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ARTICLE INFO ABSTRACT

Keywords: Encapsulation-based materials are produced introducing some small healing fluid-filled capsules in a matrix.

Self-healing materials These materials can self-heal when internal cracks intercept and break the capsules. If the healing agent is

Micro-capsules ) released, the crack can be sealed. However, this is not always the case. These capsules need to be designed with

]C)re]‘:k g.ropaganon the adequate shape and material to be properly broken. This paper presents two application models based on the
ebonding

combination of eXtended Finite Element Method (XFEM) elements and Cohesive Surfaces technique (CS) to
predict crack propagation. Two types of encapsulated systems are considered: a concrete beam in a three-point
bending test, and a micro-scale model of a representative volume element of a polymer subjected to a uniaxial
tensile test. Despite both systems relying on different capsule shapes and different constituent materials, the
models predict a similar non-linear response of the overall material strength governed by the coupled effect of
the interface strength and the capsule radii-to-thickness ratio. Furthermore, even if an inadequate material and
geometry combination is used, it is found that the mere presence of capsules might achieve, under certain
conditions, an interesting overall reinforcement effect. This effect is discussed in terms of clustering and volume
fraction of capsules.

Cohesive zone
Extended finite element method
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Crack propagation —————————»

1. Introduction When the matrix is internally damaged, cracks can intercept these
capsules and transfer the stresses at the their propagating fronts to the

The fundamental feature of any encapsulation-based self-healing capsules. In that sense, three basic scenarios can be produced: (i) the
material relies on inserting small fluid-filled capsules in a matrix [1-5]. capsules are not able to withstand the stress concentration and they
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break, releasing in this way the healing fluid content inside the crack
space, (ii) the constitution of the capsules is robust enough as to
withstand comfortably much higher stresses, while the interface with
the the matrix fails, and (iii) the level of transferred stresses is not
sufficient either to break the capsule nor the interface with the matrix.
Naturally, (i) represents the desired scenario for this self-healing
strategy. In this case, the healing agent can spread into the crack space
via capillarity. To complete the healing process, this initially-fluid agent
can cure after some reaction, in such a way that the crack path becomes
sealed and the final internal structure is partially repaired [6]. If the
scenarios (ii) or (iii) occur, it is clear that this self-healing strategy
cannot be carried out successfully. In particular, (ii) involves that an
incoming crack will simply trigger a premature debonding, similarly to
what happens when a solid inclusion is weakly bonded to a matrix [7,8].
Also, even if premature capsule debonding takes place before the crack
interception, a hole-liked region could be created and therefore
additional nearby cracks would be attracted. These cracks would simply
pass along the capsule perimeter and continue their path again through
the matrix [9,10]. This situation would not only result in an intact
capsule preventing the internal repairing, but it might also accelerate
the level of damage in the matrix. Regarding scenario (iii), albeit no
healing effect would be triggered a priori, it might still produce some
beneficial aspects in terms of mechanical reinforcement. Nevertheless,
this reinforcement effect would naturally depend on the characteristics
and properties of each constituent, as well as on the mechanical
performance of the interface.

In terms of designing a predictive tool, the interest in encapsulation-
based self-healing strategy is currently leading to an increase of
theoretical and numerical works with the aim of getting a better
understanding of its mechanisms and determining the key factors to
improve efficiency and feasibility [11-15]. In spite of this, most models
deal with very specific application-oriented materials and also assume
specific geometries, boundary conditions and loading configuration.
Moreover, the mere presence of the capsule-matrix interface has
received less attention, when not neglected. As an example, within
the context of cementitious materials, even when the interface has been
accounted for, these models often assume a certain range of typical
values of the interface properties, which are selected as a function of
mechanical similarities given by composition or the degree of brittle-
ness [16,17].

The motivation of this work is to propose a combination of flexible
and efficient enough numerical methodologies to assess, predict and
investigate different mechanical aspects of an encapsulation-based
structure. Simulating such structure, the researcher can analyze differ-
ent combinations of materials and levels of load that might be probably
difficult to implement and/or measure experimentally. Therefore, the
prediction of the aforementioned scenarios could be analyzed, as well
as any other situation that might not be expected in advance. This
methodology is based on several well-established computational ap-
proaches in the context of fracture mechanics, the extended finite
element method (XFEM) and the surface-based cohesive technique (CS),
and both are combined to the conventional finite element method to
describe regions where fracture mechanics is not needed. The mechan-
ical properties required by these approaches, as well as the way to
measure them can be experimentally identified with an acceptable level
of complexity.

