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Abstract. In (Anglberger et al., 2015, Section 4.1), a deontic logic is proposed which explicates
the idea that a formula ϕ is obligatory if and only if it is (semantically speaking) the weakest
permission. We give a sound and strongly complete, Hilbert style axiomatization for this logic. As a
corollary, it is compact, contradicting earlier claims from Anglberger et al. (2015). In addition, we
prove that our axiomatization is equivalent to Anglberger et al.’s infinitary proof system, and show
that our results are robust w.r.t. certain changes in the underlying semantics.

§1. Intro. In Roy et al. (2014, 2012) and Anglberger et al. (2015), a logic is developed
for “obligation as weakest permission”.1 The semantics proposed in Anglberger et al.
(2015) is meant to capture the deontic aspects of reasoning in strategic games, where we
speak about properties of the best actions available to a given agent. Whereas usually in
formal models of such games, actions and/or agents are modeled explicitly at the object
level, the present logic only speaks about action tokens (which correspond to states in a
Kripke-model) and action types (sets of action tokens). Let us explain this briefly—we
refer to the cited works for a more elaborate discussion.

Consider a situation in which an agent can choose from a number of distinct action
tokens, where at least some of these are optimal. Whereas the agent is permitted to perform
one of those optimal action tokens, his sole obligation (if there is one at all – mind this
important caveat) is to perform one of the optimal action tokens. This means that the
deontic operators O and P can be read as follows, where ϕ refers to an arbitrary action
type:

Oϕ: “ϕ is the (only) action type that is obligatory”, or more elaborately: “an action token
is optimal if and only if it is of type ϕ”

Pϕ: “if an action is of type ϕ, then it is optimal”

Anglberger et al. moreover introduce an alethic modality �, which they interpret as a
universal modality. �ϕ thus means that all available action tokens are of type ϕ.

They then propose what they call a “minimal logic” 5HD for these three operators.
However, as they argue, 5HD only captures one half of the notion of “obligation as weakest
permission”. That is, if ϕ is obligatory, then the logic stipulates that ϕ is the weakest
permitted action type. The converse does not hold: something can be the weakest permitted
action type without being obligatory.

Received: September 30, 2015.
1 In more recent work Dong and Roy (2015); Van De Putte (2015), the logic is compared to other

constructions in deontic logic.
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In the fourth section of Anglberger et al. (2015), a brief discussion of this converse
direction is given, and it is shown how this translates to the semantics of 5HD. Let us call
the resulting logic 5HD∗; it will be defined in Section 2. It is argued in Anglberger et al.
(2015) that 5HD∗ is not compact, and a proof system with an infinitary rule (R-Conv) is
shown to be (weakly) sound and complete w.r.t. 5HD∗.

The main aim of the present paper is to give a sound and strongly complete, Hilbert-style
axiomatization for 5HD∗ (Section 3). As a corollary, this consequence relation is compact,
contradicting the claims mentioned in the previous paragraph. We prove in addition that
the proof system proposed by Anglberger et al. is equivalent to 5HD∗ (Section 4). Finally,
we show that these results can be generalized to other, similar logics for “obligation as
weakest permission” (Section 5).

§2. Definitions. This section is meant to fix notation; it contains no new material. See
Anglberger et al. (2015) for the original definitions and notation.

We work with a modal propositional language, obtained by closing the set of proposi-
tional letters S = {p1, p2, . . .} and ⊥,� under boolean connectives ¬,∨,∧,⊃,≡ and the
unary operators �, O, P . Call the resulting set of formulas W . We treat only
¬,∨,⊥, O, P,� as primitive; ∧,⊃,≡ are defined in the usual way. In the remainder, let
the metavariables ϕ,ψ, . . . range over arbitrary members of W and �,�, . . . over arbitrary
subsets of W .

