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2	 INTRODUCTION	
	

1.1. The anthropogenic mass extinction 

The history of life on Earth is characterised by a continuous turnover in species through 

evolution and natural selection1,2. Driven by biotic and abiotic processes such as competition 

and climatological changes, background extinction rates are generally slow, typically under 1 

extinction per million species-years3–6. Spikes in extinction rates can however be found 

throughout the fossil record, most remarkably at the end of the Ordovician, Devonian, 

Permian, Triassic and Cretaceous period when sudden, severe climate changes caused over 

75% of the taxa to disappear.  

Today, a sixth mass extinction event seems under way as anthropogenic activities are 

pushing extinction rates far above the background value3–7. After the industrial revolution, the 

world population has increased by a tenfold to over 7 billion today, and is projected to reach 

10 billion by the middle of this century8. Human activities have thereby progressively 

interfered with Earth’s biogeochemical cycles to meet society’s growing demands for space 

and resources. The period following the industrial revolution is hence commonly referred to 

as the Anthropocene, the era of man9–11. As a result, we are now increasingly breaching the 

barriers of a sustainable management of our ‘spaceship Earth’ 

12. Habitat destruction, 

eutrophication, chemical pollution and emission of greenhouse gasses have thereby become 

the main drivers of the ongoing global biodiversity decline13,14, and their effects are expected 

to increase even further in the next century7,15. Recent biodiversity assessments estimate 

current extinctions rates at values of up to 1000 times the background value based on the 

extinctions documented in the past century3. However, human activities continue to expand 

at such pace that many species are yet to face extinction, creating an extinction debt that is 

likely to push future extinction rates to even higher values16,17. Climate change alone, for 

example, is estimated to destine a staggering 15-37% of the world’s current taxa to extinction 

before the end of the century18. Understanding, estimating and potentially mediating the 

consequences of this rapid and unprecedented global biodiversity decline for the many 

ecosystem functions on which society currently depends has therefore become a pressing 

matter to science and society3–6,19–21.   

1.2. Biodiversity: cause or effect of ecosystem functioning? 

Biodiversity in its broadest sense encompasses all variety in life forms, both between and 

within species22. Following the work of Darwin and Wallace, biodiversity has historically often 

been regarded as the passive consequence of the opportunities presented by the 

ecosystem. In the 19th and early 20th century, explorers and naturalists set out to document 



	

GENERAL	INTRODUCTION	 	3	
	

Earth’s biodiversity. Hence, most of the early notions on global biodiversity patterns 

originated from field observations, such as the latitudinal increase in species richness from 

the arctic to the tropics. This increase in biodiversity coincides with an increased productivity 

from the poles to the Equator, suggesting a positive interrelationship between biodiversity 

and productivity at a global scale (Figure 1.1A). Biodiversity is undoubtedly to some extent 

linked to the increase in productivity as a consequence of the increased energy input from 

the Arctic to the tropics23. Since speciation is driven by selection for ‘individuals best adopted 

to the place they fill in nature’2, highly productive systems such as tropical rainforests or coral 

reefs can therefore support more species than boreal forests, simply by having more niches 

available.  

Figure 1.1: Scale-dependency of biodiversity-productivity relationships. (A) At global 

scales, biodiversity correlates positively to the system’s productivity. Along a latitudinal gradient, for 

example, biodiversity and productivity increases from the Artic toward the tropics. (B) At regional 

scales, biodiversity is expected to respond unimodally to the system productivity with low diversity in 

low-productive systems because of resource limitation and low diversity in highly productive systems 

because of strong resource competition (middle panel). (C) Experimental studies manipulate diversity 

to assess the effect on productivity (lower panel). Biodiversity is thus treated as a response variable in 

observational studies, and as an explanatory variable in experimental studies. Although generally 

positive, the strength of experimental diversity-productivity relationships can strongly differ between 

studies (solid and dashed lines). Redrawn from Purvis and Hector 200022. 
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Over time, several theories have been proposed that use the properties of the systems as 

predictor variables for the number of species in the system24,25. Ecologists thereby have tried 

to link local biodiversity to total amount of resources26,27, the ratio by which resources are 

available28,29, patch sizes30, productivity31, disturbance regimes32 and the type of species 

interactions in the system33,34.   

At local scales, resource competition and resource constraints are predicted to be the main 

drivers of biodiversity. In low productive systems, resource limitation is predicted to reduce 

species richness, whereas strong resource competition, leading to a few dominant species, 

is predicted to reduce species richness levels in highly productive systems (Figure 1.1B)35,36. 

Although theoretically appealingly simple, such unimodal relationship between productivity 

and biodiversity has been poorly supported by field studies. Instead, various types of 

biodiversity-productivity relationships have been reported, rendering productivity a poor 

predictor of the system’s diversity37–39. Moreover, even when occurring, such unimodal 

relationships are little informative as they cannot be uniquely attributed to resource limitation 

and competition as theoretically proposed, but can instead arise from a variety of 

mechanisms39,40. 

Understanding the consequences of biodiversity changes for ecosystem functioning 

therefore requires turning the question around. In “the origin of species” Darwin already 

raised the question what consequences it would have for a system if biodiversity changes 

would result in vacant niches. Based on an experiment in the gardens of Woburn Abbey 

where plots were sown with different mixtures of grasses and herbs, he states that ‘it has 

been experimentally proved that if a plot of ground be sown with one species of grass, and a 

similar plot be sown with several distinct genera of grasses, a greater number of plants and a 

greater weight of dry herbage can thus be raised’1,41. He attributed this increased yield to 

niche differentiation between species, allowing more diverse mixtures to make most of the 

available resources. As such, he provides one of the earliest accounts on the mechanisms 

underlying positive biodiversity effects on ecosystem functioning. Despite this early notion, 

studies on biodiversity effects on ecosystem functioning would remain mainly confined to 

intercropping experiments, which aimed at finding plant mixtures that maximised agricultural 

yields and not a general relationship between biodiversity and ecosystem functioning42,43. 

Only by the late 1980s, ecologist would regain interest in the occurrence of biodiversity-

ecosystem functioning relationships, due to the increased concerns of a global biodiversity 

decline1,22,41.      

During the first half of the 20th century, Odum44 and Elton45 strongly influenced the 

development of community and ecosystem ecology. They thereby focussed on another 
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aspect of biodiversity: its effect on ecosystem function stability. Based on observations 

across different terrestrial systems and the analysis of simple theoretical models, they 

argued that simplified systems, such as agricultural fields, are much more prone to 

disturbances and large fluctuations in population densities, so that ‘nature tends toward 

stability in its mature stages’44. The occurrence of a positive biodiversity-ecosystem function 

stability relationship was challenged by the work of May in the 1970s46. Turning to 

mathematical models, May presented rigorous theoretical evidence that biodiversity should 

instead increase population fluctuations33,47. Despite May’s suggestion that ecosystem 

functions could still be more stable at higher diversity levels in spite of lower populations 

stability, the opposing empirical and theoretical results casted doubts on the existence of 

biodiversity-ecosystem function stability relationship for the consecutive decade48,49.  

It was only by the 1990s that ample new empirical evidence was brought forward to firmly 

establish the occurrence of biodiversity effects on both ecosystem functioning and 

ecosystem function stabiltiy50,51. By the late 1980s the awareness of an ongoing global 

biodiversity decline had made it to the political agenda52. Successively, the Scientific 

Committee on Problems of the Environment (SCOPE) launched a programme entitled 

‘Ecosystem Functioning of Biodiversity’ to assess the state of knowledge on the 

consequences of biodiversity changes for ecosystem functioning in 1991, which provided a 

new incentive for biodiversity research53. Experimental studies thereby replaced field 

observations. Identical to the 19th century experiments in Woburn Abbey and 

Rothamsted41,42, biodiversity effects on ecosystem functioning were studied by directly 

manipulating species richness (Figure 1.1C). Over the past two decades, hundreds of these 

studies have been conducted in both terrestrial and aquatic systems, studying the effects of 

biodiversity on both ecosystem functioning and ecosystem function stability. These 

experiments have now provided compelling empirical evidence that biodiversity affects both 

ecosystem functioning and ecosystem function stability 54–63.  

1.3. Biodiversity-ecosystem functioning (BEF) relationships 

The shape of the biodiversity-ecosystem functioning determines how much species can be 

lost from a system without jeopardizing its functions. Much of the early biodiversity research 

consequently revolved around whether universal biodiversity-ecosystem functioning 

relationship existed from which the consequences of global biodiversity declines could be 

estimated52,53,64,65.  
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In 1981, Ehrlich and Ehrlich proposed a general biodiversity-ecosystem functioning 

relationship based on the dramatic, yet appealing comparison between removing species 

from an ecosystem and popping rivets from an airplane’s wing66. Central therein is the 

concept of functional redundancy67,68. They proposed that, as several species often fulfil 

similar roles within a system, a number of species could be lost without affecting ecosystem 

functioning. However, at some point ecosystem functioning can no longer be sustained by 

the remaining species, and the system (partly) collapses (Figure 1.2A). Several alternative 

biodiversity-ecosystem functioning relationship have since been proposed in which the 

degree of functional redundancy between species plays an important part68. When functional 

redundancy between species is high, many species can be lost and significant changes in 

ecosystem functioning only occur at very low levels of species richness (Figure 1.2B)67,69. 

Opposite to functional redundancy is the occurrence of keystone species, which perform a 

unique role in the system. The loss of these unique species consequently results in a 

disproportionally large decrease in ecosystem functioning70. Similarly, adding species to the 

system, for example by restoration, will not result in regaining the systems’ original function 

as long a keystone species are not included (Figure 1.2C). However, species generally make 

– to some extent – unique contributions to ecosystem functions (i.e. idiosyncrasy). As such, 

changes in ecosystem functioning can be highly variable and strongly depend what species 

are lost, and the consequences this has for the remaining species (Figure 1.2D)71. 

                
Figure 1.2: Examples of proposed biodiversity-ecosystem functioning relationships. 
(A) Rivet redundancy, (B) functional redundancy, (C) keystone species and (D) idiosyncrasy. Redrawn 
from Naeem 199868. 
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Figure 1.3: Effects of random and non-random species loss on ecosystem functioning. 

Biodiversity effects typically consist of multiple systems that are randomly composed at each diversity 

levels, representing multiple trajectories of species loss (grey lines). The biodiversity-ecosystem 

functioning relationship (dashed black line) hence describes the average change in ecosystem 

functioning between diversity levels. Consequently, effects of non-random species loss (red line), that 

is a single trajectory, can deviate from this average BEF relationship because of idiosyncratic effects. 

Due to idiosyncrasy, consequences of species loss strongly depend on the order in which 

species are lost72–80. Moreover, the main drivers of biodiversity loss such as climate changes 

or habitat loss do not remove species at random from the system81–83. Instead species get 

lost based on their sensitivity to environmental changes, as well as the sensitivity other 

species with which they interact3,7,15,84,85. When species are to some extent unique in their 

functions, the sequence in which species are lost is therefore essential for estimating the 

consequences of biodiversity changes for a particular system. However, in search for a 

general biodiversity- ecosystem functioning relationship, disentangling these species identity 

effects from the net biodiversity effect posed a major challenge for the interpretation of 

biodiversity experiments in the 1990s78,86–90. A richness gradient is generally constructed in 

these experiments by randomly assembling systems of different diversity levels from a 

common species pool. Experiments therefore need to include high replication and 

randomisation of species composition within each richness level to avoid biases by the traits 

of the selected species when statistically comparing ecosystem functioning between richness 

levels62,88. Differences in species richness between systems are therefore analogous to 

random species loss in these experiments. Consequently, the biodiversity-ecosystem 
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functioning relationships observed in these studies represent the average of all possible 

trajectories of species loss included in this study (Figure 1.3). Effects of non-random 

biodiversity changes, as occurring in natural ecosystems, can therefore easily deviate from 

this average relationship86,87. In addition, environmental drivers of species loss, such as 

global warming or pollutants, do not only eliminate species from the system but can also 

affect the functioning of the remaining species. This can augment the total effect on 

ecosystem functioning, causing the true biodiversity-ecosystem functioning relationship to 

deviate even more from that estimated from the direct manipulation of species richness83. 

Observations have however been remarkably consistent across studies, trophic levels and 

ecosystem functions, and the different levels of biodiversity (genetic, species and functional 

group diversity) with the vast majority of studies reporting a positive, often saturating, 

relationship between biodiversity and both the extent and stability of ecosystem 

functions59,91–93. 

1.4. Biodiversity effects on ecosystem functions 

Despite the consistent positive effect reported by early biodiversity experiments, the validity 

of these empirical results has been vividly debated in the 1990s due to concerns about 

potential confounding factors and hidden treatments in the experimental design86,87,89,94,95. 

This debate was only resolved by the 2000s because of the development of a theoretical 

framework that identified the mechanisms by which observed biodiversity-ecosystem 

functioning relationships could arise96–100.  

Although numerous types of ecosystem functions can be defined, several functions such as 

recreational or aesthetic value are hard to quantify101. Biodiversity experiments have 

therefore generally been limited to easily physically measurable ecosystem functions, which 

generally consist of the aggregate of the individual species functional contributions (e.g. total 

biomass, nutrient retention or primary production). Two main biodiversity effects emerged 

from these experiments: Biodiversity increased the performance102,103 and temporal 

stability50,51 of these aggregated ecosystem functions. The magnitude of both effects, 

however, appears to be uncorrelated60 and biodiversity effects on ecosystem functioning and 

functional stability have generally been treated separately, with their separate theoretical 

frameworks mechanisms56,57,59.  

1.4.1. Biodiversity effects on ecosystem functioning 

Grasslands have played an important role as a model system in biodiversity-ecosystem 

functioning research, shaping the ideas on the underlying mechanisms93,102,103. Two classes 
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of biodiversity effects are thereby discerned: complementarity and selection effects96,99,104,105. 

Species complementarity has widely been accepted as a mechanism by which biodiversity 

can affect ecosystem functioning, being deeply rooted in the practice of intercropping43. This 

agricultural practice aims at increasing yields by combining crops within a field. When plants 

differ in their niches (e.g. the preference for light or shade), this reduces the competition 

between heterospecifics compared to the competition between conspecifics. Species 

complementarity thus reduces the strength of competition an individual experiences, and 

consequently increases the number of individuals and/or the biomass that can be sustained 

by the system. Indeed, the first modern type biodiversity experiments, conducted at the 

beginning of the 19th century, manipulating the diversity of herbs and grasses was to 

increase herbage production, invariably observed an increased average herbage production 

in more diverse plots41,42. Driven by increased species complementarity, more diverse plots 

could thereby sustain a greater number of individuals by making most of the available 

resources. Facilitative interactions can have similar effects on ecosystem functions. 

Facilitative interactions refer to increases in the number or functioning of other species 

through direct positive interactions (e.g. flower-pollinator interactions), whereas niche 

differentiation increases functioning by the avoidance of negative, competitive interactions. 

However, as niche differentiation and facilitation have similar effects, their relative 

contribution to changes in species functioning is often difficult to discern in experiments. Both 

are hence generally grouped under the term complementarity effects99.   

The validity of selection effects, in contrast, has been strongly debated86,87,89. Selection 

effects refer to competitive processes that drive ecosystem functions by high functional 

contributions of species with particular traits. When ecosystem functioning is principally 

driven by species with particular traits, biodiversity may also increase productivity as a result 

of the increased probability of sampling species with these traits. However, if these species 

subsequently dominate the system to such extent that other species are lost, selection 

effects will merely reflect the effect of initial biodiversity, rather than a true biodiversity effect. 

This effect of initial diversity, increasing the chance of including dominant species, can 

therefore act as a hidden treatment in the experimental design in what is referred to as a 

sampling effect. In addition, sampling effects do not only affect selection effects, but can also 

affect complementarity effects by increasing the chance of including complementarity 

species or facilitative interactions.  

The possibility that these sampling effects were the main driver of the observed positive 

biodiversity-ecosystem functioning relationships, spurred a vivid discussion in the 1990s on 

the validity of the design used for biodiversity experiments86,87,89,95,106–108. As experiments 
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typically consists of communities of different diversity levels that were randomly assembled 

from a common species pool, concerns where not only raised about the increased probability 

of including species with high functional traits in more diverse systems, but also the 

consequences of the randomness of species loss. The ECOTRON study, for example, was 

one of the first studies to demonstrate positive effects of biodiversity on ecosystem 

functioning51. However, it consisted of 3 communities of a different diversity level, 

representing 3 stages of a depauperate ecosystem. Hence, the concluded positive 

biodiversity was disputed as it could not be ruled out that changes in ecosystem functioning 

also depending on the traits of the deleted species86. High replication within richness levels 

has therefore become a standard practice in biodiversity research. Comparing the average 

level of ecosystem functioning between richness levels thereby allows to separating the net 

effect of changes in species richness from the effects of species identities (Figure 1.3)62,78,88.  

The next step in deepening our understanding of biodiversity-ecosystem functioning 

relationships required quantifying the contribution of selection and complementarity effects to 

BEF relationships97,98. Additive partitioning methods have thereby resulted in a major 

advancement. First introduced by Loreau and Hector99, additive partitioning methods (Box 1) 

compare species functional contributions to that expected from a null model under which no 

biodiversity effects occur. As such, they allow to factor out the sampling effect by making 

species-specific predictions for the system99,100,109. Under the null-hypothesis that inter- and 

intraspecific interactions are equal, the amount of competition an individual experience is 

independent of the identity of the interacting species. The system consequently behaves 

neutrally as species densities and functional contributions undergo a random walk. For 

ecosystem functions that consist of the aggregated functional contribution of the individual 

species (e.g. nutrient retention, total biomass or primary production), the expected functional 

contribution therefore equals the initially planted or seeded fraction99,110. Observed deviations 

in species functional contributions from that expected under the null hypothesis (i.e. the 

species’ initial functional contribution) are than partitioned between terms that are interpreted 

as reflecting the various mechanisms through which biodiversity can affect ecosystem 

functioning.  

Loreau and Hector99 presented a bi-partite method partitioning biodiversity effects between 

two terms, that are interpreted as reflecting the complementarity effect and selection effect 

(Box 1). The selection effect was originally introduced as representing the analogous of 

natural selection in the Price equation111, which partitions changes in allele frequencies over 

generations between selection, mutation and drift. Fox100, however, revealed this analogy to 

be only partially true. Instead, he demonstrated how the selection effect sensu Loreau and 
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Hector99 can be split into two effects: the dominance effect and the trait-dependent 

complementarity effect (Box 1). The selection effect sensu Loreau and Hector99 refers to 

changes in ecosystem function by high abundance of species with particular traits, causing 

them to have a disproportional high functional contribution to ecosystem functioning. 

Dominance effects refer to the part of the selection effect that is caused by competitive 

replacement between species. The dominance effect thus quantifies to what extent species 

increase their functional contribution to ecosystem functioning directly at the expense of 

others based on their functional traits. Consequently, the dominance effect is the true 

analogue of natural selection sensu Price111. The trait-dependent complementarity effect than 

comprises the part of the selection effect by which changes in functional contributions are 

related to their traits, but without replacing other species. Hence, the trait-dependent 

complementarity is interpreted as reflecting the effect of species complementarity or 

facilitation experienced by species with particular functional traits, for example from one-way 

facilitative interactions. This in contrast to the complementarity effect sensu Loreau and 

Hector99, that comprises the average deviation in species functional contributions in the 

system from the null hypothesis. As such, it represents the average effect of species 

complementarity, irrespective of functional traits, and is therefore termed the trait-

independent complementarity effect by Fox100. 

Box 1: Additive partitioning methods 

 

Define for a mixture of n species: 

Mi : the yield of species i in monoculture 

Yo,i : the observed yield of species i in a mixture 

RYe,i : the expected relative yield of species i in a mixture, which equals its initial proportion 

RYo,i= Yo,i/Mi : the observed relative yield of species i in a mixture 

Ye,i = RYe,i Mi : the expected yield of species i in a mixture 

Ye = Σ Ye,i : expected total mixture yield 

Yo = Σ Yo,i : observed total mixture yield 

 

Under the null-hypothesis each species is expected to realise a mixture yield equal to its 

initial functional contribution. Note that the term yield used because the historical important 

role grassland experiments, but refers to any measurable ecosystem function. The total 

deviation in mixture yield can therefore be expressed as the sum of the individual species’ 

deviations from the null hypothesis. 
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This is the additive partitioning method by Loreau and Hector99, where cov and E denote the 

covariance and expected value, unweighted for the initial proportion of the species in the 

mixture. The first term is the selection effect, quantifying the extent by which species 

deviations from the null hypothesis depend on their functional traits, that is their monoculture 

yield. Positive selection effects increase ecosystem functioning because of the high 

functional contribution of high-functioning species. The second term is the complementarity 

effects of which the sign depends on the average species deviation from the null model, 

E(M). Positive complementarity effects thereby increase ecosystem functioning as species 

perform on average better in mixtures compared to their monoculture. 

Fox100 proposed an alternative partitioning method, splitting the species deviation from the 

null hypothesis, ΔRYi, in a part quantifying the change in species frequency in the mixture 

compared to the null hypothesis, and a part quantifying changes in yield that does not result 

from changes in frequency: 

∆! = !!!,! − !"!,! !!

!

 
= !!!,! 

!"# − !!!,! + !!!,! −
!!!,!
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= ! cov !!!,! 
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Whereby RYT is the relative yield total, ΣRYo,i. The first term hence represents the dominance 

effect. Quantifying to what extent changes in species relative frequencies in the mixture 

depend on their functional traits. Note that by dividing the relative yield by the relative yield 

total, a fraction is obtained. The difference between this normalised relative yield and the 

expected relative yield is the change in a species frequency in the mixture, which can only 

change as a result of replacement between species. The second term is the trait-dependent 

complementarity effect and quantifies the extent by which changes in species yield that do 

not result from competitive replacement depend on species functional traits. The third term, 

the trait-independent complementarity effect, is identical to the complementarity effect sensu 

Loreau and Hector99 and depends on the average species deviation from the null hypothesis, 

irrespective of species functional traits. 
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1.4.2. Biodiversity effects on ecosystem function stability 

The occurrence of biodiversity effects on ecosystem functioning stability has been the 

subject of a long standing debated, fuelled by apparent opposing empirical and theoretical 

results and confusion on the different levels at which ecosystem stability can be 

defined46,48,49. The first notions of positive biodiversity effects on ecosystem functioning 

stability during the first half of the 20th century were mainly based upon field observation and 

simple theoretical models. Complex systems such as tropical rainforests appeared much 

more stable compared to simple boreal systems or the deliberately simplified agricultural 

systems, which were readily pest-infested. Moreover, simple models of one-predator-one-

prey systems already showed rather complex dynamics, often lacking a stable 

equilibrium44,45,48,112. It was therefore argued that biodiversity should increase stability at both 

the population and ecosystem level113. This view was challenged in the 1970s by the work of 

Robert May. His rigorous analysis of both low and highly complex systems provided 

mathematical evidence that biodiversity should instead result in more violent fluctuations in 

population densities33,47. These opposing empirical and theoretical results on biodiversity 

effects on population-level stability resulted in a highly confused debate 1970s48. However, 

May already suggested in the second of his book ‘Stability and complexity in model 

ecosystems’ that larger population fluctuations could in fact drive the stability of ecosystem 

functions62. Similarly, Pimm49 tried to resolve the debate by pointing out that the different 

scales at which stability could be defined should not necessarily yield the same biodiversity 

effects.  Still, this scale-dependency was largely overlooked until the end of the 1990s when 

Doak et al. revived the idea of statistical averaging33,62,114. Under statistical averaging, 

ecosystem function stability arises from population-level fluctuations114. When species 

respond differently to an environmental change, the decrease in function of some species 

can be (partially) compensated by an increase in function of other species, averaging out the 

net effect on their aggregated ecosystem function. The higher the number of species, the 

more likely that asynchronous fluctuations will occur (Figure 1.4). As such, statistical 

averaging revealed that negative effects on population stability, as predicted by May33,47, 

does not contradict observed positive biodiversity effects on ecosystem function stability, but 

instead can drive the stability of aggregated ecosystem functions. Resembling the common 

banking practice of spreading investments over large number of stocks to avoid risks of 

violent fluctuation in the portfolio, this statistical averaging is also commonly referred to as 

the portfolio effect. 

Several statistical and biological mechanisms can influence the effect of statistical 

averaging115. The degree by which the variance in species densities scale to their mean 

value is an important additional statistical determinant of the portfolio effect. Species 
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generally reach lower densities in multispecies systems compared to monocultures because 

of interspecific competition. When the variance in species density (σi2) scales to the mean 

value (mi) by a power z, σi2=c miz, the decrease in species densities in multispecies systems 

results in an even larger decrease in the variance when z>1. Increasing biodiversity thereby 

stabilizes ecosystem functions by reducing (the variability in) species densities, and 

consequently the variance in their aggregated ecosystem function94,114. Larger values of z 

increase statistical averaging, whereas z values less than 1 result in a destabilization of 

ecosystem functions94. In real systems, z values indeed often exceed 1 resulting in statistical 

averaging effect. In grasslands, for example, z values are estimated between 1.2 and 

1.494,116. 

                   

Figure 1.4: Statistical averaging. Biodiversity increase the probability that species fluctuations in 

individual species densities are average out at the level of their joint ecosystem function. Redrawn 

from Cottingham et al. 2001115. 

Although interspecific differences in environmental response suffice to generate statistical 

averaging, the effect is promoted a greater asynchrony in species fluctuations94,114,117. 

Perfectly asynchronous changes in species functional contributions fluctuate result after all in 

no effect on their aggregated ecosystem function. Hence, negative covariances between the 

functional contributions of species pairs increase the extent of functional compensation, 
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stabilizing ecosystem functions. Species interactions are therefore an important determinant 

of statistical averaging by determining the systems temporal dynamic in composition. As 

species interactions determine how changes in one species will affect other species, 

competitive interactions are consequently expected to stabilize ecosystem functions, by 

promoting asynchronous interactions by competitive release. Positive species interactions, in 

contrast, are expected to decrease stability by inducing positive covariance94. However, the 

importance of species interactions on ecosystem stability has been debated. Although 

species interactions undoubtedly affect the degree of functional compensation, theoretical 

studies predict hat biodiversity primarily increases ecosystem function stability by increasing 

the interspecific variability in environmental responses, whereas the type of species 

interactions only has a minor effect118,119. In addition, the increased number of species 

interactions is expected to slow down population fluctuations when species interactions are 

similar between species, stabilizing ecosystem functions by reducing the effect of 

environmental changes on the system’s composition120. The long-term dynamics in the 

system’s composition can also affects stability. Increased evenness prevents that species 

with favourable traits have to bounce back from low abundances, resulting in a faster 

compensation of functional loss in other species114,121 and increases effect of mean-variance 

scaling 116. 

1.5. The environmental dependency of biodiversity effects 

The search for a general biodiversity-ecosystem functioning relationship has dominated 

biodiversity research for the past two decades. In an attempt to estimate the overall 

consequences of global biodiversity declines from such general relationship, the main 

objective was thereby to quantify the empirical support for positive, neutral or negative 

biodiversity effects57,59,65,93,122. As the vast majority of studies has supported positive 

biodiversity effects on ecosystem functioning and ecosystem function stability, this has now 

lead to the consensus that ecosystems functions are globally at risk by ongoing biodiversity 

losses59.  

More recently, the focus of biodiversity research has however shifted towards a mechanistic 

understanding of the biotic and abiotic factors that can influence the strength biodiversity 

effects and explain differences between systems58,63,81,123. The hundreds of empirical studies 

that have been conducted revealed a large degree of variability in biodiversity effects 

between study systems. Negative biodiversity-ecosystem functioning relationships are 

thereby frequently reported93. Identifying selection effects and complementarity effects as 

main drivers of BEF-relationships provided a major breakthrough in reconciling these 
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opposing empirical results. Based on species interactions and interspecific differences in 

functional traits, selection effects and complementarity effects provided a mechanistic 

underpinning for BEF relationships97–99. Consequently, this framework allowed to identify the 

conditions under which positive or negative relationships should arise, demonstrating how 

the wide rang of observed BEF relationships could arise from the traits of the species in the 

system99,100,124.  

Now, an increasing amount of studies have established that also abiotic conditions can 

strongly affect the strength of biodiversity effects. Changes in temperature125,126, nutrient 

availability81,127–130, drought131–133, shade134, osmotic stress134,135, toxic chemicals13,136 or 

flooding137 have all been demonstrated to alter the strength of biodiversity effects within 

systems. However, how these changes in abiotic conditions alter biodiversity-ecosystem 

functioning relationships remains unclear as both increases and decreases in the slope of 

the BEF relationship by environmental changes have been reported133–136. Differences in the 

BEF relationship can thereby, to some extent, be related to differences in environmental 

favourability, altering species fitness, and thus their ability to contribute to ecosystem 

functions123,131,133. However, an integrated mechanistic framework that explains how system-

specific differences in biodiversity effects on ecosystem functioning and ecosystem function 

stability depend on the biotic (species interactions and functional traits) and the abiotic 

(environmental conditions) properties of the system is currently lacking58,63,135,138.  

1.6. Rationale, research objectives and thesis outline 

The empirical search for general relationships, which were initially based on correlations 

rather than theoretical frameworks, has caused biodiversity research to diverge from 

classical community and ecosystem ecology over time58. Moreover, biodiversity effects on 

ecosystem functioning and ecosystem function stability have mainly been treated 

separately57,59,60,65. This has led to a different focus in the mechanistic frameworks 

underpinning both biodiversity effects99,114,116: While biodiversity effects on ecosystem 

functioning are mostly focussing on species interactions99,100, effects on ecosystem function 

stability mainly related to interspecific differences in environmental response94,114,118. 

However, both biodiversity effects are intrinsically linked. Changes in the BEF relationship 

between environmental conditions requires diversity-dependent changes in ecosystem 

functioning. Hence changes in biodiversity effects on ecosystem functioning must result from 

biodiversity effects on ecosystem function stability. 

Species interactions and species environmental responses are both essential determinants 
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of the system’s composition, species coexistence and consequently species’ functional 

contributions to ecosystem functions. Integrating theory on compositional dynamics and 

species coexistence into contemporary biodiversity theories will therefore be an essential 

step for incorporating biotic and abiotic factors that can explain differences in biodiversity 

effects between systems and environmental conditions. Despite the recent plea to take on 

this holistic approach in biodiversity research58,63,138, an integrated mechanistic framework is 

to date still lacking and attempts to separate environmental and biodiversity effects have 

been limited to the use of multivariate techniques123. 

Environmental changes and biodiversity changes are predicted to be the main drivers of 

changes in ecosystem functioning in the 21st century3,15,82,139. The absence of a mechanistic 

framework explaining the environmental dependency of biodiversity effects is therefore a 

major knowledge gap for understanding, estimating and mediating their combined effects on 

the many ecosystem functions society depends82,139. This thesis therefore aims to deepen 

our mechanistic understanding of the environmental dependency of biodiversity effects on 

ecosystem functioning. To this end, I explore how biodiversity theory on ecosystem 

functioning and ecosystem function stability can be linked through classic theory on 

compositional dynamics.  

In Chapters 2 and 3 I demonstrate how changes in BEF relationships between 

environmental conditions can be explained. Many empirical studies so far have 

demonstrated these environment-induced changes in BEF relationships. However, a 

mechanistic underpinning of the shifts is currently lacking. This is particularly important, as 

apparent contradictory results have been reported, with both increases and decreases in the 

slope of the BEF relationship by environmental changes (see also 1.5. The environmental 

dependency of biodiversity effects). In chapter 2, I first explain changes in the BEF 

relationship for a specific system. In a microcosm experiment, I exposed North Sea diatom 

communities, spanning multiple levels of species richness, to three concentrations of the 

herbicide atrazine. Diatom communities where thereby chosen as a study system since they 

are important primary producers in the North Sea ecosystem140,141, and allow to study 

biodiversity effects over multiple generation in a short timespan. Next, changes in the BEF 

relationship between environmental conditions, and the corresponding changes of the 

underlying biodiversity effects as defined by Fox’s100 additive partition (Box 1) were 

quantified. These empirical observations were subsequently confronted with two theoretical 

frameworks that make opposing predictions on the contributions of species interactions on 

environment-induced changes in BEF relationships and the underlying biodiversity effects. 