There are some recent numerical studies combining XFEM and
cohesive zone models. Ref. [18] presents a similar approach where a
micro-scaled piece of a unidirectional carbon-reinforced laminate is
subjected to a uniform tensile stress. Albeit the results obtained
compare qualitatively well to the experimental observations, no further
details about the mechanical response and reliability of the mesh at this
scale is presented. Ref. [19] analyzes the debonding between fibers and
the surrounding polymer matrix in long fiber reinforced composites. In
this two-dimensional configuration, the fiber-matrix interface is inte-
grated into the XFEM scheme by using the Level-Set method and a
cohesive interaction law is only considered for the enriched nodes of
the interface. Ref. [20] addresses a two-dimensional problem to
understand the fracture behavior of asphalt mixtures taking into
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account the interaction between their constituents and the matrix. This
work describes the aggregates via XFEM embedded in a non-fracturable
visco-elastic matrix, while the interface is represented using cohesive
elements with finite thickness. Ref. [21] predicts the microcracking
distributions and permeability in composite laminates. In this case,
XFEM is used to describe the intra-laminar fracture process while the
delamination between plies is represented by means of cohesive
surfaces.

This numerical paper is devoted to present and describe in detail
two well-defined examples in the context of encapsulation-based
materials: concrete and polymer. In that sense, the influence of different
aspects of the system design is numerically predicted (e.g., size,
geometry, position and number of capsules). From the experimental
point of view, to carry out an equivalent analysis would be unafford-
able, and in part, what motivated to perform this work. Related to this,
several detailed micro-mechanical aspects are presented, like for
example the distribution of stresses between capsules or the range of
bonding strength to capsule strength ratio to produce debonding or
breakage. In terms of validation, the comparison of the proposed
methodology with more simplified experimental setups is ongoing
and it lays in the scope of a forthcoming work. It must be noted that,
due to the numerical character of this paper, computational aspects like
mesh convergence, parameter sensitivity or computational cost are
thoroughly addressed, with the aim of providing reliable and feasible
results for the next stage of validation.

This work is organized as follows. Section 2 presents a summary of
the numerical approach that will be used in the following sections: the
combination of XFEM and the CS technique implemented in the
commercial software Abaqus. Details about the criteria regarding
initiation and propagation of cracks and interface debonding are
provided. Section 3 shows how this methodology can be applied to
model in detail a realistic setup typically used to assess the encapsula-
tion-based self-healing strategy in concrete structures. A numerical
analysis to foresee the effect of capsules in the overall mechanical
strength is provided and discussed. Section 4 addresses a similar study
but oriented to a quite different material system and configuration,
namely, encapsulation-based self-healing polymer materials. Unlike the
previous section, here a micro-scale model is presented, where the
interaction of a polymeric capsule with the surrounding polymer matrix
is fully analyzed under periodic boundary conditions. This configura-
tion makes it possible to assess in an efficient way the effect of
important design variables like the capsule volume fraction. The
prediction of the homogenized mechanical properties is presented
and discussed in terms of the information available in the literature.
Section 5 is devoted to establishing the limitations found so far during
the execution of this approach using the commercial software to carry
out this work. This paper finishes with Section 6 providing a summary
of the main findings and some remarks about the applicability of the
results.

2. Modeling framework

The simulations performed in this work rely on the combination of
two computational techniques. On the one hand, the XFEM has been
used to model the initiation and propagation of a crack that might be
initiated both in the matrix and in the capsule. On the other hand, these
two parts are attached to each other by means of the corresponding
interface. The interaction between both surfaces is implemented via a
surface-based cohesive behavior governed by a traction-separation law.
Although a more specific description of these techniques can be found
in ref. [22], for the sake of clarity, both techniques are summarized in
the following paragraphs.

2.1. XFEM-based cohesive segments to model solids

This work uses a built-in implementation available in the commer-
cial software Abaqus, where the cracks do not have to be prescribed and
therefore, the initial solid structure is intact. Two criteria must be
defined: the initiation of a crack and the propagation of such crack. This
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procedure relies on the explicit determination of the crack faces, whose
locations are used to establish an interaction law between both lips
which is dependent on the magnitude of their separation. Mesh
discontinuities representing cracks are carried out with a combined
strategy using the phantom node technique [23,24] and the Level Set
method [25,26]. Both procedures prevent the need of including the
singular-dependence of the stresses around the crack-tip and the need
to make the crack paths independent of the geometrical features of the
mesh. A crack can appear in the centroid of any element of the mesh
when the maximum principal stress calculated in its integration points
satisfies the following criterion

Omaxps }
O.*

where Opaxps is the calculated maximum principal stress and o stands
for the maximum strength of the material. The adopted criterion
indicates that a negative principal stress does not have any effect on
the fracture response: the element cannot be fractured if it undergoes a
compressive stress that exceeds the material strength o”. Therefore, this
situation implies two things: (i) the physical meaning of o" is the
maximum tensile strength of the material, and (ii) Eq. (1) cannot be
used as the only fracture criterion if crushing mode is also a dominant
failure mode in the material. The extension of an already started (or
prescribed) crack will occur if the element ahead of such crack fulfills
Eq. (1), in which case the crack length will increase with a new segment
cutting it.

