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Abstract

We investigate the theoretical and numerical determination of a space-dependent vector source (load) in an
anisotropic thermoelastic system of type-III form the knowledge of an additional final time measurement.
The uniqueness of a solution to this inverse source problem is proved for various assumptions made on
the convolution kernel. A convergent and stable iterative algorithm is proposed for the recovery of the
unknown vector source in the linear case and, at the same time, a stopping criterion is also given. Three
numerical experiments are considered to validate the properties of the proposed iterative procedure and
the regularizing/stabilizing character of the corresponding stopping criterion. The numerical experiments
carried out showed that it exists a certain limitation of the method with respect to the recovery of non-
symmetric sources.
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1. Introduction1

In numerous practical applications related to nuclear power plants, engines and electronic devices, struc-2

tures of aircraft and propulsion systems, gas and steam turbines, or in chemical reactors, the effect of3

thermo-mechanical loads acting on the solid body of interest must be studied and analyzed. In such sit-4

uations, thermal stresses may arise in a heated body because of a non-uniform temperature distribution,5

external constraints, or a combination of these conditions. Also, the cooling and heating of a solid may be6

associated with a change of volume and, consequently, the temperature distribution in the body is influenced7

by the diagonal components of the strain tensor [1]. Green and Naghdi [2] described the heat flow in solid8

bodies by employing a general entropy balance. According to these authors, the characterization of material9

response for such thermal phenomena is referred to as type-I, type-II and type-III thermoelasticity. After lin-10

earization, the type-I thermoelasticity actually coincides with the classical heat conduction theory (Fourier’s11

law). This theory has the shortcoming that a thermal disturbance at one point of the body is instantly felt12
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everywhere (i.e. infinite speed of propagation). This is physically not acceptable for materials with memory13

and is overcome by taking into account memory effects in the models for type-II and type-III thermoelas-14

ticity, with the mention that the heat conduction is independent of the present values of the temperature15

gradient in type-II thermoelasticity as compared to type-III thermoelasticity.16

Direct problems in thermoelasticity have been thoroughly investigated in the literature and are, in gen-17

eral, characterized by the knowledge of (i) the governing partial differential equations; (ii) the geometry of18

the domain of interest; (iii) the material properties; (iv) the boundary and/or initial conditions; and (v) the19

magnitudes and locations of any possible sources of stress, deformation, or heat inside or on the boundary20

of the domain. If at least one of the aforementioned conditions is entirely or partially unknown, then one21

deals with a so-called inverse problem associated with thermoelastic materials. It is well-known that most of22

these inverse problems are ill-posed in the sense of Hadamard [3], meaning that small errors in the boundary23

and/or initial data may significantly amplify the errors in the solution. Consequently, inverse problems in24

solid mechanics are more difficult to solve than direct problems.25

The inverse problems in thermoelasticity addressed so far in the literature are mainly related to boundary26

data reconstruction, shape optimization problems, detection of flaws (e.g. inclusions, cavities and cracks),27

identification of material parameters and inverse source or load reconstruction problems, see e.g. [4–16].28

Dennis et al. [4, 5] proposed a regularized finite element method formulation for the determination of un-29

known thermal and elasticity boundary conditions in 2D and 3D steady problems, respectively. The recon-30

struction of the missing thermal and mechanical fields on an inaccessible part of the boundary for linear31

isotropic thermoelastic materials from over-prescribed noisy data on the remaining accessible boundary was32

been studied in two- and three-dimensions by Tanaka et al. [17], Marin and Karageorghis [6], Karageorghis33

et al. [7] and Marin et al. [8]. Yu [9] determined the thermomechanical parameters for the quasistatic34

thermoelasticity system with over-specified data by employing a minimization functional, whilst Dennis et35

al. [10] investigated the inverse detection of thermoelasticity coefficients in 2D plates. Nedin et. al. [11] used36

the operator equations in inverted transforms and an iterative procedure for reconstructing the thermoelastic37

coefficients of an inhomogeneous rod.38

Although a vast majority of inverse source (load reconstruction) problems in solid mechanics have been39

investigated for either the thermal or the mechanical process, it should be mentioned that several authors have40

studied such inverse problems for thermoelastic processes in recent years. Bellassoued and Yamamoto [12]41

investigated an inverse heat source problem for type-I thermoelasticity without accounting for memory ef-42

fects. On using a Carleman estimate, these authors prove a Hölder stability for the inverse source problem,43

which implies the uniqueness of the inverse source problem. An inverse source problem for type-II ther-44

moelasticity that consists of the determination of a space-dependent vector source (load), was investigated45

by Wu and Liu [13]. Again, based on a Carleman estimate, a Hölder stability for the inverse source prob-46

lem was obtained from a displacement measurement. However, we note that no numerical schemes were47

provided to recover the unknown sources in [12, 13]. Van Bockstal and Slodička [14] proposed a stable48

iterative algorithm to recover a space-dependent vector load (source) for all types of thermoelasticity from49

the knowledge of an additional measurement at the final time. The uniqueness and stability of a spatially50

varying thermal kernel function in a thermoelastic system of type-III was investigated by Wu et al. [15] by51

using a Carleman estimate. Recently, Van Bockstal and Slodička [16] addressed the theoretical and numer-52

ical determination of a time-dependent heat source in a thermoelastic system of type-III from an additional53

global measurement.54

Encouraged by the promising results obtained by Van Bockstal and Slodička [14] for the reconstruc-55

tion of a space-dependent vector load (source) in an isotropic thermoelastic system of types I-III from the56

knowledge of an additional measurement at the final time, in this study we investigate the same inverse57
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source problem but in the framework of an anisotropic thermoelastic system of type-III. The paper is orga-58

nized as follows. In Section 2 we present the inverse source problem under investigation together with the59

notations used herein. For various assumptions on the convolution kernel, the uniqueness of a solution to60

the inverse problem addressed herein is established Section 3. A convergent and stable iterative algorithm61

for the recovery of the unknown vector source in the linear case and a regularizing stopping criterion are62

proposed in Section 4. Three numerical examples are considered and thoroughly investigated in Section 5.63

Finally, some concluding remarks and ideas for future work are presented in Section 6.64

2. Mathematical formulation of the problem65

Consider an anisotropic homogeneous thermoelastic body occupying an open and bounded domain Ω ⊂66

Rd with a Lipschitz continuous boundary Γ, where d ∈ {1, 2, 3} is the dimension of the space where the67

problem is posed. Let QT = Ω × (0, T ) and ΣT = Γ × (0, T ), where T > 0 is a given final time. The68

convolution product of a kernel K and a function θ is denoted by69

(K ∗ θ) (x, t) :=

∫ t

0
K(t− s)θ(x, s)ds, (x, t) ∈ QT .

The divergence of a continuously differentiable second-order tensor field A is, by definition, the first-order70

tensor field given by71

divA =
[
∂jA1j , ∂jA2j , . . . , ∂jAdj

]T ∈ Rd,

where ∂j := ∂/∂xj , 1 ≤ j ≤ d, and Einstein’s notation, i.e. summation of the repeated indices, is used in72

the following. Moreover, the scalar product of two second-order tensor fields A and B is denoted by73

A : B = AijBij ∈ R.

In the sequel, the following anisotropic thermoelastic system (of type-III), describing both the elastic74

and the thermal behaviours in Ω, is considered75 
%(x)∂ttu(x, t) + g (∂tu(x, t)) + Leu(x, t) + div(B(x)θ(x, t)) = p(x) + r(x, t), (x, t) ∈ QT ,
%(x)Cs(x)∂tθ(x, t)−∇ · (K(x)∇θ(x, t))− (K ∗∆θ)(x, t) + T0B(x) : ∇∂tu(x, t) = h(x, t), (x, t) ∈ QT ,
u(x, t) = 0, (x, t) ∈ ΣT ,

θ(x, t) = 0, (x, t) ∈ ΣT ,

(1)

together with the initial conditions76

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), θ(x, 0) = θ0(x), x ∈ Ω. (2)

Here, the vector source p (load vector) is assumed to be unknown and depend solely on the space vari-77

able, whilst both the vector source r and the heat source h are assumed to be known. Furthermore,78

u = (u1, . . . , ud)
T and θ denote the displacement and the temperature difference from the reference value79

T0 > 0 (in Kelvin), respectively, of the thermoelastic material at point x and time t, with the mention that80

the reference temperature corresponds to the undeformed and unstressed state of the material.81

The goal of this paper is to determine the spatial vector function p(x) from the knowledge of an addi-82

tional measurement, more specifically, the condition of final over-determination:83

uT (x) := u(x, T ) = ξT (x), x ∈ Ω. (3)

In the sequel, the following assumptions are made:84
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(a) The mass density ρ and the specific heat Cs of the material are bounded, i.e.85

∃ %1 ≥ %0 > 0 s.t. %0 6 %(x) 6 %1, a.e. in Ω

and86

∃ c1 ≥ c0 > 0 s.t. c0 6 Cs(x) 6 c1, a.e. in Ω.