While the stress gradient hypothesis predicts shifts in the strength of per-capita interactions 
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by environmental changes, coexistence theory does not. The microcosm experiment did not 

provide any empirical support for shifts in the strength of per capita interactions. Instead, 

changes in the BEF-relationship, as well as difference in changes in the underlying 

biodiversity effects between different communities, were predictable from the individual 

species responses to environmental changes and a constant strength of per-capita 

interactions. In chapter 3 I generalise the findings of chapter 2. First, a comprehensive 

model is used to develop a general theory on how BEF relationships and the biodiversity 

effects defined by Fox100 (Box 1) change over environmental gradients. I demonstrate how 

species environmental responses are expected to cause a general, unimodal response of the 

slope of the BEF relationship along an environmental gradient, driven by changes in the 

dominance effect. Biodiversity effects on ecosystem functioning are thus expected to be 

larger at intermediate levels of environmental stress. The exact shape of the unimodal 

response, and thus the stress level at which biodiversity peaks, however, is predicted to 

depend on the type of per-capita interactions of the system, which determine changes in the 

trait-dependent and trait-independent complementarity effect. Hence, the model provides a 

mechanistic underpinning of changes in BEF relationships, explaining why changes in the 

slope of BEF relationships can be both positive and negative, as well as what causes 

differences between studies. Next, I demonstrate that these theoretical predictions strikingly 

coincide with the observed changes in BEFs relationship in 52 studies that manipulated 

species richness under different environmental conditions.  

In chapter 4 a non-linear extension for the additive partitioning methods of both Loreau and 

Hector99, and Fox100 is presented. In their classic formulation, additive partitioning methods 

quantify biodiversity effects by assuming that species interactions cause species to deviate 

from the null hypothesis in a way that linearly depends on their functional traits (Box 1). 

However, other relationships between species deviations from the null hypothesis and their 

functional traits are equally likely. Such nonlinear deviations are, for example, likely when 

differences in the strength of species interactions (e.g. when one species is particularly 

dominant) or functional traits (e.g. when some species are very sensitive to environmental 

changes) are strong. I therefore first develop an nth order extension of additive partitioning 

methods. Next, it is discussed how these higher order terms can be interpreted. Finally, it is 

demonstrated how a second order extension can help to increase our understanding of 

complex biodiversity effects by applying second order additive partitioning methods to the 

Cedar Creek Biodiversity II experiment, one of the longest running biodiversity experiments. 

In Chapters 5 and 6 it is demonstrate how compositional dynamics and biodiversity effects 

on ecosystem function stability are linked in changing environments. In chapter 5 it revealed 
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how biodiversity increases functional stability through compositional stability. Although 

statistical averaging focuses on strong compositional turnover, ecological theory also 

predicts that in systems of similar species, such as primary producer systems, biodiversity 

should increase ecosystem function stability by increasing resistance, rather than resilience. 

Apart from theoretical models, the link between compositional and functional stability has 

rarely been assessed. Here, the predicted simultaneous effects on functional and 

compositional stability are tested using the same microcosm setup as in chapter 2. However, 

diatom communities were after 4 weeks of exposure to the herbicide atrazine transferred to 

atrazine-free medium for 3 more weeks. Confirming theoretical predictions, biodiversity 

indeed increased ecosystem function stability by increasing the system’s compositional 

resistance, empirically establishing the tight link between the systems functional and 

compositional stability in primary producer systems. In chapter 6 the consequences of the 

link between compositional and functional changes for environmental risk assessment 

procedures are assessed. These currently still assume a certain degree of functional 

redundancy between species, such that protecting the ecosystem’s composition also 

protects its functions. However, ecosystem-level effects are thereby generally inferred from 

species-level effects without taking species interactions into account. This can hence lead to 

an over- or underestimation of effects on ecosystem structure and functioning through 

functional compensation or cascades, respectively. I explore how, in the absence of 

information on species interaction, estimations can be made on how well species-level 

effects of environmental changes correspond to ecosystem level effects based on species 

tolerances. More precisely, it is revealed how the correlations between species tolerance to 

environmental changes and their functional abilities under unstressed conditions affect 

ecosystem level effects. To this end, I confront a diatom microcosm experiment with a 

theoretical model. I demonstrate that the extent of functional compensation, and thus 

ecosystem-level effects indeed relates to the correlation between species tolerance and their 

functional abilities under unstressed conditions. Positive correlations thereby increase the 

probability of functional compensation, and reduce the effect on ecosystem functioning of 

environmental changes.  

In the final chapter, chapter 7, I discuss how the results presented in this thesis fill several 

key gaps in biodiversity research and set the stage for future research.  
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Abstract 

Environmental stress changes the relationship between biodiversity and ecosystem 

functions, but the underlying mechanisms are poorly understood. Because species 

interactions shape biodiversity-ecosystem functioning relationships, changes in per capita 

interactions under stress (as predicted by the stress gradient hypothesis) can be an 

important driver of stress-induced changes in these relationships. To test this hypothesis, 

productivity was measured in microalgae communities along a diversity and herbicide 

gradient. Based on additive partitioning and a mechanistic community model, it is 

demonstrated that changes in per capita interactions did not explain effects of herbicide 

stress on the biodiversity-productivity relationship. Instead, assuming that per the capita 

interactions remained unaffected by stress, causing species densities to only change through 

differences in stress tolerance, suffice to predict the stress-induced changes in the 

biodiversity-productivity relationship and community composition. Finally, it is discussed how 

these findings set the stage for developing theory on how environmental stress changes 

biodiversity effects on ecosystem functions. 
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2.1. Introduction 

Since the 1990s, hundreds of empirical studies established that biodiversity affects 

ecosystem functions1–6. Today, there is mounting empirical evidence that stress caused by 

changes in environmental conditions alters the biodiversity-ecosystem function relationship. 

However, observations have been inconsistent among studies. While the majority of studies 

reported a decreased effect of biodiversity on ecosystem functions with increasing stress7–16, 

others reported no change17,18 or even an increase19. The mechanisms underlying these 

stress-induced changes in biodiversity effects – and possibly explaining the observed 

differences among studies – remain virtually unexplored. This lack of mechanistic 

understanding hampers our ability to predict the value of biodiversity in the many ecosystems 

that are currently challenged by environmental stress20,21. 

Biodiversity effects on ecosystem functions can be understood from species interactions. 

When inter- and intraspecific interactions differ in strength, biodiversity affects ecosystem 

functions as species will function differently in the presence of other species compared to 

their monocultures22–24. Ecological theory distinguishes two classes of biodiversity effects. 

First, interspecific interactions can change species contributions to ecosystem functions 

because of competitive replacement. This dominance effect alters ecosystem functions 

because of the increased functional contribution of superior competitors23. Second, 

interspecific interactions can also change species functional contributions without resulting in 

competitive replacement. Such effects are referred to as complementarity effects as they are 

mainly attributed to niche complementarity or facilitative interactions between species23. 

Species interactions are not only important determinants of biodiversity effects. They also 

regulate how stress will alter the contributions of species to ecosystem functions25–27. Stress 

has a direct effect on species densities through effects on species fitness (reproduction 

and/or survival)28,29. Species interactions thereby determine the extent by which these direct 

effects will affect other species26,27. Species interactions thus take up a central position in 

both theory on biodiversity-ecosystem function relationships and stress ecology22,23,25–27. 

Understanding whether, and to what extent stress affects species interactions is therefore 

crucial for the development of theory on stress-induced changes in biodiversity effects. 

Existing theories make conflicting predictions on the effect of environmental changes on the 

per capita strength of species interactions30. The stress gradient hypothesis proposes that 

per capita interaction strengths are likely to shift from competitive to facilitative interactions 

under environmental stress31,32. Coexistence theory, in contrast, does not make assumptions 

on the direct effect of stress on per capita species interactions. Hence, stress is assumed to 

alter the effect of species interactions principally through species-specific effects on 
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fitness33,34. Both theories, by consequence, make different predictions on how stress can 

modulate biodiversity effects. If the per capita strength of species interactions is unaffected 

by stress, as assumed by coexistence theory, changes in biodiversity effects only result from 

the direct effects on species fitness and the same per capita interactions occurring in 

unstressed conditions. Hence, stress should principally change biodiversity effects on 

ecosystem functions through changes in dominance because of the replacement of sensitive 

by stress-tolerant species, as the latter by definition grow better when stressed. If, however, 

per capita interactions become more positive under stress, as predicted by the stress 

gradient hypothesis, also complementarity is expected to increase with stress.  

Understanding how stress changes the effects of biodiversity on ecosystem functions is 

essential for ecosystem management but remains as yet virtually unexplored7,9,16. In this 

chapter, it is examined how stress caused by the herbicide atrazine affects dominance and 

complementarity effects on productivity in marine diatom microcosms. Community 

composition and biovolume production in marine diatom communities was therefore 

measured along a diversity and herbicide (Atrazine) gradient in microcosms. It is tested what 

changes in biodiversity effects drive stress effects on the biodiversity-ecosystem function 

relationship, and if stress effects on the per capita strength of species interactions contribute 

to these changes. Two different approaches are used: (1) a partitioning method to quantify 

dominance and complementarity effects and (2) a mechanistic community model. Both 

approaches strongly support the absence of stress effects on per capita species interaction 

strengths. Instead, interspecific variability in stress tolerance and the strength of per capita 

species interactions in unstressed conditions could explain how stress alters biodiversity 

effects on ecosystem functions. Finally, it is discussed how these results are the first step 

towards a mechanistic theory explaining how environmental stress can change biodiversity 

effects on ecosystem functions in a variety of study systems. 

2.2. Materials and methods 

2.2.1. Algal strains 

Diatoms were isolated from a single phytoplankton sample collected near the Thorntonbank 

(Southern bight of the North Sea) during the spring bloom in March 2013. Single cells were 

isolated from the sample using a micropipette. Next, cells were rinsed three times with 

growth medium and cultured as monoclonal stock cultures35. F/2 medium36 based on artificial 

seawater (salinity 33±1‰; Instant Ocean®) and supplemented with 30 µg L-1 Si as growth 

medium. Stock cultures were maintained in an acclimatized room (20±1°C) at a 12-hour 

photoperiod and a 35±5 µmol photons m-2 s-1 light intensity (Lumilux® 18W cool white 
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Osram). New cultures were inoculated weekly to sustain exponential growth. The 

photoperiod was prolonged to 16 hours weeks prior to the start of the experiment. 

2.2.2. Microcosm experiment  

Eight strains belonging to different species (Bacillaria sp., Coscinodiscus sp., Ditylum sp., 

Guinardia sp., Gyrosigma sp., Odontella sp. and 2 species Thalassiosira sp.) differing in size, 

division rate and stress tolerance were randomly selected from the stock cultures (Appendix 

A Table S2). Communities of five levels of species richness were represented at each of the 

three levels of atrazine (i.e. a full-factorial design). To separate species-identity from diversity 

effects37, 10 different random assemblages were made at each richness level, except at 

levels 1 and 8 where only 8 and 1 assemblages were possible (Appendix A Table S3). 

Atrazine concentrations (0, 25 and 250 µg L-1) that represented a control, low stress and high 

stress treatment were selected from preliminary tests. Microcosms were established in three 

replicates at each concentration (351 microcosms in total). 

Communities were inoculated in sterilised 100ml glass Erlenmeyer flasks filled with 35ml F/2 

medium containing the required atrazine (Sigma Aldrich) concentration, and fitted with 

cellulose plugs. Species were inoculated at an equal proportion of the total initial biovolume 

(107 mm3 L-1). Note that species equilibrium densities differed by several orders of magnitude 

(Appendix A Table S2). Biovolume, rather than density was hence selected on the basis on 

which to define species functional abilities. To minimize variability between replicates and 

assemblages, species were inoculated from single stock cultures. Microcosms were cultured 

for 4 weeks at 20±1°C and a 35±5 µmol photons m-2 s-1 16-hour photoperiod. Weekly, 80% 

of the growth medium was renewed to avoid nutrient limitation or stress reduction through 

the atrazine photolysis. To determine species densities, 1mL samples were taken, fixed with 

formaldehyde at a 6% final concentration, and stored at 4°C in 24-well plates until analysis. 

Cell densities were determined using an inverse microscope and Whipple grid. Only living 

cells were counted. Mortality could easily be assessed on the basis of empty frustules (i.e. 

the empty siliceous diatom cell walls that remain after the cells have died, see Appendix A 

Figure S3). Mortality rates were very low, independent of the diversity treatment. In nearly all 

communities, dead cells accounted for less than 1% of the total cells. Species that were 

completely inhibited by atrazine, however, showed an increased relative proportion of dead 

cells in the high stress treatment because population dynamics were only driven by mortality 

(see Appendix A Table S2). Biovolumes were calculated on the basis of the average cell 

volume of each species, calculated from a sample of 50 cells38. A single cell volume was 

used per species for all treatments, as preliminary results did not reveal atrazine effects on 

cell volume. To verify constant stress levels and the absence of nutrient limitation, nitrate, 
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phosphate, and silicate concentrations were weekly spectrophotometrically determined 

(Aquamate®, Thermo Electron Corporation + Spectroquant® test kits, Merck Millipore). 

Atrazine concentrations were determined GC-MS (Thermo Quest Finnigan Trace DSQ 

coupled to Thermo Quest Trace 2000 series). 

2.2.3. Calculation of biodiversity effects 

Biodiversity effects were calculated using an additive tri-partite partitioning method23. This 

method is based on the comparison of the observed yield of a species in mixture to that 

expected under the null-hypothesis that inter- and intraspecific competition are equal. Under 

this null hypothesis, species performance is independent of diversity. Hence, species are 

expected to realise a proportion of their monoculture yield (i.e. ‘observed relative yield’, RYO) 

equal to their initial proportion in the mixture (i.e. ‘expected relative yield’, RYE). This species-

specific expected yield allows to factor out potential confounding effects related to 

differences in species composition effects (e.g. sampling effects)39. The partitioning splits the 

deviation of the total mixture yield from that expected under the null-hypothesis (ΔY) in 

dominance, trait-dependent complementarity and trait-independent complementarity effects: 

∆! = ∆!!! = ! cov !, !!!!"!!
− !!! + ! cov !,!!! − !!!

!"!!
+ ! ! !  ! ∆!"           (1) 

These three biodiversity effects reflect how the individual species yields (ΔYi) deviate from 

the null hypothesis, and whether deviations depend on species functional abilities (i.e. the 

monoculture yield M). The first term, the dominance effect, quantifies the extent by which 

species deviate from the null hypothesis by replacing other. This is measured by the 

unweighted covariance (i.e. not accounting for the species’ initial proportion in the mixture) 

between a species monoculture yield and the deviation of its realised fraction of the relative 

yield total, RYTO (i.e. as if the species where competing within a zero-sum game) from that 

expected under the null-hypothesis (i.e. RYE). The second term, the trait-dependent 

complementarity effect, quantifies the extent by which species’ deviations from null 

hypothesis that do not results competitive replacement (i.e. deviates from a zero-sum game) 

correlate to the monoculture yield. The third term, the trait-independent complementarity 

effect, is the product of the average monoculture yield and the average species deviation 

from the null hypothesis, and quantifies to what extent species deviate on average from the 

null hypothesis, irrespective of their monoculture yield.  

2.2.4. Data analysis 

Linear mixed effects models were used assess the effects of log10 diversity (LDiv), atrazine 

concentration (C) and time (Day) on the log10 biovolume, and of log10 diversity and time on 
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stress-induced changes in biodiversity effects (i.e. dominance, trait-dependent 

complementarity and trait-independent complementarity effects) were evaluated using linear 

mixed effects models40. Full models included all possible predictor interactions: 

log!" !"#$#%&'(! = ! + !!!! + !!!"#!! + !!!"!! + !!!!×!"#!! + !! !!×!"!! + 

                  !!!"#!!×!"!! + !!!!×!"#!!×!"!! + !!           (2) 

and 

∆!"#$"%&'(")* !""!#!! = ! + !!!"#!! + !!!"!! + +!!!"#!!×!"!! + !!           (3) 

Models were optimized through a backward selection procedure. Interactions were only 

retained when main effects were significant or when removing them did no longer result in 

normal distributions of model residuals. Because of the temporal dependence of the data, full 

models were fitted with a continuous first order autocorrelation structure. Community 

assemblage was included as a random effect to account for species identity effects. Models 

that incorporated community assemblage as a random effect (i.e. a random incept model) 

were significantly better than those without (ANOVA: F14,13=628, p<0.001). Temporal 

autocorrelation structures, in contrast, were only required for models predicting changes in 

biodiversity effects (ANOVA: F7,6=5.3, P<0.05). Validity of the optimal models was assessed 

based on the normality of model residuals (Appendix A Figure S4-11).  

Next, it was tested to what extent stress-induced changes in biodiversity effects depended on 

direct stress effects on species growth, the strength of per capita interaction in unstressed 

conditions, and stress effects on these interactions. These predictors were respectively 

quantified as the mean weighted atrazine effects on monoculture growth (M250/M0), the per 

capita interaction coefficients in unstressed conditions (A0) and the atrazine effects on the 

per capita interaction coefficients (A250-A0), which were estimated by the community model 

(see next section). All estimates were weighted for the relative species abundance in the 

control treatment. Initial full models included all pairwise interaction effects: 

∆!"#$"%&'(")* !""!#!! = ! + !! ! !!"#
!!

+ !! !! !! + !!!! !!"# − !! + !!! !!"#
!!

×

!! !! + !!! !!"#
!!

×!! !!"# − !! + !!!! !! ×!! !!"# − !! + !!           (4) 

Where Ew represents the weighted mean and εi the model residuals. Community composition 

was included as a random effect (ANOVA: F9,8=22.1, P<0.0001). Model residuals were not 

temporally correlated. Optimal models were obtained from a backward selection procedure 

and normality of model residuals was assessed (Appendix A Figure S12-14). Analyses were 

conducted in R 3.1.1.41 using the lme4 package42. Only changes day 21 and 28 were 
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included since strong biodiversity-ecosystem function relationships only developed after 14 

days (Figure 2.1). Estimates of species monoculture growth in unstressed (M0) and high-

stress conditions (M250) and absolute interspecific competition coefficients (log Ai,j) were 

obtained from the community model (see next section). Model estimates under scenario 4 

were used for the fixed strength of per capita interactions, whereas estimated under scenario 

5 were used for the change in per capita interaction strength (see parameter estimation). 

 

2.2.5. Community model 

A Lotka-Volterra model with a stress-dependent intrinsic growth rate and carrying capacity 

was used to simulate community dynamics:  

!!!
!" = !! ! !! 1 − !!,! ! !!

!!(!)

!

!!!
          (5) 

Where Ni (µm3 L-1) is the biovolume density, µi (d-1) is intrinsic growth rate and Ki (µm3 L-1) is 

the carrying capacity of species i, αi,j (-) is the interaction coefficient between species i and j, 
n is the total number of species and c is the atrazine concentration (µg L-1). Intraspecific 

interaction coefficients (αi,i) were set to 1. This equation can also be rewritten in terms of 

absolute competition coefficients Ai,j (c) =αi,j(c) Ki(c)-1: 

!!!
!" = !! ! !! 1 − !!,! ! !!

!

!!!
          (6) 

 

2.2.6. Community model simulations and evaluation 

Model parameters were optimized (see next section) under the restrictions of five different 

scenarios to test for stress-induced changes in per capita interaction strength (Table 2.1). 

The first scenario is a baseline scenario without interspecific interactions (i.e. αi,j(c)=0 or 

Ai,j(c)=0). Species densities thus only depend on the stress-effect on their demographic 

rates. In the second scenario, per capita inter- and intraspecific interaction strength are 

assumed to be equal (i.e. αi,i(c)=αi,j(c)=1 or Ai,i(c)=Ai,j(c)). Hence, community dynamics still 

only result from interspecific variability of stress effects on growth. In the third scenario, the 

ratio between the strength of inter- and intraspecific interaction is constant (i.e. αi,i(c)/αi,j(c)-1 

=constant or Ai,i(c)/Ai,j(c)=constant). The strength of per capita interactions, however, 

increases when stress decreases the species’ maximum function Ki(c). In the fourth scenario 

absolute the strength of per capita interactions are assumed to be constant (i.e. 
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Ai,j(c)=constant). In the fifth scenario, species interactions are allowed differ between stress 

levels without any assumptions.  

In each scenario the upper and lower limits of µi(c) and Ki(c) were constrained within 10% of 

the value estimated for the monocultures. When growth rates were lower than 0.1 d-1, the 

upper limit were set to 0.15 d-1 to avoid too stringent conditions when parameters values are 

underestimated from the monoculture data. Despite this correction, estimated values never 

exceeded the monoculture value by more than 30%. Relative interaction coefficients were 

limited between 0 and 200 based on the estimated values from diversity level 2. Because the 

control and 25 µg L-1 treatment were not significantly different (Figure 2.1, Table 1), 

parameters were only estimated for the control and 250 µg L-1 atrazine treatment. 

Parameters were estimated 100 times for each scenario to estimate parameter uncertainty. 

Next, 1000 Monte Carlo simulations were run for each scenario sampling. For each run, 

parameters were randomly from a uniform distribution constrained by the 2.5 and 97.5 

percentile of parameter estimates. The average species density of each community at the 

start of the experiment was used as initial densities for model simulations. Community 

densities were simulated for 28 days, analogous to the experiment. Scenarios were 

compared using the likelihood of the proportion functional lost (i.e. N!(250)!
!!! / N!(0)!

!!! ) 

and the average Bray-Curtis similarity between observed and predicted community 

compositions (i.e. E N!,!"# c -N!,!"#$(c)!
!!! / N!,!"# c + N!,!"#$(c)!

!!! ) for each Monte 

Carlo run. The likelihood based on species densities evaluates how well the model predicts 

stress-induced changes in ecosystem function; the average Bray-Curtis similarity evaluates 

stress-induced changes in community composition. Comparisons were made by a singed 

rank test with Bonferroni correction. All simulations were performed in R 3.1.1.41 using the 

GenSA package 43. 

 

2.2.7. Community model parameter estimation 

Optimal parameter values were estimated using a simulated annealing optimization algorithm 

and the time and density weighted mean absolute percentage error (MAPE) as objective 

function. The MAPE was selected as objective function because biovolumes could differ by 8 

orders of magnitude between species in a community. Therefore an objective function that 

scaled model deviations was required to ensure a comparative goodness of fit for all species 

(i.e. a good prediction of community composition). The MAPE was weighted for the relative 

species abundance to ensure a good prediction of the total community biovolume in (highly) 

uneven communities and was weighted for the sampling day to deal with the larger 

uncertainty on the low densities at day 7 and 14 biovolumes which could exceed the values 
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expected from the per capita growth rate in some species. The final objective function S can 

thus be written as: 

! = !!!!,!
!!,!,! − !!,!,!

!!,!,!

!

!!!!∈[!,!",!",!"]
          (7) 

!!,! =
!!,!,!
!!,!,!!

!!!
                  !"#         !!,! = 1

!

!!!
 

!! = 0.1 !7                   !"#         !! = 1
 

!∈[!,!",!",!"
 

Ni,t,o is the observed biovolume of species i at time t, Ni,t,o is the expected biovolume, pi,t is the 

relative species abundance at time t and n is the number of species in the community.  

To ensure an efficient exploration of the parameter space, parameter sets that resulted in 

species densities reaching infinity, extinction of more than one species ore the MAPE 

exceeding 100% was penalized by setting the objective function to: 

! = 10!" !!,! − !!
!

!

!!!
          (8) 

Where !!,! − !!
!!

!!! is the Euclidean distance of the parameter set (β1,… βz) from the initial 

parameter values (β01,… β0z) of the optimization algorithm. This ensures that the algorithm 

returns to the initial parameters when it runs into a series of irrelevant solutions. In addition, 

to avoid over fitting of the model by unrealistically high interaction coefficients, the mean 

value of the interaction effect of each species was assumed not to exceed 1000 times the 

average species abundance. When the mean value exceeded this cut-off value, the excess 

was added to the objective function. This favours a reduction of species density either by a 

reduction in carrying capacity or by competition with abundant species rather than by 

competition with rare species.  

2.3. Results 

2.3.1. Microcosm experiment 

Atrazine application changed the shape of the biodiversity-ecosystem function relationship 

(Figure 2.1). Biodiversity decreased biovolume production in control and low stress (25 µg L-1 
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atrazine) conditions, but increased biovolume production at elevated stress (250 µg L-1 

atrazine) conditions. Throughout the whole experiment there was no significant difference 

between the no stress and low stress treatment (Table 2.1). Atrazine had larger effects on 

biovolume production at lower richness (Table 2.1). The biodiversity-ecosystem function 

relationship thus shifted from negative to positive under stress because of reduced stress 

effects on productivity in more species-rich communities (Figure 2.1). This effect of stress on 

the slope of the biodiversity-ecosystem function relationship was entirely driven by 

corresponding changes in dominance (Figure 2.2, Appendix A Figure S1). Only atrazine-

induced changes in the dominance effect increased with species richness, and increased 

over time (Table 2.2). Atrazine effects on complementarity effects, in contrast, occurred 

independent of species richness for both trait-dependent and trait-independent 

complementarity effects (Figure 2.2, Table 2.2). 

 
Figure 2.1: Stress-induced changes in BEF relationships. Log10 biovolume of the diatom 

communities at (A) day 7, (B) 14, (C) 21 and (D) 28 of the experiment for control, low stress and high 

stress conditions. Regression lines represent the predicted biodiversity-productivity relationship by the 

linear mixed effects model (Table 2.1). Grey areas indicate a negative net production. 

Table 2.1: Biodiversity and stress effects on log10 biovolume Mixed effects model estimates 

of the effect of log10 diversity (LDiv), 25 µg L-1 (LS) and 250 µg L-1 (HS) atrazine stress on the log10 

biovolume over the course of the experiment (Day). SE is the standard error of the estimates 

 DF t-value Estimate (SE) P-value 
Intercept 1355 77.8  7.799 (0.10) <0.0001 
LDiv 37 2.56  0.475 (0.19)   0.0144 
Day 1355 12.4  0.041 (0.003) <0.0001 
LS 1355 -0.2 -0.016 (0.09)   0.8560 
HS 1355 -3.5 -0.307 (0.09)   0.0006 
LDiv × Day 1355 -7.6 -0.046 (0.006) <0.0001 
LDiv × LS 1355 0.8  0.140 (0.17)   0.3968 
LDiv × HS 1355 -4.5 -0.785 (0.17) <0.0001 
LDiv × LS × Day 1355 -0.9 -0.008 (0.008)   0.3672 
LDiv × HS × Day 1355 10.9  0.098 (0.008) <0.0001 
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Table 2.2: Stress-induced changes in biodiversity effects Model 1: Mixed effects model 

estimating the effect of log10 diversity (LDiv) on stress-induced changes in biodiversity effects over the 

course of the experiment (Day). Model 2: Mixed effects model estimating the effect of the weighted 

mean species stress tolerance (Tol) and per capita strength of interspecific interactions on changes in 

biodiversity effects at day 21 and 28. Means were weighted for the relative species abundance. 

Tolerance was calculated as the ratio between the species monoculture yield at 250 µg L-1 atrazine 

and in control conditions. The strength of interspecific interactions was based on the parameter 

estimates of the community model (see Materials and methods). SE is the standard error of the 

estimated fixed effects. 

Dominance effect 

Model 1 
 DF t-value Estimate (SE)  p-value 
Intercept 91 0.94   0.0014 (0.002)   0.35 
LDiv 29 -1.47 - 0.0037 (0.003)   0.15 
Day 91 -2.54 - 0.0002 (0.0001)   0.013 
LDiv×Day 91 4.28   0.0005 (0.0001) <0.0001 

Model 2 
 DF t-value Estimate (SE) p-value 
Intercept 29 2.40  0.022 (0.009) 0.02 
Tol 27 -2.41 -0.097 (0.04) 0.02 
Inter 27 2.34  0.003 (0.001) 0.03 
Tol×Inter 27 -2.48 -0.012 (0.005) 0.02 

Trait-dependent complementarity effect 

Model 1 
 DF t-value Estimate (SE)  
Intercept 92 -0.91 -0.0008 (0.0009)  
LDiv     
Day 92 2.07  0.0001 (0.0001)  
LDiv×Day     
Model 2 
 DF t-value Estimate (SE) p-value 
Intercept 29 0.94   0.011 (0.01) 0.35 
Tol 27 -3.02 -0.164 (0.05) 0.006 
Inter 27 0.94   0.001 (0.001) 0.36 
Tol×Inter 27 -3.06 -0.020 (0.006) 0.005 

Trait-independent complementarity effect 

Model 1 
 DF t-value Estimate (SE) p-value 
Intercept 93 -2.078 -0.00127 (0.0006) 0.04 
LDiv     
Day     
LDiv×Day     
Model 2 
 DF t-value Estimate (SE) p-value 
Intercept 29 3.46  0.044 (0.01) 0.002 
Tol 29 3.60  0.005 (0.001) 0.001 
Inter     
Tol×Inter     
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2.3.2. Community model 

In the microcosm study, the biodiversity-ecosystem function relationship changed because 

ecosystem functions were better buffered in more diverse systems (Figure 2.1). This result 

was driven by increased dominance by stress-tolerant species under stress (Figure 2.2, 

Appendix A Figure S1). A community model (Figure 2.3) was used to test to what extent 

atrazine effects on the per capita species interactions are needed to reproduce these two 

main patterns observed in the data: diversity-dependent buffering of atrazine effects and 

dominance shifts. An extensive set of model simulations, representing five scenarios making 

different assumptions on stress effects on per capita interactions, was thereby compared to 

these two patterns. This analysis indicated that there is no conclusive support for stress 

effects on per capita species interactions. Allowing for effects on per capita interactions did 

not significantly improve the model’s fit to the observed stress effects on ecosystem functions 

(Wilcoxon signed-rank test: W999=533537, P=0.09, Figure 2.3A). The predicted effects of 

atrazine on composition were highly similar between scenarios that assumed fixed (scenario 

3 and 4) and changing per capita interaction strengths (scenario 5). Allowing for atrazine 

effects on interaction strengths improved the model fit by only 3% (Wilcoxon signed-rank 

test: W999=808299, P<0.001, Figure 2.3B). The direct effects of atrazine on species fitness by 

reducing growth (i.e. as observed in monocultures) combined with the per capita species 

interactions for unstressed conditions (scenario 4) sufficed to predict the function and 

composition in stressed microcosms (Figure 2.3, Appendix A Figure S2).  

 
Figure 2.2: Stress-induced changes in biodiversity effects Changes in (A) dominance, (B) 

trait-dependent and (C) trait-independent complementarity effect at day 8, 14, 21 and 28 of the 

experiment. Regression lines correspond to the predicted stress-induced changes biodiversity effects 

by the linear mixed effects models using species richness, atrazine concentration and day as predictor 

variables (Table 2.2, model 1). Note that regression lines overlap for the trait-independent 

complementarity effect. 
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Figure 2.3: Community model predictions under different scenarios of stress effects 
Boxplots of the negative log likelihood of the change in community productivity (A) and average 

negative Bray-Curtis dissimilarity index (B) for five scenarios of stress-induced effects in the per capita 

strength of species interactions. Scenario 1 is the baseline scenario without interspecific interaction 

(Aij=0). Scenario 2 corresponds to equal inter- and intraspecific interaction strength (Aii=Aij). Scenario 

3 corresponds to a constant ratio of inter- to intraspecific competition (Aii,0/Aij0=Aii250/Aij250). Scenario 4 

corresponds to a constant per capita strength of interspecific interactions (Aij0=Aij250). Scenario 5 did 

not impose any limitations to changes in per capita interaction strength. Higher values indicate a better 

model fit and scenarios that do not share a common letter are significantly different (Bonferroni-

corrected Wilcoxon signed rank test: p<0.05). Boxplot whiskers correspond to maximal 1.5 times the 

interquartile range. 

2.3.3. Stress-induced changes in biodiversity effects 

Atrazine affected only the dominance effect in a way that depended on species richness 

(Figure 2.2). Atrazine also affected both complementarity effects, but not in a way that 

depended on richness. In fact, much of the among-community variation in the changes of the 

complementarity effects was left unexplained (Figure 2.2, Figure 2.4A). It is tested to what 

extent changes in biodiversity effects depended on direct stress effects on species growth 

(established in monoculture bioassays), the strength of per capita interaction in unstressed 

conditions (estimated under scenario 4), and stress effects on these interactions (estimated 

under scenario 5) could explain this variation. Estimated effects on per capita interaction 

strengths did not significantly explain the variation in any of the biodiversity effects (Appendix 

A Table S1). Instead, direct stress effects on species growth and the strength of per capita 
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interactions in unstressed conditions explained 46% of the observed variation in the 

observed changes in biodiversity effects (Figure 2.4B, Table 2.2). 