DEFINITION 2.1. A strict deontic frame F is a quadruple 〈W, R�, n P , nO〉, where W is
a non-empty set (the domain of F), R� = W × W , and n P : W → ℘(℘(W )) and
nO : W → ℘(℘(W )) satisfy the following conditions

(OR) If X ∪ Y ∈ n P (w), then X ∈ n P (w) and Y ∈ n P (w)
(WP) If X ∈ nO(w) and Y ∈ n P (w), then Y ⊆ X
(OP) If X ∈ nO(w) then X ∈ n P (w)
(OC) If X ∈ nO(w), then X �= ∅
(Conv) If X ∈ n P (w) and for all Y ∈ n P (w), Y ⊆ X, then X ∈ nO(w)

If a frame obeys all the above conditions except (possibly) (Conv), it is just a deontic frame.

A (strict) deontic model is a (strict) deontic frame F together with a valuation v that
maps every propositional atom to a subset of the domain of F.

DEFINITION 2.2. Let M = 〈W, R�, nO , n P , v〉 be a (strict) deontic model and w ∈ W .

M, w �|� ⊥
M, w |� p iff w ∈ v(p)
M, w |� ¬ϕ iff M, w �|� ϕ
M, w |� ϕ ∨ ψ iff M, w |� ϕ or M, w |� ψ
M, w |� �ϕ iff M, w′ |� ϕ for all w′ ∈ R�(w)
M, w |� Oϕ iff ‖ϕ‖M ∈ nO(w)
M, w |� Pϕ iff ‖ϕ‖M ∈ n P (w),

where ‖ϕ‖M = {u ∈ W | M, u |� ϕ}.
DEFINITION 2.3. � �5HD∗ ϕ iff for all strict deontic models M: if M, w |� ψ for all
ψ ∈ �, then M, w |� ϕ.
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§3. Axiomatization of 5HD∗.

DEFINITION 3.1. The set of 5HD∗-theorems is the closure of the set of all instances of the
following axiom schemas

(CL) All tautologies of classical propositional logic
(S5�) S5 for �
(EQO) �(ϕ ≡ ψ) ⊃ (Oϕ ≡ Oψ)
(EQP ) �(ϕ ≡ ψ) ⊃ (Pϕ ≡ Pψ)
(FCP) P(ψ ∨ ϕ) ⊃ (Pψ ∧ Pϕ)
(Ought-Perm) Oϕ ⊃ Pϕ
(Ought-Can) Oϕ ⊃ �ϕ
(Weakest-Perm) Oϕ ⊃ (Pψ ⊃ �(ψ ⊃ ϕ))
(Taut-Perm) P� ⊃ O�
under the following rules:

(MP)
ϕ, ϕ ⊃ ψ

ψ
(NEC)

� ϕ
� �ϕ

� �5HD∗ ϕ iff there are ψ1, . . . , ψn ∈ � such that (ψ1 ∧ . . . ∧ ψn) ⊃ ϕ is a 5HD∗-
theorem.

This axiomatization is obtained by adding the axiom (Taut-Perm) to the axiomatization
of the logic 5HD from (Anglberger et al., 2015, Section 3). In the remainder of this section,
we establish the following:

THEOREM 3.2. � �5HD∗ ϕ iff � �5HD∗ ϕ.

Before we prove this theorem, let us note one property of �5HD∗ :

LEMMA 3.3. Pϕ,�(ψ ⊃ ϕ) �5HD∗ Pψ .

Proof. Suppose Pϕ,�(ψ ⊃ ϕ). Since � is a normal modal operator and by the second
premise, we can infer �(ϕ ≡ (ψ ∨ ϕ)). Hence by (EQP ) and the first premise, P(ψ ∨ ϕ).
But then by (FCP) and classical logic, Pψ . �

Soundness. For soundness, we refer to Section 3.3 of Anglberger et al. (2015), where
the soundness of all the axioms except (Taut-Perm) is shown with respect to the set of
all deontic models. So we are left with checking that (Taut-Perm) is valid in view of the
additional condition (Conv). Suppose that M, w |� P�. It follows that ‖�‖M ∈ n P (w).
Hence, W ∈ n P (w). Clearly, for all X ∈ n P (w), X ⊆ W , and hence by condition (Conv),
W ∈ nO(w) so that M, w |� O�.