(b) Small displacements are assumed, i.e. the strain tensor ε =
(
εij
)

1≤i,j≤d is defined by the kinematic87

relations88

εij (u(x, t)) =
1

2
[∂jui(x, t) + ∂iuj(x, t)] , 1 ≤ i, j ≤ d.

(c) The stress tensor σ =
(
σij
)

1≤i,j≤d is related to the strain tensor ε =
(
εij
)

1≤i,j≤d by a Hooke’s-type89

constitutive law, i.e.90

σij(x, t) = Cijkl(x)εkl(x, t), 1 6 i, j, k, l 6 d,

where the components of the fourth-order elasticity tensor Cijkl, 1 ≤ i, j, k, l ≤ d, satisfy the following91

conditions [18]:92

(i) Cijkl ∈ L∞(Ω), i.e. ∃M > 0 s.t. max
16i,j,k,l6d

‖Cijkl‖L∞(Ω) 6M ;93

(ii) Cijkl(x) = Cklij(x) = Cjikl(x) a.e in Ω, 1 6 i, j, k, l 6 d;94

(iii) ∃m > 0 s.t. Cijkl(x)τ ijτ kl > mτ ijτ ij , a.e. in Ω, ∀τ ∈ Rd×d with τ ij = τ ji.95

Define96

a : H1
0(Ω)×H1

0(Ω)→ R, a(u,v) =

∫
Ω
Cijkl(x)∂luk(x)∂jvi(x) dx.

Then a is a symmetric, continuous and H1
0(Ω)−elliptic bilinear form, i.e.97

a(u,v) = a(v,u), ∀u,v ∈ H1
0(Ω),

|a(u,v)| 6M ‖u‖H1
0(Ω) ‖v‖H1

0(Ω) , ∀u,v ∈ H1
0(Ω),

a(u,u) > m ‖u‖2H1
0(Ω) , ∀u ∈ H1

0(Ω).

If 〈·, ·〉 denotes the duality pairing on H1
0(Ω)∗ ×H1

0(Ω), then the bilinear form a can be used to define98

the elasticity operator Le : H1
0(Ω)→ H1

0(Ω)∗ by99

〈Leu,v〉 = a(u,v), ∀u,v ∈ H1
0(Ω).

Formally, the operator Le is defined by100

(Leu)i = −(Cijkluk,l),j = −(divσ)i, 1 ≤ i ≤ d.

In view of the properties of a, the operator Le is linear, continuous and H1
0(Ω)−elliptic. Moreover, the101

following important relationship holds102

∂t (Leu,u) = ∂ta(u,u) = a(∂tu,u) + a(u, ∂tu) = 2a(u, ∂tu) = 2 (Leu, ∂tu) , (4)

where (·, ·) denotes the L2(Ω) inner product;103
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(d) The thermal conductivity tensor K(x) = (Kij(x))1≤i,j≤d is symmetric and positive definite, i.e.104

∃ k0 > 0 s.t. Kij(x)ξiξj > k0 |ξ|2 , a.e. in Ω, ∀ξ ∈ Rd.

Moreover, K ∈ L∞(Ω)d×d, i.e.105

∃ k1 > 0 s.t. max
16i,j6d

‖Kij‖L∞(Ω) 6 k1;

(e) The thermoelasticity tensor B(x) = (bij(x))1≤i,j≤d belongs to L∞(Ω)d×d, i.e.106

∃ B1 > 0 s.t. max
16i,j6d

‖bij‖L∞(Ω) 6 B1.

The thermoelasticity tensor is symmetric, i.e. B(x) = BT(x). Moreover, on assuming

divB = 0,

then107

div(Bθ) = θ divB + B∇θ = B∇θ, (5)

and108

div(B∂tu) = B : ∇∂tu + ∂tu · divB = B : ∇∂tu. (6)

(f) The continuous nonlinear damping term g : Rd 7→ Rd is strictly monotonically increasing, i.e.109

(g(s1)− g(s2)) · (s1 − s2) > 0, ∀s1, s2 ∈ Rd

and110

(g(s1)− g(s2)) · (s1 − s2) = 0⇒ s1 = s2.

For instance, g(x) = a |x|α x, with a > 0, is strictly monotone for α > 0.111

(g) Various assumptions on the convolution kernel K will be considered later.112

Remark 2.1 (Other notations). We denote by (·, ·) the standard inner product in L2(Ω) and by ‖·‖ its
induced norm. Let X be an abstract Banach space endowed with the norm ‖·‖X . Assume that k ∈ N∪{0}.
The set of k-times continuously differentiable functions w : [0, T ]→ X equipped with the usual norm

k∑
j=0

max
t∈[0,T ]

‖w(j)(t)‖X

is denoted by Ck ([0, T ], X). The space Lp ((0, T ), X) is endowed with the norm
(∫ T

0 ‖·‖
p
X

) 1
p with p > 1.113

The symbol X∗ stands for the dual space of X . Finally, C, ε and Cε denote generic positive constants114

depending only on a priori known quantities, where ε is small and Cε = C
(
ε−1
)

is large.115
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3. Uniqueness results116

Using Green’s formulae (5) and (6), the following coupled variational formulation for (1) is obtained:117

Given r : (0, T ] → L2(Ω) in L2
(
(0, T ),L2(Ω)

)
, h : (0, T ] → L2(Ω) in L2

(
(0, T ),L2(Ω)

)
, u0(x) ∈118

H1(Ω), u1(x) ∈ L2(Ω), θ0 ∈ H1(Ω) and ξT ∈ L2(Ω), find (u(t), θ(t), p) ∈ H1
0(Ω) × H1

0(Ω) × L2(Ω),119

with ∂tu(t) ∈ L2(Ω), ∂ttu(t) ∈ H1
0(Ω)∗ and ∂tθ(t) ∈ H1

0(Ω)∗, such that120

(%∂ttu(t),ϕ) + (g (∂tu(t)) ,ϕ) + (Leu(t),ϕ) + (B∇θ(t),ϕ) = (p + r(t),ϕ) (7)

(%Cs∂tθ(t), ψ) + (K∇θ(t),∇ψ) + ((K ∗ ∇θ)(t),∇ψ)− T0 (B∂tu(t),∇ψ) = (h(t), ψ) (8)

for all ϕ ∈ H1
0(Ω) and ψ ∈ H1

0(Ω) and a.a. t ∈ [0, T ].121

The space-dependent measurement (3) ensures that the inverse problem has a unique solution. This is122

stated in the following three theorems, wherein various assumptions on the convolution kernel K are made.123

Theorem 3.1 (Uniqueness for a singular and positive definite convolution kernel). Suppose that the twice124

differentiable function K : (0, T ]→ R satisfies125

K ′(t) 6≡ 0 and (−1)jK(j)(t) > 0, t > 0, j = 0, 1, 2,

i.e. K is strongly positive definite [19, Corollary 7.2.1], which is equivalent with the existence of a positive
constant C0 independent of T such that [19, Lemma 7.2.2]-[20, 21]∫ T

0
φ(t)(k ∗ φ)(t) dt > C0

∫ T

0
(k ∗ φ)2 (t) dt, ∀T > 0,∀φ ∈ L1

loc(0, T ).

