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Abstract

Currently, temperature-based condition monitoring cannot be used to accurately identify
potential faults early in a rotating machines’ lifetime since temperature changes are only
detectable when the fault escalates. However, currently only point measurements, i.e. ther-
mocouples, are used. In this article, infrared thermal imaging is used which —as opposed to
simple thermocouples— provides spatial temperature information. This information proves
crucial for the identification of several machine conditions and faults. In this paper the
conditions considered are outer-raceway damage in bearings, hard-particle contamination in
lubricant and several gradations of shaft imbalance. The fault detection is done using an
image processing and machine learning solution which can accurately detect the majority of
the faults and conditions in our data set.

Keywords: Condition Monitoring, Fault diagnosis, Early fault detection, Rotating
machinery, Infrared imaging, Image processing, Machine learning

1. Introduction

Rotating machinery can suffer from a wide range of sub-optimal conditions, such as
misalignment, load imbalance, bearing raceway faults, bearing looseness and inadequate
lubrication. These faults can escalate and propagate so that bearings can overheat, wear
can be increased, spalling can occur and even other components can be damaged [1]. Hence,
to reduce operational costs, it is important to detect these faults as early as possible.

A first approach to detect incipient faults is vibration analysis. Vibration-based condition-
monitoring systems can detect a large part of the impending rolling element bearing (REB)
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failures [2]. Generally, the time between the detection of a potential fault and functional fail-
ure for vibration analysis is considered to be long, in the range of weeks to months. Hence,
vibration analysis has been the method of choice when it comes to condition monitoring
(CM) of rotating machinery and rolling element bearings in general. However, vibration-
based fault-detection systems are not useful for detecting lubrication related problems such
as under-lubrication or over-lubrication as these do not manifest themselves as new cyclic
frequencies [3].

Another type of lubrication inadequacy is hard particle contamination. These particles
can consist of steel fragments, sand or any other type of residue and can damage the REB
and reduce the rotating machine’s operational lifetime significantly. Hence, most of the
largest REB manufacturers state that lubricant contamination is the major cause of REB
failure before they reach their rated life [4].

To solve this problem in offshore wind turbines for example, regular offline lubricant
analysis is done. Nevertheless, this is a very intrusive and hands-on condition monitoring
method as it requires a technician to manually sample the lubricant, bring it on shore and
subsequently analyze it. By analyzing the lubricant it is possible to categorize the contami-
nation level according to the ISO 4406:99 or ISO 11171 if oil lubricant is used. As this is an
offline procedure it is possible for this fault to escalate and damage the REB permanently.
Hence, often online particle counting is additionally done using a particle counter. By the
use of this sensor it is possible to know, to a certain degree, how contaminated the lubricant
is in real-time so that fault escalation can be prevented. Nevertheless, these sensors need
to be installed in the lubrication system, which has to be a closed-loop oil lubrication sys-
tem. Also, this is not possible using grease lubrication in a closed-loop lubrication system.
Furthermore, online particle counters are very expensive to install [2] and cannot be used
to detect other types of faults, i.e. raceway faults or imbalance.

It is also possible to employ temperature-based condition monitoring which uses ther-
mocouple sensors. Thermocouples are relatively cheap compared to other condition moni-
toring sensors and allow for temperatures to be monitored inside machines. However, using
temperature-based condition monitoring there is a much shorter time span between the de-
tection of a potential fault in a machine and the functional failure [2] as can be seen in
the P-F curve in Figure [Ia] The time span is often in the range of hours to days. Hence,
temperature-based detection is often only useful after initial fault detection using vibration
analysis. However, in recent years infrared thermal imaging (IRT) has gained noticeable at-
tention as it allows for visual temperature monitoring. Because of the advantage of having
spatial information of the heat in components, IRT has been applied in several domains for
specific tasks such as inspection of cracks, isolation, subsurface moisture, corrosion, gas flow,
air flow, and welding processes [5]. Furthermore, by applying image processing and machine
learning, IRT imaging can be used for autonomous condition monitoring. For example,
IRT-based condition monitoring has been applied for the detection of conditions in rotating
machinery such as imbalance, misalignment, coupling looseness and REB damages. These
faults are often considered only to be detectable using vibration-based condition monitoring.
Moreover, in our previous work we showed that IRT-based automated condition monitor-
ing can be used to detect different levels of lubrication [6]. Lubrication inadequacy such
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as under-lubrication and over-lubrication is prone to cause premature REB failure, hence
IRT-based condition monitoring can help to increase the time between the detection of a
potential fault and the functional failure as illustrated in Figure [1b]