Completeness, part 1. For (strong) completeness, we need a more elaborate proof. The
main complication in the proof consists in applying a “copy-and-merge” technique to the
completeness proof from Section 3.3 of Anglberger et al. (2015). This technique was
originally developed in the 1980s by Passy, Tinchev, and Gargov for the completeness
proof of modal logics for necessity and sufficiency; see e.g., Gargov and Passy (1990);
Passy and Tinchev (1991).2 There are very close links between 5HD∗ and the notions

2 The authors of Gargov and Passy (1990) refer to Vakarelov as the inventor of this technique.
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of modal necessity and sufficiency—a discussion of this relationship can be found in
Van De Putte (2015).

Recall that to prove strong completeness, it suffices to establish that for all consistent
� ⊆ W , there is a model M and a state w in this model such that all the members of �
are true at this state. So let in the remainder � be an arbitrary consistent subset of W , and
let�′ be a maximally 5HD∗-consistent extension of�.3 Let W be the set of all maximally
5HD∗-consistent sets � ⊆ W such that {ϕ | �ϕ ∈ �′} ⊆ �. Let |ϕ| = {� ∈ W | ϕ ∈ �}.

Let M� = 〈W, R�, nO , n P , V 〉, where4

(1) R� = W × W

(2) for all � ∈ W , nO(�) = {|ψ | | Oψ ∈ �}
(3) for all � ∈ W , n P (�) = ↓{|ψ | | Pψ ∈ �}
(4) for all ϕ ∈ S , V (ϕ) = |ϕ|,

where for any set of sets X , ↓X is the set of all subsets of the members of X (also called
the downset of X ).

We now prove a number of lemmas about M� – (variants of) these can be found in the
completeness proof for 5HD from Anglberger et al. (2015). Since the present model is
defined in terms of 5HD∗, we need to prove them here from scratch.

LEMMA 3.4 (Anglberger et al. (2015), Lemma 3.12). |ϕ| ⊆ |ψ | iff �(ϕ ⊃ ψ) ∈ � for
all � ∈ W .

Proof. (⇒) Suppose the antecedent holds. Hence, every maximal consistent extension
of {τ | �τ ∈ �′} that contains ϕ, also contains ψ . By a standard proof (relying on K-
properties of �) we can infer that �′ �5HD∗ �(ϕ ⊃ ψ). By the (4)-axiom for �, ��(ϕ ⊃
ψ) ∈ �′. And hence by the definition of W , �(ϕ ⊃ ψ) ∈ � for all � ∈ W .

(⇐) Suppose the consequent holds. By the T-axiom for �, ϕ ⊃ ψ ∈ � for all � ∈ W .
Hence, for all � ∈ W such that ϕ ∈ �, also ψ ∈ �. It follows that |ϕ| ⊆ |ψ |. �

LEMMA 3.5. For all ϕ ∈ W , |ϕ| = ‖ϕ‖M� .

Proof. By a standard induction on the complexity of ϕ. The inductive base is trivial in
view of (4). For the inductive step, the case where ϕ = �τ is standard. So we are left with
two cases:
CASE1: ϕ = Oτ . (⇒) Suppose that Oτ ∈ �. Hence by (2), |τ | ∈ nO(�) and hence by
the induction hypothesis (IH) and the semantic clause for O M�,� |� Oτ . (⇐) Suppose
that M�,� |� Oτ . Hence by (IH), |τ | ∈ nO(�). By (2), there is a τ ′ such that Oτ ′ ∈ �
and |τ ′| = |τ |. By Lemma 3.4, �(τ ≡ τ ′) ∈ �. But then by (EQO ), Oτ ∈ �.
CASE 2: ϕ = Pτ . (⇒) Suppose that Pτ ∈ �. Hence by (3), |τ | ∈ nP (�) and hence by
(IH) and the semantic clause for P , M�,� |� Pτ . (⇐) Suppose that M�,� |� Pτ . By
the semantic clause for P and (IH), |τ | ∈ n P (�). By (3), there is a τ ′ such that Pτ ′ ∈ �
and |τ | ⊆ |τ ′|. By Lemma 3.4, �(τ ⊃ τ ′) ∈ �. By Lemma 3.3, Pτ ∈ �. �

LEMMA 3.6 (Anglberger et al. (2015), Claim 3.15). M� is a deontic model.

