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SUMMARY 

Inflammatory bowel diseases (IBD) are a group of inflammatory intestinal disorders comprising 

ulcerative colitis (UC) and Crohn’s disease (CD) as the principal subtypes. Although the exact 

pathophysiology of IBD is largely unknown, it is generally accepted that the disease results from a 

dysregulated immune response towards intraluminal antigens in a genetically predisposed host, which 

is triggered by environmental factors. Active disease is associated with severe mucosal hypoxia due to 

increased oxygen consumption of inflammatory cells and decreased oxygen supply by dysfunctional 

blood vessels which leads to increased epithelial cell death and a compromised intestinal epithelial 

barrier. This inflammation-induced hypoxia in its turn can induce a pro-inflammatory response and 

hereby contribute to the perpetuation of the inflammatory process. On the other hand, cellular 

adaptation to reduced oxygen concentrations will protect cells by promoting their survival. The latter 

involves oxygen-sensitive signalling pathways which include the activation of hypoxia-inducible factors 

(HIFs) and nuclear factor κ-light-chain-enhancer of activated B cells (NFB) under the tight control by 

prolyl hydroxylase domain-containing proteins (PHD1-3). Boosting these adaptive mechanisms via pan-

hydroxylase inhibitors is protective in experimental models for IBD. However, potential side-effects of 

non-selective PHD inhibition such as increased risk of carcinogenesis, cardiovascular events (due to 

increased erythropoiesis) and fibrosis may hamper their clinical application. A potential strategy to 

circumvent these issues is to selectively target specific PHD isoforms. Therefore, the purpose of this 

thesis was to better define the role of PHD1, 2 and 3 in the pathogenesis of IBD to identify the main 

isoform(s) that will be most eligible for therapeutic inhibition.  

Chapter I gives a general overview of the main differences between UC and CD, epidemiology, 

diagnosis and current therapeutic options. In addition, the different factors (i.e. genetics, 

environmental factors and the gut microbiome) involved in the pathogenesis of IBD are described, 

elaborating in more detail on the role of immune and endothelial cells. Following, we extensively 

review the involvement of hypoxia and hypoxia-induced signalling in cellular players contributing to 

IBD and provide an update on the development of PHD inhibitors for therapeutic use. Finally, the last 

part of chapter I describes the methodology used in this dissertation to study immune and endothelial 

cell-mediated effects in experimental IBD. 

In the first part of chapter III, we examined the expression and cellular location of PHD1, 2 and 3 in 

colonic biopsies collected from healthy controls and patients with UC, CD and infectious colitis. We 

observed that PHD1 was significantly increased in inflamed IBD biopsies both at the mRNA and the 

protein level. The mRNA and protein expression of PHD2 was comparable between all groups. PHD3 

mRNA expression was significantly elevated in inflamed colonic UC biopsies, but was absent at the 
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protein level in severely inflamed UC biopsies. Furthermore, PHD1 mRNA levels, not PHD2 and to a 

much lesser extent PHD3, exhibited a strong positive correlation with TNF and IL-8. Besides these pro-

inflammatory cytokines, PHD1 and to a lesser extent PHD2, showed a positive correlation with the 

apoptosis marker caspase 3. Immunohistochemical analysis revealed that the highest PHD1 expression 

was found in epithelial cells and mononuclear cells (e.g. dendritic cells, macrophages) of the lamina 

propria. The same cell types were immunopositive for PHD2 in addition to lymphocytes and smooth 

muscle cells in the muscularis mucosae. PHD3 staining was only present in the endothelium of blood 

vessels. 

In the second part of chapter III, we investigated the role of PHD1, 2 and 3 in endothelial and 

haematopoietic cells during the course of colitis using Phd1-3f/fTie2:cre knockout mice. First, we 

showed that deletion of Phd1 in this conditional model and not Phd2 or Phd3 was protective in dextran 

sulfate sodium (DSS)-induced colitis and resulted in a preservation of epithelial integrity, reduced 

infiltration of inflammatory cells and diminished microvascular dysfunction. Next, we performed bone 

marrow irradiation experiments to unravel the contribution of on the one hand endothelial and on the 

other hand haematopoietic Phd1-deficiency during colitogenesis. We found that Phd1-deficiency in 

the haematopoietic compartment is both necessary and sufficient to suppress the clinical symptoms 

during DSS-induced colitis. These results were confirmed in Phd1f/fFlk-1:cre mice (for endothelial Phd1-

deletion) and Phd1f/fVav:cre mice (for haematopoietic Phd1-deficiency). In addition, we demonstrated 

that these beneficial effects relied, at least in part, on the skewing of Phd1-deficient macrophages 

towards an anti-inflammatory M2 phenotype, with a diminished NFB-dependent response to LPS and 

by a diminished interleukin (IL)-1 release by LPS-stimulated Phd1-deficient dendritic cells.  
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SAMENVATTING 

Inflammatoir darmlijden (IBD) zijn chronische ontstekingsziekten van de darm en omvatten colitis 

ulcerosa (UC) en de ziekte van Crohn (CD). De exacte etiologie is nog niet volledig opgehelderd, maar 

het is algemeen aanvaard dat deze ziekten ontstaan door een abnormale immuunrespons tegen 

luminale antigenen in genetisch belaste personen en wordt waarschijnlijk getriggerd door 

omgevingsfactoren. Actieve ziekte wordt gekenmerkt door ernstige mucosale hypoxie die enerzijds 

ontstaat ten gevolge van een verhoogd zuurstofverbruik door de aanwezige dysfunctionele 

inflammatoire cellen en anderzijds door verminderde zuurstoftoevoer omdat de bloedvaten 

dysfunctioneel zijn. Dit leidt tot toegenomen epitheelceldood en een beschadigde epitheelbarrière. 

Deze inflammatie-geïnduceerde hypoxie gaat op zijn beurt enerzijds een pro-inflammatoire respons 

uitlokken wat het inflammatoir proces verder onderhoudt, maar anderzijds gaan de cellen zich 

aanpassen om zichzelf te beschermen tegen deze lage zuurstofomstandigheden. Hierbij worden 

zuurstofgevoelige signalisatiemechanismen in gang gezet waarbij hypoxia-inducible factors (HIFs) en 

nuclear factor k light chain enhancer of activated B cells (NFB) geactiveerd worden. Deze 

transcriptiefactoren worden op hun beurt gereguleerd door prolyl hydroxylase domein-bevattende 

eiwitten (PHD1-3). Activatie van deze adaptatiemechanismen door middel van pan-hydroxylase-

inhibitoren is protectief in verschillende experimentele modellen voor IBD. Deze aanpak is echter niet 

aan te raden omwille van mogelijke ongewenste bijwerkingen zoals een verhoogd risico op 

tumorontwikkeling, cardiovasculaire aandoeningen (omwille van verhoogde erythropoiese) en fibrose. 

Een mogelijke manier om deze bijwerkingen te omzeilen is isovorm-specifieke targeting. Daarom is het 

doel van deze thesis om de rol van de verschillende PHD-isovormen in inflammatoir darmlijden beter 

te begrijpen zodat de belangrijkste isovorm(en) kan/kunnen geïdentificeerd worden die het beste 

therapeutisch potentieel heeft/hebben. 

Hoofdstuk I geeft een algemeen overzicht van de voornaamste verschillen tussen UC en CD, de 

epidemiologie, diagnose en de huidige therapeutica. Daarnaast worden de verschillende factoren 

besproken die betrokken zijn in the pathogenese van IBD waarbij in detail de rol van immuun-en 

endotheelcellen wordt toegelicht. Vervolgens wordt uitgebreid alle gepubliceerde data besproken 

over de betrokkenheid van hypoxie en hypoxie-geïnduceerde signalisatie in verschillende celtypes die 

bijdragen tot IBD en er wordt een update gegeven over de ontwikkeling van PHD-inhibitoren voor 

therapeutisch gebruik. Het laatste deel van dit hoofdstuk beschrijft de methoden die gebruikt werden 

tijdens deze thesis om immuun-en endotheelcelspecifieke effecten te bestuderen in experimenteel 

IBD.  
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In het eerste deel van hoofdstuk III hebben we de expressie onderzocht van PHD1, 2 en 3 in biopten 

uit het colon van gezonde controles en patiënten met UC, CD en infectieuze colitis. We vonden dat 

PHD1 significant op-gereguleerd was in geïnflammeerde IBD biopten zowel op mRNA als eiwit niveau. 

De mRNA en eiwitexpressie van PHD2 was vergelijkbaar tussen alle groepen. PHD3 mRNA expressie 

was op-gereguleerd in ontstoken UC biopten terwijl het PHD3 eiwit afwezig was in sterk 

geïnflammeerde UC biopten. Verder konden we aantonen dat de PHD1 mRNA niveaus, niet PHD2 en 

in veel mindere mate PHD3, sterk positief correleerden met TNF en IL-8. Daarnaast vertoonde PHD1 

en in mindere mate PHD2 een positieve correlatie met de apoptose merker caspase 3. Uit 

immunohistochemische analyse is gebleken dat de sterkste PHD1 expressie terug te vinden is in 

epitheelcellen en mononucleaire cellen (zoals dendritische cellen en macrofagen) van de lamina 

propria. Dezelfde celtypes waren ook immunopositief voor PHD2 naast lymfocyten en gladde 

spiercellen in de muscularis mucosa. PHD3 aankleuring kon enkel in endotheelcellen van de bloedvaten 

waargenomen worden. 

In het tweede deel van hoofdstuk III hebben we de rol onderzocht van PHD1, 2 en 3 in 

hematopoietische en endotheelcellen op het verloop van colitis door gebruik te maken van Phd1-

3f/fTie2:cre knockout muizen. In eerste instantie konden we aantonen dat genetische deletie van PHD1 

en niet PHD2 of PHD3 in dit conditioneel model, beschermend was in dextraan sulfaat sodium (DSS)-

geïnduceerde colitis en resulteerde in het behoud van epitheelintegriteit, verminderde infiltratie van 

immuuncellen en gereduceerde microvasculaire dysfunctie. Vervolgens werden 

beenmergbestralingsexperimenten uitgevoerd om enerzijds de specifieke bijdrage van endotheel en 

anderzijds hematopoietische Phd1 knockout te achterhalen. Phd1-deficiëntie in het hematopoietisch 

compartiment bleek nodig, maar ook voldoende om de ziekteactiviteit in DSS-geïnduceerde colitis te 

onderdrukken. Deze resultaten werden bevestigd in Phd1f/fFlk:cre voor endotheliale Phd1-deletie en 

Phd1f/fVav:cre voor hematopoietische Phd1 knockout. Verder vonden we dat dit beschermend effect 

op zijn minst deels aangestuurd wordt door Phd1-deficiënte macrofagen die omgeschakeld zijn naar 

een anti-inflammatoir M2 fenotype en een verminderde NFB-afhankelijke response vertonen na 

lipopolysaccharide (LPS) stimulatie wat resulteert in verminderde secretie van pro-inflammatoire 

cytokines. Anderzijds, berust het therapeutisch effect op de verminderde interleukine (IL)-1 productie 

van LPS-gestimuleerde Phd1-deficiënte dendritische cellen. 
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1 Inflammatory bowel diseases: general introduction 

1.1 Ulcerative colitis and Crohn’s disease 

Inflammatory bowel diseases (IBD) are a group of chronic and relapsing inflammatory disorders 

comprising ulcerative colitis (UC) and Crohn’s disease (CD). In UC patients, inflammation is limited to 

the colon in which disease typically starts in the rectum and spreads proximally in a continuous fashion 

with sharp delineation between involved and non-involved mucosa. In some cases, limited distal ileitis 

is observed which is called “backwash ileitis”. Microscopic features in UC are inflammatory changes 

limited to the mucosa and submucosa which are characterized by infiltration of polymorphonuclear 

and mononuclear cells, crypt abscesses and goblet cell depletion (Figure 1). In contrast, CD can affect 

any part of the gastrointestinal tract, from mouth to anus, in a non-continuous way which means that 

diseased segments are alternated by healthy bowel and is referred to as “skip areas”. The main 

affected location is the terminal ileum. Histologically, CD is characterized by a thickened submucosa 

and transmural inflammation with granulomas1 (Figure 1). Patients with UC or CD suffer from similar 

symptoms including abdominal cramping and pain, recurring and/or bloody diarrhea, weight loss and 

extreme tiredness. Some IBD patients develop extraintestinal manifestations (25-40%) like skin rash, 

arthritis, uveitis or liver disease (i.e. primary sclerosing cholangitis)2. Approximately 80% of CD patients 

develop complications such as stricture and penetration of the bowel wall with obstruction, fistulae 

and abscesses. In addition, patients with colonic involvement have an increased risk of colitis-

associated cancer3. Besides UC and CD, 10%-15% of patients exhibit indeterminate features between 

UC and CD and are therefore categorized as “indeterminate colitis”4. 

 

Figure 1. Histological grading of disease activity. Biopsy and resection specimens were graded for histologically evident disease 
activity using frozen sections. Examples of ileal and colonic mucosa in each category are given. Bar = 100 µm. Adapted from 
Blair et al.5 
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1.2 Epidemiology 

The highest incidence and prevalence rates of IBD have been reported in Northern Europe and North 

America and declines from north to south and from west to east. In Europe, the annual incidence of 

CD varies from 0.5 to 10.6 cases per 100,000 persons, while the rate for UC range from 0.9 to 24.3 per 

100,000 persons6. However, during the last decades, IBD occurrence is increasing in formerly low-

incidence areas such as Asia, South America and Africa7. Besides geographical differences, 

heterogeneity among ethnic groups has also been reported. For example, higher rates of IBD have 

been reported in Jews than in non-Jews8, 9. Also, IBD is more common in Caucasians compared with 

blacks, Asians, Hispanics and American Indians10. The peak age of onset for both UC and CD is usually 

between 20 and 40 years although it can occur at any age7. 

1.3 Etiopathogenesis 

Although the exact cause of IBD is largely unknown, it is generally accepted that the interaction of 

environmental factors and microbial flora in genetically predisposed individuals leads to an 

exaggerated immune response, an impaired intestinal epithelial barrier and vascular dysfunction. In 

the following paragraphs, I will briefly touch upon the role of genetics, environmental triggers and 

microbiota in IBD. Given the central theme of the thesis, I will elaborate in more detail on the role of 

immune and endothelial cell dysfunction in IBD pathogenesis. 

1.3.1 Genetics and environmental triggers 

Convincing evidence for a genetic predisposition came from family and especially twin studies. In 

particular, 5-23% of IBD patients have an affected first-degree relative11. Tysk and co-workers were the 

first to show that monozygotic twin pairs have a higher concordance rate than dizygotic twins (58,3% 

vs 3,9% in CD and 6,3% vs 0% in UC), suggesting a major genetic predisposition for the disease12. Two 

groups independently identified the first susceptibility gene for CD, nucleotide-binding oligomerization 

domain-containing protein 2 (NOD2)13, 14. In the following years, many other IBD-associated genes 

were identified and led to a total of more than 163 susceptibility loci today15. These include 

polymorphisms in genes involved in autophagic killing of intracellular bacteria such as ATG16L1, 

immune cell response like IL-23R and epithelial barrier function such as CDH1 to numerate the major 

other affected pathways. However, these susceptibility loci only explain 13.6% of the total disease 

variance in CD and 7.5% in UC. These findings combined with the short timeframe in which IBD 

occurrence has increased in previous low-incidence regions and a concordance rate in monozygotic 

twins below 100% further highlight the importance of external triggers in the pathogenesis of these 

diseases. Nowadays, air and water pollution, smoking, appendectomy, drugs, infections, stress, diet 
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and lifestyle have all been shown to associate with IBD, although the results are often inconsistent16, 

17. 

1.3.2 The gut microbiome 

Several lines of evidence suggest that the microbiota are essential for the initiation and perpetuation 

of intestinal inflammation in IBD. More specifically, germ-free animals do not or only mildly develop 

experimental colitis (e.g. IL10-/- and IL2-/- knockout mice)18, 19 and ileitis (e.g. TNF∆are mice)20 with the 

exception of germ-free mice subjected to dextran sulfate sodium (DSS, ICN Biomedicals)-induced colitis 

where inflammation is actually worse21, 22. The reason for the increased susceptibility is not 

immediately clear at this moment. One hypothesis goes as follows: DSS induces epithelial erosions (see 

section 3) which allows the penetration of bacterial antigens to enter the mucosa. Bacterial toll-like 

receptor (TLR) ligands subsequently trigger the proliferation of epithelial cells to restore barrier 

integrity, but this response is compromised due to the lack of bacteria in these mice leading to the 

increased severity22. In human IBD, inflammation is present where the bacterial concentrations are 

highest and it has been demonstrated that mucosal IgG antibodies against intestinal bacterial antigens 

are present in these patients23. Also, diversion of the fecal stream away from the ileocolonic 

anastomosis prevents recurrence of CD24. Finally, although antibiotics do not cure the disease, 

antibiotic treatment is effective for anal lesions and the prevention of postoperative recurrence of 

CD25, 26. Several microbes have been implicated in the pathogenesis of IBD, but no single organism has 

been identified as an IBD-causing pathogen. Instead, the microbial composition in IBD patients is 

severely altered compared with healthy controls which is termed dysbiosis. In particular, there is an 

increase in Proteobacteria and a reduction in Firmicutes. In addition, there is a decrease in bacterial 

diversity largely due to a decline in the diversity of Firmicutes27. More specifically, there is primarily a 

reduction in the abundance of species that belong to Clostridium clusters XIV and IV of which the 

butyrate-producing bacteria Roseburia hominis and Faecalibacterium prausnitzii (F. prausnitzii) are 

particularly well-studied. It has been documented that both species are depleted in the stool of UC 

patients, while F. prausnitzii is also reduced in the mucosa-associated microbiota of IBD patients28. 

Moreover, low levels of F. prausnitzii on resected ileal CD mucosa associates with a higher risk of 

postoperative recurrence29. Also, higher numbers of invasive Escherichia coli (E. coli) have been found 

in the ileal mucosa of CD patients which correlates with the severity of the disease30. Interestingly, the 

dysbiotic signature persists during clinical remission31, 32 and has even been reported to be present in 

unaffected relatives of IBD patients33, 34. Therefore, it seems that IBD-associated dysbiosis might only 

contribute to the onset of IBD when genetic and environmental factors are present. However, it is 

currently still unknown if dysbiosis is in fact the cause of the disease. 
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1.3.3 The gut-associated immune system 

In the following part, an overview is given of the different members of the innate and adaptive immune 

system that contribute to gut homeostasis (Figure 2) followed by a description of the dysfunctional 

immune response in IBD patients which has been associated with the perpetuation of inflammation.  

1.3.3.1 The innate immune cells and intestinal homeostasis 

Epithelial cells, intraepithelial cells and innate lymphoid cells 

Intestinal epithelial cells (IECs) form a tight single layer that represents a physical and functional barrier 

between the lumen and the underlying mucosa. In this way, they restrict translocation of luminal 

antigens, but concomitantly allow the passage of water, electrolytes and nutrients35. In addition to 

their well-known barrier function, they can participate in the defence against intruders and ensure 

intestinal homeostasis through their pattern recognition receptors (PRRs) that recognize microbe-

associated molecular patterns (MAMPs). Under normal circumstances, recognition of MAMPs does not 

elicit an inflammatory response, but is essential to 1) ensure epithelial barrier integrity because it 

promotes survival, the production of anti-microbial peptides and mucus, epithelial turnover and tight 

junction expression and 2) educate the mucosal immune system towards oral tolerance36. In addition 

to the classical antigen presenting cells (APCs) (i.e macrophages, dendritic cells (DCs) and B 

lymphocytes), IEC also act as non-professional APC as they constitutively express major 

histocompatibility complex (MHC) class II molecules on their basolateral membrane37. When bacterial 

invasion occurs, an acute pro-inflammatory response is provoked that aims to clear the invaded 

bacteria and restore epithelial barrier integrity. IEC can discriminate between commensals at the 

luminal side and invaded bacteria due to the presence of specific TLRs at the basolateral side of IECs 

such as TLR538. In particular, apical stimulation with bacterial ligands induces tolerance, while 

basolateral stimulation elicits a pro-inflammatory response. Another member of the innate immune 

system is located in the epithelial layer, the so called intraepithelial lymphocytes. They represent a 

population of T cells, but they are separated from the lamina propria (LP) lymphocytes (see further) 

due to their localisation. They mainly consist of T cell receptor (TCR)  cells and CD8+ cells. Although 

they are ideally situated to receive signals from both bacteria as epithelial cells, their functions are not 

completely understood. What we do know is that they promote epithelial barrier functions, have 

cytotoxic activity to clear infected or damaged epithelial cells and induce epithelial antimicrobial 

peptide production36. In addition to influencing epithelial cell function, they also exert regulatory 

functions and suppress intestinal inflammation through their production of IL-1039. Finally, innate 

lymphoid cells (ILCs) have emerged during the last decade as a novel family that belongs to the innate 

immune compartment. They play a central role in mucosal immunity, lymphoid tissue formation and 
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epithelial barrier protection. In response to cytokines from epithelial and myeloid cells, they secrete 

pro-inflammatory and anti-inflammatory cytokines and largely resemble herein the T helper (Th) family 

(see further). According to their phenotype and cytokine secretion profile, they are classified into 1) 

ILC1 which express T-box transcription factor (T-bet) and produce interferon (IFN)-, 2) ILC2 which 

express GATA-binding protein 3 (GATA3) and produce IL-4, IL-5 and IL-13 and 3) ILC3 which exhibit 

retinoic acid orphan receptor (ROR)t expression and release IL-17 and IL-2240. The majority of ILCs 

present in the healthy intestine are IL-22-producing ILC3s that stimulate epithelial cells to produce 

mucus and anti-microbial peptides41 and are critical in the protection against the pathogen Citrobacter 

rodentium42. ILC3s also secrete GMCSF which triggers macrophages to produce retinoic acid (RA), 

required for the induction of regulatory T cell differentiation (Treg)43. 

Macrophages 

The intestinal mucosa is characterized by a heterogeneous population of macrophages. Resident 

macrophages are present with phagocytic and intracellular killing capacity to eliminate invading 

pathogens without inducing a local inflammatory response. They are, in contrast to peripheral 

monocytes, tolerant towards luminal antigens through their down-regulated expression of PRR such 

as TLRs which results in low cytokine release, but strong bactericidal activity. In addition, they present 

processed antigens in the absence of co-stimulatory signals which again demonstrates their tolerating 

function. However, in case of bacterial invasion, the resident macrophages produce chemoattractants 

such as IL-8 and transforming growth factor beta (TGF-) that recruit peripheral blood monocytes to 

migrate into the infected mucosa. Here, they polarize into pro-inflammatory M1 macrophages after 

recognition of MAMPs such as lipopolysaccharide (LPS) and in the presence of IFN- and TNF. This leads 

to phagocytosis and subsequent eradication of invaded bacteria. Upon activation, these infiltrated 

macrophages secrete high amounts of IL-1, IL-6, IL-8, IL-12 and TNF that subsequently influence the 

activation of many other cell types. Of particular importance, they promote the differentiation and 

activation of Th1 and Th17 cells (see further), deregulate the localisation of tight junction proteins 

within the epithelial barrier and induce epithelial apoptosis leading to tissue damage and increased 

epithelial barrier permeability44. Additionally, these macrophages also produce TGF- and monocyte 

chemoattractant protein (MCP)-1 to attract neutrophils and other macrophages leading to their 

extravasation into the inflamed tissue. By doing so, this cell type can promote the perpetuation of 

inflammation and therefore its actions need to be controlled as soon as the invaded bacteria are 

cleared. This is done by M2 macrophages which exert a regulatory, wound healing function and are 

regulated by IL-4 and IL-13. They typically express low levels of pro-inflammatory cytokines, but high 

levels of arginase 1 (ARG-I), chitinase-3 like 3 (CHI3L3 or YM-1), FIZZ-1 and IL-1045, 46. 
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Figure 2. The intestinal immune system. The intestinal immune system is physically separated from the microbiota and dietary 
compounds by a single layer of intestinal epithelial cells (IECs). Intraepithelial lymphocytes (IEL), residing in the paracellular 
space between epithelial cells, contribute to the maintenance of the mucosal barrier and to the protection against pathogens. 
The lamina propria is connective tissue constituted by stromal cells, blood vessels, nerves, and immune cells. Macrophages 
(Myeloid cells depicted in blue) and dendritic cells (DCs) (Myeloid cells depicted in green) are strategically located adjacent to 
the epithelial layer, sampling luminal antigens and orchestrating the innate and adaptive immune response. Other innate 
immune cells are also present in the lamina propria, including mast cells, monocytes, neutrophils, and eosinophils (not shown). 
T and B cells (mainly IgA-producing plasma cells) also accumulate in the lamina propria after being primed in the draining 
lymphoid tissues. Different subsets of CD4+ T cells are found in the lamina propria, such as regulatory T cells (Foxp3-expressing 
Treg and Tr1) and effector cells (Th1, Th2, and Th17). Finally, innate lymphoid cells (ILC), divided in three main subsets (ILC1, 
ILC2, and ILC3), are vastly enriched in the gastrointestinal mucosa participating in the protection against pathogens and in the 
maintenance of intestinal homeostasis. Surrounding the lamina propria and the muscularis mucosa (not shown), the 
submucosa and the muscularis externa contain nerves belonging to the enteric nervous system (ENS). Adapted from Parigi et 
al. 201547 

 

DCs 

Together with macrophages, DCs are professional APCs and therefore key mediators between innate 

and adaptive immunity. They represent a very heterogeneous population characterized based on 

phenotypic markers. At present, there is still active debate about the classification and ontogeny of LP 

macrophages and LPDCs. Mucosal DCs constitutively express high MHCII levels and the integrin CD11c. 

However, LP macrophages cannot be distinguished from LPDCs based on these markers since they are 

both expressed by these cell types. The expression of CX3CR1 (the receptor for the chemokine 
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fractalkine, CX3CL1) and CD103 (E7 integrin) allows a more reliable discrimination between these two 

cell types (CD103-CXCR1hi and CD103+CX3CR1lo are characterized as LP macrophages and LPDCs, 

respectively)48. These CD103+ cells are considered to be bona fide DCs which can migrate to the 

mesenteric lymph nodes (MLN) and induce an immune cell response. They can be further subdivided 

based on CD11b expression. Although these findings are valid for mouse DCs, whether these DC 

subpopulations are equivalent in humans needs to be further studied. So far, the human equivalents 

to mouse CD103+CD11b- DCs are CD103+Sirp- in the intestine and CD141+ DCs in the blood. Mouse 

myeloid CD103+CD11b+ DCs correspond to CD103+Sirp+ DCs in the intestine and CD1c+ DCs in the 

blood. Similar to resident macrophages, intestinal bona fide DCs are in an immature or tolerogenic 

state that continuously patrol the mucosa and sample antigens 1) directly from the lumen or 2) 

shuttled through microfold cells (epithelial cells specialized in sampling of luminal antigens). After 

acquisition of the antigen, they process it intracellular and present it onto MHCII molecules on its cell 

surface. Subsequently, they migrate to the MLN, present it to T cells with a TCR specific for the 

presented antigen and secrete RA and TGF- to induce on the one hand gut-homing receptors 47 

integrin and the chemokine receptor CCR9 on T cells and on the other hand Treg development 

producing anti-inflammatory cytokines (see further).  

 

1.3.3.2 The adaptive immune cells and gut homeostasis 

Members of the adaptive immune system include T and B lymphocytes and induce specific memory 

responses to certain luminal antigens. Naïve T and B cells are primed in the gut-associated lymphoid 

tissues (GALT) i.e. Peyer’s patches, MLN and smaller lymphoid follicles. Naïve T cells differentiate into 

specific T cell subtypes when antigens, specific for their TCR, are presented to them by APCs through 

MHCII in the presence of co-stimulatory signals. Subsequent interactions of specific cytokines with 

signal transducer and activator of transcription (STAT) factors, results in the formation of different Th 

subpopulations (Figure 3). In particular, a specific subset of T cells exhibit anti-inflammatory or 

immunoregulatory features and are termed Tregs. They are derived from naïve T cells in the presence 

of TGF- and the absence of IL-6 which induces the expression of the transcription factor forkhead box 

P3 (FOXP3). RA and IL-2 are further required to promote Treg development and once fully 

differentiated they typically secrete IL-10 and TGF-that inhibit effector functions of other immune 

cells and hereby maintain immune tolerance. Th1 differentiation is induced by IFN- and IL-12, secreted 

by APCs like macrophages and DCs, which in turn activate STAT4 and T-bet, respectively. Subsequently, 

these cells produce predominantly IFN- to control intracellular pathogens. In addition, IL-4 activates 

STAT6 which induces the transcription factor GATA-3 to promote Th2 cell development that secrete 

IL-4, IL-5 and IL-13, important in the defence against helminthes49. In 2005, a new subtype Th cell was 
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described, Th17. Its differentiation is mediated by IL-6 and TGF-which induce IL-21 that activates in 

turn STAT3 and the Th17 lineage specific RORt and RORtranscription factors50. As a consequence, 

these cells selectively secrete high levels of IL-17A, IL17F, IL-21 and IL-22. Another cytokine is also 

involved, namely IL-23 that promotes the maintenance, but not the commitment to the Th17 lineage51. 

Afterwards, they migrate to the intestinal mucosa via their expression of CCR9 and 47 and distribute 

throughout the LP. Most of the T cells in the LP of the gut express the surface markers CD4 (“helper” 

cell) and CD8 (“cytotoxic or effector” cell) although CD8+ T cells preferentially migrate to the 

epithelium. After priming of B cells in the GALT, they undergo immunoglobulin class switching from 

IgM to IgA-producing plasma cells in response to TGF- and IL-10. Once they arrive in the LP mediated 

by the gut-homing receptors, they complete their differentiation and secrete IgA into the gut lumen52. 

The latter are specific to the sampled antigen and prevent microbial pathogens and antigens from 

attaching to the epithelium by a process called immune exclusion which involves antigen agglutination, 

entrapment in mucus and clearance through peristalsis53. 

 

 

 

Figure 3: Differentiation of helper CD4+ T cells. When an APC presents an antigen to a naïve T cell, differentiation of that naïve 

T cell occurs into a Th subtype which is determined by the cytokine milieu. In the presence of IFN- and IL-12, naïve T cells 

differentiate into Th1 cells after activation of STAT4 and T-bet and they  typically secrete INF-. Th2 cells develop when IL-4 is 
present and leads to the activation of STAT6 and GATA-3. Subsequently, these Th cells produce IL-4, IL-5 and IL-13. The 

combination of IL-4 and TGF- on the other hand results in the differentiation of Th9 cells which can be discriminated from the 
other Th subtypes through their secretion of IL-9 under the control of PU.1. Absence of IL-4, but presence of IL-6 together with 

TGF- gives rise to Th17 cells. This subtype exhibits STAT3 and RORt activation and releases high amounts of IL-17, IL-21 and 
IL-22. Besides pro-inflammatory, also anti-inflammatory Th cells exist which are termed Tregs. They develop in the presence 

of TGF- but importantly the absence of IL-4 and IL-6 and secrete IL-10 and TGF- after activation of FOXP3.  
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1.3.3.3 Aberrant immune response in IBD patients 

In IBD, the inflammatory reaction cannot be resolved and becomes chronic due to aberrant immune 

functioning. Therefore, a dysfunctional immune cell response may very well be the primary driver of 

intestinal inflammation. Hereafter, I will elaborate on the aberrant functions of macrophages, DCs and 

LP T lymphocytes in IBD, which are of particular relevance for this thesis.  

Macrophages 

In the case of IBD, there is an increased proportion of macrophages expressing CD14, a co-receptor for 

LPS signalling, in the inflamed, but not in the normal mucosa which may account for the exaggerated 

production of inflammatory mediators, leading to the perpetuation of mucosal inflammation54. Indeed, 

it was demonstrated that this CD14+ subset of macrophages produced larger amounts of pro-

inflammatory cytokines than resident intestinal macrophages, especially in CD patients55. Likewise, 

macrophages from UC patients display an exuberant expression of pro-inflammatory cytokines and 

chemokines like IL-6 and C-X-C motif ligand (CXCL) 10 in response to heat-killed E. coli when compared 

with healthy controls. Although counterintuitive, CD patients exhibit an impaired primary response to 

heat-killed E.coli due to abnormally low cytokine secretion from monocyte-derived macrophages56 

which indicates the existence of different macrophage subpopulations of which the function and 

contribution to IBD pathogenesis is far from being fully understood. The LP from IBD patients, 

predominantly CD patients, exhibit increased numbers of M2 macrophages, but also massive 

accumulation of M1 macrophages resulting in the dominance of the latter subtype44. However, 

adoptive transfer of M2 macrophages or molecules that skew their polarization to the M2 phenotype 

are effective in reducing the severity of experimental colitis57-60. In addition, both M1 and M2 

macrophages have been implicated in the promotion of fibrosis, a major cause of intestinal strictures 

in CD patients, especially when M1/M2 activity persists due to unresolved inflammation. Not only M1, 

but mainly M2 macrophages that appear early in the wound-healing process are the predominant 

source of TGF-. The latter is the key driver of fibrogenesis by inducing the differentiation of fibroblasts 

into collagen-producing myofibroblasts. In this context, it has been demonstrated in vitro that 

alternatively activated M2, in contrast to M1, macrophages increase the proliferation and collagen 

synthesis of human fibroblasts61. Furthermore, ARG-1 expressed by M2 macrophages activates the 

synthesis of proline, necessary for collagen synthesis by activated myofibroblasts and can hereby 

promote fibrosis62. Finally, pro-inflammatory macrophages produce high levels of TNFand IL-1. These 

two cytokines have been demonstrated to promote epithelial-mesenchymal transition, myofibroblast 

activation through a TGF-1-mediated mechanism and even promote myofibroblast proliferation63, 64. 
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They also increase IL-6 release which induces Th1 cell responses and hereby drives fibrosis in 

unresolved inflammation65. 

DCs 

The functions of the human DC subtypes remain largely elusive. Active IBD patients exhibit a decrease 

in the total LP CD103+ DCs which also have a reduced expression of the ALDH enzymes only in UC 

patients with active disease and those in remission. In addition, the total number of ALDH+ cells is 

reduced in these patients regardless of inflammation66. ALDH enzymes are involved in the production 

of RA which has many immunomodulatory properties including the promotion of Treg differentiation. 

The reduced abundance of ALDH+ cells may therefore contribute to the reduced numbers of Treg in 

these patients. In contrast to myeloid DCs from the healthy LP which are hyporesponsive to TLR ligands 

due to low TLR2 and TLR4 expression, myeloid DCs from CD and UC patients express enhanced levels 

of TLR4 and higher numbers of activated DCs (more CD40+ DCs) are observed.67. Only DCs from active 

UC patients and patients in remission express increased levels of TLR267. Furthermore, higher 

frequencies of myeloid DCs have been found in IBD patients, but they also produce significantly more 

IL-8 and TNF after LPS stimulation compared with the levels from healthy subjects67. Unique for active 

CD patients is the elevated numbers of IL-23 secreting macrophages and DCs, but also IL-6 and IL-12 

producing DCs, while this was not observed in the inflamed mucosa of UC patients nor in healthy 

controls68, 69. 