Then, there exists at most one p ∈ L2(Ω) such that problem (1) and condition (3) hold.126

Proof. A classical variational approach is used to establish the uniqueness of solution. The crucial points in127

the proof are the integration by parts formulae128 ∫ T

0
(Leu(t), ∂tu(t)) dt

(4)
=

1

2
(Leu(T ),u(T ))− 1

2
(Leu(0),u(0)) (9)

and129 ∫ T

0
p(x) · ∂tu(x, t) dt = p(x) · u(x, T )− p(x) · u(x, 0). (10)

Suppose that two solutions (u1, θ1,p1) and (u2, θ2,p2) to (1)–(3) exist. Subtract, equation by equation,130

the variational formulation (7)–(8) corresponding to solution (u2, θ2,p2) from that one corresponding to131

solution (u1, θ1,p1). Set u = u1 − u2, p = p1 − p2 and θ = θ1 − θ2. Then u(x, 0) = 0, u(x, T ) = 0,132

∂tu(x, 0) = 0 and θ(x, 0) = 0. This implies that the integrals in (9) and (10) are equal to zero. We obtain133

(%∂ttu(t),ϕ) + (g (∂tu1(t))− g (∂tu2(t)) ,ϕ) + (Leu(t),ϕ) + (B∇θ(t),ϕ) = (p,ϕ) (11)

and134

(%Cs∂tθ(t), ψ) + (K∇θ(t),∇ψ) + ((K ∗ ∇θ)(t),∇ψ)− (T0B∂tu(t),∇ψ) = 0, (12)

for all ϕ ∈ H1
0(Ω) and ψ ∈ H1

0(Ω). First, we prove that u = 0 and θ = 0 and then show that p = 0.135
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In the first part of the proof, we want to eliminate p. This can be done by setting ϕ = ∂tu(t) in (11)
and integrating in time over (0, T ). Using (9) and (10), we obtain that equation (11) reduces to∥∥√%∂tu(T )

∥∥2

2
+

∫ T

0
(g (∂tu1(t))− g (∂tu2(t)) , ∂tu1(t)− ∂tu2(t)) dt

+

∫ T

0
(B∇θ(t), ∂tu(t)) dt = 0 (13)

since u(x, 0) = u(x, T ) = ∂tu(x, 0) = 0. Then, taking ψ =
θ(t)

T0
in (12) and applying Green’s theorem,

one obtains∥∥√%Csθ(T )
∥∥2

2T0
+

1

T0

∫ T

0
(K∇θ(t),∇θ(t)) dt+

1

T0

∫ T

0
((K ∗ ∇θ)(t),∇θ(t)) dt

−
∫ T

0
(B∂tu(t),∇θ(t)) dt = 0 (14)

since θ(x, 0) = 0. Moreover, the symmetry of B implies that136 ∫ T

0
(B∇θ(t), ∂tu(t)) dt =

∫ T

0
(∇θ(t),B∂tu(t)) dt.

By adding (13) and (14) and, at the same time, accounting for the relation above, it follows that the coupling137

terms are cancelled out, i.e.138 ∥∥√%∂tu(T )
∥∥2

2
+

∫ T

0
(g (∂tu1(t))− g (∂tu2(t)) , ∂tu1(t)− ∂tu2(t)) dt

+

∥∥√%Csθ(T )
∥∥2

2T0
+

1

T0

∫ T

0
(K∇θ(t),∇θ(t)) dt+

1

T0

∫ T

0
((K ∗ ∇θ)(t),∇θ(t)) dt = 0.

(15)

The positive semidefiniteness of K and the positive definiteness of K imply that139 ∫ T

0
((K ∗ ∇θ)(t),∇θ(t)) dt > 0 and

∫ T

0
(K∇θ(t),∇θ(t)) dt > 0,

respectively. Thus from (15) it follows that140 ∫ T

0
(g (∂tu1(t))− g (∂tu2(t)) , ∂tu1(t)− ∂tu2(t)) dt = 0.

Here, we can also see the reason why the damping term is necessary. Without this term, one would have141

no guarantee that u = 0 or θ = 0. Employing the fact that the vector field g is componentwise strictly142

monotonically increasing, we obtain that ∂tu1 = ∂tu2 or ∂tu = 0, i.e. u is constant in time. Therefore, it143

follows that144

u(x, 0) = 0⇒ u(x, t) = 0 for a.a. (x, t) ∈ QT
and this implies that equation (12) reduces to145

(%Cs∂tθ(t), ψ) + (K∇θ(t),∇ψ) + ((K ∗ ∇θ)(t),∇ψ) = 0.
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Taking ψ = θ(t) in the relation above and integrating it with respect to time over (0, η) ⊂ (0, T ) yields146

θ = 0 a.e. in QT .

Finally, substituting u = 0 and θ = 0 in (11) gives147

(p,ϕ) = 0, ∀ϕ ∈ H1
0(Ω),

which implies that p = 0 in L2(Ω).148

Remark 3.1. An example for the convolution kernelK is given by K(t) = t−α, t ∈ (0, T ], with 0 < α < 1.149

Another example that fits in this setting is K(t) = exp(−t), t ∈ [0, T ].150

Theorem 3.2 (Uniqueness for K ∈ L1(0, T )). Suppose that151

K ∈ L1(0, T ) s.t.
∫ T

0
|K(t)| dt 6 k0.

Then, there exists at most one p ∈ L2(Ω) such that problem (1) and condition (3) hold.152

Proof. The proof follows the ideas of Theorem 3.1. We only point out the differences.153

Analogous to Theorem 3.1, one arrives at relation (15). The positive definiteness of K implies that154 ∥∥√%∂tu(T )
∥∥2

2
+

∫ T

0
(g (∂tu1(t))− g (∂tu2(t)) , ∂tu1(t)− ∂tu2(t)) dt

+

∥∥√%Csθ(T )
∥∥2

2T0
+
k0

T0

∫ T

0
‖∇θ(t)‖2 dt 6

∣∣∣∣ 1

T0

∫ T

0
((K ∗ ∇θ)(t),∇θ(t)) dt

∣∣∣∣ .
(16)

We further use Young’s inequality for convolutions in this proof, namely155

‖f ∗ g‖r 6 ‖f‖p ‖g‖q ,
1

p
+

1

q
=

1

r
+ 1, 1 6 p, q, r 6∞. (17)

By applying Young’s inequality (17) to the right-hand side of relation (16), one obtains156 ∣∣∣∣∫ T

0
((K ∗ ∇θ)(t),∇θ(t)) dt

∣∣∣∣ =

∣∣∣∣∫
Ω

∫ T

0
(K ∗ ∇θ) (x, t)∇θ(x, t) dtdx

∣∣∣∣
6
∫

Ω

∣∣∣∣∫ T

0
(K ∗ ∇θ) (x, t)∇θ(x, t) dt

∣∣∣∣ dx
6
∫

Ω

√∫ T

0
(K ∗ ∇θ)2 (x, t) dt

√∫ T

0
∇θ(x, t)2 dt dx

(17)
6
∫

Ω

(∫ T

0
|K(t)| dt

)√∫ T

0
∇θ(x, t)2 dt

√∫ T

0
∇θ(x, t)2 dt dx

6

(∫ T

0
|K(t)| dt

)∫ T

0
‖∇θ(t)‖2 dt,

and hence equation (16) reduces to157 ∫ T

0
(g (∂tu1(t))− g (∂tu2(t)) , ∂tu1(t)− ∂tu2(t)) dt = 0.

Therefore, u = 0 in L2(Ω). Then, it follows that θ = 0 in L2(Ω) and p = 0 in L2(Ω).158

159
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Theorem 3.3 (Uniqueness for a bounded convolution kernel). Suppose that160

∃ C > 0 s.t. max
t∈[0,T ]

|K(t)| 6 C.

Then, there exists at most p ∈ L2(Ω) such that problem (1) and condition (3) hold.161

Proof. The proof follows again the same lines of those for Theorems 3.1 and 3.2 and, analogously, one162

arrives at (16). By using Young’s and Hölder’s inequalities, the term in the right-hand side of equation (16)163

can be estimated by164 ∣∣∣∣∫ T

0

(∫ t

0
K(t− s)∇θ(s)ds,∇θ(t)

)
dt

∣∣∣∣ 6 Cε

∫ T

0

∥∥∥∥∫ t

0
K(t− s)∇θ(s)ds

∥∥∥∥2

dt+ ε

∫ T

0
‖∇θ(t)‖2 dt

6 Cε

∫ T

0

(∫ t

0
|K(t− s)| ‖∇θ(s)‖ds

)2

dt+ ε

∫ T

0
‖∇θ(t)‖2 dt

6 Cε

∫ T

0

(∫ t

0
|K(t− s)|2ds

)(∫ t

0
‖∇θ(s)‖2 ds

)
dt+ ε

∫ T

0
‖∇θ(t)‖2 dt

6 Cε

∫ T

0

(∫ t

0
‖∇θ(s)‖2 ds

)
dt+ ε

∫ T

0
‖∇θ(t)‖2 dt.

Fixing ε sufficiently small and applying Grönwall’s lemma implies that u = p = 0 and θ = 0.165

166

Remark 3.2. The exponentially decaying kernel K(t) = exp(−t), t ∈ [0, T ], satisfies the requirement of167

Theorem 3.3.168

4. Reconstruction of the vector source in a linear case169

In the following, it is assumed that g is linear, i.e. without any loss of the generality170

g = gI with g1 > g(x) > g0 > 0 for a.a. x ∈ Ω.

