



# **EPR STUDY OF LUMINESCENCE-BASED RADIATION DOSIMETERS**

# K. Maes<sup>1</sup>, L. Lowie<sup>1</sup>, J. Kusakovskij<sup>1</sup>, L. de F. Nascimento<sup>2</sup>, H. Vrielinck<sup>1</sup>, F. Callens<sup>1</sup>

# <sup>1</sup>GHENT UNIVERSITY DEPARTMENT OF SOLID STATE SCIENCES, EMR RESEARCH GROUP <sup>2</sup>SCK•CEN BELGIAN NUCLEAR RESEARCH CENTRE, RADIATION PROTECTION DOSIMETRY AND CALIBRATION GROUP

#### Introduction

g = 2,008

Electron paramagnetic resonance (EPR) is a physical method to observe resonant absorption of microwave radiation by unpaired electron spins in a magnetic field. It is able to detect, identify and quantify free radicals, such as those present in irradiated materials. This makes it a reliable dosimetric technique for retrospective/accident dosimetry, detection of irradiated food, e.g. using alanine, tooth enamel and sucrose. It finds applications in geology, chemistry, physics, medicine, environmental sciences, archaeology, and industrial irradiations.<sup>1</sup> In the present study, we discuss results on two classes of materials, i.e. LiF:Mg,Ti /LiF:Mg,Cu,P and Al<sub>2</sub>O<sub>3</sub>:C /Al<sub>2</sub>O<sub>3</sub>:C,Mg. These materials are used in thermoluminescence dosimetry (TLD) and Optically Stimulated Luminescence dosimetry (OSLD)/Radiophotoluminescence dosimetry (RPLD) respectively.<sup>2-4</sup> In terms of dose sensitivity EPR cannot compete with these luminescence methods, but it can provide complementary insight into the defects and processes leading to luminescence.

### $Al_{2}O_{3}:C / Al_{2}O_{3}:C,Mg$ X-Band measurements

#### X-band EPR comparison, RT



LiF:Mg,Ti X-Band measurements, RT

Literature

Patil and Moharil 1995<sup>5</sup>

 $g_{\perp} = 2,191 \ g_{\prime\prime} = 2,073 \ (X-band, RT)$ 

The signal is proposed Cu-related.



Both systems were measured before and after X-ray irradiation. Before irradiation, there was no significant EPR signal visible. After irradiation a broad isotropic signal appeared. Although the signal looks similar for both, they are in fact slightly different:  $Al_2O_3:C,Mg$ lwpp = 4,3 mTg = 2,011  $Al_2O_3:C$ 

Their intensities are also different. The Al<sub>2</sub>O<sub>3</sub>:C,Mg EPR signal is smaller by a factor of around 2 for the same dose received.

lwpp = 5,3 mT

Dose dependence Only  $Al_2O_3$ : C is shown,  $Al_2O_3$ : C, Mg gave similar results. Looking at the dose dependence there is a clear increase in intensity in function of dose received for both.

Plotting the EPR intensity in function of

X-band EPR dose dependence Al<sub>2</sub>O<sub>3</sub>:C, RT



Fitted dose dependence Al<sub>2</sub>O<sub>3</sub>:C





Q-Band EPR, RT





For both samples the saturation dose is

around 60 Gy, close to the OSL/RPL



## Conclusions

saturation dose.

- $\succ$  Al<sub>2</sub>O<sub>3</sub>:C and Al<sub>2</sub>O<sub>3</sub>:C,Mg have an EPR signal that is dose sensitive
  - $\succ$  The EPR signal of Al<sub>2</sub>O<sub>3</sub>:C is more sensitive to radiation compared to the EPR signal of Al<sub>2</sub>O<sub>3</sub>:C,Mg
  - > The saturation dose is around 60 Gy, in agreement with OSL saturation dose

units)

Intensity (arb.

- LiF:Mg,Cu,P has an EPR signal present that is not dose sensitive
  - > The signal could be related to Cu<sup>2+</sup>, however more research is needed
  - > The first ENDOR spectra look promising

Prediction g-values Cu<sup>2+</sup> Crystal Field Theory **DFT calculations**  $d_{\chi^2-\gamma^2}: g_{//} > g_{\perp} > 2$ g<sub>⊥</sub>= 2,115 < g<sub>//</sub>=2,259  $d_{37^2-r^2}: g_{\perp} > g_{\prime\prime} \approx 2$ g⊥= 2,219 >g<sub>//</sub>=2,005 CFT predicts that the unpaired electron is either in  $d_{x^2-v^2}$  or in  $d_{3z^2-r^2}$  orbital. For these orbitals theoretical g-values can be calculated. DFT calculations confirmed the CFT predictions. However, comparing this to the experimentally derived g-values, neither really fit.

## **Q-band ENDOR measurements Electron Nuclear Double Resonance (ENDOR):** Detecting NMR transitions via EPR. First results reveal signals at the Larmor frequencies of <sup>7</sup>Li and <sup>19</sup>F from distant nuclei. Around v<sub>larmor</sub>(<sup>19</sup>F) a signal is visible with a hyperfine coupling of 0,9 MHz due to a neighbouring F nucleus.

#### Q-band EPR + ENDOR, 5K



#### Acknowledgements

This work is, in part, supported by the Special Research Fund of Ghent University

#### References

- M. Ikeya, New applications of electron spin resonance: dating, dosimetry and microscopy. (World Scientific Publishing, 1993).
- 2. E. G. Yukihara, and Stephen WS McKeever, Optically stimulated luminescene: fundamentals and applications. (John Wiley & Sons, 2011).
- 3. M. J. Aitken, Thermoluminescence dating. (Academic press, 1985).
- 4. L. F. Nascimento, M. Karampiperi, J. P. Oliveira and F. Vanhavere, Radiatio Measurements (2017).
- R R Patil and S.V.Moharil, J. Phys.: Condens. Matter 7 (025), 9925-9933 (1995).

|   | Contact                           |     |                  |
|---|-----------------------------------|-----|------------------|
|   | Kwinten Maes                      |     |                  |
|   | PhD assistant                     |     |                  |
|   | DEPARTMENT OF SOLID STATE SCIENCE | f   | Ghent University |
| n | EMR RESEARCH GROUP                |     |                  |
|   | E kwinten.maes@ugent.be           | y   | @ugent           |
|   | T +32 9 264 43 51                 |     |                  |
|   | www.ugent.be                      | lin | Ghent University |
|   |                                   |     |                  |