T lymphocytes 

IBD is characterized by a dysregulated immunologic response against commensal bacterial antigens 

which is reflected by an imbalance in cytokines production and may therefore contribute to disease 

pathogenesis. In the past, CD was believed to be a Th1 disorder as LP T cells from the inflamed CD 

mucosa secrete increased amounts of IFN- compared with control LP T cells70. Also, defective mucosal 

T cell apoptosis is observed in CD patients leading to the persistence of a hyperactive T cell 

population71. In addition, IBD is characterized by a decrease in Tregs due to increased apoptosis72, 73. 

Moreover, the administration of Tregs is able to prevent, but also cure established experimental 

colitis74, 75 and a clinical response after Treg treatment has been demonstrated in 40% of refractory CD 

patients76. UC patients on the other hand were thought to be mainly associated with a Th2 response 

because of the lack of elevated IFN- and elevated secretion of IL-5 and IL-13 from LP T cells and natural 

killer T cells, respectively70, 77. Besides Th1 and Th2 cytokines, there is increased expression of IL-17 in 

the sera and the inflamed mucosa of both UC and CD patients due to an elevated number of IL-17+ 

cells including T cells and macrophages, indicating an important role of the Th17 subtype in IBD 

pathogenesis78. Recently, a crucial role for Th9 cells in the pathogenesis of UC has been described. This 
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T cell subtype develops in the presence of IL-4 and TGF- to produce the cytokine IL-9 under the 

transcriptional control of PU.1 (Figure 2). Gerlach and co-workers demonstrated that the inflamed 

mucosa of UC, and not CD patients showed higher expression of IL-9 due to enhanced numbers of IL-

9 producing mononuclear cells and CD4+ T cells. Moreover, IL-9-deficient mice and mice treated with 

an anti-IL-9 antibody were protected in experimental models of colitis through the preservation of 

barrier function by suppressing the expression of the epithelial pore-forming tight junction protein 

claudin-279. 

 

1.3.4 The microvasculature 

Another factor that may exert a causative role in the development IBD is vascular dysfunction, mainly 

driven by the presence of pro-inflammatory cytokines and the vascular endothelial growth factor A 

(VEGF-A). The intestinal mucosa from IBD patients exhibits an increase in blood vessel density 

(angiogenesis) which directly correlates with the severity of the disease80. Moreover, several lines of 

evidence indicate that these newly formed blood vessels in IBD patients are dysfunctional and sustain 

inflammation, but also precede and lead to a decrease in the local mucosal oxygen levels (Figure 4). 

1) Enhanced vascular permeability 

The presence of tissue edema in IBD patients and in experimental IBD provides indirect evidence that 

the blood vessels are leaky. Cytokines and the pro-angiogenic growth factor VEGF-A play a major role 

in the regulation of vascular permeability. In particular, Oshima and colleagues demonstrated that IFN-

 disrupts the endothelial barrier by reducing the expression of the tight junction protein occludin 

which was reversed by pretreatment with IL-10. In accordance, both CD45RBhigh SCID and IL10-/- mice, 

models for chronic intestinal inflammation, exhibit increased IFN- expression and colonic 

microvascular leakage81. Tolstanova and co-workers demonstrated that anti-VEGF-A antibody 

treatment attenuates the severity of experimental UC at least in part by diminishing colonic vascular 

permeability82. 

2) Increased expression of cell adhesion molecules 

Endothelial cells from IBD patients exhibit increased levels of endothelial cell adhesion molecules 

(ECAMs) which allow enhanced binding with recruited leukocytes and hence extravasation into the 

inflamed tissues. ECAM up-regulation has also been demonstrated in animal models of IBD and is 

linked to the severity of the disease83-85. These findings have initiated the development and evaluation 

of anti-adhesion therapeutics for IBD and led to the successful use of vedolizumab (anti-47 integrin 

monoclonal antibody) in the clinic today. Up-regulated ECAMs include intercellular adhesion molecule 

1 (ICAM-1), VCAM-1 and MAdCAM-1, but also selectins including E-and P-selectin86-88. ECAM 
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expression increases in response to pro-inflammatory cytokines such as IL-1and TNF,89 while the 

addition of VEGF-A has a potentiating effect on the TNF-induced increase of ICAM-1 and the selectins90, 

91. Another ECAM involved in IBD pathogenesis is platelet and endothelial cell adhesion molecule 1 

(PECAM-1). This protein is not up-regulated by pro-inflammatory cytokines, but is redistributed from 

the endothelial intercellular junctions to the endothelial surface in response to pro-inflammatory 

mediators92. Moreover, its inhibition reduces leukocyte adhesion and attenuates the severity of 

experimental colitis93. Given the success of blocking the 47 integrin, MAdCAM-1 targeting is now 

also under investigation. Phase 2 clinical trials with an anti-MAdCAM-1 antibody (PF-00547659) in UC 

and CD have now been completed and demonstrated preliminary safety and efficacy, but the results 

are not published yet. 

3) Impaired vasodilation 

Chronically inflamed IBD arterioles have diminished nitric oxide (NO)-mediated vasodilatory capacity 

in response to the vasodilator acetylcholine compared with non-IBD arterioles94. In addition, Binion 

and colleagues were the first to isolate and culture pure populations of human intestinal microvascular 

endothelial cells (HIMECs) and showed that inflamed IBD HIMECs produce less NO. This is caused on 

the one hand by decreased inducible NO synthase (iNOS) expression which subsequently results in 

leukocyte hyperadhesion95-97 and on the other hand due to the induction of the NOS competitors ARG-

I and ARG-II by inflammatory cytokines like IL-1 and TNF98. Reduced endothelium-dependent 

vasodilation in IBD may also result from the decreased endothelial NOS activity, the predominant 

source of vascular NO99. Moreover, eNOS-deficiency aggravates the severity of experimental IBD100. 

Besides decreased expression of a vasodilator, elevated levels of the vasoconstrictor peptides 

endothelin (ET)-1 and ET-2 were found in the colonic mucosa of UC and CD patients101. 

4) Increased platelet aggregation and coagulation 

Spontaneous platelet aggregation is a feature in peripheral blood of IBD patients102 and may contribute 

to the increased risk of systemic thromboembolisms seen in these patients. In this regard, Bernstein 

and colleagues demonstrated that IBD patients have a 3-fold increased risk for deep vein thrombosis 

and pulmonary emboli compared with the general population103. Also, microinfarctions are often 

detected by histology in inflamed biopsies from IBD patients 104. Moreover, IBD seems to be a risk 

factor for thromboembolic events as it confers a 3.6-fold increased risk compared with other chronic 

inflammatory diseases like rheumatoid arthritis105. Indirect evidence for a role of coagulation in the 

pathogenesis of IBD is for example that both UC and CD patients have a decreased risk of developing 

hemophilia and von Willebrand’s disease106. In addition, increased expression of markers of blood 

coagulation have been described in IBD patients including prothrombin fragment 1 and 2, thrombin 
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anti-thrombin complex, fibrinopeptide A/B and von Willebrand factor (vWF)107, 108. Besides proteins in 

the coagulation cascade, increased levels of soluble CD40 ligand, secreted by activated platelets, have 

been reported in IBD patients and leads to binding of platelets and immune cells to HIMEC109. 

Furthermore, the decreased NO production by IBD HIMEC may also contribute to the increased platelet 

aggregation since endogenous NO is able to inhibit adhesion of platelets to vascular endothelium110.  

 

Figure 4. Inflammation-induced vascular dysfunction. Inflammation triggers a change in the endothelium of the intestinal 
vasculature in response to the cytokines, chemokines and growth factors released by immune cells leading to increased 
angiogenesis, adhesion molecule expression, leukocyte extravasation, impaired vasodilation, decreased endothelial barrier 
function and increased coagulation. Adapted from Cromer et al. 2011111. 
 

1.4 Diagnosis of IBD and current therapeutics 

To date, the final diagnosis of UC or CD is based on combined information from the patient history, 

endoscopic, radiological and histological findings and negative stool cultures for infectious agents. 

When a diagnosis of CD is made, patients are further subdivided using the Montreal classification to 

aid clinicians in assessing disease prognosis and particularly to choose the most appropriate therapy 

112. Patients are herein characterized based on the age of onset (A), the location (L), the behavior (B) 

and the severity (S) of the disease.  

There is no treatment to cure UC or CD. Current treatment strategies aim to dampen the inflammatory 

process in order to achieve symptom resolution and mucosal healing. Treatment options include 5-

aminosalicylates (for UC only), corticosteroids, immunosuppressives  such as thiopurines, 

methotrexate and cyclosporine, but also biologic drugs are used like TNF antagonists, vedolizumab 

which binds the integrin α4β7 on a subpopulation of CD4+ T lymphocytes and ustekinumab (for CD 

only), an antibody directed against the p40 subunit shared by IL-12 and IL-23. Enhanced secretion of 

these cytokines has been demonstrated in LP mononuclear cells specifically in CD and not in UC 

patients113, 114. Although, anti-TNF therapy revolutionized the management of IBD, 10%-30% of patients 
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do not respond to the initial treatment and 23%-46% of patients lose response over time115. Surgery is 

therefore the last resort for approximately 20%-30% of UC and 30%-40% of CD patients at some point 

in their life116. Hence, there is a great need for new therapies to induce and maintain remission. 
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Abstract 

Tissue hypoxia occurs when local oxygen demand exceeds oxygen supply. In chronic inflammatory 

conditions such as inflammatory bowel disease (IBD), the increased oxygen demand by resident and 

gut-infiltrating immune cells coupled with vascular dysfunction brings about a severe reduction in 

mucosal oxygen concentrations which is a life-threatening situation for all mucosal members. In order 

to counter the hypoxic challenge and ensure their survival, mucosal cells induce adaptive responses, 

including the activation of hypoxia-inducible factors (HIFs) and modulation of nuclear factor kappa B 

(NFB). Both pathways are tightly regulated by oxygen-sensitive prolyl hydroxylases (PHDs), which 

therefore represent promising therapeutic targets for IBD. In this review, we discuss the involvement 

of mucosal hypoxia and hypoxia-induced signalling in the pathogenesis of IBD and elaborate in detail 

on the role of HIFs, NFB and PHDs in different cell types during intestinal inflammation. We also 

provide an update on the development of PHD inhibitors and discuss their therapeutic potential in IBD. 

 

 

Keypoints: 

 Mucosal hypoxia is an integral component of inflammatory bowel disease (IBD) 

 Hypoxia-induced signalling by hypoxia-inducible factors and nuclear factor kappa B can 

promote or counteract the intestinal inflammatory response,  depending on the context and 

cell type studied. 

 Oxygen-sensitive prolyl hydroxylases (PHDs) tightly regulate hypoxia-induced signalling 

pathways and have been identified as promising therapeutic targets in IBD. 

 Pan-hydroxylase inhibitors are in an advanced stage of development for the treatment of 

chronic kidney disease-related anaemia and are in phase 1 for the treatment of ulcerative 

colitis. 

 The use of orally administered and isotype-specific PHD inhibitors may reduce systemic 

exposure and the risk of unwanted side-effects. 
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Evidence for a role of hypoxia in the pathogenesis of human IBD 

IBD, comprising ulcerative colitis (UC) and Crohn’s disease (CD), are chronic inflammatory disorders 

that result from a dysregulated immune response against luminal antigens in genetically predisposed 

individuals. Over the past decade, the presence of mucosal hypoxia during intestinal inflammation has 

become evident. Hypoxic staining using 2-nitroimidazole compounds revealed physiologic hypoxia in 

epithelial cells while progressive staining into the mucosa is observed during murine colitis1. -In 

addition, increased levels of hypoxia-induced transcription factors are detected in inflamed colonic 

samples from IBD patients2, 3 and a positive correlation with the severity of UC has been 

demonstrated4. Although these findings indicate that mucosal hypoxia is an integral component of IBD, 

the exact consequences on disease pathogenesis and evolution are currently unknown. However, 

increasing new insights have revealed that hypoxia and its induced signalling can evoke both a pro- 

and an anti-inflammatory response depending on the context and cell type studied which will be 

further elaborated on in the following paragraphs.  

 

Physiological and pathological hypoxia in the intestinal mucosa 

Under physiological conditions, the gastrointestinal tract is characterized by a steep oxygen gradient 

from the anaerobic lumen towards the highly vascularized submucosa1 with the oxygen concentration 

ranging from less than 2% in the intestinal lumen to 3% at the villus tip while arteries in the submucosa 

exhibit a 80-100% oxygen concentrations5, 6. During active inflammation, resident macrophages and 

dendritic cells (DCs) become activated and produce pro-inflammatory cytokines and chemokines that 

trigger T cell differentiation and the recruitment of inflammatory cells from the peripheral blood into 

the mucosa. The infiltrated leukocytes consume a large amount of the local oxygen in the mucosa and 

submucosa7. At the same time, the oxygen supply from the blood stream is decreased during 

inflammation as a result of microvascular occlusion and thrombosis8. The resulting imbalance between 

oxygen consumption and supply renders the inflamed intestinal mucosa severely hypoxic. 

The hypoxia-induced transcriptional machinery 

Mammalian cells possess evolutionary conserved endogenous mechanisms that allow them to respond 

to low-oxygen conditions. This response is centrally regulated by oxygen-sensitive hydroxylases, which 

control the activity of the oxygen-sensitive transcription factors hypoxia-inducible factors (HIFs) 1-3 

and nuclear factor kappa B (NFB) (Figure 1). 
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HIFs 

HIFs are heterodimeric beta helix-loop-helix proteins composed of an unstable oxygen-sensitive -

subunit (HIF-1, HIF-2 or HIF-3) and a constitutively expressed stable -subunit (aryl hydrocarbon 

receptor nuclear translocator, ARNT or HIF-1β). Under normal oxygen conditions, HIFα subunits are 

regulated in two ways. Firstly, through transcriptional inactivation caused by asparaginyl (Asn803) 

hydroxylation of HIF by the factor inhibiting HIF (FIH). This hydroxylation event inhibits the interaction 

of HIF with the transcriptional coactivators cAMP-response element binding (CREB) binding protein 

(CBP) and p300. Secondly, via prolyl-hydroxylase domain-containing proteins (PHD1-PHD3). The PHD 

enzymes hydroxylate 2 highly conserved prolyl residues within the LXXLAP motif of the oxygen-

dependent degradation domains (ODDDs) of HIFα. Hydroxylation of either of these proline residue 

generates a binding site for the von Hippel-Lindau (pVHL) E3 ubiquitin ligase. Subsequently, pVHL 

chaperones HIF subunits for ubiquitination and eventual proteasomal degradation. PHDs and FIH 

belong to a family of oxygenases that utilize oxygen and 2-oxoglutarate (2-OG, also known as -

ketoglutarate (KG)) as co-substrates and iron (Fe2+) and ascorbic acid (vitamin C) as cofactors. As 

oxygen is the most ubiquitous factor controlling the PHD and FIH-catalysed hydroxylation reactions, 

hypoxia leads to the stabilization of HIFα. Once stabilised, HIFtranslocates to the nucleus where it 

binds to its β subunit and form the active transcription factor HIF. The transcription factor complexes 

HIF1 and HIF2 recruit cofactors such as CBP and p300 and attach to hypoxia-responsive elements (HRE) 

within target genes involved in cell survival, angiogenesis and metabolism9-13. HIFs can also regulate 

the transcription of PHD2 and PHD3. Although hypoxic conditions inhibit their enzymatic activity, PHD2 

and PHD3 proteins are present and as soon as oxygen is reintroduced, they initiate the signaling for 

HIF degradation and hereby promote a negative feedback mechanism14.   

NFB 

Apart from HIF, hypoxia also activates NFB through the phosphorylation of its inhibitor IB 15. Later 

on, it was demonstrated that only the canonical (and not the non-canonical) arm is oxygen-sensitive 

16, 17. However, the hypoxia-induced HIF-1 DNA binding activity is higher than for NFB, especially at 

1% O2
18. PHDs inhibit NFB through their interaction with and inactivation of IB kinase (IKK)18-20. 

Although PHD2 mediates this event through its hydroxylase activity, this has yet to be demonstrated 

for PHD1. PHD3 inhibits both IKKand IKK independent of its hydroxylase activity but by blocking the 

interaction between IKK and heat shock protein 90 and between IKK and cellular inhibitor of 

apoptosis (cIAP)120, 21. The PHD-dependent inactivation of IKK/IKK prevents phosphorylation of the 

NFB inhibitor IκBα, which masks NFB’s nuclear localization signal (NLS). During hypoxia, the IB 
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kinase (IKK) complex becomes active and subsequently phosphorylates IBα15. Following 

ubiquitination, phosphorylated IB is degraded by the proteasome. Dissociation of IB from NFB 

heterodimers p50/p65 during hypoxia reveals the NLS, which enables nuclear translocation and 

subsequent transcription of target genes involved in inflammation and cell survival22-25. FIH has also 

been demonstrated to hydroxylate members of the NFB-pathway, namely p105 (the precursor of 

p50) and IB. However, the impact of these hydroxylation reactions still remains speculative26. 

HIF-NFB crosstalk 

Although HIF and NFB can regulate the expression of genes in response to hypoxia independent of 

each other, there is a considerable degree of crosstalk between these transcription factors. It has been 

reported that NFB activation is involved in the control of basal HIF-1 mRNA levels through binding 

of the p50 and p65 NFB subunits to kB binding sites in the HIF-1 promotor 27. Also, overexpression 

of NFB results in HIF-1protein expression under normoxic conditions 28. In vivo, IKK-deficient mice 

exhibit decreased HIF protein levels and HIF-dependent gene expression 29. In addition, IKK induces 

the activation of NFB but also promotes the binding of HIF-2with CBP and p300 and subsequently 

increases HIF-2 transcriptional activity 30. Besides being induced by hypoxia, other non-hypoxic stimuli 

like lipopolysaccharide (LPS) and pro-inflammatory cytokines evoke a NFB -dependent up-regulation 

of HIF-1 mRNA levels 31-33. Conversely, it has been demonstrated that HIF can also promote NFB 

activation in neutrophils and keratinocytes25, 34. 
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Figure 1. Regulation of HIF and the canonical arm of the NFB pathway through PHDs and FIH. Left: Regulation of HIF through 

PHDs and FIH. Under normoxia, PHDs and FIH hydroxylate the HIF-1 and HIF-2 subunits. Prolyl hydroxylation leads to 

proteasomal degradation of the HIF subunits while asparaginyl hydroxylation inhibits the interaction of HIF with the 
coactivators CBP and p300. During hypoxia, the enzymatic activity of the PHDs and FIH is inhibited leading to the stabilization 

of the HIFsubunits. After translocation to the nucleus, they complex with their  subunit, recruit p300 and CBP and bind to 

the HRE in the promotors of their target genes to initiate transcription. Right: Regulation of the canonical arm of the NFB 

pathway through PHDs and FIH. PHDs prevent the activation of NFB through their interaction with and inactivation of IKKs. 

In particular, PHD2 hydroxylates IKKbut this is yet to be confirmed for PHD1 while PHD3 blocks the interaction between IKK 

and Hsp90 and of IKKwith cIAP1, independent of its hydroxylase activity. FIH has been shown to hydroxylate IBa and the 

p50 precursor p105 but these reactions do not impact the NFB activation status. During hypoxia IKK proteins phosphorylate 

the NFB inhibitor IBa which results in its ubiquitination and subsequent proteasomal degradation. Dissociation of IBa 

allows the nuclear translocation of the NFB heterodimer followed by the transcription of its target genes. HIF: hypoxia-

inducible factor; Hsp: heat shock protein; cIAP: cellular inhibitor of apoptosis; NFB: nuclear factor kappa-light-chain-enhancer 
of activated B cells; IKK: IkB kinase; PHD: prolyl hydroxylase; FIH: factor inhibiting HIF; HRE: hypoxia responsive elements; CBP: 
cAMP-response element binding protein. 

 

The pro-inflammatory response to hypoxia  

Several cellular mechanisms explain how hypoxia can induce an inflammatory response in the gut and 

hence be an environmental risk factor for IBD patients. When the partial oxygen pressure drops below 

the physiologic level, intestinal epithelial cells release pro-inflammatory cytokines such as TNF that 

potentiate the increase in epithelial permeability during inflammatory conditions35, 36. In addition, 

enhanced epithelial hypoxia induces epithelial cell apoptosis37 which further promotes disruption of 

the epithelial barrier.  

Inflammation-induced hypoxia also affects the innate immune cells within the lamina propria. Hypoxia 

induces the expression of 2 integrin on leukocytes, which enhances adhesion to endothelial cells and 

extravasation38. Hypoxic neutrophils exhibit a delayed apoptosis rate resulting in impaired resolution 



41 
 

of inflammation39, 40. A similar resistance to apoptosis is seen in a subset of macrophages after repeated 

hypoxic exposure41. It has been shown that these hypoxia-tolerant macrophages carry a pro-

inflammatory phenotype and produce more TNF than hypoxia-sensitive macrophages41. Likewise, 

hypoxia-exposed dendritic cells show increased expression of pro-inflammatory cytokines and 

chemokines such as IL-22, CXCL2 and CCL2042, 43. In addition, hypoxia induces the expression of 

triggering receptor expressed on myeloid cells (TREM-1) in mononuclear phagocytes, this signalling has 

been associated with IBD and promotes the release of pro-inflammatory cytokines and chemokines44-

46.  

Finally, hypoxia-exposed endothelial cells release prostaglandins (PG) which attract neutrophils47. In 

addition, they increase their adhesiveness for neutrophils through the up-regulation of platelet-

activating factor (PAF) and P-selectin48. Furthermore, they exhibit a perturbed anticoagulant function 

through the decrease of thrombomodulin, a disrupted endothelial barrier integrity49 and an enhanced 

expression of pro-inflammatory cytokines48. Hypoxia also drives the formation of new blood vessels 

(angiogenesis) through the up-regulation of vascular endothelial growth factor (VEGF-A)50, an 

angiogenic growth factor known to worsen the outcome of experimental colitis51.  

The anti-inflammatory response to hypoxia  

Prolonged hypoxia would lead to uncontrolled excessive intestinal epithelial cell death and severe 

inflammation, if it were not for the fact that mammalian cells recognize hypoxia as a danger signal and 

initiate adaptive mechanisms.  

Interestingly, the low-grade hypoxia of intestinal epithelial cells during physiological conditions offers 

them unique barrier-preservative properties as compared with other epithelia52, 53. In particular, 

hypoxia-exposed intestinal epithelial cells exhibit an altered gene expression pattern in order to 

preserve barrier function of the gut and reduce the inflammatory burden. These cells up-regulate 

barrier protective genes such as intestinal trefoil factor (ITF), mucin-3, MDR1, ectonucleoside 

triphosphate diphosphohydrolase-1 (CD39) and ecto-5’-nucleotidase (CD73)52, 54-56. The latter two 

increase extracellular adenosine production, which is known to enhance barrier function and reduce 

leukocyte activation and accumulation. Hypoxia further potentiates the anti-inflammatory effect of 

extracellular adenosine by inducing the epithelial expression of adenosine A2B receptor57 and 

repressing its transporters58, 59 on epithelial cells, hereby protecting against experimental colitis60, 61. In 

addition, the intestinal microbiota also promotes the epithelial basal hypoxic state. In particular, 

bacterial short-chain fatty acids like butyrate have been shown to enhance epithelial oxygen 

consumption and subsequently stabilize HIF-1 levels, induce target gene expression and reinforce the 
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epithelial barrier62. Hypoxia also induces epithelial expression of creatine kinases which participate in 

the assembly of tight and adherens junction proteins to preserve epithelial barrier integrity63. In 

addition, prolonged hypoxia represses the expression of FADD, a positive regulator of TNF-mediated 

apoptosis, and hereby dampens inflammation-induced barrier dysfunction64. Besides barrier 

protective genes, physiological hypoxia in intestinal epithelial cells can lead to the constitutive 

expression of the antimicrobial peptide  defensin-165. In addition, during acute inflammation 

transmigrating neutrophils rapidly deplete the local oxygen levels which in turn induces the epithelial 

expression of hypoxia-dependent barrier protective genes aiming to resolve the local inflammation7. 

In addition, physiological hypoxia induces the expression of epithelial netrin-1, which attenuates 

neutrophil migration into the colon and through epithelial cells66. Yet physiological hypoxia also 

induces the epithelial expression of CD55, which increases the disengagement of neutrophils from the 

epithelial apical surface67.  

In addition to epithelial cells, hypoxic blood vessels exhibit the same up-regulation of CD39, CD73 and 

adenosine receptor A2bR and the concomitant repression of the equilibrative nucleoside transporters 

for the promotion of endothelial barrier58, 68, 69. Although these studies made use of human 

microvascular endothelial cells, they were isolated from the dermis. Therefore, it needs to be further 

investigated if these findings also hold for intestinal endothelial cells. Increased expression of CD73 

has also been reported in hypoxia-exposed DCs42. 

Taken together, a dual response to hypoxia is generated which is context and cell type dependent 

(Figure 2).  
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Figure 2. Overview on the hypoxia-induced pro-inflammatory (left) versus adaptive response (right) in various cell types. 
Hypoxia increases the survival of myeloid cells and their expression of pro-inflammatory cytokines. An important cytokine is 
TNF which in turn increases epithelial permeability through the deregulation of TJ proteins. In addition, epithelial cells become 
apoptotic as hypoxia persists which further contributes to the disruption of barrier integrity. Besides pro-inflammatory 
cytokines, macrophages release the pro-angiogenic factor VEGF-A under hypoxic conditions. Also, hypoxia-exposed 
endothelial cells are pro-thrombogenic, up-regulate cell-adhesion molecule expression and secrete pro-inflammatory 
mediators which attract immune cells, increase their adhesion and extravasation. Right. Intestinal epithelial cells are well-
equipped against the local physiological hypoxic state through the increased expression of barrier protective proteins, 
receptors involved in adenosine signalling while concomitantly down-regulating the expression of adenosine transporters. 
These proteins can also all be induced by butyrate, released by gut bacteria, and hence increase barrier integrity. In addition, 
they prevent neutrophil migration into the mucosa via the release of netrin-1 and enhance the apical neutrophil shedding by 
up-regulating the expression of CD55. Also, anti-microbial peptides are produced. In addition to the epithelium, endothelial 
cells and DCs also exhibit increased expression of the adenosine receptors. A down-regulation of adenosine transporters has 
also been demonstrated on endothelial cells. TJ: tight junction; TM: thrombomodulin; VEGF-A: vascular endothelial growth 
factor; PG: prostaglandins; PAF: platelet activating factor; TNF: tumor necrosis factor; TREM-1: triggering receptor expressed 
on myeloid cells; MDR1: multidrug resistance protein 1; IL: interleukin; CXCL: (C-X-C) motif ligand; CCL20: (C-C motif) ligand; 
ENT: equilibrative nucleoside transporter; ITF: intestinal trefoil factor; A2bR: adenosine 2b receptor; CD: cluster of 
differentiation.  

 

Hypoxia-signalling pathways in cellular players during intestinal inflammation 

The fact that hypoxia-induced signalling is a prominent feature of active IBD has initiated extensive 

research to unravel the contribution of HIFs, NFB and PHDs in IBD pathogenesis and explore their 
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potential as therapeutic targets. In the next section, we will elaborate on the role of the hypoxia-

induced transcription factors and PHDs in various cell types that are involved in intestinal 

inflammation. 

HIFs 

Epithelial cells 

The involvement of epithelial HIF-1 and HIF-2 has been particularly well-studied in experimental 

models of IBD (Table 1). Karhausen and co-workers were the first to prove that epithelial Hif1-

deficiency renders mice more susceptible to 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced 

colitis 70. Similarly, the same authors reported that constitutively active epithelial HIF-1 via disruption 

of the von Hippel-Lindau tumor suppressor gene (Vhlh) using Vhlh2lox/2lox Fabp1:cre ameliorates both 

oxazolone and TNBS-induced colitis 70. The primary mechanism through which epithelial HIF-1 confers 

protection during colitis seems to be by preserving intestinal barrier function. HIF-1 induces the 

expression of the previously mentioned barrier-protective genes such as ITF, MDR1, mucin-3, CD73, 

CD55 and netrin-152, 54, 55, 66, 67, 70, enhances extracellular adenosine signalling while repressing 

adenosine transporters and genes involved in epithelial apoptosis such as FADD58, 59, 64, 66.  

While the available literature consistently points towards a protective role of HIF-1 in intestinal 

epithelial cells, most studies describe an opposite role for HIF-2, indicating that HIF-1 and HIF-2 have 

different target genes.  

A chronic increase in colon epithelial HIF-2α signaling by epithelial-specific Vhlh ablation in mice 

resulted in a hyper-inflammatory response71. In agreement, intestinal epithelial-specific deletion of 

Hif-2 protects mice from acute colitis by reducing pro-inflammatory cytokine expression72. HIF-2 

also induces the expression of caveolin-1 which promotes the degradation of occludin and in turn leads 

to increased colonic permeability73. Rather conflicting findings were reported in epithelial-specific HIF-

1 deficient mice. These mice are more prone to TNBS-induced colitis through enhanced barrier 

defects and proposed a HIF-2, and not HIF-1, dependent loss of creatine kinases as the underlying 

mechanism63. However, Saeedi et al. latterly demonstrated that through deletion of HIF-1, the HIF-

1-dependent induction of the tight junction protein claudin-1 was inhibited, hereby providing an 

additional contributing factor for the disrupted epithelial barrier in epithelial-specific HIF-1 deficient 

mice74. Both HIF-1 and HIF-2 are increased in intestinal epithelia from active UC and CD patients72. 
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Table 1. Effect of intestinal epithelial-specific genetic HIF modulation on the course of experimental 

IBD 

Isoform 
subunit 

Modulation 
approach 

IBD model Outcome Identified 
mechanism(s) 

Ref
. 

HIF-1 Overexpression Oxazolone and 2,4,6-
trinitrobenzene sulphonic 
acid TNBS-induced colitis 

Beneficial Induction of several 
barrier-protective 
genes 

70 

HIF-2 Overexpression Dextran sulfate sodium 
(DSS)-induced colitis 

Detrimental Increased infiltration 
of inflammatory cells 
and pro-inflammatory 
cytokine release 

71 

HIF-2 Deletion Citrobacter rodentium 
and DSS-induced colitis 

Beneficial Reduction of pro-
inflammatory 
cytokine release 

72 

HIF-2 Deletion DSS-induced colitis Beneficial Induction of the tight 
junction protein 
occludin  

73 

HIF-1 Deletion  DSS- and TNBS-induced 
colitis 

Detrimental Loss of creatine 
kinases expression 

63 

HIF-1 Deletion  TNBS-induced colitis Detrimental Loss of the tight 
junction protein 
claudin-1  

74 

 

Endothelial cells 

A role for HIF-1 and HIF-2 in endothelial cells has mainly been studied in the context of cancer, while 

little is known about the involvement of HIF-1 and HIF-2 in the hypoxic responses of intestinal 

endothelial cells. Furthermore, the consequences of intestinal endothelial-specific loss of HIF-1 or 

HIF-2 have not been explored in experimental IBD thus far. What we do know that could be relevant 

in the context of intestinal inflammation is that HIF-1 ensures endothelial barrier integrity under 

hypoxic conditions through its repression of equilibrative nucleoside transporter 158. HIF-2 on the other 

hand also participates in the preservation of endothelial barrier but under normoxic and not hypoxic 

conditions, via activation of the transcription of the junctional protein VE-cadherin75. In addition, 

Coulet et al. demonstrated that hypoxia induces the expression of endothelial nitric-oxide synthase 

(eNOS) in a HIF-2-dependent manner76. Decreased eNOS expression is observed in IBD and reduces 

endothelium-dependent vasodilation, a hallmark of dysfunctional blood vessels.  

Taken together, HIF-1 and HIF-2 have the potential to normalize dysfunctional microvessels which 

could beneficially alter the course of colitis.  

Fibroblasts 

A role of HIF-1 and HIF-2 has also been described in the context of fibroblasts. In particular, HIF-1 

activates the expression of collagen and lysyl hydroxylases, which are required for collagen deposition 

and extracellular matrix (ECM) stiffening. These are 2 important events in the promotion of 
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fibrogenesis77. In addition, hypoxia and HIF-1 up-regulate the synthesis of TGF-, an important 

growth factor that initiates the differentiation of fibroblast into myofibroblasts which subsequently 

produce ECM components 78. Also, lactic acid which accumulates as a result of HIF-1 mediated 

glycolytic metabolism, represents another trigger for TGF- activation79. Conversely, it has also been 

reported that TGF- can induce the expression of HIF-180, which may therefore have a potentiating 

effect on the development of intestinal fibrosis. On the other hand, HIF-1 and HIF-2 activation is also 

able to cease fibroblast proliferation by inducing cell-cycle arrest independent from hypoxia81. As was 

previously discussed for endothelial HIF-1 and HIF-2, the involvement of fibroblast-specific HIF-1 and 

HIF-2 on intestinal fibrosis development remains to be conclusively determined.  

 

The role of HIFs in innate immune cells 

Neutrophils 

In the following part, we discuss the role of HIFs in the different migratory cell types within the innate 

immune system in the gut and summarize the findings in Table 2.  

Hypoxia promotes the survival of neutrophils and enhances glycolysis for their ATP production. Both 

events are mediated by HIF-1 as deletion of HIF1- profoundly impairs these processes25, 82. 

Moreover, this disturbance in energy generation by loss of HIF-1 diminishes their main immune 

properties such as migration, invasion and bacterial killing82-84. The in vivo consequences of HIF-1 

deletion in neutrophils during colitogenesis is currently unknown and not easy to predict, given the 

fact that proper functioning neutrophils are both necessary for induction and resolution of intestinal 

inflammation85. In CD, and not UC patients, it has been demonstrated that there is less neutrophil 

recruitment into the intestine due to decreased IL-8 release by resident macrophages, which results in 

delayed bacterial clearance86, 87. 