 

 
Figure 2.4: Predicted stress-induced changes in biodiversity effects Predicted plotted 

against observed changes in the dominance, trait-dependent complementarity and trait-independent 

complementarity effect for linear regression models (A) including diversity and day (Table 2.2, model 

1) and (B) the weighted mean strength of per capita interactions and weighted mean species stress 

tolerance as predictor variables (Table 2.2, model 2). 

2.4. Discussion 

Confirming other studies7,9,13–16, a relevant environmental stress factor changed the 

biodiversity-ecosystem function relationship (Figure 2.1, Table 2.1). In this chapter, it is 

demonstrated that stress effects on the per capita strength of interspecific interactions, if 

occurring at all, did not contribute in any ecologically meaningful way to such change. This 

conclusion is based on three lines of evidence. First, the change in the biodiversity-

ecosystem function relationship was clearly not driven by stress effects on complementarity 

effects (Figure 2.2). Second, direct stress effects on species fitness, i.e. the growth reduction 

in monoculture bioassays, sufficed to predict the observed stress effects on ecosystem 

function and community composition with a mechanistic community model. This finding 

mechanistically demonstrates that stress effects on the biodiversity-ecosystem function 

relationship were mainly driven by direct effects on species growth (Figure 2.3). Allowing for 

stress effects on the per capita interaction strength did not significantly improve the model’s 
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capacity to predict effects of stress on ecosystem functions (Figure 2.3A). While allowing for 

such effects improved model predictions of community composition, this improvement (3%) 

was smaller than the variability among replicates (5%). Hence, this improvement merely 

reflects a different number of free parameters between scenarios and the extremely high 

power when sample sizes are very large (n=31000). This improvement thus does not 

indicate an ecologically relevant improvement of model fit. Third, the direct effect of atrazine 

on species growth and the strength of species interactions estimated in unstressed 

conditions could explain the variability in the biodiversity effects among systems (Figure 2.4). 

 

The positive effect of stress on the slope of the biodiversity-ecosystem function relationship 

can be expected in many different communities and is no specific feature of the study 

system. Indeed, the insurance hypothesis44,45 postulates that diverse communities are more 

likely to contain species that can thrive under stress and buffer ecosystem functions by 

replacing sensitive species44,46. Therefore, functions that are merely the sum of individual 

species contributions should be affected less by stress in more diverse systems and the 

slope of the biodiversity-ecosystem function relationship should increase. This is exactly 

what was found: functional replacement and thus the dominance effect increased with 

diversity (Figure 2.2 and Appendix A Figure S1), and atrazine affected production less in 

more diverse communities (Figure 2.1).  

 

The presented results demonstrate that stress can not only affect the slope of the 

biodiversity-ecosystem function relationship by changing dominance but also through shifts 

in complementarity (Figure 2.4). Because the sign and size of these shifts depend on the 

interspecific per capita interaction strengths in unstressed conditions (Table 2.2), these shifts 

are most likely system-specific. Depending on the strength of these interactions in a study 

system, complementarity shifts can counteract, offset, or add to the general effect stress has 

on dominance. Differences in interaction strengths among studies can thus potentially lead to 

different effects of stress on the biodiversity-ecosystem function relationships13,19.  

In this experiment planktonic microalgae were used, which generally experience strong 

interspecific competition because of limited spatial heterogeneity47. Algal community 

performance is therefore often determined by the dominant species, and frequently leads to 

negative dominance48–50, and even a negative biodiversity-ecosystem function relationship51. 

Such a negative relationship in unstressed conditions amplifies the positive effect of 

biodiversity on the buffering of ecosystem functions, shifting the relationship from negative to 

positive under stress. Studies with terrestrial systems, in contrast, often reported positive 

biodiversity-ecosystem function relationships that are driven by strong complementarity 
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effects9,12,14,22. So, even though studies that quantified biodiversity effects reported an 

increased dominance effect through environmental changes, the overall slope decreased 

because the increasing dominance effect was outweighed by a decrease in complementarity 

effects9,14.  

These findings offer a first step towards a mechanistic understanding how environmental 

stress alters the biodiversity-ecosystem function relationship. The presented results suggest 

that dominance effects can generally be expected to increase under stress by changes in 

fitness through interspecific differences in stress tolerance. However, if per capita 

interactions remain unaffected, stress does not necessarily increase complementarity effects, 

as expected based on the stress gradient hypothesis. Therefore it is unlikely that stress 

affects biodiversity-ecosystem function relationships and the underlying biodiversity effects in 

a general way as previously suggested7. Instead, stress effects can strongly depend on the 

species interactions, specific to the study system. As such, system specific conservation 

efforts may therefore be required to preserve the services provided by the many ecosystems 

that currently suffer from environmental stress factors, including organic chemicals such as 

pesticides21,52.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



46	 ENVIRONMENT-INDUCED	CHANGES	IN	BIODIVERSITY	EFFECTS		
	

References 

(1)  Hooper, D. U.; Chapin III, F. S.; Ewel, J. J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J. H.; 

Lodge, D. M.; Loreau, M.; Naeem, S.; et al. Effects of biodiversity on ecosystem functioning: a 

consensus of current knowledge. Ecol. Monogr. 2005, 75, 3–35. 

(2)  Chapin III, F. S.; Walker, B. H.; Hobbs, R. J.; Hooper, D. U.; Lawton, J. H.; Sala, O. E.; Tilman, 

D. Biotic Control over the Functioning of Ecosystems. Science. 1997, 277, 500–504. 

(3)  Tilman, D.; Knops, J.; Weding, D.; Reich, P.; Ritchie, M.; Siemann, E. The Influence of 

Functional Diversity and Composition on Ecosystem Processes. Science. 1997, 277, 1300–

1302. 

(4)  Loreau, M.; Naeem, S.; Inchausti, P.; Bengtsson, J.; Grime, J. P.; Hector, A.; Hooper, D. U.; 

Huston, M. a; Raffaelli, D.; Schmid, B.; et al. Biodiversity and ecosystem functioning: current 

knowledge and future challenges. Science 2001, 294, 804–808. 

(5)  Loreau, M. Linking biodiversity and ecosystems: towards a unifying ecological theory. Philos. 

Trans. R. Soc. Lond. B. Biol. Sci. 2010, 365, 49–60. 

(6)  Cardinale, B. J.; Duffy, J. E.; Gonzalez, A.; Hooper, D. U.; Perrings, C.; Venail, P.; Narwani, A.; 

Mace, G. M.; Tilman, D.; Wardle, D. A.; et al. Biodiversity loss and its impact on humanity. 

Nature 2012, 486, 59–67. 

(7)  Steudel, B.; Hector, A.; Friedl, T.; Löfke, C.; Lorenz, M.; Wesche, M.; Kessler, M.; Gessner, M. 

Biodiversity effects on ecosystem functioning change along environmental stress gradients. 

Ecol. Lett. 2012, 15, 1397–1405. 

(8)  Fridley, J. Resource availability dominates and alters the relationship between species diversity 

and ecosystem productivity in experimental plant communities. Oecologia 2002, 132, 271–277. 

(9)  Fernandes, I.; Pascoal, C.; Cássio, F. Intraspecific traits change biodiversity effects on 

ecosystem functioning under metal stress. Oecologia 2011, 166, 1019–1028. 

(10)  Wacker, L.; Baudois, O.; Eichenberger-Glinz, S.; Schmid, B. Diversity effects in early- and mid-

successional species pools along a nitrogen gradient. Ecology 2009, 90, 637–648. 

(11)  Reich, P. B.; Knops, J.; Tilman, D.; Craine, J.; Ellsworth, D.; Tjoelker, M.; Lee, T.; Wedin, D.; 

Naeem, S.; Bahauddin, D.; et al. Plant diversity enhances ecosytem responses to elevated 

CO2 and nitrogent deposition. Nature 2001, 410, 809–812. 

(12)  De Boeck, H. J.; Lemmens, C. M. H. M.; Zavalloni, C.; Gielen, B.; Malchair, S.; Carnol, M.; 

Merckx, R.; Van den Berge, J.; Celemans, R.; Nijs, I. Biomass production in experimental 

grasslands of different species richness during three years of climate warming. Biogeosciences 

2008, 5, 585–594. 

(13)  Rixen, C.; Mulder, C. P. H. Improved water retention links high species richness with increased 

productivity in arctic tundra moss communities. Oecologia 2005, 146, 287–299. 

(14)  Steudel, B.; Hautier, Y.; Hector, A.; Kessler, M. Diverse marsh plant communities are more 

consistently productive across a range of different environmental conditions through functional 

complementarity. J. Appl. Ecol. 2011, 48, 1117–1124. 

(15)  Isbell, F.; Craven, D.; Connolly, J.; Loreau, M.; Schmid, B.; Beierkuhnlein, C.; Bezemer, T. M.; 



ENVIRONMENT-INDUCED	CHANGES	IN	BIODIVERSITY	EFFECTS		 47	
	

Bonin, C.; Bruelheide, H.; de Luca, E.; et al. Biodiversity increases the resistance of ecosystem 

productivity to climate extremes. Nature 2015, 526, 574–577. 

(16)  Li, J.-T.; Duan, H.-N.; Li, S.-P.; Kuang, J.-L.; Zeng, Y.; Shu, W.-S. Cadmium pollution triggers a 

positive biodiversity-productivity relationship: evidence from a laboratory microcosm 

experiment. J. Appl. Ecol. 2010, 47, 890–898. 

(17)  Boyer, K. E.; Kertesz, J.; Bruno, J. F. Biodiversity effects on productivity and stability of marine 

macroalgal communities: the role of environmental context. Oikos 2009, 118, 1062–1072. 

(18)  Fridley, J. D. Diversity effects on production in different light and fertility environments: an 

experiment with communities of annual plants. J. Ecol. 2003, 91, 396–406. 

(19)  Mulder, C. P. H.; Uliassi, D. D.; Doak, D. F. Physical stress and diversity-productivity 

relationships: the role of positive interactions. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 6704–

6708. 

(20)  Vitousek, P. M. Human Domination of Earth’s Ecosystems. Science. 1997, 277, 494–499. 

(21)  Malaj, E.; von der Ohe, P. C.; Grote, M.; Kühne, R.; Mondy, C. P.; Usseglio-Polatera, P.; Brack, 

W.; Schäfer, R. B. Organic chemicals jeopardize the health of freshwater ecosystems on the 

continental scale. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 9549–9554. 

(22)  Loreau, M.; Hector, A. Partitioning selection and complementarity in biodiversity experiments. 

Nature 2001, 412, 72–76. 

(23)  Fox, J. W. Interpreting the 'selection effect' of biodiversity on ecosystem function. Ecol. Lett. 

2005, 8, 846–856. 

(24)  Tilman, D.; Lehman, C. L.; Thomson, K. T. Plant diversity and ecosystem productivity: 

Theoretical considerations. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 1857–1861. 

(25)  Tilman, D.; Lehman, C. L.; Bristow, C. E. Diversity-stability telationships : statistical inevitability 

or ecological consequence ? Am. Nat. 1998, 151, 277–282. 

(26)  Ives,  a. R.; Klug, J. L.; Gross, K. Stability and species richness in complex communities. Ecol. 

Lett. 2000, 3, 399–411. 

(27)  Ripa, J.; Ives, A. R. Food web dynamics in correlated and autocorrelated environments. Theor. 

Popul. Biol. 2003, 64, 369–384. 

(28)  Melbinger, A.; Vergassola, M. The Impact of Environmental Fluctuations on Evolutionary 

Fitness Functions. Sci. Rep. 2015, 5, 1–11. 

(29)  Acevedo-Whitehouse, K.; Duffus, A. L. J. Effects of environmental change on wildlife health. 

Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2009, 364, 3429–3438. 

(30)  Hart, S. P.; Marshall, D. J. Environmental stress, facilitation, competition, and coexistence. 

Ecology 2013, 94, 2719–2731. 

(31)  Bertness, M. D.; Callaway, R. M. Positive Interactions in communities. Trends Ecol. Evol. 1994, 

9, 27–29. 

(32)  Maestre, F. T.; Callaway, R. M.; Valladares, F.; Lortie, C. J. Refining the stress-gradient 

hypothesis for competition and facilitation in plant communities. J. Ecol. 2009, 97, 199–205. 

(33)  Chesson, P.; Huntly, N. The roles of harsh and fluctuating conditions in the dynamics of 

ecological communities. Am. Nat. 1997, 150, 519–553. 



48	 ENVIRONMENT-INDUCED	CHANGES	IN	BIODIVERSITY	EFFECTS		
	

(34)  Chesson, P. Mechanisms of Maintenance of Species Diversity. Annu. Rev. Ecol. Syst. 2000, 

31, 343–366. 

(35)  Andersen, R. A. Algal culturing techniques; Academic Press, 2005. 

(36)  Guillard, R.; Ryther, J. Studies on marine planktonic diatoms I Cyclotella nana Hustedt and 

Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 1962, 8, 229–239. 

(37)  Tilman, D. Distinguishing between the effects of species diversity and species composition. 

Oikos 1997, 80, 185. 

(38)  Hillebrand, H.; Dürselen, C.-D.; Kirschtel, D.; Pollingher, U.; Zohary, T. Biovolume calculation 

for pelagic and benthic microagae 1. J. Phycol. 1999, 424, 403–424. 

(39)  Huston, M. A. Hidden treatments in ecological experiments: re-evaluating the ecosystem 

function of biodiversity. Oecologia 1997, 110, 449–460. 

(40)  Zuur, A. F.; Ieno, E. .; Walker, N. J.; Saveliev, A. A.; Smith, G. . Mixed effect models and 

extensions in ecology with R; Springer: New York, 2009. 

(41)  R development core Team. R: A language and environment for statistical computing. R 

Foundation for Statistical Computing. Vienna 2014. 

(42)  Bates, D.; Mächler, M.; Bolker, B. M.; Walker, S. C. Fitted Linear Mixed-effects Models using 

lme4. J. Stat. Softw. 2014. 

(43)  Xiang, Y.; Gubian, S.; Suomela, B.; Hoeng, J. General simulated annealing for global 

optimization: the GenSA package. R J. 2013, 5, 13–29. 

(44)  Yachi, S.; Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment : The 

insurance hypothesis. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 1463–1468. 

(45)  McNaughton, S. J. Diversity and stability of ecological communities-a comment on the role of 

empiricism in ecology.pdf. Am. Nat. 1977, 111, 515–525. 

(46)  Doak, D. F.; Bigger, D.; Harding, E. K.; Marvier, M. A.; O’Malley, R. E.; Thomson, D. The 

statistical inevitabiity of stabilitdiveristy relationships in community ecology. Am. Nat. 1998, 

151, 264–276. 

(47)  Giller, P. S.; Hillebrand, H.; Berninger, U.; Gessner, M. O.; Hawkins, S.; Inchausti, P.; Inglis, C.; 

Leslie, H.; Monaghan, M. T.; Morin, P. J.; et al. Biodiversity effects on ecosystem functioning : 

emerging issues and their experimental test in aquatic environments. Oikos 2004, 3, 423–436. 

(48)  Bruno, J. F.; Lee, S. C.; Kertesz, J. S.; Carpenter, R. C.; Long, Z. T.; Duffy, J. E. Partitioning 

the effects of algal species identity and richness on benthic marine primary production. Oikos 

2006, 115, 170–178. 

(49)  Vanelslander, B.; De Wever, A.; Van Oostende, N.; Kaewnuratchadasorn, P.; Vanormelingen, 

P.; Hendrickx, F.; Sabbe, K.; Vyverman, W. Complementarity effects drive positvie divesity 

effects on biomass production in experimental benthic diatom biofilms. J. Ecol. 2009, 97, 

1075–1082. 

(50)  Schmidtke, A.; Gaedke, U.; Weithoff, G. A mechanistic basis for underyielding in phytoplankton 

communities. Ecology 2010, 91, 212–221. 

(51)  Mittelbach, G. G.; Steiner, C. F.; Scheiner, S. M.; Gross, K. L.; Reynolds, H. L.; Waide, R. B.; 

Willig, M. R.; Dodson, S. I.; Gough, L. What is the observed relationship between species 



ENVIRONMENT-INDUCED	CHANGES	IN	BIODIVERSITY	EFFECTS		 49	
	

richness and productivity? Ecology 2001, 82, 2381–2396. 

(52)  Beketov, M. A.; Kefford, B. J.; Schäfer, R. B.; Liess, M. Pesticides reduce regional biodiversity 

of stream invertebrates. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 11039–11043. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



50	 ENVIRONMENT-INDUCED	CHANGES	IN	BIODIVERSITY	EFFECTS		
	

 

 



	

	

 
 
 
 
 
 
 
 
 
 
 

Changes in BEF relationships over 
environmental gradients 

 
 
 
 
 
 
 
 
 
 
 
Redrafted from: Baert J.M., Eisenhauer N., Janssen C.R. and De Laender F. Biodiversity 
effects on ecosystem functioning respond unimodally to environmental stress. Under Review 

3 



	

52	 BEF	RELATIONSHIPS	OVER	ENVIRONMENTAL	GRADIENTS	
	

Abstract 

Understanding how biodiversity and ecosystem functioning are interrelated is essential for 

estimating the consequences of ongoing global biodiversity changes. Empirical evidence is 

mounting that the slope (i.e. the direction and strength) of biodiversity-ecosystem functioning 

(BEF) relationships depends on the environmental conditions. Still, the mechanisms causing 

this environmental dependency of BEF relationships remain largely unstudied. This hampers 

our ability to predict how forecasted changes in environmental conditions and biodiversity 

can jointly affect ecosystem functioning. In this chapter, a comprehensive model is used to 

demonstrate that the slope of the BEF relationship is expected to change in a unimodal way 

along environmental stress gradients in single-trophic-level systems. It is revealed that this 

unimodal response, whereby maximal positive biodiversity effects occur at intermediate 

environmental stress, should invariably arise when species respond differently to 

environmental changes. The exact shape of the unimodal response, that is the 

environmental stress level at which the maximal slope is attained, thereby depends on the 

type and strength of species interactions in the system. Systems with more positive 

interactions are predicted to experience maximal biodiversity effects at lower stress levels 

compared to systems with more negative interactions. These theoretical predictions strikingly 

concur with a meta-analysis of a global dataset of 52 experiments that manipulated primary 

producer diversity (from unicellular algae to vascular plants) under different environmental 

conditions. The presented results therefore suggest that increases in stress from predicted 

environmental changes (e.g. climate change or chemical pollutants) are likely to increase the 

consequences of biodiversity changes compared to expectations based on the present-day 

conditions. 
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3.1. Introduction 

Over the past 25 years, a compelling number of experiments has demonstrated that 

biodiversity affects ecosystem functioning1–5. As the vast majority of these studies reported a 

positive relationship between biodiversity and ecosystem functioning (BEF), this has raised 

concerns that ecosystem function provisioning is currently at risk by the ongoing global 

biodiversity changes3,5,6. However, evidence is also mounting that the consequences of 

biodiversity changes may not be estimated from a single, universal BEF relationship7–9. 

Besides differences in the shape of BEF relationships between ecosystems4, an increasing 

number of studies now demonstrates that changes in environmental conditions can also alter 

the shape of BEF relationships within a system10–17. To date, these changes in BEF 

relationships along environmental gradients, as well as the underlying mechanisms, remain 

largely unstudied11,13,16,18. This is a major knowledge gap as observations and prognoses 

suggest rapid future changes in environmental conditions to go hand in hand with biodiversity 

change, which can cause the consequences of predicted biodiversity changes to deviate 

from current expectations that are based on the current-day environmental conditions6,19–21. 

BEF relationships result from differences in the relative strength of inter- and intraspecific 

interactions, which cause species to function differently in the presence of other species22,23. 

Two classes of biodiversity effects are thereby discerned: dominance and complementarity 

effects22,23. Dominance effects refer to diversity-dependent changes in species’ functional 

contributions to ecosystem functions through competitive replacement23. Dominance effects 

hence occur when species functional and competitive abilities are correlated. Positive 

dominance effects increase ecosystem functioning when high functioning species replace 

low functioning species. Complementarity effects, in contrast, refer to diversity-dependent 

changes in species functional contributions without species replacement. Niche 

complementarity and facilitation are major drivers of positive complementarity effects, 

increasing species and ecosystem functioning by reducing the amount of competition 

individuals experience22,23. Accordingly, negative BEF relationships result from antagonistic 

interactions that increase competition, or dominance of species with low functional 

abilities22,23.  

Theoretically, the environmental dependency of BEF relationships should thus arise from 

changes in species functional contributions that alter dominance and complementarity effects 

on function16. Changes in species density, and consequently their functional contribution to 

ecosystem functioning, must thereby at least depend on interspecific differences in species 

responses to the environmental changes and on species interactions24–26. The first 

determines the direct effect of environmental changes on species fitness, altering species 
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densities through their mortality or reproduction rates, whereas species interactions 

determine the indirect effect of density changes in other species.  

In this chapter, a comprehensive model is introduced to explore how effects of environmental 

changes on species fitnesses and species interactions alter the BEF relationship and the 

underlying biodiversity effects. Environmental changes are thereby assumed to affect 

species fitness trough their reproduction rates, while the per-capita strength of species 

interactions are assumed to be independent of the environmental conditions, as found in 

chapter 216,27–29. Using a Monte-Carlo approach, 1000 BEF relationships were simulated over 

a full environmental change gradient ranging from optimal conditions to complete functional 

inhibition of all species.  Next, it is tested how changes in BEF relationships, and the 

underlying dominance, trait-dependent complementarity and trait-independent 

complementarity effects, depend on the strength of species interactions. Finally, predicted 

changes in BEF relationships are confronted with a meta-analysis of 52 studies that 

manipulated primary producer species richness under different environmental conditions in 

both aquatic and terrestrial systems. 

3.2. Materials and methods 

3.2.1. Model structure 

A stochastic version of the Lotka-Volterra competition model was used to simulated stress-

induced changes on ecosystem functioning30: 

!! ! = log!! ! + 1 − log!! ! = !! !" − !! 1 − !!
!! !" !!!  !!,!

!
!!!           (1) 

The species per-capita growth rate (ri) is expressed as a function of the species density (Ni), 

the strength of intra- (αi,i) and interspecific interactions (αi,j), and the probability of 

reproduction (bi) and mortality (di). Environmental changes alter species fitness through a 

reduction in the per-capita growth rate, bi(SI)29. The species-specific functional response of 

the birth rate was modelled as a gamma distribution: bi(SI)=Γ(k,θ). The per-capita strength 

of species interactions was considered independent of environmental conditions28,31. 

3.2.3. Model parameterisation and simulations 

The transition probabilities for each species are governed by the per-capita birth rate (bi), 

mortality rate (di), intraspecific (ai,i) and interspecific interactions (ai,i): 

![!! ! + 1 = !! ! + 1] = !!(!") !(!)          (2) 
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![!! ! + 1 = !! ! − 1] = !!  ! ! + !! !
!!(!)
!!,!

!
!!!         (3) 

For each simulation, parameter values for bi(0), k, θ, di, αi,i and αi,j were randomly drawn 

(Appendix B Figure S2). Parameter distributions were chosen to represent an exhaustive set 

of ecologically relevant BEF relationships (ranging from strongly negative to strongly positive, 

Appendix B Figure S3). Upper limits were set for all parameters to keep simulation times 

feasible without loss of generality. Increasing parameters beyond the set upper limits for the 

birth rate, death rate, or intraspecific interactions (which determines the carrying capacity) 

only increases the number of time steps required to obtain the stationary distribution, but did 

not affect model predictions (Appendix B Figure S3). The species-specific environmental 

responses of the birth rate, and thus the species’ environmental niche and fitness, were 

modelled using gamma distributions (Figure 3.1). For each species, an optimal value, 

defining the mean value of the gamma distribution (i.e. bi(0)= kθ) was randomly sampled 

from the [0,1] interval, and a variance (i.e.!!! !" = kθ2) was randomly sampled between 1 

and 10% of the optimal value. Analogously, mean values of the per capita mortality rate (di) 

were sampled from the [0,bi(0)] interval for each species. The strength of intraspecific 

interactions, ai,i which determine the species carrying capacities (= ai,i[bi(SI)- di]) are sampled 

from the [0,1000] interval. Interspecific interactions ai,j were drawn from a gamma distribution 

with mean values drawn from the [0.1ai,i, 25ai,i ] interval and standard deviation drawn from 

the [0.01ai,i, 125ai,i] to encompasses no, positive and negative species interactions.  

The biodiversity-ecosystem relationship was simulated under environmental conditions that 

were drawn from the stress intensity distribution obtained from the empirical data (Appendix 

B Figure S5). For each simulation, first a pool of 20 species was generated by randomly 

drawing species parameters as described above. Next, 10 communities of 2, 4, 8, and 16 

species were randomly assembled from this species pool. Community dynamics were then 

simulated under unstressed and stressed environmental conditions. Community dynamics 

were numerically simulated and reached equilibrium, the latest at t=30. Simulations were run 

till t =50. Stationary species distributions were calculated by randomly sampling species 

densities between t =40 and t =50. Each simulation was reiterated 12 times to ensure 

convergence of the stationary distribution (Appendix B Figure S3). A sensitivity analysis of 

the parameters distributions revealed that model predictions did not depend on the assumed 

parameter distributions. Using different, ecologically relevant, parameters distributions did 

not alter the results (Appendix B Figure S5). Biodiversity-ecosystem function relationships 

were calculated from the summed mean functional contribution of each species, obtained 

from species stationary distributions. A detailed flow chart of the modelling process is 

provided in Appendix B Figure S2. 
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Figure 3.1. Definition of environmental stress intensity used in the model. Niches of 3 

hypothetical are depicted as function of the % fitness reduction (the % reduction in per-capita birth rate 

in the model). The stress intensity of an environmental condition is than calculated as the average % 

reduction in species fitness (equation 4). The colour scale of stress intensity corresponds to that in 

Figure 3.2, ranging from maximal average fitness (black) to complete inhibition of all species (white).  

3.2.3. Review of literature data  

The Thomas Reuters Web of Knowledge (www.webofknowledge.com) and Google Scholar 

(www.scholar.google.com) were searched for studies that manipulated species richness 

under at least two environmental conditions. The search terms ‘biodiversity’, ‘ecosystem”, 

“function’, ‘productivity’, ‘stress’, ‘temperature’, ‘nutrient’, ‘precipitation’, ‘chemical’, ‘salinity’ 

‘environment’ were used in various combinations. Additionally the cited literature of studies 

obtained this way was checked for additional original studies. Data were available as text 

files, excel files or were digitized from the figures in the original publications. Digitized data 

did not differ by more than 1% among different applications (e.g. Engauge, WebPlot or 

ExtractGraph digitizer). Only studies that reported the species monoculture functions for all 

environmental conditions were considered, as this is a prerequisite to calculate the intensity 

of environmental stress11,12,14–16,38–46 (see 3.2.4. Data normalisation). No distinction was made 

between ecosystem functions. However, ‘productivity’ was included as a separate search 

term as most studies are based on primary producer systems, with primary production as the 

main ecosystem function of interest. An overview of the study system, ecosystem function 

under study en environmental stressor for all 52 studies is given in Appendix B Table S1. 
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3.2.4. Data normalisation  

Literature and simulated data were normalized prior to analysis. The severity of the 

environmental stress was calculated as the proportional difference between the average 

monoculture function in the stressed condition (!!"#$!! ) and the average unstressed 

monoculture function (!!)11: 

!" = 1 −!!"#$!!
!!

          (4) 

Unstressed conditions were defined as those environmental conditions under which species 

attained the highest mean monoculture functions. Hence, normalized stress intensity (SI) 
metric ranges from 0 for optimal conditions to 1 for severely stressed conditions. Slopes were 

normalized by dividing the linear regression coefficient of the biodiversity-ecosystem function 

relationship by the average monoculture function under unstressed conditions.  

 

3.2.5. Comparison of empirical data and model predictions 

To test if the slope and intercept of the relationship between the slope under unstressed 

conditions and the average change in slope over a concentration gradient (Figure 3.2E) 

differed between the model predictions and the assembled empirical datasets (see 3.2.1. 

Review of literature data), the following linear model was fitted to the data:  

∆!"#$%~!!,!"#"$%# + !!,!"#"$%#  !"#$!!          (5) 

where ΔSlope is the normalized change in slope of the biodiversity-ecosystem function 

relationship between unstressed and stressed conditions, and Slope0 is the slope of the 

biodiversity-ecosystem function relationship under unstressed conditions. β0 and β1 are the 

regression coefficients for the intercept and the effect of the change in slope. The dataset 

was included as factor variable in the model, resulting in an estimated intercept and slope for 

both the regression for the dataset obtained from the meta-analysis and model simulations.  

Second order polynomials fitted the stress intensity and the slope of the BEF relationship for 

the 40 studies that included minimally 3 different environmental conditions (Appendix B 

Figure S6): 

!"#$%(!") = !"#$%(0) + !!!" + !!!!!          (6) 

The intercept Slope(0) was fixed at the slope value under unstressed conditions, whereas the 

coefficients !! and !! are the least square estimates. For each study, the estimated stress 

intensity at which the maximal slope was attained was derived from these polynomials. Next, 
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the relationship between the slope under unstressed conditions and the stress intensity at 

which the maximal slope is attained (SImax), was normalized by log10-transforming the slope 

under unstressed conditions: 

!"!"#  ~!!,!"#"$%# + !!,!"#"$%#   !"#!"[!"#$!!]          (7) 

This however excluded 3 studies with negative slopes under unstressed conditions. Residual 

diagnostics of both regression models were assessed for deviations from normality and 

homoscedasticity (Appendix B Figures S7-8).	

3.3. Results 

3.3.1. Model predictions 

Model predictions suggest a unimodal response of the slope of the BEF relationship along an 

environmental stress gradient, with biodiversity effects peaking at intermediate levels of 

environmental stress (Figure 3.2). This unimodal response is driven by environmental stress-

induced changes in dominance effects that arise because of interspecific differences in 

responses to environmental changes. Increasing interspecific fitness differences caused by 

stress promote positive dominance effects because stress tolerant species will increasingly 

contribute to ecosystem functions by replacing species experiencing severe fitness 

reductions18,32,33. Environmental stress thus inevitably induces a positive correlation between 

species functional and competitive abilities, resulting in a positive dominance effect at 

elevated environmental stress levels (Appendix B Figure S1). In addition, biodiversity acts as 

an insurance by increasing the likelihood that the system contains species that can 

compensate for the functional loss of other species32, which reduces the effect of 

environmental stress on ecosystem functioning. The strength of dominance effects and the 

slope of the BEF relationship, however, decrease again when levels of environmental stress 

become so high that fitness of most species is reduced, limiting the potential for functional 

replacement. Positive biodiversity effects thus peak at intermediate stress levels, where 

diversity maximally enhances the average ability for functional compensation. When 

environmental stress surpasses this threshold stress level, species’ fitnesses are reduced to 

such an extent that the ability for functional compensation also starts to strongly decrease in 

more diverse systems10,11,34. From this point onward, the slope of the BEF relationship 

decreases until it reaches a flat line at extreme levels of environmental stress, where the 

function of all species is inhibited (Figure 3.2A-D). 

 



	

BEF	RELATIONSHIPS	OVER	ENVIRONMENTAL	GRADIENTS	 59	
	

 

Figure 3.2. Simulated changes for a neutral (A), positive (B), or negative (C) BEF 

relationship under unstressed conditions. BEF relationships are represented at four levels of 

stress intensity (0, 0.5, 0.7 and 0.9), illustrating how the slope of BEF relationships changes because 

of the better preservation of ecosystem functions in more diverse systems under stress. The slope of 

BEF relationships consistently increase under stress levels, attain a maximum and become zero at 

high stress (D). Positive relationships under unstressed conditions (dashed line) peak at low stress, 

neutral relationships (solid line) at intermediate, and negative relationships (dotted line) at high stress. 

As a consequence, BEF relationships that are negative under unstressed conditions (dotted line) 

increase on average under stress, whereas relationships that are neutral (solid line) or positive 

(dashed line) under unstressed conditions decrease on average, causing a negative relationship 

between the average change in slope over a stress gradient, and the slope in unstressed conditions 

(E). Slopes were divided by the maximal slope in panel D.	