_|Vibration-based | o« _____________ I ?ll blra(tjl On-b.
__________ ==~ |fault detection 2 Y M t detection
< - 7R IRT-based
g AR S S~ fault detection
Z hN 5 AN
=} ~ = ~
£ 8 BN
f_,; ~. | Temperature-based g \\
5 * 5 | fault detection £ i
g ~ = N
5 N 3 N
=} \\ O \
3] N u N
\ \
N N
\ AY
\
. | 3
Time P P> Time
P1
(a)

Figure 1: Potential failure and functional failure curves, illustrating @ the time-span difference between
vibration-based and temperature based fault detection, also @ vibration-based fault detection and infrared
thermal imaging based fault detection.

As lubrication contamination is either very expensive to detect, not detectable in real
time or not detectable at all with current techniques, in this paper the potential of IRT
imaging is investigated for automated lubricant contamination detection. Additionally, the
limits of automated imbalance detection using IRT imaging are also tested —which is com-
monly done using vibration analysis— to illustrate that an IRT camera is a suitable addi-
tional /replacement sensor. Also, the proposed method is compared to a thermocouple-based
approach as thermocouples are significantly less expensive than infared thermal cameras and
can be used to measure the temperature inside a machine. By this comparrison the added
value of infrared thermal imaging is futher illustrated.

2. Related Literature

Infrared thermal imaging for the condition monitoring of rotating machinery gained
noticeable attention in the last years [7]-[I3]. The focus of previous research has been
on the detection of conditions such as shaft misalignment, REB looseness, load imbalance
and REB faults. To detect these conditions, data-driven approaches have been applied
using image processing and machine learning. Often, the first step of the image processing
pipeline entails the extraction of the region of interest (ROI). This is done manually or via
an algorithm such as Otsu thresholding together with k-means clustering [7] or watershed-
based algorithms [9]. The second step can consist of enhancing the image or ROI [10]. From
this (enhanced) ROI, statistical features are derived such as the standard deviation, mean,
skewness, kurtosis, variance, entropy, energy, central moments, maximum and minimum [7,
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10}, TT] or the components of the discrete wavelet decomposition of the thermal image [12, [13].
In the penultimate step, undiscriminating features are sometimes removed or combined to
create better features. Algorithms used for this step include Principal Component Analysis
[9], independent component analysis [I1], discriminant analysis [10] or relief algorithm [12]
13]. The resulting features are subsequently used to determine the condition of the rotating
machine using a classification algorithm. The classification algorithms which have been
employed are support vector machine [I1], §], relevance vector machine [10], self-organising
map [7] and linear discriminant analysis [12} [13]. Most of these approaches will result in a
system that can accurately detect the latent machine condition with an accuracy of 74% up
to 100 % [7]-[13].

Several remarks should be noted regarding the state-of-the-art. (1) Often the classifica-
tion algorithms are trained and tested on IRT data of the same REB. Therefore, a generalized
solution is not guaranteed, i.e. it cannot be confirmed that the model will work using unseen
data. (2) The conditions and faults under investigation are those that can easily be detected
using vibration analysis, which is a robust and widely used condition monitoring technique.
However, the detection of different amounts of imbalance is still challenging, (3) especially
in combination with other faults [14].

In our approach, several test-runs of different bearings are done to create disjunct training
and test sets. Furthermore, several of the faults and conditions considered are difficult to
identify or hardly detectable using other condition monitoring techniques. Finally, multiple
conditions and faults are considered simultaneously.

3. Methodology

In this section we discuss the set-up which was used to create our data set, the data set
itself and the proposed condition monitoring architecture.

3.1. Test set-up

When designing and constructing the set-up three aspects in particular were taken into
account. First, the set-up has a frame consisting of one solid piece, minimizing the amount
of bolt connections. Second, the motor and bearing housings are placed in the same plane
eliminating any misalignment. Third, the bolt holes are designed to minimize bolt looseness
therefore guaranteeing a tight fit. More information about the set-up can be found in Table
and Figure[2] The information about the infrared thermal camera is summarized in Table
The set-up is located in a darkened room to eliminate additional noise in the IR recordings
due to external influences. It should be noted that a single emissivity value is chosen for
all recordings. This done because the bearing housing is made out of steel and the seal out
of rubber. Both have a very similar emissivity value. Additional to the IR camera, four
thermocouples are used on the set-up. Two thermocouples are put inside the REB’s housing
to measure the internal temperature, one is attached to the outside of the housing and the
last thermocouple is placed inside the room to measure the ambient temperature.