Information on the role of HIF-2 in neutrophils is scarce. So far, only one study reported that Hif-2-

deficient neutrophils exhibit enhanced apoptosis in vivo which reduces neutrophilic inflammation and 

tissue injury without an effect on neutrophil chemotaxis, phagocytosis or respiratory burst (a chemical 

reaction which generates hypochlorous acid and reactive oxygen species leading to the lysis of 

microbes)84.  
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Macrophages 

Like neutrophils, macrophages mainly rely on glycolysis to produce energy and this process is 

specifically controlled by HIF-188. Cramer et al. demonstrated that Hif-1-deleted macrophages fail 

to produce enough ATP levels, which in turn compromises their survival, aggregation, motility, invasion 

and bacterial killing capability82. Macrophages can be generally divided into classical M1 macrophages 

and regulatory M2 macrophages. M1 macrophages are activated by IFN- and Toll-like receptor (TLR) 

ligands such as LPS to produce inducible NOS, pro-inflammatory cytokines, chemokines and cell 

adhesion molecules. They are essential for eradicating invading microorganisms but can cause 

bystander tissue damage in doing so, and therefore need to be controlled by M2 macrophages. M2 

macrophages exhibit anti-inflammatory, pro-angiogenic, wound healing properties and are regulated 

by IL-4 and IL-13. M2 macrophages typically express low levels of pro-inflammatory cytokines but high 

levels of arginase 1 (Arg-1), chitinase-3 like 3, Fizz-1 and IL-1089, 90. While M1 macrophages rely on 

glycolysis for energy production, M2 macrophages utilize oxidative phosphorylation91. Since HIF-

1regulates the transcription of glycolytic enzymes, it has been suggested that HIF-1 activation 

promotes M1 polarization91. In support, hypoxia induces the expression of TLR4 through HIF-1 which 

results in an enhanced pro-inflammatory response after LPS stimulation92. In contrast, HIF-2 

induction regulates the expression of Arg-1 and therefore causes a switch to the M2 phenotype93. 

However, the involvement of both HIF-1 and HIF-2 in macrophage plasticity is far from being fully 

understood. Especially for HIF-2, it is still unclear if its activation really drives M2 polarization because 

it has also been reported that deletion of Hif-2 in macrophages attenuates their pro-inflammatory 

cytokine response following M1 stimulation which makes Hif-2-deficient mice more resistant to LPS-

induced endotoxemia94.  

DCs 

HIF-1 activation in DCs is required for IFN, IL-22 and IL-10 production, promotes apoptosis and 

enhances differentiation and migration42, 95, 96. Dendritic cell-specific Hif-1 knockout mice are more 

susceptible to DSS-induced colitis, which is associated with an impaired Treg development through the 

reduced expression of DC-induced CCR9, a gut-homing T cell marker and aldehyde dehydrogenase-

1a2, involved in Treg induction97. No published data is available on the role of HIF-2 in DCs. 

Eosinophils, mast cells and basophils 

Ablation of Hif-1 in eosinophils diminishes their chemotactic properties while the opposite is true for 

Hif-2-deficient eosinophils98. Hif-1 knockdown in mast cells reduces their cytokine production such 
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as IL-8 and TNF following stimulation with TLR ligands while HIF-1 in basophils does not play an 

apparent role in TLR ligands-mediated cytokine release99. However, whether or not Hif-1 deficiency 

in the latter three cell types has a beneficial contribution on the course of colitis is currently unknown. 

The role of HIF in adaptive immune cells 

Besides their role in the innate immune compartment, HIFs have also been implicated in the regulation 

of T cell, B-cell and natural killer (NK) T cell functioning.  

T cells 

Constitutive activation of HIF-1 and HIF-2 through deletion of pVHL impairs thymocyte development 

with enhanced apoptosis of CD4+CD8+ T cells100. Furthermore, Hif-1 deficient T cells produce 

increased levels of IFN- and IL-2 while in contrast Hif-1-deficient Th1 polarized T cells lose their 

capacity to produce IFN-101. In addition to its role in effector T cell responses, HIF-1 is also involved in 

Treg differentiation albeit with conflicting results. Ben-Shoshan et al. reported that HIF-1 induces the 

expression of FoxP3 which results in enhanced abundance of Treg102 while Dang et al. showed that HIF-

1 targets FoxP3 for proteasomal degradation and concomitantly induces the expression of RORyt which 

results in subsequent attenuation of Treg but enhanced Th17 development 103. In the context of colitis 

however, HIF-1 seems to favor Treg differentiation since T cell specific Hif-1 knockout mice exhibit 

more severe colonic inflammation with increased Th1 and Th17 cells when subjected to DSS-induced 

colitis104. Also, Hif-1-deficient Tregs fail to control T cell-mediated colitis105. 

NKT cells 

HIF-2 limits the cytotoxicity of NKT cells by controlling their Fas ligand expression which suggests a 

rather anti-inflammatory role for HIF-2 in this cell type106. A role for HIF-1 in NKT cells is currently 

unknown. 

B cells 

Finally, HIFs have also been studied in B cells but to a much more limited extent. First of all, abnormal 

B cell development and autoimmunity occurs when Hif-1 is deleted in Rag2-/- mice107. In addition, it 

was reported that Hif-1-deficiency abolishes hypoxia-induced cell cycle arrest108. Recently, it was 

demonstrated that stabilization of HIF through B cell specific deletion of pVHL decreases the 

proliferation and increases B cell death, impairs the generation of high-affinity IgG but switches to the 

pro-inflammatory IgG2c antibody isotype109. However, data on a B-cell specific role of HIFs in intestinal 

inflammation is lacking.  
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Table 2. Overview of the role of HIFs in migratory immune cells. 

Cell type Effect of HIF-1 modulation Effect of HIF-2 modulation Ref. 

Neutrophils Activation: 
- Increased survival 
- Increased migration  
- Increased invasion  
- Increased bacterial killing 

Deletion: 
Increased apoptosis  

25, 82-84 

Macrophages Deletion: 
- Decreased energy production 
- Decreased survival 
- Decreased aggregation 
- Decreased motility 
- Decreased invasion 
- Decreased bacterial killing 
Activation:  
- M1 polarization 
- Increased TLR4 expression 

M2 polarization? 82, 88, 91-94 

DCs Deletion:  
Decreased Treg development 
Activation: 
- Essential for IFN, IL-22, IL-10 
production 
- Increased apoptosis 
- Increased differentiation  
- Increased migration 

Unknown 42, 95-97 

Eosinophils Deletion: 
Decreased chemotaxis  

Deletion: 
Increased chemotaxis  

98 

Basophils No role in TLR-ligands mediated 
cytokine release 

Unknown 99 

Mast cells Deletion:  
Decreased IL-8, TNF  

Unknown 99 

T cells Deletion:  

- Increased T cell IL-2 and IFN-

- Decreased Th1 IFN-  
Activation: 
- Decreased thymocyte 
development  
-Treg development? 

Deletion: 
Unknown 
 
Activation: 
Decreased thymocyte 
development  

100-105 

NKT cells Unknown Deletion: 
Increased cytotoxicity  

106 

B cells Deletion: 
- Abnormal B-cell development 
-Decreased cell cycle arrest 
Activation: 
-Decreased proliferation and  
cell death 
-Enhanced IgG2c production 

Unknown 
 
 
Activation: 
-Decreased proliferation and 
cell death 
-Enhanced IgG2c production 

107-109 

 

NFB 

The role of NFB in inflammation has been extensively studied over the past 25 years and its crucial 

involvement in immune cell functioning has been reviewed elsewhere110. In this part of the review, we 

will focus on the role of the of canonical NFB pathway during colitogenesis since only this branch of 

the pathway is oxygen sensitive.  



50 
 

Intravenous and rectal administration of p65 antisense oligonucleotides is effective in abolishing 

intestinal inflammation in TNBS-induced colitis and in IL10-deficient mice111. Likewise, the 

administration of a pharmacologic inhibitor of IkB destruction (BMS-345541) ameliorates DSS-induced 

colitis112. Also, IL10-/- mice with a deletion of IKK in myeloid cells exhibit an attenuation of 

spontaneous chronic colitis113. These findings suggest an adverse effect of NFB activation on intestinal 

inflammation and it is generally accepted that this is caused by the promotion of leukocyte survival 

and the induction of pro-inflammatory cytokines, chemokines and reactive oxygen species such as 

iNOS114.  

However, the situation may be less straightforward than expected as NFB activation is also needed 

for the resolution of inflammation by inducing immune cell apoptosis and the expression of anti-

inflammatory cytokines such as IL-10115. This apparent paradox of an anti-inflammatory action of NFB 

in immune cells was further strengthened by a study from Greten et al., showing that myeloid IKK-

deficient mice are more susceptible to endotoxic shock due to enhanced IL-1 secretion of IKK-

deficient neutrophils and macrophages but also via reduced neutrophil apoptosis116. It seems likely 

that this is also true during experimental IBD. In agreement, one study reported that NFB-deficient 

(p50-/-; p65+/-) mice are more susceptible to Helicobacter hepaticus (Hh)-induced colitis117 mediated 

by the p50/p105 subunit from haematopoietic cells118. 

In the intestinal epithelium, NFB activation seems to have an important role for the maintenance of 

immune homeostasis. Mice with intestinal epithelial specific ablation of NEMO (also called IB kinase-

 (IKK)) or both IKK and IKK, all essential mediators of NFB activation, spontaneously develop 

severe chronic intestinal inflammation119. Likewise, pharmacological inhibition or epithelial-specific 

deletion of IKK resulted in more severe intestinal inflammation with more pronounced ulcerations in 

acute DSS-induced colitis113.  

In general, it is believed that increased and sustained activation of NFB in immune and non-immune 

cells provoked by pro-inflammatory mediators promotes intestinal inflammation while baseline 

presence and activity is essential for the maintenance of immune homeostasis which has been 

particularly demonstrated in intestinal epithelial cells. 

PHDs 

In the following section, we elaborate on the role of the different hydroxylases in different cell types 

and their effect on intestinal inflammation in a similar fashion as we did for the HIFs (Table 3). This part 

will be restricted to the PHDs since no cell-type specific effects of FIH have been reported thus far. The 
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involvement of the different PHD isoforms in immune cell responses has mainly been deduced from 

whole animal or conditional knock-out of PHD1-3 and is limited to epithelial cells, endothelial cells, 

fibroblasts, neutrophils, macrophages, dendritic cells and T-lymphocytes.  

Epithelial cells 

The role of all three PHD isoforms in epithelial cells has been studied. Tambuwala and colleagues 

demonstrated that PHD1 serves as a positive regulator of epithelial apoptosis as full PHD1-/- knockout 

mice exhibit diminished DSS-induced epithelial apoptosis and hence epithelial barrier disruption120. 

The authors hypothesized that NFB mediates these effects although this was not demonstrated. In 

addition, Chen et al. found a protective role of PHD3 in intestinal epithelial barrier integrity by the 

stabilization of the tight junction protein occludin which does not rely on its hydroxylase activity121. 

Moreover, they demonstrated that epithelial Phd3-deficiency causes spontaneous colitis by disturbing 

barrier function due to decreased occludin expression. In this set-up, the involvement of the HIFs or 

NFB was not investigated, but the authors identified that PHD3 binds to the E3 ubiquitin ligase Itch, 

hereby preventing the proteasomal degradation of occludin. A role for epithelial PHD1 and PHD2 

during experimental IBD is yet to be determined. Outside the intestinal epithelium, it has been 

reported that Phd2-deletion in skin epithelium accelerates wound healing and keratinocyte migration 

which relies on the HIF-1 dependent induction of 3 integrin122. Furthermore, silencing of Phd2 in renal 

epithelial cells attenuates CoCl2-induced apoptosis, mediated by the HIF-1 dependent up-regulation of 

the anti-apoptotic protein BCL-XL and the concomitant down-regulation of the pro-apoptotic protein 

Bax123. 

Endothelial cells 

Takeda et al. demonstrated that Phd2-deletion enhances the hypoxia-induced proliferation in a mouse 

endothelial cell line124. In addition, it was reported that haplodeficient deletion of Phd2 normalizes 

dysfunctional blood vessels in tumors and thereby inhibits metastasis125, while also augmenting 

chemotherapy delivery and these events were HIF-1 and HIF-2 dependent126. Besides a beneficial 

role in tumorigenesis, loss of Phd2 in endothelial and haematopoietic cells leads to HIF-2 dependent 

pulmonary vascular remodelling and arterial hypertension which relied on the increased release of 

CXCL12 by Phd2-deleted lung endothelial cells127. In accordance, endothelial-specific deletion of Phd2 

is responsible for this event128, 129. Recently, it was reported that endothelial ablation of Phd2 also leads 

to renal vascular remodelling due to excessive pericyte coverage and results in impaired renal function 

and fibrosis130. This phenotype was associated with increased HIF-1 and HIF-2 levels. We found that 

Phd1-deletion, and not Phd2 or Phd3, in endothelial and haematopoietic cells protects against colitis 
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and diminishes microvascular dysfunction (i.e. leakage and expression of adhesion molecules). 

However, using bone marrow transplantation and cell-specific knock-out mice we demonstrated that 

this effect was solely attributable to Phd1-deletion in the haematopoietic compartment while 

endothelial-specific Phd1-deficient mice responded similar to their WT littermate controls131. Despite 

the lack of an effect during intestinal inflammation, we demonstrated that Phd1-deletion in mouse 

endothelial MS1 cells was able to diminish the TNF-induced expression of VCAM-1, MAdCAM-1, IL-6 

and the chemokine MCP-1 (unpublished data). The dependence on HIFs, NFB or other factors was 

not studied in this context. 

Fibroblasts 

To our knowledge, there are only two papers that have studied the effect of the PHD isoforms and 

more specifically PHD2, in fibroblasts. Silencing of Phd2 in a mouse fibroblast cell line leads to HIF-1 

stabilization and increased the expression of angiogenic growth factors like VEGF, fibroblast growth 

factor 2 and angiopoietin-1, which in turn enhanced their proliferation. Moreover, these Phd2-

deficient fibroblasts promoted endothelial proliferation in vitro and enhanced angiogenesis in vivo132. 

Recently, Manresa et al. reported that heterozygous Phd2-deleted mouse embryonic fibroblasts 

exhibit an increased expression of -smooth muscle actin (SMA) and connective tissue growth factor 

after TGF- stimulation which suggests that Phd2-deficiency might promote intestinal fibrosis. 

However, the same authors showed that Phd2+/- mice were equally prone to the development of 

fibrosis compared with WT in the DSS-induced colitis model133.  

Neutrophils 

Walsmley and colleagues reported that the protein expression of PHD3 in neutrophils is up-regulated 

after hypoxic treatment while the expression levels of PHD1 and PHD2 remained unaltered134. In 

addition, the authors reported that Phd3-deficient neutrophils display an enhanced apoptosis rate 

under hypoxia than WT neutrophils which was independent of HIF-1 and HIF-2 but associated with 

increased expression of the pro-apoptotic protein SIVA1 and a concomitant down-regulation of the 

anti-apoptotic protein BCL-XL. While Phd3-deficient mice showed reduced neutrophilic infiltration 

during DSS colitis, this had no dampening effect on the disease course.  

Macrophages 

The role of the different PHD isoforms was more extensively studied in macrophages. Takeda et al. 

reported that Phd1-deletion in a mouse macrophage cell line (RAW264.7) results in diminished 

TnfmRNA levels and secretion after LPS stimulation. Our group further showed that besides TNF, other 
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pro-inflammatory cytokines and chemokines were markedly diminished in LPS-treated Phd1-deficient 

BMDM which was associated with diminished NFB activation131. In addition, we demonstrated that 

Phd1 deletion facilitates M2 macrophage polarization at steady state and after IL-4 stimulation which 

is partially dependent on NFB activation while expression levels of HIFs were not analysed in this set-

up. However, we showed that deletion of Phd1 solely in macrophages using Phd1f/fLysM:cre mice was 

not able to ameliorate the course of DSS-induced colitis (unpublished data). A similar reduction in TNF 

expression was observed in Phd2-deleted cells, albeit to a lesser extent than in the Phd1-deficient 

cells135. In agreement, haplodeficiency of Phd2 in macrophages diminishes the expression of pro-

inflammatory cytokines and M1 markers with a concomitant switch to the M2 phenotype. These 

phenotypic alterations were dependent on NFB activation while HIF-1 and HIF-2 protein levels 

were unchanged. These macrophages are subsequently responsible for the prevention of ischemia by 

inducing arteriogenesis19. Macrophage migration is suppressed after homozygous Phd2-deletion and 

results, together with the attenuated M1 phenotype, in an amelioration of hypertensive cardiovascular 

hypertrophy and fibrosis but these effects were mediated by accumulated HIF-1and HIF-2levels136. 

In line with these results, Guentsch and colleagues recently confirmed the decrease in migration of 

Phd2-deficient BMDM and RAW264.7137. They also exhibited a diminished phagocytic capacity while 

no clear impact on macrophage polarization was observed. These effects were due to the metabolic 

reprogramming to glycolysis caused by Phd2 deletion and was dependent on HIF-1. These results are 

surprising given the fact that HIF-1 deficient macrophages also have an impaired migratory and 

phagocytic capacity. Concerning PHD3, high numbers of PHD3+ macrophages are present in the 

inflamed gut of CD and UC patients while they are barely detectable in the normal gut138. In addition, 

the intensity of PHD3 in these PHD3+ macrophages is higher within the inflamed environment. The 

authors identified these PHD3+ cells as M1, and not M2, macrophages which led to their hypothesis 

that loss of Phd3 would associate with an anti-inflammatory macrophage phenotype. However, murine 

Phd3-deleted macrophages rather exhibit a pro-inflammatory phenotype with enhanced pro-

inflammatory cytokine release, migration, phagocytic capacity, maturation and M1 marker expression. 

This phenotype could be reversed either after HIF-1 or NFB p65 knockdown while silencing of HIF-

2 had no effect. Swain et al. reported that these Phd3-deficient macrophages are refractory to 

apoptotic cell death139. In contrast to the previous publication, these authors reported no obvious 

differences in NFB activity nor HIF-1 and HIF-2 protein levels in Phd3-deficient macrophages 

compared with WT macrophages. Moreover, they mediate the increased susceptibility of Phd3-/- mice 

to sepsis-induced death while the response of Phd1-/- and Phd2+/- mice is comparable with the WT 

mice140.  
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DCs 

The role of PHD1, 2 or 3 in DC functioning or responses has not been thoroughly investigated. Our lab 

group was the first to show that LPS-stimulated Phd1-deficient BMDC produce less IL-1 in response 

to LPS while other pro-inflammatory cytokines such as IL-6 and TNFremain unaltered131. Alterations in 

the expression of HIFs and NFB activation was not analysed. 

T-lymphocytes 

In contrast to the innate immune cells, isoform-specific roles of the PHDs in T cells are largely unknown. 

Evidence for a specific role of PHD1 in T-lymphocytes is non-existing. Our lab group made a first 

attempt to explore a role of T cell-specific PHD1 during experimental colitis but Phd1f/fCD4:cre mice 

were equally susceptible to DSS-induced colitis compared with their colitic WT counterparts 

(unpublished data). In addition, 2 papers demonstrated the involvement of individual PHD2 and PHD3, 

respectively. In particular, Mamlouk et al. reported that the combined targeting of Phd2 in myeloid 

and T cells delays tumor growth in mice which is at least in part due to an altered cytokine profile 

caused by loss of Phd2 in these cells141. Also, these results were partially HIF-1 dependent. Deletion 

of Phd1 and Phd3 was not studied in this context. In addition, PHD3 expression is up-regulated in Tregs 

and its overexpression increases the numbers of Tregs while concomitantly inhibiting Th17 

differentiation142. The involvement of HIFs, NFB or other factors in these effects was not addressed. 

Recently, it has been demonstrated that T cell specific deletion of all 3 isoforms increases the numbers 

of CD4+ and CD8+ T cells in the lungs of these mice which additionally produce increased levels of IFN-

Also, the same authors reported that the PHD proteins promote Treg differentiation while 

restraining the differentiation of Th1 cells and this effect relies partially on the PHD-mediated inhibition 

of HIF-1143. 

Overall, the different PHD enzymes control diverse functions of both immune and non-immune cells 

which makes them interesting targets for therapeutic intervention. However, it is currently largely 

unknown if and how their cell-specific modulation influences the course of intestinal inflammation.  
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Table 3. Overview of the cell-specific effect after Phd1-3-deletion. 

Cell type Phd1-deficiency Phd2-deficiency Phd3- deficiency Ref. 

Epithelial cells Reduction of apoptosis* Induction of B3-integrin 
which in turn promotes 
wound healing 

Reduction TJ occludin 
which increases epithelial 
permeability 

120-123 

Endothelial cells Unknown -Enhanced proliferation 
-Vessel normalization 
which diminishes 
metastasis and augments 
chemotherapy delivery 
-Increase in CXCL12 which 
induces SM cell 
proliferation 

Unknown 124-127 

Fibroblasts Unknown -Increase in VEGF, FGF2, 
ANG-1 which enhances 
proliferation and hence 
angiogenesis 

-Increase in -SMA and 
connective tissue growth 
factor 

Unknown 132, 133 

Haematopoietic cells Impact on macrophages, 
DCs and T cells studied 
(see below) 

Impact on macrophages 
and T cells studied (see 
below) 

Unknown 131 

Neutrophils Unknown Unknown Increased expression of 
SIVA1 and reduced 
expression of BCL-XL 
which results in increased 
apoptosis 

134 

Macrophages - Decreased TNF, IL-1, 
IL-6, MCP-1 release 
following LPS exposure* 
- M2 polarization* 

- Decreased expression of 
pro-inflammatory 
cytokines 
- M2 polarization 
- Decreased migration  

- Increased migration 
- Increased expression 
pro-inflammatory 
cytokines 
- Increased phagocytosis 
- Increased maturation 
- M1 polarization 
- Reduced apoptosis 

19, 131, 135, 136, 139, 140 

DCs Decreased IL-1release 
following LPS exposure* 

Unknown Unknown 131 

T cells No effect on cytokine 
secretion after in vitro T 
cell activation 

+ deletion in myeloid 
cells: 
Diminished expression of 
pro-and anti-
inflammatory cytokines 

Overexpression of Phd3: 
Increased numbers of 
Treg and decreased 
numbers of Th17  

141-143 

- Increased numbers of CD4+CD8+ T cells 

- Enhanced production of IFN- 
- Reduction of Treg and promotion of Th1 

 

Eosinophils, basophils, 
mast cells 

Unknown Unknown Unknown Not available 

*Mechanisms involved in the protective effects mediated by PHD inhibitors are underlined. 

Pharmacological PHD inhibitors in experimental models of IBD 

The protective role of HIF-1 during colitis and the involvement of PHDs in immune and non-immune 

cells has initiated the investigation of hydroxylase inhibition as a potential therapeutic strategy for 

intestinal inflammation (Table 4). In 2008, two studies were published that simultaneously reported 

on the protective effects of the pan-hydroxylase inhibitors dimethyloxalylglycine (DMOG) and FG-4497 

in chemically induced colitis144, 145. Two years later, it was reported that DMOG treatment elicited the 

same amelioration in a TNF-driven model for ileitis mediated by the HIF-1-dependent repression of 

FADD64. DMOG is a non-selective pharmacological compound that structurally mimics 2-OG and 
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thereby targets the catalytic domain of all PHDs but also FIH by blocking the entry of the co-

substrate146. FG-4497 blocks the active site of PHDs similar to DMOG but its ability to inhibit FIH has 

not been demonstrated146. Subsequently, the use of a predominant HIF-1-specific PHD inhibitor, AKB-

4924, was reported to result in systemic protection in both TNBS-induced colitis as ileitis while no 

improvements could be observed in epithelial HIF-1-deficient mice147. Oral delivery of AKB-4924 

reduced colonic inflammation, while minimally affecting HIF stabilization and HIF target genes in 

extraintestinal organs, thereby limiting potential off-target effects148. Finally, in 2014, Gupta and co-

workers reported on the beneficial effects of an orally administered PHD inhibitor (TRC160334) in 

TNBS- and DSS-induced colitis149. Although this compound has been previously shown to effectively 

activate HIF-1 in Hep3B cells150, it was not demonstrated whether the protected effects were HIF-1, 

HIF-2 or NFB-dependent since it is a PHD and FIH inhibitor. Last year, Jeong and co-workers 

demonstrated that Rosmarinic acid methyl ester also exhibits pan-hydroxylase inhibition properties 

and is able to ameliorate TNBS-induced colitis in rats which is associated with increased colonic HIF-1 

activation151. Besides IBD models, DMOG treatment has also proven effectiveness in the protection 

from ischemia/reperfusion, radiation-and Clostridium difficile-induced intestinal injury which was HIF-

1 dependent except for radiation-induced gastrointestinal toxicity where the authors demonstrated 

the necessity for HIF-2 activation152-154. Together, these findings convincingly demonstrate the 

therapeutic effect of pan-hydroxylase inhibitors in experimental models of intestinal inflammation. Of 

note, most of these studies demonstrated the stabilization of HIF-1and attribute the observed 

protective effects to its activation. However, at this moment it has not always been conclusively 

demonstrated that HIF-1 is in fact the primary driver of these effects. The compounds used are all PHD 

or combined PHD and FIH inhibitors and inhibition of PHD1, 2 and 3 is able to activate NFB as 

mentioned earlier. NFB in its turn is able to induce the transcription of HIF-1 and could therefore be 

the key mediator of the reported beneficial effects. In support of this hypothesis, epithelial NFB 

activity is required to ensure immune homeostasis since its ablation causes severe chronic intestinal 

inflammation119. Furthermore, we demonstrated that the promotion of M2 conversion in Phd1-deleted 

macrophages is at least partially mediated by NFB131.  
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Table 4. Overview of pre-clinical animal studies using HIF-prolyl hydroxylase inhibitors during gut 

inflammation 

Inhibitor (class) Target IBD model Animal 

species 

Administration 

route 

Set-up Ref. 

DMOG (2-OG 

mimetic) 

PHD + FIH DSS-induced colitis Mouse Intraperitoneal 

and oral 

Preventive 144, 184 

TNF∆ARE ileïtis Mouse Intraperitoneal Therapeutic 64 

FG-4497 (PHD 

active site 

blocker) 

PHD + FIH 

(inhibition not 

directly 

demonstrated) 

TNBS-induced colitis Mouse Intraperitoneal Preventive 145 

AKB-4924 (Fe2+ 

chelator) 

PHD + FIH TNBS-induced colitis Mouse Subcutaneous Preventive 

and 

therapeutic 

7, 147 

Oral Preventive 148 

TNF∆ARE ileïtis Intraperitoneal Therapeutic 147 

TRC160334 

(unknown) 

PHD + FIH TNBS-induced colitis Mouse Oral Preventive 149 

DSS-induced colitis Oral Therapeutic 

Rosmarinic acid 

methyl ester 

(Fe2+ chelator)  

PHD + FIH TNBS-induced colitis Rat Intrarectal Therapeutic 151 

DMOG (2OG 

mimetic) 

PHD + FIH Ischemia/reperfusion 

gut injury 

Mouse Intraperitoneal Preventative 152 

DMOG (2OG 

mimetic) 

PHD + FIH Clostridium difficile-

induced gut injury 

Mouse intraperitoneal Preventative 154 

DMOG (2OG 

mimetic) 

PHD + FIH Radiation-induced gut 

toxicity 

Mouse intraperitoneal Preventative 153 

 

 

 



58 
 

Overview on the current development of PHD inhibitors for clinical use 

Several companies have developed PHD inhibitors that are currently being tested for the treatment of 

various diseases (Table 5). Vadadustat and Roxadustat are nonselective PHD inhibitors that are being 

evaluated in phase 3 trials for the treatment of chronic kidney disease (CKD)-related anemia. The 

preceding phase 2 studies reported that both PHD inhibitors had comparable serious adverse events 

compared with placebo155, 156. Daprodustat is another pan-hydroxylase inhibitor that induces an 

effective EPO response in CKD-patients157. In addition, AKB-6899 has entered phase I as anti-cancer 

drug after it was found to inhibit VEGF and phosphoglycerate kinase while stimulating the production 

of soluble VEGF receptor and hereby inhibiting tumor growth158. So far, only one company is 

developing a PHD inhibitor (AKB-4924, Aerpio) for the use in IBD. The first results of single and multiple 

ascending dose studies with AKB-4924 are expected soon.  

Table 5: Overview of the PHD inhibitors in clinical trials. 

Company Compound (class) Target Indication Stage of clinical 
development 

Cinical Trials.gov. 
Number (Status) 

Akebia 
Therapeutics 

AKB-6548,  
Vadadustat (PHD 
active site blocker) 

PHD + FIH CKD-related 
anemia 

Phase III NCT02892149;  
NCT02865850; 
NCT02680574; 
NCT02648347 (all 
recruiting) 

Glaxo-Smith-Kline GSK1278863, 
Daprodustat (PHD 
active site blocker) 

PHD + FIH CKD-related 
anemia 

Phase III NCT02876835; 
NCT02879305; 
NCT02969655 (all 
recruiting) 

Aerpio 
Therapeutics 

AKB-4924 (Fe2+ 
chelator) 

PHD + FIH IBD Phase I NCT02914262 
(completed) 

Fibrogen FG-4592, 
Roxadustat (PHD 
active site blocker) 

PHD + FIH CKD-related 
anemia 

Phase III NCT01750190 
(recruiting);  
NCT02021318 
(recruiting); 
NCT02174627 
(recruiting); 
NCT02652806 
(active, not 
recruiting); 
NCT02652819 
(active, not 
recruiting); 
NCT02273726 
(recruiting); 
NCT01887600 
(active, not 
recruiting) 

Akebia 
Therapeutics 

AKB-6899 (PHD 
active site blocker) 

PHD + FIH Cancer Phase I Not registered 

Bayer BAY85-3934, 
Molidustat (PHD 
active site blocker) 

PHD + FIH CKD-related 
anemia 

Phase II NCT02055482 
(completed); 
NCT01975818 
(completed); 
NCT02064426 
(completed) 
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Potential limitations of prolyl hydroxylase inhibitors 

Although no major safety signal was observed during phase 2 studies in CKD-patients155, 156, long-term 

clinical data with PHD inhibitors are not yet available. Considerable concern regarding the long-term 

use of these agents have been raised. In the following section we discuss the most relevant issues that 

may hamper their clinical utility as a maintenance therapy in IBD. 

Promotion of cancer 

The potential of HIF-activating therapies to promote tumor development is subject of debate. Many 

cancerous lesions highly express both HIF-1and HIF-2 and their expression has been positively 

linked with cancer aggressiveness and mortality159, 160. The increased HIF-1 dependent extracellular 

adenosine signalling may play an important contributing role in these events. Although enhanced 

expression of adenosine receptors and CD73 due to HIF-1 activation protects against intestinal 

inflammation, increased adenosine signalling concomitantly suppresses immune cell activation (i.e. 

pro-inflammatory cytokine release, chemotaxis, effector T cells, …). The lack of anti-tumor immunity 

allows the promotion of cancer progression and metastasis161, 162. Moreover, anti-CD73 and A2a 

antagonists have proven their antitumor effects and even synergize with antineoplastic agents in 

preclinical animal models which has subsequently led to the evaluation of their ongoing evaluation in 

clinical trials (NCT02503774 and NCT02403193, respectively). Activation of HIF-2 through disruption of 

Vhl promotes colon tumor number, size and progression in an experimental colorectal cancer model163. 

The HIF-inhibitor YC-1 has been proven to be effective in blocking angiogenesis, inhibiting the growth 

of various tumors (all non-colon) and inhibiting metastasis in mice164, 165. However, these anti-cancer 

properties of YC-1 may be attributed to its ability to inhibit HIF-2 instead of HIF-1. In support, activation 

of HIF-1 does not seem to increase carcinogenesis or the progression of colon cancer166. Therefore, 

local and specific activation of HIF-1 could be safe for therapeutic use in IBD. In addition, no 

carcinogenic effects of PHD inhibitors have been reported thus far. Even more, haplodeletion of 

endothelial Phd2 normalizes the endothelial cell layer in a HIF-2-dependent manner with less 

metastasis and improved chemotherapy delivery as a consequence125, 126. As mentioned earlier, T cell 

specific loss of all three PHD isoforms promotes Th1 responses, restrains CD8+ T cell effector function 

and limits Treg induction which is partly attributable to HIF-1 stabilization. Moreover, these T cell 

alterations protect these mice from metastatic tumor colonization in the lung. Of note, the risk for 

cancer development in IBD patients is greatly increased by the chronicity of inflammation167. Since pan-

hydroxylase inhibitors protect against intestinal injury, the risk of inflammation-induced tumor 

development may therefore decrease.  
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Erythropoiesis 

The stabilization of HIF can promote EPO release and subsequently increases erythrocyte production. 

Although this is desirable for the treatment of several diseases including renal anemia or cancer-

related and chemotherapy-induced anemia, EPO stimulating agents have been associated with an 

increased risk of thromboembolic events. This might be particularly relevant for IBD patients. While 

anaemia is a frequent systemic complication in IBD patients with a prevalence in CD patients of 27% 

and 21% in UC patients,168 the main cause is iron deficiency. The latter in addition to other conditions 

such as cancer, absence of a spleen or infections, can lead to secondary thrombocytosis 169, 170 and 

hence contribute to the increased risk of thromboembolic events. Furthermore, human IBD is 

associated with activation of tissue factor, impairment of the protein C pathway and enhanced 

generation of thrombin making the blood of these patients already hypercoagulant and more prone 

to the appearance of thrombi171. Indeed, microinfarctions are often detected in histology of inflamed 

biopsies from IBD patients172 and clinical studies indicate an increased risk for systemic 

thromboembolisms in IBD patients173. However, it is reassuring that the trials with pan-hydroxylase 

inhibitors to treat anemia in CKD patients show no increased incidence of hypertension and 

cardiovascular events.155-157. 

Fibrosis 

Another important limitation for the use of pan-hydroxylase inhibitors is the risk of fibrosis. Higgins 

and colleagues have demonstrated that epithelial activation of HIF-1 during hypoxia increases the 

epithelial-to-mesenchymal transition and epithelial cell migration through up-regulation of lysyl 

oxidases, enzymes involved in extracellular matrix degradation, while deletion of epithelial HIF-

1inhibited kidney fibrosis174. In addition to kidney fibrosis, it has been demonstrated that 

hepatocyte-specific HIF-1 deletion reduced fibrosis in several models of liver fibrosis through the 

down-regulation of pro-fibrotic proteins175, 176. Similar, myeloid-specific HIF-1 knockout mice also 

exhibited reduced signs of liver fibrosis associated with reduced expressions of the pro-fibrotic 

proteins -SMA, type I collagen and platelet derived growth factor B177. Furthermore, hypoxia via HIF-

1 also enhances the production of TGF-1 and collagen synthesis through TGF-1 in fibroblasts, two 

key mediators of intestinal fibrosis78. Therefore, the long-term use of HIF-1 activators could be 

problematic for CD patients where recurrent episodes of inflammation and healing leads to 

fibrostenotic or penetrating disease in 60% of patients178. Although DMOG, in addition to its anti-

inflammatory effect, is also able to reduce intestinal fibrosis, this effect relied on the suppression of 

TGF-ERK signalling and was independent of its known HIF-1 activator function133. 
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Disturbance of biochemical processes 

A final word of caution on the use of pan-hydroxylase inhibitors involves the alteration of biochemical 

pathways. This concern specifically applies to pan-hydroxylase inhibitors that are 2-OG analogues like 

DMOG or Fe2+ chelators like AKB-4924179. In humans, there are at least 80 2-OG-dependent 

dioxygenases besides PHDs180. They are known to hydroxylate C-H bonds on a variety of targets 

involved in collagen and hormone synthesis, fatty acid metabolism and perform demethylations of N-

methyl groups on histones and nucleic acids181. Therefore, the use of 2-OG competitors may 

detrimentally influence these reactions and cause disease. Indeed, Loenarz et al. summarizes a range 

of severe disorders such as growth retardation and osteogenesis imperfect type VIII, caused by 

impaired function of 2-OG oxygenases181. Concerning the HIF-1 stabilizers that are Fe2+ chelators, they 

are non-selective because they probably also inhibit the activity of other enzymes requiring Fe2+ and 

hence result in unwanted side effects. Indeed, it has been reported that iron chelation interferes with 

oxidative phosphorylation and arachidonic acid signalling182, 183. 