It is possible to prove the convergence of the proposed numerical scheme only in this situation. First, the171

well-posedness of problem (1) for a given source p is investigated. In this case, the variational problem172

(7)–(8) reduces to:173

Given r : (0, T ] → L2(Ω) in L2
(
(0, T ),L2(Ω)

)
, h : (0, T ] → L2(Ω) in L2

(
(0, T ),L2(Ω)

)
, u0(x) ∈174

H1(Ω), u1(x) ∈ L2(Ω), θ0 ∈ H1(Ω) and ξT ∈ L2(Ω), find (u(t), θ(t)) ∈ H1
0(Ω) × H1

0(Ω), with175

∂tu(t) ∈ L2(Ω), ∂ttu(t) ∈ H1
0(Ω)∗ and ∂tθ(t) ∈ H1

0(Ω)∗, such that176

(%∂ttu(t),ϕ) + (g (∂tu(t)) ,ϕ) + (Leu(t),ϕ) + (B∇θ(t),ϕ) = (r(t),ϕ) (18)

(%Cs∂tθ(t), ψ) + (K∇θ(t),∇ψ) + ((K ∗ ∇θ)(t),∇ψ)− T0 (B∂tu(t),∇ψ) = (h(t), ψ) (19)

for all ϕ ∈ H1
0(Ω) and ψ ∈ H1

0(Ω) and a.a. t ∈ [0, T ].177

Theorem 4.1 (Well-posedness of the direct problem). Assume that r : (0, T ] → L2(Ω) and h : (0, T ] →178

L2(Ω) belong to L2
(
(0, T ),L2(Ω)

)
and L2

(
(0, T ),L2(Ω)

)
, respectively, u0(x) ∈ H1(Ω), u1(x) ∈ L2(Ω)179

and θ0 ∈ H1(Ω). Assume that any of the following conditions holds for the kernel K : (0, T ]→ R:180
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(i) K is strongly positive definite, i.e. K ′(t) 6≡ 0 and (−1)jK(j)(t) > 0, t > 0, j = 0, 1, 2;181

(ii) K ∈ L1(0, T ) s.t.
∫ T

0
|K(t)|dt 6 k0;182

(iii) ∃ C > 0 s.t. max
t∈[0,T ]

|K(t)| 6 C.183

Then, the variational problem (18)–(19) has a unique solution (u, θ) such that u ∈ C
(
[0, T ],L2(Ω)

)
∩184

L2
(
(0, T ),H1

0(Ω)
)
, ∂tu ∈ C

(
[0, T ],L2(Ω)

)
, ∂ttu ∈ L2

(
(0, T ),H1

0(Ω)∗
)
, θ ∈ C

(
[0, T ],L2(Ω)

)
∩185

L2
(
(0, T ),H1

0(Ω)
)

and ∂tθ ∈ L2
(
(0, T ),H1

0(Ω)∗
)
.186

Moreover, when u0(x) = 0, u1(x) = 0, θ0 = 0, h = 0 and r = r(x), the following estimate holds187

max
t∈[0,T ]

{
‖∂tu(t)‖2 + ‖u(t)‖2H1

0(Ω) + ‖θ(t)‖2
}

+

∫ T

0
‖∇θ(t)‖2 dt 6 C ‖r‖2 . (20)

Proof. (i) It is assumed that the kernel K is strongly positive definite. To address the existence of a solution188

to the variational problem (18)–(19), the semidiscretization in time is employed and this is based on Rothe’s189

method [22]. The interval [0, T ] is divided into n ∈ N equidistant subintervals [ti−1, ti] with the time step190

τ =
T

n
< 1, thus ti = iτ, i = 0, . . . , n. With the standard notation for the discretized fields, for any function191

z192

zi ≈ z(ti), ∂tz(t) ≈ δzi =
zi − zi−1

τ
and ∂ttz(t) ≈ δ2zi =

zi − zi−1

τ2
− δzi−1

τ
,

the following linear recurrent scheme is proposed to approximate the original problem (11)–(12) for i =193

1, . . . , n (ϕ ∈ H1
0(Ω) and ψ ∈ H1

0(Ω)):194 (
%δ2ui,ϕ

)
+ (gδui,ϕ) + (Leui,ϕ) + (B∇θi,ϕ) = (ri,ϕ) (21)

and195

(%Csδθi, ψ) + (K∇θi,∇ψ) +

(
i∑
l=1

Kl∇θi−lτ,∇ψ

)
− T0 (Bδui,∇ψ) = (hi, ψ) . (22)

This is equivalent to solving196

a

((
ui
θi

)
,

(
ϕ
ψ

))
= Fi

(
ϕ
ψ

)
, u0 = u0, δu0 = u1, θ0 = θ0,

for any 1 ≤ i ≤ n, where a :
(
H1

0(Ω)×H1
0(Ω)

)2 → R and Fi : H1
0(Ω)×H1

0(Ω)→ R are defined as197

a

((
ui
θi

)
,

(
ϕ
ψ

))
:=

T0

τ
L1 + L2, Fi

(
ϕ
ψ

)
:=

T0

τ
R1 +R2,

with198

L1 :=
1

τ2
(%ui,ϕ) +

1

τ
(gui,ϕ) + (Leui,ϕ) + (B∇θi,ϕ)

= (ri,ϕ) +
1

τ2
(%ui−1,ϕ) +

1

τ
(gui−1,ϕ) +

1

τ
(%δui−1,ϕ) =: R1,

(23)
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and199

L2 :=
1

τ
(%Csθi, ψ) + (K∇θi,∇ψ)− T0

τ
(Bui,∇ψ)

= (hi, ψ) +
1

τ
(%Csθi−1, ψ)−

(
i∑
l=1

Kl∇θi−lτ,∇ψ

)
− T0

τ
(Bui−1,∇ψ) =: R2.

(24)

The norm in H1
0(Ω)×H1

0(Ω) is given by200 ∥∥∥∥(uθ
)∥∥∥∥2

H1
0(Ω)×H1

0(Ω)

= ‖u‖2H1
0(Ω) + ‖θ‖2H1

0(Ω) .

The bilinear form a is coercive and continuous on H1
0(Ω) × H1

0(Ω). Moreover, Fi ∈
(
H1

0(Ω)×H1
0(Ω)

)∗
201

if ui−1, δui−1 ∈ L2(Ω), θi−1 ∈ L2(Ω) and ∇θl ∈ L2(Ω), for 0 ≤ l ≤ i − 1. For every 1 ≤ i ≤ n,202

the Lax-Milgram lemma gives the existence and uniqueness of a solution (ui, θi) ∈ H1
0(Ω) × H1

0(Ω) to203

(23)–(24) or, equivalently, (21)–(22), if u0, u1 ∈ L2(Ω) and θ0 ∈ H1(Ω).204

Next, a priori estimates are derived. These estimates serve as uniform bounds to prove the convergence205

of the semidiscrete scheme (21)–(22).206

We set ϕ = δuiτ and ψ =
θi
T0
τ in (21)–(22) and sum up these equations for 1 ≤ i ≤ j, with 1 6 j 6 n.207

Then, we add both resulting equations, hence the coupling term cancels out and one obtains208

j∑
i=1

(
%δ2ui, δui

)
τ +

j∑
i=1

‖√gδui‖2 τ +

j∑
i=1

(Leui, δui) τ +
1

T0

j∑
i=1

(%Csδθi, θi) τ

+
1

T0

j∑
i=1

(K∇θi,∇θi) τ +
1

T0

j∑
i=1

(
i∑
l=1

Kl∇θi−lτ,∇θi

)
τ =

j∑
i=1

(ri, δui) τ +
1

T0

j∑
i=1

(hi, θi) τ.

We use Abel’s summation rule for three terms on the left-hand side, namely209

2

j∑
i=1

(
%δ2ui, δui

)
τ = ‖√%δuj‖2 − ‖

√
%u1‖2 +

j∑
i=1

‖√%δui −
√
%δui−1‖2 ,

2

j∑
i=1

(%Csδθi, θi) τ =
∥∥∥√%Csθj∥∥∥2

−
∥∥∥√%Csθ0

∥∥∥2
+

j∑
i=1

∥∥∥√%Csθi −√%Csθi−1

∥∥∥2
.

Note that by the symmetry of a, the following relation holds210

δa(ui,ui) = a(δui,ui) + a(ui−1, δui) = 2a(ui, δui)− a(δuiτ, δui).

Therefore, one obtains211

2

j∑
i=1

(Leui, δui) τ = 2

j∑
i=1

a(ui, δui)τ = a(uj ,uj)− a(u0,u0) +

j∑
i=1

a(ui − ui−1,ui − ui−1)

= (Leuj ,uj)− (Leu0,u0) +

j∑
i=1

(Le(ui − ui−1),ui − ui−1) .
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By the ellipticity of Le, it follows that212

(Leuj ,uj) > m ‖uj‖2H1
0(Ω) .