Only the condition of the right REB is changed, which is the one further removed from the
motor. In total 12 conditions are created with this set-up. An overview of these conditions
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Figure 2: Side, top @ and 3D view (]EI) of the set-up. The labels are: 1. servo-motor; 2. coupling; 3.
bearing housing; 4. bearing; 5. disk; 6. shaft; 7. thermocouple; 8. metal plate; 9. field of view; 10. camera

Attribute

Value

Bearing code
Bearing type:
Housing code
Housing type
Grease
Rotation speed
Motor type
Motor power

FAG 22205-E1-K

Spherical roller bearing with tapered bore and adapter sleeve
SNV052-F-L

Closed plummer block

Molykote BR 2 plus

1500 rpm

Single phase asynchronous induction motor

1.1 kW

Table 1: Test set-up details

Attribute

value

Thermal camera

Capture speed

FLIR SC655
6.25 frames per second (fps)

Resolution 640 x 480 pixels
Distance: camera - housing 38 cm
Emissivity 0.9

Spectral range 7.5-13 pm

Table 2: Thermal camera details



Table 3: Enumeration of the 12 induced condition. Every condition consists of a bearing condition —which
are healthy bearing (HB), outer-raceway fault (ORF) or hard particle contamination (HP)- but also an
imbalance gradation, which are balanced, 4.1 g; 9.3 g or 13 g of added weight to the rotating rotor.

Condition Bearing Imbalance
1 Healthy bearing Balanced
2 Healthy bearing 41gor b5 N
3 Healthy bearing 93 gor 124 N
4 Healthy bearing 13gor 173 N
5 Outer-raceway fault Balanced
6 Outer-raceway fault 41gor 55N
7 Outer-raceway fault 9.3 gor 124 N
8 Outer-raceway fault 13gor17.3 N
9 Hard particle contamination Balanced
10 Hard particle contamination 4.1 g or 5.5 N
11 Hard particle contamination 9.3 g or 12.4 N

[y
[\

Hard particle contamination 13 g or 17.3 N

can be seen in Table |3 The imbalance is created by attaching a bolt to the rotor at a radius
of 5.4 cm. To introduce different levels of imbalance, a range of bolts with different weights
are used. To imitate the outer-raceway fault, three shallow grooves are added mechanically
to the outer-raceway of a set of REBs. Finally, to imitate the hard particle contamination
0.02 g of iron particles are mixed in the lubricant of the REBs. As lubricant, grease is used
for which the required amount is calculated using Eq. , where D is the outer diameter of
the REB and B the inner diameter [I5]. For the used REBs D = 52 mm and B = 18 mm.

m = D x B *0.0027 [g] (1)

All REBs contain 2.5 g of grease. Additionally, 20 grams of grease is put in the grease
reservoir of the REB housing, so that the housing cavities are filled to the recommended
60% [16]. Around 170 g of grease is contained in the housing, this means that the mass
fraction of the introduced particles is equal to 0.0117 %.

By means of this set-up, a data set is created incorporating the introduced conditions.

3.2. Data set

For every condition, five REBs are tested. Each bearing is run for one hour as part of
the set-up, while the thermal camera and the thermocouples record the heating process,
resulting in 5 REBs * 12 conditions = 60 hours of recorded data. It was observed that the
REB’s temperatures usually do not further increase after a duration of 50 minutes, i.e. they
reach steady state [I7]. Hence, only the last 10 minutes of each hour are exported to AVI
video files for further processing. To reduce the size of the video files, lossless compression is
applied using the H264 standard [I8]. As lossless compression is used, the image quality is
not reduced. The resulting videos consist of monochrome frames for which the gray values
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Figure 3: Pseudo-colored frame extracted from an infrared thermal video

correspond to temperatures in the range of 10 - 70° C. An example of a pseudo-colored
frame can be seen in Figure [3

3.3. Architecture

To automatically detect which condition is present in the machine the architecture in
Figure[dis proposed. As there are two main categories of conditions, the architecture consists
of two image processing and machine learning pipelines. Pipeline one is designed to identify
if the REB is healthy, contains an outer-raceway fault or has hard particles in its grease.
Pipeline two is designed to determine the amount of imbalance in the system. By combining
these two pipelines the 12 conditions can be identified.

3.4. Pipeline one

To detect if the grease of the REB contains solid particles, an outer-raceway fault or
if the REB is healthy, pipeline one starts of with the preprocessing of the thermal videos.
Afterwards, feature extraction and machine learning are applied.