The type and strength of species interactions determines the stress level at which the 

maximal positive slope of the BEF relationships is attained. Species interactions are the main 

determinants of the strength of the biodiversity effects under unstressed conditions, and thus 

how these will change by alterations in species functioning through environmental changes 

(Figure 3.2D). In case no biodiversity effects occur under unstressed conditions, biodiversity 

effects will emerge under increasing stress. The unimodal response is thereby principally 

driven by the occurrence of dominance effects under stress, as explained in the previous 

paragraph (Figure 3.2A, Appendix B Figure S1). When biodiversity effects occur under 

unstressed conditions, changes in species’ functional contributions are driven by alterations 

in both complementarity and dominance effects. At increasing stress levels, the number of 
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species that can significantly contribute to ecosystem functions is progressively reduced. 

This decreases the ratio between inter- and intraspecific interactions experienced by the 

remaining species, which reduces complementarity effects, both positive and negative, at 

these elevated stress levels (Appendix B Figure S1). Dominance effects, in contrast, 

invariably become positive under stress through the increased functional contribution of 

species that have the highest fitness under stress (Appendix B Figure S1).  

Table 3.1: Estimated theoretical and empirical effects. Estimates and standard deviations of 

the slope under unstressed conditions on the average change in slope over an environmental 

gradient, and the environmental conditions at which biodiversity effects peak. 

Average change in BEF relationship 

Intercept meta analysis 0.0392 (0.013)** 

ΔIntercept model predictions -0.0120 (0.015) 

Slope meta analysis in unstressed conditions -0.5469 (0.062)*** 

ΔSlope model predictions in unstressed conditions  0.129 (0.064)*…..     

Stress intensity at which maximal biodiversity effects are attained 

Intercept meta analysis 0.2624 (0.057)*** 

ΔIntercept model predictions 0.0353 (0.058) 

Log10 slope meta analysis in unstressed conditions -0.1068 (0.0346)** 

ΔLog10 slope model predictions in unstressed conditions -0.0206 (0.0427) 

* p<0.05, **p<0.01, ***p<0.001 

BEF relationships that are positive in unstressed conditions attain a maximal positive slope at 

lower stress levels than BEF relationships that are negative in unstressed conditions (Figure 

3.2D). BEF relationships start to decline when dominance effects start to decrease, or when 

dominance effects can no longer compensate for a decrease in positive complementarity 

effects (Appendix B Figure S1). Strong positive complementarity effects under unstressed 

conditions are therefore predicted to decrease more when stress reduces the number of 

species that substantially contribute to ecosystem functions. Strong positive relationships are 

consequently already likely to decrease at low stress levels (Figure 3.2). Negative 

relationships under unstressed conditions, in contrast, first shift to positive under increasing 

stress, and hence are predicted to attain a maximal biodiversity effect at higher stress levels 

(Figure 3.2C). This shift from negative to positive biodiversity effects can be driven by a 

reduction in negative complementarity effects, a shift from negative to positive dominance 
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effects, or both. More negative complementarity and dominance effects under unstressed 

conditions require higher stress levels to be overcome. As environmental stress increases, 

this reduces the number of substantially contributing species. This reduces the strength of 

negative complementarity effects and induces positive dominance effects, which causes the 

BEF relationship to become positive. Consequently, the average change in the slope of the 

BEF relationship is predicted to negatively correlate with the slope the BEF-relationship 

under unstressed conditions (Figure 3.2E).  

 

             

Figure 3.3 Effect of the slope under unstressed conditions on the average changes in 

slope (ΔBEF Slope). Dots represent empirical data. The empirical regression model and 95% 

prediction interval (PI) are represented by the dashed line and light shading, the regression model and 

95% prediction interval obtained from model simulations are represented by the solid line and dark 

shading. 

3.3.2. Meta-analysis of biodiversity experiments 

Observed environmentally induced changes in the slope of BEF relationships reported in the 

52 empirical studies correspond strikingly with the model predictions (Figure 3.3 and 3.4). 

These studies encompass a variety of terrestrial and aquatic primary producer systems in 
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which biodiversity was manipulated under at least two different environmental conditions. 

Confirming model predictions, the stress-induced average change in the slope of the BEF 

relationship in these studies indeed negatively correlated with the effect the slope of the 

BEF-relationship under unstressed conditions (t129=-13.15, p<0.001; Figure 3.3). Studies that 

reported a negative, neutral, or a slightly positive BEF relationship under unstressed 

conditions on average reported an increase in the BEF slope in stressful environments, 

whereas the slope of strongly positive BEF relationships under unstressed conditions 

decreased on average under stress (Figure 3.3). The intercept of the empirical regression did 

not differ significantly from the theoretical regression (t4334=-0.825, p=0.41; Table 3.1). The 

slope, in contrast, was significantly different but still very similar between the empirical and 

theoretical regression (t4334=2.019, p=0.044; Table 3.1). 

Fitting second order polynomials to the 40 studies that involved at least 3 environmental 

conditions supported the unimodal change in the slope of BEF relationships along 

environmental stress gradients predicted by the model (Figure 3.4). In the majority of these 

studies, fitted polynomials peaked at intermediate levels of environmental stress (Figure 

3.4A). Monotonically decreasing polynomials were only supported for studies with highly 

positive biodiversity effects in unstressed conditions. Although the model did not predict such 

monotonic reductions, this deviation from the model can be due to the coarse resolution of 

most studies. By including only 3 or 4 environmental conditions, low environmental stress 

levels, at which maximal biodiversity effects are predicted to occur, can easily be excluded 

from the experimental design. Confirming model predictions (Figure 3.2D), the stress level at 

which maximal biodiversity effects were estimated increased as the strength of positive 

biodiversity effects in unstressed conditions decreased, and the estimated effect of the slope 

under unstressed conditions did not differ between theoretical predictions and empirical 

results (t291=-0.484, p=0.63; Figure 4B, and Table 3.1).   

So far, only a few studies have manipulated species richness under a broad range of 

environmental conditions, and these confirm the unimodal response of BEF relationships 

along environmental gradients predicted by the model (Figure 3.4 and Appendix B Figure 

S6). However, most studies have been confined to a limited number of environmental 

conditions (2 or 3), often covering only parts of an environmental gradient and often reporting 

different results, including increases, decreases, and no change of the BEF slope along 

environmental gradients (Appendix B Figure S6). The theory presented in the present study 

allows these results to be interpreted within a single generalised framework. Specifically, 

differences among studies reflect different system-specific realisations of a general pattern, 

the unimodal response of BEF relationships to environmental stress gradients, and not 
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mechanistic differences. These realisations can be understood from species interactions in 

the system, which leave a fingerprint in the BEF slope under unstressed conditions (Figure 

3.2).  

 

 

Figure 3.4 Empirical changes in slope over environmental gradients. (A) Second-order 

polynomials fitted to the changes in biodiversity–ecosystem function (BEF) relationships over a stress 

gradient for the 40 empirical studies containing at least 3 environmental conditions. Monotonically 

decreasing relationships are depicted in red (n=13), unimodal relationships in dark grey (n=27). (B) 

Theoretically predicted and empirically observed relationship between the BEF slope under 

unstressed conditions and the stress intensity at which maximal positive biodiversity effects are 

attained. The empirical regression model and 95% prediction interval (PI) are represented by the 

dashed line and light shading, the regression model and 95% prediction interval obtained from model 

simulations are represented by the solid line and dark shading. The colours of the points correspond 

to the polynomials fitted to the empirical studies depicted in panel A. 

 3.4. Discussion 

In this chapter it is demonstrated that environmental stress alters the consequences of 

biodiversity loss, and that the joint effects of environmental and biodiversity changes for 

ecosystem functioning can strongly differ between systems. A model was presented, which 

based on a minimal set of mechanisms (Figure 3.1), disentangles a general unimodal 

response from system-specific effects (Figure 3.2), and allows making quantitative, system-

specific predictions on changes in biodiversity-ecosystem functioning relationships over 

environmental stress gradients depending on the type of species interactions (Figure 3.3 and 

3.4).  
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Separating a general from a system specific response over an environmental gradient allows 

reconciling the apparent contradictions among the results reported by experiments 

manipulating biodiversity under different environmental conditions. Most of these studies only 

considered a limited number of environmental conditions, and increases35, 

decrease11,12,14,15,33,36–40 and no effect41,42 on the slope of the BEF relationship have been 

observed. The theory presented in this study thus allows interpreting these results within a 

single generalised framework. More precisely, model predictions demonstrate that 

differences among studies can be understood as reflecting different system-specific 

realisations of a general, unimodal response of the BEF relationship along environmental 

gradients (Figure 3.4, Appendix B Figure S6). To date only few studies have manipulated 

species richness under a broad range of environmental conditions. Nevertheless, these 

unequivocally confirm the unimodal response of BEF relationships along environmental 

gradients predicted by the model (Appendix B Figure S6)11,12,14. 

Model predictions indicate that differences in changes in the BEF relationship between 

studies can be explained based on the slope of BEF relationship under unstressed 

conditions (Figure 3.3 and 3.4B). As species interactions are the prime driver of BEF 

relationships, the BEF slope under unstressed conditions directly results from the type and 

strength of interactions in the system22,23. Hence, systems with positive interactions and 

biodiversity effects were predicted to experience decreases in the slope of the BEF 

relationship at lower levels of environmental stress compared with systems with more 

negative interactions (Figure 3.2). Strong positive BEF relationships have been established 

on a wide variety of ecosystem functions, and are significant across trophic groups including 

terrestrial and benthic primary producer systems4,5,43. These systems make up an interesting 

case, because the presented theory and data analysis show that lower levels of 

environmental stress are needed to reduce the BEF slope in these systems than in systems 

with negative BEF relationships under the current-day environmental conditions such as 

pelagic primary producer systems4,44. 

Although species interactions are known to be able to shift along an environmental gradient, 

the model was able to explain changes in BEF relationships across a range of systems and 

different types of environmental stressors, based on the assumption of a constant per capita 

strength of species interactions (Table 3.1). Changes in per-capita interactions, both 

increases in competition and shifts to facilitation, have been reported for various systems, 

including primary producer systems45. In particular when environmental stress is caused by 

changes in resource availability, per-capita interactions are known to shift28,45,46, for example 

by improving water retention40. Such shifts in per capita interactions can results in more 
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complex changes in biodiversity effects than predicted by the model. For example, 

environmental stress inducing shifts towards facilitation at elevated stress levels can 

increase both trait-dependent and trait-independent complementarity effects at elevated 

levels of environmental stress. The importance of these potential shifts in per capita 

interactions for environmental induced changes in ecosystem functioning remains however 

subject of debate46,47. Similarly, the results presented here demonstrate that, although shifts 

in per-capita interactions could affect how BEF relationships change over environmental 

gradients, their effect on the general response should be limited (Figure 3.3 and 3.4). 

The general, unimodal response presented here suggests that the consequences of 

biodiversity effect are likely to increase at low to intermediate levels of environmental stress 

(Figure 3.2 and 3.4). Thus, at such levels of environmental change, effects of biodiversity 

loss will be more negative than at present-day environmental conditions. Environmental and 

biodiversity changes pose major threats to ecosystems worldwide6. Understanding how both 

processes are intertwined is therefore a major challenge to appropriately asses the 

consequences of ongoing and future biodiversity changes12,48,49. Many ecosystems are 

currently subject to increasing environmental stress, such as global warming, acidification, 

drought, or chemical pollution6,50. The presented results suggest that the consequences of 

future biodiversity loss are likely to exceed our current expectations based on the current-day 

environmental conditions. Preserving and restoring biodiversity is therefore essential to 

maintain ecosystem function provisioning 5,12,13. Increasing our understanding of biodiversity 

effects in current systems can, however, provide important insights to make system-specific 

predictions and prioritize conservation efforts. 
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Abstract 

Assessing the consequences of biodiversity changes for ecosystem functioning requires 

separating the net effect of biodiversity from potential confounding effects such as the 

identity of the gained or lost species. Additive partitioning methods allow factoring out these 

species identify effects by comparing species’ functional contributions against the predictions 

of a null model under which functional contributions are independent of biodiversity. Classic 

additive partitioning methods quantify biodiversity effects based on a linear relationship 

between species deviations from the null model and their functional traits. However, based 

on ecological theory, non-linear relationships are also possible. Here it is demonstrated how 

additive-partitioning methods can easily be extended to describe such non-linear 

relationships, and explain how non-linear biodiversity effects can be interpreted. Both linear 

and non-linear partitioning methods are applied to the Cedar Creek Biodiversity II 

experiment. Non-linear relationships were detected in the majority of plots, and increased 

with diversity. Non-linear partitioning thereby identified a convex relationship between 

species functional traits and their deviations from the null model, driven by strong positive 

effects of both species with low and high functional trait values trait values on ecosystem 

functioning. The presented non-linear extension of additive partitioning methods is therefore 

essential for revealing more complex biodiversity effects on ecosystem functioning, which are 

likely to occur in biodiversity experiments. 
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4.1. Introduction 

Anthropogenic activities are causing unprecedented global biodiversity changes with 

potential major consequences for ecosystem function provisioning1–3. Understanding how 

biodiversity and ecosystem functioning are interrelated has therefore become a major 

objective in ecology. Since the 1990s, hundreds of studies have assessed the biodiversity-

ecosystem-functioning relationship by randomly assembling communities of different levels 

of species richness from a common species pool4–8. However, the increased likelihood of 

sampling species with favourable traits in the high diversity treatments can thereby bias 

regression analysis9–12. Because both the number and identity of species can influence, 

estimating the biodiversity-ecosystem functioning relationship hence requires high replication 

to control for the effect of species identities13. 

Additive partitioning methods allow factoring out the effect of species identities by using a 

null model14,15. Under the null hypothesis that the strengths of inter- and intraspecific 

interactions are equal, species functioning is independent of the identity and number of 

species in the system. Observed deviations from this null model can then be partitioned 

between two14 or three15 terms that reflect various classes mechanisms through which 

biodiversity can affect ecosystem functioning. Contrary to classic regression analyses that 

estimate biodiversity effects by comparing ecosystem functioning across a species richness 

gradient, additive partitioning methods thus estimate biodiversity effects based on a system-

specific prediction of ecosystem functioning in the absence of biodiversity effects. 

Current additive partitioning methods assume a linear relationship between species 

deviations from the null model and their functional traits14,15. However, based on ecological 

theory, there is a priori no reason to assume the relationship between species deviations 

from the null model and functional traits should be linear For example, non-linear 

relationships have shown to arise over time when ecosystem functioning becomes 

increasingly driven by particular (groups of) species16. Although a linear relationship 

quantifies the general pattern, including higher order terms allows more accurately describing 

deviations from the null model, and consequently leads to a more comprehensive treatment 

of biodiversity effects on ecosystem functioning. 
 

In this chapter, it is first demonstrated how current additive partitioning methods can easily 

be extended with higher order terms to include non-linear dependencies between species’ 

deviations from the null model and their functional traits. Next, it is explain how these higher 

order terms can be ecologically interpreted. Finally, the non-linear additive partitioning 

methods is applied to data from the Cedar Creek biodiversity II experiment to illustrate the 
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occurrence of non-linear biodiversity effects and discuss how the non-linear partitioning 

results in a more detailed insight into the effect of biodiversity on ecosystem functioning. 

4.2. Linear additive partitioning methods 

Many ecosystem functions are the aggregate of the individual species’ functional 

contributions (e.g. primary production, nutrient retention or total biomass). Under the null 

hypothesis that inter- and intraspecific interactions are equal, the functional contribution of an 

individual is independent of the identity of the individuals with which it interacts. As the 

system behaves neutrally under the null hypothesis, species functional contributions undergo 

a random walk. Species are hence expected to function equally well in monocultures as in 

mixed cultures. The expected value of a species’ functional contribution to ecosystem 

functioning therefore equals its initial fraction in the mixed culture times its contribution in 

monoculture14,15. For a system containing n species, the expected value of an aggregated 

ecosystem function or yield (Ye) under the null hypothesis can thus be expressed as14: 

!! = !!,!
!

!!!
= !!,!

!!

!

!!!
!! = !"!,!

!

!!!
!!           (1) 

Ye,i is the individual species yield, which can also be expressed as the realised fraction of the 

species monoculture yield (Mi), the relative yield (RYe,i). As the system behaves neutrally, the 

expected relative yield remains constant over time. Note that the term “yield” is used to refer 

to any measurable ecosystem function, or a species functional contribution thereto, to 

comply with common terminology14,15. For any aggregated ecosystem function, the observed 

deviation in ecosystem functioning from the null model (ΔY) equals the sum of the deviations 

of the individual species observed yield (Yo) or relative yield (RYo) from the null model 14: 

∆! = !! − !! = !!,! − !!,!
!

!!!
= (!"!,! − !!!,!) !!   

!

!!!
= ∆!!!  !!  

!

!!!
          (2) 

Loreau and Hector14 demonstrated that rewriting equation 2 based on the expected value of 

the product of two dependent variables, results in two terms that can be interpreted as 

reflecting the complementarity effect and selection effect: 

∆! = !  ! ∆!"   ! ! + !  cov ∆!",!           (3) 

The sign of the first term depends on the average species’ deviation from the null hypothesis. 

The term becomes positive when species perform better on average in mixed cultures 
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compared to monocultures, which is interpreted as the consequence of niche 

complementarity and/or facilitative interactions between species. The second term quantifies 

the linear dependency between species’ deviations from the null model and their 

monoculture yields. Hence, this term is positive when species with above average 

monoculture yields have on average a higher functional contribution to ecosystem functions, 

reflecting the effect of dominance of species with particular functional traits on ecosystem 

functioning. Note that throughout this paper the term ‘functional traits’ will be used to refer the 

species monoculture yields. Loreau and Hector14 therefore referred to the second term as the 

selection effect, mimicking the effect of natural selection in evolution as given by the Price 

equation17. Fox15 demonstrated that the selection effect is only partially analogous to natural 

selection sensu Price17. The latter reflects changes in frequencies whereas ∆!!!  is not limited 

to the [0;1] interval, nor needs ∆!!! to equal 1. Therefore, Fox15 proposed an alternative 

partitioning of species’ deviations from the null-model: 

∆! = (!!!,! − !!!,!) !!   
!

!!!
= !!!,!

!"# − !!!,!  !!   
!

!!!
+   !!!,! −

!!!,!
!"#  !!

!

!!!
          (4) 

Under the assumption that the number of individuals in the system is independent of species 

richness, that is a substitutive design, the expected relative yield (RYe,i) equals the species’ 

initial proportion in the mixture. By dividing the observed relative yield by the relative yield 

total (RYT= ΣRYo,i) the first term of equation 4 thus now does represent the changes from 

species’ initial frequencies. Analogous to equation 2, equation 4 can be rewritten as15: 

∆! = !  ! ∆!"   ! ! +  !  cov !!!,!
!"# − !!!,! ,! + !  cov !!!,! −

!!!,!
!"# ,!           (5) 

This additive partitioning presented by Fox15 now splits the selection effect into two 

covariance terms: the dominance effect and the trait-dependent complementarity effect. The 

first covariance term quantifies the extent by which deviations from the expected frequency 

linearly depend on their monoculture yield. Changes in species frequencies imply that the 

increase in one species necessarily results in the decrease of other species. Consequently, 

the first term reflects changes in ecosystem functioning by dominance of species with 

particular functional traits, analogous to natural selection sensu Price17. The second 

covariance term, the trait-dependent complementarity effect, quantifies the linear 

dependency between species’ monoculture yields and the extent by which species relative 

yields do not result from replacement. Hence, this term is interpreted as reflecting the effect 

of asymmetrical species complementarity that hat occurs depending on species functional 

traits. This in contrast to the first term of equation 5, which is identical to the complementarity 
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effect by Loreau and Hector14, and depends on the average deviation from the null model, 

which occurs irrespective of species monoculture yields. This term is hence also referred to 

as the trait-independent complementarity effect15. 

4.3. Non-linearly extending additive partitioning methods 

Both the bi-14 and tripartite15 method are based on the expected value of the product of two 

dependent variables. These methods use covariances (equations 3 and 5), measuring the 

linear dependence between deviations from the null model and species traits (i.e. 

monoculture yields). To extend additive partitioning methods with higher order terms, a 

generic function !(!! ,Θ) is introduced, describing the relationship between the deviation of 

species functional contribution from that expected under the null hypothesis that inter- and 

intraspecific interactions are equal, and their centred monoculture yields, !! = !! − ! ! : 

∆!!! − ! ∆!" =  ! !!,Θ + !!           (6) 

! is a vector containing the unknown parameters of the function ! and !!  is the model error 

term for species i. Fitting this model to data with ordinary least squares leads to the identity: 

∆!!! − !!" ∆!" =  ! !! ,Θ + !!            (7) 

to the least squares estimate Θ for Θ and to the residuals: 

!! = ∆!!! − !!" ∆!" −  ! !! ,Θ , ! = 1,… , !            (8) 

Note that the function ! has a zero intercept as the mean deviation from the null hypothesis 

is subtracted from species deviation from the null hypothesis in equation 6. The function ! is 

thus centred on the mean deviation from the null hypothesis and monoculture yield, so that 

all terms depend on	!!.. Inserting identity 7, equation 2 can now be rewritten as: 

∆! = ∆!!! − ! ∆!" !!

!

!!!
+ ! ∆!"  !!

!

!!!

= ! !! ,Θ
!

!!!
!! + !!!!

!

!!!
+ ! ! ∆!"   ! !           9  

If the relationship between species deviations from the null model and the monoculture yield 

is linear, i.e.  ! !! ,Θ = !!!! , it follows from ordinary least squares theory that !!!
!!! !! =

0, and consequently equation 9 then becomes: 
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∆! = !! !!
!

!

!!!
+ ! ! ∆!"   ! ! = ! !!!!! + ! ! ∆!"   ! !

=  ! cov ∆!",! + ! ! ∆!" ! !           10  

This is the additive partitioning by Loreau and Hector14.  Note that !!, the optimal least 

square estimate of !!, equals !"# ∆!",!
!!!

 and that !!!  is the sample variance of the species 

monoculture yields. Analogous, equation 4 can be rewritten as: 

∆! =  !(!) !! ,Θ(!) !!

!

!!!
+ !!

(!)
!

!!!
!! + !(!) !! ,Θ(!)

!

!!!
!! + !!

(!)
!

!!!
!!

+ ! ! ∆!"  ! !           (11) 
whereby, similar to identity (7): 

!!!,!
!"# − !!!,! − !

!!!
!"# − !!! =  ! ! !! ,Θ ! + !! !           12  

and 

!!!,! −
!!!,!
!!" − ! !!! −

!!!
!"# =  ! ! !! ,Θ ! + !! !           (13) 

Note that ! !  describes the deviation from the expected frequency (i.e. the dominance 

effect) and that ! !  describes deviations that are not associated with changes in frequency 

(i.e. the trait-dependent complementarity effect). Hence, when !(!) !! ,Θ(!) = !!
(!)!!  and 

!(!) !! ,Θ(!) = !!
(!)!!, equation 11 equals equation 5, which is the partitioning presented by 

Fox15. When ! !! ,Θ ,  !(!) !! ,Θ(!)  and !(!) !! ,Θ(!)  are mth (, order polynomials equations 

9 and 11 can be written as: 

∆! = !! !!
!

!

!!!
+ !! !!

!
!

!!!
+⋯+ !! !!

!!!
!

!!!
+ ! ! ∆!"   ! !           (14) 

 

and 

∆! = !!
(!) !!

!
!

!!!
+ !!

(!) !!
!

!

!!!
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! !!
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!

!!!

+ !!! !!
!

!

!!!
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!
!

!!!
+⋯+ !!(!)

! !!
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!!!
 

+ ! ! ∆!"   ! !           (15) 
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These equations now partition the selection effect (equation 14) or dominance effect and 

trait-dependent complementarity effect (equation 15) in m terms, describing the linear up to 

the mth order dependency of the deviation from the null hypothesis on species’ monoculture 

yields. As equation 3, 5, 14 and 15 are decompositions of ∆!, the sum of the m terms in 

equations 14 and 15 still equals the covariance terms in the partitioning methods of Loreau 

and Hector14 and Fox15. 

     

Figure 4.1: Linear and quadratic deviations from the null model Linear	 and	 quadratic	

deviations	from	the	null	model.	The first order regression coefficient determines whether the general 

relationship between species deviations from the null model and the monoculture yield is negative (A) 

or positive (B). The second order regression coefficient determines whether the relationship is convex 

(!! > 0) or concave (!! < 0). Whether the relationship is unimodal or monotonic depends on whether 

the tip of the parabola (−!!/2!!) is located within the species monoculture range (indicated in grey) or 

not, respectively. Mmin and Mmax are respectively the minimum and maximum monoculture yield. Note 

that the linear relationship between species monoculture yields and deviations from the null model of 

linear additive partitioning methods is tangent to the parabola at the average deviation from the null 

model (∆!") and average monoculture yield (!). 

The use of mth order polynomials to describe the relationship between species monoculture 

yields and deviations from the null model allow for a more versatile analysis of species 

deviations from the null model. When sufficient data is available, it allows distinguishing 

between the linear, quadratic and up to mth order deviations from the null model. However, 

as most biodiversity experiments only include a limited number of species (rarely over 16 

species), fitting third or higher order polynomials can result in over fitting the data. In addition, 

first and second order terms can more easily be ecologically interpreted than higher order 

terms. First order terms describe how species with above average monoculture yields differ 

in their deviation from the null model compared to species with below average monoculture 
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yields. When the first order regression coefficient (!! ) is positive, species with higher 

monoculture yields deviate more from the null model than the average deviation, taken 

across all species in the system (Figure 4.1, right panel). Analogously, species with lower 

monoculture yields deviate more than average from the null model when the first order 

regression coefficient is negative (Figure 4.1, left panel). The second order regression 

coefficient describes to what extent the deviation from the null model is non-linearly related to 

monoculture yield. They therefore represent a parabolic relationship and the sign of the 

second order regression coefficient (!!) determines whether the parabola is convex (!! > 0) 

or concave (!! < 0). The straight line described by the first order regression coefficient is the 

tangent of this parabola in the point (!,∆!" ). Both first and second order regression 

coefficients determine the position of the tip of the parabola (−!!2!!). When the tip of the 

parabola lies inside the monoculture range, the relationship is unimodal Figure 4.1 concave 

relationship in the left panel, or convex relationship in the right panel). As the tip of the 

parabola shifts away from the monoculture range, the deviations from the linear relationship 

become more asymmetrical (Figure 4.1). In these extreme cases, the second order term 

describes to what extent with high or low monoculture yield deviate from the linear term. 

When the tip of the parabola lies closer to the average monoculture range, relationships 

become more symmetrical and so describe to what extent both species with low and high 

monoculture yields deviate from the linear relationship. When this tip lies outside the 

monoculture rage (Figure 4.1 convex relationship in the left panel, or concave relationship in 

the right panel), the second order polynomial describes a monotonic relationship. 

4.4. Application and occurrence of non-linear biodiversity effects 

The Cedar Creek Biodiversity II experiment is a field experiment conducted to assess the 

effects of species diversity on grassland productivity by randomly assembling systems of 1, 

2, 4, 8 and 16 species from a pool of 18 grassland perennials18,19. This experiment is one of 

the most long-lasting biodiversity experiments, and thirteen years of data gathered between 

2001 and 2013, were made publically available by the University of Minnesota20. To avoid 

strong effects of species loss or gain on ecosystem functioning only plots for which a 

minimum of 75% of the original species were still present, and whereby colonisation by new 

species had limited effects on the total aboveground biomass were included to avoid strong 

effects of species loss or gain on ecosystem functioning21–23. Both a partitioning based on 

linear relationships14,15 and an extension of these methods based on second order 

polynomials was applied to the data to test which relationship described the observed 

deviations from the null model best (F-ratio test using a 5% significance level, assuming 
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normality of model residuals, Appendix C Figure S1). To be able to fit second order 

polynomials, only plots with an initial species richness at least four species were considered. 

Higher order polynomials were not considered due to constrains in the maximal degrees of 

freedom. 

 

Figure 4.2: Comparison between additive partitioning methods based on linear 

relationships and order polynomials. The umber of years for which 2nd order polynomials fitted 

(A) selection effects14 and (B) dominance and (C) trait-dependent complementarity effects15 better 

than linear relationships (F-ratio test, p<0.05). 

Second order polynomials fitted deviations from the null model better in most plots. 

Partitioning deviations between the selection and complementarity effect 14 revealed that in 

69 of the 91 plots selection effects were better described by second order polynomials in at 

least one of the years. The number of plots in which second order polynomials fitted 

selection effects significantly better to the observed deviations from the null model increased 

with diversity (Kruskal-Wallis χ2
2=177.3, p<0.001). In 17 out of the 35 plots containing 16 

species, second order polynomials fitted selection effects better in at least half of the years 

(Figure 4.2). For systems of 4 and 8 species, 2nd order polynomials fitted selection effects 

better for at least half of the years in only 3 out of the 30 and 2 out of the 26 plots, 

respectively. The non-linearity in selection effects was caused by the non-linearity of the trait-

dependent complementarity effects sensu Fox15 (Figure 4.2). The results found for trait-

dependent complementarity effects were similar to those found for the selection effect: the 

number of plots in which deviations were better described by second order polynomials 

increased with diversity (Kruskal-Wallis χ2
2=191.1, p<0.001). 

In highly diverse systems, linear additive partitioning methods underestimate the deviations 

from the null model for species driving productivity (Figure 4.3). Diversity increases the 
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number, and thus potentially the complexity, of species interactions. Competition for nitrogen 

plays an important role in grasslands24–26. The presence of nitrogen fixing legumes has 

therefore a significant impact on the system’s productivity by increasing the amount of 

nitrogen available, and thus the potential for species to overyield (i.e. a positive ΔRY). Hence, 

strong competitors for nitrogen are expected to benefit most from the presence of legumes26. 

 
Figure 4.3: Comparison of model performance between partitioning methods based on 

linear and 2nd order relationships.	Upper panels represent the predicted deviations from the null 

model according to linear partitioning (+) and second order partitioning methods (o), plotted against 

the observed deviations for the (A) selection and (B) trait-dependent complementarity (right) effect. 

The lower panel (C) represents the relationships between species deviation from the null model and 

the monoculture yield. Boxplot represent observed species deviations, and whiskers correspond to 

maximal 1.5 times the interquartile range. Grey lines represent the fitted second order polynomials 

that fitted deviations from the null model significantly better than linear relationships (F-ratio test,). 
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Figure 4.4: Regression coefficients for second order polynomials (upper panels) and 

relative position of the tip of the parabola (lower panels). Regression coefficients for the 

selection (A) and trait-dependent complementarity (B) effect. Positive values in the lower panels 

indicate a tip of the parabola to the right of the mean monoculture yield, negative values to the left. 

Note that all tips are within the monoculture range, as values do not exceed 1. 

Indeed, strong positive deviations from the null model occurred for the dominant grass 

species such as Poa pratensis, Andropogon gerardi and Schizachyrium scoparium, but also 

legumes overyielded in mixtures due to their nitrogen fixing abilities, reducing competition for 

nitrogen (Figure 4.3)26,27. Non-linear partitioning methods thus captured deviations from the 

null model better for these grasses with low monoculture yields, and legumes with high 

monoculture yields by fitting a convex relationship instead of a linear relationship between 

species deviations from the null model and their monoculture yields (Figure 4.3). In systems 

were second order polynomials described deviations from the null model best, first order 

regression coefficients were almost invariably negative, whereas second order regression 

coefficients were positive for both selection and trait-dependent complementarity effects 

(Figure 4.4, upper panels). Although the symmetry of the relationship deferred among 

systems, all relationships are rather asymmetrical with the tip of the parabola near the upper 
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limit of the monoculture range, so that deviations from the null model were strongest for 

grass species with low monoculture yields (Figures 4.3 and 4.4). 

 

4.5. Discussion 

The non-linear extension presented here increases the flexibility of additive partitioning 

methods. The analysis of the Cedar Creek Biodiversity II experiment demonstrates that non-

linear relationships between the deviation from the null model and functional traits are likely 

to occur in biodiversity experiments (Figure 4.2). A more accurate description of this 

relationship by non-linear additive partitioning methods therefore offers a more detailed 

insight in how biodiversity affects ecosystem functioning (Figures 4.3 and 4.4). In addition, 

the extension introduced here can resolve leverage problems that can occur when fitting a 

linear model to nonlinear deviations from the null model. 