The thermal conductivity tensor K is positive definite, i.e.213

j∑
i=1

(K∇θi,∇θi) τ > k0

j∑
i=1

‖∇θi‖2 τ.

The strongly positive definiteness of K implies that214

j∑
i=1

(
i∑
l=1

Kl∇θi−lτ,∇θi

)
τ > 0.

The first and second term in the right-hand side of the above relationship can be estimated, in a classical215

way, by using Cauchy’s and Young’s inequalities, i.e.216 ∣∣∣∣∣
j∑
i=1

(ri, δui) τ

∣∣∣∣∣ 6 Cε + ε

j∑
i=1

‖δui‖2 τ and

∣∣∣∣∣
j∑
i=1

(hi, θi) τ

∣∣∣∣∣ 6 Cε + ε

j∑
i=1

‖θi‖2 τ.

Collecting all the results above, employing the H1
0(Ω)−ellipticity of Le and fixing ε small enough yield217

max
16j6n

‖δuj‖2 +
n∑
i=1

‖δui − δui−1‖2 +
n∑
i=1

‖δui‖2 τ + max
16j6n

‖uj‖2H1
0(Ω)

+

n∑
i=1

‖ui − ui−1‖2H1
0(Ω) + max

16j6n
‖θj‖2 +

n∑
i=1

‖θi − θi−1‖2 +

n∑
i=1

‖∇θi‖2 τ 6 C,

(25)

withC = C
(
‖u0‖H1

0(Ω) , ‖u1‖ ,
∥∥θ0

∥∥
H1(Ω)

, ‖r‖L2((0,T ),L2(Ω)) , ‖h‖L2((0,T ),L2(Ω))

)
. From this estimate (25),218

it follows that219
n∑
i=1

∥∥δ2ui
∥∥2

H1
0(Ω)∗

τ 6 C and
n∑
i=1

‖δθi‖2H1
0(Ω)∗ τ 6 C. (26)

We further introduce the following piecewise linear in time functions un : [0, T ]→ L2(Ω) and vn : [0, T ]→220

L2(Ω)221

un(0) = u0

un(t) = ui−1 + (t− ti−1)δui, t ∈ (ti−1, ti], 1 ≤ i ≤ n
vn(0) = u1

vn(t) = δui−1 + (t− ti−1)δ2ui t ∈ (ti−1, ti], 1 ≤ i ≤ n

and the piecewise constant in time functions un : [0, T ]→ L2(Ω) and vn : [0, T ]→ L2(Ω)222

un(0) = u0, un(t) = ui, t ∈ (ti−1, ti], 1 ≤ i ≤ n
vn(0) = u1, vn(t) = δui, t ∈ (ti−1, ti], 1 ≤ i ≤ n.
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Analogously, we define the following functions θn, θn, Kn, rn and hn, respectively, and note that vn =223

∂tun. We also introduce the notation d·eτ defined as dteτ = i, for t ∈ (ti−1, ti]. Using these so-called224

Rothe’s functions, the variational formulation (21)–(22) can be rewritten, for a.a. t ∈ [0, T ], as225

(ρ∂tvn(t),ϕ) + (g∂tun(t),ϕ) + (Leun(t),ϕ) +
(
B∇θn(t),ϕ

)
= (rn(t),ϕ) (27)

(%Cs∂tθn(t), ψ) +
(
K∇θn(t),∇ψ

)
+

dteτ∑
l=1

Kn(tl)
(
∇θn(t− tl),∇ψ

)
τ

− T0 (B∂tun(t),∇ψ) =
(
hn(t), ψ

)
. (28)

The Rellich-Kondrachov theorem [23, Theorem 1, p. 272] implies that H1
0(Ω) ↪→↪→ L2(Ω) ↪→↪→ H1

0(Ω)∗.226

From (25), it follows that227

max
t∈[0,T ]

{
‖un(t)‖2H1

0(Ω) + ‖∂tun(t)‖2
}
6 C.

The conditions of [22, Lemma 1.3.13] are satisfied and, therefore, there exist a function u ∈ C
(
[0, T ],L2(Ω)

)
∩228

L∞
(
(0, T ),H1

0(Ω)
)

and a subsequence {unk}k∈N of {un}n∈N (denoted by the same symbol yet again) such229

that230 
un → u in C

(
[0, T ],L2(Ω)

)
,

un(t) ⇀ u(t) in H1
0(Ω), for all t ∈ [0, T ],

un(t) ⇀ u(t) in H1
0(Ω), for all t ∈ [0, T ],

∂tun ⇀ ∂tu in L2
(
(0, T ),L2(Ω)

)
.

Moreover, estimate (26) implies that231

∂tvn ⇀ ∂ttu in L2
(
(0, T ),H1

0(Ω)∗
)

by the reflexivity of this space. The a priori estimate (25) implies that232 ∫ T

0
‖un(t)− un(t)‖2H1

0(Ω) dt =
n∑
i=1

∫ ti

ti−1

‖(t− ti)δui‖2H1
0(Ω) dt 6 τ

n∑
i=1

‖ui − ui−1‖2H1
0(Ω) 6 Cτ,

i.e. {un} and {un} have the same limit in L2
(
(0, T ),H1

0(Ω)
)
.233

From (25) and (26), it follows that234 ∫ T

0
‖θn(t)‖2H1

0(Ω) dt+

∫ T

0
‖∂tθn(t)‖2H1

0(Ω)∗ dt 6 C.

The generalized Aubin-Lions lemma [24, Lemma 2.12.4] implies the existence of a function θ ∈ L2
(
(0, T ),L2(Ω)

)
235

and a subsequence {θnk}n∈N of {θn}n∈N (denoted by the same symbol yet again) such that236 
θn → θ in L2

(
(0, T ),L2(Ω)

)
,

θn ⇀ θ in L2
(
(0, T ),H1(Ω)

)
,

∂tθn ⇀ ∂tθ in L2
(
(0, T ),H1

0(Ω)∗
)
.

Employing [25, Lemma 7.3] gives that θ ∈ C
(
[0, T ],L2(Ω)

)
. Applying the a priori estimate (25), one237

obtains238 ∫ T

0

∥∥θn(t)− θn(t)
∥∥2

dt =
n∑
i=1

∫ ti

ti−1

‖(t− ti)δθi‖2 dt 6 τ
n∑
i=1

‖θi − θi−1‖2 6 Cτ,
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i.e. {θn} and {θn} have the same limit in L2
(
(0, T ),L2(Ω)

)
. Therefore, the a priori estimate (25) and the239

reflexivity of the space L2
(
(0, T ),H1

0(Ω)
)

imply that240

θn ⇀ θ in L2
(
(0, T ),H1

0(Ω)
)
.

From the reflexivity of the spaces L2
(
(0, T ),L2(Ω)

)
and L2

(
(0, T ),L2(Ω)

)
, it follows that (in the sense of241

a subsequence being indexed by n as well)242

rn ⇀ r in L2
(
(0, T ),L2(Ω)

)
and hn ⇀ h in L2

(
(0, T ),L2(Ω)

)
.

Finally, the existence of a solution can be proven. In doing this, we integrate (27) and (28) in time and pass243

to the limit for τ → 0 using the preceding convergence results. Afterwards, we differentiate the result with244

respect to the time variable to arrive at (18)–(19). The convergence of Rothe’s functions towards the weak245

solution has been shown for a subsequence. However, taking into account the uniqueness of a solution, the246

entire Rothe’s sequence converges towards the solution.247

The estimate (20) can be derived as follows. Firstly, we choose ϕ = ∂tu(t) and ψ =
θ(t)

T0
in (18)–(19)248

and integrate in time over t ∈ (0, η) ⊂ (0, T ). We then sum up the resulting equations to obtain249

‖√ρ∂tu(η)‖2

2
+

∫ η

0
‖√g∂tu(t)‖2 dt+

1

2
(Leu(η),u(η)) +

‖
√
%Csθ(η)‖2

2T0

+
1

T0

∫ η

0
(K∇θ(t),∇θ(t)) dt+

1

T0

∫ η

0
((K ∗ ∇θ)(t),∇θ(t)) dt =

∫ η

0
(r(t), ∂tu(t)) dt

+
‖√ρu1‖2

2
+

1

2
(Leu0,u0) +

1

T0

∫ η

0
(h(t), θ(t)) dt+

‖
√
%Csθ0‖2

2
.

