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Degenerative Transfer of macroradical �� 	with RAFT CTA ���	

Degenerative Transfer of macroradical �� 	with macro-RAFT CTA ���	

Stochastic and deterministic modeling tools are applied to allow for a detailed kinetic analysis and design of reversible
addition fragmentation chain transfer (RAFT) polymerization or macromolecular design by interchange of xanthates
(MADIX) with O-ethylxanthyl ethylpropionate as RAFT agent and styrene as reference monomer under homogeneous
conditions.

In the class of reversible deactivation radical polymerization techniques, RAFT and MADIX polymerizations have proven to
be the most versatile processes in terms of the reaction conditions, the variety of monomers for which microstructural
control can be achieved, tolerance to functionalities, and the range of polymeric architectures that can be produced.
Excellent control over chain length and end-group functionality can often be obtained due to the inherent reversible
transfer process of these techniques.
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Microstructural Information via Stochastic Modeling
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Justification degenerative model

Deterministic and stochastic modeling techniques are successfully applied to design
homogeneous degenerative RAFT/MADIX polymerization processes, including for the first time
visualization of the composition of individual chains. Although no linear growth of chain length
can be observed, varying the initiator and RAFT/MADIX agent concentrations allows regulation of
the polymerization rate and degree. High end group functionalities are obtained under the
complete range of investigated conditions, that resulted in high dispersities, confirmed by
stochastic modelling. The obtained modeling results are useful in order to achieve in-depth
knowledge of the RAFT/MADIX process, which should allow on a longer term an accelerated
transition to RAFT/MADIX emulsion polymerization, permitting in particular the synthesis of better-
defined block copolymer structures.
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Polymerization Temperature: 343K
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