3.4.1. Preprocessing

First, sub-sampling in time is applied, resulting in a frame rate of 1 fps. The ideal fram-
erate is determined experimentally for optimal results. Next, for every frame, all the pixel
values are transformed to relative temperatures. This transformation is done by subtracting
the ambient temperature , measured by the thermocouple, from every temperature value
measured by the thermal camera. Next, the foreground, i.e. the bearing housing which is
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Figure 4: High-level architecture of the automatic condition monitoring system

relatively warm, needs to be isolated from the background, i.e. not-relevant colder part.
This segmentation is done using a threshold determined by the Otsu algorithm [19].

In between the measurements, the IRT camera moved and so did the set-up as the
measurements were done over a time-span of weeks wherein the bearings had to be swapped
and the camera stored. Due to these actions, translations and rotations are induced in
the data set. To enable robustness against these transformations, all the frames need to
be aligned to a common reference image (i.e. image registration). By applying image
registration, the REB housing will be in the same position in every frame of every recording.
Image registration is applied by first extracting a random reference frame from a random
recording. From this reference frame ORB key points are extracted resulting in binary
descriptors [20]. Next, for every recording ORB key points are also extracted from the first
frame of the recording. The goal is to find matching keypoints in both frames so that the
transformation between the two sets of key points can be determined. To find matching
key points, the hamming distance is used which allows for very fast matching computation
compared to for example the euclidean distance [21]. Only key points for which the hamming
distance is very small are kept and subsequently used to determine an affine transformation.
The affine transformation describes how an image should be translated, rotated and scaled
so that it will match the geometry of the reference frame. This transformation is calculated
for every recording and applied to every frame, resulting in recordings wherein the housing
is approximately in the same place. It should be noted that the translation and rotation
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of the affine transform will not influence the pixel intensities and hence the information in
the images. However, scaling can influence the information in the images. For example,
down-scaling will remove a part of the information. Nevertheless, the amount of scaling
required in our approach is negligible.

As last step, a boxcar filter is applied on every frame to eliminate high frequency com-
ponents in the image. The goal of this step is to reduce the influence of edges in the feature
extraction step as these are not informative for fault detection. Next, from these prepro-
cessed videos, features are extracted.

3.4.2. Features extraction

To minimize the influence of noise in the features —inherent to the thermal camera and
the environment— windowing is applied. A window contains one minute of IRT video and
overlaps with its neighbouring windows by 30 seconds, resulting in 19 windows per video se-
quence, each window containing 30 frames. The window length can be moderately modified
without influencing the end result. The goal of this step is to extract features from every
frame inside a window and subsequently average the features within each respective window.
In total two features are extracted form the preprocessed frames. The literature overview
indicates several usable and reproducible image-processing features such as the central mo-
ments, HU moments, standard deviation, mean, skewness, kurtosis, entropy, variance, My,
maximum and minimum from the image histogram. For the specific faults considered in this
article, the standard deviation and the Gini coefficient proved useful.

The standard deviation (of the pixel values) describes how broad the range of the dis-
tribution of the value pixels is, and how spread-out the pixel values are in this range. The
second feature is the Gini coefficient. The Gini coefficient measures inequality and is often
used in economics and astronomy [22]. We recently also showed that the Gini coefficient
helps to indicate the level of lubricant in a REB [6]. Both the Gini coefficient and the
standard deviation are measurements of dispersion, however, as opposed to the standard
deviation, the Gini coefficient is not a metric based on central tendency, i.e. deviation from
the mean. To calculate the Gini coefficient, two cumulative distributions are required. The
first is the cumulative distribution of the sorted pixel values of the IR image (IRCS). The
second is the line of equality (LOE), which is a cumulative distribution of the image pixels
values as if they were equal. Examples of these curves can be seen in Figure [a] and [5bl In
these figures, the light shaded gray area represents the area under the LOE (AU-LOE) and
the dark shaded gray area represents the area under the IRCS (AU-IRC). If the pixel values
of the IR image are completely uniformly distributed, i.e. if all pixel values are equal, the
AU-LOE is equal to the AU-IRCS. The Gini coefficient is directly related to the size of the
area in between the LOE and IRCS and therefore calculated according to equation [2| If the
Gini coefficient is equal to 0 %, there is total equality, and if the Gini coefficient is equal to
100 % there is total inequality. To make sure that only the pixels of the housing are taken
into account when calculating the Gini coefficient, only non-zero pixel values are used]

"When comparing this work with our previous work, it should be noted that this is not done in our
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Figure 5: Graphical representation of the Gini Coefficient. The Gini coefficient for the MILB case is 0.72%
higher compared to the HB case. Flux, i.e. heat flow, corresponds to the brightness of the pixels.