 

Future directions 

Next-generation pan-hydroxylase inhibitors 

Most of the above described potential side-effects of PHD inhibitors rely on a systemic exposure of 

these compounds. Recently however, the oral delivery of the prolyl hydroxylase inhibitor AKB-4924 

has been shown to reduce colonic inflammation while minimally affecting HIF stabilization and HIF 

target genes in extraintestinal organs, thereby limiting off-target effects148. Oral administration of the 

pan-hydroxylase inhibitor DMOG is not effective against colitis which may be due to acidic and 

enzymatic drug degradation in the stomach and small intestine184. However, Tambuwala and 

colleagues found that orally administrated coated DMOG minispheres resulted in local release 

throughout the colon and protection against colitis with a lower EPO response as compared to 

intraperitoneal DMOG administration184. 

 

Isoform-specific PHD targeting 

Another way to circumvent unwanted side effects is the selective targeting of the key PHD isoform 

involved in colitogenesis. We have demonstrated that PHD1 expression is increased in inflamed IBD 

biopsies, especially UC185. In agreement, Tambuwala and co-workers reported that only PHD1-/- mice, 
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but not PHD2 or PHD3, were highly protected in a mouse model of ulcerative colitis which is associated 

with reduced epithelial apoptosis and enhanced barrier function120. We further unravelled that in 

addition to an anti-apoptotic effect of Phd1-deletion on epithelial cells, haematopoietic Phd1-

deficiency drives the protection during DSS-induced colitis at least in part by promoting M2 

macrophage polarization and diminishing their pro-inflammatory cytokine and chemokine release131.  

PHD2 is the critical isoform that determines HIF1- levels under normoxia186. As HIF-1 activation has 

been proven to be protective in experimental models of colitis, it is surprising that Phd2-deficient mice 

showed no protection against colitogenesis. It has been hypothesized that the heterozygous Phd2-

deficient mice used may perhaps not sufficiently elevate HIF-1 levels to exert a therapeutic effect. 

Therefore, cell type specific Phd2 targeting or PHD2 inhibitors could resolve this problem but data 

regarding the therapeutic effect of these approaches on intestinal inflammation is lacking. 

Although loss of PHD3 in neutrophils decreased their survival under hypoxic conditions which results 

in reduced neutrophilic infiltration during DSS-induced colitis, it did not alter the disease course134. 

Likewise, we and others reported no improved clinical outcome in Phd3-deleted mice after DSS 

exposure 120, 131. In addition, it has been reported that epithelial Phd3-deficiency causes spontaneous 

colitis by disturbing barrier function due to decreased occludin expression121.  

Taken together, these results highly suggest that pan-hydroxylase inhibitors exert their protective 

effects primarily through inhibition of PHD1. Unfortunately, there are currently no PHD1-specific 

inhibitors available to test its application in humans. If the development of a small molecule inhibitor 

with high selectivity for PHD1 is not feasible, a PHD1 antisense oligonucleotide may represent a 

valuable alternative. Thus far, Quaegebeur et al. demonstrated their effectiveness in reducing cerebral 

infarct size and neurological deficits following stroke187. 

Of note, it would be interesting to explore the effect of FIH-specific deletion during experimental 

colitis. Inhibition of both FIH and PHDs in kidney epithelial cells results in a 6-fold higher induction of 

HIF-1 activity than PHD inhibition alone, indicating that FIH is in fact accountable for the majority of 

HIF-1 activity in these cells188. Moreover, DMOG diminishes IL-1-induced NFB activation and 

subsequent target gene expression probably through the combinatorial inhibition of PHD1 and FIH189. 

Single knockdown of PHD1 and FIH was able to reduce the IL-1-induced NFB activation, but deletion 

of both had an additive effect. Since IL- plays an important role in the pathogenesis of experimental 

IBD190, it is possible that the therapeutic action of PHD and FIH hydroxylase inhibitors like DMOG 

includes its inhibition of FIH. The mechanisms by which hydroxylase inhibitors exert beneficial effects 

during experimental IBD are underlined in Table 3. 
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Summary 

During the last decade intensive research efforts have been dedicated towards unravelling the role of 

hypoxia-induced signalling in intestinal inflammation. The oxygen-sensitive prolyl hydroxylases tightly 

control the activity of the transcription factors HIF-1, HIF-2 and NFB which in turn orchestrate both a 

pro-inflammatory and adaptive response during hypoxic conditions such as IBD. Accumulating 

evidence from animal studies supports the development of strategies that boost the hypoxia-induced 

adaptive response in IBD. In particular, pharmacological PHD inhibitors have proven their therapeutic 

efficacy in several mouse models of UC and CD. The potential hazards of systemic PHD inhibition 

combined with the novel insights on the role of the different PHD isotypes during intestinal 

inflammation indicate that orally delivered PHD1-specific inhibitors are the best drug candidates for 

the treatment of human IBD.  

 

 

 

 

 

 

 

 

 

 

 

 

 



64 
 

REFERENCES 

1. Taylor, C.T. & Colgan, S.P. Hypoxia and gastrointestinal disease. J Mol. Med. (Berl) 85, 1295-
1300 (2007). 

2. Giatromanolaki, A. et al. Hypoxia inducible factor 1alpha and 2alpha overexpression in 
inflammatory bowel disease. J Clin. Pathol 56, 209-213 (2003). 

3. Schreiber, S., Nikolaus, S. & Hampe, J. Activation of nuclear factor kappa B inflammatory bowel 
disease. Gut 42, 477-484 (1998). 

4. Xu, C. & Dong, W. Role of hypoxia-inducible factor-1alpha in pathogenesis and disease 
evaluation of ulcerative colitis. Exp Ther Med 11, 1330-1334 (2016). 

5. Fisher, E.M., Khan, M., Salisbury, R. & Kuppusamy, P. Noninvasive monitoring of small 
intestinal oxygen in a rat model of chronic mesenteric ischemia. Cell Biochem Biophys 67, 451-
9 (2013). 

6. Zeitouni, N.E., Chotikatum, S., von Kockritz-Blickwede, M. & Naim, H.Y. The impact of hypoxia 
on intestinal epithelial cell functions: consequences for invasion by bacterial pathogens. Mol 
Cell Pediatr 3, 14 (2016). 

7. Campbell, E.L. et al. Transmigrating neutrophils shape the mucosal microenvironment through 
localized oxygen depletion to influence resolution of inflammation. Immunity 40, 66-77 (2014). 

8. Hatoum, O.A., Miura, H. & Binion, D.G. The vascular contribution in the pathogenesis of 
inflammatory bowel disease. Am J Physiol Heart Circ Physiol 285, H1791-6 (2003). 

9. Biddlestone, J., Bandarra, D. & Rocha, S. The role of hypoxia in inflammatory disease (review). 
Int J Mol Med 35, 859-69 (2015). 

10. Schofield, C.J. & Ratcliffe, P.J. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5, 343-
54 (2004). 

11. Semenza, G.L. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible 
factor 1. Biochem J 405, 1-9 (2007). 

12. Ortiz-Barahona, A., Villar, D., Pescador, N., Amigo, J. & del Peso, L. Genome-wide identification 
of hypoxia-inducible factor binding sites and target genes by a probabilistic model integrating 
transcription-profiling data and in silico binding site prediction. Nucleic Acids Res 38, 2332-45 
(2010). 

13. Chowdhury, R., Hardy, A. & Schofield, C.J. The human oxygen sensing machinery and its 
manipulation. Chem Soc Rev 37, 1308-19 (2008). 

14. Stiehl, D.P. et al. Increased prolyl 4-hydroxylase domain proteins compensate for decreased 
oxygen levels. Evidence for an autoregulatory oxygen-sensing system. J Biol Chem 281, 23482-
91 (2006). 

15. Koong, A.C., Chen, E.Y. & Giaccia, A.J. Hypoxia causes the activation of nuclear factor kappa B 
through the phosphorylation of I kappa B alpha on tyrosine residues. Cancer Res 54, 1425-30 
(1994). 

16. Taylor, C.T. & Cummins, E.P. The role of NF-kappaB in hypoxia-induced gene expression. Ann 
N Y Acad Sci 1177, 178-84 (2009). 

17. Oliver, K.M. et al. Hypoxia activates NF-kappaB-dependent gene expression through the 
canonical signaling pathway. Antioxid Redox Signal 11, 2057-64 (2009). 

18. Cummins, E.P. et al. Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving 
insight into hypoxia-induced NFkappaB activity. Proc Natl Acad Sci U S A 103, 18154-9 (2006). 

19. Takeda, Y. et al. Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing 
arteriogenesis. Nature 479, 122-126 (2011). 

20. Xue, J. et al. Prolyl hydroxylase-3 is down-regulated in colorectal cancer cells and inhibits 
IKKbeta independent of hydroxylase activity. Gastroenterology 138, 606-615 (2010). 



65 
 

21. Fu, J. & Taubman, M.B. EGLN3 inhibition of NF-kappaB is mediated by prolyl hydroxylase-
independent inhibition of IkappaB kinase gamma ubiquitination. Mol.Cell Biol. 33, 3050-3061 
(2013). 

22. Aoki, M. et al. Endothelial apoptosis induced by oxidative stress through activation of NF-
kappaB: antiapoptotic effect of antioxidant agents on endothelial cells. Hypertension 38, 48-
55 (2001). 

23. Matsui, H. et al. Induction of interleukin (IL)-6 by hypoxia is mediated by nuclear factor (NF)-
kappa B and NF-IL6 in cardiac myocytes. Cardiovasc Res 42, 104-12 (1999). 

24. Fitzpatrick, S.F. et al. An intact canonical NF-kappaB pathway is required for inflammatory gene 
expression in response to hypoxia. J Immunol 186, 1091-6 (2011). 

25. Walmsley, S.R. et al. Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-
dependent NF-kappaB activity. J Exp. Med 201, 105-115 (2005). 

26. Cockman, M.E. et al. Posttranslational hydroxylation of ankyrin repeats in IkappaB proteins by 
the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proc Natl 
Acad Sci U S A 103, 14767-72 (2006). 

27. Bonello, S. et al. Reactive oxygen species activate the HIF-1alpha promoter via a functional 
NFkappaB site. Arterioscler Thromb Vasc Biol 27, 755-61 (2007). 

28. van Uden, P., Kenneth, N.S. & Rocha, S. Regulation of hypoxia-inducible factor-1alpha by NF-
kappaB. Biochem J 412, 477-84 (2008). 

29. Rius, J. et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional 
regulation of HIF-1alpha. Nature 453, 807-11 (2008). 

30. Bracken, C.P., Whitelaw, M.L. & Peet, D.J. Activity of hypoxia-inducible factor 2alpha is 
regulated by association with the NF-kappaB essential modulator. J Biol Chem 280, 14240-51 
(2005). 

31. Frede, S., Stockmann, C., Freitag, P. & Fandrey, J. Bacterial lipopolysaccharide induces HIF-1 
activation in human monocytes via p44/42 MAPK and NF-kappaB. Biochem J 396, 517-27 
(2006). 

32. Zhou, J., Schmid, T. & Brune, B. Tumor necrosis factor-alpha causes accumulation of a 
ubiquitinated form of hypoxia inducible factor-1alpha through a nuclear factor-kappaB-
dependent pathway. Mol Biol Cell 14, 2216-25 (2003). 

33. Kim, J. et al. Hypoxia-induced IL-18 increases hypoxia-inducible factor-1alpha expression 
through a Rac1-dependent NF-kappaB pathway. Mol Biol Cell 19, 433-44 (2008). 

34. Scortegagna, M. et al. HIF-1alpha regulates epithelial inflammation by cell autonomous 
NFkappaB activation and paracrine stromal remodeling. Blood 111, 3343-54 (2008). 

35. Taylor, C.T., Fueki, N., Agah, A., Hershberg, R.M. & Colgan, S.P. Critical role of cAMP response 
element binding protein expression in hypoxia-elicited induction of epithelial tumor necrosis 
factor-alpha. J Biol Chem 274, 19447-54 (1999). 

36. Taylor, C.T., Dzus, A.L. & Colgan, S.P. Autocrine regulation of epithelial permeability by hypoxia: 
role for polarized release of tumor necrosis factor alpha. Gastroenterology 114, 657-68 (1998). 

37. Hindryckx, P. et al. Absence of placental growth factor blocks dextran sodium sulfate-induced 
colonic mucosal angiogenesis, increases mucosal hypoxia and aggravates acute colonic injury. 
Lab Invest 90, 566-76 (2010). 

38. Kong, T., Eltzschig, H.K., Karhausen, J., Colgan, S.P. & Shelley, C.S. Leukocyte adhesion during 
hypoxia is mediated by HIF-1-dependent induction of beta2 integrin gene expression. Proc Natl 
Acad Sci U S A 101, 10440-5 (2004). 

39. Hannah, S. et al. Hypoxia prolongs neutrophil survival in vitro. FEBS Lett 372, 233-7 (1995). 
40. Mecklenburgh, K.I. et al. Involvement of a ferroprotein sensor in hypoxia-mediated inhibition 

of neutrophil apoptosis. Blood 100, 3008-16 (2002). 
41. Yun, J.K. et al. Inflammatory mediators are perpetuated in macrophages resistant to apoptosis 

induced by hypoxia. Proc Natl Acad Sci U S A 94, 13903-8 (1997). 



66 
 

42. Kohler, T., Reizis, B., Johnson, R.S., Weighardt, H. & Forster, I. Influence of hypoxia-inducible 
factor 1alpha on dendritic cell differentiation and migration. Eur J Immunol 42, 1226-36 (2012). 

43. Blengio, F. et al. The hypoxic environment reprograms the cytokine/chemokine expression 
profile of human mature dendritic cells. Immunobiology 218, 76-89 (2013). 

44. Bosco, M.C. et al. Hypoxia modulates the gene expression profile of immunoregulatory 
receptors in human mature dendritic cells: identification of TREM-1 as a novel hypoxic marker 
in vitro and in vivo. Blood 117, 2625-39 (2011). 

45. Genua, M., Rutella, S., Correale, C. & Danese, S. The triggering receptor expressed on myeloid 
cells (TREM) in inflammatory bowel disease pathogenesis. J Transl Med 12, 293 (2014). 

46. Mishra, K.P., Jain, S., Ganju, L. & Singh, S.B. Hypoxic Stress Induced TREM-1 and Inflammatory 
Chemokines in Human Peripheral Blood Mononuclear Cells. Indian J Clin Biochem 29, 133-8 
(2014). 

47. Michiels, C., Arnould, T., Knott, I., Dieu, M. & Remacle, J. Stimulation of prostaglandin synthesis 
by human endothelial cells exposed to hypoxia. Am J Physiol 264, C866-74 (1993). 

48. Michiels, C., Arnould, T. & Remacle, J. Endothelial cell responses to hypoxia: initiation of a 
cascade of cellular interactions. Biochim Biophys Acta 1497, 1-10 (2000). 

49. Ogawa, S. et al. Hypoxia modulates the barrier and coagulant function of cultured bovine 
endothelium. Increased monolayer permeability and induction of procoagulant properties. J 
Clin Invest 85, 1090-8 (1990). 

50. Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by 
hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843-5 (1992). 

51. Scaldaferri, F. et al. VEGF-A links angiogenesis and inflammation in inflammatory bowel disease 
pathogenesis. Gastroenterology 136, 585-95 e5 (2009). 

52. Furuta, G.T. et al. Hypoxia-inducible factor 1-dependent induction of intestinal trefoil factor 
protects barrier function during hypoxia. J Exp. Med 193, 1027-1034 (2001). 

53. Colgan, S.P., Dzus, A.L. & Parkos, C.A. Epithelial exposure to hypoxia modulates neutrophil 
transepithelial migration. J Exp Med 184, 1003-15 (1996). 

54. Synnestvedt, K. et al. Ecto-5'-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 
mediates permeability changes in intestinal epithelia. J Clin. Invest 110, 993-1002 (2002). 

55. Louis, N.A. et al. Selective induction of mucin-3 by hypoxia in intestinal epithelia. J Cell Biochem 
99, 1616-27 (2006). 

56. Comerford, K.M. et al. Hypoxia-inducible factor-1-dependent regulation of the multidrug 
resistance (MDR1) gene. Cancer Res 62, 3387-94 (2002). 

57. Kong, T., Westerman, K.A., Faigle, M., Eltzschig, H.K. & Colgan, S.P. HIF-dependent induction 
of adenosine A2B receptor in hypoxia. FASEB J 20, 2242-50 (2006). 

58. Eltzschig, H.K. et al. HIF-1-dependent repression of equilibrative nucleoside transporter (ENT) 
in hypoxia. J Exp Med 202, 1493-505 (2005). 

59. Morote-Garcia, J.C., Rosenberger, P., Nivillac, N.M., Coe, I.R. & Eltzschig, H.K. Hypoxia-
inducible factor-dependent repression of equilibrative nucleoside transporter 2 attenuates 
mucosal inflammation during intestinal hypoxia. Gastroenterology 136, 607-18 (2009). 

60. Aherne, C.M. et al. Epithelial-specific A2B adenosine receptor signaling protects the colonic 
epithelial barrier during acute colitis. Mucosal Immunol 8, 1324-38 (2015). 

61. Frick, J.S. et al. Contribution of adenosine A2B receptors to inflammatory parameters of 
experimental colitis. J Immunol 182, 4957-64 (2009). 

62. Kelly, C.J. et al. Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal 
Epithelial HIF Augments Tissue Barrier Function. Cell Host Microbe 17, 662-71 (2015). 

63. Glover, L.E. et al. Control of creatine metabolism by HIF is an endogenous mechanism of barrier 
regulation in colitis. Proc Natl Acad Sci U S A 110, 19820-5 (2013). 

64. Hindryckx, P. et al. Hydroxylase inhibition abrogates TNF-alpha-induced intestinal epithelial 
damage by hypoxia-inducible factor-1-dependent repression of FADD. J Immunol 185, 6306-
6316 (2010). 



67 
 

65. Kelly, C.J. et al. Fundamental role for HIF-1alpha in constitutive expression of human beta 
defensin-1. Mucosal Immunol 6, 1110-8 (2013). 

66. Rosenberger, P. et al. Hypoxia-inducible factor-dependent induction of netrin-1 dampens 
inflammation caused by hypoxia. Nat. Immunol 10, 195-202 (2009). 

67. Louis, N.A., Hamilton, K.E., Kong, T. & Colgan, S.P. HIF-dependent induction of apical CD55 
coordinates epithelial clearance of neutrophils. FASEB J 19, 950-959 (2005). 

68. Thompson, L.F. et al. Crucial role for ecto-5'-nucleotidase (CD73) in vascular leakage during 
hypoxia. J Exp Med 200, 1395-405 (2004). 

69. Eltzschig, H.K. et al. Coordinated adenine nucleotide phosphohydrolysis and nucleoside 
signaling in posthypoxic endothelium: role of ectonucleotidases and adenosine A2B receptors. 
J Exp Med 198, 783-96 (2003). 

70. Karhausen, J. et al. Epithelial hypoxia-inducible factor-1 is protective in murine experimental 
colitis. J Clin. Invest 114, 1098-1106 (2004). 

71. Shah, Y.M. et al. Hypoxia-inducible factor augments experimental colitis through an MIF-
dependent inflammatory signaling cascade. Gastroenterology 134, 2036-48, 2048 (2008). 

72. Xue, X. et al. Endothelial PAS domain protein 1 activates the inflammatory response in the 
intestinal epithelium to promote colitis in mice. Gastroenterology 145, 831-841 (2013). 

73. Xie, L. et al. Hypoxia-inducible factor/MAZ-dependent induction of caveolin-1 regulates colon 
permeability through suppression of occludin, leading to hypoxia-induced inflammation. Mol 
Cell Biol 34, 3013-23 (2014). 

74. Saeedi, B.J. et al. HIF-dependent regulation of claudin-1 is central to intestinal epithelial tight 
junction integrity. Mol Biol Cell 26, 2252-62 (2015). 

75. Le Bras, A. et al. HIF-2alpha specifically activates the VE-cadherin promoter independently of 
hypoxia and in synergy with Ets-1 through two essential ETS-binding sites. Oncogene 26, 7480-
9 (2007). 

76. Coulet, F., Nadaud, S., Agrapart, M. & Soubrier, F. Identification of hypoxia-response element 
in the human endothelial nitric-oxide synthase gene promoter. J Biol Chem 278, 46230-40 
(2003). 

77. Gilkes, D.M., Bajpai, S., Chaturvedi, P., Wirtz, D. & Semenza, G.L. Hypoxia-inducible factor 1 
(HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, 
P4HA2, and PLOD2 expression in fibroblasts. J Biol Chem 288, 10819-29 (2013). 

78. Lokmic, Z., Musyoka, J., Hewitson, T.D. & Darby, I.A. Hypoxia and hypoxia signaling in tissue 
repair and fibrosis. Int Rev Cell Mol Biol 296, 139-85 (2012). 

79. Kottmann, R.M. et al. Lactic acid is elevated in idiopathic pulmonary fibrosis and induces 
myofibroblast differentiation via pH-dependent activation of transforming growth factor-beta. 
Am J Respir Crit Care Med 186, 740-51 (2012). 

80. McMahon, S., Charbonneau, M., Grandmont, S., Richard, D.E. & Dubois, C.M. Transforming 
growth factor beta1 induces hypoxia-inducible factor-1 stabilization through selective 
inhibition of PHD2 expression. J Biol Chem 281, 24171-81 (2006). 

81. Hackenbeck, T. et al. HIF-1 or HIF-2 induction is sufficient to achieve cell cycle arrest in NIH3T3 
mouse fibroblasts independent from hypoxia. Cell Cycle 8, 1386-95 (2009). 

82. Cramer, T. et al. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112, 645-
657 (2003). 

83. Peyssonnaux, C. et al. HIF-1alpha expression regulates the bactericidal capacity of phagocytes. 
J Clin. Invest 115, 1806-1815 (2005). 

84. Thompson, A.A. et al. Hypoxia-inducible factor 2alpha regulates key neutrophil functions in 
humans, mice, and zebrafish. Blood 123, 366-76 (2014). 

85. Wera, O., Lancellotti, P. & Oury, C. The Dual Role of Neutrophils in Inflammatory Bowel 
Diseases. J Clin Med 5 (2016). 

86. Marks, D.J. et al. Defective acute inflammation in Crohn's disease: a clinical investigation. 
Lancet 367, 668-78 (2006). 



68 
 

87. Smith, A.M. et al. Disordered macrophage cytokine secretion underlies impaired acute 
inflammation and bacterial clearance in Crohn's disease. J Exp Med 206, 1883-97 (2009). 

88. Hu, C.J., Wang, L.Y., Chodosh, L.A., Keith, B. & Simon, M.C. Differential roles of hypoxia-
inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 
23, 9361-74 (2003). 

89. Sheikh, S.Z. & Plevy, S.E. The role of the macrophage in sentinel responses in intestinal 
immunity. Curr Opin Gastroenterol 26, 578-82 (2010). 

90. Labonte, A.C., Tosello-Trampont, A.C. & Hahn, Y.S. The role of macrophage polarization in 
infectious and inflammatory diseases. Mol Cells 37, 275-85 (2014). 

91. Galvan-Pena, S. & O'Neill, L.A. Metabolic reprograming in macrophage polarization. Front 
Immunol 5, 420 (2014). 

92. Kim, S.Y. et al. Hypoxic stress up-regulates the expression of Toll-like receptor 4 in 
macrophages via hypoxia-inducible factor. Immunology 129, 516-24 (2010). 

93. Takeda, N. et al. Differential activation and antagonistic function of HIF-{alpha} isoforms in 
macrophages are essential for NO homeostasis. Genes Dev 24, 491-501 (2010). 

94. Imtiyaz, H.Z. et al. Hypoxia-inducible factor 2alpha regulates macrophage function in mouse 
models of acute and tumor inflammation. J Clin. Invest 120, 2699-2714 (2010). 

95. Wobben, R. et al. Role of hypoxia inducible factor-1alpha for interferon synthesis in mouse 
dendritic cells. Biol Chem 394, 495-505 (2013). 

96. Naldini, A. et al. Hypoxia affects dendritic cell survival: role of the hypoxia-inducible factor-
1alpha and lipopolysaccharide. J Cell Physiol 227, 587-95 (2012). 

97. Fluck, K., Breves, G., Fandrey, J. & Winning, S. Hypoxia-inducible factor 1 in dendritic cells is 
crucial for the activation of protective regulatory T cells in murine colitis. Mucosal. Immunol 9, 
379-390 (2016). 

98. Crotty Alexander, L.E. et al. Myeloid cell HIF-1alpha regulates asthma airway resistance and 
eosinophil function. J Mol. Med. (Berl) 91, 637-644 (2013). 

99. Sumbayev, V.V., Yasinska, I., Oniku, A.E., Streatfield, C.L. & Gibbs, B.F. Involvement of hypoxia-
inducible factor-1 in the inflammatory responses of human LAD2 mast cells and basophils. PLoS 
One 7, e34259 (2012). 

100. Biju, M.P. et al. Vhlh gene deletion induces Hif-1-mediated cell death in thymocytes. Mol Cell 
Biol 24, 9038-47 (2004). 

101. Shehade, H., Acolty, V., Moser, M. & Oldenhove, G. Cutting Edge: Hypoxia-Inducible Factor 1 
Negatively Regulates Th1 Function. J Immunol 195, 1372-6 (2015). 

102. Ben-Shoshan, J., Maysel-Auslender, S., Mor, A., Keren, G. & George, J. Hypoxia controls 
CD4+CD25+ regulatory T-cell homeostasis via hypoxia-inducible factor-1alpha. Eur J Immunol 
38, 2412-8 (2008). 

103. Dang, E.V. et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 146, 772-
84 (2011). 

104. Higashiyama, M. et al. HIF-1 in T cells ameliorated dextran sodium sulfate-induced murine 
colitis. J Leukoc. Biol 91, 901-909 (2012). 

105. Clambey, E.T. et al. Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives 
regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc. 
Natl. Acad. Sci. U. S. A 109, E2784-E2793 (2012). 

106. Zhang, J. et al. Hypoxia-Inducible Factor-2alpha Limits Natural Killer T Cell Cytotoxicity in Renal 
Ischemia/Reperfusion Injury. J Am Soc Nephrol 27, 92-106 (2016). 

107. Kojima, H. et al. Abnormal B lymphocyte development and autoimmunity in hypoxia-inducible 
factor 1alpha -deficient chimeric mice. Proc Natl Acad Sci U S A 99, 2170-4 (2002). 

108. Goda, N. et al. Hypoxia-inducible factor 1alpha is essential for cell cycle arrest during hypoxia. 
Mol Cell Biol 23, 359-69 (2003). 

109. Cho, S.H. et al. Germinal centre hypoxia and regulation of antibody qualities by a hypoxia 
response system. Nature 537, 234-238 (2016). 



69 
 

110. Hayden, M.S. & Ghosh, S. NF-kappaB, the first quarter-century: remarkable progress and 
outstanding questions. Genes Dev 26, 203-34 (2012). 

111. Neurath, M.F., Pettersson, S., Meyer zum Buschenfelde, K.H. & Strober, W. Local 
administration of antisense phosphorothioate oligonucleotides to the p65 subunit of NF-kappa 
B abrogates established experimental colitis in mice. Nat. Med 2, 998-1004 (1996). 

112. MacMaster, J.F. et al. An inhibitor of IkappaB kinase, BMS-345541, blocks endothelial cell 
adhesion molecule expression and reduces the severity of dextran sulfate sodium-induced 
colitis in mice. Inflamm. Res 52, 508-511 (2003). 

113. Eckmann, L. et al. Opposing functions of IKKbeta during acute and chronic intestinal 
inflammation. Proc. Natl. Acad. Sci. U. S. A 105, 15058-15063 (2008). 

114. Hayden, M.S., West, A.P. & Ghosh, S. NF-kappaB and the immune response. Oncogene 25, 
6758-80 (2006). 

115. Lawrence, T., Gilroy, D.W., Colville-Nash, P.R. & Willoughby, D.A. Possible new role for NF-
kappaB in the resolution of inflammation. Nat Med 7, 1291-7 (2001). 

116. Greten, F.R. et al. NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic 
and pharmacological inhibition of IKKbeta. Cell 130, 918-31 (2007). 

117. Erdman, S., Fox, J.G., Dangler, C.A., Feldman, D. & Horwitz, B.H. Typhlocolitis in NF-kappa B-
deficient mice. J Immunol 166, 1443-1447 (2001). 

118. Tomczak, M.F. et al. Inhibition of Helicobacter hepaticus-induced colitis by IL-10 requires the 
p50/p105 subunit of NF-kappa B. J Immunol 177, 7332-7339 (2006). 

119. Nenci, A. et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. 
Nature 446, 557-561 (2007). 

120. Tambuwala, M.M. et al. Loss of prolyl hydroxylase-1 protects against colitis through reduced 
epithelial cell apoptosis and increased barrier function. Gastroenterology 139, 2093-2101 
(2010). 

121. Chen, Y. et al. PHD3 Stabilizes the Tight Junction Protein Occludin and Protects Intestinal 
Epithelial Barrier Function. J Biol. Chem 290, 20580-20589 (2015). 

122. Kalucka, J. et al. Loss of epithelial hypoxia-inducible factor prolyl hydroxylase 2 accelerates skin 
wound healing in mice. Mol Cell Biol 33, 3426-38 (2013). 

123. Fang, Y., Zhang, H., Zhong, Y. & Ding, X. Prolyl hydroxylase 2 (PHD2) inhibition protects human 
renal epithelial cells and mice kidney from hypoxia injury. Oncotarget (2016). 

124. Takeda, K. & Fong, G.H. Prolyl hydroxylase domain 2 protein suppresses hypoxia-induced 
endothelial cell proliferation. Hypertension 49, 178-84 (2007). 

125. Mazzone, M. et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits 
metastasis via endothelial normalization. Cell 136, 839-51 (2009). 

126. Leite de Oliveira, R. et al. Gene-targeting of Phd2 improves tumor response to chemotherapy 
and prevents side-toxicity. Cancer Cell 22, 263-77 (2012). 

127. Dai, Z., Li, M., Wharton, J., Zhu, M.M. & Zhao, Y.Y. Prolyl-4 Hydroxylase 2 (PHD2) Deficiency in 
Endothelial Cells and Hematopoietic Cells Induces Obliterative Vascular Remodeling and 
Severe Pulmonary Arterial Hypertension in Mice and Humans Through Hypoxia-Inducible 
Factor-2alpha. Circulation 133, 2447-58 (2016). 

128. Kapitsinou, P.P. et al. The Endothelial Prolyl-4-Hydroxylase Domain 2/Hypoxia-Inducible Factor 
2 Axis Regulates Pulmonary Artery Pressure in Mice. Mol Cell Biol 36, 1584-94 (2016). 

129. Wang, S. et al. Loss of prolyl hydroxylase domain protein 2 in vascular endothelium increases 
pericyte coverage and promotes pulmonary arterial remodeling. Oncotarget 7, 58848-58861 
(2016). 

130. Wang, S. et al. Ablation of endothelial prolyl hydroxylase domain protein-2 promotes renal 
vascular remodelling and fibrosis in mice. J Cell Mol Med (2017). 

131. Van Welden, S. et al. Haematopoietic prolyl hydroxylase-1 deficiency promotes M2 
macrophage polarization and is both necessary and sufficient to protect against experimental 
colitis. J Pathol (2016). 



70 
 

132. Wu, S. et al. Enhancement of angiogenesis through stabilization of hypoxia-inducible factor-1 
by silencing prolyl hydroxylase domain-2 gene. Mol Ther 16, 1227-34 (2008). 

133. Manresa, M.C. et al. Hydroxylases regulate intestinal fibrosis through the suppression of ERK 
mediated TGF-beta1 signaling. Am J Physiol Gastrointest Liver Physiol, ajpgi 00229 2016 (2016). 

134. Walmsley, S.R. et al. Prolyl hydroxylase 3 (PHD3) is essential for hypoxic regulation of 
neutrophilic inflammation in humans and mice. J Clin Invest 121, 1053-63 (2011). 

135. Takeda, K. et al. Inhibition of prolyl hydroxylase domain-containing protein suppressed 
lipopolysaccharide-induced TNF-alpha expression. Arterioscler Thromb Vasc Biol 29, 2132-7 
(2009). 

136. Ikeda, J. et al. Deletion of phd2 in myeloid lineage attenuates hypertensive cardiovascular 
remodeling. J Am Heart Assoc 2, e000178 (2013). 

137. Guentsch, A. et al. PHD2 Is a Regulator for Glycolytic Reprogramming in Macrophages. Mol Cell 
Biol 37 (2017). 

138. Escribese, M.M. et al. The prolyl hydroxylase PHD3 identifies proinflammatory macrophages 
and its expression is regulated by activin A. J Immunol 189, 1946-54 (2012). 

139. Swain, L. et al. Prolyl-4-hydroxylase domain 3 (PHD3) is a critical terminator for cell survival of 
macrophages under stress conditions. J Leukoc. Biol 96, 365-375 (2014). 

140. Kiss, J. et al. Loss of the oxygen sensor PHD3 enhances the innate immune response to 
abdominal sepsis. J Immunol 189, 1955-1965 (2012). 

141. Mamlouk, S. et al. Loss of prolyl hydroxylase-2 in myeloid cells and T-lymphocytes impairs 
tumor development. Int J Cancer 134, 849-58 (2014). 

142. Singh, Y. et al. Prolyl hydroxylase 3 (PHD3) expression augments the development of regulatory 
T cells. Mol Immunol 76, 7-12 (2016). 

143. Clever, D. et al. Oxygen Sensing by T Cells Establishes an Immunologically Tolerant Metastatic 
Niche. Cell 166, 1117-1131 e14 (2016). 

144. Cummins, E.P. et al. The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine 
model of colitis. Gastroenterology 134, 156-165 (2008). 

145. Robinson, A. et al. Mucosal protection by hypoxia-inducible factor prolyl hydroxylase 
inhibition. Gastroenterology 134, 145-155 (2008). 

146. Fraisl, P., Aragones, J. & Carmeliet, P. Inhibition of oxygen sensors as a therapeutic strategy for 
ischaemic and inflammatory disease. Nat Rev Drug Discov 8, 139-52 (2009). 

147. Keely, S. et al. Contribution of epithelial innate immunity to systemic protection afforded by 
prolyl hydroxylase inhibition in murine colitis. Mucosal. Immunol 7, 114-123 (2014). 