3 Here and below, we freely rely on Lindenbaum’s lemma: every consistent � ⊆ W has a
maximally 5HD∗-consistent extension �′ ⊆ W .

4 Our definition of M� is essentially the same as in (Anglberger et al., 2015, Section 3.3), the only
difference being that here we work with 5HD∗ rather than 5HD.
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Proof. We need to check 4 conditions:
(OR) Immediate in view of the construction, item (3).
(WP) Suppose that X ∈ nO(�) and Y ∈ n P (�). By items (2) and (3) of the construction,
there are ϕ, ψ such that X = |ϕ| and Oϕ ∈ �, and Y ⊆ |ψ | and Pψ ∈ �. By (Weakest-
Perm), �(ψ ⊃ ϕ) ∈ �. Hence by Lemma 3.4, |ψ | ⊆ |ϕ|. It follows that Y ⊆ X .
(OP) Suppose that X ∈ nO(�). By item (2) of the construction, there is a ϕ such that
Oϕ ∈ � and X = |ϕ|. By (Ought-Perm), Pϕ ∈ �. Hence, by item (3) of the construction,
X ∈ n P (�).
(OC) Suppose that X ∈ nO(�). By item (2) of the construction, there is a ϕ such that
Oϕ ∈ � and X = |ϕ|. By (Ought-Can), �ϕ ∈ �. Hence by Lemma 3.5, M,� |� �ϕ.
So there is a 	 ∈ W such that M,	 |� ϕ. Again by Lemma 3.5, ϕ ∈ 	 and hence
X = |ϕ| �= ∅. �

However, M� will not (in general) be a strict deontic frame – in other words, (Conv)
may not hold for M�. To get this condition, we transform M� into a more complex model
M+
� . Informally speaking, M+

� is obtained by first making two disjoint copies of M�, and
then merging the two resulting models. The merging is done in such a way that the truth
lemma is preserved, and yet condition (Conv) is obeyed. We return to this point after giving
the exact definition. For the sake of readibility, we will denote the copies of the members
� ∈ W by �1,�2 rather than 〈�, 1〉, 〈�, 2〉.

Let M+
� =df 〈W +, R+

�, n+
O , n+

P , v
+〉, where

(i) W + = {�1,�2 | � ∈ W }
(ii) R+

� = W + × W +

(iii) for all �i ∈ W +:

(iii.1) if there is a ϕ s.t. Oϕ ∈ �, then n+
O(�

i ) = {{	1,	2 | 	 ∈ X} | X ∈
nO(�)}

(iii.2) otherwise,

(iii.2a) if there is no X ∈ n P (�) such that Y ⊆ X for all Y ∈ n P (�), let
n+

O(�
i ) = ∅

(iii.2b) otherwise, let Xw ∈ n P (�) be such that Y ⊆ Xw for all Y ∈ n P (�).
Define n+

O(�
i ) = {{	i | 	 ∈ Xw} ∪ {� j ∈ W + | j �= i}}

(iv) for all �i ∈ W +:

(iv.1) if n+
O(�

i ) = ∅, let n+
P (�

i ) = ↓{{	1,	2 | 	 ∈ X} | X ∈ n P (�)}
(iv.2) otherwise, let n+

P (�
i ) = ↓n+

O(�
i ).

Let in the remainder |ϕ|+ = {�1,�2 | ϕ ∈ �} = {�1,�2 | � ∈ |ϕ|}. As usual,
‖ϕ‖M+

� = {�i ∈ W + | M+
� |� ϕ}.

Intermezzo. Cases (iii.2b) and (iv.2) are the interesting ones. We need these to ensure
that the additional condition (Conv) is satisfied but that nevertheless, the truth lemma is
preserved. That is, consider the following (5HD∗-consistent!) set of formulas:

�ex = {Pϕ ⊃ �(ϕ ⊃ p1) | ϕ ∈ W} ∪ {Pp1} ∪ {¬Op1}
This set is satisfiable in a strict deontic model. The reason is that “the weakest permis-

sion” can mean two different things: it can refer to an object-level formula, but it can also
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refer to a semantic entity, viz. a set of states in our model. It may well be that in our model,
the “weakest permission” X ⊆ W is such that it cannot be expressed at the object-level.