Biodiversity experiments are often designed with equal initial contribution to ecosystem 

functioning among species. This even initial condition does however not necessarily 

correspond to equilibrium conditions. Indeed, species interactions can change species 

functional contributions and biodiversity effects over time28. The presented results reveal that 

such strong non-linear deviations from the initial conditions already occurred after a limited 

number of generations in the Biodiversity II grassland experiment (Figure 4.2), and could 

thus be widespread in biodiversity studies. 

How deviations from the null model relate to species monoculture yields depend on the type 

of interactions. For example, legumes generally overyield in mixtures due to their nitrogen 

fixing ability, irrespective of community composition, whereas grasses overyield due to the 

positive effect of legumes26. The convex relationships between deviations from the null 

model and monoculture yield therefore primarily occurred in high diverse treatments where 

legumes and grasses were both present. The non-linear partitioning method presented here 

thus offers the advantage of being able to directly splitting the contribution of species with 

intermediate functional traits from the contribution of species with extreme trait functional 

values. Splitting selection or dominance and trait-depended effects in first and second order 

terms does not change the total strength of these effects as calculated by linear additive 

partitioning methods. However, it does allow for a more detailed understanding of how 

biodiversity affects ecosystem functioning in a single analysis. Depending on the symmetry 

of the parabola, the second order term quantifies the non-linear effect of species with low, 

high or both functional trait values (Figure 4.1). Moreover, as these linear and higher-order 

partitioning methods represent a nested set of models, it can easily be formally tested if 
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higher-order extensions, and thus the additional inclusion of parameters in the model, are 

warranted. 

The limitation of the non-linear extension, however, is that the use of second order 

polynomials is limited to systems with at least three species, whereas linear additive 

partitioning methods can also be applied to systems with two species. Many biodiversity 

experiments use systems with two species as the lowest diversity level, and so the non-linear 

approach present here is not be applicable to these low-diversity cases. In more diverse 

systems, however, non-linear portioning methods, can help to avoid several statistical issues 

that can occur when fitting an inappropriate model structure to the data. When species 

deviations from the null model are non-linear, the estimated regression coefficients of a linear 

regression can be strongly affected by outliers29. Outliers can therefore have severe effects 

on the magnitude, and particularly the sign (which alters their ecological interpretation) of 

selection, dominance or trait-dependent complementarity defects. Species with extremely 

low monoculture functions have therefore routinely been excluded from analyses with 

additive partitioning as their deviation from the null-hypothesis can easily approach 

infinity14,28. In addition, the increase in measurement error when sampling for rare species 

may increase the uncertainty on the deviations from the null hypothesis for species with low 

monoculture yields30. By splitting selection or dominance and trait-dependent 

complementarity effects in a linear and a quadratic term, non-linear partitioning can mitigate 

these leverage problems, capturing strong deviations from the linear relationship in the 

quadratic term. Such strong deviations are increasingly likely to occur in systems where 

species strongly differ in their competitive abilities. In particular, when species inferior 

competitors also have low monoculture yields, which can result in very high relative yields. 

The problem of outliers can (partially) be circumvented using robust regression. Alternatively, 

functional contributions to ecosystem function can be expressed as a linear combination of 

multiple functional traits31. The approach presented here, however, allows solving this 

problem by using a general function !(!,Θ) that allows specifying an appropriate model 

structure. Here, the case of polynomials was considered, but other functions could be used if 

necessary. Second order polynomials thereby sufficed to eliminate strong potential leverage 

problems of species that strongly deviated from the null model (Figure 4.3). By splitting 

selection or dominance an trait-dependent complementarity effects in a linear and a 

quadratic term, non-linear partitioning can mitigate these leverage problems, capturing strong 

deviations of some species from the linear relationship in the quadratic term. Although higher 

order polynomials could be used, higher order terms are not only more difficult to interpret 

ecologically, but are also likely to over fit the data due to the low number of species generally 

used in biodiversity studies. 
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The use of null models by additive partitioning methods allows separating species-identity 

from biodiversity effects on function. The results presented here demonstrate that non-linear 

deviations from these null models might be more widespread than previously considered. 

The non-linear extensions of additive partitioning methods introduced here therefore 

increases the versatility of partitioning methods. By separating the effect of species with 

intermediate functional traits from species with extreme functional traits on ecosystem 

functioning, they allow analysing complex biodiversity effects on ecosystem functioning. Non-

linear extensions can therefore be an important tool to analyse biodiversity effects on 

ecosystem functioning time. 
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Abstract 

There is now ample evidence that biodiversity stabilizes aggregated ecosystem functions 

(e.g. primary production) in changing environments. This stabilizing effect is driven by 

increased functional resistance (i.e. reduced changes in functions by environmental 

changes) rather than through increased functional resilience (i.e. rapid recovery following 

environmental changes) in primary producer systems. Although the temporal stability of 

these aggregated ecosystem functions directly results from the system’s compositional 

dynamics, the mechanisms that link the stability of ecosystem functions to compositional 

dynamics have only been theoretically explored. In this chapter, it is demonstrated, using 

diatom communities, how biodiversity effects on compositional stability drive biodiversity 

effects on functional stability. In a microcosm experiment, communities spanning 5 richness 

levels (1, 2, 4, 6 and 8 species) were exposed to 3 concentrations of a chemical stressor (0, 

25 and 250 µg L-1 atrazine) for 4 weeks, after which all communities were transferred to 

atrazine-free medium for three more weeks. Slower compositional dynamics in more diverse 

systems explained positive effects of biodiversity on compositional and functional resistance, 

but negative biodiversity effects on functional and compositional resilience. Slower 

compositional dynamics reduced changes in evenness in more diverse communities. These 

results validate the theoretically proposed link between biodiversity effects functional and 

compositional stability in primary producer systems, and provide a mechanistic underpinning 

of biodiversity-stability relationships. Finally, it is discussed how the observed slower 

dynamics in more diverse systems, and their effect on evenness, can be expected to 

become increasingly important when stabilizing ecosystem functions against multiple 

fluctuating environmental stressors. 
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5.1. Introduction 

Many ecosystem functions consist of the aggregate of the individual species’ functional 

contributions (e.g. primary production, total biomass, nutrient retention). Hence, these 

functions inherently vary over time as species densities change in response to fluctuating 

environmental conditions. Spurred by the awareness of the ongoing global biodiversity 

decline, considerable research effort has been devoted to understanding if the temporal 

stability of ecosystem functions depends on the number of species in the system1–6. 

Nowadays, there is ample empirical evidence that biodiversity generally stabilizes ecosystem 

functions1,7,8. A recent meta-analysis revealed that this positive biodiversity-stability 

relationship is primarily driven by increased functional resistance (i.e. reduced changes in 

functions by environmental changes) rather than by increased resilience (i.e. rapid recovery 

following environmental changes) in more diverse systems9. Still, it remains poorly 

understood how diversity-dependent changes in resistance or resilience depend on the 

system’s compositional dynamics. To date, however, potential biodiversity effects on 

compositional stability have only been theoretically explored10–12.   

Theoretical models identify several mechanisms by which biodiversity can stabilize 

ecosystem functions against environmental changes13. These mechanisms primarily rely on 

interspecific differences in environmental response, which stabilize ecosystem functions in a 

changing environment through the functional compensation between tolerant and sensitive 

species. Biodiversity is expected to increasing the variability in environmental responses, 

which can promote the stabilization of ecosystem functions in two ways. First, a greater 

variability in environmental responses increases the likelihood that a system contains 

species that can thrive under given environmental conditions, and compensate for the 

functional loss of sensitive species to maintain ecosystem functions under these conditions. 

Hence, biodiversity is expected to increase the range of environmental conditions over which 

a system can maintain its functions (i.e. the insurance hypothesis14,15). Second, a greater 

variability in environmental responses increases the likelihood of asynchronous species 

responses. Perfectly asynchronous fluctuations in species densities average each other out 

at the level of their aggregated functions. More asynchronous fluctuations thus lead to a 

better functional compensation between species, and reduces changes in the aggregated 

ecosystem functions. Hence, biodiversity is expected to reduce the temporal variability in 

ecosystem functions in fluctuating environments by increasing the number of asynchronous 

species responses (i.e. the portfolio effect10). Although functional compensation only requires 

interspecific differences in environmental response to occur, the strength of the effect is 

modulated by species interactions11.  
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The number and strength of species interactions affect the extent and speed of 

compositional changes, and thus functional compensation16–19. The strength of species 

interactions affects the asynchrony in environmental response between species. Negative 

interactions result in competitive release when environmental changes reduce the density of 

one of the species. This increases the asynchrony in species responses, and thus increases 

the extent of functional compensation. Positive interactions, in contrast, tend to synchronize 

species responses and reduce the extent of compensation11,20,21.  

In systems where competitive differences between species are limited, the increased number 

of species interactions can slow down compositional dynamics in more diverse 

systems12,16,19,22–24. These slower compositional dynamics reduce the speed of functional 

compensation between species. Therefore, theoretical models predict that biodiversity 

should increase functional stability through increased compositional resistance in systems of 

ecologically similar species, like primary producer systems12. By consequence, slower 

dynamics are expected to reduce functional resilience12. Stronger competitive differences, in 

contrast, result in faster compositional changes25,26. Hence, functional stability is expected to 

be driven by stronger compositional turnover and functional compensation between species 

in systems with asymmetrical competition11,20. 

The speed of compositional dynamics may also affect functional stability by changing the 

system’s evenness. More even systems generally maintain ecosystem functions better in a 

changing environment by preventing low initial densities of species with favourable 

traits10,27,28. Hence, the long-term preservation of evenness could positively contribute to a 

system’s functional stability. Temporal fluctuations in evenness could be reduced by both 

slow community dynamics and strong functional compensation. In the latter case, alternating 

competitive superiority induced by environmental changes can prevent competitive exclusion 

(i.e. the storage effect29,30) and increases compositional stability31,32. 

In this chapter, the theoretical prediction that slower compositional dynamics in more diverse 

communities drive the positive effect of diversity on compositional and functional stability in 

primary producer systems is tested. In a microcosm experiment, communities of marine 

diatoms (Bacillariophyceae), spanning 5 species richness levels (1,2,4,6 and 8 species), 

were exposed to 3 concentrations of the herbicide atrazine (0, 25 and 250 µg L-1) for 4 

weeks, after which communities were transferred to atrazine free medium to recover for 3 

weeks. Biomass production and composition were compared between stressed and 

unstressed communities after 28 and 49 days, and tested if biodiversity increased functional 

and compositional resistance and decreased resilience because of slower composition 
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dynamics in more diverse systems. In addition, it was tested if diversity-dependent changes 

in the speed of community dynamics affect the temporal dynamics in evenness.  

5.2. Materials and methods 

5.2.1. Algal strains 

Diatoms were isolated from a single phytoplankton sample collected near the Thornton bank 

(Southern bight of the North Sea) during the spring bloom in March 2013. Stock cultures 

were started from single cells according to the procedure described by Andersen (2005), and 

cultured in F/2 medium34 based on artificial seawater (salinity 33±1‰; Instant Ocean®) 

supplemented with 30 µg L-1 Si. Stock cultures were kept in a climate room (20±1°C) at a 12-

hour photoperiod (35±5 µmol photons m-2s-1 light intensity; Lumilux® 18W cool white Osram). 

New cultures were inoculated weekly to sustain exponential growth. The photoperiod was 

prolonged to 16 hours two weeks before the start of the experiment. 

5.2.2. Microcosm experiment  

The experiment presented in chapter 2 was extended with 3 more weeks of exposure to 

atrazine-free medium. Communities were thus exposed to atrazine for 4 weeks after which 

all communities were transferred to atrazine-free medium for 3 more weeks. The atrazine 

concentrations (0, 25 and 250 µg L-1), representing a control, low stress and high stress 

treatment were selected based on preliminary tests.  

Microcosms were established in triplicate for each treatment (351 microcosms in total). 

Communities were kept in sterilised 100ml glass Erlenmeyer flasks filled with 35ml F/2 

medium at the appropriate atrazine (Sigma Aldrich) concentration. Species were inoculated 

at an equal proportion of the initial total biovolume (107 µm3 mL-1). Inoculating species from a 

single stock culture minimized the variability in cell viability between replicates and 

assemblages. Microcosms were cultured at 20±1°C and a 35±5 µmol photons m-2 s-1 16-hour 

photoperiod. Each week, 80% of the growth medium was replaced by new medium spiked 

the appropriate atrazine concentrations to avoid nutrient limitation or stress reduction 

resulting from atrazine photolysis. Before removing growth medium, cells were left to settle 

and 1ml samples were taken to verify that the removed medium contained less than 1% of 

the total biomass. After 28 days, only atrazine-free medium was used for renewal. Prior to 

medium renewal, 1mL samples were taken from each microcosm to determine cell densities. 

Samples were fixed whit formaldehyde (6% final concentration), and stored at 4°C in 24-well 

plates until analysis. Cell densities were determined using an inverse microscope and 

Whipple grid. Biomass production was calculated from the average cell volume of each 
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species, based on a sample of 50 cells35. The absence of nutrient limitation and a constant 

atrazine exposure were ensured by weekly measuring nitrate, phosphate, and silicate 

concentrations spectrophotometrically (Aquamate®, Thermo Electron Corporation + 

Spectroquant® test kits, Merck Millipore) and atrazine concentrations by GC-MS (Thermo 

Quest Finnigan Trace DSQ coupled to Thermo Quest Trace 2000 series). 

5.2.3. Data analysis 

Functional resistance (Ωfunction) to atrazine was defined as the inversed absolute proportional 

change in function (i.e. biomass production) between control (Fcontrol) and stressed 

communities (Fstress) after 28 days of atrazine exposure: 

Ω!"#$%&'# =
!!"#$%"&,!"

!!"#$%"&,!" − !!"#$!!,!"
          (1) 

Values for functional resistance thus range from 1 when there is no resistance (i.e. Fstress=0) 

to infinity when there is no difference in function between the control condition and stress 

treatment. As species equilibrium densities differed by several orders of magnitude, 

biovolume, rather than density was hence selected on the basis on which to define species 

and ecosystem functioning (Appendix D Table S1). Compositional resistance (Ωcomposition) was 

defined as the Bray-Curtis dissimilarity index 36 of the species densities (Ni) between control 

and stressed communities: 

Ω!"#$"%&'&"( = !!!" = 1 − !!,!"#$%"&,!" − !!,!"#$!!,!"!
!!,!"#$%"&,!"! + !!,!"#$!!,!"!

          (2) 

Compositional resistance equals 1 if there are no differences in species densities between 

control and stress treatments and equals 0 when control and stress treatments have no 

species in common. Functional resilience (Δfunction) was defined as the proportional change in 

deviation from the control communities between the end of atrazine exposure (day 28) and 

the end of the experiment (day 49): 

∆!"#$%&'#=
!!"#$%"&,!" − !!"#$!!,!"
!!"#$%"&,!" − !!"#$!!,!"

          (3) 

 

Hence, functional resiliences is larger than 1 when functional differences between the control 

and stress treatment decrease between day 28 and 49, and less than 1 otherwise. 

Compositional resilience (Δcomposition) was defined as the change in Bray-Curtis dissimilarity 

between day 28 and 49. Values are positive when control and stress communities become 
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more similar in composition between day 28 and 49, and are negative when compositions 

diverge. 

∆!"#$"%&!!"#= !!!" − !!!"          (4) 

The effect of species richness on biomass production, functional and compositional 

resistance and resilience, and Shannon-Wiener evenness was estimated using linear 

regression models. All models included Log10 species richness (continuous variable) and 

atrazine concentration (factor variable) as fixed effects. Time (factor variable) was included 

as a fixed effect in the linear regression model for productivity. Temporal autocorrelation of 

model residuals was assessed, but inclusion of an autocorrelation structure did not improve 

the model (ANOVA p>0.05). Normality of model residuals was verified by the QQ-plot, and 

the linearity of fixed effects was evaluated by plotting model residuals against each fixed 

effect (See Appendix D Figure S7-11). Produced biomass, functional resistance and 

functional resilience needed to be log-transformed to improve the normality of the model 

residuals. Linear models were fitted using the lme4 package in R37,38.  

        

Figure 5.1: Biodiversity-ecosystem functioning relationships. BEF relationships after 4 

weeks of exposure to atrazine (day 28) and at the end of the experiment (day 49). Regression 

coefficients are summarized in Table 5.1.  
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5.3. Results 

Atrazine only affected biomass production and the biodiversity-productivity relationship in the 

high-stress treatment (p<0.001; Table 5.1). Throughout the experiment, there was no 

significant difference in biomass production between low stress and control treatments 

(Table 5.1). After 28 days, atrazine significantly reduced biomass production in the high 

stress treatment. Biomass production was more resistant to high atrazine stress in more 

species rich communities (p<0.001; Table 5.2, Figure 5.2A), which was associated with an 

increased resistance in composition (p<0.001; Table 5.2, Figure 5.2C). This increased 

resistance in more species rich communities shifted the negative biodiversity-productivity 

relationship in control conditions to positive in the high-stress treatment (Figure 5.1A).  

     
Figure 5.2: Biodiversity effects on functional and compositional resistance and 

resilience. Regression coefficients are summarized in Table 5.2. Note that measures of resistance 

and resilience are calculated in such way that higher values correspond to higher resistance and 

resilience. 
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Table 5.1: Biodiversity effects on productivity and evenness. Regression coefficients for 

the linear regression models estimating the effect of biodiversity on productivity and the change in 

evenness between the end of atrazine exposure and the end of the experiment.  

 
 Productivity ΔEvenness 
Intercept 8.9254*** 0.2029* 
Log10 Diversity -0.6868 *** -0.7540***      
25 µg L-1 0.0293 -0.1090      
250 µg L-1 -1.4170*** -0.4394*** 
Log10 Diversity x 25 µg L-1 -0.1487 0.4266* 
Log10 Diversity x 250 µg L-1 1.7464*** 0.9757 ***     
Day 49 0.0673  
Log10 Diversity x day 49 0.6740**  
25 µg L-1 x day 49 0.0029  
250 µg L-1 x day 49 0.7570***  
Log10 Diversity x 25 µg L-1 x day 49 0.0782  
Log10 Diversity x 250 µg L-1 x day 49 -1.2199***  
*p<0.05,**p<0.01 and ***p<0.001 

At day 49, i.e. after 3 weeks of exposure to atrazine-free medium, differences in biomass 

production between high-stress and control communities decreased, but biomass production 

remained significantly lower in the high-stress treatment (p<0.001; Table 5.1, Figure 5.1B). 

Communities with lower species richness approached the control treatment faster in both 

function and composition (Table 5.2, Figure 5.2B and D).  

In the high stress treatment, evenness increased between day 28 and 49 in the most species 

rich communities, but decreased in communities with low species richness (p<0.001;Figure 

5.3, Table 5.1). In contrast, evenness decreased between day 28 and 49 in all communities 

in the control and low stress treatment (except for a slight increase in richness level two in 

the low stress treatment, p<0.05), and this decrease was more pronounced in the more 

diverse communities (p<0.001; Figure 5.3, Table 5.1). 

Table 5.2: Biodiversity effects on functional and compositional resistance and 

resilience. Regression coefficients for linear regression models estimating the effect of biodiversity 

on functional and compositional resistance and resilience. “-“ denotes that factors were not significant 

and removed in the optimal model.  

 
 Resistance Resilience 
 Function Composition Function Composition 
Intercept 0.8407*** 0.0237 -0.2000 0.0730 
Log10 Diversity -0.2449 0.3742*** -0.5715* -0.0659 
250 µg L-1 -0.9595*** 0.8300*** - -0.4147*** 
Log10 Diversity : 250 µg L-1 1.0162*** -0.9123*** - -0.8797*** 
*p<0.05,**p<0.01 and ***p<0.001 
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Figure 5.3: Biodiversity effects on evenness. Relationship between biodiversity and the 

change in evenness between the end of atrazine exposure (day 28) and the end of the experiment 

(day 49). Regression coefficients are summarized in Table 5.1. 

5.4. Discussion 

The results presented in this chapter demonstrate the tight link between functional and 

compositional stability in primary producer systems. In the microcosm study, biodiversity 

simultaneously increased compositional and functional resistance, but decreased functional 

and compositional resilience because of slower compositional dynamics in more diverse 

systems. These findings validate the theoretically proposed mechanistic underpinning of 

positive biodiversity-functional stability relationships12, and support positive biodiversity 

effects on resistance as a main driver of functional stability in grassland systems9. Finally, the 

results presented here suggest that slower compositional dynamics in more diverse systems 

can additional stabilise ecosystem functions by maintaining evenness.  

More diverse communities were less impacted by atrazine stress in the microcosm 

experiment (cf. the insurance hypothesis14; Figure 5.2A). However, this increased functional 

resistance did not involve large compositional changes to maintain productivity in stressed 

communities. Instead, community compositions were more similar between control and the 

high stress treatment in more diverse communities (Figure 5.2C). Hence, functional 

compensation did not involve extensive compensatory dynamics. Despite the occurrence in 
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many theoretical models, strong compensatory dynamics are not ubiquitous in real 

systems16,20,39,40. Because the extent of species turnover depends on interspecific differences 

in response to environmental changes and the strength of species interactions 10,11, several 

factors could have contributed to the limited compositional turnover in the experiment. First, 

all species were severely impacted by the high stress treatment, reducing monocultures 

biomass by over 60% for 7 of the 8 species compared to the control treatment (Appendix D 

Table S1). This low interspecific variability in environmental response can limit the potential 

for compensatory dynamics41. Second, several dominant species in the control treatment 

were also among the most stress resistant (Appendix D Figures S1 and S3-7), which limited 

the occurrence of competitive release 11. 

Productivity and composition were not only less affected by atrazine stress in more diverse 

communities, but also experienced less changes after the alleviation of atrazine stress 

(Figure 5.2B and C). Biodiversity thus increased functional and compositional resistance but 

decreased resilience in the microcosm experiment (Figure 5.2). This confirms the theoretical 

predictions of slower compositional dynamics in more diverse systems, which drive positive 

biodiversity effects on functional stability by increasing functional resistance through 

increased compositional resistance12. In the microcosm experiment, slower compositional 

turnover in response to environmental changes caused more diverse communities to diverge 

even further from the control conditions between day 28 and 49 in the high-stress treatment 

(Figure 5.2C and D). Less diverse communities, in contrast, converged to the control 

treatment in both function and composition after stress alleviation (Figure 5.2C and D). 

Compositional changes in the high stress treatment after stress alleviation were primarily 

driven by the recovery of species that are dominant in the control treatment, but were 

reduced to low numbers by atrazine (Appendix D Figure S2). Atrazine removal thus altered 

species competitive abilities, resulting in a compositional turnover between day 28 and 49 in 

the high stress treatment. This compositional turnover resulted in a status quo or a slight 

increase in evenness in the high stress treatment between day 28 and 49 ( 5.3). Because 

compositional dynamics were faster is less diverse communities, competitive replacement 

was more extensive. Although on average zero, changes in evenness spanned the whole -1 

to 1 range for communities of 2. Changes in composition for these low diverse communities 

were thus ranged from a complete turnover in composition when competitive abilities 

changed after atrazine removal, to no changes when competitive abilities remained 

unchanged. More diverse communities showed far less fluctuations in composition, deviating 

less from the initial composition during exposure, and limited changes after stress alleviation 

(Appendix D Figure S3-6). In the low stress and control treatment, by contrast, species were 
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unaffected by atrazine removal (Appendix D Table S1). Hence species that became 

dominant during the first 4 weeks of the experiment, continued to increase in abundance 

between day 28 and 49 in the control and low stress treatment (Appendix D Figure S3-6), 

decreasing evenness (Figure 5.3). The decrease in evenness between day 28 and 49 was 

limited for the lowest diversity levels, suggesting that they attained equilibrium faster 

(Appendix D Figure S3). After stress alleviation on day 28, less diverse communities thus 

converged fast to the control communities in equilibrium, whereas more diverse communities 

diverged from the control treatment because both the high stress and control treatment 

continued to change between day 28 and 49. However, this divergence should only 

temporary if stress does not induce alternative stable states. If so, communities should 

converge to the control treatment if identical environmental conditions persist long 

enough42,43. 

The increased evenness in more diverse communities because of a slower compositional 

turnover in response to environmental changes suggests an additional positive biodiversity 

effect on functional stability. So far, empirical studies are mostly limited to a single 

environmental stressor44, whereas natural systems are exposed to multiple selective 

environmental stressors45,46. Species that stabilize ecosystem functions against one stressor 

can be sensitive to another stressor. Strong changes in species abundances in response to 

one stressor, may therefore hamper the system’s ability to stabilize ecosystem functions 

against other stressors. Evenness increases a system’s ability to respond to various 

environmental changes by preventing low densities of species with favourable traits10,27,28. 

The long-term preservation of evenness can therefore be particularly important when 

stabilizing functions against multiple alternating environmental stressors. The results 

presented in this study thus emphasize the need for studies manipulating species richness 

under multiple fluctuating stressors to increase our understanding of the consequences of 

biodiversity changes for natural systems.  
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Abstract 

Estimating ecosystem-level effects from single-species bioassays is a main challenge for risk 

assessment. Most extrapolation procedures are based on the implicit assumption that 

species sensitivities are random in regard to their functional traits. Here, it is explored how 

non-randomness in species sensitivities affects how species-level and ecosystem level 

effects of chemical exposure correspond. The effect of a correlation between the trait value 

under control conditions and the sensitivity of the trait to chemical stress is studied for two 

traits (per capita growth rate and monoculture yield) under constant en temporary exposure. 

Theoretical model predictions are thereby validated against a 3-week microcosm experiment, 

in which 8 marine diatoms systems with different correlations between trait values and 

sensitivities were temporary (1 week) or constantly (3 weeks) exposed to two concentrations 

of the herbicide atrazine (100 and 250 µg L-1). Negative correlations increased the reduction 

in ecosystem functioning (productivity) by atrazine for both traits. However, correlations in the 

per capita growth rate affected productivity only shortly following changes in environmental 

conditions, whereas correlations in the monoculture yield affected productivity throughout 

exposure. These results thus demonstrate that strong correlations between species 

sensitivities and functional traits indicate when scrutiny is needed for extrapolating species-

level to ecosystem-level effects.  
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6.1. Introduction 

Environmental risk assessment aims to derive environmental threshold concentrations for 

chemicals that protect the structure and function of ecosystems. Many risk assessment 

procedures worldwide however still rely on single-species bioassays1–5. Hence the reliability 

of the ecosystem-level effects that are inferred from the species-level effects measured in 

bioassays, strongly depends on the assumptions made on how species-level and 

ecosystem-level effects are linked6–8. Environmental risk assessment procedures generally 

need to balance pragmatism and environmental realism due to time or monetary 

constraints7,9. Therefore, theoretically simple models, such as the cumulative species 

sensitivity distribution (SSD), have increasingly been used for both regulatory and scientific 

purposes since the 1990s10–12. SSDs are obtained by fitting a statistical distribution, generally 

a lognormal or log-logistic distribution, to the single-species toxicity data10,12. Environmental 

threshold concentrations are subsequently derived based on the fraction of species that is 

considered acceptable to be affected without putting the structure and functions of 

ecosystems at risk (e.g. 5% in EU legislation)1,2,4. The SSD approach hence requires that the 

species from which it is derived are representative for all species in the system, and that a 

certain degree of functional redundancy between species  exists so that ecosystem-level 

effects do not exceed species-level effects10,11,13. A variety of statistical and ecological effects 

can cause violations of these assumptions, and consequently deviations between inferred 

and observed effects on ecosystem structure and function 7,8,14–16.  

Ecosystem structure comprises the number and densities of species within the system. 

Changes in ecosystem structure by chemical exposure can arise through both direct effects 

on reproduction or survival rates, as well as through indirect effects by density changes in 

other species as a result of species interactions8,17,18. Single-species bioassays thus allow 

inferring the concentration of the chemical at which species start to become affected, and 

changes in ecosystem structure thus start to arise. Still, the correct inference of direct 

species-level effects in the system requires that the set of species exposed in bioassays in 

lab conditions is a sufficiently large, random sample of the species present in the 

ecosystem6,13,19,20. Otherwise, changes in ecosystem structure may start to occur at lower or 

higher chemical concentrations than expected. In addition, species-level effects observed in 

bioassays can also be unrepresentative because of differences in sensitivity between lab and 

field conditions21,22. However, due to indirect effects through species interactions, effects on 

ecosystem structure can exceed the direct species-level effects measured in 

bioassays17,23,24. The magnitude of indirect effects, and thus the overall change in ecosystem 

structure by chemicals, thereby depends on the type and strength of species interactions 
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within the system25,26. Positive interactions (e.g. facilitation or mutualism) cause direct 

negative effects on one species to result in additional indirect negative effects on another 

species. Similarly, negative interactions (e.g. resource competition or predation) result in 

positive indirect effects.  

In contrast to effects on ecosystem structure, chemical effects on ecosystem function do not 

necessarily exceed species-level effects7,23,24. Many ecosystem functions comprise the sum 

of the individual species contributions (e.g. total biomass, productivity or nutrient retention). 

When functional reductions in one species are (partly) compensated by other species, this 

reduces the effect of chemicals on ecosystem functioning compared to their direct species-

level effects23,27. Whether, and to what extent, functional compensation occurs depends on 

the type of species interactions8,24,27 and the degree of functional redundancy between 

species18. Positive interactions invariably increase ecosystem-level effects compared to 

species-level effects, as reductions in one species will result in additional reductions in other 

species. Negative interactions, in contrast, can reduce ecosystem-level effects as decreases 

in one species are overcome by increases in other species. The extent by which loss in 

function in one species can be compensated for by other species thereby depends on the 

degree of functional redundancy between species28. Depending on whether the replacing 

species are functionally less, equal or better than the affected species, ecosystem function 

can respectively decrease, remain unaffected or even increase18. An accurate prediction of 

ecosystem-level effects from species level effects thus requires limited indirect effects 

(Figure 6.1, dashed black line). Most concepts in environmental risk assessment are 

however based on the assumption of a certain degree of functional redundancy between 

species (Figure 6.1, yellow line)7,15. Under this assumption, protecting ecosystem structure is 

also protective for ecosystem functioning. The SSD concept, for example, therefore generally 

assumes that avoiding effects of chemical on 95% of the species is generally considered 

sufficiently protective for the structure and function of ecosystems1,2,4,10,12. SSDs are hence 

commonly derived from the species no observed effects concentrations (NOECs) for 

regulatory purposes, and the 5% percentile (i.e. the 5% hazardous concentration, HC5) of the 

NOECs, multiplied with an assessment factor, set as an environmental threshold 

concentration1,2,4.  

 

There is now mounting evidence that ecosystems have indeed a certain degree of functional 

redundancy24. Hence, most microcosm studies report an ecosystem-level NOEC that 

exceeds the species-level NOECs, and HC5 values that are therefore protective for the 

system19,29–33.  However, effects on function can exceed effects on structure when functional 

redundancy between species is low. For example when keystone species or ecosystem 
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engineers are present, for which any loss of function will result in a disproportional effect on 

ecosystem functions7,34,35. This is particularly important when keystone species rank among 

the most sensitive species in the system (Figure 6.1, red line).  

    
Figure 6.1: Extrapolating species-level effects to ecosystem-level effects. In legislation, 

the SSD (A) is often used to set environmental threshold values based on the fraction of species that 

is allowed to be put at risk. How these species-level effects correspond to ecosystem-level effects 

depend however on species interactions, driving indirect chemical effects B). In the absence of indirect 

effects, species-level effects correspond to ecosystem-level effects (dashed line). Functional 

compensation can cause ecosystem-level effects to be smaller (red line) than species-level effects, 

whereas low functional redundancy can cause ecosystem-level effects to exceed (yellow line) species-

level effects. 

Environmental risk assessment procedures, such as the SSD, thus not only assume that the 

species from which ecosystem level-effects are derived are a random sample of the species 

sensitivities in the system, but also implicitly assume that species sensitivities are randomly 

related to species functional traits7,36. Ecological theory has provides important insights in 

how the type of species interactions and the degree of functional redundancy between 

species determines how effects on structure and function are linked. Including target or 

keystone species (i.e. non-random sampling) has been proposed as ways to account for 

non-randomness in species sensititivies10,12,32. However, detailed knowledge of species 

interactions and functional redundancy is often unavailable at the ecosystem level8,37–39. 