148. Marks, E. et al. Oral delivery of prolyl hydroxylase inhibitor: AKB-4924 promotes localized 
mucosal healing in a mouse model of colitis. Inflamm. Bowel. Dis 21, 267-275 (2015). 

149. Gupta, R. et al. Therapeutic treatment with a novel hypoxia-inducible factor hydroxylase 
inhibitor (TRC160334) ameliorates murine colitis. Clin. Exp. Gastroenterol 7, 13-23 (2014). 

150. Jamadarkhana, P. et al. Treatment with a novel hypoxia-inducible factor hydroxylase inhibitor 
(TRC160334) ameliorates ischemic acute kidney injury. Am J Nephrol 36, 208-18 (2012). 

151. Jeong, S. et al. Lipophilic modification enhances anti-colitic properties of rosmarinic acid by 
potentiating its HIF-prolyl hydroxylases inhibitory activity. Eur J Pharmacol 747, 114-22 (2015). 

152. Hart, M.L. et al. Hypoxia-inducible factor-1alpha-dependent protection from intestinal 
ischemia/reperfusion injury involves ecto-5'-nucleotidase (CD73) and the A2B adenosine 
receptor. J Immunol 186, 4367-74 (2011). 

153. Taniguchi, C.M. et al. PHD inhibition mitigates and protects against radiation-induced 
gastrointestinal toxicity via HIF2. Sci Transl Med 6, 236ra64 (2014). 

154. Hirota, S.A. et al. Hypoxia-inducible factor signaling provides protection in Clostridium difficile-
induced intestinal injury. Gastroenterology 139, 259-69 e3 (2010). 

155. Pergola, P.E., Spinowitz, B.S., Hartman, C.S., Maroni, B.J. & Haase, V.H. Vadadustat, a novel 
oral HIF stabilizer, provides effective anemia treatment in nondialysis-dependent chronic 
kidney disease. Kidney Int 90, 1115-1122 (2016). 



71 
 

156. Provenzano, R. et al. Oral Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitor Roxadustat 
(FG-4592) for the Treatment of Anemia in Patients with CKD. Clin J Am Soc Nephrol 11, 982-91 
(2016). 

157. Brigandi, R.A. et al. A Novel Hypoxia-Inducible Factor-Prolyl Hydroxylase Inhibitor 
(GSK1278863) for Anemia in CKD: A 28-Day, Phase 2A Randomized Trial. Am J Kidney Dis 67, 
861-71 (2016). 

158. Roda, J.M. et al. Stabilization of HIF-2alpha induces sVEGFR-1 production from tumor-
associated macrophages and decreases tumor growth in a murine melanoma model. J 
Immunol 189, 3168-77 (2012). 

159. Shibaji, T. et al. Prognostic significance of HIF-1 alpha overexpression in human pancreatic 
cancer. Anticancer Res 23, 4721-7 (2003). 

160. Yoshimura, H. et al. Prognostic impact of hypoxia-inducible factors 1alpha and 2alpha in 
colorectal cancer patients: correlation with tumor angiogenesis and cyclooxygenase-2 
expression. Clin Cancer Res 10, 8554-60 (2004). 

161. Allard, B., Beavis, P.A., Darcy, P.K. & Stagg, J. Immunosuppressive activities of adenosine in 
cancer. Curr Opin Pharmacol 29, 7-16 (2016). 

162. Antonioli, L., Yegutkin, G.G., Pacher, P., Blandizzi, C. & Hasko, G. Anti-CD73 in cancer 
immunotherapy: awakening new opportunities. Trends Cancer 2, 95-109 (2016). 

163. Xue, X. et al. Hypoxia-inducible factor-2alpha activation promotes colorectal cancer 
progression by dysregulating iron homeostasis. Cancer Res 72, 2285-93 (2012). 

164. Yeo, E.J. et al. YC-1: a potential anticancer drug targeting hypoxia-inducible factor 1. J Natl 
Cancer Inst 95, 516-25 (2003). 

165. Shin, D.H. et al. Preclinical evaluation of YC-1, a HIF inhibitor, for the prevention of tumor 
spreading. Cancer Lett 255, 107-16 (2007). 

166. Xue, X., Ramakrishnan, S.K. & Shah, Y.M. Activation of HIF-1alpha does not increase intestinal 
tumorigenesis. Am J Physiol Gastrointest Liver Physiol 307, G187-95 (2014). 

167. Waldner, M.J. & Neurath, M.F. Colitis-associated cancer: the role of T cells in tumor 
development. Semin Immunopathol 31, 249-56 (2009). 

168. Filmann, N. et al. Prevalence of anemia in inflammatory bowel diseases in european countries: 
a systematic review and individual patient data meta-analysis. Inflamm Bowel Dis 20, 936-45 
(2014). 

169. Kulnigg-Dabsch, S., Evstatiev, R., Dejaco, C. & Gasche, C. Effect of iron therapy on platelet 
counts in patients with inflammatory bowel disease-associated anemia. PLoS One 7, e34520 
(2012). 

170. Kulnigg-Dabsch, S. et al. Iron deficiency generates secondary thrombocytosis and platelet 
activation in IBD: the randomized, controlled thromboVIT trial. Inflamm Bowel Dis 19, 1609-16 
(2013). 

171. Yoshida, H. & Granger, D.N. Inflammatory bowel disease: a paradigm for the link between 
coagulation and inflammation. Inflamm Bowel Dis 15, 1245-55 (2009). 

172. Dhillon, A.P. et al. Mucosal capillary thrombi in rectal biopsies. Histopathology 21, 127-133 
(1992). 

173. Miehsler, W. et al. Is inflammatory bowel disease an independent and disease specific risk 
factor for thromboembolism? Gut 53, 542-548 (2004). 

174. Higgins, D.F. et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-
mesenchymal transition. J Clin Invest 117, 3810-20 (2007). 

175. Moon, J.O., Welch, T.P., Gonzalez, F.J. & Copple, B.L. Reduced liver fibrosis in hypoxia-inducible 
factor-1alpha-deficient mice. Am J Physiol Gastrointest Liver Physiol 296, G582-92 (2009). 

176. Roychowdhury, S., Chiang, D.J., McMullen, M.R. & Nagy, L.E. Moderate, chronic ethanol 
feeding exacerbates carbon-tetrachloride-induced hepatic fibrosis via hepatocyte-specific 
hypoxia inducible factor 1alpha. Pharmacol Res Perspect 2, e00061 (2014). 



72 
 

177. Copple, B.L., Kaska, S. & Wentling, C. Hypoxia-inducible factor activation in myeloid cells 
contributes to the development of liver fibrosis in cholestatic mice. J Pharmacol Exp Ther 341, 
307-16 (2012). 

178. Cosnes, J. et al. Long-term evolution of disease behavior of Crohn's disease. Inflamm Bowel Dis 
8, 244-50 (2002). 

179. Okumura, C.Y. et al. A new pharmacological agent (AKB-4924) stabilizes hypoxia inducible 
factor-1 (HIF-1) and increases skin innate defenses against bacterial infection. J Mol Med (Berl) 
90, 1079-89 (2012). 

180. McDonough, M.A., Loenarz, C., Chowdhury, R., Clifton, I.J. & Schofield, C.J. Structural studies 
on human 2-oxoglutarate dependent oxygenases. Curr Opin Struct Biol 20, 659-72 (2010). 

181. Loenarz, C. & Schofield, C.J. Physiological and biochemical aspects of hydroxylations and 
demethylations catalyzed by human 2-oxoglutarate oxygenases. Trends Biochem Sci 36, 7-18 
(2011). 

182. Yoon, Y.S., Cho, H., Lee, J.H. & Yoon, G. Mitochondrial dysfunction via disruption of complex II 
activity during iron chelation-induced senescence-like growth arrest of Chang cells. Ann N Y 
Acad Sci 1011, 123-32 (2004). 

183. Needleman, P., Turk, J., Jakschik, B.A., Morrison, A.R. & Lefkowith, J.B. Arachidonic acid 
metabolism. Annu Rev Biochem 55, 69-102 (1986). 

184. Tambuwala, M.M. et al. Targeted delivery of the hydroxylase inhibitor DMOG provides 
enhanced efficacy with reduced systemic exposure in a murine model of colitis. J Control 
Release 217, 221-227 (2015). 

185. Van Welden, S., Laukens, D., Ferdinande, L., De, Vos, M. & Hindryckx, P. Differential expression 
of prolyl hydroxylase 1 in patients with ulcerative colitis versus patients with Crohn's 
disease/infectious colitis and healthy controls. J Inflamm. (Lond) 10, 36 (2013). 

186. Berra, E. et al. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels 
of HIF-1alpha in normoxia. EMBO J 22, 4082-4090 (2003). 

187. Quaegebeur, A. et al. Deletion or Inhibition of the Oxygen Sensor PHD1 Protects against 
Ischemic Stroke via Reprogramming of Neuronal Metabolism. Cell Metab 23, 280-91 (2016). 

188. Nguyen, L.K. et al. A dynamic model of the hypoxia-inducible factor 1alpha (HIF-1alpha) 
network. J Cell Sci 126, 1454-63 (2013). 

189. Scholz, C.C. et al. Regulation of IL-1beta-induced NF-kappaB by hydroxylases links key hypoxic 
and inflammatory signaling pathways. Proc Natl Acad Sci U S A 110, 18490-5 (2013). 

190. Arai, Y., Takanashi, H., Kitagawa, H. & Okayasu, I. Involvement of interleukin-1 in the 
development of ulcerative colitis induced by dextran sulfate sodium in mice. Cytokine 10, 890-
6 (1998).



73 
 

3 Methodology to study immune and endothelial cell-mediated effects in 

experimental IBD 

In the final part of this introduction, I will elaborate on the experimental approaches that were used 

during this thesis to study the cell-specific role of the PHD isoforms during IBD-like inflammation. 

3.1 Cell-specific transgenic mice 

To study effects that are specifically mediated by immune and endothelial cells, transgenic mice can 

be employed such as Tie2:cre mice. In these mice the Tie2 promoter drives the expression of cyclization 

recombination (Cre)-recombinase. The latter is an enzyme derived from the bacteriophage P1 that 

catalyses sequence-specific DNA recombination between 34bp ‘loxP’ sites flanking the gene of interest. 

Deletion of a genomic region occurs when the loxP sites are placed in cis and in the same directional 

orientation. More specifically, Tie2:cre mice when bred with mice containing a loxP-flanked gene 

(referred to as “floxed” mice) will result in deletion of that gene in all Tie2 expression cells, i.e 

endothelial and haematopoietic cells (Figure 1). In addition, these mice can also be used to study the 

specific effect of immune cells. The latter originate from haematopoietic stem cells that reside in the 

bone marrow (BM) and can be broadly divided into myeloid and lymphoid lineages. So when whole-

body irradiation is performed on wild-type (WT) mice followed by transplantation with BM from floxed 

Tie2:cre mice, the autologous immune cells will be ablated and reconstituted with immune cells from 

the donor that carry the deleted gene. Besides BM transplantation, the transgenic Vav:cre mice 

represent a valid alternative to assess immune-mediated effects since the Vav promoter is expressed 

in all haematopoietic stem cells (Figure 1). Furthermore, the Tie2:cre mice can also be employed to 

investigate the effect(s) of endothelial-specific deletion of a loxP-flanked gene. This requires the 

irradiation of floxed Tie2:cre mice and the subsequent transplantation of WT BM. Another option that 

avoids BM transplantation is the transgenic Flk-1:cre mice where the Flk-1 promotor drives the 

expression of cre specifically in endothelial cells.  

To explore the effects of macrophage-specific gene deletion, different transgenic mice have been 

developed, but LysM:cre mice are probably the most widely used. Although M lysozyme (LysM) is 

expressed by all myeloid cells, effective excision of the gene of interest mainly occurs in macrophages, 

but also, to a lower extent, in neutrophils. MRP8:cre mice represent a better approach to drive sole 

recombination in neutrophils1, 2. Other cells of the myeloid lineage like basophils, eosinophils, DCs and 

mast cells exhibit only around 10% deletion of the floxed gene mediated by the LysM promotor3, 4. 
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To investigate the impact of a DC-specific deleted gene, CD11c:cre mice are commonly used. The only 

issue with this transgenic mouse is that DC-mediated effects cannot be discriminated from 

macrophage effects as mentioned earlier due to their shared CD11c expression. In support, several 

reports have demonstrated that CD11cDTR:cre mice effectively eliminate DCs, but also intestinal 

macrophages. Administration of diphtheria toxin (DT) in this mouse abolishes every CD11c expressing 

cell type because only these cells express the DT receptor (DTR). Therefore, breeding CD11c:cre mice 

with a floxed mice will result in DC, but also macrophage deletion of the loxP-flanked gene (Figure 1). 

Lee and co-workers developed a transgenic mouse in which the Cre-recombinase is under the control 

of the CD4 promoter. This mouse generates as expected deletion of a floxed gene in CD4+ T cells, but 

also CD8+ T cells5. In this way, T cell-mediated effects can be studied. 

 

Figure 1: Schematic overview of the targeted cells using different transgenic cre:mice. Tie2 expression occurs in the angioblast 
and haematopoietic stem cells which give rise to endothelial and haematopoietic cells respectively. Therefore, Tie2:cre mice 
will delete a loxP- flanked gene in exactly these cells. To study endothelial and haematopoietic cell-mediated effects 
separately, Flk-1:cre and Vav:cre mice can be used.  When macrophage-specific deletion is required, LysM:cre mice are good 
model although knockout in neutrophils also occurs. Sole deletion in neutrophils can be achieved by MRP8:cre mice. CD11c:cre 
mice have been mainly used to investigate DC-mediated effect, but they also generate knockout in macrophages. To explore 
the impact of T-cell specific deletion, in particular CD4+ and CD8+ T cells, CD4:cre mice are a valid option. 
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3.2 Dextran sodium sulphate (DSS)-induced colitis, an experimental IBD model 

associated with intestinal hypoxia, immune and endothelial cell dysfunction 

Although no animal model completely resembles human IBD, they are indispensable to unravel the 

underlying mechanisms of IBD pathogenesis and to study the therapeutic potential of compounds.  

Numerous animal models of IBD exist and can be divided into 1) chemically induced which consists of 

the administration of agents that promote intestinal inflammation, 2) genetic, where a certain gene is 

targeted or transgenes are introduced which results in intestinal inflammation and 3) spontaneous 

mouse models where mice spontaneously develop inflammation without genetic, chemical or 

immunological manipulation.  

Chemically induced models including DSS and 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced 

colitis are the most commonly used models because of their simplicity, low cost, reproducibility and 

controllability. Adjusting the concentration, frequency and duration of these compounds can either 

induce acute or chronic intestinal inflammation and therefore both the innate and adaptive immune 

response can be studied. In addition, the supplementation of the carcinogen azoxymethane (AOM) 

prior to DSS administration represents a model for studying colitis-associated carcinogenesis6. The 

disadvantage is that the evoked disease is self-limiting and that mice exhibit differential susceptibilities 

and responsiveness to both DSS-and TNBS-induced colitis. Important contributing factors to this 

phenomenon are not only the DSS itself (i.e. concentration, molecular weight, duration of exposure, 

manufacturer and batch), but also genetic (i.e. strain and gender) and microbiological (microbiological 

state and intestinal microbiota) factors7. More specifically, male mice are more susceptible than 

females. DBA/2J and C3H/HeJBir mice exhibit the least and highest susceptibility respectively. The 

susceptibility of C57Bl6 is in between these mice. The presence of the microbiota on the other hand 

facilitates inflammation during this model. The susceptibility to TNBS is also dependent on the mouse 

strain used8. SJL and BALB/c are susceptible whereas C57BL6 are quite resistant to TNBS-induced 

colitis. Therefore, every setting requires the optimization of TNBS and DSS to obtain the desired 

inflammatory response in the chosen mouse strain. Although these chemically-induced models of IBD 

provide valuable information about mechanism(s) contributing to IBD pathogenesis, human IBD is not 

caused by a chemical agent, but results from a complex interaction of genetic, immune and 

environmental factors. Therefore, genetically engineered mice that carry susceptibility genes for IBD 

such as IL2 and IL10 knockout mice more closely mimic the human context. In the following part, I will 

further focus and elaborate on the DSS-induced model of colitis which we used throughout our 

research because it is characterized by hypoxia, immune and endothelial cell dysfunction. 
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DSS is a water-soluble, negatively charged sulfated polysaccharide. To induce colitis, DSS with a 

molecular weight of 36-50kDa is dissolved in the drinking water at a concentration ranging from 2-5%. 

By modifying the concentration and the frequency of administration, acute or chronic and relapsing 

intestinal inflammation can be achieved. Clinical features include rectal bleeding, diarrhea, weight loss, 

hunched back and sometimes even death, especially when high dosages are applied. Histologically, 

mucin and goblet cell depletion, epithelial erosions and infiltration of polymorphonuclear and 

mononuclear cells in both mucosa and submucosa can be observed 9. Concomitantly, increased colonic 

levels of the cytokines IL-1, IL-6, TNF, IL-12, IFN-, IL-18 and G-CSF are seen, while the expression of 

IL-4 is not significantly altered, indicating a Th1 rather than a Th2 profile10, 11. The inflammation is 

restricted to the colon with the most severe signs in the distal part and inflammation gradually declines 

more proximally. Considering all described findings, this model mostly resembles human UC. The exact 

mechanism by which DSS induces inflammation is still not fully unraveled. It has been suggested that 

DSS complexes with medium-chain-length fatty acids (MCFAs), present at high concentrations in the 

colonic lumen which could explain its distal preference12. These vesicles in turn disrupt intestinal 

barrier function because DSS appears to be toxic to epithelial cells13 and hence allows bacterial 

antigens to easily penetrate the mucosa which causes an inflammatory reaction. In addition, DSS can 

be found in colonic macrophages already one day after DSS administration and inhibits their phagocytic 

capacity14, 15. This further enhances bacterial invasion and suggests that macrophages play a crucial 

role in the development of DSS-induced colitis. In addition, there is an M1/M2 imbalance present 

during this model and transfer of M2 macrophages is able to suppress colitogenesis by inducing IL-10 

release and promoting Treg differentiation16. Qualls and colleagues were actually the first to 

investigate the in vivo role of macrophages and DCs during the course of this model17. They 

demonstrated that depletion of LP macrophages and DCs using transgenic mice or via the 

administration of clodronate liposomes before the development of DSS-induced colitis, results in a 

more severe clinical outcome. Although this suggests that macrophages and DCs play a suppressive 

role in the development of DSS-induced colitis, two later publications came up with opposite results. 

In particular, depletion of DCs (and in fact also macrophages since they used CD11c:cre mice) after DSS 

administration attenuated, while adoptive transfer of BM-DCs exacerbated DSS-induced colitis18, 19. 

However, the latest publication on this issue is in agreement with the first publication and 

hypothesized that one of the reasons for the conflicting results is the timing of depletion. The main 

phenotype of DCs before initiation of DSS is probably a regulatory/anti-inflammatory subpopulation, 

while inflammatory DCs dominate after DSS administration20. In accordance, it has been demonstrated 

that DSS induces the secretion of pro-inflammatory cytokines by DCs such as IL-12 and TNF, but also 

the chemokines KC, MIP-1, MIP-2 and MCP-119. Although different DC subtypes have been described 
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in the gut, the transgenic mice used in the past were not able to reveal their exact functions in gut 

homeostasis and inflammation. This recently changed and resulted in a publication by Muzaki and 

colleagues who demonstrated that CD103+CD11b- DCs exert a protective role during DSS-induced 

colitis by inducing the expression of anti-inflammatory proteins in epithelial cells mediated by IFN-21. 

Mice lacking this DC subtype exhibit increased susceptibility to intestinal inflammation, while deletion 

of CD103+CD11b+ DCs did not alter the disease course21. The first studies that investigated a possible 

role for T cells in the DSS model made use of immunodeficient mice that lack both T-and B-cells. They 

revealed that the adaptive immunity is not required to induce the acute DSS-induced colitis as the 

disease pathology could be evoked in these mice22, but appear to act as an aggravating factor since 

recombinase-activating gene (RAG)-1 knockout mice are less susceptible to DSS (only when a low dose 

is administered)23. In agreement with a T cell specific aggravating role, mice receiving primed T cells 

from colitic mice with DSS-pulsed macrophages exhibit exacerbated signs of colitis24. The same authors 

further identified the CD4+ and not CD8+ T cells to be essential to this event. Within these CD4+ T cells, 

it has been demonstrated that DSS elicits an increase in the percentage colonic Th1 cells, while the 

percentage Th17 cells remains comparable to non-treated controls25. Despite the unaltered frequency 

of Th17 cells, the acute DSS model induces an increase in colonic IL-17A levels and IL-17A knockout 

mice are less susceptible to colitogenesis26. I mentioned earlier that macrophages also produce this 

cytokine and may therefore be the main source of this cytokine during the acute phase of DSS. In 

contrast to Th1 cells, a suppressive role is reserved for Tregs. Boehm and co-workers demonstrated 

that deletion of Treg worsens the course of the acute DSS model due to elevated levels of IL-17A and 

IFN-27. Besides a dysregulated immunologic response, the functioning of the microvasculature and 

endothelial cells is also compromised during this model. Mori and colleagues reported that DSS-

treatment results in a significantly reduced blood flow in the smallest arterioles which may be due to 

their diminished vasodilatory capacity as observed in response to the vasodilator bradykinin28. In 

addition, the same authors reported that DSS causes an accumulation of platelets and leukocytes 

adhering in colonic venules starting from day 2 onwards which can be attenuated by blocking 

endothelial and, to a lesser extent, platelet-associated P-selectin 29. Furthermore, they demonstrated 

that DSS administration increases vascular permeability which was confirmed later on in the same 

setting by Tolstanova et al. 30. Concerning cell adhesion molecules, it has been shown that the 

expression of ICAM-1, VCAM-1 and MAdCAM-1 is elevated on colonic vessels of DSS-treated mice. 

Moreover, their selective blockade using antibodies is effective in protecting mice from DSS-induced 

colitis31-33. Taken together, DSS administration provokes a dysfunctional, prothrombogenic endothelial 

phenotype similar to human IBD. Finally, to determine the presence of hypoxia 2-nitroimidazoles like 

pimonidazole can be used. This compound leaves the cell when sufficient oxygen is present, but forms 



78 
 

irreversible adducts with thiol groups when the oxygen tension falls below 10mmHg. Using this 

method, Karhausen and colleagues were the first ones to report that the colonic epithelium is hypoxic 

and markedly enhanced in colitic lesions of the 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced 

colitis model34. Later on, this physiological hypoxic state of the colonic epithelium was confirmed in 

the DSS model, but was not evaluated at the peak of inflammation35. 
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GENERAL HYPOTHESIS 

We hypothesize that deletion of Phd1 suppresses inflammation and microvascular dysfunction during 

experimental colitis through its role in immune cells and thus represents the primary therapeutic target 

for IBD. 

RATIONALE 

Pan-hydroxylase inhibition has been proposed as a novel treatment approach for IBD patients, but this 

strategy has raised some important concerns about tumor development, cardiovascular events (due 

to increased erythropoiesis) and fibrogenesis. To minimize the risk of these unwanted side-effects, 

isoform-specific targeting could be a better approach. Some preliminary work has been done in this 

field and demonstrated that Phd1 knockout mice are protected from acute colitis. It was hypothesized 

that epithelial PHD1 mediated this protection by decreasing epithelial cell apoptosis and barrier 

dysfunction, both prominent features of active IBD. However, this might be a secondary phenomenon 

because the epithelial apoptosis rate in UC seems to be driven primarily by the local inflammatory 

response rather than vice versa. Given the fact that an aberrant immune response and microvascular 

dysfunction hallmarks IBD and PHDs are involved in multiple aspects of immune cell functioning, we 

aimed to expand the current knowledge on the involvement of the different PHD isoforms in immune 

cells and their contribution to IBD pathogenesis.  

SPECIFIC RESEARCH AIMS 

1) Identifying the key isoform(s) involved in the pathogenesis of IBD. In this study we aimed to: 

 determine the expression of PHD1, PHD2 and PHD3 both at the mRNA and protein 
level in colonic biopsies from healthy controls, patients with UC, CD and infectious 
colitis. 

 analyse the cellular distribution of PHD1, PHD2 and PHD3 

The results from this study are described in the first part of chapter III. 

2) Evaluating if isoform-and cell-specific modulation of PHD expression holds therapeutic 

potential for the treatment of IBD. In this study we aimed to evaluate the in vivo effect of 

PHD1-3 deletion in endothelial and haematopoietic cells on: 

 blood vessel function, 

 epithelial integrity and 

 the inflammatory burden during acute colitis 

The results from this study are described in the second part of chapter III. 
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Abstract  

  

Background: Inhibition of prolyl hydroxylases (PHDs) leads to the induction of a transcriptional 

program that, in the gut, promotes intestinal epithelial cell survival. PHD inhibitors have recently been 

suggested as a promising alternative treatment for inflammatory bowel disease (IBD). In this study, we 

explored the colonic mucosal expression of the different PHD-isoforms (PHD1, 2 and 3) in order to 

identify the key isoform(s) involved in the pathogenesis of IBD.  

  

Methods: The mRNA expression of inflammatory cytokines (IL-8 and TNF), an apoptosis marker 

(caspase 3) and PHD1, 2 and 3 was analysed in biopsies of IBD patients (UC and CD), patients with 

infectious colitis and healthy controls using qRT-PCR. PHD protein levels were evaluated using western 

blot. Cellular localisation of PHD 1, 2 and 3 was determined by immunohistochemistry.  

  

Results: PHD1 was significantly up-regulated in IBD patients, both at the mRNA (UC: p<0.0001 and CD: 

p<0.05) and at the protein level (UC: p<0.05 and CD: p<0.05), and showed a very good correlation with 

the expression of the inflammatory cytokines IL-8 and TNF and the apoptosis marker caspase 3. Colonic 

mucosal PHD2 mRNA and protein expressions were not altered in IBD. PHD3 expression was increased 

in inflamed biopsies from UC patients (p<0.0001), but only at the mRNA level. PHD1 and PHD2 

expression was found both in the colonic lamina propria and the epithelium, while PHD3 was mainly 

located in the endothelium of blood vessels.  

  

Conclusions: In this exploratory expression analysis, PHD1 comes forward as the primary therapeutic 

target for UC and, to a lesser extent, for (colonic) CD.  

  

   

  

 Keywords: prolyl hydroxylases, Crohn's disease, ulcerative colitis, infectious colitis  

  

 

 

   



89 
 

Background   

Prolyl hydroxylase domain-containing proteins (PHDs) are oxygen sensing enzymes that, under 

normoxic conditions, hydroxylate the hypoxia-inducible factor 1 alpha subunit (HIF-1α), leading to its 

proteasomal degradation. During hypoxia, the PHDs are inhibited, leading to the formation of the 

active transcription factor HIF-1, which induces the expression of several cell survival genes (i.e. the 

hypoxic adaptive response)[1]. Several groups have proposed prolyl hydroxylase (PHD) inhibition as a 

promising novel strategy in the treatment of inflammatory bowel disease (IBD)[2,3,4].  

To identify the key PHD isoforms (PHD1-3) involved in the pathogenesis of IBD, we explored their 

colonic mucosal expressions in endoscopically derived colonic mucosal biopsies from healthy controls 

and patients with Crohn's disease (CD), ulcerative colitis (UC) and infectious colitis.  

  

Methods  

  

Study populations and samples  

 Colonic mucosal biopsies were taken from endoscopically inflamed areas of 19 Crohn’s disease (CD) 

patients and 10 ulcerative colitis (UC) patients with active disease, and from completely healed mucosa 

of 16 CD patients and 5 UC patients in remission. Samples of 20 healthy controls (HC) and inflamed 

regions of 9 patients with infectious colitis were included as controls. Patients were diagnosed with 

infectious colitis based on histological findings (5 out of 9) or positive stool sample cultures (4 out of 

9). The patients with infectious colitis were not known with IBD. Biopsies were stored immediately 

after removal in -80°C. IBD patients were either free of medication use or used 5-aminosalicylates in 

monotherapy. This study was approved by the ethical committee of the University Hospital of Ghent 

(permit number EC UZG 2004/242) and all participants gave their written informed consent. Patient 

characteristics are summarized in Table 1.  

  

RNA extraction and real-time quantitative PCR  

 Total RNA was extracted from the colonic mucosal biopsies using the RNeasy Mini Kit (Qiagen, 

Westburg BV, Leusden, The Netherlands) and converted to cDNA by reverse transcription (iScriptTM 

cDNA synthese kit, Biorad, CA, USA), according to the manual instructions. Real-time quantification 

was performed using SensiMixTM SYBR No-ROX kit (Bioline, Gentaur Europe BVBA, Kampenhout, 

Belgium) and 250 nM forward and reverse primers (BioLegio, Nijmegen, The Netherlands). A twostep 
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program was run on a LightCycler® 480 II (Roche, Basel, Switzerland). Cycling conditions were 95°C for 

10 minutes, 45 cycles of 95°C for 10 seconds and 60°C for 1 minute. All reactions were run in duplicate 

and normalized to the stably-expressed human succinate dehydrogenase complex subunit (SDHA) 

levels. The mRNA expression levels of the inflammatory cytokines interleukin 8 (IL-8) and tumor 

necrosis factor alpha (TNF) were analysed as markers of inflammation. Sequences of the qRT-PCR 

primers and the PCR efficiencies are given in Table 2.  

  

Immunohistochemistry  

 Paraffin-embedded colonic sections of 5 controls, 5 active UC, 5 active CD and 5 infectious colitis 

patients were deparaffinized with xylene, and rehydrated in a graded series of ethanol. Antigen 

retrieval was performed by boiling the slides in 10mM sodium citrate buffer with 0.05% Tween 20 for 

20 minutes. Next, endogenous peroxidase activity was blocked with peroxidase block solution Envision 

(Dako) for 15 minutes. Sections were subsequently blocked with 10% goat serum for 1,5 hours at room 

temperature and then incubated overnight with primary antibodies at 4°C. Primairy antibodies used 

were rabbit monoclonal anti-PHD1 (1/50), anti-PHD2 (1/100) and rabbit polyclonal anti-PHD3 (1/200), 

obtained from Abcam. The slides were then treated with HRP labeled goat anti-rabbit antibody 

(Envision+System-HRP kit, Dako) and developed with diaminobenzidine. Counterstaining was 

performed with hematoxylin.  

  

Western blotting  

 Human biopsies were lysated, proteins were separated on 4-12% Bis-Tris SDS-polyacrylamide gels and 

transferred to nitrocellulose membranes using iBlot dry blotting (Invitrogen). Afterwards, membranes 

were blocked with 5% skimmed milk in TBS-T (50mM Tris (pH 7.6), 150 mM NaCl, 0.1% Tween 20) and 

incubated overnight at 4°C in 5% skimmed milk in TBS-T with anti-PHD1 (1/5000, Abcam), anti-PHD2 

(1/600, Abcam), anti-PHD3 (1/900, Abcam) and anti-GAPDH (1/2500, Abcam). Bound antibodies were 

visualized using the ECL detection kit BM chemiluminescence Blotting Substrate POD (Roche) 

according to manufacturer’s instructions. Quantitative densitometric analysis using the Image J 

program was performed to quantify protein expression levels in each sample. Data were normalized 

to the protein expression of GAPDH.  
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Statistical analysis  

The data were statistically analysed using SPSS Statistics, version 20, for Windows (SPSS, Chicago, IL). 

Normality of the data was checked using the Kolmogorov-Smirnoff (KS) test. In the case of normally 

distributed data, the differences between groups were analysed using an unpaired Student’s t-test for 

independent samples. For non-normal or unknown data distribution, groups were compared by using 

the non-parametric Mann-Whitney U-test. The KS-test also determined the use of either a parametric 

(Pearson) or a non-parametric (Spearman) correlation test. Two-tailed probabilities were calculated 

and p-values less than or equal to 0.05 were considered statistically significant.  

 

 Results  

 As a first step, we evaluated the expression of the pro-inflammatory cytokines IL-8 and TNF to confirm 

and define the degree of inflammation in the inflamed biopsies of IBD patients and patients with 

infectious colitis. It has been previously reported that they are representative markers of active 

inflammation [5,6]. Furthermore, we determined the expression of the apoptosis marker caspase 3 to 

be able to evaluate its correlation with the different PHD isoforms. The inflamed samples were 

characterized by highly increased IL-8, TNF and caspase 3 mRNA levels compared to biopsies obtained 

from non-inflamed areas and HC (p<0.0001 for all groups). IL-8, TNF and caspase 3 expression levels in 

UC and CD patients in remission were comparable to those observed in the HC group (data not shown).  

Quantitative assessment of PHD1 mRNA levels revealed a significant increase of PHD1 in inflamed 

colonic biopsies of UC patients (p<0.0001). This up-regulation was absent in patients in remission. 

Expression levels of PHD1 in biopsies from patients with CD and infectious colitis were only slightly 

elevated (p<0.05 and p=0.063, respectively) compared to HC, despite similarly elevated IL-8 levels 

(Figure 1A).   

For PHD2, no differences were seen in inflamed biopsies from patients with UC, CD and infectious 

colitis versus non-inflamed biopsies from IBD patients in remission or healthy controls (Figure 1B).   

The expression level of the PHD3 gene was significantly elevated in samples taken from inflamed 

colonic areas in UC patients compared to samples from HC (p<0.0001). Inflamed samples from CD 

patients or infectious colitis nor non-inflamed biopsies from UC patients in remission showed an up-

regulated PHD3 expression (Figure 1C).   

A positive correlation was found between IL-8/TNF and PHD1 expression. In contrast, no correlation 

was found between IL-8/TNF and PHD2, and only a poor correlation was observed between IL-8/TNF 
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and PHD3. PHD1 and, to a lesser extent, PHD2 correlated positively with caspase 3 (p<0.0001 and 

p=0.001, respectively) (Table 3).  

All above reported results were confirmed in a second, independent patient cohort (data not shown).  

Next, the protein expression levels of the three PHD isoforms were evaluated in biopsies of 5 healthy 

controls and in inflamed biopsies of 5 UC patients (3 with severe disease (Mayo endoscopic score 3), 2 

with mild to moderate disease (Mayo endoscopic score 1-2)) and 5 CD patients (2 with severe disease 

and 3 with mild to moderate disease). As shown in Figure 2A and Figure 2B, PHD1 protein expression 

was significantly increased in both UC (p<0.05) and CD (P<0.05) patients compared to healthy controls. 

PHD2 protein levels were not altered between all groups. The PHD3 protein expression was not 

significantly different between inflamed samples of CD patients versus healthy controls (Figure 2B). 

However, the expression in the inflamed samples from severely diseased UC patients (Figure 2A; lane 

6, 9 and 10) was significantly lower compared to healthy controls.  