Now if (iii.2b) applies, then this means that under the object-level interpretation, our
weakest permission can be expressed by some formulaψ , even though Oψ is not a member
of the set�. To make sure that Oψ is false in the model at�i , we add (at least) one weaker
permission to n P (�

i ), which is not expressible at the object level. That it is not expressible
at the object level (and more generally, that no additional formulas of the form Pτ become
valid), follows from the Truth Lemma and Lemma 3.9 below. The main point is that in this
symmetric construction, only sets of the type {|ϕ|1, |ϕ|2 | ϕ ∈ W} are expressible in the
object language.

Completeness, part 2. We now prove the main lemmas that allow us to obtain strong
completeness for 5HD∗.

LEMMA 3.7. For all �i ∈ W +: if n+
O(�

i ) �= ∅, then n+
O(�

i ) is a singleton set.

Proof. If (iii.2b) applies, then this is immediate in view of the construction. If (iii.1)
applies, then it suffices to check that nO(�) is a singleton. This follows from the fact that
(Oϕ ∧ Oψ) ⊃ �(ϕ ≡ ψ) is a theorem in 5HD∗ (see Observation 3.5 from Anglberger
et al. (2015)), and Lemma 3.4. �

LEMMA 3.8. M+
� is a strict deontic model.

Proof. It suffices to check that all conditions of Definition 2.1 are satisfied:
Ad (OR). Trivial in view of the construction, item (iv.1) and (iv.2).
Ad (OP). Trivial in view of item (iv) of the construction.
Ad (OC). Let X+ ∈ n+

O(�
i ). If (iii.1) applies, then X+ = {	1,	2 | 	 ∈ X} where

X ∈ nO(�). By Lemma 3.6, X �= ∅ and hence also X+ �= ∅.
If (iii.2b) applies, then by the construction, every set 	 j ∈ W + with j �= i is a member

of X+, and hence X+ �= ∅.
Ad (WP). Trivial in view of Lemma 3.7 and item (iv) of the construction.
Ad (Conv). Suppose that X ∈ n+

P (�
i ) and for all Y ∈ n+

P (�
i ), Y ⊆ X .

CASE 1: n+
O(�

i ) �= ∅. Then in view of the construction, X is the only member of
n+

O(�
i ) and we are done.

CASE 2: n+
O(�

i ) = ∅. Note that by the construction, and since X is a maximal member
of n+

P (�
i ), X = {	1,	2 | 	 ∈ X ′}, with X ′ ∈ n P (�). Let Y ′ ∈ n P (�) be arbitrary

and let Y = {
1, 
2 | 
 ∈ Y ′}. By item (iv.1) of the construction, Y ∈ n+
P (�

i ). By
the supposition, Y ⊆ X . Hence, Y ′ ⊆ X ′. So we have shown that for all Y ′ ∈ n P (�),
Y ′ ⊆ X ′. But this means that the condition of (iii.2a) is false, and hence n+

O(�
i ) �= ∅ — a

contradiction. So we have shown that case 2 cannot apply given our supposition. �

LEMMA 3.9. Let X, Y ⊆ W and X �= Y . Let Z = {	1, 
2 | 	 ∈ X, 
 ∈ Y }. Then
there is no ϕ such that Z = |ϕ|+.

Proof. Immediate in view of the construction and the definition of |ϕ|+. �

LEMMA 3.10. Where ψ ∈ W and i ∈ {1, 2}: M+
�,�

i |� ψ iff ψ ∈ �.

Proof. By a standard induction on the complexity of ψ , henceforth denoted by c(ψ).
Note that our inductive hypothesis is equivalent to

(IH) for all ψ ∈ W with c(ψ) ≤ n, ‖ψ‖M+
� = |ψ |+.