In the end, the design matrix provided to the classification algorithm in the next step
contains 1140 samples (60 records times 19 windows) each containing two features.

AU-LOE N AU-IRCS

Gini coefficient = AULOE (2)

3.4.8. Classification

To automatically identify the conditions present in industrial rotating machinery using
the extracted features, a classifier is required. From the data and previous work [0], it can
be seen that the classification problem is a non-linear classification problem, i.e. the classes
are not possible to divide using a straight line. Furthermore, there are multiple classes to
distinguish making the problem a multi-class classification problem. Several classification
algorithms fulfill these requirements such as k-nearest neighbors, support vector machines
and random forest classifiers. Tests were done using these algorithm and as in [0], it was
determined that the random forest classifier (RFC) provides the best results. The RFC in
this pipeline contains 100 decision trees, for which the amount was empirically determined
using grid search.

3.5. Pipeline two

As is depicted in Figure [4] the goal of pipeline two is to determine if there is imbalance
in the system and in if there is imbalance, determine how much. To do this, as in pipeline
one, first the videos are preprocessed.

previous work [6]. However, by not taking the zero pixels into account the Gini coefficient is merely scaled
compared to when the zero pixels are taken into account.
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3.5.1. Preprocessing

First, as consecutive frames contain redundant information, sub-sampling in time is ap-
plied. Evaluation showed that a frame rate of 0.5 fps provides optimal results. Subsequently,
to minimize the influence of noise and outliers in the feature extraction step, windowing is
applied here too.

3.5.2. Feature extraction

As described in our previous work [6], due to imbalance the set-up will vibrate. Al-
though, this vibration is hardly noticeable, it can be seen in the video when differencing two
consecutive frames. For example when subtracting Figure [6a] from Figure [6b] Figure [6d is
obtained showing the outline of the housing as a result of the movement due to imbalance.
A threshold is additionally applied to remove background noise in the differenced image as
is displayed in Figure . The optimal threshold value is empirically determined. Note
that only the right side of the image is used as the movement of the shaft, i.e. rotation, is
not related to the imbalance condition. Hence, if the shaft is included in the image lower
classification performance is achieved.

(a) (b) (c) (d)

Figure 6: Movement detection. Parts of consecutive frames @@ are differentiated resulting in (d). After-
wards a threshold is applied (d).

To detect the degree of imbalance, the difference between frames need to be quantified
as features for the classification. Therefore, the histogram of the pixels is constructed along
the x-axis and y-axis. Examples of these histograms can be seen in Figure [7a] and [Tb] Not
only are the number of pixels important, but also the width of the histograms. Generally, if
there is imbalance, the histograms will be wider. To describe this distribution, the standard
deviation (SD) is chosen as it captures how spread out a distribution is. Also, the kurtosis
is used as it describes how peaked a distribution is.

When the SDs of the histograms along both axis are plotted four regions corresponding
to the four balance/imbalance conditions can be observed (Figure [8a). It can be stated

11



o
S
o
]

L L
_g 200 _g 200} E
5 5 =
— —
o o %
Q Q =
© 300t © 300 E
> >
400F 400
0 1 2 3 4 5 6 7 0 50 100150200250300350
Sum Sum
14
1l [
£ 3
6 =]
0 4l 0 At
%7 . . . . i L. L T ]
0 50 100 150 200 250 0 50 100 150 200 250
x-coordinate x-coordinate
(a) (b)

Figure 7: Examples of the histogram along x and y axis for a healthy bearing when in balance @ and
imbalance @

that the higher the SDs, the more imbalance is present in the system. Nevertheless, the
clusters of points do partially overlap. Generally, a classifier will already be able to make a
good distinction between the different levels of imbalance using the SDs, however, by adding
the kurtosis the classifier’s performance improves. In the end, the design matrix provided
to the classification algorithm in the next step contains 1140 samples (60 records times 19
windows) each containing four features.

3.5.8. Classification

As in pipeline one, a random forest classifier (RFC) is also used for pipeline two. When
plotting the decision boundaries that the RFC determined, the regions which correspond
to the level of imbalance, become visible (Figure [8b). Tests were also conducted using
support vector machines using linear, polynomial and radial basis kernels. Nevertheless,
these performed less well compared to the RFCs.

3.6. Thermocouple-based fault detection

It can be questioned if the added value of using an (expensive) thermal camera compared
to using (cheap) thermocouple sensors is justifiable. Hence, to put the results of the thermal
camera based system in perspective, a system which only uses thermocouple measurements
is discussed here.