On immunohistochemistry, no disease-dependent localisation of the PHDs was observed. PHD1 was 

predominantly found in regenerative epithelial cells and in the cytoplasm of mononuclear cells (e.g. 

dendritic cells, macrophages) in the lamina propria (Figure 3A). Lymphocytes were PHD1 negative. For 

PHD2, we observed strong nuclear staining in a wider range of cell types than for PHD1. Approximately 

half of the cells in the epithelium, inflammatory cell infiltrate (mononuclear cells in the lamina propria 

and lymphocytes) and smooth muscle cells in the muscularis mucosae showed strong PHD2 staining 

(Figure 3B). Lastly, we found that the PHD3 protein is specifically located in the endothelium of blood 

vessels (Figure 3C).  

   

Discussion  

In this study, we analysed the expression and the localisation of the different PHD isoforms in IBD 

patients, in order to identify the primary target(s) for the development of specific PHD-inhibitors.  

The current treatment strategy for both CD and UC is focused on the suppression of inflammation. 

Standard therapy includes corticosteroids, 5-ASA preparations, immunomodulating drugs and/or 

biologicals. Despite these drugs, approximately 70% of the patients with CD and 35% of patients with 

UC ultimately come to surgery. Therefore, research in IBD is still focused on the identification of novel 

therapeutics to improve the disease outcome. In this regard, pan-hydroxylase inhibitors have been 

proposed as promising therapeutic compounds for IBD [1-4], but most of these studies lack human 

data to support their claim.  
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We found strongly increased mRNA expression of PHD1 and PHD3 in inflamed biopsies from patients 

with UC whereas inflamed biopsies from patients with CD and infectious colitis only displayed a slight 

increase in PHD1 expression. Only PHD1 showed a good correlation with the pro-inflammatory markers 

IL-8 and TNF. Whether or not inflammatory cytokines directly influence the PHD expression or vice 

versa is a subject of further research.  

In accordance with our mRNA results, a significant elevation of PHD1 protein expression was observed 

in inflamed biopsies of both UC and CD patients (p<0.05), while PHD2 protein levels remained 

unaltered. PHD3 protein expressions were comparable between all groups except for UC patients. In 

contrast to the mRNA levels, severely diseased UC patients displayed a significant decrease in PHD3 

expression (p<0.05). This might, at least in part, be explained by the fact that Siah 2, a E3 ubiquitin 

ligase, becomes activated as oxygen concentration decreases due to the extensive consumption of 

oxygen by the inflammatory cells, leading to the proteasomal degradation of PHD3 [7,8]. The same 

phenomenon was not seen in CD patients, where PHD3 expression did not follow the severity of the 

disease. This is not unexpected because biopsies from CD patients are always characterized by a 

discontinuous infiltrate of inflammatory cells so that the fluctuating levels of high and low oxygen give 

rise to a net hypoxic situation that is less pronounced than in patients with severe UC.  

Apart from a role in inflammation, a role of PHDs in apoptosis has also been suggested. It has been 

shown that inhibition of PHD1 and PHD2 results in activation of HIF-1α and NF-κB [9], both being 

transcription factors that regulate the expression of several genes involved in apoptosis [10]. 

Inflammatory bowel disease is hallmarked by an increased rate of intestinal epithelial cell death. In 

fact, one of the main mechanisms of action by which pan-hydroxylase inhibitors are able to suppress 

experimental colitis, is probably by reducing colonic epithelial cell apoptosis [11]. Our data also 

indirectly imply a role of PHD1 and PHD2 in colonic epithelial apoptosis as these isoforms show a 

positive correlation with caspase 3, a marker of apoptosis. It are exactly these isoforms that can be 

found in the colonic epithelium.  

In conclusion, only PHD1 was up-regulated both at the mRNA and the protein level and showed an 

excellent correlation with both inflammatory markers and apoptosis in IBD (especially in UC). Although 

we acknowledge that PHD1 protein expression as such is not directly related to its enzymatic activity, 

our exploratory expression analysis puts PHD1 forward as the primary therapeutic target for UC and, 

to a lesser extent, for colonic CD. This is further supported by the observation that PHD1-deficient 

mice, and not PHD2 and 3, are highly protected against colitis by reducing epithelial cell apoptosis and 

hence, by maintaining barrier function [12].  
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Figure legends   

Figure 1: mRNA expression of PHD1, PHD2 and PHD3 in human colonic biopsies. mRNA expression 

levels of PHD1 (A), PHD2 (B) and PHD3 (C) in colonic samples of healthy controls, IBD patients and 

patients with infectious colitis of the first patient cohort. The data are expressed as medians and 

presented on a log scale (****P<0.0001, *P<0.05).   

Figure 2: Protein expression levels of PHD1, 2 and 3 in human colonic samples. A) Protein expression 

of PHD1, PHD2 and PHD3 in whole biopsy lysates of 5 healthy controls and 5 UC patients (lane 6, 9 and 

10: severe UC and lane 7 and 8:mild to moderate UC). B) Protein expression of PHD1, PHD2 and PHD3 

in whole biopsy lysates of 5 healthy controls and 5 CD patients (lane 7 and 8: severe CD and lane 6, 9 

and 10: mild to moderate CD). The columns represent the densitometric evaluation of the PHDs, 

normalized to GAPDH (mean ± SEM)(*P<0.05).  

Figure 3: Immunostaining of human biopsies for PHD1, PHD2 and PHD3. A) Immunostaining of PHD1 

demonstrates cytoplasmatic staining of mononuclear cells in the lamina propria and of regenerative 

epithelium. B) Immunostaining of PHD2 shows nuclear staining of epithelium, mononuclear cells in the 

lamina propria and smooth muscle cells in the muscularis mucosae. C) Immunostaining of PHD3 reveals 

selective staining of the endothelium of blood vessels. Only the representative images (200x) of UC 

patients are given as no disease-dependent localisation of the PHDs was observed.  
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Tables  

  

Table 1: Patient characteristics. CD: Crohn’s disease; UC: ulcerative colitis; A1: 0-16yrs, A2: 16-40yrs, A3: >40 yrs. 

Location of disease in and disease behavior of CD was defined as maximal disease before surgical resection; L1: 

solely ileal disease, L2: solely colonic disease, L3: ileal and colonic disease, L3 + L4: ileal, colonic and upper 

gastrointestinal tract disease, L4: upper gastrointestinal tract disease; B1: non-stricturing, non-penetrating, B2: 

stricturing, B3: penetrating, (Xp): number of patients when concomitant perianal disease was present; E1: 

ulcerative proctitis, E2: left-sided UC, E3: pancolitis.  

 Group  Healthy 
controls  

UC inflamed  UC remission  CD inflamed  CD remission  Infectious 
colitis  

N (Biopsies)  20  16  5  19  10  9  

Gender (male/female)  5/15  8/8  4/1  8/11  4/6  6/3  

Age, years (mean)  49  38  50  32  49  36  

Age, years (range)  12-73  14-58  26-70  11-54  28-73  17-58  

Age at diagnosis  
A1/A2/A3  

    
1/9/6  

  
0/4/1  

  
4/11/4  

  
0/6/4  

  

Max location of disease  
L1/L2/L3/L3+L4/L4  
E1/E2/E3  

    
 
3/10/3  

  
  
0/4/1  

  
0/7/9/3/0  

  
3/2/4/0/1  

  

Max disease behaviour  
B1/B2/B3  

        
12/3/4  
(9P)  

  
4/3/3  
(4P)  

  

Medication  
No  
5-aminosalicylates  

  
20  
  

  
5  
11  

  
3  
2  

  
13  
6  

  
8  
2  

  
9  

  

 

 Table 2: Sequences of used qRT-PCR primers and PCR efficiencies. hSDHA, human succinate dehydrogenase 

complex subunit A; hPHD1, human prolyl hydroxylase domain 1; hPHD2, human prolyl hydroxylase domain 2; 

hPHD3, human prolyl hydroxylase domain 3; hIL-8, human interleukin 8; hTNF, human tumor necrosis factor 

alpha; hCasp3, human caspase 3.  

 Gene  
Symbol  

Forward Primers (5’-3’)  Reverse Primers (5’-3’)  PCR  
efficiencies  
(%)  

hSDHA  TGGGAACAAGAGGGCATCTG  CCACCACTGCATCAAATTCATG  92  

hPHD1  CCGGAGGAAAAAGCTCGCCACCC  CCTCTGCGGTCCCTAAGGGCTT  105  

hPHD2  CAGCATGGACGACCTGATAC  TACATAACCCGTTCCATTGC  103  

hPHD3  AAAGGCGCCCTCCGACTCCT  CGACCCGTTTCCGGACTGGC  103  

hIL-8  TGTTCCACTGTGCCTTGGTTTC  TGTGAGGTAAGATGGTGGCTAATAC  102  

hTNF  ATGAGCACTGAAAGCATGATCC  GAGGGCTGATTAGAGAGAGGTC  112  

hCASP3  GAGTGCTCGCAGCTCATACCT  CCTCACGGCCTGGGATTT  87  
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Table 3: Correlations. Correlation between the expression of the inflammatory cytokines IL-8 and TNF-α, the 

apoptosis marker caspase 3 and the expression of the different PHD isoforms in colonic mucosal biopsies 

(Pearsons r for IL-8 and TNF-α, Spearman’s r for caspase 3).  

   PHD1  PHD2  PHD3  

IL-8  0.576 (P<0.001)  0.089 (NS)  0.291 (P=0.009)  

TNF  0.706 (P<0.001)  0.177 (NS)  0.280 (P=0.012)  

Caspase 3  0.594 (P<0.0001)  0.463 (P=0.001)  0.262 (NS)  
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Figure 1 
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Figure 3 
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2 Haematopoietic prolyl hydroxylase-1 deficiency promotes M2 macrophage 

polarization and is both necessary and sufficient to protect against 

experimental colitis 
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Abstract 

Prolyl hydroxylase domain-containing proteins (PHD) regulate the adaptation of cells to hypoxia. Pan-

hydroxylase inhibition is protective in experimental colitis in which PHD1 plays a prominent role. 

However, it is currently unknown how PHD1 targeting regulates this protection and which cell type(s) 

are involved. Here we demonstrated that Phd1 deletion in endothelial and haematopoietic cells 

(Phd1f/fTie2:cre) protected mice from dextran sulphate sodium (DSS)-induced colitis with reduced 

epithelial erosions, immune cell infiltration and colonic microvascular dysfunction, whereas the 

response of Phd2f/+Tie2:cre and Phd3f/fTie2:cre mice to DSS was similar to their littermate controls. 

Using bone marrow chimeras and cell-specific cre mice we could demonstrate that ablation of Phd1 in 

haematopoietic cells, but not endothelial cells was both necessary and sufficient to inhibit 

experimental colitis. This effect relied, at least in part, on skewing of Phd1-deficient bone marrow-

derived macrophages towards an anti-inflammatory M2 phenotype. These cells showed an attenuated 

NF-B-dependent response to lipopolysaccharide (LPS) which in turn diminished endothelial 

chemokine expression. In addition, Phd1-deficiency in dendritic cells significantly reduced interleukin 

(IL)-1 production in response to LPS. Taken together, our results further support the development of 

selective PHD1-inhibitors for ulcerative colitis and identify haematopoietic cells as their primary target. 

Key words: 

Prolyl hydroxylase-1, haematopoietic cells, macrophages, dendritic cells, ulcerative colitis 
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Introduction 

Active Inflammatory Bowel Disease (IBD), comprising Crohn’s disease and ulcerative colitis (UC), is 

associated with severe mucosal hypoxia resulting from the increased oxygen consumption of 

inflammatory cells and decreased oxygen supply by dysfunctional blood vessels. This imbalance, in 

addition to excessive cytokine levels, leads to increased epithelial cell death and subsequently 

contributes to impaired mucosal barrier function. The cellular response to low oxygen levels is tightly 

regulated by oxygen-sensing prolyl hydroxylase domain-containing proteins (PHD). Under normoxic 

conditions, these enzymes induce the ubiquitination of the hypoxia-inducible factor (HIF) subunits HIF-

1 and HIF-2, which leads to their proteasomal degradation. During hypoxia, the enzymatic activity 

of PHDs is inhibited, which ensures the stabilization of HIF subunits and the formation of the active 

transcription factors HIF-1 and HIF-2. These effects, in turn, transactivate the expression of genes 

involved in angiogenesis, erythropoiesis, cell migration and metabolism, thereby protecting the host 

cell against low oxygen conditions 1, 2. 

PHDs have been investigated as therapeutic targets in IBD. In particular, pan-hydroxylase inhibitors 

ameliorate disease in murine IBD models and are set to enter the clinical trial phase 3-5. However, 

potential risks including the promotion of tumor growth through increasing angiogenic potential, and 

cardiovascular events may be associated with systemic pan-hydroxylase inhibition 6-8. Therefore, 

current research is focusing on the role of the different PHD isoforms (PHD1-3) in the pathogenesis of 

IBD. We have recently demonstrated that PHD1 expression is increased in inflamed IBD biopsies, 

especially in active UC 9. Consistent with these findings, Tambuwala and colleagues demonstrated that 

Phd1-deficient mice are protected against colitis 10. However, it is unknown which cell type(s) need to 

be targeted to achieve these beneficial effects. It was hypothesized that epithelial PHD1 mediated this 

protection by decreasing epithelial cell apoptosis and barrier dysfunction, both prominent features of 

active IBD. However, this might be a secondary phenomenon because the epithelial apoptosis rate 

seems to be driven by the local inflammatory response rather than vice versa 11. This is supported by 

the fact that the currently available effective therapeutic strategies in IBD intervene at the site of the 

immune cells (corticosteroids, purine-analogues, methotrexate, cyclosporine, anti-tumor necrosis 

factor alpha (TNF), anti-interleukin 12/23 (IL-12/IL-23)) or at the interaction of these immune cells with 

the intestinal microvessels (anti-integrins, anti-mucosal vascular addressin cell adhesion molecule 1 

(MAdCAM-1)) 12, 13. We therefore investigated the role of PHD1-3 in endothelial and haematopoietic 

cells on blood vessel function, epithelial integrity and the inflammatory burden in experimental colitis. 
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Materials and methods 

Animals 

The mice used in this study were male and female on a C57BL/6 background. The generation of the 

floxed Phd1f/f, Phd2f/f and Phd3f/f mice has been described previously 14-16. The Phd1f/fTie2:cre, 

Phd2f/+Tie2:cre and Phd3f/fTie2:cre mice were obtained by crossing the Phd1f/f, Phd2f/f and Phd3f/f mice 

with Tie2:cre mice 17. The heterozygous Phd2 Tie2:cre mice (Phd2f/+Tie2:cre) were used because the 

homozygous mice (Phd2f/f Tie2:cre) displayed growth retardation. The Phd1f/fFlk-1:cre, Phd1f/fVav:cre 

and Phd1f/fCD11c:cre mice were obtained by breeding Flk-1:cre, Vav:cre and CD11c:cre mice with the 

Phd1f/f mice. The characterization of Flk-1:cre, Vav:cre and CD11c:cre mice has been reported 

previously 18-20. 

Mice from different genotypes were cage-mixed during each experiment to minimize the influence of 

gut microbiota 21. The mice were bred and housed in individually ventilated cages in a temperature-

controlled room at 22 °C with a 12 h/12 h light-dark cycle. The animals had free access to water and 

commercial chow (mice maintenance chow, Carfil Labofood, Pavan Service, Belgium). All mice were 

treated in accordance with the institutional animal health care guidelines, following study approval 

(ECD2010/40, ECD2013/49, ECD2015/21, ECD2015/58 and ECD2016/29) by the Institutional Review 

Board at the Faculty of Medicine and Health Sciences of Ghent University. 

Induction of colitis and BM transplantation 

Eight-to-twelve-week-old Phd1f/fTie2:cre, Phd2f/+Tie2:cre and Phd3f/fTie2:cre mice and their 

corresponding wild-type (WT) littermate control mice Phd1f/f, Phd2f/+ and Phd3f/f, respectively, 

received 4% dextran sulphate sodium (DSS; MW 36 000–50 000; MP Biomedicals, CA, USA) in their 

drinking water for seven consecutive days, followed by normal drinking water. The Phd1f/fFlk-1:cre, 

Phd1f/fVav:cre and their corresponding WT littermate mice were given 3% DSS. Uptake of DSS-

containing water was monitored daily and was comparable between cages. Over time, the DSS dosage 

had to be adjusted to 3% because 4% DSS led to a more severe induction of colitis with a high mortality 

rate likely because of the environmental and structural changes in our animal facility. The disease 

activity index (DAI) was determined according to the criteria proposed by Cooper et al. 22. 

One week prior to irradiation, the mice for bone marrow (BM) transplantation received acidified water 

(pH between 2.4 and 3.1) that contained 0.1 mg/ml neomycin (Sigma-Aldrich, Diegem, Belgium) and 

0.01 mg/ml polymyxin B sulphate (Sigma-Aldrich, Diegem, Belgium). Six-to-eight-week-old mice were 

subjected to 9.5 Gy lethal total-body irradiation using an X-ray source. Between 4 and 12 hours later, 

the mice were intravenously reconstituted with BM cells (107) prepared from the femur, tibia and 

humeri of the WT or Phd1f/fTie2:cre mice. Following irradiation and BM transplantation, the mice were 
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maintained on acidified, antibiotic-containing water and were allowed to recover for 8 weeks on a 

chow diet. Colitis was subsequently induced using 3% DSS in the drinking water. The uptake of donor 

BM was verified via PCR following sacrifice of the mice.  

Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) for vascular permeability 

measurements during colitis 

The MR images were acquired on a 7 Tesla small animal system (Bruker BioSpin® Pharmascan 70/16, 

Ettlingen, Germany) with a mouse body volume coil. The mice were anesthetized with isoflurane (5% 

induction, 1.5% maintenance, mixed with medical oxygen) and actively heated with a water-based 

heating blanket. Anatomical information was obtained with a T1-weighted sequence (RARE) with the 

following parameters: TR 1453 ms, TE 9.1 ms, 4 averages, echo train length 4, field of view 3 x 2.4 cm, 

matrix 250 x 200, 120 µm in-plane spatial resolution, 30 contiguous slices with 600 µm thickness, 

acquisition time 3 min 35 s. Dynamic contrast enhanced MR images were acquired in a single slice 

using a 2D fast low angle shot (FLASH) sequence with the following parameters: TR 12 ms, TE 3.4 ms, 

flip angle 25°, field of view 3 x 3 cm, matrix 112 x 112, 268 µm in-plane resolution, 550 repetitions, 

temporal resolution 1.344 s and acquisition time 12’19”. The slice was positioned to contain the colon, 

based on the anatomical images. The gadolinium-based contrast agent (Dotarem, Guerbet, France, 2 

mmol/kg) was injected intravenously 30 seconds after the initiation of the acquisition. The total 

acquisition time per session was 25’. The DCE data were processed with MiStar® (Apollo, Melbourne, 

Australia). A two-compartment model (blood and extracellular extravascular space) was used to obtain 

parametric maps with Ktrans values on a pixel-by-pixel basis 23. These Ktrans values are a measure of the 

vascular leakage, and the mean Ktrans values were calculated for each colonic slice of each animal. 

Isolation and culture of bone marrow derived macrophages and dendritic cells 

Primary BM-derived macrophages (BMDM) and dendritic cells (BMDC) were isolated by flushing the 

bone marrow out of femur and tibia. The BMDM were subsequently cultured in 10 x 15 mm Petri-

dishes in DMEM+glutamax supplemented with 10% foetal calf serum (FCS) (Invitrogen, Ghent, 

Belgium), penicillin/streptomycin (Invitrogen) and 20 ng/ml recombinant murine macrophage colony 

stimulating factor (M-CSF, Peprotech, London, UK) with a complete change of medium every 2-3 days. 

The BMDC cultures were set up according to the protocol originally published in Lutz, et al 1999 24. 

After 5 days, 106 BMDM were stimulated for 24 h with 100 ng/ml lipopolysaccharide (Ultrapure LPS 

from E. coli K, Invivogen, San Diego, California, USA), 20 ng/ml murine recombinant IL-4 (Peprotech), 

125 nM ACHP (Tocris, Bristol, UK) and 20 ng/ml IL-4 or an equal volume of placebo. After 10 days in 

culture, 106 BMDC were treated for 16 h with 100 ng/ml LPS (Invitrogen) or an equal volume of placebo. 

The cells were subsequently lysed for RNA isolation, and the supernatant was collected. 
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Statistical analysis 

Data were analysed using SPSS Statistics, version 22, for Windows (SPSS Inc., Chicago, IL, USA) or 

GraphPad Prism® software (GraphPad Software Inc., San Diego, CA, USA). In the case of normally 

distributed data, the differences between the groups were analysed using an unpaired Student’s t-test 

for independent samples. For the non-normal or unknown data distributions, the groups were 

compared using the non-parametric Mann-Whitney U-test. Continuous data (body weight and DAI 

changes) were analysed using linear mixed models. Two-tailed probabilities were calculated and a 

probability value of p < 0.05 was considered statistically significant. 

 

Results 

Characterization of Phd1f/fTie2:cre mice 

To determine the degree of Phd1 recombination in cre:mice, qPCR primers were designed to detect 

the Phd1 allele as it occurs in the WT mice, whereas the other primers bind the remaining Phd1 allele 

as it occurs following recombination in the Phd1f/fTie2:cre mice. In the WT mice, the forward primer 

binds the Phd1 cDNA sequence at exon 2, before the floxed exons (exon 3 - exon 4), whereas the 

reverse primer binds exon 3, which will be deleted if recombination occurs (Figure S1F, left). As a 

positive control for effective recombination, primers were designed in which one binds at the 

transition between exon 2 and exon 5, which does not occur in WT mice, and the reverse primer binds 

exon 5 (Figure S1F, right). Thus, the allele detected by the first primer pair will be referred to hereafter 

as “Phd1 wt”, whereas the “remaining” Phd1 allele, detected by the second primer pair, will be 

denoted “Phd1 ko”. The primer sequences are provided in Table S1. It has been reported that when 

crossed with floxed mice, Tie2:cre mice generate a recombination of the floxed gene in endothelial 

and haematopoietic cells [17]. We therefore first examined whether efficient recombination occurs in 

these cellular compartments of our mice. To this end, we isolated bone marrow and colonic endothelial 

cells from the Phd1f/fTie2:cre and WT mice. The bone marrow, bone marrow derived macrophages 

(BMDM) and bone marrow derived dendritic cells (BMDC) exhibited a decrease in Phd1 mRNA of 62%, 

85% and 85%, respectively, (Figure S1A-C) and a concomitant increase in the Phd1 ko expression. 

Additionally, CD4+ T lymphocytes isolated from the spleen exhibited a 75% reduction in the Phd1 

mRNA level accompanied by increased Phd1 ko expression (Figure S1D). In addition, we isolated 

colonic epithelial cells from the Phd1f/fTie2:cre and WT mice as a negative control, as well as to confirm 

potential effects arise exclusively from endothelial or haematopoietic knockout. As expected, the 

colonic epithelial cells from both Phd1f/fTie2:cre and WT mice exhibited comparable Phd1 mRNA levels. 

Consistent with this finding, no expression of the Phd1 ko allele was identified in the groups (Figure 
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S1E). However, the Phd1 mRNA expression in the isolated primary colonic endothelial cells was only 

decreased by 37% with a slight induction of Phd1 ko expression (Figure S1F left). As a consequence, we 

concluded that the use of Tie2:cre transgenic mice is not the best model to generate an efficient 

knockdown in the colonic vasculature. Therefore, the effect of endothelial-specific Phd1 knockdown 

was re-evaluated using Phd1f/fFlk-1:cre mice where the Phd1 mRNA expression in isolated primary 

colonic endothelial cells was 75% reduced and a concomitant increase in Phd1 ko expression was 

observed (Figure S1F right). 

 

Phd1f/fTie2:cre mice exhibit highly attenuated signs of inflammation and blood vessel dysfunction 

during DSS-induced colitis 

We generated Phd1f/fTie2:cre, Phd2f/+Tie2:cre and Phd3f/fTie2:cre mice that are conditionally deficient 

for Phd1, Phd2 and Phd3, respectively, in both endothelial and haematopoietic cells. To investigate the 

effect of conditional Phd1-3 deficiency on colitogenesis, we subjected these mice and their respective 

WT littermate controls to DSS-induced colitis and compared their clinical parameters. The 

Phd1f/fTie2:cre mice, but not the Phd2f/+Tie2:cre or Phd3f/fTie2:cre mice were significantly protected 

from DSS-induced colitis as determined by weight loss, DAI, colonic shortening and histological 

inflammation score (Figure 1A-E) compared with the WT mice. In addition, we observed fewer 

epithelial erosions and less infiltration of inflammatory cells in the Phd1f/fTie2:cre mice (Figure 1F-G). 

In contrast, weight evolution and histological inflammation score were not attenuated in the colitic 

Phd2f/+Tie2:cre and Phd3f/fTie2:cre mice compared to their respective littermate controls (Figure 1A-

C). We subsequently questioned whether Phd1-deficiency influenced colonic blood vessel function. 

We therefore evaluated the in vivo colonic microvascular leakage at days 0, 3 and 7 during the course 

of colitis, using dynamic contrast-enhanced micro magnetic resonance imaging (DCE-MRI) (Figure 2A-

B). At day 3, no change in leakage was identified compared with day 0. However, the vascular leakage 

in the WT mice was significantly increased at day 7, whereas the Phd1f/fTie2:cre mice exhibited leakage 

comparable to the baseline levels. Consistent with these findings, at the end of the DSS experiment 

(day 11), the mRNA expressions of the known endothelial dysfunction markers Icam1, Vcam1, 

Madcam1, Vwf and Vegfr2 were strongly induced at the end of the DSS experiment (day 11) in the WT 

animals, whereas these markers were significantly lower in the Phd1f/fTie2:cre littermates (Figure 2C). 

In addition, the expression of these endothelial dysfunction markers in Phd2f/+Tie2:cre and 

Phd3f/fTie2:cre mice was comparable with the levels of their corresponding littermate controls (data 

not shown). Collectively, these findings demonstrate that Phd1f/fTie2:cre mice are selectively protected 

against the development of colitis and its associated endothelial dysfunction. 
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Endothelial Phd1-deficiency alone does not rescue mice from DSS-induced colitis  

Next, we questioned whether the strong protective effects identified in the Phd1f/fTie2:cre mice 

resulted exclusively from Phd1 targeting in endothelial cells. We therefore irradiated Phd1f/fTie2:cre 

mice and their littermate WT controls and intravenously injected them with WT BM to generate WT<-

WT BM chimeras and Phd1f/fTie2:cre<-WT BM chimeras. Unexpectedly, no amelioration in terms of 

body weight, colon length or histological inflammation was identified in the Phd1f/fTie2:cre<-WT BM 

chimeras (Figure 3A-C, left). The Phd1f/fTie2:cre mice only exhibited a poor reduction in the Phd1 mRNA 

expression in colonic endothelial cells as mentioned earlier; thus we re-evaluated the effect of 

endothelial Phd1-deficiency on colitogenesis using Flk-1:cre mice, which generate effective and 

specific recombination in endothelial cells (Figure S1F right). However, the Phd1f/fFlk-1:cre mice were 

also not protected from DSS-induced colitis (Figure 3A-C, right). These findings conclusively 

demonstrate that endothelial cells are not the primary target for Phd1-deletion to protect mice from 

DSS-induced colitis. 

 

Haematopoietic Phd1-deficiency is essential to confer protection from DSS-induced colitis 

Since Phd1f/fTie2:cre mice also exhibit knockdown of Phd1 in different cell types from the 

haematopoietic compartment, we questioned whether selective Phd1 deletion in these cells may 

render mice less susceptible to colitogenesis. We therefore irradiated WT mice and half of the mice 

received WT BM from their WT littermate controls which resulted in WT<-WT BM chimeras. The 

remaining irradiated WT mice were injected with BM from their littermate Phd1f/fTie2:cre mice to 

generate WT<-Phd1f/fTie2:cre BM chimeras which exhibit sole knockout of Phd1 in all haematopoietic 

cells. Eight weeks after irradiation, the mice were subjected to 3% DSS. Strikingly, the WT<-

Phd1f/fTie2:cre BM chimeras were significantly protected from DSS-induced colitis, which was 

evidenced by reduced weight loss, colon shortening and histological inflammation score compared 

with the WT<-WT BM chimeras (Figure 4A-D). Also, fewer epithelial erosions and less infiltration of 

inflammatory cells was observed (Figure 4E-F). In addition, the abundance of Icam1, Vcam1, Vwf and 

Vegfr2 mRNAs was significantly reduced in the WT<-Phd1f/fTie2:cre BM chimeras (Figure 4G). 

Successful validation was performed in Phd1f/fVav:cre mice, in which Phd1 is also specifically targeted 

in all haematopoietic cells. These mice exhibited a significantly improved body weight evolution 

compared with their WT littermate controls (Figure 4H). Collectively, these findings demonstrate that 

the loss of Phd1 in haematopoietic cells is both necessary and sufficient to reduce mucosal 

inflammation and its associated endothelial dysfunction during colitis. 
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Loss of Phd1 in BMDM promotes their skewing towards an M2 phenotype with reduced response to 

LPS 

We subsequently questioned which cell type(s) within this haematopoietic pool is/are the main 

contributor(s) to these protective effects. We first focused on macrophages because they are key 

players in both the onset and resolution of inflammation in DSS-induced colitis, depending on their 

phenotype 25-27. While M1 macrophages secrete pro-inflammatory cytokines, M2 macrophages secrete 

anti-inflammatory cytokines, growth and angiogenic factors responsible for vascular remodelling and 

tissue repair. We found that Phd1f/fTie2:cre BMDM showed increased expression of the M2 marker 

Arg1 at baseline as compared with WT BMDM. Moreover, when inducing M2 conversion with IL-4, 

increased levels of the M2 markers Chi3l3, Fizz1 and Arg1 were seen in the Phd1f/fTie2:cre BMDM 

compared with the WT BMDM (Figure 5A). 

To assess the anti-inflammatory nature of these Phd1-deficient macrophages, we stimulated BMDM 

from both WT and Phd1f/fTie2:cre mice with LPS and determined the secretion of pro-inflammatory 

cytokines and chemokines. The supernatant from the Phd1f/fTie2:cre BMDM contained significantly 

lower levels of IL-1, IL-6, TNF and MCP-1 compared with the protein levels in the supernatant of the 

WT BMDM (Figure 5B). In addition, when this supernatant was added to MS1 endothelial cells, the 

induction of the endothelial chemokines Cxcl2 and Mcp1 was significantly suppressed when compared 

with the endothelial cells stimulated with LPS-CM from WT BMDM (Figure S2). 

Taken together, these observations indicate that the loss of Phd1 skews macrophages towards an M2 

phenotype with a reduced inflammatory response to LPS. 

 

NF-B activation state is altered during steady-state and inflammatory conditions upon loss of Phd1 

in BMDM and is partly responsible for the promotion of M2 conversion 

Since the expression of TNF, IL-6, IL-1and MCP-1 can all be regulated by NF-B, and the latter can 

also be up-regulated by pan-hydroxylase inhibition 28, we determined the impact of Phd1-deletion in 

macrophages on the expression of signal transducers in the NF-B pathway in steady-state and 

inflammatory conditions. At baseline, the Phd1f/fTie2:cre BMDM exhibited increased levels of 

phosphorylated IB (P-IB) andP-p65 compared with the WT BMDM (Figure 6A-B). Accordingly, 

the expression of IB, a known NF-B target 29, was significantly increased in the Phd1f/fTie2:cre 

BMDM compared with the WT BMDM (Figure 6B). We next questioned whether the increased NF-B 

activity at baseline in the Phd1f/fTie2:cre BMDM was responsible for the facilitation towards M2 

polarization. We therefore incubated WT and Phd1f/fTie2:cre BMDM with IL-4 or with the NF-B 

inhibitor ACHP, which is in fact an IκB kinase (IKK) inhibitor, or with ACHP in combination with IL-4. We 
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observed that inhibition of NF-B in the Phd1f/fTie2:cre BMDM reduced the IL-4-induced increase in 

Chi3l3 and Fizz1 expression to levels comparable with the ACHP and IL-4 treated WT BMDM (Figure 

6C). The expression of Arg1 remained elevated in the ACHP and IL-4 treated Phd1f/fTie2:cre BMDM, 

indicating that NF-B is not involved in the regulation of this M2 marker (Figure 6C). Taken together, 

the increased baseline NF-B activity in the Phd1f/fTie2:cre BMDM is partly responsible for their 

facilitated M2 conversion. 

However, after LPS stimulation, levels of P-IB were significantly less up-regulated in the 

Phd1f/fTie2:cre BMDM compared with the WT BMDM (Figure 6A) which indicates LPS tolerance in 

Phd1f/fTie2:cre BMDM that could account for the reduced levels of the aforementioned inflammatory 

cytokines and chemokine.  

 

Loss of Phd1 in BMDC reduces LPS-induced IL-1β secretion 

In addition to macrophages, DCs are also essential in the maintenance of tissue homeostasis in the 

intestinal microenvironment through the induction of tolerance 30. Pathological disorders such as IBD 

alter the DC phenotype, inducing a more pro-inflammatory state and infusion of these inflammatory 

DCs is sufficient to induce and propagate inflammation 31. Therefore, we investigated if Phd1-deficient 

DCs could also play a role in the protection seen after haematopoietic Phd1 knockout. We therefore 

set up BMDC cultures from WT and Phd1f/fCD11c:cre mice. The CD11c driven expression of the Cre 

recombinase transgene efficiently abolished Phd1 expression in BMDC (data not shown). The resulting 

BMDCs were stimulated with LPS and the concentration of secreted cytokines was determined. DCs 

from Phd1f/fCD11c:cre mice secreted significantly lower amounts of IL-1β and a trend towards lower 

IL-12 secretion after LPS stimulation compared with the levels from WT DCs (Figure 5C). The expression 

of IL-6 and TNF was comparable between both groups. This indicates that in addition to macrophages, 

Phd1 deletion in DCs renders them partly tolerant to LPS activation. 

 

Phd1-deficiency does not influence T-cell cytokine secretion after activation 

In addition to beneficial effects on members of the innate immune system (BMDM and BMDC), we 

wanted to know if Phd1 knockout also influenced T-cell functioning because CD4+ T-cells are known to 

play an important role in the course of DSS-induced colitis 32, 33. Hence, we stimulated spleen single cell 

suspensions from WT and Phd1f/fVav:cre mice with PMA and ionomycin to specifically accomplish T-

cell activation and 4 h later cytokine levels were determined in the supernatant. First, we analysed the 

Phd1 knockout degree in CD4+ T-cells. As expected, CD4+ T cells from Phd1f/fVav:cre mice displayed 
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complete deletion of the Phd1 gene when compared with the expression in WT CD4+ T cells (data not 

shown). When comparing the concentrations of IFN-γ, TNF and IL-10, no significant differences could 

be detected between WT and Phd1f/fVav:cre mice (Figure S3). These results suggest that Phd1 deletion 

does not affect T-cell cytokine release. 