That is, the truth set of ψ in M+
� is simply the set of all points 	1,	2 where ψ ∈ 	.
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The base case (c(ψ) = 0, hence ψ ∈ S) is trivial. Proving the inductive step for the
connectives is a routine task, we safely leave this to the reader. So we are left with three
cases:

CASE 1: ψ = �ϕ with c(ϕ) ≤ n. We have: M+,�i |� �ϕ iff for all 	 j ∈ W +,
M+,	 j |� ϕ iff [by the construction of W + and (IH)] for all 	 ∈ W , ϕ ∈ 	 iff [by
the construction of W ] �ϕ ∈ �.

CASE 2: ψ = Oϕ with c(ϕ) ≤ n. (⇒) Suppose that M+
�,�

i |� Oϕ. Hence, there is an

X+ ∈ n+
O(�

i ) such that X+ = ‖ϕ‖M+
� . By (IH), X+ = |ϕ|+. We now distinguish two

cases:
(iii.1) applies. Hence, X+ = {	1,	2 | 	 ∈ X}, where X is the only member of nO(�).
By the construction of M�, X = |ψ | for some ψ such that Oψ ∈ �. Hence, |ψ | = |ϕ|.
By Lemmas 3.5 and 3.4, �(ϕ ≡ ψ) ∈ �. Hence by (EQO), Oϕ ∈ �.
(iii.2) and (iii.2b) apply. Assume, first, that Xw = W = ‖�‖M� . It follows that P� ∈ �.
Hence, by (Taut-Perm), O� ∈ �, which contradicts condition (iii.2). So Xw ⊂ W . But
then, where Z is the only member of n+

O(�i ), we can infer by Lemma 3.9 that there is no τ

such that Z = |τ |+. Hence, by (IH), there is no τ such that Z = ‖τ‖M+
� . But then there is

no τ such that M+
�,�

i |� Oτ , contradicting our original supposition. So we have shown
that given the supposition, (iii.2b) cannot apply.

(⇐) Suppose that Oϕ ∈ �. Hence condition (iii.1) applies, and hence the only member
of n+

O(�
i ) is X+ = {	1,	2 | 	 ∈ X}, where X = |ϕ|. By (IH), X+ = |ϕ|+ = ‖ϕ‖M+

�

and hence M+
�,�

i |� Oϕ.

CASE 3: ψ = Pϕ with c(ϕ) ≤ n. (⇒) Suppose that M+
�,�

i |� Pϕ. Hence, there is an

X+ ∈ n+
P (�

i ) such that X+ = ‖ϕ‖M+
� . By (IH), X+ = |ϕ|+ = {	1,	2 | ϕ ∈ 	}. We

will prove that there is a τ such that Pτ ∈ � and �(ϕ ⊃ τ ) ∈ �; applying Lemma 3.3 we
obtain that Pϕ ∈ �. To get there, we distinguish three cases:
(iii.1) applies. Hence, X+ ⊆ Y + = {	1,	2 | 	 ∈ Y }, where Y is the only member of
nO(�). Hence, Y = |τ | and Oτ ∈ �. By (Ought-Perm), Pτ ∈ �. Since X+ ⊆ Y +, also
X ⊆ Y and hence |ϕ| ⊆ |τ |. By Lemma 3.4, �(ϕ ⊃ τ ) ∈ �.
(iii.2a) applies. Hence, by item (iv.2) of the construction, X+ ⊆ Y + = {	1,	2 | 	 ∈ Y },
where Y ∈ n P (�). By the construction of M�, there is a τ such that Pτ ∈ � and Y ⊆ |τ |.
Hence, |ϕ| ⊆ |τ |. By Lemma 3.4, �(ϕ ⊃ τ ) ∈ �.
(iii.2b) applies. By item (iv.1) of the construction, X+ does not contain any set 	i with
	 �∈ Xw. Since X+ = |ϕ|+ and by Lemma 3.9, it follows that X+ ⊆ {	1,	2 | 	 ∈ Xw}.
Note that there is a τ such that |τ | = Xw and Pτ ∈ �. So we can again apply the same
reasoning to show that �(ϕ ⊃ τ ) ∈ �.