(29)

Similarly to the a priori estimates (25), one can show that250

max
t∈[0,T ]

{
‖∂tu(t)‖2 + ‖u(t)‖2H1

0(Ω) + ‖θ(t)‖2
}

+

∫ T

0
‖∇θ(t)‖2 dt 6 C,

where C = C
(
‖u0‖H1

0(Ω) , ‖u1‖ ,
∥∥θ0

∥∥
H1(Ω)

, ‖r‖L2((0,T ),L2(Ω)) , ‖h‖L2((0,T ),L2(Ω))

)
. From this estimate,251

it follows (20), provided that u0(x) = 0, u1(x) = 0, θ0 = 0, h = 0 and r = r(x).252

253

(ii) and (iii) The a priori estimates (25) and (26) also remain valid under the assumption (ii) or (iii), the254

only difference being the estimation of term containing values of K. In the first case, on using the Young’s255

inequality for discrete convolutions, one obtains256

j∑
i=1

(
i∑
l=1

Kl∇θi−lτ,∇θi

)
τ 6

(
j∑
i=1

|Ki|τ

)
j∑
i=1

‖∇θi‖2 τ,

whilst in the second case, it follows that257

j∑
i=1

(
i∑
l=1

Kl∇θi−lτ,∇θi

)
τ 6 Cε

j∑
i=1

(
i∑
l=1

‖∇θi‖2
)
τ + ε

j∑
i=1

‖∇θi‖2 τ.

It should be mentioned that the application of Grönwall’s lemma is required to obtain (25) in the latter258

case.259
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In the following, it is assumed that the hypothesis (i), (ii) or (iii) of Theorem 4.1 is valid. This implies, in260

particular, that the boundary conditions are satisfied and the final displacement measurement is well-defined261

(as an element of L2(Ω)). In the following subsection, the algorithm for the recovery of the unknown source262

term is proposed. Without any loss of the generality, it is assumed that the following problem is studied:263 

%(x)∂ttu(x, t) + g(x)∂tu(x, t)− Leu(x, t) + div(B(x)θ(x, t)) = p(x), (x, t) ∈ QT ,

%(x)Cs(x)∂tθ(x, t)−∇ · (K(x)∇θ(x, t))− (K ∗∆θ)(x, t) + T0B(x) : ∇∂tu(x, t) = 0, (x, t) ∈ QT ,

u(x, t) = 0, (x, t) ∈ ΣT ,

θ(x, t) = 0, (x, t) ∈ ΣT ,

u(x, 0) = ∂tu(x, 0) = 0, θ(x, 0) = 0, x ∈ Ω,

u(x, T ) = ξT (x), x ∈ Ω,

(30)

where the final time measurement has been denoted by the same symbol yet again.264

4.1. Algorithm for finding the source term265

In this section, an algorithm for finding the source term is described. This algorithm is based on an266

iterative regularization method, namely the Landweber-Fridman iteration [26, 27].267

Let (u, θ) the unique solution to (30) for given p, see Theorem 4.1. Define the corresponding operator268

M(t) ∈ L
(
L2(Ω),L2(Ω)

)
by269

M(t)p = u(·, t).
Finding a solution to the inverse problem is then equivalent to solving the following operator equation270

M(T )p = ξT , (31)

or solving the following fixed point equation271

p = p + ωM(T ) (ξT −M(T )p) , ω > 0,

due to the linearity of the operator M(T ). The parameter ω is called a relaxation parameter. The method of272

successive approximations can be applied to this latter equation as follows273

pk := pk−1 − ωM(T ) (M(T )pk−1 − ξT ) , k ∈ N,

with an initial guess p0.274

This gives rise to the following procedure for the stable reconstruction of the solution (u, θ) and the275

source term p of problem (1)–(3). This procedure is similar to that presented in [14, 28–30] and reads as276

follows:277

(i) Choose an initial guess p0 ∈ L2(Ω). Let (u0, θ0) be the solution to (30) with p = p0.278

(ii) Assume that pk−1 and (uk−1, θk−1) have been constructed. Let (vk−1, ηk−1) solve (30) with p(x) =279

uk−1(x, T )− ξT (x).280

(iii) Define281

pk(x) = pk−1(x)− ωvk−1(x, T ), x ∈ Ω

where ω > 0, and let (uk, θk) solve (30) with p = pk.282

(iv) Repeat steps (ii) and (iii) until a desired level of accuracy is achieved, see Subsections 4.2 and 4.3.283

The problems used in this iterative procedure are well-posed, see Theorem 4.1. Moreover, the restrictions284

of solutions are well-defined. The convergence of the procedure is studied in the following subsection.285
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4.2. Convergence of the proposed algorithm in Subsection 4.1286

The following theorem shows the convergence of the proposed algorithm in the previous subsection.287

Theorem 4.2 (Existence). Assume that the assumptions of Theorem 4.1 are satisfied and suppose that the288

relaxation parameter ω satisfies 0 < ω < ‖M(T )‖−2. Denote by (u, θ,p) the unique solution to the origi-289

nal inverse problem (1)–(3). Let (uk, θk,pk) the k-th approximation in the iterative algorithm of Subsection290

4.1. Then291

lim
k→∞

{
‖u− uk‖C([0,T ],L2(Ω)) + ‖θ − θk‖C([0,T ],L2(Ω))

}
= 0

for every function p0 ∈ L2(Ω).292

Proof. From the iterative algorithm and the linearity of the operator M(t), it follows that293

pk = pk−1 − ωvk−1(·, T ) = pk−1 − ωM(T ) (uk−1(·, T )− ξT )

(31)
= pk−1 − ωM(T ) (M(T )pk−1 −M(T )p) = pk−1 − ωM(T )M(T ) (pk−1 − p) .

Therefore,294

pk − p = (I − ωM(T )M(T )) (pk−1 − p) .

This is the Landweber-Fridman iterative scheme for solving the operator equation (31). The proof of con-295

vergence for the Landweber-Fridman iteration in the case of two not self-adjoint operators is given in [31,296

Theorem 3]. Since 0 < ω < ‖M(T )‖−2, it follows that pk converges to p in L2(Ω), for an arbitrary297

p0 ∈ L2(Ω). Inequality (20) implies the convergence of uk and θk to the corresponding solution in the298

given spaces.299

300

4.3. Stopping criterion301

Reconsider the algorithm presented in Subsection 4.1. Herein, the displacement at the final time is302

measured to obtain a solution to problem (1)–(2). To model each practical experiment in a realistic manner,303

it is assumed that there exists some level of error in the additional measurement (3), i.e.304

‖ξT − ξeT ‖ 6 e, (32)

with e > 0. Note that functions pek,u
e
k and θek are obtained by using the algorithm without noise in the initial305

data (2). The absolute L2-error between this final measurement ξeT and the k-th approximation uek(·, t) at306

t = T is denoted by307

Ek,uT = ‖uek(·, T )− ξeT ‖ . (33)

Given the noise level e, Morozov’s discrepancy principle [32] is used to obtain a stopping criterion for the308

algorithm. This principle suggests to stop the iterations at the lowest index k = k(e, ω) for which309

Ek,uT 6 e.
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5. Numerical experiments310

In the following, we consider an isotropic homogeneous thermoelastic material that occupies an open311

and bounded domain Ω ⊂ Rd, with d = 1 (Experiments 1 and 2) and d = 2 (Experiment 3). For such a312

material, the elasticity tensor is given by313

Cijkl := λδijδkl + µδikδjl + µδilδjk, 1 ≤ i, j, k, l ≤ d,

where λ > 0 (SI unit: N/m2) and µ > 0 (SI unit: N/m2) are the so-called Lamé parameters. These quantities314

can be expressed in terms of the shear modulus G > 0 and Poisson’s ratio ν ∈ (0, 0.5) as315

λ =
2νG

1− 2ν
and µ = G.

In this case, the thermal conductivity K (SI unit: W/mK) and thermoelasticity B tensors are given by316

Kij = κδij , and bij(x) = βδij , 1 ≤ i, j ≤ d,

respectively. Here, κ > 0 and the coupling parameter β > 0 (SI unit: N/m2K) is defined as317

β = αT (3λ+ 2µ) = 2αTG
1 + ν

1− 2ν
,

where αT > 0 (SI unit: 1/K) is the coefficient of linear expansion of the thermoelastic material.318

Consequently, problem (1) becomes319 {
%∂ttu(x, t) + g∂tu(x, t)− µ∆u(x, t)− (µ+ λ)∇(∇ · u(x, t)) + β∇θ(x, t) = r(x, t) + p(x), (x, t) ∈ QT ,
%Cs∂tθ(x, t)− κ∆θ(x, t)− (K ∗∆θ)(x, t) + T0β∇ · ∂tu(x, t) = h(x, t), (x, t) ∈ QT .