Identifying these systems where protecting ecosystem structure based on the species-level 

effects measured in bioassays is insufficient to preserve ecosystem functions is therefore an 

important objective for environmental risk assessment7,15. 
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It this chapter, it is explored how correlations between the trait value under control conditions 

and the sensitivity of the trait to chemical stress affect how species-level effects of chemicals 

correspond to ecosystem-level effects. It is hypothesised that strong correlations between 

species sensitivities and functional traits should strongly affect the likelihood of functional 

compensation, and thus the effects of chemicals on ecosystem functioning. Chemical effects 

on two functional traits (the per capita growth rate and the monoculture yield) are thereby 

considered. Note that although both are measures of species fitness under given 

environmental conditions and are commonly used as endpoints of single-species bioassays6, 

the monoculture yields not a true functional trait, as it cannot be measured at the species 

level40. However, for simplicity I will adhere to the term traits when referring to bot endpoints. 

While effects on the per capita growth rate determines the speed at which species and the 

system can respond to chemical stress, changes in the monoculture yield relate to long term 

effects of chemicals41. First a community model introduced to demonstrate how correlations 

in both traits can be expected to alter the speed and extent of functional compensation, and 

thus the effect on ecosystem functioning for temporal and constant chemical exposure. Next 

these model predictions are validated against a 3-week microcosm experiment in which 8 

communities of marine diatoms with different correlations between sensitivity and per capita 

growth rate and monoculture yield were exposed for one (temporary) or three weeks 

(constant) to two concentrations of the herbicide atrazine (100 and 250 µg L-1). 

6.2. Materials and methods 

6.2.1. Community model 

System-level effects of chemical stress were simulated using a generic Lotka-Volterra 

competition model for a system of n species: 

!!!
!" = !!(!) !! 1 − !!,! !!!

!!!
!!(!)

          (1)           

Ni is the biovolume density (mm3 L-1), µi is the per capita growth rate (d-1) and Ki is the 

carrying capacity (mm3 L-1) of species i. The interaction strength between species pairs in the 

system is quantified by the parameters αi,j (-). Larger values of αi,j  denote stronger 

competition between species i and j. Intraspecific interaction coefficients, αi,i , were set to 1. 

Hence growth rates and carrying capacities are identical between the community model 

(equation 1) and single species logistic growth curves (equation 4).  Chemical stress was 

assumed to reduce both the per capita growth rate µi and equilibrium monoculture yield or 

carrying capacity, Ki. Log-logistic dose response relationship were used to simulate stress 

effects on both parameters: 
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!! ! = !! 0
1 + !

!!!"
!              (2) 

!! ! = !! 0
1 + !

!!!"
!             (3) 

Where c is the chemical concentration (µg L-1), and µi(0) and Ki(0) are the per capita growth 

rate and carrying capacity under control conditions respectively. The EC50 (g L-1) is the 

concentration at which a 50% reduction occurs, and the parameter s (-) determines the 

steepness of the slope of the concentration-effect relationship. Per capita interaction 

strengths were assumed be unaffected by chemical exposure25,42. 

6.2.2. Model simulations 

Two different scenarios of chemical exposure were simulated. Identical to the microcosm 

experiment, communities were first allowed to develop for one week before exposure to a 

chemical. In the first scenario, communities were temporarily exposed to a chemical for 1 

week and left to recover in unstressed conditions for two more weeks. In the second 

scenario, communities were constantly exposed during 3 weeks. Simulations were run for 28 

days in total for both scenarios. 

A Monte-Carlo simulation procedure was used to quantify the effect of the correlation 

between species sensitivities (EC50) and the functional trait value under unstressed 

conditions, µi(0) and Ki(0), on system level-effects of chemical exposure. For each 

simulation run, model parameters were drawn from a proposed parameter distribution, 

covering a range of ecologically relevant scenarios. Carrying capacities under control 

conditions were sampled from a generic uniform distribution U(1,100). Per capita growth 

rates under control conditions were sampled from the uniform distribution U(0,1), 

corresponding to the range of growth rates observed in the microcosm experiment 

(Supplementary Table 1). Interactions strengths were restricted to the U(0.75,1.25) range. 

This includes both strong competitive interactions that exceed the strength intraspecific 

completion (α>1) as well as weak competitive interactions (α<1). A larger parameter range, 

however, would result in too strong competitive differences causing many control treatments 

to become monocultures. Note that as negative interactions are essential for functional 

compensation, facilitative interactions (α<0) were not considered in the model24. Species 

EC50 were drawn from a lognormal distribution log10 N(50,30), corresponding to the most 

commonly used statistical distribution for SSDs10,12. The standard deviation was set at 30 to 

ensure a sufficiently large variation in species sensitivities. The slope parameter s was 
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sampled from the uniform distribution U(1,5), allowing for both small and large intraspecific 

variability in stress tolerance43. For simplicity, the same slope value was used for both stress 

effects on the growth rate and carrying capacity (equations 2 and 3). In analogy to the 

microcosm experiment, the number of species was set to 4. Systems were simulated under 

unstressed conditions and the two scenarios of chemical exposure for each Monte-Carlo run. 

Next, ecosystem-level effects on function were calculated as the percentage total biovolume 

lost compared to the control treatment. A total of 1000 simulations were run. Note that all 

simulations represent systems being sampled from the same SSD, differing only in their 

correlation between sensitivity and the per capita growth rate or carrying capacity, and the 

strength of species interactions. Using different, ecologically relevant, parameter distributions 

did not alter results (Appendix E Figure S1). 

6.2.3. Algal strains 

Eight species of marine diatoms (Bacillariophyceae) were isolated from a single 

phytoplankton sample taken in the Belgian part of the North Sea during the 2015 March 

spring bloom. Single cells were isolated with a micropipette, rinsed 3 times with growth 

medium and grown to monoclonal stock cultures based on the protocol by Andersen44. F2 

medium supplemented with Si at a 30 µg L-1 final concentration was used as growth 

medium45. Cultures were kept at 20±1°C and a 12h photoperiod at a 35±5 µmol photons m-2 

s-1 light intensity. New stock cultures were started weekly to keep stock cultures with the 

exponential growth phase.  

 

6.2.4. Single-species toxicity tests 

All species were exposed to 5 levels of atrazine (0, 50, 100, 250 and 250 µg L-1), which 

comprise and environmental relevant range46, for two weeks, using three replicates per 

treatment. This timespan largely exceeds the 72h used in standard alga growth inhibition 

test47,48. However, division rates of the species used are typically within the 0.5-1 d-1 range 

(Appendix E Table S1). Hence, two weeks were required to measure atrazine effects on the 

per capita growth rate and the equilibrium monoculture yield or carrying capacity. Cultures 

were kept at the same temperature, photoperiod and light intensity as the stock cultures. 

Twice a week, 25 ml of the growth medium was replaced to avoid a decrease in the atrazine 

concentration through photolysis. Atrazine concentrations in the new growth medium were 

measured using a GC-MS (Thermo Quest Finnigan Trace DSQ coupled to Thermo Quest 

Trace 2000 series, Appendix E Table S2). Because diatoms settle at the bottom, the growth 

medium was removed from the upper part of the water column and contained less than 1% 

of the total biovolume. Cell densities were determined at day 4, 7, 9, 11 and 14 from 1 ml 

samples using a Whipple Grid. Biovolumes of each species were determined based on the 
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method proposed by Hillebrand et al.49 The average volume of 50 cells was used for 

converting cell densities to biovolumes. Per capita growth rates and carrying capacities for 

each atrazine concentration were estimated by fitting a logistic growth curve to the cell 

density data.  

!!!
!" = !! !  !! 1 − !!

!! !
          (4) 

 Next, a log-logistic dose response curve was fitted to both the per capita growth rates  

(equation 2) and carrying capacities (equation 3) to estimate the EC50 and slope (s) of the 

dose response curve for each species (Appendix E Figure S2, S3, and Table 1). All 

calculations were carried out in R50 and parameters were estimated based on the least 

squares estimates. 

6.2.5. Microcosm experiment 

Eight communities of 4 species were randomly composed from the 8 stock cultures 

(Appendix E Table S3). Communities were allowed to develop for one week prior to the start 

of the experiment. Communities were exposed to the herbicide atrazine in two different 

exposure concentrations in a 3-week microcosm experiment: a constant exposure and a 

temporary exposure during the first week of the experiment. Species were exposed to 100 

and 250 µg L-1 atrazine. This corresponds to mild and severe stress, and ensures clear 

effects compared to the control treatment. In the temporary exposure, communities were 

exposed during the first week of the experiment, while in the constant exposure scenario 

species were exposed for 3 weeks. Communities were inoculated in 100 ml glass 

Erlenmeyer flasks filled with 35 ml of growth medium of the appropriate atrazine 

concentration and fitted with cellulose plugs. All 4 species were inoculated at an initial 

volume of 107 µm3 ml-1. To minimize variability between communities, species were 

inoculated from a single stock culture. Communities were established in three replicates for 

each exposure scenario. Cultures were kept under the same temperature and light 

conditions as the stock cultures. Twice a week, 25 ml of the growth medium was replaced to 

maintain atrazine concentrations and avoid nutrient limitation. Atrazine concentrations in the 

new growth medium were measured using a GC-MS (Thermo Quest Finnigan Trace DSQ 

coupled to Thermo Quest Trace 2000 series; Appendix E Table S4). At day 0, 7, 14 and 21, 

1 ml samples were taken, fixated with formaldehyde at a 6% final concentration and stored at 

4°C until analysis. Cell densities were determined using as Whipple grid and converted to 

biovolumes using the average volumes for each species identical to the single-species 

toxicity tests.   
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A linear mixed effect model was used to test if the % reduction in total biovolume compared 

to the control treatment over the course of the experiment depended on the correlation 

between species sensitivity and the per capita growth rate, cor(µ,EC50), or the carrying 

capacity, cor(K,EC50), the exposure scenario (S, with ‘constant’ and ‘temporary’ as levels), 

atrazine concentration (C) and day (D). The exposure scenario and day were thereby 

included as factor variables. Including community composition as a random effect to account 

for the dependence of observations between exposure scenarios did not improve the model 

(ANOVA, p=.82), nor did  fitting a temporal correlation structure to account for repeated 

measurements (ANOVA, p=1) as model residual remained uncorrelated after removing 

random effects and autocorrelation structures (Appendix E Figure S5). Up to three-way 

interactions were considered in the initial model: 

% !"## = !"# !,!!!" ×!×! + !"# !,!!!" ×!×! + !"# !,!!!" ×!×! + !"# !,!!!" ×!×!
+ !"# !,!!!" ×!×! + !"# !,!!!" ×!×! + !           (5)	

The optimal model structure was obtained by a backward selection. Normality and 

independence of model residuals was tested for the optimal model (Appendix 4 Figure S4 

and S5) 

																														 	

Figure 6.2: Ecosystem-level effects of environmental stress. Loss in total biovolume for 

different correlations between species sensitivity (expressed as the EC50) and per capita growth rate 

(µ) or equilibrium monoculture yield (K) during temporary (A) and constant exposure (B) to 

environmental stress. Lines represent the average for 1000 Monte-Carlo simulations for systems with 

identical SSDs. Stress intensity was expressed as a normalized value. 
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6.3. Results 

6.3.1. Community model 

The correlation between species’ sensitivity and the per capita growth rate of a species 

under control conditions affected the extent of ecosystem-level effects only during changes in 

environmental conditions (Figure 6.2). In contrast, the correlation between species’ sensitivity 

and the equilibrium monoculture yield or carrying capacity under control conditions affected 

ecosystem-level effects throughout exposure. When systems have an equal SSD, the 

likelihood that function loss will occur following chemical exposure is higher when fast 

growing species are more sensitive, i.e. when the per capita growth rate and EC50 are 

negatively correlated (Figure 6.3A and C). This effect of the correlation between the per 

capita growth rate and EC50 is particularly strong at to intermediate chemical stress levels 

(expressed as the hazardous concentration, Figure 6.3A). At very low or high chemical stress 

levels, none or all of the species are respectively affected, which causes a reduction in the 

effect of the correlation. However, this effect of the correlation between species’ sensitivity 

and the per capita growth rate disappears if chemical exposure persists long enough (Figure 

6.2B and 6.3C). The effect of the correlation between species’ sensitivity and the 

monoculture yield, in contrast, remains throughout chemical exposure (Figure 6.2B and 

6.3D). For systems having an equal SSD, a more severe loss of ecosystem function by 

chemical exposure is thereby more likely to occur when the species sensitivity and the 

monoculture yield are negatively correlated, compared to systems where both are positively 

correlated (Figure 6.3B and D). Analogous the correlation between the EC50 and the per 

capita growth rate, the effects of correlation between the EC50 and monoculture yield is most 

pronounced at intermediate chemical stress levels (expressed as the hazardous 

concentration, Figure 6.3A). 

6.3.2 Microcosm experiment 

Temporary exposure to atrazine reduced the average productivity at day 7, i.e. after one 

week of exposure. Atrazine effects on productivity even increased at day 14, one week after 

exposure had ceased, but community productivity fully recovered at day 21 (Figure 6.4A, 

Table 6.1, Appendix E Table S5). Constant exposure to atrazine, in contrast, increasingly 

reduced the average productivity throughout the experiment (Figure 6.4B, Table 6.1, 

Appendix E Table S5). Changes in productivity by atrazine exposure depended on the 

correlation between species’ sensitivity and both per capita growth and monoculture yield 

under unstressed conditions (Table 6.1, Appendix E Table S5). At the beginning of the 

experiment, the correlation between growth rate and sensitivity had a negative effect on the 

productivity as more sensitive species dominate the system under unstressed conditions 
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(Appendix E Figure S6). However, as predicted by the model, reductions in productivity by 

atrazine exposure were more severe during a temporary exposure when fast growing 

species were more tolerant (Table 6.1, Appendix E Table S5). This effect of a positive 

correlation between the per capita growth rate under unstressed conditions and sensitivity 

was positive after one week of atrazine exposure and increased at day 14. Although atrazine 

exposure had ceased at this point, effects on productivity were maximal at day 14 (Figure 

6.4A). At day 21, the correlation between per capita growth rate and the monoculture yield 

capacity had again a negative effect. At this point, atrazine effects had disappeared (Figure 

6.4A) and effects of the correlation between the per capita growth rate and sensitivity were 

similar to systems prior to atrazine exposure. Throughout the experiment, a positive 

correlation between the monoculture yield under control condition and its sensitivity to 

atrazine had a positive effect on productivity (Table 6.1, Appendix E Table S5).  

															 	

Figure 6.3: Probability of observing minimally 5% loss in ecosystem function. The 

environmental stress imposed by chemical is expressed as the hazardous concentration (HCx), 

whereby x refers to the percentage of species in which direct effects occur. All simulations represent 

the constant exposure scenario. Upper panels represent the probability of observing effects for a given 

correlation between species sensitivity and the growth rate (A) or the carrying capacity (B) after 1 day 

of atrazine exposure.  Lower panels represent the probability of observing effects for a given 

correlation between species sensitivity and the growth rate (C) or the carrying capacity (D) after 21 

days of exposure. Curves were obtained by fitting a binomial regression model to model predictions.  
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In the constant exposure scenario, the correlation between the per capita growth rate and 

sensitivity did not alter the effect of atrazine on productivity (Table 6.1, Appendix E Table 

S5). Instead, differences in the effect of atrazine solely depended on the correlation between 

the carrying capacity and sensitivity. Atrazine effects on productivity were reduced when 

more productive species were more tolerant (Table 6.1, Appendix E Table S5). However, this 

effect was slightly less after one week of exposure. This was caused by the lack of data of 

the 250 µg L-1 exposure treatment, where atrazine effects are more severe, at this day. 

                  
Figure 4: Boxplots for changes in productivity compared to the control treatment 

during (A) temporary  and (B) constant exposure to atrazine. Asterisks indicate significant 

effects on ecosystem function. P-values were calculated from the t-statistics obtained from a linear 

mixed effect including only day and scenario as fixed effect, and community composition as a random 

effect. Boxplot whiskers correspond to maximal 1.5 times the interquartile range. 

Table 6.1. Estimates of fixed effects of the linear mixed-effects model. Note that 

regression coefficients and p-values are expressed against day 0 and a constant exposure as a 

baseline. 

 Constant exposure 

 Day 0 Day 7 Day 14 Day 21 
Intercept 44.44** -60.43* -48.96* -64.15** 
Cor(µ,EC50) NS NS NS NS 
Cor(K,EC50) 67.31* -15.59* 67.31* 67.31* 
 Temporary exposure 

 Day 0 Day 7 Day 14 Day 21 
Intercept 40.57** -20.05* -8.13* 36.79* 
Cor(µ,EC50) -107.37*** 15.75*** 50.03*** -31.82*** 
Cor(K,EC50) 67.40* 129.09* 163.66* 146.75* 
*p<0.05,**p<0.01 and ***p<0.001 
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6.4. Discussion 

In this chapter, it is explored how correlations between functional trait values under 

unstressed conditions and their sensitivity to a chemical could affect ecosystem-level effects 

of chemical exposure. These correlations between species’ sensitivity and functional traits 

can cause ecosystem-level effects of chemicals to differ strongly between systems with 

similar species sensitivity distributions, affecting the representativeness of species-level 

effects for ecosystem-level effects. Methods that infer ecosystem-level effects from single-

species bioassays, such as the SSD approach, have often been criticized for ignoring 

potential effects of species interactions6,7,13,36,51. Here, it is shown that the correlation 

between species sensitivities and functional traits can partly account for this lack of 

information (Table 6.1, Appendix E Table S5). In addition, inferring ecosystem-level effects 

requires measuring species-level effects that are relevant to both the ecosystem function and 

exposure scenario under assessment (Figures 6.2 and 6.3).  

Environmental risk assessment generally requires the estimation of ecosystem-level effects 

from incomplete knowledge, as species-level toxicity data are often only available for a 

limited number of species. Reliable assessment of ecosystem-level effects thus strongly 

depends on how well the species-level effects in bioassays correspond to species-level and 

ecosystem-level effects under field conditions. The results presented here demonstrate how 

the probability that indirect effects on species interactions cause chemical effects on 

ecosystem function to exceed species-level effects can also be directly related to the non-

randomness in species sensitivity (Figures 6.2 and 6.3). The correlation between species 

sensitivity and per capita growth rate alters chemical effects on ecosystem through the speed 

at which functional compensation can occur. When fast growing species are more sensitive, 

i.e. when the per capita growth rate and EC50 are negatively correlated, their replacement by 

tolerant species will be slow. This consequently results in stronger effects on ecosystem 

functioning following environmental changes (Figure 6.2A and 6.3A). The correlation 

between species sensitivity and the per capita growth rate however only affect the magnitude 

of effects following environmental changes. Hence, these effects are transient. The 

correlation between species’ sensitivity and the equilibrium monoculture yield or carrying 

capacity, in contrast, determines the extent by which density reductions in sensitive species 

can be compensated for by tolerant species. When species’ carrying capacities under 

unstressed conditions and sensitivities are negatively correlated, species with the highest 

functional abilities are most sensitive to chemical exposure. This increases the likelihood that 

reductions in sensitive species will be so severe that they cannot be fully compensated by 

tolerant species with lower functional abilities, causing species-level effects to result in larger 
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effects on ecosystem functioning (Figure 6.2B and 6.3D). Consequently, the effect of the 

correlation between species sensitivities and carrying capacities remains throughout 

chemical exposure. 

These results thus stress the importance of using suitable endpoints in singe-species 

bioassays. Different endpoints are regularly being used in single-species bioassays, 

measuring chemical effects on species growth, reproduction or survival, not all of them being 

representative for the ecosystem-level effects under assement6,7,36.  When multiple endpoints 

are  available for a species, the most sensitive endpoint is generally used into an SSD. This 

results in a  combination of different endpoints for difference species based on their 

taxonomic and trophic  position, not all of them representative for the ecosystem function 

under consideration. For example, effects on the per capita growth rate are commonly used 

as an endpoint in bioassays47. However, these reductions only affect the rate at which the 

system responds and are hence generally a bad predictors of changes in species equilibrium 

density and long-term effects52(Figure 2B and 3C). Empirical studies have indeed reported a 

better correspondence between observed ecosystem level effects and those expected from 

the SSD in studies using a single, short-term exposure to a chemical53,54, compared to 

studies using a chronic exposure30,31. Still, current risk assessment routinely uses reductions 

in the per capita growth rate as an endpoint in algal toxicity tests47,48.  

The probability that effects on ecosystem functioning exceed effects on structure however 

decreases as biodiversity increases55,56. More diverse systems have a greater chance that 

several species are functionally redundant, so that stress-tolerant species are able to (partly) 

compensate for the functional loss in sensitive species, and reduce ecosystem-level effects 

of chemicals23,28.  Moreover, as diversity increases the number of function response, this 

decreases the likelihood of strong correlations between sensitivities and functional traits in 

the system. Preserving ecosystem structure by preventing direct effects op species is 

therefore particularly important for low diverse systems. 

 

The results presented here thus demonstrated that, when occurring, strong correlations 

could indicate when indirect chemical effects through species interactions can result in 

effects on ecosystem function that are equal to, or exceed effects on structure. Current risk 

assessment procedures still rely on the assumption that species interactions result in a 

certain degree of functional compensation between species so that protecting ecosystem 

structure suffices to also protect ecosystem functions10,36. Therefore weighing the species 

sensitivities for their relative abundances and including target or keystone species (i.e. non-

random sampling) have been proposed as ways to account for non-randomness in species 
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sensititivies10,12,32. These methods thereby aim to lower threshold concentrations derived 

from the SSD to ensure their protectiveness for the structure and functions of ecosystems. 

The occurrence of strong correlations between species functional and functional traits can 

thus be a first indicator, based on the information gathered in bioassays, for when more 

scrutiny is needed when applying methods such as the SSD approach. Under these 

conditions, the use of an additional assessment factor is warranted.  
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7.1. From a general to a context-dependent approach 

The field of biodiversity-ecosystem functioning research has been dominated by the search 

for a general bivariate relationship1–7. Emerging in the 1980s from the growing awareness of 

an unprecedented global biodiversity decline, its main objective was to understand to what 

extent these biodiversity changes posed a treat to the many ecosystem functions on which 

society depends8. Meta-analyses have therefore often focussed on quantifying the relative 

empirical support for the several theoretically proposed biodiversity-ecosystem functioning or 

stability relationships9–11. The hundreds of empirical studies conducted since the 1990s have 

now produced compelling evidence that biodiversity generally increases ecosystem 

functioning and ecosystem function stability5,7,11. The occurrence of positive biodiversity 

effects is remarkably consistent across functional groups and ecosystem functions in 

terrestrial and aquatic systems, which has now led to a general consensus that ecosystems 

are indeed at risk by ongoing biodiversity losses7,12. Still, the exact strength of biodiversity 

effects clearly differs between systems, and also negative biodiversity effects have frequently 

been reported11,13,14. Due to the search for a general relationship, these differences in the 

consequences of biodiversity changes between systems have so far remained largely 

unexplained11,15. Only recently, a number of studies started to compare biodiversity-

ecosystem functioning relationships between ecosystems15,16 and different environmental 

conditions within a system15–22. Differences in the shape of the BEF relationship thereby 

related to the environmental favourability15,16 or the types of species interactions in the 

system17–21. 

The notion of a strong-context dependence of biodiversity effects has led to a recent plea to 

adopt a more holistic approach in biodiversity research, integrating the classic frameworks of 

species coexistence and community dynamics into biodiversity theory6,23. As a research field, 

ecology is prone to fragmentation. Contrary to for example physics or chemistry, ecology is 

not driven by a set of universal laws. Instead, ‘the great majority of ecology’s actual laws 

cannot simply be derived from first principles, building on the universal laws’24. This has often 

caused subdisciplines to emerge and diverge over time, driven by their own angle of 

approach and associated theories. Likewise, biodiversity effects on ecosystem functioning 

and ecosystem function stability have generally been treated separately over the past two 

decades3,5,7. In the 1990s, major progress was already made in biodiversity research by 

revealing how empirically observed correlations between biodiversity and ecosystem 

functioning or ecosystem function stability could be explained from species interactions and 

fitness differences25–27. This provided a mechanistic underpinning of biodiversity-ecosystem 

functioning relationships based on classic ecological theory on community composition and 
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compositional dynamics, explaining differences in strength of biodiversity effects between 

studies. To date, multivariate techniques, such as structural equation modelling, have been 

principally used to separate the effect of species richness from that of environmental factors 

on ecosystem functioning15,16. Based on correlations, these data-driven methods do not 

provide the required mechanistic understanding of the environmental dependency of 

biodiversity effects. Moreover, ecologists have only recently tried to combine the evidence of 

biodiversity effects on ecosystem functioning and ecosystem function stability, although 

without finding any apparent correlation between the magnitude of both effects28.  

In this thesis, it is demonstrated how the environmental dependency of biodiversity effects on 

ecosystem functioning (Chapters 2-4) and biodiversity effects on ecosystem function stability 

(Chapters 5-6) are intimately linked by, and can be explained from classic ecological theory 

on compositional dynamics. Environmentally induced changes in species functional 

contributions are thereby expected to depend at least on the interspecific differences in 

environmental response and species interactions, driving direct and indirect effects on 

environmental changes29–32. It is revealed how compositional dynamics based on these two 

elements can help to fill key gaps in biodiversity research, explaining differences in 

biodiversity effects between systems and between environmental conditions within a system. 

It is thereby demonstrated how a comprehensive mechanistic framework explaining the 

environmental dependence of biodiversity-ecosystem functioning relationships can be 

derived (chapters 2-3), complex biodiversity effects can arise (chapter 4), biodiversity 

effects on functional stability link to compositional stability (chapter 5) and consequences of 

environmental changes can be predicted (chapter 6).  

7.2. An environment-dependent framework for BEF relationships 

The framework presented in chapters 2 and 3 reveals that environment-induced changes in 

biodiversity effects can be quantitatively explained from the classic ecological principles 

underlying compositional dynamics (Figures 2.2-2.4). Changes in species functional 

contributions driving changes in BEF-relationships were thereby demonstrated to depend on, 

and differ between systems because of differences in species interactions and species 

environmental responses (Figures 3.2-3.4). Changes in species complementarity3–17 and 

environmental favourability15,16 have already been identified as important drivers of changes 

in BEF relationships. The presented framework consequently provides for the first time, to 

my knowledge, a direct mechanistic underpinning for these drivers. Moreover, by focussing 

on species interactions and environmental responses, it links the theoretical frameworks 
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developed in the 1990s to explain biodiversity effects on ecosystem functioning and 

ecosystem function stability.  

Despite being based on shared principles33–35, both biodiversity effects have so far generally 

been treated separately3–5,7,28. Theory on ecosystem functioning has thereby focussed on 

species interactions, driving complementarity effects, and interspecific differences in species 

functional traits, driving selection and dominance effects36,37. Similarly, theory on ecosystem 

function stability is based on interspecific differences in how species’ functional traits respond 

to environmental changes and species interactions33–35. Only in 2013, a meta-analysis first 

compared how biodiversity effects on ecosystem functioning corresponded to biodiversity 

effects on ecosystem function stability. Although both biodiversity effects are generally 

positive, there was no apparent correlation between the magnitude of both effects28,38. By 

linking biodiversity effects on ecosystem functioning and ecosystem function stability, the 

framework presented here however demonstrates that a variety of environmental responses 

in BEF relationships can arise. Moreover, the presented results explain how any correlation 

between biodiversity effects on ecosystem functioning and ecosystem function stability 

should not be a priori expected.  

In 1999, Yachi and Loreau27 already theoretically demonstrated that biodiversity provides a 

long-term insurance for ecosystem functions. Due to the positive effect of biodiversity on both 

ecosystem functioning and ecosystem function stability, biodiversity is expected to not only 

increase ecosystem functioning but also preserve these ecosystem functions over a wide 

range of environmental conditions (i.e. the insurance hypothesis)27. The framework 

introduced in chapters 2 and 3 thus builds upon this insurance hypothesis. It demonstrates 

how environmental changes in BEF relationships can quantitatively be predicted from 

diversity-dependent changes in ecosystem functioning, i.e. biodiversity effects on ecosystem 

function stability (Fig. 2.3-4 and Fig. 3.2-4). The model presented in chapter 3 reveals how a 

general change in BEF relationships along an environmental gradient based on interspecific 

differences in environmental response, is modulated by a system-specific effect of species 

interactions (Fig. 3.2). Following the portfolio effect, biodiversity increases ecosystem 

function stability principally by the increased number of environmental responses, increasing 

the potential for functional compensation. The type and strength of species interactions, 

which determine the exact extent of functional compensation, is thereby predicted to have 

only a limited effect32,34,39–41. Here, it is demonstrated that interspecific differences drive the 

general response of the slope of BEF relationships, but that the magnitude of environment-

induced changes principally depends on the type and strength of species interactions 

(Figures 2.2 and 3.2). Biodiversity effects on ecosystem functioning can thus be positive, 
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neutral or absent depending on the interactions and environmental conditions. Biodiversity 

effects on ecosystem function stability, in contras, refer to the system’s behaviour over a 

range of environmental conditions. How the strength of biodiversity effects on ecosystem 

functioning and ecosystem function stability correlates should consequently strongly depend 

on the system and the environmental conditions under which biodiversity effects on 

ecosystem functioning are assessed, without any general correlation between the strength of 

both effects. 

The framework explaining the environmental dependence of BEF relationships presented in 

chapters 2 and 3 thus provides an important step towards a more holistic approach in 

biodiversity research. It demonstrates that there is no general BEF relationship, but explains 

how observed differences in BEF relationships between systems and environmental 

conditions can be explained based on a single framework. This establishes that the 

consequences of biodiversity loss cannot be seen separately from the environmental 

conditions. Consequently, biodiversity effects on ecosystem functioning are inherently linked 

to biodiversity effects on ecosystem function stability in real-world ecosystems that are 

simultaneously experiencing biodiversity and environmental changes 42–44.  

Environmental changes are predicted to be a main driver of biodiversity changes in the 21st 

century43,45, which is expected to mainly affect ecosystem functioning by inducing species 

extinctions46. However, environmental changes can also alter the densities and functioning of 

the remaining species, resulting in severe changes in ecosystem functioning in the absence 

of species losses47. The framework presented here represents an important step forward in 

estimating and understanding the joint effect of projected biodiversity and environmental 

changes by reconciling the empirical evidence that is currently available from primary 

producer systems (Figures 3.3 and 3.4). The framework builds upon the assumption that 

environmental changes only  affect species fitness, while keeping per capita interaction 

unaffected. In the diatom system presented in chapter 2, this assumption was supported by 

the data. Resource availability in the system was independent of biodiversity and the 

environmental conditions as algae species were strictly phototrophic and the aquatic 

environment is well mixed. However, this is a simplification for many real-world ecosystems, 

even for single-trophic level primary production systems48. Positive feedback interactions 

between biodiversity and the environmental conditions are widespread, and known to alter 

per capita interactions49. In algae systems this can for example occur through excretion of 

polysaccharides which contribute to biofilm formation or serve as an additional carbon 

resource availability for mixotrophic species50, and of which the production depends on the 

environmental conditions51. Similar observations have been made in terrestrial primary 
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producer systems. Per capita interactions have been shown to become positive under 

drought conditions when biodiversity increases water availability18,52.  On higher trophic 

levels, phenotypic plasticity can be expected to have even higher consequence for per capita 

interactions as environmental changes, such as climate change, are known to induce 

behavioural changes54–56. Despite these possible changes in per capita interactions in 

primary producer systems, such changes were not required to explain the intersystem 

differences in environmental response across 52 different systems (Figures 3.3 and 3.4). 

Thus although such changes will affect changes BEF relationships, model predictions 

suggest that their overall importance for explaining system-specific differences in primary 

producer systems is limited. In addition, model predictions reveal that, despite intersystem 

differences in species interactions, positive BEF relationships are likely to occur over a wide 

range of systems and environmental conditions, and endorse the current consensus that 

ecosystems worldwide are under treat by ongoing biodiversity changes. Moreover, the 

general response of BEF relationship revealed in chapter 3 demonstrates that expected 

upcoming environmental changes are likely to aggravate the consequences of biodiversity 

changes, and how this environmental effect depends on the properties of the species in the 

system.  