(⇐) Suppose that Pϕ ∈ �. By (IH), it suffices that we prove that |ϕ|+ ∈ n+
P (�

i ). We
distinguish again three cases:
(iii.1) applies. Let Oτ ∈ �. Hence by (Weakest-Perm), �(ϕ ⊃ τ ) ∈ �. By Lemmas 3.5
and 3.4 it follows that |ϕ| ⊆ |τ |. Hence, since |τ |+ ∈ n+

O(�
i ), and by item (iv.2) of the

construction, also |ϕ|+ ∈ n+
P (�

i ).
(iii.2a) applies. By the construction of M�, |ϕ| ∈ n P (�). By item (iv.1) of our construc-
tion, |ϕ|+ ∈ n+

P (�
i ).

(iii.2b) applies. Hence, |ϕ| ⊆ Xw. By items (iii.2b) and (iv.2) of the construction, X+
w =

{	1,	2 | 	 ∈ Xw} is a member of n+
P (�

i ). Hence by the same construction, also |ϕ|+ ∈
n+

P (�
i ). �
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§4. The proof system from Anglberger et al. (2015). As mentioned in the introduc-
tion, Anglberger et al. present a nonstandard, infinitary proof system for 5HD∗, which they
show to be sound and weakly complete w.r.t. the semantics. This proof system is obtained
by adding to the rules and axioms of 5HD the following infinitary rule (here, {p1, p2, . . .}
is a complete enumeration of the members of S):

(R-Conv)
� Pp1 ⊃ �(p1 ⊃ ϕ), � Pp2 ⊃ �(p2 ⊃ ϕ), . . .

� Pϕ ⊃ Oϕ

The logic obtained by adding (R-Conv) to 5HD is called 5HD+ in Anglberger et al.
(2015). We will now show that it is equivalent to 5HD∗, and hence also strongly complete
w.r.t. the 5HD∗-semantics.

To prove that 5HD+ is at least as strong as 5HD∗, it suffices to show that adding
(R-Conv) to 5HD yields (Taut-Perm). This is fairly straightforward: putting ϕ = �, the
premise of (R-Conv) holds trivially, and its conclusion is simply (Taut-Perm).5

To prove that 5HD∗ is as strong as 5HD+, we first show that (R-Conv) is sound with re-
spect to the 5HD∗-semantics.6 We prove this by contraposition. Suppose that for a given ϕ,
the conclusion of (R-Conv) is not valid. Hence, there is a 5HD∗-model M = 〈W, R�, nO ,
n P , v〉 and a point w ∈ W such that M, w |� Pϕ, M, w �|� Oϕ. Let pi ∈ S be such that it
does not occur in ϕ. Define v ′ : S → ℘(W ) such that v ′(τ ) = v(τ ) for all τ ∈ S \{pi } and
v ′(pi ) = nO(w). Let M ′ = 〈W, R�, nO , n P , v

′〉. It follows that M ′, w |� Opi and hence
also M ′, w |� Ppi . Since ‖ϕ‖M ′ = ‖ϕ‖M , M ′, w �|� Oϕ and M ′, w |� Pϕ. But then by
(WP) and the semantic clause for O , ‖ϕ‖M ′ ⊂ ‖pi‖M ′

and hence M ′, w �|� �(pi ⊃ ϕ).
So we have shown that ��5HD∗ Ppi ⊃ �(pi ⊃ ϕ).

Relying on our completeness result from the preceding section (Theorem 3.2), this
means that (R-Conv) is also sound with respect to our axiomatization of 5HD∗. This
finishes our proof of the identity of �5HD∗ and �5HD+ .

§5. Generalizations and an open issue.

Generalizations of the result. Our completeness result can be easily generalized to weaker
logics that are obtained by skipping some of the frame conditions such as (OR) and (OC),
and leaving out the associated axioms. If we leave out (OC), no changes need to be made
to the construction of M� or M+

� . If we leave out (OR), the construction of n P and n+
P just

needs to be simplified, so that they are no longer closed under subsets.
Likewise, the results can be generalized to the logic obtained by adding the following

frame condition from Roy et al. (2012):

(UC) If X ∈ n P (w) and Y ∈ n P (w), then X ∪ Y ∈ n P (w)

and the associated axiom schema

(Union-Closure) (Pϕ ∧ Pψ) ⊃ P(ϕ ∨ ψ)

5 Interestingly, there are also true instances of the premise of (R-Conv) in which ϕ is not equivalent
to �. For instance, �5HD∗ P(�Op ⊃ p) ⊃ O(�Op ⊃ p), alhough ��5HD∗ �Op ⊃ p. We are
indebted to one of the referees for pointing this out, and thereby correcting an earlier mistake in
the paper.