3.6.1. Data gathering and preprocessing

Each one of the thermocouples records a temperature value every second. As with the
IRT data, only the last 10 minutes of the data is used, which is recorded during the stead-
state period. It is observed that only the thermocouples which were placed inside the housing
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Figure 8: Scatter plots of the standard deviations along the image axis for the different levels of imbalance
[l When these samples are classified, clear, logical regions are noticeable according to the level of imbalance

H

provide useful data. As preprocessing step, the signals from these two thermocouples are
corrected for the ambient temperature as in Eq. [3|

trelative - tabsolute — tambz’ent (3)

3.6.2. Feature extraction and classification

From the two corrected signals eight features in total are extracted, i.e. the standard
deviation, the mean, the median and At which denotes the the difference between the
highest recorded temperature and the lowest recorded temperature. These four features
are extracted for the two signals resulting in 8 features. After the feature extraction the
samples are used by a random forest classifier to automatically distinguish between the
different conditions.

4. Results

In this section, the results of the IRT-based system are discussed. To put the results in
perspective, the thermocouple-based results are also presented.

4.1. FEvaluation metrics

To quantify the performance of the different systems, four error measurements are used:
accuracy, precision, recall and f1-score for which the formulas can be seen in Eqs. @H7], with
|TP| being the amount of true positive classifications; |TN|, the amount of true negative
classifications; |FP|, the amount of false positive classifications, e.g. a false alarm, and |FN],
the amount of false negative classifications, e.g. missed faults. These different metrics are
chosen because they reflect the impact on CM decisions. Suppose a CM system triggers an
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alarm to alert an operator when the classifier supposedly detects a defect. Then, it is more
interesting to be alerted of all the faults, even if among the fault there are some false alarms.
Nevertheless, the operator doesn’t want to have too many false alarms since this increases
the operational cost due to unnecessary downtime. In other words, if many alarms are
triggered, a lot of faults are brought to the operator’s attention (higher recall), nevertheless,
there are also more false alarms (lower precision). On the other hand, if only real faults are
flagged, and some are missed and there are no false alarms, there will be a high precision,
but a low recall. A good classifier will maximize both precision and recall, so that:

1. An alarm is only triggered when there is an actual fault.
2. No faults are missed.
3. There are no false alarms.

These requirements are indirectly enforced when optimizing the fl-score. Also, the accuracy
is chosen since its ease of interpretation as it is the ratio between the amount of correctly
classified samples and the total amount of samples.

accuracy = TP+ TN (4)

| TP|+ |FP|+ |FN|+|TN|

. |TP|
S el 5
precision TP+ |FP] (5)
TP

ll = ——=— 6
reca TP+ |FN| (6)

precision x recall

f1— score =2 x —
precision + recall

4.2. Fvaluation procedure

To objectively evaluate the performance of the systems, five-fold cross-validation is used.
Hence, from the 60 recordings, 48 recordings, are used to train the system, and 12 recordings,
i.e. one recording for each condition taken from the same REB, are used to test the system.
This procedure is done five times so that every REB is used only once for testing. As one
REB is left out the training set, this method can be seen as leave-one-bearing-out cross-
validation. It is important to note here that the system does not use data of a hold-out
REBs during training in order to avoid overfitting and have a generalized model.

4.3. Pipeline one

As listed in Table [4 the IRT based fault detection system achieves better results (on
average 5 % better) than the thermocouple-based system. From the confusion matrix of the
IRT based system (Figure @ and the confusion matrix of the thermocouple based system
(Figure it can be seen that the different classes can be detected, to a certain degree,
by both the IRT-based system and the thermocouple-based system. The fact that the
thermocouple-based results are in line with the IRT-based results confirm that temperature

14



is a crucial element in detecting these machine faults. However, although the results of the
IRT-based system are slightly better than the results of the thermocouple-based system, the
added value of using a thermal camera is still low when taking the cost price of a thermal
camera into account as similar results can be achieved using cheaper thermocouple sensors.
From the confusion matrices (Fig. @ and Fig. of the classifiers, it can be seen that,
in general, the major problem is the detection of the outer-raceway faults. This problem
is also visible in the scatter plots of the features extracted from the infrared thermal video
(Figure . The scatter plots show that there is a lot of overlap between the HB samples
and ORF samples and also a lot of overlap between the HP samples and the ORF samples.
When the samples of the ORF are removed (Figure , two distinct clusters of data
can be seen. Also, when the ORF samples are removed from the data set, the classifiers
perform much better as summarized in Table 5] The IRT-based system’s accuracy rises
by 27.5 % and the thermocouple based system’s accuracy by 15 %. Also, the standard
deviations decline, indicating the reduced variability in the classifiers’ performance. The
confusion matrices (Figure [9c/and also show that the remaining classes, i.e. HB and HP,
are better distinguishable, especially when using an infrared thermal camera. From these
experiments it can be concluded that by using temperature data, outer-raceway faults are
almost not detectable, neither by using IRT data nor thermocouple data. Contrary, the
detection of hard particles is very feasible, especially when using infrared thermal data.

