing functions and edges
direct the data flow among these. Additionally, EPOXIDE
allows developers to observe the output of each node in a
separate Emacs buffer.

EPOXIDE instrumented the following tools to detect prob-
lems and analyze symptoms in a dynamically changing to-
pology of the Elastic Router (Fig. 3): (i) The Monitoring
components RAMON, cAdvisor and Aggregator are used to
continuously analyze the performance of the ER ovs instances
and log this in the OpenTSDB database. When detecting
an imbalance, the components trigger EPOXIDE using Dou-
bleDecker messaging. (ii) Our novel Recursive Query Engine
(RQE)[15] efficiently provides aggregated metrics of historical
monitoring retrieved from OpenTSDB instances. It communi-
cates with EPOXIDE (i.e., it receives both queries and relevant

7Source code available: https://github.com/nemethf/epoxide



deployment details) through a REST API. (iii) AutoTPG8 is
a verification tool with a REST API that actively probes the
Flow-Match Header part of OpenFlow rules for finding erratic
behavior in flow matching [16]. It generates test packets to
identify flow-matching errors at run-time. To optimize re-
sources, it should only be run during troubleshooting, therefore
we deployed AutoTPG as a secondary OpenFlow controller.
(iv) The ovs-ofctl in an auxiliary tool of ovs and it
allows monitoring and administering OpenFlow switches. In
this scenario, it is used for querying ovs flow tables.

The TSG in this demo describes the following troubleshoot-
ing process: First, EPOXIDE actively listens on DoubleDecker,
capturing proactively essential data that later can be used dur-
ing debugging, as well as troubleshooting triggers by the moni-
toring framework (steps 1–2 in Fig. 3). Then, by configuring—
with automatically queried data from the UN—and calling
RQE, the problem’s persistence is validated: false positive
alarms can be eliminated by analyzing recent CPU utilization.
In step 4, EPOXIDE automatically queries ovs VNFs in the
ER service, connects them one-by-one to AutoTPG, initiates
the verification of their flow tables, and evaluates the results.
When a switch is marked faulty, EPOXIDE queries its flow
table to allow further analysis for troubleshooting personnel.
To help tracking the troubleshooting process, EPOXIDE logs
events and gives notifications to highlight important events,
while also having support for the grouping of specific node
outputs together and showing them in a structured manner.

Learning 10: Develop user-friendly troubleshooting.
Though EPOXIDE makes the job of troubleshooting easier by
parsing and processing data, it comes at the cost of creating a
long chain of reading, decoding, and transformation nodes in
the TSG. We learned that (i) while EPOXIDE effectively excels
at processing of human readable data, JSON/XML processing
is limited by the Emacs core. Complex troubleshooting sce-
narios yield complex graphs in our domain specific language
for describing TSG’s and these might be hard to follow using
the text description. A graphical method to connect nodes
might prove to be more beneficial. (ii) Similarly, a high
number of different messages can bombard the troubleshooting
operators who—without proper tools—could easily miss the
relevant ones. (iii) EPOXIDE’s graph traversal methods enable
operators to further analyze failure symptoms in the tested
service. It captures events on DoubleDecker, evaluates them,
and provides logging and notification options. (iv) Conditional
branches help distinguishing between failure modes and views
can filter out unnecessary data, highlighting only the most
important ones. (v) The accessibility of historical data helped
to reason about the status of the troubleshooting process and
the possibility of manual interventions made it easy to test
conditional branches.

V. CONCLUSIONS

The implicit flexibility of NFV-based services is challeng-
ing the capabilities of current orchestration frameworks. In

8Source code available: http://users.intec.ugent.be/unify/autoTPG/

UNIFY, we proposed a modular NFV platform with novel
features. However, only the actual implementation of use-cases
can provide important insights to evaluate the modularity of
the framework and identify pain points. Thus, we realized
an elastic router service to explore and verify the set of
functional blocks needed to support the main stages during
the lifetime of such NFV-based service. This includes service-
specific scaling combined with programmable monitoring and
troubleshooting tools, thereby adopting DevOps principles
where a fast cycle of debugging and updating a deployed
service is a key asset. Based on our experiences while realizing
this UNIFY service production platform, we identified and
discussed several important insights related to NFV service
deployment and operations. We are certain that this type of
practical learnings can positively influence ongoing develop-
ment and advancements in the field of NFV-based network
service deployment and operations.

