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1. Introduction

fMRI studies are commonly evaluated using classical statistical null
hypothesis testing (NHST)

NHST: only focus on testing against null of no activation (H0)
Statistical significance 6= functional relevance

Growing awareness of importance of e↵ect sizes (ES; magnitude of e↵ect):
represents how active the voxel is during the task
often expressed as % BOLD signal change
related to underlying neurological process

A priori specification of an expected ES is essential for power calculations,
but this ES can also be incorporated into testing to increase sensitivity
(e.g., alternative-based thresholding1).

Other methods use the data to estimate an appropriate ES to include in
testing (non-exhaustive list):

Likelihood ratio (LR) testing:

2 ES used for testing estimated as a
specific percentile of observed ESs over voxels (e.g. 95th percentile).
Amplitude thresholding:

3 the functionally relevant ES is the
magnitude that, when used as a threshold, results in the equal number
of voxels as an analysis with thresholding using NHST (e.g. uncorrected
with p < 0.001).
Regions in limbo:

4 ES used for testing is that of the voxel with the
smallest ES in a cluster-thresholded SPM.

In the current study we evaluate the influence of the ES estimation method
on the performance of a promising alternative for NHST, the LR testing
method2.

Thresholded SPM (FDR q = 0.05)
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3. Results of the LR test with k=8
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 97 Percentile (ES = 0.41)
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2

Uncorrected p = 0.001 (ES = 0.52)
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FDR q = 0.05 (ES = 0.71)
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Cluster FWER 0.05 (ES = 0.43)
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RFT 0.05 (ES = 1.07)
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Uncorrected p = 0.001 (mean ES = 0.69)
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RFT 0.05 (mean ES = 1.07)
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Uncorrected p = 0.001
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Figure: Data from a motion localizer task to idenitify hMT/V5+5. The greener the voxel, the larger its ES.

Conclusions

Applying the LR testing method with the mean ES after various traditional
thresholding procedures results in an SPM with di↵erent voxels that have
larger, more functionally relevant ESs as compared to the thresholded
methods as shown in ( 4 ).
The benefit of the LR testing method is its independence from thresholding
prior to estimating the functionally relevant ES.
However, the estimated ES is sensitive to the amount of activation as
demonstrated with simulations as shown here for a single voxel:
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Figure: In this simulation study, the ES for active voxels was 2.5% BOLD signal change. The definition of
the functionally relevant ES and the LR statistic is highly dependent on the proportion of active voxels in the
brain. The LR testing method performs well in most situations, also with small judgmental errors about the
amount of activation. Larger errors could result in inconclusive findings.

2. Methods

LR statistic (Kang et al., 2015):

l1: likelihood of the data given the estimated functionally relevant ES
l0: likelihood of the data given an ES of 0
LR statistic: l1/l0

Thresholded using pre-specified value k � 1. If the LR statistic > 1,
there is more evidence in favor of the alternative as opposed to the null.
This method does not necessarily use input from an a priori thresholded
SPM in contrast to the methods of de Hollander et al. (2014) and Gross
& Binder (2014).

We consider the following methods to estimate an ES to include into the
LR testing method:
1 A pre-defined (e.g., 95) percentile of all ES as proposed in the original

LR testing method of Kang et al. (2015).
2 The ES used for amplitude thresholding as in Gross & Binder (2014).
3 The mean ES of the active voxels after thresholding with di↵erent

traditional methods: uncorrected p < 0.001, FDR-control,
FWER-control and cluster extent corrected (circular).
We compare with the various traditional thresholding methods
mentioned above ( 4 ).

5. Discussion

While including an ES into test criteria o↵ers a more balanced view on
results with respect to functional relevance, defining this is challenging and
highly impacts results.
Anatomical a priori areas as a means to define which voxels to base
(independent) ES estimation on.
The same challenges are faced in power calculations.
High-impact and large-scale open-source projects can provide insight,
e↵ectively helping in the definition of functional relevant ESs while avoiding
the need to collect data in addition to the experimental data.
Use of independent data to provide a priori ES: more robust results?
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