Table 4: Performance results of the IRT-based system and the thermocouple-based system for the detection
of healthy REBs, REBs with an ORF and REBs with HP contamination

Metric IRT-based pipeline one Thermocouple-based pipeline one

Accuracy 65 % (0 = 16.16 %) 60 % (o = 21.34 %)
Precision 66.69 % (0 = 16.61 %) 63.78 % (0 = 24.72 %)
Recall 65 % (o = 16.16,%) 60 % (o = 21.34 %)
F1-score 65.84 % (0 = 16.38 %) 61.83 % (0 = 22.91 %)

Table 5: Performance results of the IRT-based system and the thermocouple-based system for the detection
of healthy REBs and REBs with HP contamination

Metric IRT-based pipeline one Thermocouple-based pipeline one
Accuracy 92.5 % (0 = 10 %) 75 % (0 = 17.68 %)
Precision 94.67 % (o = 6.86 %) 78.71 % (0 = 16.85 %)
Recall 92.5 % (0 =10 %) 75 % (0 = 17.68 %)
F1l-score 93.57 % (0 = 8.14 %) 76.81 % (0 = 17.26 %)
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Figure 9: The confusion matrices of the classifier using IRT data @) and thermocouple data @@ for
the classification between a healthy bearing, (a bearing with an outer-raceway fault) and a bearing with
hard-particle contamination.
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Figure 10: Scatter plots of the samples of the healthy bearings, the bearings with an outer-raceway fault
and bearings with hard particle contamination @ and a scatter plot of the samples of the healthy bearings
and the bearings with hard particle contamination

4.4. Pipeline two

The detection of the amount of imbalance is not feasible using thermocouples, which is
to be expected as thermocouples do not capture movement effects. However, the thermal
camera does capture this movement effect and achieves good results in the detection of
different gradations of imbalance as can be observed from Table [f], When visualizing the
confusion matrix (Figure of the classification results obtained using IRT data it can
be seen that classifier can confuse a certain imbalance condition with another imbalance
condition for which the weight difference is small. It can be concluded that there is a
relationship between the standard deviation feature extracted from the IRT data and the
amount of imbalance. In the relationship between the amount of imbalance
and the observable displacement in the image is described analytically and quantified. This
quantification also illustrates the limits of optical imbalance detection.

Table 6: Performance results of the IRT-based system and the thermocouple-based system for the detection
different levels of imbalance

Metric IRT-based pipeline two Thermocouple-based pipeline two

Accuracy 88.33 % (o = 1247 %) 23.33 % (0 = 14.34 %)
Precision 90.42 % (o = 10.26 %) 21.42 % (0 = 14.3 %)
Recall 88.33 % (o = 1247 %) 23.33 % (0 = 14.34 %)
F1-score 89.36 % (0 = 11.26 %) 22.33 % (0 = 14.34 %)

4.5. Combination
As the goal is to have a system that can distinguish between the 12 conditions in Table
the results of two pipelines using IRT data are combined to get single fault/condition
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Figure 11: Confusion matrix of the imbalance detection.

predictions. The results of the combined pipelines can be seen in Table As can be
expected, the results when outer-raceway faults are present in the data set are not good.
Nevertheless, when the outer-raceway faults are removed, the remaining 8 conditions/faults
can be classified significantly more accurately.

Two aspects should be noted here. First, it is only feasible to detect multiple faults at
the same time using the IRT imaging approach as it is not possible to detect gradations of
imbalance using thermocouples. Second, IRT works very well for the detection of lubrication
related faults and imbalance, but for other faults such as outer-raceway-faults, vibration
analysis is more suitable and will be required for a robust multi-sensor system that can deal
with a broad range of faults.

Table 7: Performance results when combining the two pipelines that use infrared thermal data.