7.3. Linking biodiversity effects to compositional dynamics  

To date, most biodiversity experiments have directly manipulate species richness by 

assembling systems of different richness levels1,2,7. The composition of these systems 

diverges from the initial composition over time due to stochastic or competitive processes 

whereby species can be reduced to low densities or even go extinct. Still, initial species 

richness and not observed biodiversity is principally used as a predictor variable when 

assessing biodiversity-ecosystem functioning relationships. This has led to an important 

debate on the validity of BEF-relationships in the 1990s due to concerns about the potential 

confounding effect of the number and identity of the sampled species when assembling the 

study systems57–60. Now, there is mounting evidence that not only species richness, but also 

their relative abundances strongly affect ecosystem functioning and functional stability61,62. 

This has now raised awareness of the need to incorporate coexistence theory and 

compositional dynamics more explicitly into biodiversity research15,23.  

7.3.1. Non-linear biodiversity effects  

In chapter 4 an extension to classic additive partitioning methods is introduced, allowing the 

quantification of complex, non-linear biodiversity effects resulting from strong compositional 

changes. Biodiversity effects on ecosystem functioning are defined based on species 
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deviations from the initial composition, and how these deviations depend on species’ 

functional traits63,64. Additive partitioning methods are thereby routinely used to calculate the 

strength of complementarity, dominance or selection effects. Its classic formulation is based 

on the average species deviation from the initial state, and the linear dependence on 

species’ functional traits36,37. More complex non-linear deviations from the initial composition 

in relation to species functional traits are however equally likely to arise by stochastic and 

competitive processes. The non-linear extension presented here thus allows for an increased 

understanding of how these changes in composition ultimately affect ecosystem functioning.      

In biodiversity experiments, species often have similar initial functional contributions, which 

will rarely correspond to the equilibrium densities. Over time, competitive processes can 

induce larger average compositional changes. The effect of initial conditions thus wears off in 

these time series, as competition and environmental effects progressively determine the 

composition19,65. Ecosystem functioning can thereby become increasingly driven by a 

particular (group of) species, causing non-linear deviations from the initial state that cannot 

be quantified using classic additive partitioning methods. So far, most experiments study 

vascular plant systems over the course of only a few years11. Deviations from the initial 

conditions are thereby generally small, due to the limited time sexual reproduction, clonal 

growth or mortality. Long-term field data are now however becoming increasingly available 

and offers unprecedented opportunities to assess the consequences of biodiversity changes 

under changing environmental conditions16,66. Strong deviations from species’ initial 

contributions are thereby increasingly likely to occur. In chapter 4 it was demonstrated that 

these non-linear biodiversity effects can already occur in less than 10 generation in a 

grassland experiment, jeopardizing the validity of classic linear additive partitioning methods 

(Figures 4.2-5). Strong deviations from the initial conditions can result in outliers with severe 

leverage on the covariance used by these methods. Species with low functional contributions 

or low functional abilities under the given environmental conditions have hence often been 

left out of the analysis36,65. The general formulation of additive partitioning methods 

introduced in chapter 4 allows circumventing this leverage problem by fitting the appropriate 

model structure to the data. The use and application of a 2nd order polynomial was thereby 

illustrated, but the general formulation also allows the use of other functions than polynomials 

if required.  

Additive partitioning methods remain statistical tools, without any explicit ecological 

mechanistic underpinning. They are nevertheless essential for analysing biodiversity 

experiments. By quantifying complementarity, dominance or selection effects in ways that 

are interpretable and directly comparable between systems and environmental conditions, 
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they can provide a first step by indicating the potential underlying mechanisms36,65. The non-

linear extensions presented in chapter 4 are thus an essential refinement of the current, 

linear additive partitioning methods. They allow quantifying the effect of strong compositional 

changes by allocating effects on ecosystem function to (groups of) species. This can be 

particularly important for assessing biodiversity effects in systems where large interspecific 

differences in functional contributions can occur, such as long-term data series or under 

unfavourable environmental conditions that induce large fitness differences.  

7.3.2. Compositional stability as a driver of ecosystem function stability 

In chapter 5 the theoretically proposed tight link between compositional and functional 

stability67 is empirically demonstrated. Theoretical studies still dominate our view on the 

mechanisms driving biodiversity effects on ecosystem function stability. Similarly to 

biodiversity-ecosystem functioning relationships, the occurrence of biodiversity-ecosystem 

function stability relationships have mainly been studied based on correlations between 

species richness and stability, without assessing the underlying mechanisms7. Despite 

ecological theory placing great emphasis on compositional dynamics to explain biodiversity 

on ecosystem functioning, empirical support for biodiversity effects on compositional stability 

that underlie functional stability has therefore remained scarce32–34,41,66–68 and opposing 

findings between empirical and theoretical results have fuelled decades of debate on the 

underlying mechanisms66,67,69,70. Here, empirical evidence is directly linked to theoretical 

predictions, establishing biodiversity that biodiversity has similar effects on functional and 

compositional stability in primary producer systems.  

In the 1990s, introducing the concept of statistical averaging has been an essential step in 

resolving opposing empirical and theoretical results33. It demonstrated that increased 

population-level fluctuations in more diverse systems, as theoretically demonstrated by 

May71, did not contradict the empirically observed greater ecosystem function stability in 

more diverse systems72,73. Instead, the averaging of asynchronous population-level 

fluctuations was suggested to be a main mechanism driving positive biodiversity effects on 

ecosystem function stability33,71. This has however led to a strong focus on interspecific 

differences in environmental responses as a main driver of these compensatory dynamics 

between species, whereby species interactions were mainly considered as a secondary 

factor, modulating the magnitude functional compensation32,34,35,40.  

The theoretical focus on compensatory dynamics as a driver of ecosystem function stability 

is now increasingly challenged by empirical results. Strong asynchronous fluctuations 

between species appear to be rare in most experiments41,68,74. Instead, functional stability 

appears to mainly result from small compensations between a limited number of species 
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instead of large fluctuations in empirical systems41. Similarly, positive biodiversity effects on 

primary production stability in grassland systems have recently been demonstrated to be 

driven by an increased functional resistance, and not resilience16. These observations, 

however, do not oppose theoretical models. Instead, simple community models do predict a 

reduction in the speed of community dynamics in more diverse systems when interspecific 

differences in interactions are small67. This causes an increased stability by compositional 

resistance and not compositional turnover.  

The results presented in chapter 5 present, to my knowledge, the first empirical evidence of 

this theoretically predicted consistent biodiversity effect on functional and compositional 

stability (Figures 5.2.). Moreover, these results underscore the need for a further empirical 

validation of the mechanisms driving biodiversity effects. Theoretical studies indicate that the 

empirically observed positive biodiversity-ecosystem functioning relationships can be 

generate by various mechanisms41. The extent of compositional turnover in these models 

thereby depends on the interspecific differences in species interactions and environmental 

responses34,41. The relative importance of species interactions compared to increased variety 

in species responses has therefore been debated on theoretical grounds32,34,35,40,41. The 

extent and importance of compositional turnover or resistance for ecosystem function 

stability is therefore likely to differ strongly between systems. The empirical results presented 

here validate the theoretical predictions for systems of ecologically similar species, such as 

primary producer systems where compositional resistance is expected to underlie the 

observed functional resistance driving functional stability16. This demonstrates the need to 

move beyond the detection of compensatory dynamics, which is only one possible 

mechanism to underpin biodiversity-ecosystem function stability relationships41,66. Instead, 

major progress is likely to be made from linking their occurrence and extend of compensatory 

dynamics to differences in the traits of the species present in the systems.  

7.4. Estimating ecosystem-level effects of environmental changes 

In chapter 6 it is explored how estimates of the effects of environmental changes on 

ecosystem functions can be improved. Environmental and biodiversity changes are projected 

to be major drivers of changes in ecosystem function provisioning in the next century46. Still, 

the magnitude of changes in ecosystem functioning, and the required conservation efforts to 

mitigate these changes, differ between systems75–77. Accurate predictions of changes in the 

structure and function of systems by environmental changes thus require an in depth 

knowledge of the system44, which is generally unavailable at a system-specific basis due to 

time, financial or methodological constraints. Hence, estimates of environmental effects are 
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generally based on imperfect knowledge of the systems. In chapter 6 it is demonstrated how 

ecosystem-level effects can be related to species level effects without explicitly taking 

species interactions into account. It is explained how non-randomness of species sensitivity 

to environmental changes in relation to their functional traits can help to identify systems that 

are at an increased risk by environmental changes.    

Species-level effects are easily assessable. Single species bioassays are simple, resource 

and time efficient. Understanding how these species-level effects translate to ecosystem-

level effects is therefore essential to improve estimates of consequences of environmental 

changes. Ecosystem level effects depend at least on the species sensitivities to 

environmental changes, that is the direct effect of environmental changes, and species 

interactions, which determine the strength of indirect effect by density changes in other 

species29,71. Ecosystems consist of a myriad of possible interactions, of which the exact 

strength can be hard to measure78,53. Species-level effects hence stand central in current 

environmental risk assessment procedures79,80. Worldwide, legislations are currently based 

environmental quality standards that are derived from cumulative distribution in species 

sensitivities, allowing for effects in less than 5% of the species81–84. Consequently, this 

assumption that effects in less than 5% of the species does not result in a noteworthy 

change in the structure and function of ecosystems inherently implies a certain degree of 

functional compensation between species79,80.  

In chapter 6 it is demonstrated that, depending on the type and strength of species 

interactions, strong changes in ecosystem functioning can already occur when species 

effects, and thus effects on ecosystem structure, are limited (Figures 6.2 and 6.3). The risk of 

strong effects on ecosystem functioning thereby depends how species-level effects correlate 

to species’ functional traits (Figures 6.2 and 6.3). This determines the likelihood that 

functional compensation between species can occur. Classic ecological theory on community 

composition is thus essential to improve estimates of how environmental changes affect 

ecosystem functioning. In-depth knowledge of species-level effects and species interactions 

is generally unavailable for real-world ecosystems. However, these theoretical frameworks 

also help to elucidate how interspecific differences in ecosystem-level effects can be 

assessed from the correlation between in the sensitivity of species functional traits to 

environmental changes and the trait value under unstressed conditions. These correlations 

can easily be determined from bioassays, or a posteriori be determined from currently 

available species sensitivity, and can help flagging those systems at a potential increased 

risk by environmental changes. 
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7.5. General conclusion and outlook 

Developing a mechanistic understanding of how biodiversity changes affects ecosystem 

functions is essential for assessing the consequences of the combined projected effects of 

environmental and biodiversity changes43,46. Although bivariate relationships have played an 

essential role in raising awareness of the possible detrimental effects of a global biodiversity 

decline, these only provide limited insight1–7,85. Over the past decades, multiple theoretical 

frameworks have been developed to explain these empirical relationships. However, not only 

are several of these theories poorly supported by empirical data41,68,74, biodiversity effects on 

ecosystem functioning and ecosystem function stability have thereby also started to develop 

into two separate research fields6,7,28,38. This has led to an inability to explain several 

observed patterns, such as the link between the magnitude of both effects28,38 or 

environment-induced changes in the biodiversity-ecosystem functioning relationship15,22. In 

this thesis, it is demonstrated how the environmental dependency of biodiversity effects on 

ecosystem functioning (Chapters 2-4) and biodiversity effects on ecosystem function stability 

(Chapters 5-6) can be mechanistically explained and linked by two basic drivers of 

compositional dynamics and species coexistence: interspecific differences in interactions and 

environmental responses.  

The introduced framework however only provides a first stepping-stone in developing a 

holistic theory on how biodiversity changes affect ecosystem functioning. The models and 

experiments presented here are based on primary producer systems, involving only one 

trophic level. Primary producer systems have played an important role in developing our 

insights into biodiversity effects, being simple and traceable, but have also biased our view 

on biodiversity-ecosystem functioning relationships. First, there is a literature bias towards 

terrestrial plant systems11. In pelagic algal communities, for example, strong resource 

competition often tends to result in negative BEF relationships9. Due to the focus on the 

occurrence of positive BEF relationships, the prevalence of negative BEF relationships and 

their distribution across different systems remains poorly studied11. Moreover, real 

ecosystems include multiple trophic levels, each with dozens of species, resulting in a myriad 

of possible interactions and complex feedback loops. Still, experiments involving multiple 

trophic levels have been scarce, and a conceptual framework extending complementarity, 

selection and dominance effects these systems is lacking12,13. Moreover, the use of primary 

producer systems has resulted in a strong emphasis on primary production or total biomass 

as a proxy for a general ecosystem function7,11. Not only are there hundreds of ecosystem 

functions on which society depends86,87, many of them supported by the same ecosystem. 

This multidimensionality of biodiversity effects is only starting to emerge in biodiversity 
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research88,89, as well as how classic biodiversity effects can be extended90. Finally, 

biodiversity studies have been restricted to small spatial and temporal scales. Most 

biodiversity studies have been conducted in closed systems. Consequently, the focus has 

been on the effect of the initial species richness. Species could therefore subsequently go 

extinct, because of non-stable coexistence, or new species could immigrate into the system, 

requiring a constant manipulation of experimental systems to maintain the experimentally 

required number of species2. Dispersal processes have therefore received little attention in 

biodiversity research. They are nevertheless an essential mechanism in global biodiversity 

changes43,44,91. Although biodiversity decreases globally, local biodiversity changes are more 

complex. Both local increases and decreases occur, driven by natural or human-assisted 

dispersal92,93, which can substantially alter biodiversity effects and ecosystem functions94,95. 

Temporal scales, in addition, determine the extent by which phenotypic plasticity96, and even 

(micro)evolution97 can start to alter biodiversity effects on ecosystem functioning. 

Developing a holistic framework on the combined effects of biodiversity and environmental 

changes will be a major challenge for the 21st century. Biodiversity research has already 

made part of this transition in the past two decades. The focus has already recently 

broadened from the net biodiversity changes1,2, to a context-dependent approach15,22, 

including how environmental changes can affect ecosystem function in the absence of 

biodiversity changes47. This thesis thereby provides a first step in developing this 

mechanistic framework, explaining the context dependency in primary producer systems. 

Introducing complexity, multidimensionality and spatial structure and (micro)evolutionary 

processes are essential next steps that will challenge biodiversity research to become a 

more integrated research field by bringing the gaps between biodiversity research, 

community and ecosystem ecology6,23,98.  
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Figure S1: Atrazine induced changes in relative species abundances. Changes in relative 

species abundances compared to the control treatment in the 25 µg L-1  (upper panels) and 250 µg L-1 

(lower panels) atrazine treatment. Note that low stress (upper panels) induces small compositional 

differences with relative abundances close to the 1:1 line. High stress (lower panels), in contrast, 

induces larger compositional changes. Sensitive species decrease in abundance, lying under above 

the 1:1 line, whereas tolerant species increase and lie above this line 
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Figure S2: Community model performance under different scenarios of stress-induced 

effects on the per-capita strength of species interactions. Predicted species densities and 

relative abundances plotted against the observed values from the biodiversity experiment for the 5 

scenarios. Model predictions correspond better to observations when deviations from the dotted 1:1 

line (i.e. perfect prediction) are smaller.      
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Figure S3: Assessment of cell mortality. Microscope image of a degrading diatom stock 

culture, illustrating the various stages ranging from living cells (1) to empty frustules (2). Note that this 

is heavily degraded stock culture to illustrate the different stages and does not represent any of the 

communities used in the experiment. 

 
Figure S4: Linear mixed effects model residual correlation for log10 biovolume. Pairs 

plot of the model residuals at each sampling day for the linear mixed effect model predicting the log10 

biovolume as a function of the log10 diversity, atrazine concentration and time as fixed effects and 

species composition as a random effect (Table 2.1). Values in the upper triangle denote the 

correlation in model residuals between the different days. 
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Figure S5:  Linear mixed effect model residual diagnostics for the log10 biovolume. 

Linear mixed effects model predicting the log10 biovolume  as a function of log10 diversity, atrazine 

concentration  and time as fixed effects and species composition as a random effect (Table 2.1).Model 

residuals are plotted as QQ-plot (A), against the fixed effects (atrazine concentration, B; diversity,C; 

and day,D) and plotted against the predicted log10 biovolume (E) to assess normality and homogeneity 

of model residuals. Model predictions are plotted against the observed log10 biovolumes to assess 

model performance. 
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Figure S6: Linear mixed effects model 1 residual correlation for changes in dominance 

effects Pairs plot of the model residuals at each sampling day for the linear mixed effect model 

predicting the changes in dominance effects as a function of the log10 diversity concentration and time 

as fixed effects and species composition as a random effect with temporal autocorrelation structure 

(Table 2.2, model1). Values in the upper triangle denote the correlation in model residuals between 

the different days. 
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Figure S7: Model 1 residual diagnostics for changes in dominance effects. Linear mixed 

effects model predicting atrazine-induced changes in the dominance effect (Δdominance effect) as a 

function of log10 diversity and time as fixed effects, community composition as random effects and a 

temporal autocorrelation structure (Table 2.2) Model residuals are plotted as QQ-plot (A), plotted 

against the fixed effects (Diversity, B and Day, C) and the predicted change in dominance effect (D) to 

assess normality and homogeneity of model residuals. Model predictions are plotted against the 

observed changes in dominance effects (E) to assess model performance. 
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Figure S8: Linear mixed effects model 1 residual correlation for changes in trait-

dependent complementarity effects Pairs plot of the model residuals at each sampling day for 

the linear mixed effect model predicting the changes in trait-dependent complementarity effects 

(Δtrait.-dep. comp. effect) as a function of the log10 diversity concentration and time as fixed effects 

and species composition as a random effect with temporal autocorrelation structure (Table 2.2, 

model1). Values in the upper triangle denote the correlation in model residuals between the different 

days. 
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Figure S9: Model 1 residual diagnostics for changes in trait-dependent 

complementarity effects. Linear mixed effects model predicting atrazine-induced changes in the 

dominance effect (Δtrait-dep. comp. effect) as a function of log10 diversity and time as fixed effects, 

community composition as random effects and a temporal autocorrelation structure (Table 2.2) Model 

residuals are plotted as QQ-plot (A), plotted against the fixed effects (Diversity, B and Day, C) and the 

predicted change in dominance effect (D) to assess normality and homogeneity of model residuals. 

Model predictions are plotted against the observed changes in trait-dependent complementarity 

effects (E) to assess model performance. 
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Figure S10: Linear mixed effects model 1 residual correlation for changes in trait-

independent complementarity effects Pairs plot of the model residuals at each sampling 

day for the linear mixed effect model predicting the changes in trait-dependent 

complementarity effects (Δtrait.-indep. comp. effect) as a function of the log10 diversity 

concentration and time as fixed effects and species composition as a random effect with 

temporal autocorrelation structure (Table 2.2, model1). Values in the upper triangle denote 

the correlation in model residuals between the different days. 
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Figure S11: Model 1 residual diagnostics for changes in trait-independent 

complementarity effects. Linear mixed effects model predicting atrazine-induced changes in the 

dominance effect (Δtrait-indep. comp. effect) as a function of log10 diversity and time as fixed effects, 

community composition as random effects and a temporal autocorrelation structure (Table 2.2) Model 

residuals are plotted as QQ-plot (A), plotted against the fixed effects (Diversity, B and Day, C) and the 

predicted change in dominance effect (D) to assess normality and homogeneity of model residuals. 

Model predictions are plotted against the observed changes in trait-independent complementarity 

effects (E) to assess model performance. 
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Figure S12: Model 2 residual diagnostics for changes in dominance effects. Optimized 

linear mixed effects model predicting atrazine-induced changes in the dominance effect (Δdominance 

effect). Initial models included a function of the weighted mean species sensitivity to atrazine, per-

capita interaction strengths and changes in per-capita interaction strengths as fixed effects and 

community composition as random effects (for optimal model structure, see Table 2.2) Model 

residuals are plotted as QQ-plot (A), plotted against the fixed effects (weighted mean species 

sensitivity, B; weighted mean per-capita interaction strength, C and weighted mean changes in the 

per-capita interaction strength, D) and the predicted change in dominance effect (E) to assess 

normality and homogeneity of model residuals. Model predictions are plotted against the observed 

changes in dominance effects (F) to assess model performance. 
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Figure S13: Model 2 residual diagnostics for changes in trait-dependent 

complementarity effects. Optimized linear mixed effects model predicting atrazine-induced 

changes in the trait-dependent complementarity effect (Δtrait-dep. comp. effect). Initial models 

included a function of the weighted mean species sensitivity to atrazine, per-capita interaction 

strengths and changes in per-capita interaction strengths as fixed effects and community composition 

as random effects (for optimal model structure, see Table 2.2) Model residuals are plotted as QQ-plot 

(A), plotted against the fixed effects (weighted mean species sensitivity, B; weighted mean per-capita 

interaction strength, C and weighted mean changes in the per-capita interaction strength, D) and the 

predicted change in dominance effect (E) to assess normality and homogeneity of model residuals. 

Model predictions are plotted against the observed changes in trait-dependent complementarity 

effects (F) to assess model performance. 
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Figure S14: Model 2 residual diagnostics for changes in trait-independent 

complementarity effects. Optimized linear mixed effects model predicting atrazine-induced 

changes in the trait-independent complementarity effect (Δtrait-dep. comp. effect). Initial models 

included a function of the weighted mean species sensitivity to atrazine, per-capita interaction 

strengths and changes in per-capita interaction strengths as fixed effects and community composition 

as random effects (for optimal model structure, see Table 2.2) Model residuals are plotted as QQ-plot 

(A), plotted against the fixed effects (weighted mean species sensitivity, B; weighted mean per-capita 

interaction strength, C and weighted mean changes in the per-capita interaction strength, D) and the 

predicted change in dominance effect (E) to assess normality and homogeneity of model residuals. 

Model predictions are plotted against the observed changes in trait-independent complementarity 

effects (F) to assess model performance. 
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Table S1 Estimates for the fixed effects and p-values for the linear mixed models. The 

weighted average sensitivity to atrazine stress (M250/M0), the average strength of per capita 

interactions (A0) and the average change in per capita interaction strength (A250-A0) and all pairwise 

interactions are included as fixed effects. Community composition was included as a random effect. 

 Dominance Effect 
 DF t-value Estimate (standard 

error) 
p-value 

Intercept 29 1.54 0.0216 (0.014) 0.14 
M250/M0 24 -2.30 -0.0909 (0.039) 0.03 
A0 24 1.44 0.0024 (0.002) 0.16 
A250-A0 24 0.25 0.0005 (0.002) 0.80 
M250/M0 × A0 24 -2.31 -0.0111 (0.005) 0.03 
M250/M0 × A250-A0 24 -1.82 -0.0006 (0.0003) 0.08 
A0× A250-A0 24 0.15 0.00003 (0.00002) 0.89 
     
 Trait-dependent complementarity effect 
 DF t-value Estimate (standard 

error) 
p-value 

Intercept 29 -0.12 -0.0024 (0.02) 0.91 
M250/M0 24 -3.07 -0.1723 (0.06) 0.005 
A0 24 -0.15 -0.0004 (0.002) 0.88 
A250-A0 24 -0.84 -0.0024 (0.003) 0.41 
M250/M0 × A0 24 -3.08 -0.0210 (0.007) 0.005 
M250/M0 × A250-A0 24 -0.62 -0.0003 (0.0005) 0.54 
A0× A250-A0 24 -0.86 -0.0003 (0.0003) 0.40 
     
 Trait-independent complementarity effect 
 DF t-value Estimate (standard 

error) 
p-value 

Intercept 29 2.63 0.069 (0.03) 0.01 
M250/M0 24 1.09 0.076 (0.07) 0.29 
A0 24 2.71 0.009 (0.003) 0.01 
A250-A0 24 1.51 0.005 (0.007) 0.14 
M250/M0 × A0 24 1.07 0.009 (0.009) 0.30 
M250/M0 × A250-A0 24 0.58 0.0004 (0.0006) 0.57 
A0× A250-A0 24 1.53 0.0007 (0.0004) 0.14 
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Table S2: Estimated population parameters for the 8 species used in the experiment. V 

is the cell volume, K0 and K250 are the carrying capacities, µ0 and µ250 are the intrinsic growth rates at 

0 and 250 µg L-1 Atrazine, respectively 

 
Code Species V (µm3) µ0 (d-1) µ 250 (d-1) K0 (µm3) K250 (µm3) 
1 Coscinodiscus sp. 367008 0.33 0.22 948 839 324 314883704 
2 Ditylum sp. 24757 0.27 0.01 862 505 671 4951400 
3 Bacillaria sp. 6448 0.51 0.20 406 957 000 348711139 
4 Odontella sp. 752767 0.24 0.01 10 583 784 289 55990944 
5 Thalassiosira sp.1 25727 0.28 0.15 108 096 248 43707354 
6 Gyrosigma sp. 3940 0.19 0.10 651 492 127 66671926 
7 Guinardia sp. 14001 0.19 0.19 1 176 672 117 28473370 
8 Thalassiosira sp.2 12556 0.43 0.01 629 079 021 15554781 
 
 
 
 
 
 
 
Table S3: Community assemblages for diversity levels 2, 4 and 6. Numbers refer to the 

species code in supplementary table 1. Assemblages at diversity 1 and 8 are not given here since all 

possible combinations were used for these levels 

 
Diversity = 2 Diversity = 4 Diversity = 6 

1+3 1+2+4+8 1+2+3+4+5+7 
2+4 2+4+5+6 1+2+4+5+6+7 
7+8 3+4+5+8 1+3+4+5+6+7 
1+7 2+3+4+5 1+2+3+5+6+7 
3+5 1+2+3+6 1+2+3+5+6+8 
5+6 3+5+7+8 2+3+5+6+7+8 
4+6 2+3+4+7 1+3+4+5+6+8 
3+8 1+5+6+8 2+3+4+5+6+7 
2+5 1+3+5+6 2+4+5+6+7+8 
1+3 1+2+4+7 3+4+5+6+7+8 
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Figure S1. Simulated changes in the strength of biodiversity effects along stress 

gradients Changes in dominance (DOM; panels A, E, I, M and Q), trait-dependent complementarity 

(TDC; panels B, F, J, N and R) and trait-independent complementarity effects (TIC; panels C, G, K, O 

and S) and the biodiversity ecosystem function relationships (panels D, H, L, P and T) under 5 

different scenarios: Neutral dynamics (A-D), positive complementarity effects (E-H), negative 

complementarity effects (I-L), positive dominance effects (M-P) and negative dominance effects (Q-T) 

under unstressed conditions.  
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Figure S2. Flowchart of the modelling approach. For each model run first parameters are 

randomly drawn for 20 species from specified distributions defining the environmental response of the 

birth rate (bi(0) and σbi(SI)), mortality rate (di), intraspecific (ai,i) and interspecific (ai,j) interactions. The 

interspecific interactions are thereby sampled from a gamma distribution of with mean value !!,! and 

variance !!!,!. Next, 10 communities consisting of 2, 4, 8 and 16 species are randomly assembled from 

this pool of 20 species. Finally 5 levels of stress intensity are drawn from the empirical distribution 

obtained from the meta-analysis and BEF relationships are simulated for control conditions and each 

level of environmental stress. 
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Figure S3. Comparison between empirical and simulated changes in BEF 

relationships. (A) Changes in slopes of the BEF relationship over an environmental plotted against 

the BEF slope under unstressed conditions for empirical data of 52 experiments and 1000 model 

simulations. (B) Probability density of empirical and simulated BEF relationships under unstressed 

conditions. 

 
 
 
 
 
 

 
Figure S4. Sensitivity analysis of the runtime parameters. Deviation of the median 

estimated species density from the expected median species density (Δmedian) as a function of the 

number times a community is simulated (A), the maximal simulation time (B) and the discrete time 

step (C). Figures are based on 25 randomly drawn biodiversity-ecosystem function relationships.  

 

0 5 10 15 20 25 30

-1
0

-5
0

5
10

Number of simulations

Δ
m
ed
ia
n

10 25 50 75 100

-1
5

-1
0

-5
0

5
10

15

Timemax

Δ
m
ed
ia
n

1e-04 2.5e-05 5e-06

-2
5

-1
0

0
10

25

Δt

Δ
m
ed
ia
n

A B C



	

APPENDIX	B	 163	
	

Figure S5. Sensitivity analysis of the parameter distributions Simulated changes in BEF 

relationships for different parameter distributions for (A) the width of species niches !!! !" , (B) the 

mean birth rate bi(0), (C) the mortality rate di, (D) the variance in interspecific competition !!!,! 
Changes in 25 randomly drawn BEF relationships were simulated for each parameter distribution. 

Lines represent linear regressions between the slope of the BEF relationship under unstressed 

conditions and the change in slope along an environmental stress gradient. Shaded areas correspond 

to the prediction intervals of the empirical (light grey) and the theoretical linear regression model (dark 

grey) presented in Figure 3.3. 

 

 

 

 

 

 

	



	

164	 APPENDIX	B	
	

Figure S6. Changes in slopes of the BEF relationship for each of the 40 studies that 

included at least 3 environmental conditions. Observed slopes and regression lines are given 

for each study 
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Fig S7. Residual diagnostics for the regression model between the slope under 
unstressed conditions and the average change in slope over stress gradient (Figure 
3.3, Table 3.1) (A) QQ plot, (B) boxplot of model residuals for the meta-analysis (obs) and predicted 
changes (pred), (C) model residuals plotted against the slope under unstressed conditions and (D) 
model residuals plotted against the predicted average change in slope. 
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Fig S8. Residual diagnostics for the regression model between the slope under 
unstressed conditions and the stress level at which maximal biodiversity effects are 
attained (Fig 4, Table 1)	 (A) QQ plot, (B) boxplot of model residuals for the meta-analysis (obs) 
and predicted changes (pred), (C) model residuals plotted against the log10 slope under unstressed 
conditions and (D) model residuals plotted against the predicted average change in slope. 
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Table S1. Overview of studies used in the meta-analysis 
 

Study System Stressor Stress 
levels 

Origin Data 

Steudel et al. 2011 Marshland 
vegetation 

Drought 2 Table 1 Steudel et al. 2011 

Steudel et al. 2011 Marshland 
vegetation 

Salt 2 Table 1 Steudel et al. 2011 

Steudel et al. 2011 Marshland 
vegetation 

Shade 2 Table 1 Steudel et al. 2011 

Steudel et al. 2012 Algae 
communities 

Salt 7 Table 1 Steudel et al. 2012 

Steudel et al. 2012 Algae 
communities 

Temperatur
e 

7 Table 1 Steudel et al. 2012 

Li et al. 2010 Algae 
communities 

Cadmium 3 Figure 1c Li et al. 2010 

Baert et al. 2016 Algae 
communities 

Atrazine 3 Supplementary data Baert et 
al. 2016 

Agrodiversity Belgium Grassland Drought 3 Extended data Figure 5 
Isbell et al. 2015 

Agrodiversity Canada Grassland Drought 3 Extended data Figure 5 
Isbell et al. 2015 

Agrodiversity France Grassland Drought 3 Extended data Figure 5 
Isbell et al. 2015 

Agrodiveristy Iceland a Grassland Drought 3 Extended data Figure 5 
Isbell et al. 2015 

Agrodiversity Iceland b Grassland Drought 3 Extended data Figure 5 
Isbell et al. 2015 

Agrodiveristy Italy Grassland Drought 3 Extended data Figure 5 
Isbell et al. 2015 

Agrodiversity Lithuania 
a 

Grassland Drought 3 Extended data Figure 5 
Isbell et al. 2015 

Agrodiversity Lithuania 
b 

Grassland Drought 3 Extended data Figure 5 
Isbell et al. 2015 

Agrodiversity Lithuania 
c 

Grassland Drought 3 Extended data Figure 5 
Isbell et al. 2015 

Agrodiveristy the 
Netherlands 

Grassland Drought 3 Extended data Figure 5 
Isbell et al. 2015 

Agrodiversity Norway a Grassland Drought 3 Extended data Figure 5 
Isbell et al. 2015 

Agrodiversity Norway b Grassland Drought 3 Extended data Figure 5 
Isbell et al. 2015 

Agrodiversity Norway c Grassland Drought 2 Extended data Figure 5 
Isbell et al. 2015 

Agrodiversity Norway d Grassland Drought 3 Extended data Figure 5 
Isbell et al. 2015 

Agrodiversity Sweden a Grassland Drought 3 Extended data Figure 5 
Isbell et al. 2015 

Agrodiversity Sweden d Grassland Drought 3 Extended data Figure 5 
Isbell et al. 2015 

Agrodiversity Sweden c Grassland Drought 3 Extended data Figure 5 
Isbell et al. 2015 

Agrodiveristy 
Switzerland 

Grassland Drought 3 Extended data Figure 5 
Isbell et al. 2015 

Agrodiversity Wales a Grassland Drought 2 Extended data Figure 5 
Isbell et al. 2015 

Agrodiversity Wales b Grassland Drought 3 Extended data Figure 5 
Isbell et al. 2015 

BIODEPT Germany Grassland Drought 3 Extended data Figure 5 
Isbell et al. 2015 
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BIODEPT Greece Grassland Drought 2 Extended data Figure 5 
Isbell et al. 2015 

BIODEPT Ireland Grassland Drought 3 Extended data Figure 5 
Isbell et al. 2015 

BIODEPT Portugal Grassland Drought 3 Extended data Figure 5 
Isbell et al. 2015 

BIODEPT UK, Sheffield Grassland Drought 2 Extended data Figure 5 
Isbell et al. 2015 

BIODEPT UK, Silwood Grassland Drought 2 Extended data Figure 5 
Isbell et al. 2015 

BIODEPT Sweden Grassland Drought 3 Extended data Figure 5 
Isbell et al. 2015 

BIODEPT Switzerland Grassland Drought 3 Extended data Figure 5 
Isbell et al. 2015 

Event Grassland Drought 4 Extended data Figure 5 
Isbell et al. 2015 

Jena Grassland Drought 6 Extended data Figure 5 
Isbell et al. 2015 

North Dakota b Grassland Drought 3 Extended data Figure 5 
Isbell et al. 2015 

North Dakota b Grassland Drought 3 Extended data Figure 5 
Isbell et al. 2015 

Texas evenness Grassland Drought 6 Extended data Figure 5 
Isbell et al. 2015 

Texas MEND Grassland Drought 3 Extended data Figure 5 
Isbell et al. 2015 

Virginia Grassland Drought 4 Extended data Figure 5 
Isbell et al. 2015 

Wageningen 
Biodiversity 

Grassland Drought 6 Extended data Figure 5 
Isbell et al. 2015 

Wageningen CLUE Grassland Drought 7 Extended data Figure 5 
Isbell et al. 2015 

Hughes and Stachowicz 
2004 

Sea grass 
communities 

Grazing 2 Figure 1B and C Hughes 
and Stachowicz 2004 

Nagase and Dunnet 
2010 (shoot) 

Grassland  Drought 3 Figure 2 Nagase and 
Dunnet 2010 

Nagase and Dunnet 
2010 (root) 

Grassland Drought 3 Figure 3 Nagase and 
Dunnet 2010 

De Boeck et al. 2008 Grassland Temperatur
e 

9 Figure 1 De Boek et al. 2008 

Joshi et al. 2000 Grassland Parasite 2 Figure 4 Joshi et al. 2000 
Dukes 2002 Grassland Invasion 2 Figure 8 Dukes 2002 
Liiri et al. 2002 Arthropod 

communities 
Drought 2 Figure 2 Liiri et al. 2002 

Mulder et al. 2001 Mosses Drought 2 Figure 1 Mulder et al. 2001 
Richardson et al. 2009 Grassland Drought 2 Figure 1 Richardson et al. 