 

Discussion 

In the present study, we demonstrated that genetic targeting of Phd1 in haematopoietic cells 

prevented colonic inflammation and the associated mucosal microvascular dysfunction in mice. We 

revealed that these beneficial effects are, at least in part, mediated by a promotion of Phd1-deficient 

macrophages towards M2 polarization with a diminished pro-inflammatory response towards LPS. 

In line with the previously reported results of Tambuwala and colleagues [10], we observed that Phd1, 

and not Phd2 or Phd3, needs to be targeted in order to achieve protection from DSS-induced colitis. 

However, while Tambuwala et al. proposed a reduction of colonic epithelial apoptosis with resulting 

preservation of barrier function as a primary mechanism, we could show that genetic deletion in 

endothelial and haematopoietic cells was sufficient to elicit a strong protection against DSS-induced 

colitis with less epithelial erosions, a preservation of mucosal microvascular barrier function and a 

lower expression of the endothelial dysfunction markers Icam1, Vcam1, Madcam1, Vwf and Vegfr2.  

We endeavoured to identify the key cell types and mechanisms behind this strong protective effect, 

hereby focusing on the main cell types involved in colitogenesis. Using bone marrow chimeras and cell-

specific cre:mice, we were able to show that the deletion of Phd1 in haematopoietic, but not 

endothelial cells was critical to confer protection from colitis. Interestingly, whereas Phd1-deletion in 

activated T-cells did not alter their cytokine secretion and PHD1 in neutrophils does not seem to play 

an apparent role during hypoxic and inflammatory conditions based on previous observations 10, 34, we 

identified an important role for Phd1 within the mononuclear phagocyte system. We demonstrated 

that Phd1-deletion in BMDM was accompanied by a facilitation towards M2 polarization. Consistent 

with this finding, Hams et al. showed that the administration of dimethyloxalylglycine (DMOG), a pan-

hydroxylase inhibitor, is also associated with enhanced levels of M2 markers 35 which suggests that the 

inhibition of PHD1 might be involved in this effect. In addition, the M2 phenotype caused by Phd1-

deletion was accompanied by significantly lower amounts of the pro-inflammatory cytokinesIL-1, IL-

6 and TNF and the chemokine MCP-1 following stimulation with LPS. This phenotypic switch could be 

particularly relevant in IBD in which, on the one hand the intestinal mucosa is characterized by an 

increased proportion of M1 macrophages 36 that directly contribute to epithelial barrier disruption 
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mainly through TNF release 37, and on the other hand by a decreased proportion of pro-angiogenic 

“wound healing” M2 macrophages 38, 39. This imbalance is also present in DSS-induced colitis and the 

disease course can be ameliorated by adoptive transfer of M2 macrophages 26. Also, proteins and 

metabolites that promote M2 conversion are effective in reducing the severity of experimental colitis 

40-42.  

To further dissect the molecular mechanism by which Phd1-deletion in BMDM altered their phenotype, 

we focused on NF-B, since its activation can be regulated by PHDs 43 and it is a key transcriptional 

regulator of both M1 and M2 polarization 44. We found increased levels of P-IBand P-p65 and 

elevated expression of the NF-B target IB in the Phd1-deficient BMDM compared with the WT 

BMDM, which is in line with previous observations showing induction of NF-B activity upon 

knockdown of PHD1 in HeLa cells 28. Moreover, we demonstrated that this elevated baseline NF-B 

activity in Phd1-deficient BMDM is partly responsible for the facilitation towards M2 polarization. On 

the other hand, levels of P-IBafter LPS administration were markedly less pronounced in the 

Phd1f/fTie2:cre BMDM as compared with WT BMDM. This indicates that despite the higher baseline 

NF-B activation, Phd1f/fTie2:cre BMDM are less responsive to an inflammatory stimulus which 

explained their reduced LPS-induced secretion of IL-1, IL-6, TNF and MCP-1 in the Phd1f/fTie2:cre 

BMDM compared with the WT BMDM. A similar apparent paradox has been reported using DMOG. In 

addition to increasing HIF1- levels, DMOG moderately increases basal NF-B activity 28, 35, which 

renders cells tolerant to subsequent NF-B activation, induced by LPS, and as a result, limited further 

NF-B activation is observed with subsequent diminished NF-B target gene expression 35. LPS 

tolerance is obtained in a similar way 45. Likewise, DMOG also attenuates the IL-1-induced NF-kB 

activity by inhibiting PHD1 and factor inhibiting HIF (FIH)-dependent hydroxylation of proteins 

associated with the TRAF6 complex 46. Since the latter is also a major part of the LPS pathway, this 

could explain how Phd1-deletion induces LPS tolerance. 

Furthermore, we demonstrated that supernatant from LPS-stimulated Phd1-deficient macrophages 

was able to partly diminish the pro-inflammatory signature of endothelial cells, which suggests that 

Phd1-deficiency in BMDM could be responsible, at least in part, for the attenuation of colitis-associated 

endothelial dysfunction and leukocyte trafficking. In addition to macrophages, we investigated the 

effect of genetic Phd1 deletion in DCs and we showed for the first time that Phd1-deficient DCs exhibit 

a marked decrease in IL-1 release in response to LPS. IL-1 is a pro-inflammatory cytokine that is 

elevated in active IBD 47 and has been shown to alter tight junction protein expression and distribution 

which consequently disrupts epithelial barrier integrity 48. Therefore, Phd1-deficient macrophages and 

DCs may work synergistically in preserving barrier function during colitis through the reduced release 
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of IL-1Thus, Phd1-deficiency in mononuclear phagocytes, in addition to epithelial cells, regulates 

epithelial barrier integrity.  

Future studies will have to address the translatability of our findings to human IBD. To date, no PHD1-

specific inhibitor exists. However, one company (Aerpio Therapeutics) is currently developing a non-

selective PHD inhibitor for clinical use in IBD. 

In conclusion, we demonstrated for the first time that PHD1 exerts critical functions in haematopoietic 

cells, more specific in the mononuclear phagocyte system, that drive experimental colitis. Our results 

further support the development of PHD1-specific inhibitors for the treatment of UC. 
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Figure legends 

Figure 1. Phd1f/fTie2:cre mice are protected against DSS-induced colitis. (A) Weight evolution of WT 

and Phd1f/fTie2:cre, Phd2f/+Tie2:cre and Phd3f/fTie2:cre mice exposed to 4% DSS. (B) Representative 

100x H&E-stained colonic sections and (C) total histological inflammation scores of the Phd1f/fTie2:cre 

mice at day 11 (left), the Phd2f/+Tie2:cre at day 11 (middle) and the Phd3f/fTie2:cre at day 10 (right) of 

DSS-induced colitis. (D) DAI, (E) colon length, (F) epithelial erosion score and (G) inflammatory cell 

infiltration score of WT and Phd1f/fTie2:cre mice on day 11 of DSS-induced colitis (scale bar = 200 µm). 

n = 8. *p < 0.05, **p < 0.01, ***p < 0.001 and NS: not significant. Data are represented as the mean ± 

SEM. 

Figure 2. Phd1f/fTie2:cre mice have less dysfunctional blood vessels. (A) Representative dynamic 

contrast-enhanced microMRI images of the colon of a WT (left) and a Phd1f/fTie2:cre mouse (right) at 

day 7 of DSS-induced colitis. The color scale in the upper panels represents the Ktrans values as a 

measure of vascular leakage that ranges from low vascular leakage (black-purple) to high vascular 

leakage (red). The lower panel represents the anatomical positions where the Ktrans values were 

calculated. (B) Vascular leakage in the WT and Phd1f/fTie2:cre mice at days 0, 3 and 7 of DSS-induced 

colitis. (C) Fold increase in mRNA expression of Icam1, Vcam1, Madcam1, Vwf and Vegfr2 on day 11 of 

DSS-induced colitis in the WT and Phd1f/fTie2:cre mice. n = 8. *p < 0.05, **p < 0.01, ***p < 0.001 and 

NS: not significant. Data are represented as the mean ± SEM. 

Figure 3. Phd1-deficiency solely in endothelial cells does not ameliorate DSS-induced colitis. (A) 

Weight evolution, (B) colon length and (C) representative H&E-stained colonic sections of 

Phd1f/fTie2:cre<-WT BM and WT<-WT BM chimeras (n = 8 per group) (left) and Phd1f/fFlk-1:cre (n = 5) 

and WT mice (n = 7) (right) (scale bar = 200 µm). NS: not significant. Data are represented as the mean 

± SEM. Original magnification x100. 

Figure 4. Haematopoietic Phd1-deficiency ameliorates DSS-induced colitis. (A) Weight evolution of 

the haematopoietic Phd1-deficient (WT<- Phd1f/fTie2:cre BM) and WT (WT<-WT BM) mice subjected 

to 3% DSS-induced colitis. (B) Colon length, (C) histological inflammation score, (D) representative H&E-

stained colon sections (scale bar = 200 µm), (E) epithelial erosion score, (F) infiltration inflammatory 

cell score and (G) mRNA expression of Icam1, Vcam1, Madcam1, Vwf and Vegfr2 in the WT<-

Phd1f/fTie2:cre BM and WT<-WT BM mice on day 9 of DSS-induced colitis. n = 11 per group. (H) Body 

weight evolution of the WT (n = 2) and Phd1f/fVav:cre mice (n = 4) during the course of 3% DSS-induced 

colitis. *p < 0.05, ***p < 0.0001 and NS: not significant. Data are represented as the mean ± SEM. 

Original magnification x100. 
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Figure 5. Phd1-deletion in BMDM promotes M2 conversion and impairs the LPS response, while 

Phd1-deficient BMDC release reduced IL-1levels in response to LPS. (A) mRNA expression levels of 

Chi3l3, Fizz1 and Arg1 in the untreated or 20 ng/ml IL-4 treated WT and Phd1f/fTie2:cre BMDM. (B) IL-

1, IL-6, TNF and MCP-1 concentrations in the supernatant from the unstimulated and 100 ng/ml LPS-

stimulated WT and Phd1f/fTie2:cre BMDM. (C) Concentration of IL-1, IL-12, TNFand IL-6 in the 

supernatant from LPS-treated BMDC. *p < 0.05, **p < 0.01, ***p < 0.001 and NS: not significant. 

Results are representative of two independent experiments, each in duplicate. Data are represented 

as the mean ± SEM. 

Figure 6. Phd1-deficiency alters the NF-B activation state in BMDM at baseline and after LPS 

exposure. (A) Western blot analysis (left) of P-IB and GAPDH and densitometric analysis (right) of P-

IB in the unstimulated and LPS-stimulated WT and Phd1f/fTie2:cre BMDM. (B) Western blot analysis 

of P-p65, IBand GAPDH in the untreated WT and Phd1f/fTie2:cre BMDM (left) and densitometric 

analysis of P-p65 and IB in the untreated WT and Phd1f/fTie2:cre BMDM (right). (C) mRNA expression 

levels of Chi3l3, Fizz1 and Arg1 in the untreated, 20 ng/ml IL-4-treated, 125 nM ACHP-treated or 20 

ng/ml IL-4 and 125 nM ACHP-treated WT and Phd1f/fTie2:cre BMDM. Each condition was performed in 

duplicate; n=2-3. *p < 0.05, ***p < 0.001 and NS: not significant. Data are represented as mean ±SEM.  

 

Supplementary material online 

Supplementary materials and methods   

Supplementary figure legends   

Figure S1.  Characterization of the Phd1f/fTie2:cre mice 

Figure S2.  LPS-conditioned medium from Phd1-deficient macrophages diminishes endothelial cell 

activation 

Figure S3.  Phd1-deletion does not alter the cytokine release of activated T-cells 

Table S1.  Primer sequences 

 

 



118 
 

References 

1. Epstein AC, Gleadle JM, McNeill LA, et al. C. elegans EGL-9 and mammalian homologs define a 
family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 2001;107:43-54. 

2. Kaelin WG, Jr., Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF 
hydroxylase pathway. Mol. Cell 2008;30:393-402. 

3. Cummins EP, Seeballuck F, Keely SJ, et al. The hydroxylase inhibitor dimethyloxalylglycine is 
protective in a murine model of colitis. Gastroenterology 2008;134:156-165. 

4. Hindryckx P, De VM, Jacques P, et al. Hydroxylase inhibition abrogates TNF-alpha-induced 
intestinal epithelial damage by hypoxia-inducible factor-1-dependent repression of FADD. J 
Immunol 2010;185:6306-6316. 

5. Robinson A, Keely S, Karhausen J, et al. Mucosal protection by hypoxia-inducible factor prolyl 
hydroxylase inhibition. Gastroenterology 2008;134:145-155. 

6. Hindryckx P, Laukens D, De VM. Boosting the hypoxia-induced adaptive response in 
inflammatory bowel disease: a novel concept of treatment. Inflamm. Bowel. Dis 2011;17:2019-
2022. 

7. Cummins EP, Keogh CE, Crean D, et al. The role of HIF in immunity and inflammation. Mol 
Aspects Med 2016;47-48:24-34. 

8. Cummins EP, Doherty GA, Taylor CT. Hydroxylases as therapeutic targets in inflammatory 
bowel disease. Lab Invest 2013;93:378-383. 

9. Van WS, Laukens D, Ferdinande L, et al. Differential expression of prolyl hydroxylase 1 in 
patients with ulcerative colitis versus patients with Crohn's disease/infectious colitis and 
healthy controls. J. Inflamm. (Lond) 2013;10:36. 

10. Tambuwala MM, Cummins EP, Lenihan CR, et al. Loss of prolyl hydroxylase-1 protects against 
colitis through reduced epithelial cell apoptosis and increased barrier function. 
Gastroenterology 2010;139:2093-2101. 

11. Seidelin JB, Nielsen OH. Epithelial apoptosis: cause or consequence of ulcerative colitis? Scand. 
J Gastroenterol 2009;44:1429-1434. 

12. Neurath MF. New targets for mucosal healing and therapy in inflammatory bowel diseases. 
Mucosal Immunol 2014;7:6-19. 

13. Ghosh S, Panaccione R. Anti-adhesion molecule therapy for inflammatory bowel disease. 
Therap Adv Gastroenterol 2010;3:239-58. 

14. Aragones J, Schneider M, Van GK, et al. Deficiency or inhibition of oxygen sensor Phd1 induces 
hypoxia tolerance by reprogramming basal metabolism. Nat. Genet 2008;40:170-180. 

15. Mazzone M, Dettori D, Leite de OR, et al. Heterozygous deficiency of PHD2 restores tumor 
oxygenation and inhibits metastasis via endothelial normalization. Cell 2009;136:839-851. 

16. Henze AT, Garvalov BK, Seidel S, et al. Loss of PHD3 allows tumours to overcome hypoxic 
growth inhibition and sustain proliferation through EGFR. Nat. Commun 2014;5:5582. 

17. Constien R, Forde A, Liliensiek B, et al. Characterization of a novel EGFP reporter mouse to 
monitor Cre recombination as demonstrated by a Tie2 Cre mouse line. Genesis 2001;30:36-44. 

18. Licht AH, Raab S, Hofmann U, et al. Endothelium-specific Cre recombinase activity in flk-1-Cre 
transgenic mice. Dev. Dyn 2004;229:312-318. 

19. Stadtfeld M, Graf T. Assessing the role of hematopoietic plasticity for endothelial and 
hepatocyte development by non-invasive lineage tracing. Development 2005;132:203-213. 

20. Caton ML, Smith-Raska MR, Reizis B. Notch-RBP-J signaling controls the homeostasis of CD8- 
dendritic cells in the spleen. J Exp. Med 2007;204:1653-1664. 

21. Laukens D, Brinkman BM, Raes J, et al. Heterogeneity of the gut microbiome in mice: guidelines 
for optimizing experimental design. FEMS Microbiol. Rev 2016;40:117-132. 

22. Cooper HS, Murthy SN, Shah RS, et al. Clinicopathologic study of dextran sulfate sodium 
experimental murine colitis. Lab Invest 1993;69:238-249. 



119 
 

23. Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-
enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J 
Magn Reson. Imaging 1999;10:223-232. 

24. Lutz MB, Kukutsch N, Ogilvie AL, et al. An advanced culture method for generating large 
quantities of highly pure dendritic cells from mouse bone marrow. J Immunol. Methods 
1999;223:77-92. 

25. Stevceva L, Pavli P, Husband AJ, et al. The inflammatory infiltrate in the acute stage of the 
dextran sulphate sodium induced colitis: B cell response differs depending on the percentage 
of DSS used to induce it. BMC. Clin. Pathol 2001;1:3. 

26. Zhu W, Yu J, Nie Y, et al. Disequilibrium of M1 and M2 macrophages correlates with the 
development of experimental inflammatory bowel diseases. Immunol. Invest 2014;43:638-
652. 

27. Hunter MM, Wang A, Parhar KS, et al. In vitro-derived alternatively activated macrophages 
reduce colonic inflammation in mice. Gastroenterology 2010;138:1395-1405. 

28. Cummins EP, Berra E, Comerford KM, et al. Prolyl hydroxylase-1 negatively regulates IkappaB 
kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proc. Natl. Acad. Sci. U. S. 
A 2006;103:18154-18159. 

29. Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold 
Spring Harb. Perspect. Biol 2009;1:a000034. 

30. Scott CL, Aumeunier AM, Mowat AM. Intestinal CD103+ dendritic cells: master regulators of 
tolerance? Trends Immunol 2011;32:412-9. 

31. Maloy KJ, Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. 
Nature 2011;474:298-306. 

32. Shintani N, Nakajima T, Okamoto T, et al. Involvement of CD4+ T cells in the development of 
dextran sulfate sodium-induced experimental colitis and suppressive effect of IgG on their 
action. Gen. Pharmacol 1998;31:477-481. 

33. Chen J, Xie L, Toyama S, et al. The effects of Foxp3-expressing regulatory T cells expanded with 
CD28 superagonist antibody in DSS-induced mice colitis. Int Immunopharmacol 2011;11:610-
7. 

34. Walmsley SR, Chilvers ER, Thompson AA, et al. Prolyl hydroxylase 3 (PHD3) is essential for 
hypoxic regulation of neutrophilic inflammation in humans and mice. J Clin. Invest 
2011;121:1053-1063. 

35. Hams E, Saunders SP, Cummins EP, et al. The hydroxylase inhibitor dimethyloxallyl glycine 
attenuates endotoxic shock via alternative activation of macrophages and IL-10 production by 
B1 cells. Shock 2011;36:295-302. 

36. Grimm MC, Pavli P, Van de Pol E, et al. Evidence for a CD14+ population of monocytes in 
inflammatory bowel disease mucosa--implications for pathogenesis. Clin. Exp. Immunol 
1995;100:291-297. 

37. Lissner D, Schumann M, Batra A, et al. Monocyte and M1 Macrophage-induced Barrier Defect 
Contributes to Chronic Intestinal Inflammation in IBD. Inflamm. Bowel. Dis 2015;21:1297-
1305. 

38. Sheikh SZ, Plevy SE. The role of the macrophage in sentinel responses in intestinal immunity. 
Curr. Opin. Gastroenterol 2010;26:578-582. 

39. Kuhl AA, Erben U, Kredel LI, et al. Diversity of Intestinal Macrophages in Inflammatory Bowel 
Diseases. Front Immunol 2015;6:613. 

40. Weisser SB, Brugger HK, Voglmaier NS, et al. SHIP-deficient, alternatively activated 
macrophages protect mice during DSS-induced colitis. J. Leukoc. Biol 2011;90:483-492. 

41. Chang HH, Miaw SC, Tseng W, et al. PTPN22 modulates macrophage polarization and 
susceptibility to dextran sulfate sodium-induced colitis. J Immunol 2013;191:2134-43. 

42. Ji J, Shu D, Zheng M, et al. Microbial metabolite butyrate facilitates M2 macrophage 
polarization and function. Sci Rep 2016;6:24838. 



120 
 

43. Wong BW, Kuchnio A, Bruning U, et al. Emerging novel functions of the oxygen-sensing prolyl 
hydroxylase domain enzymes. Trends Biochem Sci 2013;38:3-11. 

44. Wang N, Liang H, Zen K. Molecular mechanisms that influence the macrophage m1-m2 
polarization balance. Front Immunol 2014;5:614. 

45. Biswas SK, Lopez-Collazo E. Endotoxin tolerance: new mechanisms, molecules and clinical 
significance. Trends Immunol 2009;30:475-87. 

46. Scholz CC, Cavadas MA, Tambuwala MM, et al. Regulation of IL-1beta-induced NF-kappaB by 
hydroxylases links key hypoxic and inflammatory signaling pathways. Proc Natl Acad Sci U S A 
2013;110:18490-5. 

47. Brynskov J, Tvede N, Andersen CB, et al. Increased concentrations of interleukin 1 beta, 
interleukin-2, and soluble interleukin-2 receptors in endoscopical mucosal biopsy specimens 
with active inflammatory bowel disease. Gut 1992;33:55-8. 

48. Al-Sadi RM, Ma TY. IL-1beta causes an increase in intestinal epithelial tight junction 
permeability. J Immunol 2007;178:4641-9. 

49. Van der Sluis M, De Koning BA, De Bruijn AC, et al. Muc2-deficient mice spontaneously develop 
colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 2006;131:117-
129. 

50. Lopez-Bojorquez LN, Arechavaleta-Velasco F, Vadillo-Ortega F, et al. NF-kappaB translocation 
and endothelial cell activation is potentiated by macrophage-released signals co-secreted with 
TNF-alpha and IL-1beta. Inflamm. Res 2004;53:567-575. 

 



121 
 

 



122 
 

 

 

 



123 
 



124 
 

 



125 
 

 

 

 

 



126 
 

 

 

 

 

 

 

 

 



127 
 

Supporting information 

 

SUPPLEMENTARY MATERIALS AND METHODS 

 

Histological evaluation of inflammation 

Distal colonic sections (5 µm thick) were stained with haematoxylin and eosin (H&E). Colonic epithelial 

damage and inflammation (mucosal and submucosal inflammatory cell infiltration) were then scored 

blindly by two independent observers using a validated scoring system 49. 

 

Conditioned media of LPS-activated BMDM 

Supernatants from the LPS-stimulated BMDM were obtained following protocols described previously 

50. In brief, the BMDM were stimulated with 100 ng/ml LPS for 20 min. The medium was removed and 

the adherent cells were washed three times with phosphate-buffered saline (PBS)-/- to eliminate any 

residual LPS. Fresh DMEM without FCS was added to the cells for 3 h. This conditioned medium (CM) 

was centrifuged for 15 min at 5 000 X g, passed through a 0.2 µm filter and incubated for 2 h at 37 °C 

with 1 mg/ml polymyxin B sulphate to prevent the remaining LPS residues from binding to their cell 

receptors.  

 

Cell line culture 

Mouse endothelial MS1 cells (ATCC Cell Biology Collection, Manassas, VA, USA) were seeded at a 

density of 105 cells per well of 12-well plates and stimulated the following day for 6 h with LPS-CM or 

unconditioned medium from WT and Phd1f/fTie2:cre BMDM followed by RNA extraction. Each 

condition was performed in triplicate. The cultured cells were maintained in a humidified atmosphere 

at 37 °C with 5% CO2 and the culture supernatant was routinely screened for mycoplasma infections. 

 

RNA collection and extraction 

Total RNA was extracted from mouse colonic mucosal samples or cell cultures via the Aurum Total RNA 

Mini Kit (Biorad, Temse, Belgium), using needle homogenization and on-column DNAse treatment. The 

concentration and purity of the total RNA was quantified using nanodrop technology (BioPhotometer 

Plus, Eppendorf, Rotselaar, Belgium). All samples had an OD260/280 between 1.8 and 2.1.  
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cDNA synthesis and quantitative Real-time Polymerase Chain Reaction (qPCR) 

Total RNA was converted to single strand complementary DNA (cDNA) by reverse transcription 

(SensiFASTTM cDNA Synthase Kit, Bioline, London, UK). The cDNA was diluted to a concentration of 5 

ng/µl. Real-time quantification was performed using a SensiMixTM SYBR kit (Bioline) and 250 nM of 

forward and reverse primers (BioLegio, Nijmegen, The Netherlands). A two-step program was run on 

a LightCycler® 480 II (Roche, Vilvoorde, Belgium). The cycling conditions comprised 95°C for 10 min, 45 

cycles of 95°C for 10 s and 60°C for 1 min. A melting curve analysis confirmed the primer specificities. 

All reactions were conducted in duplicate, and the data were normalized to the expression of the 

reference genes succinate dehydrogenase complex subunit (Sdha), hydroxymethyl-bilane synthase 

(Hmbs), glyceraldehyde-3-phosphate dehydrogenase (Gapdh), hypoxanthine-guanine 

phosphoribosyltransferase  (Hprt) or a combination based on the stability of the reference genes 

between the different groups. The efficiency of each primer pair was calculated using a standard curve 

from reference cDNA. The amplification efficiency was determined using the formula 10-1/slope. The 

sequences of the qPCR primers are provided in Supplementary Table S1. 

 

Western blotting 

Bone marrow derived macrophages (BMDM) were lysed in RIPA buffer. Proteins were separated on 4-

12% Bis-Tris SDS-polyacrylamide gels and transferred to nitrocellulose membranes using iBlot dry 

blotting (Invitrogen). The membranes were subsequently blocked with 5% skimmed milk in TBS-T (50 

mM Tris (pH 7.6), 150 mM NaCl, and 0.1% Tween 20) and incubated overnight at 4 °C in 5% skimmed 

milk in TBS-T with 1 : 2500 anti-GAPDH (Abcam), 1 : 1000 anti-phosphorylated p65 (Cell Signalling, 

Leiden, Netherlands), 1 : 1000 anti-phosphorylated IκB-α (Cell Signalling) and 1 : 1000 anti-IκB-α (Cell 

Signalling). Bound antibodies were visualized using the ECL detection kit BM chemiluminescence 

Blotting Substrate POD (Roche) on a ChemiDocTM Touch Imaging System (Biorad).  

 

Chemokine analyses 

Chemokines in the supernatant from the BMDM cultures were measured using a multiplex bead-based 

immunoassay kit for mouse IL-1β, IL-6, MCP-1 and TNF. The samples were processed using the Bio-

Plex ProTM Reagent Kit and were analysed with Bio-Plex ManagerTM Software (Biorad). 

 

 

Enzyme-linked immunosorbent assay (ELISA) 

IL-1β, IL-12, IL-6 and TNF concentrations in the supernatant from the BMDC cultures were measured 

by ELISA (R&D Systems, Minneapolis, MN, USA) in accordance with the manufacturer’s instructions. 
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Isolation of mouse colonic endothelial cells 

Eight-to-twelve-week-old mice were euthanized, and the colons were removed. After washing in ice 

cold PBS-/-, the colons were longitudinally cut in 1 cm pieces. The tissues were subsequently incubated 

for 15 min in 1 mM DTT in PBS-/- at room temperature. Next, the colons were washed twice in ice cold 

PBS-/- , followed by enzymatic digestion for 1 h at 37 °C with gentle shaking. The enzymatic solution 

included RPMI that contained 5% FCS, 5 mg/ml collagenase D (Roche), 0.5 mg/ml collagenase IV 

(Sigma), 100 units/ml penicillin, 100 µg/ml streptomycin, 250 ng/ml Fungizone® Antimycotic and 300 

µg/ml DNAse I (Roche). The cell suspensions were washed with RPMI, passed through a 40 µm filter, 

centrifuged and washed again with FACS buffer (PBS-/-, 2 mM EDTA and 0.5% BSA). Following 

centrifugation, the cells were resuspended at 108 cells in 900 µL FACS buffer, followed by endothelial 

cell isolation using CD31+ microbeads (Miltenyi, Leiden, The Netherlands) in accordance with the 

manufacturer’s guidelines. The CD31+ cells were lysed for RNA extraction. 

 

Obtaining spleen suspensions and isolation of CD4+ T cells from the spleen 

Eight-to-twelve-week-old WT, Phd1f/fTie2:cre and Phd1f/f Vav:cre mice were euthanized, and the 

spleens were removed. The spleens were crushed with the back of a syringe in 5 ml RPMI on a 40 µm 

cell strainer. After washing with RPMI and centrifugation, the red blood cells were lysed for 5 min at 

room temperature using RBC lysis buffer (Gentra systems, Minneapolis, USA). The cell suspensions 

were subsequently washed again with RPMI and centrifuged. Resuspension occurred in RPMI, and the 

cells were passed again through a 40 µm filter. Spleen suspensions from WT and Phd1f/f Vav:cre mice 

were seeded at a density of 2 x 106 cells in a 96-well containing 200 ng/ml PMA (Invitrogen) and 1 

µg/ml ionomycin (Sigma Aldrich, Missouri, USA) to accomplish T-cell activation. After 4h, supernatant 

was collected to determine cytokine concentrations. In addition, CD4+ cells were subsequently 

acquired from the spleen suspensions from WT and Phd1f/fTie2:cre using the Dynabeads® CD4 Positive 

Isolation Kit (Invitrogen), followed by RNA extraction. 

 

Isolation of colonic epithelial cells (IEC) 

Eight-to-twelve-week-old mice were euthanized, and the colons were removed and cut longitudinally. 

Two 1 cm pieces were incubated overnight on ice in Cell Recovery Solution (BD Bioscience, Belford, 

MA). The following day, colonic epithelial cells were obtained by vigorous shaking. The remaining 

colonic tissue was removed, and the cell suspensions were centrifuged. Cell pellets were lysed for RNA 

isolation. 
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SUPPLEMENTARY FIGURE LEGENDS 

 

Figure S1. Characterization of the Phd1f/fTie2:cre mice. (A) Phd1 wt and ko allele expression in BM, (B) 

BMDM, (C) BMDC, (D) CD4+ T-cells, (E) intestinal epithelial cells (IEC) and (F) CD31+ cells isolated from 

the colonic tissue of the WT and Phd1f/fTie2:cre mice (left) and WT and Phd1f/fFlk-1:cre mice (right). 

n=2 mice per group, with the exception of (E) n=1. *p < 0.05. Values represent mean ± SEM. (G) 

Schematic overview of the binding sites of the two qPCR primer pairs to distinguish Phd1 expression 

in the WT and Phd1f/fTie2:cre mice. (Left) Phd1 mRNA sequence with the forward primer binding exon 

2 and the reverse primer binding exon 3, thereby amplifying the Phd1 allele as it occurs in the WT mice 

and is denoted as the “Phd1 wt allele”. (Right) Phd1 mRNA sequence as it occurs in the Phd1f/fTie2:cre 

mice with the forward primer binding at the transition of exon 2 and exon 5, whereas the reverse 

primer binds exon 5. The resulting amplicon is the Phd1 allele as it occurs in the Phd1f/fTie2:cre mice 

and is denoted as the “Phd1 ko allele”.   

 

Figure S2. LPS-conditioned medium from Phd1-deficient macrophages diminishes endothelial cell 

activation. Icam1, Vcam1, Madcam1, Il6, Cxcl2 and Mcp1 mRNA levels in MS1 cells stimulated with 

unconditioned or LPS-conditioned medium (CM) from the WT and Phd1f/fTie2:cre BMDM. **p < 0.01, 

***p < 0.001 and NS: not significant. Results are representative of two independent experiments, each 

in duplicate. Data are represented as the mean ± SEM. 

 

Figure S3. Phd1-deletion does not alter the cytokine release of activated T-cells. Protein levels of INF-

, TNFand IL-10 secreted by unstimulated and PMA/ionomycin-stimulated spleen suspensions from 

WT and Phd1f/fVav:cre mice. NS: not significant. Data are represented as the mean ± SEM. 
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SUPPLEMENTARY TABLES 

Table S1: Primer sequences.  The primers listed were used for quantitative PCR. 

Gene  Symbol  Forward Primers (5’-3’)  Reverse Primers (5’-3’)  

Sdha CTTGAATGAGGCTGACTGTG ATCACATAAGCTGGTCCTGT 

Gapdh CATGGCCTTCCGTGTTCCTA GCGGCACGTCAGATCCA 

Hprt GTTAAGCAGTACAGCCCCAAA AGGGCATATCCAACAACAAACTT 

Hmbs AAGGGCTTTTCTGAGGCACC AGTTGCCCATCTTTCATCACTG 

Phd1wt TCACGTGGACGCAGTAATCC TAATAGATACAG GTGATGCAGC 

Phd1ko AATGGGCGCACCAAGGTACG GTGATACTGGTACTTGAACACC 

Icam1 GCCTTGGTAGAGGTGACTGAG GACCGGAGCTGAAAAGTTGTA 

Vcam1 TGCCGAGCTAAATTACACATTG CCTTGTGGAGGGATGTACAGA 

Madcam1 CCTGGCCCTAGTACCCTACC CCGTACAGAGAGGATACTGCTG 

Vwf CCGACAGCCGGGATTGCCTG CCACCCGATGTGCACGCCTT 

Vegfr2 GGGTCGATTTCAAACCTCAATGT AGAGTAAAGCCTATCTCGCTGT 

Il6 TAGTCCTTCCTACCCCAATTTCC TTGGTCCTTAGCCACTCCTTC 

Cxcl2 GCGCCCAGACAGAAGTCATAG AGCCTTGCCTTTGTTCAGTATC 

Mcp1 TTAAAAACCTGGATCGGAACCAA GCATTAGCTTCAGATTTACGGGT 

Chi3l3 CAGGTCTGGCAATTCTTCTGAA GTCTTGCTCATGTGTGTAAGTGA 

Fizz1 TCCCAGTGAATACTGATGAGA CCACTCTGGATCTCCCAAGA 

Arg1 CTCCAAGCCAAAGTCCTTAGAG AGGAGCTGTCATTAGGGACATC 

 

Sdha, mouse succinate dehydrogenase complex A subunit; Gapdh, mouse glyceraldehyde-3-phosphate 

dehydrogenase; Hprt, mouse hypoxanthine-guanine phosphoribosyltransferase; Hmbs, mouse hydroxymethyl-

bilane synthase; Phd1wt, mouse prolyl hydroxylase domain 1; Phd1ko, mouse prolyl hydroxylase domain 1 

knockout; Icam1, mouse intercellular cell adhesion molecule 1; Vcam1, mouse vascular cell adhesion molecule 

1; Madcam1, mouse mucosal addressin cell adhesion molecule 1; Vwf, mouse von Willebrand factor; Vegfr2, 

mouse vascular endothelial growth factor receptor 2; Il6, interleukin 6; Cxcl2, mouse chemokine (C-X-C motif) 

ligand 2; Mcp1, mouse monocyte-chemoattractant protein 1; Chi3l3, mouse chitinase-3 like 3; Fizz1, mouse 

resistin-like molecule alpha or found in inflammatory zone protein; Arg1, mouse arginase-1. 
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CHAPTER IV: DISCUSSION AND FUTURE PERSPECTIVES 
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1 Discussion 

Prolyl hydroxylase domain-containing proteins 1-3 are oxygen-sensing enzymes that orchestrate the 

response to hypoxia and exert non-immune and immune-modulating functions. They are actively 

involved in the pathogenesis of intestinal inflammation as inhibition of all three isoforms is protective 

in animal models of IBD. However, systemically administered pan-hydroxylase inhibitors are associated 

with some potential risks that discourages their use as therapeutics for IBD. The goal of this project 

was to identify which isoform(s) play(s) a key role in the pathogenesis of IBD and to establish if and 

how its targeting provides therapeutic benefit during experimental colitis as an alternative approach 

to reduce the risk of unwanted side-effects. 