Metric All condition/faults All conditions except for ORF's

Accuracy  55.0 % (o = 10.00 %) 82.5 % (o = 12.47 %)
Precision 41.94 % (0 = 14.25 %) 84.76 % (o = 12.47 %)
Recall 55.0 % (0 = 10.00 %) 82.5 % (0 = 12.47 %)
Fl-score 47.54 % (0 = 12.28 %) 83.61 % (o = 12.47 %)

5. Conclusions and future work

In this article infrared thermal imaging is used in combination with image processing
and machine learning for the detection of 12 conditions and faults in rotating machinery.
The set of conditions and faults contain several levels of shaft imbalance, outer-raceway
faults in bearings, hard-particle contamination of the lubricant and healthy bearings. A
set of different bearings were used to create a large data set on which the image processing
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and machine learning techniques were applied. When distinguishing between the 12 different
conditions/faults poor performance is achieved (55 % accuracy). It is determined that this is
due to the fact that outer-raceway faults are very hard to detect using the proposed method
based on infrared thermal imaging data. When the outer-raceway faults are removed from
the data set the accuracy rises to 82.5 %. Coincidentally, raceway faults are generally easily
detectable using vibration analysis.

To put the results achieved using infrared thermal imaging in perspective, a similar
analysis is performed using thermocouple data. The results indicate that thermal imaging
enables better results as identifying different amounts of imbalance requires spatial informa-
tion, which is not possible using thermocouples.

It can be concluded that infrared thermal imaging is a promising technique for auto-
mated condition monitoring as it enables the detection of difficult and complex conditions
non-intrusively. Furthermore, infrared thermal imaging can extend the time between the
detection of a potential fault and the functional failure as conditions can automatically
be detected which are usually not detectable in an online-manner or only detectable using
vibration analysis. In future work infrared thermal imaging will be combined with other
sensors such as accelerometers in a multi-sensor system with the goal of accurately detect-
ing a multitude of faults to further decrease the time between the potential fault and the
functional failure.
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Appendix A. Imbalance displacement

As a result of imbalance, the set-up will vibrate. This vibration has a certain displace-
ment that needs to be measurable by the camera. Hence, in this appendix this displacement
is calculated for the three imbalance conditions. Next, the area size that is captured in each
pixel is calculated. Finally, the displacement is converted into pixels.

The following parameters are known of the set-up (Figure .

Mass of the shaft: 1.618 kg

Mass of one disks: 2.317 kg

Total mass (m) = 6.252 kg

Rotation frequency (w): 25 Hz
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First eigenfrequency of the set-up (w,): 17.8 hz. This was determined using an impact
test.

Radius at which the screws were attached to the disk (r) = 5.4 x 1072 m

Mass of screw 1: 4.1 x 1072 kg

e Mass of screw 2: 9.3 x 1073 kg

e Mass of screw 3: 13.0 x 1073 kg

The displacements are calculated according to equation The right-hand side of the
denominator can be ignored due to the fact that there is no, or no significant, dampening,
hence ¢ will be zero or very close to zero.

o = m_ (A1)
V-5 40

The resulting displacements are:

e Displacement by screw 1: 73.15 pm
e Displacement by screw 2: 165.9 pm

e Displacement by screw 2: 231.9 pm

Next, the area size that is captured by a single pixel, given the properties of the camera,
is determined.

Two properties are required:
e Vertical field-of-view (v): 19°
e Distance from the camera to the bearing housing (d): 380 mm

Using equation [A.2] it is determined that at a distance of 380 mm, the camera can
capture 130.84 mm vertically. By dividing this vertical dimension by the amount of vertical
pixels (ZEHHME) it is determined that 1 pixel = 272.59 pm.

Vertical dimension = dtan (v) (A.2)

Finally, the displacements are converted into pixels (equations |[A.3] [A.4] [A.5). Note
that displacements are multiplied by two as displacements are both in the upwards and
downwards direction.

73.15 pm
272.59 1=

pixel

20

= 0.54 pixels (A.3)

S1 =



165.9 pm

g 27y 99 bixel Ad

R TR pes (A.4)
231.9 pm

— 9 20T 70 pixel A5

T 7 7250 I PIEs (A.5)

In general, there is a relationship between the weight causing the imbalance and the

displacement in the image[]] This also means that there is a limit to the amount of imbalance
that can be distinguished using this technique, as amounts of imbalance that are almost the
same will not be distinguishable from one another. Furthermore, due to noise, inherent to
a thermal camera, very low levels of imbalance will not be measurable with great certainty.

It should also be noted that due to this relationship it should also be possible to calculate

the weight of imbalance to a certain degree, given the measured displacement. However, this
requires further investigation.
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