2009 
Lanta et al. 2012 Grassland Drought 4 Figure 2 Lanta et al. 2012 
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Figure S1. QQ-plot of normalised model residuals. Model residuals for selection, dominance 

and trait-dependent complementarity effects when assuming linear and second order relationships 

between species deviations from the null model and functional traits. 

 

	
Figure S2. Comparison between biodiversity effects for linear additive partitioning and 

the linear term of non-linear additive partitioning methods based on 2nd order 

polynomials. Note that deviations from the 1:1 line hence represent 2nde order terms as first and 

second order terms sum to the biodiversity effects as calculated by linear additive partitioning.	
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Figure S1. Functional resistance plotted against compositional stability (A) and 

functional resilience plotted against compositional resilience (B). Plotted for all 

communities at day 28 and 49 of the experiment  

 
 

                     
 

Figure S2: Relative species abundance in the high-stress treatment plotted against the 

relative abundance in the control treatment. 
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Figure S3: Proportional change in species densities in the high-stress treatment after 

atrazine removal. Plotted against the relative species abundance at the end of atrazine exposure 

(day 28) 
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Figure S4: Species relative functional contribution to total community biomass for 

communities consisting of 2 species. For each community, the three left bars correspond to 

day 28, the three right bars to day 49. The sequence of communities corresponds to appendix D table 

2.  
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Figure S5: Species relative functional contribution to total community biomass for 

communities consisting of 4 species. For each community, the three left bars correspond to 

day 28, the three right bars to day 49. The sequence of communities corresponds to appendix D table 

2.  
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Figure S6: Species relative functional contribution to total community biomass for 

communities consisting of 6 species. For each community, the three left bars correspond to 

day 28, the three right bars to day 49. The sequence of communities corresponds to appendix D table 

2.  
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Figure S7: Species relative functional contribution to total community biomass for 

communities consisting of 8 species. For each community, the three left bars correspond to 

day 28, the three right bars to day 49. The sequence of communities corresponds to appendix D table 

2.  
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Figure S8: Residual diagnostics of the linear model predicting the log biovolume The 

model includes concentration, day and diversity and their pairwise interactions as predictor variables 

(Table 5.1, Figure 5.1. 
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Figure S9: Residual diagnostics of the linear model predicting the log functional 

resistance. The model includes concentration, diversity and the interaction as predictor variables 

(Table 5.2, Figure 5.2). 
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Figure S10: Residual diagnostics of the linear model predicting the log functional 

resilience. The model includes concentration, diversity and the interaction as predictor variables 

(Table 5.2, Figure 5.2). 
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Figure S11: Residual diagnostics of the linear model predicting the compositional 

resistance. The model includes concentration, diversity and the interaction as predictor variables 

(Table 5.2, Figure 5.2). 
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Figure S12: Residual diagnostics of the linear model predicting the compositional 

resilience. The model includes concentration, diversity and the interaction as predictor variables 

(Table 5.2, Figure 5.2). 
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Table S1: Summary of the volume, division rate and sensitivity to atrazine of the 8 species 

used in the experiment. Biomass reduction was calculated as the percentage reduction in the 

carrying capacity of the species compared to the control treatment. 

 
Code Species V (µm3) Division rate 

(d-1) 
Biomass 

reduction 25 µg L-

1 (%) 

Biomass 
reduction 250 

µg L-1 (%) 
1 Coscinodiscus sp. 367008 0.33 12 67 
2 Ditylum sp. 24757 0.27 0 99 
3 Bacillaria sp. 6448 0.51 5 14 
4 Odontella sp. 752767 0.24 43 99 
5 Thalassiosira sp.1 25727 0.28 29 60 
6 Gyrosigma sp. 3940 0.19 0 90 
7 Guinardia sp. 14001 0.19 48 98 
8 Thalassiosira sp.2 12556 0.43 0 98 
 
 
 
 
 
 
 
Table S2:  Community assemblages for diversity levels 2, 4 and 6. Numbers refer to the 

species code in supplementary table 1. Assemblages at diversity 1 and 8 are not given here 

since all possible combinations were used for these levels 

 
Diversity = 2 Diversity = 4 Diversity = 6 

1+3 1+2+4+8 1+2+3+4+5+7 
2+4 2+4+5+6 1+2+4+5+6+7 
7+8 3+4+5+8 1+3+4+5+6+7 
1+7 2+3+4+5 1+2+3+5+6+7 
3+5 1+2+3+6 1+2+3+5+6+8 
5+6 3+5+7+8 2+3+5+6+7+8 
4+6 2+3+4+7 1+3+4+5+6+8 
3+8 1+5+6+8 2+3+4+5+6+7 
2+5 1+3+5+6 2+4+5+6+7+8 
1+3 1+2+4+7 3+4+5+6+7+8 
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Figure S1: Model sensitivity analysis. Predicted average loss in ecosystem function under 

temporary (upper panels) and constant (lower panels) for 10 different parameter distributions.  
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Figure S2: Atrazine dose-response curves for the per capita growth rate. Three-

parameter log-logistic concentrations curves for the per-capita growth rate. Red lines indicate EC50 

values. 

	
	
	
	
	

	
	
Figure S3: Atrazine dose-response curves for the carrying capacity. Three-parameter log-

logistic concentrations curves for the carrying capacity. Red lines indicate EC50 values. 
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Figure S4: Residual diagnostics of the regression model. QQ plot of model residuals (A), 

model residuals plotted against the type of exposure (B), the sampling day (C), the atrazine 

concentration (D), the correlation between sensitivity and the per capita growth rate (E), the 

correlations between sensitivity and the carrying capacity (F), the predicted effect (G) and 

observed effects plotted against predicted effects (H). 
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Figure S5: Temporal of the regression model residuals. 
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

-100 0 50 150

-6
0

-2
0

20
60

Residuals day 7

R
es

id
ua

ls
 d

ay
 1

4

-100 0 50 150

-5
0

0
50

10
0

Residuals day 7

R
es

id
ua

ls
 d

ay
 2

1

-100 0 50 150

-6
0

-2
0

20
60

Residuals day 7

R
es

id
ua

ls
 d

ay
 2

8

-60 -20 20 60

-5
0

0
50

10
0

Residuals day 14

R
es

id
ua

ls
 d

ay
 2

1

-60 -20 20 60

-6
0

-2
0

20
60

Residuals day 14

R
es

id
ua

ls
 d

ay
 2

8

-50 0 50 100

-6
0

-2
0

20
60

Residuals day 21

R
es

id
ua

ls
 d

ay
 2

8

A B C

D E F

ρ= 0.011 ρ= -0.332 ρ= -0.119

ρ= -0.337 ρ= -0.042 ρ= -0.059



	

190	 APPENDIX	E	
	

								 	
Figure S6: Composition of all 8 systems and each exposure scenario at day 0, 7, 14 and 21 

of the experiment 
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Figure S6: Composition of all 8 systems and each exposure scenario at day 0, 7, 14 and 21 

of the experiment 
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Figure S6: Composition of all 8 systems and each exposure scenario at day 0, 7, 14 and 21 

of the experiment 
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Figure S6: Composition of all 8 systems and each exposure scenario at day 0, 7, 14 and 21 

of the experiment 
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Table S1: Demographic parameters and sensitivity to atrazine 
	
 Maximal growth rate Carrying capacity 
 µ(0) [d-1] EC50 [µg L-1] s [-] K(0) [mm3 L-1] EC50 [µg L-1] s [-] 
Melosira sp. 0.73 140 1.05 313 025 313 209 15.1 
Navicula sp. 0.83 118 1.60 44 663 605 102 16.6 
Thalassiosira sp. 0.36 95 17.1 1 581 268 619 86 29.2 
Odontella sp. 1 0.56 >500 3.83 259 776 100 996 76 7.35 
Odontella sp. 2 0.54 175 2.20 626 976 642 96 16.3 
Asterionellopsis sp. 1.00 51 0.70 186 494 436 199 16.9 
Asterionella sp. 0.81 65 2.28 176 814 442 77 11.5 
Coscinodiscus sp. 0.53 130 6.78 703 869 334 67 3.42 
	
	
	
Table S2: Growth medium atrazine concentrations for single-species toxicity tests. 

Nominal value (µg L-1) Measured value (µg L-1) 
50 62 
100 114 
250 254 
500 503 
	
	
	
Table S3: Community composition 

 Community composition 
 1 2 3 4 5 6 7 8 
Melosira sp. X X X   X  X 
Navicula sp. X   X X    
Thalassiosira sp. X   X X  X X 
Odontella sp. 1 X X X  X    
Odontella sp. 2   X  X  X X 
Asterionellopsis sp.  X  X  X   
Asterionella sp.  X X   X X  
Coscinodiscus sp.    X  X X X 
	
	
	
Table S4: Growth medium atrazine concentrations for community toxicity tests. 
 
Week Nominal value (µg L-1) Measured value (µg L-1) 

1 100 121 
1 250 293 
2 100 128 
2 250 309 
3 100 103 
3 250 290 
4 100 122 
4 250 212 
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Table S5: Full output linear mixed effects regression model 
 
Variable Estimate Standard 

error 
DF t-statistic p-value 

Intercept 40.44  15.05 297 2.685 0.0077 
Day 7 -60.43 25.60 297 -2.360 0.0189 
Day 14 -48.96  20.92 297 -2.339   0.0199 
Day 21 -64.15  20.92 297 -3.066   0.0024 
Temp.exp -9.48  20.92  297 -0.453 0.6509 
Temp.exp x Day 7 35.04 33.12 297 1.058 0.2908 
Temp.exp x Day 14 23.47   29.64 297 0.792 0.4291 
Temp.exp x Day 21 59.20   29.64 297 1.997 0.0467 
Cor(µ,EC50) 30.07  19.67 5 1.53 0.1869 
Cor(µ,EC50) x Day 14 -16.87  33.61 297 -0.502  0.6160 
Cor(µ,EC50) x Day 21 1.17  27.44 297 0.043 0.9660 
Cor(µ,EC50) x Day 28 -28.39 27.44 297 -1.035 0.3016 
Cor(µ,EC50) x Temp.exp -136.46   27.44 297 -4.972 <0.0001 
Cor(µ,EC50) x Day 7 x Temp.exp 139.46 43.90 297 3.177 0.0016 
Cor(µ,EC50) x Day 14 x Temp.exp 155.08   39.37 297 3.938 0.0001 
Cor(µ,EC50) x Day 21 x Temp.exp 168.34   39.37 297 4.275 <0.0001 
Cor(K,EC50) 67.31  23.39 5 2.877 0.0347 
Cor(K,EC50) x Day 7 -83.72 39.89 297 -2.099 0.0367 
Cor(K,EC50) x Day 14 -44.48 32.58 297 -1.365 0.1732 
Cor(K,EC50) x Day 21 -56.17 32.58 297 -1.724 0.0857 
Cor(K,EC50) x Temp.exp -60.10   32.58 297 -1.845   0.0660 
Cor(K,EC50) x Day 14 x Temp.exp 101.18 51.72 297 1.956   0.0514 
Cor(K,EC50) x Day 21x Temp.exp 109.36   46.31 297 2.361 0.0189 
Cor(K,EC50) x Day 28 x Temp.exp 102.38   46.31 297 2.210 0.0278 
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Summary 

The world population has increased by a tenfold since the industrial. Human activities have 

thereby progressively interfered with the environment, which have caused an unprecedented 

biodiversity decline in the pas century. In the 1990s, increasing concerns about the 

consequences of this global biodiversity decline has lead to several large-scale experiments 

to assess if biodiversity and ecosystem functions are interrelated. The hundreds of 

experiments that have since then be conducted have now provided compelling evidence that 

biodiversity indeed generally increases the functioning and functional stability of ecosystems. 

The further decline global biodiversity that is forecasted for this century may hence 

jeopardize the provisioning of the many ecosystem functions on which society depends. 

However, it remains unclear to what extent ecosystem functions will be altered by 

biodiversity changes. Although biodiversity-ecosystem functioning relationships are generally 

positive, their exact shape does strongly differ between systems and environmental 

conditions. This provides a major challenge, as current theoretical frameworks are unable to 

explain this context-dependence of biodiversity-ecosystem functioning relationships. This 

thesis therefore incorporates the fundamental principles of compositional dynamics explicitly 

into biodiversity theory to develop a context-dependent framework that allows explaining 

differences in the consequences of biodiversity changes between systems and 

environmental conditions.  

Chapter 1 revises the state of the art in biodiversity research. Both theoretical frameworks 

and empirical evidence of biodiversity effects on ecosystem functioning and functional 

stability are thereby summarized. Next, the currently unexplained, context-dependence of 

biodiversity-ecosystem functioning relationships is discussed. Finally, the rationale to 

develop a context-dependent framework by explicitly incorporating compositional dynamics is 

explained.  

In chapter 2 it is demonstrated how environmentally induced changes in the biodiversity-

ecosystem functioning relationship can be quantitatively predicted. To this end, a marine 

Diatom microcosm experiment was used. First, biomass production was measured in 

communities of 1, 2, 4, 6 and 8 species, exposed to 3 concentrations of the herbicide 

atrazine. Atrazine altered the biodiversity-productivity relationship. A negative biodiversity-

productivity relationship was observed under control conditions, whereas a positive 

relationship was observed under high atrazine stress. Next, a community model was used to 

demonstrated how changes in the biodiversity-productivity relationship, and underlying 

changes in community composition, species complementarity and dominance can be 
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predicted from the per-capita strength of species interactions and species tolerance to 

atrazine. 

In chapter 3 it is demonstrated that, in competitive systems, the biodiversity-ecosystem 

functioning relationship changes in a general, predictable way over an environmental stress 

gradient. First, a comprehensible community model is introduced to reveal that the slope of 

the BEF relationship is expected to change in a general, unimodal way along environmental 

stress gradients in competitive systems. It is demonstrated that this unimodal response, 

whereby maximal positive biodiversity effects occur at intermediate environmental stress, 

should invariably arise in when species respond differently to environmental changes. The 

exact shape of the unimodal response, that is the environmental stress level at which the 

maximal slope is attained, depends however on the type and strength of species interactions 

in the system. Systems with more positive/facilitative interactions are thereby predicted to 

experience maximal biodiversity effects at lower stress levels compared to systems with 

more negative/competitive interactions. Next, it is demonstrated that the model predictions 

strikingly concur with a meta-analysis of a global dataset of 52 experiments that manipulated 

the diversity of primary producers under at least 2 environmental conditions. 

In chapter 4 current additive partitioning methods are extended to quantify the complex 

biodiversity effects on ecosystem functioning that can arise over time. Species often have 

similar initial functional contributions, which are likely to change over time because of 

competitive differences. This can result in a non-linear relationship between species 

functional abilities and functional contributions to ecosystem functions. Current additive 

partitioning methods, however, assume a linear relationship. Deviations from linearity can 

hence strongly affect validity of these methods. In this chapter, a general additive partitioning 

method is derived that allows fitting an appropriate relationship between species functional 

abilities and contributions. The applicability and validity of this generalised method is 

illustrated based on the Cedar Creek biodiversity II experiment. 

In chapter 5 it is revealed how biodiversity effects on compositional stability can drive 

biodiversity effects on ecosystem function stability. Ecological theory generally focuses on 

functional compensation between species, resulting in a strong compositional turnover, as a 

mechanism to explain positive biodiversity effects on functional stability. However, theory 

also suggest that, in systems with more symmetrical interactions such as primary producer 

systems, increased functional stability should instead be driven by compositional stability. 

The experiment used in chapter 2 was therefore extended with 3 more weeks. Communities 

were thereby transferred to atrazine-free medium after 4 weeks of atrazine exposure. 

Confirming theoretical predictions, biodiversity indeed simultaneously increased functional 
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and compositional resistance to atrazine. However, these slower compositional dynamics in 

more diverse systems also caused them to recover more slowly after exposure had ceased. 

In chapter 6 it is discussed how non-randomness in species sensitivity to environmental 

changes could modulate the effect of environmental changes on ecosystem functioning. Due 

to monetary, logistic or ethical constrains ecosystem-level experiments are generally 

unfeasible. Ecosystem-level effects of environmental changes are hence generally estimate 

from species-level effects, which are easily obtainable from single-species bioassays. Here, 

a community model and Diatom microcosm experiment was presented to demonstrate how 

non-randomness between species sensitivities to environmental changes and their functional 

traits can affect the effect of environmental changes on ecosystem functioning. The focus is 

thereby on 2 species traits that can easily be measured in bioassays, the per capita growth 

rate and carrying capacity, and productivity as an ecosystem function. The correlation 

between species sensitivity and the growth rate appears to be particularly important during 

temporary changes in environmental conditions, as it determines the rate by which species 

can respond to these changes. Larger reductions in productivity thereby occur when the fast 

growing species are more sensitive to environmental changes. In contrast, the correlation 

between species sensitivity and the carrying capacity affects productivity during both 

temporary and permanent changes in environmental conditions. In both scenarios, effects on 

productivity increase when species with higher carrying capacities, and thus a higher ability 

to produce biomass, are more sensitive. Although ecosystem-level effects can to some 

extend be estimated from species-level effect – as assumed in contemporary risk 

assessment procedures – these results demonstrate that non-randomness in species 

sensitivity can result in a strong underestimation of ecosystem-level effects. 

Chapter 7 summarizes the insights obtained in this thesis by integrating compositional 

dynamics explicitly into biodiversity theory. The developed context-dependent framework 

allows explaining differences in the biodiversity-ecosystem functioning relationships between 

systems and environmental conditions. The unimodal response along an environmental 

gradient thereby revealed that the consequences of predicted upcoming biodiversity loss are 

likely to increase by projected environmental changes such as climate change, ocean 

acidification or chemical pollutants. In addition, it is demonstrated that biodiversity effects on 

ecosystem functioning and ecosystem function stability, which have generally been treated 

separately, are inherently linked by the same underlying mechanisms. Although the results 

presented in this thesis help to deepen our understanding on how biodiversity affect 

ecosystem functions, there are still several major challenges ahead. Finally, I discuss how 

our current knowledge, which is largely based on simple primary producer systems, only 
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provides a first step towards a deeper understanding of biodiversity effects. Extending 

experiments to more complex systems, both multi trophic level and spatially explicit, will be 

the essential next step to help us understand and deal with the problems that we’ll face in the 

21st century. 
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Samenvatting 

De exponentiële groei van de wereldbevolking sinds de industriële revolutie heeft ertoe 

geleid dat onze planeet steeds meer en meer onder druk is komen te staan door menselijke 

activiteiten. Dit veroorzaakte onder meer tot een ongezien wereldwijd verlies aan soorten in 

de voorbije eeuw. Begin de jaren 90 leidde de ongerustheid over de gevolgen van dit globale 

biodiversiteitsverlies tot groots opgezette experimenten om de relatie tussen biodiversiteit en 

werking van een ecosysteem na te gaan. De honderden experimenten die sindsdien zijn 

uitgevoerd tonen bijna eenduidig aan dat de werking en stabiliteit van een ecosysteem 

inderdaad verhoogt met toenemende biodiversiteit. Het is dus duidelijk dat de vele 

ecosysteemfuncties waar we voor ons dagdagelijks leven van afhangen in de 21e eeuw meer 

en meer onder druk zullen komen te staan door verder biodiversiteitsverlies. Echter, 

inschatten hoe groot de impact van biodiversiteitsverlies op de werking van een ecosysteem 

is, blijkt niet eenvoudig. Hoewel experimenten bijna eenduidig een positieve relatie aantonen, 

blijkt de sterkte van deze relatie sterk te verschillen tussen systemen en omgevingscondities. 

De theoretische denkkaders die ecologen de voorbije twee decennia gecreëerd hebben 

blijken bovendien niet in staat deze sterke context-afhankelijkheid van de relatie tussen 

biodiversiteit en de werking van een systeem te verklaren. In deze thesis worden daarom de 

basisprincipes van gemeenschapsdynamieken geïncorporeerd in het huidig theoretisch 

kader rond biodiversiteitseffecten op de werking van een ecosysteem. Hierbij wordt een 

contextafhankelijke kader gecreëerd dat beter toelaat verschillen in de gevolgen van 

biodiversiteitsverlies tussen omgevingscondities en systemen te verklaren.  

In hoofdstuk 1 worden de huidige inzichten rond hoe biodiversiteit de werking en stabiliteit 

van een ecosysteem kan beïnvloeden samengevat. Hierbij wordt zowel de experimenteel 

bekomen relaties tussen biodiversiteit en de werking of stabiliteit van een ecosysteem 

besproken, als ook de theoretische denkkaders die geschept werden om deze observaties te 

verklaren. Vervolgens wordt besproken hoe grote verschillen in biodiversiteitseffecten tussen 

systemen of omgevingscondities geobserveerd werden, welke tot op de dag van vandaag 

niet kwantitatief verklaard konden worden. Ten slotte wordt verklaard hoe in deze thesis dit 

ontbrekend een context-afhankelijk denkkader gecreëerd wordt op basis van de 

basisprincipes van gemeenschapsdynamieken in ecologie.  

In hoofdstuk 2 wordt aangetoond hoe veranderingen in de relatie tussen biodiversiteit en de 

werking van een ecosysteem ten gevolge van omgevingsveranderingen kwantitatief 

voorspeld kunnen worden. Hierbij werd gebruik gemaakt van een experiment met mariene 

Diatomeeën. Er werden gemeenschappen van 1, 2, 4, 6 en 8 soorten gemaakt die 

vervolgens werden blootgesteld aan 3 concentraties van het herbicide atrazine. De relatie 
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tussen diversiteit en productiviteit veranderde aanzienlijk tussen de verschillende 

omgevingscondities. In de afwezigheid van atrazine was deze relatie negatief, terwijl onder 

hoge concentraties van atrazine deze positief werd. Vervolgens werd aangetoond dat deze 

veranderingen in de biodiversiteit-productiviteit relatie, als ook de onderliggende 

veranderingen in de compositie, complementariteit en dominantie van de gemeenschappen 

door atrazine kwantitatief konden voorspeld worden door een model op basis van de sterkte 

van de interacties tussen de soorten en hun gevoeligheid voor atrazine.  

In hoofdstuk 3 wordt aangetoond dat de relatie tussen biodiversiteit en de werking van een 

ecosysteem op een algemene en voorspelbare manier verandert over een omgevings-

gradiënt in competitieve systemen. Eerst wordt een eenvoudig gemeenschapsmodel gebruikt 

om aan te tonen hoe de helling van de relatie tussen biodiversiteit en de werking van een 

systeem op een algemene, unimodale manier verandert over een omgevings-gradiënt 

wanneer soorten op verschillende manieren reageren op omgevingsveranderingen. Een 

maximaal effect van biodiversiteitsveranderingen kan bijgevolg verwacht worden onder 

condities van intermediaire omgevingsstress. Echter, de intensiteit van omgevingsstress 

waarbij het effect van biodiversiteitsveranderingen maximaal wordt hangt hierbij af van het 

type van soortinteracties in het systeem. In systemen met meer positieve/faciliterende 

interacties is het effect van biodiversiteitsveranderingen maximaal bij lagere niveaus van 

omgevingsstress in vergelijking met systemen met meer negatieve/competitieve interacties. 

Vervolgens wordt aangetoond dat deze algemene unimodale response bevestigd wordt door 

een meta-analyse van 52 studies die biodiversiteit manipuleerden onder minstens 2 

omgevingscondities. 

In hoofdstuk 4 worden bestaande additieve partitie methodes om biodiversiteitseffect op de 

werking van ecosystemen uitgebreid om meer complexe effecten die over tijd kunnen 

optreden correct te kwantificeren. Soorten hebben vaak gelijke initiële bijdragen in 

experimenten, welke over tijd sterk kunnen veranderen ten gevolge van competitie. De 

relatie tussen de functionele capaciteiten van soorten en hun functionele bijdrage tot 

ecosysteem functies, die wordt gebruikt voor het kwantificeren van biodiversiteitseffecten, 

kan hierdoor niet-lineair worden. Huidige partitie methodes gaan echter uit van een lineaire 

relatie, wat kan leiden tot een verkeerde kwantificatie van complementariteit- en dominantie-

effecten op ecosysteem functies. De algemene, niet-lineaire partitie die geïntroduceerd wordt 

in hoofdstuk laat dus toe om een adequate relatie tussen de functionele capaciteiten van 

soorten en hun functionele bijdrage te fitten. Dit laat toe om op een eenvoudige manier 

complexe biodiversiteitseffecten te kwantificeren, wat geïllustreerd wordt aan de hand van 

het Cedar Creek biodiversity II experiment. 
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In hoofdstuk 5 wordt aangetoond hoe gemeenschapsdynamieken aanleiding geven tot een 

verhoogde stabiliteit van ecosysteemfuncties in meer diverse systemen. Theoretisch wordt 

vaak de nadruk gelegd op vervanging tussen soorten, en dus sterke wijzigingen en de 

samenstelling van het systeem, als basis voor deze verhoogde stabiliteit. Echter, modellen 

suggereren dat in systemen waar soortinteracties vrij symmetrisch zijn, zoals primaire 

productie systemen, deze verhoogde stabiliteit gedreven wordt door sterke stabiliteit in 

gemeenschapscompositie. Het experiment uit hoofdstuk 2 werd hiervoor met 3 weken 

verlengd waarbij de gemeenschappen na 4 weken blootstelling aan atrazine werden 

getransfereerd naar groeimedium zonder atrazine. Zoals theoretisch voorspeld was 

productiviteit en gemeenschaps-composities inderdaad meer resistent aan atrazine 

blootstelling. Echter, meer diverse systemen keerden hierdoor echter minder snel terug naar 

de controle ten opzichte van minder diverse systemen.  

In hoofdstuk 6 wordt aangetoond hoe de effecten van omgevingsveranderingen op 

ecosysteemfuncties beter kunnen ingeschat worden op basis van informatie over 

soortengevoeligheid. Omwille van budgettaire, tijd, logistieke of ethische reden zijn testen op 

ecosysteem niveau vaak niet voorhanden. Bijgevolg dienen ecosysteemeffecten vaak 

geschat te worden op basis van de gevoeligheden van de individuele soorten. In hoofdstuk 6 

wordt daarom een gemeenschapsmodel en experiment met Diatomeeën gemeenschappen 

gebruikt om aan te tonen hoe correlaties tussen functionele capaciteiten van soorten en hun 

gevoeligheid een grote invloed kunnen hebben op effecten op ecosysteemfuncties. Hierbij 

wordt gefocust op 2 eigenschappen van soorten en hun gevoeligheid: de groeisnelheid en de 

draagkracht. De gevoeligheid van de groeisnelheid heeft hierbij vooral een effect op 

productiviteit gedurende korte, tijdelijke omgevingsveranderingen gezien het beïnvloed hoe 

snel soorten kunnen reageren. Grotere effecten treden hierbij op wanneer de snelst 

groeiende soorten het gevoeligst zijn aan omgevingsverandering. De gevoeligheid van de 

draagkracht, en dus de totale biomassa die kan geproduceerd worden, heeft een blijvend 

effect. Zowel bij tijdelijke als langdurige omgevingsveranderingen zijn de effect het grootst 

wanneer de meest productieve soorten het gevoeligst zijn gezien dit de mogelijkheid voor 

functionele compensatie reduceert. Dit toont aan dat, hoewel effecten op ecosysteem 

functies in zekere mate kunnen voorspeld worden op basis van effecten op soortniveau 

(zoals aangenomen wordt in de huidige procedures voor ecologische risicoschatting), sterke 

correlaties voor zeer sterke onderschattingen van ecosysteem effecten kunnen leiden. 

In hoofdstuk 7 wordt samengevat hoe het integreren van de basisprincipes van 

gemeenschapsdynamieken in biodiversiteitsonderzoek een aantal belangrijke inzichten heeft 

opgeleverd. In deze thesis werd aangetoond dat dit essentieel is om een context-afhankelijk 
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theoretisch denkkader te ontwikkelen dat in staat is op verschillen in de relatie tussen 

biodiversiteit en de werking van een ecosysteem tussen systemen en omgevingscondities te 

kunnen verklaren. Er werd aangetoond hoe deze relatie op een algemene manier verandert 

en de gevolgen van biodiversiteitsverlies wellicht nog zullen toenemen ten gevolge van 

voorspelde omgevingsveranderingen zoals klimaatsverandering, oceaanverzuring of 

chemische verontreiniging. Ook werd aangetoond dat biodiversiteitseffecten op stabiliteit en 

functie, welke tot nog toe grotendeels afzonderlijk beschouwd werden, onlosmakelijk met 

elkaar verbonden zijn gezien ze door dezelfde onderliggende mechanismes gedreven 

worden. Hoewel deze thesis een belangrijke bijdrage heeft geleverd in het verder uitdiepen 

van onze kennis over biodiversiteitseffecten, is het ook duidelijk dat wel voor enorme 

uitdagingen blijven staan. Finaal wordt besproken hoe de huidige kennis, gebaseerd op 

eenvoudige primaire productie systemen, slechts een handvol stukjes van de puzzel omvat. 

Onderzoek naar meer complexe systemen, zowel multi-trofisch als spatiaal expliciet, zal 

hierbij een essentiële volgende stap zijn in het begrijpen en oplossen van de uitdagingen 

waar we in de 21e eeuw mee geconfronteerd zullen worden.  
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