ACKNOWLEDGMENT

This work is supported by UNIFY, a research project partially funded by
the European Community under the 7th Framework Program (grant agreement
no. 619609). The views expressed here are those of the authors only.

REFERENCES

[1] H. Arabnejad et al., “An auto-scaling cloud controller using fuzzy
q-learning-implementation in openstack,” in European Conference on
Service-Oriented and Cloud Computing. Springer, 2016.

[2] B. Sonkoly, R. Szabo et al., “Unifying cloud and carrier network
resources: An architectural view,” in 2015 IEEE GLOBECOM, 2015.

[3] I. Cerrato, A. Palesandro, F. Risso, M. Suñé, V. Vercellone, and
H. Woesner, “Toward dynamic virtualized network services in telecom
operator networks,” Computer Networks, vol. 92, pp. 380–395, 2015.

[4] R. Szabo, M. Kind, F.-J. Westphal, H. Woesner, D. Jocha, and
A. Csaszar, “Elastic network functions: opportunities and challenges,”
IEEE Network, vol. 29, no. 3, pp. 15–21, 2015.

[5] G. Marchetto, R. Sisto, W. John et al., “Final Service Provider
DevOps concept and evaluation,” CoRR, 2016. [Online]. Available:
http://arxiv.org/abs/1610.02387

[6] B. Sonkoly, J. Czentye et al., “Multi-domain service orchestration over
networks and clouds: A unified approach,” in SIGCOMM. ACM, 2015.

[7] S. Van Rossem et al., “Deploying elastic routing capability in an sdn/nfv-
enabled environment,” in IEEE NFV-SDN Conference. IEEE, 2015.

[8] “Deliverable 3.5: Programmability framework prototype report,”
UNIFY Project, Tech. Rep. D3.5, Jun. 2016. [Online]. Available:
https://www.fp7-unify.eu/files/fp7-unify-eu-docs/Results/Deliverables

[9] S. van Rossem et al., “NFV Service Dynamicity with a DevOps
Approach: Demonstrating Zero-Touch Deployment & Operations,” in
2017 IFIP/IEEE IM, Demo Session, 2017.

[10] R. Szabo, Z. Qiang, and M. Kind, “Recursive virtualization and
programming for network and cloud resources,” IETF, Internet-
Draft, Sep. 2016, work in Progress. [Online]. Available: https:
//tools.ietf.org/html/draft-irtf-nfvrg-unify-recursive-programming-00

[11] W. John, C. Meirosu et al., “Scalable software defined monitoring for
service provider devops,” in 2015 IEEE EWSDN.

[12] J. Garay et al., “Service description in the nfv revolution: Trends,
challenges and a way forward,” IEEE Communications Magazine, 2016.

[13] P. Kreuger and R. Steinert, “Scalable in-network rate monitoring,”
in 2015 IFIP/IEEE International Symposium on Integrated Network
Management (IM). IEEE, 2015, pp. 866–869.

[14] I. Pelle et al., “One tool to rule them all: A modular troubleshooting
framework for sdn (and other) networks,” in Proc. of the 1st ACM
SIGCOMM Symp. on Software Defined Networking Research, 2015.

[15] X. Cai et al., “Recursively querying monitoring data in nfv environ-
ments,” in NetSoft Conference, 2016 IEEE, 2016.

[16] S. Sharma et al., “Verification of flow matching functionality in the
forwarding plane of openflow networks,” in IEICE Transactions on
Communications, vol. E98-B, 2015, pp. 2190–2201.