6 A similar proof is given in (Anglberger et al., 2015, p. 15); we include ours for the sake of self-
containedness. In principle, there should also be a direct syntactic proof of the derivability of
(R-Conv) within 5HD∗, but we were not able to find one.
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Soundness for this extension is routine. For completeness of the logic with both (OR)
and (UC), the only difficult case is the one where n+

O(w) = ∅. If this is so, note that if
X ∈ n+

P (�
i ) and Y ∈ n+

P (�
i ), then in view of item (iv.1) of the construction, there are

propositions ϕ and ψ such that Pϕ, Pψ ∈ � and X ⊆ |ϕ|, Y ⊆ |ψ |. It follows that
X ∪ Y ⊆ |ϕ| ∪ |ψ |. By (Union Closure), P(ϕ ∨ ψ) ∈ � and hence |ϕ| ∪ |ψ | ∈ nP (�).
Since n P (�) is closed under subsets, X ∪ Y ∈ n P (�).

Additional frame conditions can be thought of. For instance, one may add the condition
that every impossible action is permitted:

(IP) ∅ ∈ n P (w)

This condition is axiomatized by the axiom P⊥. Interestingly, if we add both (UC) and (IP)
to the semantics of 5HD∗, it can be rephrased in a much simpler fashion: all we need to do
is pin down a set of “permitted” states R(w). Pϕ is then true at w in M iff ‖ϕ‖M ⊆ R(w),
and Oϕ is true at w iff ‖ϕ‖M = R(w). See also Van De Putte (2015) where this link is
studied in more detail.

Likewise, the results generalize to the case where � is a weaker modality. Of course,
this requires a re-formulation of some of the semantic clauses. Their general form becomes
this:

(WP’) If X ∈ nO(w) and Y ∈ n P (w), then Y ∩ R�(w) ⊆ X ∩ R�(w)
(OP’) If X ∈ nO(w) then X ∈ n P (w)
(OC’) If X ∈ nO(w), then X ∩ R�(w) �= ∅
(Conv’) If X ∈ n P (w) and for all Y ∈ n P (w), Y ∩R�(w) ⊆ X∩R�(w), then X ∈ nO(w)

Is 5HD∗ what we are after? In view of the completeness result, one may ask whether
the semantic consequence relation for 5HD∗ was the intended logic of “obligation as
weakest permission”, or whether the authors of Anglberger et al. (2015) want a stronger
consequence relation instead. This can be explained again in terms of the example �ex (see
page 374): perhaps they want this premise set to be trivial after all, even if none of its finite
subsets is trivial.

Theorem 3.2 implies that such a stronger consequence relation can only be obtained
if we impose additional conditions on our models. Let us suggest two such conditions,
leaving their full study for a later occasion. Where w is an arbitrary point in an 5HD∗-
model M , let ‖w‖M = {ϕ ∈ W | M, w |� ϕ}. The conditions are:

(C1) Where X ∈ nO(w): if ‖v‖M = ‖v ′‖M , then v ∈ X iff v ′ ∈ X
(C2) Where X ∈ nO(w): if ‖v‖M ∩ S = ‖v ′‖M ∩ S , then v ∈ X iff v ′ ∈ X

(C2) is clearly a (strictly) stronger condition than (C1). Arguably, neither of these can
be characterized by a finitary rule, since the semantic consequence relation they yield is
not compact. We conjecture that the following infinitary rules suffice to obtain a sound and
(strongly) complete axiomatization:

(R1) {Pϕ ⊃ �(ψ ⊃ ϕ) | ϕ ∈ W} � Pψ ⊃ Oψ
(R2) {Pϕ ⊃ �(ψ ⊃ ϕ) | ϕ ∈ S} � Pψ ⊃ Oψ .
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