(34)

The material constants employed in the numerical experiments have been taken so that they correspond to320

a copper alloy [33], namely G = 4.8 × 1010 N/m2, ν = 0.34, αT = 16.5 × 10−6 1/K, κ = 401 W/mK,321

ρ = 8960 kg/m3 and Cs = 385 J/kgK. In order to preserve the coercivity, the damping coefficient g (SI unit:322

kg/m3s) has been taken to be g = 2×108 in 1D and g = 2×1014 in 2D, respectively, whilst in all experiments323

performed herein, T0 = 293K.324

It should be mentioned that the governing equations in (34) can be rearranged in a more convenient form325

by using the following nondimensional variables:326

x′ =
1

`
x, t′ =

C1

`
t, θ′(x′, t′) =

1

T0
θ(x, t), u′(x′, t′) =

λ+ 2µ

βT0`
u(x, t),

where C1 =
√

(λ+ 2µ)/ρ (SI unit: m/s) and ` = κ/(ρCsC1) (SI unit: m). The dimensionless variables327

are used in the following experiments, however, in the sequel, the accent is dropped in order to simplify the328

notations employed.329

The solution to the inverse source problems is found by applying the algorithm proposed in Subsection330

4.1. As described in the proof of Theorem 4.1, the forward mixed problems in this procedure are discretized331

in time according to the backward Euler method. It is assumed that T = 1 in 1D and T = 0.5 in 2D. The332

time step for the equidistant time partitioning is chosen to be 0.0005 in 1D and 0.0001 in 2D. At each time333

step, the resulting elliptic mixed problems, see (21) and (22), are solved numerically by the finite element334

method using first order (P1–FEM) Lagrange polynomials for the space discretization (the number of 1D335
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and 2D finite elements was taken to be equal to 200 and 5000, respectively). For these calculations, the336

finite element library DOLFIN [34, 35] from the FEniCS project [36, 37] is used.337

For almost all examples considered, a randomly generated uncorrelated noise is added to the additional338

condition in order to simulate the inherent errors present in real measurements. The resulting final mea-339

surement is denoted by ξeT , see also Subsection 4.3. In the following, the exact value for the source p is340

compared its corresponding numerically retrieved value pk̃, obtained when the algorithm is stopped after a341

finite number of iterations k̃. The initial guess p0 is chosen to be equal to 0 unless otherwise specified. The342

algorithm has the following stopping criterion:343

Ek,uT 6 e,
|Ek,uT − Ek−1,uT |

Ek,uT
6 10−4,

and maximum 10000 iterations.344

5.1. Experiment 1: 1D problem in a 2D setting with a smooth and symmetric variation of the load vector345

The 1D linear model for an isotropic thermoelastic material in the domain Ω = (0, 1) is given by: Find346

(u, θ, p) such that347 

utt(x, t) + g2ut(x, t)− uxx(x, t) + θx(x, t) = r(x, t) + p(x) (x, t) ∈ QT ,
θt(x, t)− θxx(x, t)− k2(K ∗ θxx)(x, t) + ε2uxt(x, t) = h(x, t) (x, t) ∈ QT ,
u(0, t) = u(1, t) = 0 t ∈ (0, 1],

θ(0, t) = θ(1, t) = 0 t ∈ (0, 1],

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, 1),

θ(x, 0) = θ0(x), x ∈ (0, 1),

(35)

and the final over-determination condition is satisfied348

u(x, T ) = ξeT (x), x ∈ (0, 1), (36)

with349

g2 :=
g√

%(λ+ 2µ)
, k2 :=

1

ρCsC2
1

, ε2 :=
β2T0

%2CsC2
1

.

The exact solution to problem (35)–(36) is prescribed as follows350

u(x, t) = (1 + t)2x(x− 1)2, θ(x, t) = (1 + t)x(1− x)2,

p1(x) = 10x(x− 1) or p2(x) = exp
(
−20(x− 0.5)2

)
.

Thus two experiments, depending on the unknown space source p1 or p2, are considered. Moreover, three351

choices for the convolution kernel are made, namely K = 0, K = exp(−t) and K = 1/
√
t, respectively.352

This distinction is based on the theoretical analysis. The error e on the final measurement is given in Table 1353

(for different noise levels with magnitude ẽ). The experiments are performed with relaxation parameter354

ω = 10. The stopping iteration index and the CPU time (in minutes) for various experiments can be found355

in Table 2. The numerical results for different noise levels ẽ are depicted in Figure 1 when p1 is unknown356

and in Figure 2 when p2 is unknown. The obtained results are in accordance with the numerical experiments357

performed for the heat conduction equation in [28, 30] and for type-I thermoelasticity (K = 0) in [14]. The358

attainability of the stopping criterion becomes faster if ẽ increases. For each noise level and the different359
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Table 1: The error e(ẽ) ≈ ‖ξT − ξeT ‖, obtained for Experiment 1, with the unknown sources p1 and p2.

p1 p2

Kernel \ ẽ 1% 5% 10% 0.5% 1% 3%
K = 0 0.004928 0.023689 0.042853 0.002490 0.004554 0.014829

K = exp(−t) 0.004580 0.023746 0.044725 0.002335 0.004602 0.013740
K = 1/

√
t 0.004697 0.023135 0.044462 0.002395 0.004742 0.014753

Table 2: The stopping iteration number k̃ = k(e(ẽ), 10) and the CPU time (mins), obtained for Experiment 1, with the unknown
sources p1 and p2.

p1 p2

ẽ 1% 5% 10% 0.5% 1% 3%
k̃ time k̃ time k̃ time k̃ time k̃ time k̃ time

K = 0 136 94.7 11 8.2 9 6.3 387 327.4 386 327.2 172 60.7
K = exp(−t) 133 138.7 9 10.4 9 9.9 503 538.1 321 416.2 177 111.2
K = 1/

√
t 142 144.3 10 11 8 8.9 491 532.6 390 468.4 206 183.4

kernels, an accurate approximation for the source p1 is obtained. In the case of 10% noise, the accurate360

approximation of the source shows the stability of the numerical procedure. The shape of the source p2 can361

be recovered when the magnitude of the noise is around 3%. Although not presented herein, it is reported362

that the algorithm is more sensitive to increasing the amount of noise for this experiment.363

5.2. Experiment 2: 1D problem in a 2D setting with a nonsmooth and/or a nonsymmetric variation of the364

load vector365

Herein, the exact solution to problem (35)–(36) is given by366

u(x, t) = (1 + t)2x(x− 1)2, θ(x, t) = (1 + t)x(1− x)2,

with367

p3(x) =


0 0 6 x 6 1

3

6x− 2 1
3 6 x 6 1

2

4− 6x 1
2 6 x 6 2

3

0 2
3 6 x 6 1

, p4(x) =

{
x(0.5− x)(1− x) 0 6 x 6 1

2

x(x− 0.5)(1− x) 1
2 6 x 6 1

,

368

p5(x) =


0 0 6 x < 1

3

1 1
3 6 x 6 2

3

0 2
3 < x 6 1

, p6(x) = 10x(x− 1)2.

Sources p3 and p4 are continuous piecewise smooth, whilst p5 is discontinuous. The first three sources are369

symmetric and this in contrast to the source p6, which is non-symmetric (and smooth). We only show the370

outcome of the numerical experiments forK = 0 because the results obtained for the experiments performed371
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Figure 1: Example 1: The exact source p1 and its corresponding numerical solution, retrieved using various levels of noise in the
additional measurement (3), for various convolution kernels, namely (a) K = 0, (b) K = exp(−t), and (c) K = 1/

√
t.
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Figure 2: Example 1: The exact source p2 and its corresponding numerical solution, retrieved using various levels of noise in the
additional measurement (3), for various convolution kernels, namely (a) K = 0, (b) K = exp(−t), and (c) K = 1/

√
t.
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with K = exp(−t) and K = 1/
√
t are similar. The main difference is that the CPU time is larger for these372

latter choices of the kernel as already noticed from Table 2.373

First, we present the results for the experiments related to p3, p4 and p5 when exact data is used, i.e. ẽ =374

0%. In this case, the iterative process is continued indefinitely. In Figures 3(a), (c) and (e), the numerical375

solution for these sources is compared to their corresponding exact values for various iteration numbers376

k ∈ {500, 1000, 2000, 5000, 10000} and ω = 10. From these figures, it can be seen that the numerical377

solution converges to its corresponding exact solution as k increases. However, this process is very slow378

as each numerical experiment requires about ten hours for 1000 iterations. In addition, in Figures 3(b), (d)379

and (f), numerical approximations are presented for various noise levels and ω = 10. Again, reasonable380

numerical approximations are obtained. Furthermore, from Figure 3(d) it is clear that the algorithm is381

sensitive to the amount of noise added to the data. Note that for the experiment corresponding to source382

p4, the cut-off stopping criteria is not taken into account in order to obtain better results. For the sake383

of completeness, for this experiment the results retrieved for ω = 2 and ω = 20 are also included, see384