 

1.1 Prolyl hydroxylase expression and cellular distribution in colonic biopsies of IBD 

patients 

The expression pattern of the different PHD isoforms has been studied in healthy tissues. They are 

widely distributed among different organs; PHD2 is the most abundant isoform except for the testis 

where PHD1 predominates, while the expression of PHD3 is highest in the heart1. However, 

information about their specific distribution in the healthy and inflamed gut is limited. Tambuwala and 

colleagues were the first to show that PHD1 expression increases with the severity of IBD, but this was 

not analysed for UC and CD patients separately. We expanded these initial findings by investigating all 

three isoforms in colonic inflamed and non-inflamed biopsies from UC and CD patients. In addition, we 

included inflamed biopsies from patients with infectious colitis as non-IBD inflammatory control group 

as well as healthy controls. We observed that the PHD1 expression was significantly elevated in 

inflamed biopsies from both UC and CD patients. Although PHD1 mRNA levels were higher in samples 

from inflamed UC patients compared with inflamed CD samples, the protein expression was equally 

elevated in both groups. Moreover, PHD1 levels showed a strong positive correlation with the pro-

inflammatory markers IL-8 and TNF. PHD1 expression was also elevated in samples from patients with 

infectious colitis, comparable to inflamed CD biopsies, with a tendency towards statistical significance, 

which indicates that increased PHD1 expression is not IBD specific and associated with inflammation 

in general. Immunohistochemical staining revealed that PHD1 is strongly expressed by mononuclear 

cells in the LP. Since these cells infiltrate the mucosa during an acute inflammatory response, it cannot 

be ruled out at this moment that statistical significance could be reached when the number of 

infectious colitis patients would be increased to the number of included UC and CD patients. Based on 

these findings, the elevated PHD1 protein expression is mainly due to the increase in PHD1+ 

inflammatory cells. Furthermore, we demonstrated moderate staining of PHD1 in epithelial cells, while 
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expression was absent in lymphocytes. This is in agreement with the publication of Soilleux et al. who 

analysed the presence of PHD1 expression in the epithelium and lymphocytes from different healthy 

tissues, but they did not include the colonic mucosa in their study2. In addition, we showed that only 

UC patients present markedly elevated PHD3 mRNA levels. This is not unexpected since HIF-1 levels 

in inflamed colonic biopsies from UC patients are significantly higher compared with healthy controls, 

but also compared with inflamed colonic CD samples3, while HIF-1 is known to induce the 

transcription of PHD3, but not PHD14. In further support, the expression of other HIF-1 target genes 

including the glycolytic enzymes aldolase A, phosphoglycerate mutase and pyruvate kinase and 

antibodies against these enzymes are significantly elevated in active UC patients compared with active 

CD patients3. These elevated PHD3 mRNA levels translate into elevated PHD3 protein levels only in 

mild-to-moderate UC patients, while PHD3 is no longer detectable in severely diseased UC patients 

who are classified with Mayo score 3. This observation was confirmed by Chen and co-workers who 

showed an inverse correlation between PHD3 expression and the severity of UC5. We hypothesized 

that the reason for the disappearance of PHD3 is due to the increased post-translational degradation 

by Siah2 which expression is already induced under mild hypoxic conditions (10% oxygen 

concentration)6. Recently, our hypothesis was strengthened by Xu and colleagues who demonstrated 

that HIF-1 expression in the colonic mucosa, and hence hypoxia, is positively correlated with the 

Mayo scoring in UC patients7. The physiological hypoxia present in the gut and the increase in hypoxia 

during inflammation might therefore contribute, at least in part, to the absence of PHD3 staining in a 

variety of mucosal cells except for the endothelium which is in contact with generally oxygen-rich 

blood. Since the intestinal mucosa of active CD patients and especially healthy controls is less hypoxic 

than severely diseased UC patients, one may expect to observe some PHD3 staining in these samples. 

We could only detect these expected differences in PHD3 expression between healthy controls and 

active CD patients versus active UC patients using western blot, but not by immunohistochemical 

staining. The latter is likely not sensitive enough to detect the differences in PHD3 expression revealed 

by western blot. Finally, we demonstrated that PHD1 and PHD2 are positively correlated with the 

mRNA levels of CASP3. This gene encodes for the protein caspase-3, involved in the regulation of 

apoptosis. More specifically, the initiator caspases-8, -9 or -10 can all cleave and hereby activate 

effector caspase-3. The latter in turn cleaves other substrates which results in DNA fragmentation and 

cytoskeletal reorganization and disintegration of the cell into apoptotic bodies8. Whether PHD1 and/or 

PHD2 take part in this process is currently still unknown. However, other evidence does confirm their 

involvement in apoptosis. In particular, increased epithelial apoptosis is a prominent hallmark of active 

IBD patients9, 10 and we observed that both PHD1 and PHD2 localize in epithelial cells. Moreover, 

Tambuwala and colleagues demonstrated that deletion of PHD1 in epithelial cells reduces their 
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apoptotic rate after DSS exposure11 hereby demonstrating that PHD1 is a positive regulator of 

apoptosis. In addition, PHD1 exerts the same function in hepatocytes in a NFB-dependent manner12. 

Concerning PHD2, silencing this gene attenuates CoCl2-induced apoptosis of renal epithelial cells13. 

However, an involvement in intestinal epithelial apoptosis is yet to be determined. Besides epithelial 

cells, both isoforms are also present in mononuclear cells in the LP. To date, only an essential role for 

PHD3 in promoting apoptosis of macrophages under stress conditions like serum deprivation has been 

demonstrated, while no involvement of PHD1 or PHD2 in mononuclear cell apoptosis has been 

described thus far.  

It was surprising that PHD2, and to a lesser extent PHD1, expression could not be shown by 

immunohistochemistry in endothelial cells given the fact that others have previously demonstrated 

PHD2 expression in endothelial cells14, 15 although not specifically in intestinal endothelial cells. We 

therefore analysed the expression of both in primary colonic endothelial cells isolated from healthy 

controls. Western blot analysis revealed expression of all three isoforms with the highest expression 

seen for PHD3 in accordance with our initial immunohistochemical analysis (data not shown). To obtain 

additional evidence for a possible role of PHDs in endothelial cells we analysed the gene expression of 

previously reported endothelial dysfunction markers16 in biopsies collected from active IBD patients, 

IBD patients in clinical and endoscopic remission, patients with infectious colitis (as an inflammatory 

control) and healthy controls. Compared with the healthy tissue, a significant up-regulation of ICAM-

1, VCAM-1, MAdCAM-1, VWF and VEGFR-2 was identified in the inflamed biopsies of both patients 

with IBD and infectious colitis, whereas there were no significant expression changes in the biopsies 

collected from the IBD patients in remission (Figure 1A). All endothelial dysfunction markers exhibited 

a strong positive correlation with TNF, IL-8 and PHD1, but not with PHD2 and PHD3 (data not shown 

and Figure 1B). Taken together, these findings demonstrate that endothelial dysfunction is a hallmark 

of active inflammation and is correlated with PHD1 expression. 

 

2.1 Prolyl hydroxylases and experimental ulcerative colitis 

Our research group and others have demonstrated that pan-hydroyxlase inhibition attenuates the 

inflammatory burden in animal models for IBD. Due to the risk of unwanted side-effects associated 

with these inhibitors, investigators switched their research to the development and evaluation of 

alternative approaches that could provide therapeutic benefit without potential side-effects. Today, 

this way of thinking has resulted in the evaluation of controlled release formulations and isoform-

specific targeting. Pioneer in this field was the group by Tambuwala and colleagues who demonstrated 

the efficacy of DMOG-containing minispheres and Phd1-deletion during DSS-induced colitis11, 17. The 
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identified mechanism of action in the latter study was the preservation of epithelial barrier integrity 

through the reduction of epithelial apoptosis, which is similar to pan-hydroxylase inhibition. However, 

epithelial barrier disruption in UC is most likely a secondary phenomenon of an unresolved, 

exaggerated inflammatory response in the intestinal mucosa. Since the different PHD isoforms play an 

important role in both immune and endothelial cell functioning, PHD inhibition in these cells could 

therefore represent an additional cause of the preservation of barrier integrity and hence protection 

against colitis as well as epithelial PHD1 as postulated by the previous study. Therefore, we explored 

if isoform-specific targeting of PHDs in haematopoietic and endothelial cells exerts therapeutic activity 

during experimental UC. We demonstrated that deletion of Phd1, and not Phd2 or Phd3, in endothelial 

and haematopoietic cells decreases the susceptibility to experimental colitis. Next, we showed using 

bone marrow chimeras that haematopoietic Phd1-deficiency drives this protection which was in 

addition validated in cell-specific cre mice. By performing in vitro experiments with the main type of 

immune cells contributing to colitogenesis, we were able to further dissect that deletion of Phd1 in 

macrophages and, to a lesser extent, DCs creates an anti-inflammatory phenotype. Therefore, these 

two cell types are most likely the major contributors to the in vivo protection. Importantly, we 

demonstrated that haematopoietic Phd1-ablation also diminished the number of epithelial cell 

erosions in contrast to what Tambuwala and co-workers hypothesized to be an epithelial PHD1-

mediated phenomenon. Nevertheless, their statement may still hold in addition to our observed 

haematopoietic Phd1-mediated effect on the epithelium. Epithelial-specific deletion of Phd1 using 

villin:cre mice would provide a decisive answer to this issue. How exactly haematopoietic Phd1-

deficient macrophages and DCs preserve epithelial barrier integrity needs further investigation. 

However, their diminished expression of TNF and IL-1 will play a huge role since these cytokines are 

known to reduce the expression of pore-sealing tight junction proteins and alter their junctional 

localisation leading to increased epithelial permeability 18, 19. Besides effects on the epithelial barrier, 

endothelial chemokine expression was lower after stimulation with medium from LPS-treated Phd1-

deficient macrophages than from LPS-treated WT macrophages which in turn may be responsible for 

the reduced infiltration of inflammatory cells in the mucosa, but this hypothesis needs to be confirmed 

by additional studies. For instance, a co-culture model could be used in which endothelial cells are 

grown to a confluent monolayer in a transwell permeable support with below the membrane, LPS-CM 

from Phd1-defient macrophages. Next, monocytes are added to the medium at the apical side of the 

endothelial cells and migration towards the basolateral compartment is evaluated. Finally, we 

demonstrated that NFB is partially involved in the promotion of M2 polarization after Phd1-deletion. 

However, it remains speculative how NFB activation mediates the M2 switch although p50 NFB may 

be involved in this effect. Porta and colleagues demonstrated that LPS-tolerant macrophages have 
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increased levels of p50 which induces the expression of M2-associated genes, while concomitantly 

repressing M1 markers20.   

 

 

Figure 1. IBD patients exhibit a dysfunctional endothelial phenotype, which is correlated with the expression of PHD1. A) mRNA 

expression levels of ICAM-1, VCAM-1, MAdCAM-1, VWF and VEGFR-2 in colonic samples of the healthy controls, UC, CD and 

infectious colitis patients. ***p < 0.001. B) Illustrative correlation plots between VCAM-1 and PHD1, PHD2 and PHD3 in the 

colonic biopsies of healthy controls, UC, CD and infectious colitis patients. 

 

 

2 Future directions and perspectives 

In our initial explorative study, PHD1 came forward as the most promising isoform for therapeutic 

targeting in IBD due to its elevated expression. Subsequently, we confirmed its therapeutic potential 

by demonstrating that haematopoietic deletion of Phd1 protects mice from experimental colitis. 

Although the work performed is very exciting, a number of questions still remain that need to be 

addressed. 
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While we demonstrated in vitro that Phd1-deletion mainly effects the functioning of macrophages and 

DCs, confirmation in the in vivo setting is missing. Therefore, a logical sequel would be to evaluate the 

individual involvement of these Phd1-deficient immune cells in DSS-induced colitis. We have initiated 

this quest by investigating the effect of macrophage-specific and T cell specific deletion of Phd1 on the 

course of DSS-induced colitis. For that purpose, we crossed Phd1f/f mice with CD4:cre and LysM:cre 

mice to study the T cell and macrophage-specific effects respectively. In line with our in vitro 

experiment with Phd1-deficient T cells, we observed equal susceptibility between Phd1f/fCD4:cre and 

WT mice to DSS-induced colitis (Figure 2). Despite the facilitation towards M2 conversion and the 

diminished pro-inflammatory nature of Phd1-deficient macrophages, Phd1f/fLysM:cre mice 

unexpectedly exhibited no improved clinical parameters including weight loss compared with WT mice 

(Figure 2). Two main reasons may explain this lack of protection. First, it is possible that the anti-

inflammatory phenotype of the Phd1-deleted macrophages alone is not sufficient. To elicit an 

improved clinical outcome, combined targeting of DCs and macrophages might be the requisite which 

could be performed by using CD11c:cre mice. The concept of combined targeting has proven to be 

successful in tumorigenesis. In particular, Mamlouk and colleagues demonstrated that Phd2 needs to 

be ablated in both myeloid and T cells to impair tumor development, while individual targeting does 

not affect tumor growth21. The second reason might be that not Phd1-deficient macrophages, but in 

fact Phd1-deleted DCs drive the beneficial effects during this colitis model. This seems rather unlikely 

since these DCs only exhibit a diminished IL-1 release, while other pro-inflammatory cytokines remain 

unaltered in contrast to Phd1-deficient macrophages, but the possibility cannot be ruled out at this 

moment.  

 

 

Figure 2. Weight evolution of Phd1f/fCD4:cre, Phd1f/fLysM:cre and their corresponding WT littermate controls during DSS-

induced colitis. n≥9. NS: not significant. 

Although we have investigated the effect of Phd1-deletion in the main immune cells involved during 

the acute DSS-induced colitis model, we cannot decisively exclude a contribution of Phd1-deficient 

neutrophils. The latter play an important role during both the onset and the resolution of intestinal 

inflammation,22 but so far, a role for PHD1 in neutrophils is unknown. Walsmley and colleagues 
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reported that the protein expression of PHD3 in neutrophils is up-regulated after hypoxic treatment 

which promotes cell survival, while the expression levels of PHD1 and PHD2 remained unaltered. 

Nevertheless, this does not implicate that Phd1-deletion could not exert an attenuated pro-

inflammatory response in these cells similar to our observation in macrophages and DCs. Although we 

and others have noticed that LysM:cre mice also elicit deletion of a loxP-flanked gene in neutrophils, 

this knockout degree is less efficient than in macrophages and ranges around 50%. Therefore, DSS-

induced colitis in MRP-8:cre mice would be a good alternative to study the neutrophil-specific 

contribution of Phd1-deletion as they only show around 10% knockout in other myeloid cells23-25. 

Although our results imply that pan-hydroxylase inhibitors like DMOG most likely exert their 

therapeutic action through the inhibition of PHD1, it may still be possible that their inhibition of PHD2 

also has beneficial effects. Several lines of evidence are suggestive for a role of PHD2 during colitis. In 

particular, it has been demonstrated that DMOG induces the expression of HIF-1 in epithelial cells26 

and PHD2 is the key isoform that regulates HIF-1levels27. In addition, we demonstrated that PHD2 is 

positively correlated with an apoptosis-related gene and is located in epithelial cells. Also, one of the 

protective mechanisms of DMOG is its ability to reduce epithelial cell apoptosis and hence preserve 

barrier function26. Taken together, it would be interesting to investigate the effect of homozygous 

deletion of Phd2 in epithelial cells using villin:cre mice during experimental colitis. Besides epithelial 

cells, we also noticed PHD2 expression in mononuclear cells in the LP of human biopsies. Past 

publications generally made use of heterozygous PHD2 knockout mice to assess the effect of deletion 

on immune cell functioning. Although heterozygous PHD2 deletion is sufficient to promote M2 

polarization and concomitantly attenuate the M1 phenotype, this knockout degree may not always 

suffice to elicit an altered immune response or function. Thus far, it has been demonstrated that 

homozygous Phd2-deleted macrophages also exhibit an attenuated pro-inflammatory M1 phenotype 

and reduced migratory capacity. These data combined with the positive correlation with an apoptosis-

related gene might make it worth wild to explore how Phd2f/fLysM:cre mice respond during DSS-

induced colitis. 

To make sure the risk of unwanted side-effects is indeed reduced through deletion of PHD1, EPO levels 

in the serum need to be determined as a marker of erythrocytosis in addition to the potential risk of 

carcinogenesis and fibrosis. In the context of fibrosis, it has recently been reported that DMOG is able 

to suppress fibrogenesis in addition to its known anti-inflammatory action which does not require HIF-

1 activation in fibroblasts28. In this study, the effect of DMOG was studied on fibroblasts which is the 

most important effector cell type of fibrosis. However, TNF and IL-1 released by M1 macrophages 

may also promote fibrogenesis by promoting epithelial-mesenchymal transition, myofibroblast 
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activation through a TGF-1-mediated mechanism and promote myofibroblast proliferation29, 30. 

Concerning PHDs, Ikeda and colleagues demonstrated that Phd2f/fLysM:cre mice exhibit less 

cardiovascular fibrosis compared with WT mice which may be mediated by their attenuated pro-

inflammatory M1 phenotype, migration and ability to decrease fibrosis-associated genes such as 

Col1a2 and Tgfb31. In addition, we observed that Phd1-deletion also provokes the same anti-

inflammatory phenotype. Therefore, it would be interesting to determine if DMOG exerts this anti-

fibrotic effect through its inhibition of PHD1 or PHD2. The concern about carcinogenesis through HIF 

activation may be redundant in the case of Phd1-ablation since its silencing is not able to activate HIF 

levels in various different cells27. To confirm that this is also the case in Phd1-deleted macrophages and 

DCs, HIF-1 and HIF-2 levels need to be determined. However, NFB activation has also been shown 

to be constitutively expressed in various solid tumors including the colon and plays an active role in 

the development of colitis-associated cancer32. To evaluate the effect of haematopoietic Phd1-deletion 

on tumor development, endoscopic and/or histological examination of the colon in older mice (≥8 

months) could be performed. Alternatively, their susceptibility to develop azoxymethane /DSS-induced 

colitis-associated cancer could be compared with WT mice.  

To strengthen our current data about a therapeutic effect of haematopoietic Phd1-deletion in IBD in 

general, confirmation is required in other IBD models including chronic colitis such as chronic DSS-

induced colitis and ileitis models. Given the fact that PHD1 expression is increased in inflamed colonic 

biopsies from CD patients along with its anti-inflammatory effect after deletion in macrophages and 

DCs, we questioned whether Phd1-deletion could also provide therapeutic benefit in a model for CD-

like colitis such as TNBS-induced colitis. This model involves the intra-rectal administration of the 

hapten TNBS in combination with the mucosal barrier breaker ethanol to elicit distal colitis. TNBS is 

believed to haptenize colonic autologous or microbial proteins which makes them immunogenic to the 

host. This results in acute transmural inflammation with epithelial erosions, infiltration of neutrophils 

and macrophages and granuloma formation. However, TNBS-treated Phd1f/fTie2:cre mice exhibited 

similar weight loss, colon shortening and histological inflammation scores compared with TNBS-

treated WT mice (Figure 3). The reason for the lack of protection is not immediately clear given the 

fact that the acute TNBS model evokes a similar cytokine pattern as the acute DSS model33. However, 

despite the marked decrease in body weight and colon length, only 25% of the mice in both groups 

exhibited clear signs of inflammation after histological examination making it of course very difficult 

to detect differential effects. This is perhaps not unexpected since our mice are on a C57BL/6 

background, known to be quite resistant to TNBS-induced colitis,34 but which we accounted for by 

using a higher dose of TNBS. Therefore, optimization of the TNBS concentration or backcrossing onto 

the sensitive BALB/c mice may resolve this issue. 
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Figure 3. Haematopoietic and endothelial deletion of Phd1 does not protect against TNBS-induced colitis. Left: Weight 

evolution of WT and Phd1f/fTie2:cre during the course of TNBS. Middle and right: Colon length and histological inflammation 

score of WT and Phd1f/fTie2:cre at day 3 of TNBS-induced colitis. n≥7 . NS: not significant. 

 

Besides a mouse model for CD-like colitis, it would be interesting to know if haematopoietic Phd1-

deletion exerts a beneficial effect during CD-like ileitis which can be demonstrated by crossing them 

to TNF∆are mice. The latter are genetically modified mice that have a single allele deletion in the AU-

rich elements of the Tnf gene, stabilizing the Tnf transcript, leading to the overproduction of TNF. As 

such, these mice develop from 8 weeks onward chronic inflammatory arthritis and CD-like ileitis35. In 

a first set-up, we backcrossed Phd1f/fVav:cre with TNF∆are mice and followed up the weight of their off-

spring until week 17. No differences in body weight evolution can be observed between all groups 

(Figure 4). However, further analysis including histological examination, ileal and serum concentrations 

of pro-inflammatory cytokines still needs to be performed before conclusions about a potential effect 

can be drawn. In the meanwhile, breeding pairs (Phd1f/+Vav:cre+/- TNF∆are/WT x Phd1f/fVav:cre-/-) have 

been set up to obtain homozygous haematopoietic Phd1-deficient TNF∆are mice (Phd1f/fVav:cre+/- 

TNF∆are/WT) which will be compared with their Phd1-floxed TNF∆are counterparts (Phd1f/fVav:cre-/- 

TNF∆are/WT). 

 

Figure 4. Weight evolution of the first-generation offspring (n ≥ 10) of the breeding pair Phd1f/fVav:cre+/- x TNF∆are/WT starting 

from the age of 8 till 17 weeks after birth. 

A next important step in this research is the translation of the experimental data to human IBD. In a 

first attempt to demonstrate that our findings could also apply in the human context, we created 

PHD1-deficient THP-1XB. This is a human monocytic cell line that may be differentiated into 

macrophages following PMA stimulation. PHD1-deficiency was confirmed using qRT-PCR (data not 

shown). In accordance with the Phd1f/fTie2:cre BMDM, the LPS-stimulated shPHD1 THP-1XB cells 
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secreted substantially lower amounts of IL-1, IL-6, TNF and MCP-1 compared with the shScr control 

cells (Figure 5).  

 

Figure 5. Deletion of PHD1 in human macrophages impairs the LPS response. Concentrations of IL-1, IL-6, TNF and MCP-1 in 

the supernatant from the shScr control and shPHD1 THP1-XB cells following 100 ng/ml LPS-treatment. Data are represented 

as the means ± SEMs. *p < 0.05, **p < 0.01 and ***p < 0.001. 

Since only pan-hydroxylase inhibitors are available, the development of a specific PHD1 inhibitor is 

required for application in human IBD. If the development of an inhibitor with high selectivity for PHD1 

is not feasible, a PHD1 antisense oligonucleotide may represent a good alternative36. In this regard, an 

oral SMAD7 antisense oligonucleotide has been proven effective in a phase 2 study with active CD 

patients,37 while efficacy of ICAM-1 antisense was demonstrated for active UC patients38.  

In summary, this thesis highlights the importance of the oxygen-sensor PHD1 in the pathogenesis of 

IBD and provides fundamental new insights on how its targeting provides therapeutic benefit during 

experimental colitis (Figure 6). These findings underscore the potential of PHD1 as novel therapeutic 

target for IBD patients. 



147 
 

 

Figure 6. Overview on how PHD1 targeting confers protection during intestinal inflammation. Initially, it was reported that 
epithelial deletion of Phd1 decreases apoptosis. We further expanded these findings by showing that haematopoietic Phd1-
deficiency is able to reduce endothelial dysfunction, immune cell infiltration in the colonic mucosa and preserve epithelial 
integrity during experimental colitis. These effects are probably mediated by Phd1-deleted macrophages which polarize 
towards the M2 phenotype and concomitantly exhibit an attenuated pro-inflammatory response. Their diminished release of 
pro-inflammatory cytokines reduces 1) endothelial chemokine release which may account for the reduced immune cell 
infiltration and 2) may be responsible for the preservation of epithelial barrier integrity. In addition, the reduced secretion of 

IL-1 by Phd1-deficient DCs may also contribute to the latter effect. TJ: tight junction; IL: interleukin; TNF: tumor necrosis 
factor; VCAM-1: vascular cell adhesion molecule 1; ICAM-1: intercellular cell adhesion molecule 1; MAdCAM-1: mucosal 
addressin cell adhesion molecule 1; VWF: von Willebrand factor; VEGFR-2: vascular endothelial growth factor 2; MCP-1: 
monocyte chemoattractant protein 1; CXCL2: C-X-C motif ligand 2. 
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“Many of life’s failures are people who did not realize how close they were to success when they 

gave up.”  

Thomas A. Edison 
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DANKWOORD 

Hallelujah, I made it! Na jarenlang experimenteren met muizen en cellen, artikels en revisies schrijven, 

ben ik eindelijk aan het slot van mijn doctoraat gekomen. Dit was uiteraard niet mogelijk geweest 

zonder de hulp, steun en het vertrouwen van enkele heel bijzondere mensen: 

Allereerst wil ik mijn promotoren prof. Martine De Vos, Debby en Pieter bijzonder bedanken om 5 jaar 

geleden dit doctoraatsproject aan mij toe te vertrouwen. Bedankt voor jullie kritische input tijdens de 

labovergaderingen, jullie opmerkingen/suggesties bij de artikels en bij dit proefschrift. Debby, merci 

om de dagdagelijkse begeleiding op jou te nemen en steeds tijd vrij te maken voor praktische vragen 

en overleg. Pieter, woorden schieten te kort om jou te bedanken. Ook al stond je niet bij ons in het 

labo, je was maar een mailtje of (skype)telefoontje verwijderd om mijn experimentele problemen te 

aanhoren en feedback te geven, zelfs toen je in Canada zat. Bedankt voor de steun, de aanmoedigingen 

en je immer enthousiasme! Tot slot wil ik jullie ook alle drie enorm bedanken om in mij te geloven en 

me de kans te geven het onderzoek verder te zetten. Ik kijk uit naar de toekomst! 

Members of the jury, thank you for accepting the invitation to be part of my examination committee 

and for your critical review of this dissertation. Ben, jou wil ik toch nog even in het bijzonder bedanken 

voor het aanleveren van de verschillende transgene muizen en je cruciale wetenschappelijke inbreng!  

Prof. Elewaut, u wil ik ook graag bedanken om tijd vrij te maken om mijn laatste artikel door te nemen 

en uw wel geapprecieerde input. Karlijn, merci voor de leuke babbels en de CD11c:cre muisjes! 

Katelijne, ik duim voor een vlotte afronding van je doctoraat en wens je heel veel succes voor de 

verdedigingen toe! 

Prof. Bart Lambrecht, prof. Sophie Janssens en Simon, jullie wetenschappelijke input bij mijn artikel en 

rebuttal heb ik erg gewaardeerd. Merci! 

Melissa, heel erg bedankt voor de hulp en uitleg bij het kleuren van de verschillende T celpopulaties 

uit darm en milt alsook voor je tijd om de analyse met de flowcytometer uit te voeren. 

Verder wil ik ons toegewijd laborantenteam enorm bedanken voor alle praktische hulp de voorbije 

jaren! Kim, wat jammer dat je weg bent. Maar ik begrijp dat studeren en bij ons werken en de brouwerij 

managen en een huishouden draaiende houden wat teveel van het goede was.  Merci om mij 

wegwijs te maken in het labo, mij alles aan te leren/uit te leggen en steeds met de glimlach mee te 

helpen. Hilde, ook jij heel erg bedankt om me bij te staan wanneer ik er om vroeg. In het bijzonder ook 

voor de klonering die je op jou nam, het wegen van mijn TNF∆are muisjes, de muissacrificaties en de 

hulp bij de verdere analyses. Petra, ik weet niet waar te beginnen om jou te bedanken. Jij was en bent 
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mijn eerste aanspreekpunt als ik nog maar eens wat gepland had: “Petra, we gaan nog eens beenmerg 

isoleren!” :D Ook al ben je soms wat onzeker, dat is echt nergens voor nodig. Jij kan echt alles.  Enorm 

bedankt voor de talloze beenmergisolaties, het verspenen en genotyperen van de muisjes, je goede 

zorgen voor de celletjes, de assistentie bij de staalname van de muizen en mijn laatste 

macrofaagexperiment.  Griet, ik zal nooit vergeten dat je tijdens je stage speciaal voor mij in het 

weekend bent afgekomen om me mee te helpen met de sacrificatie van muizen. Ook al ben je dan 

even weggeweest, ik ben blij dat je naar ons bent teruggekeerd. Net zoals ik je leerde kennen, sta je 

nu ook steeds klaar om bij te springen waar en wanneer nodig. Supermerci! 

Vervolgens een speciaal woordje van dank voor mijn lieve doctoraatscollega’s Sarah, Lien en Tom. Jullie 

waren de beste reisgenoten die ik me kon wensen tijdens mijn doctoraatsavontuur. Ook al zaten we 

nog niet van in het begin aan ons eilandje in MRB2, we deelden al vroeger ons experimentele leed. Ik 

wist dat ik steeds op elk van jullie kon terugvallen voor een luisterend oor, een nuchtere tweede opinie 

en hulp bij een experiment of analyse. Duizendmaal dank! Sarah, wat een parcours hebben we samen 

afgelegd! Samen op cursus, samen op congres, nog net geen experimenten samen gedaan hoewel ik 

vaak jouw wetenschappelijke input in mijn achterhoofd mee nam.  Lien, mijn vroegere treinbuddy, 

bijna dorpsgenoot en super lieve, behulpzame collega. Ook voor jou is het einde in zicht. Ik duim voor 

een vlotte publieke verdediging van je doctoraat en dan samen met Sarah op zoek naar een man he! 

;) Tom, ik heb een doktersvraagje… Nee hoor, deze keer niet! ;) Jij wordt ongetwijfeld een zeer goede 

IBD specialist. Nu enkel nog dat fibrose artikel in Gastro aanvaard krijgen he! Je presentatie tijdens de 

plenaire sessie van de Belgian week heb je in ieder geval toch mooi kunnen volpraten. ;) Cara en Simon, 

de groentjes in ons midden, ik ben blij dat jullie de groep zijn komen vervoegen. Hoewel jullie mijn 

experimentele frustraties niet van in den beginne hebben meegemaakt, hoop ik dat de toekomst daar 

verandering in zal brengen…  

Elien, we hebben jou moeten achterlaten in K12.  Gelukkig zien we jou af en toe toch nog in MRB2 

verschijnen. Merci om de databanken zo goed bij te houden en meteen erin te duiken als ik een vraag 

had. 

Daarnaast wil ik mijn hepato collega’s Lindsey, Eliene, Annelies, Sarah, Sander, Agnes bedanken voor 

de leuke praatjes, drinks en uitstapjes. Lindsey, geen TGV die jou kan bijhouden. Chapeau hoe jij erin 

slaagt zelf experimenten te doen, bijspringt bij experimenten, thesis-en doctoraatstudenten begeleidt, 

publicaties schrijft, funding vergaart en toch nog de tijd vindt om eens te checken hoe het gaat.  

Merci voor de introductie in het muizenwereldje, het aanleren van de muismodellen en je 

hulp/suggesties bij de set-up van experimenten toen we nog samen zaten. Eliene en Annelies, pas na 

mij gestart en al eerder afgelegd verdorie! ;) Het is jullie uiteraard van harte gegund!  Heel veel succes 
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met de zoektocht naar ander werk en jullie verdere toekomstplannen. Sander, wat hebben we toch 

samen gevloekt op die endotheelcelisolatie! :D Ik begin er niet meer aan, ga jij je gang maar. ;) Jammer 

dat de PHD muizen voor jou nog niet veel hebben opgeleverd. Niet opgeven, er komt zeker wel iets 

nieuws uit de bus. Sarah, met al 2 plenaire praatjes op de Belgian week, andere presentaties in het 

buitenland en al gepubliceerde artikels nog voor de start van je doctoraat, komt het zeker wel goed bij 

jou!  Sanne en Astrid, the newbies op de hepato, ik wens jullie een vlotte start en uiteraard veel 

publicaties toe! 

Natacha, Liesbeth, Evi, Yves-Paul, Anja, Iris, Stephanie, Femke, Mo, Bram, Sara, Ellen, Julien, Annette 

en Hugo, ook al hebben jullie ons intussen verlaten, ik ben jullie nog niet vergeten. Ik hoop dat jullie 

het goed maken en jullie je draai hebben gevonden in jullie (werk)omgeving. Ik wens jullie verder het 

allerbeste toe! 

Sara, super merci dat ik bij jou terecht kon voor al die intraveneuze injecties!! Ik zou niet weten wat ik 

zonder jou gedaan zou hebben, wellicht zat ik daar nu nog te oefenen. ;) Heel veel succes in je nieuwe 

job! 

Prof. Van Hove en Benedicte, bedankt voor de goede samenwerking en alle hulp bij het scannen van 

de muizen en de analyses achteraf! 

Nog een speciaal woordje van dank gaat uit naar de mensen van het animalarium. Ingrid, Marit, Lynn, 

Evelien, Chantal, Deborah, Lut, Jolien, Johan, Ilke, Lien en Yet. Superbedankt om dag in dag uit klaar te 

staan voor onze muisjes en zo goed zorg voor ze te dragen! 

Tot slot ben ik beland bij mijn vrienden en familie. Daphné, Ineke, Janna, Joeri, Evelien, Mieke, Fien, 

Kim, Jorre, Joris en Melanie, bedankt voor de uitstapjes, gezellige avonden en namiddagen die ervoor 

gezorgd hebben dat ik mijn doctoraatsfrustraties even kon vergeten! Patrick en Ann, merci voor het 

bijspringen in de tuin, de opkuis van de chalet en de maaltijden op dinsdag en donderdag!  Ook mijn 

ouders wil ik bedanken voor alle kansen die ik van jullie heb gekregen, jullie luisterend oor, jullie 

jarenlange steun en aanmoedigingen tijdens mijn studieloopbaan en jullie onvoorwaardelijke liefde. 

Suuske en Woutertje, mijn 2 kleine lieve caviaatjes, gelukkig waren jullie er ook nog om met jullie 

gepiep mij bij tijd en stond van achter mijn pc’tje te halen. 

Liefie, mijn rots in de branding en safe haven. Jij hebt mijn ogen geopend op zoveel verschillende 

manieren en mij duidelijk gemaakt dat het uiteindelijk allemaal goed komt wanneer ik nog maar eens 

aan het klagen was over al dat schrijven en lezen. :s Awel kijk, het is nog waar ook. :D Merci voor je 

steun, liefde en om mijn experimentele tegenslagen aan te horen. Nu zeg ik echt voor de 

ALLERLAATSTE keer: “het is helemaal af!” :p 