Figure 4. The results for ẽ = 0.1% are similar. Future research will be devoted to investigating the influence385

of the smoothing parameter g on the reconstruction of the source. In Figure 5, source p5 is reconstructed386

for various values of g. For this experiment the results seem to be analogous for the different values of g.387

Figure 6 suggests that choosing g = 2×108 seems to be an appropriate choice, however further investigation388

is required.389

The numerical experiment corresponding to p6 suggests a certain limitation of the method with respect to390

the recovery of non-symmetric sources. With zero initial guess and ω = 10, the numerical procedure gives391

an unsatisfactory (not usable) approximation, see Figure 7(a). Experiments with the same initial guess and392

a lower level of noise and/or a lower value of the relaxation parameter give similar results. Furthermore,393

we have also considered the following range of non-symmetric initial guesses: 6.44x− 12.27x2 + 5.83x3,394

9.68x − 18.46x2 + 8.78x3 and 12.88x − 24.54x2 + 11.65x3, obtained by a least-squares approximation395

through points (0, 0), (1, 0) and (1
3 , 1), (1

3 , 1.5), (1
3 , 2), respectively. The results are depicted in Figures 7(b-396

d). From these figures it can be seen that, as expected, a better numerical approximation is obtained when397

the initial guess is closer to the exact solution. This example is somehow in contradiction with the algorithm,398

in the sense that there is no limitation on the initial guess in the algorithm. A possible explanation might399

be the fact that the timestep is not small enough for this type of source such that the errors in the numerical400

solution accumulates. However, experiments performed with a smaller timestep do not give better results401

and they are thus not confirming this reasoning. Instead of making the timestep smaller, in the following402

experiment the final time is reduced to T = 0.2 and T = 0.5 (hence the exact solution becomes linear403

in time). The results retrieved from this experiment are displayed in Figure 8. For both situations, good404

numerical approximations are obtained when the noise level is small.405

From the experiments performed in this subsection, we conclude that the proposed numerical algorithm is406

at least applicable to the reconstruction of symmetric load fields with discontinuities and symmetric con-407

tinuous piecewise smooth load fields. For experiments with non-symmetric load fields, the experiments408

suggest that the final time should be small enough in order to obtain good results for our test example. The409

aforementioned limitation will be further investigated in the future.410
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Figure 3: Example 2: The exact sources p3, p4 and p5 and its numerical approximations for ẽ = 0% (a,c,e) and for different noise
levels (b,d,f). The relaxation parameter ω = 10.
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Figure 4: Example 2: The exact source p4 and its numerical approximations for ω = 2 (a) and for ω = 20 (b).
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Figure 5: Example 2: The exact source p5 and its numerical approximations for ẽ = 1% (a) and for ẽ = 3% (b) for different
values of g.
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Figure 6: Example 1: The exact source p2 and its numerical approximations for ẽ = 3% for different values of g.
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Figure 7: Example 2: The non-symmetric exact source p6 and its numerical approximations (using ẽ = 3%) for different initial
guesses: 0 (a), 6.44x− 12.27x2 + 5.83x3 (b), 9.68x− 18.46x2 + 8.78x3 (c) and 12.88x− 24.54x2 + 11.65x3 (d). The

relaxation parameter ω = 10.
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Figure 8: Example 2: The non-symmetric exact source p6 and its numerical approximations for T = 0.2 (a) and T = 0.5 (b). The
relaxation parameter ω = 10.

Table 3: The error e(ẽ) ≈ ‖ξT − ξeT ‖, the stopping iteration number k̃ = k(e(ẽ), 50) and the CPU time (mins), obtained for
Experiment 3.

ẽ 0.5% 1% 3% 5%
e 0.002837 0.005768 0.017460 0.028872
k̃ 68 32 16 15

time 1535.9 761.3 381.1 360

5.3. Experiment 3: 2D problem in a 3D setting411

The 2D linear model an isotropic thermoelastic material in the rectangular domain Ω = (0, 1)× (0, 1),412

with K = 0, is given by: Find (u, θ,p) such that413 

∂ttu(x, t) + g2∂tu(x, t)− µ1∆u(x, t)− (1− µ1)∇(∇ · u(x, t)) +∇θ(x, t) = r(x, t) + p(x), (x, t) ∈ QT ,
θt(x, t)−∆θ(x, t) + ε2∇ · ∂tu(x, t) = h(x, t), (x, t) ∈ QT ,
u(x, t) = 0, (x, t) ∈ ΣT ,

θ(x, t) = 0 (x, t) ∈ ΣT ,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

θ(x, 0) = θ0(x), x ∈ Ω

(37)

and the final over-determination condition is satisfied414

u(x, T ) = ξeT (x), x ∈ Ω, (38)

with415

µ1 =
µ

λ+ 2µ
.
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Figure 9: Example 3: The numerically reconstructed components of the source and their corresponding pointwise normalized
relative errors, retrieved using ẽ = 1%.
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Figure 10: Example 3: The numerically reconstructed components of the source and their corresponding pointwise normalized
relative errors, retrieved using ẽ = 5%.
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The data for the numerical experiment is derived from the following exact solution to problem (37)–(38),416

which is chosen in accordance to [38, Proposition 1]:417

u(x, y, t) = (1 + t)2Cd
2

[
ln
(
(x+ 5)2 + (y + 1)2

)
(x+ 5), ln

(
(x+ 5)2 + (y + 1)2

)
(y + 1)

]T
,

θ(x, y, t) =

(
1 + t

2

)
ln
(
(x+ 5)2 + (y + 1)2

)
,

p(x, y) = [30x(x− 1)y(y − 1),−20x(x− 1)y(y − 1)]T ,

where418

Cd :=
αT
2

(
1 + ν

1− ν

)
.

The error e, the stopping iteration number and the CPU time (in minutes) for this experiment are given419

in Table 3, for various levels of noise. For each component of p, the numerical results corresponding to420

ẽ = 1% and ẽ = 5% are depicted in Figures 9 and 10, respectively. Also, the pointwise normalized relative421

error for each component is shown in these figures. Taking into account the complexity of the problem,422

we may conclude that good numerical results for the source recovery have been obtained for the 2D cases423

investigated.424

6. Conclusion425

In this paper, an inverse source problem associated with a type-III anisotropic thermoelastic system was426

considered. More precisely, the theoretical and numerical determination of a space-dependent vector source427

(load) in an anisotropic thermoelastic system of type-III was studied from the knowledge of a supplementary428

measurement at the final time. The uniqueness of a solution is proved for various assumptions made on the429

convolution kernel, namely (i) a singular and positive definite convolution kernel; (ii) a singular convolution430

kernel with the L1−norm bounded by a critical constant; and (iii) a bounded convolution kernel, respec-431

tively. A convergent and stable iterative algorithm was proposed for the recovery of the unknown vector432

source in the linear case, whilst a stopping criterion was also given. The numerical experiments carried433

out herein were implemented using the FEM and validated the convergence and stability of the proposed434

iterative procedure, as well as the regularizing/stabilizing character of the corresponding stopping criterion.435

In these experiments, it was showed that the procedure proposed herein is applicable to the reconstruction436

of symmetric continuous piecewise smooth load fields and symmetric load fields with discontinuities. How-437

ever, experiments also showed that there is a certain limitation of the method with respect to the recovery of438

non-symmetric sources wherein only a good approximation is obtained for some specific initial guesses or439

a smaller final time, which gives a first direction for future research. Other future work will be concerned440

with the determination of more general (also time-dependent) loadings, the consideration of more general441

boundary conditions and the implementation of additional experiments.442
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[16] K. Van Bockstal and M. Slodička. Recovery of a time-dependent heat source in one-dimensional482

thermoelasticity of type-III. Inverse Problems in Science and Engineering, 25(5):749–770, 2017.483

30



[17] M. Tanaka, A. Guzik, T. Matsumoto, and R. A. Białecki. An inverse estimation of multi-dimensional484

load distributions in thermoelasticity problems via dual reciprocity BEM. Computational Mechanics,485

37:86–95, 2007.486

[18] N. Kikuchi and J.T. Oden. Contact Problems in Elasticity: A Study of Variational Inequalities and487

Finite Element Methods. Studies in Applied Mathematics. Society for Industrial and Applied Mathe-488

matics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104), 1988.489

[19] Y. Qin. Nonlinear parabolic-hyperbolic coupled systems and their attractors. Basel: Birkhäuser, 2008.490
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