After satisfying Eq. (1) in a certain element, a discontinuity oriented
orthogonally to the maximum principal direction is introduced in that
element. This discontinuity is represented by means of a jump in the
nodal displacements via the phantom node method [23], which consists
of adding an extra superposed node to every mesh node. When a mesh
element is pristine, the phantom node overlaps and follows the move-
ment of the real node. However, if an element is decided to be broken,
the phantom nodes bounding this element are activated and their
movements are decoupled from the real nodes. This extra set of nodes
allows for unfolding the field of displacements of the original element
into two parts. The physical location of the crack lips is determined
using the Level Set method, which makes use of two signed distance
functions to locate the material points above or below the crack surface,
as well as those points laying ahead or behind the crack front. Full
details can be found in refs. [25-28]. The amount of separation between
a real node and its corresponding phantom node is ruled by a cohesive-
like law. Both nodes become fully independent once the relative
distance between them exceeds the cohesive threshold.

The aforementioned cohesive law, the so-called damage evolution
law, controls the degree of softening, or cohesive stiffness, when the
crack opens. Immediately after the insertion of the crack, the cohesive
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Fig. 1. Traction-separation response at the crack faces.
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traction between the crack lips is set equal to the material strength (¢").
Abaqus uses an “extrinsic” approach [29], which means that the
evolution law is formulated independently from the initiation criterion,
because the crack location is not known a priori. For the sake of
conciseness, only the damage evolution of the normal component to the
crack faces is described next.

Fig. 1 shows the traction-separation response in the normal direc-
tion to the crack faces. Three paths are identified: path (1) corresponds
to the crack opening associated to a monotonic increase between the
crack faces, path (2) represents the traction between the crack faces
when either the crack arrests or it is newly being re-opened, and path
(3) indicates the full fracture or traction-free state. This response can be
summarized as follows

Path (1): 1, =z,j‘(1—%) 0<6,<5"
Path 2): 7, =t,;*%(1—§—€) 0<6,<8"

Path (3): 1, =0 5,26 )
where t, is the normal traction acting between both crack faces, #," is the
maximum allowable stress at fracture initiation, 7, stands for the
unloading value of the normal traction, §, is the current normal
distance between the crack faces, 5 is the length of the cohesive
interaction and &, indicates the crack opening just before unloading.
According to Fig. 1, the traction between the crack faces given by 7,
experiences a degradation process that increases as the opening
distance increases as well. This degradation during unloading is driven

by
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where d is a scalar and monotonically increasing variable expressed as

5'1 (5;k - 5;1” ]

s\ 6 -5, @
that quantifies, between 0 and 1, the deterioration of the cohesive
interaction. This degradation is necessary to account for the energy
dissipated during the process of fracture. If no degradation was
included, after unloading, the traction values would come back through
the path (1), what would indicate an unrealistic elastic recuperation.
Having said this, the area under this traction-separation law provides
directly the fracture energy in mode-I. In this paper, due to the loading
conditions that will be presented later on, this fracture mode is the most
relevant to describe the material fracture. This degradation applies
similarly to the shear stress components, in which case it reads as
% = (1 — d) 1, with k = s,t where s and ¢ stand for shear and tangential
components, respectively. For these cases, in case of negative shear and
tangential stresses, an anti-symmetric triangle as the one shown in
Fig. 1 is applied. More details can be found in ref. [22,29,30].

d=1

2.2. Surface-based cohesive technique to model interfaces

The capsules embedded in the matrix pre-define the interface. In
this case, an “intrinsic” formulation for the traction-separation law
between capsules and matrix can be used [30-32]. Unlike the treatment
for XFEM above, both the initiation and propagation criteria are
integrated in the same formulation. The capsule-matrix interface
consists of a zero-thickness region that involves only the surface pairs
initially in contact, as it is shown in Fig. 2 (left).

Independently of the capsule shape, the interaction that connects
the external surface of the capsule with the matrix is modeled using the
intrinsic traction-separation law showed in Fig. 2 (right). Again, for the
sake of conciseness, this figure shows only the normal component of the
interface stress. The two shear components parallel to the interface
retain similar shape, except for having an antisymmetric shape with
respect to the origin of coordinates (§,T). Similarly to Section 2.1, the
normal interface stress from Fig. 2 (right) can be expressed as follows
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Fig. 2. Traction-separation response at the interacting surfaces of the capsule-matrix interface.

Path (0), 4): T, =K, §, 5, <6,

Path (1): T, =T*(%) 5,<5,<6"

Path (2): T, =K, s, 0<8,<3

Path (3): T, =0 5,28 5)

where T,' is the maximum normal tensile stress allowable by the
interface and 7, represents the degraded tensile stress when the inter-
face is unloaded/reloaded. It must be noted that, unlike in the extrinsic
approach, here the surface is initially stress-free, and a linear and elastic
response, given by Path (0), is produced until reaching the critical value
T;%. This elastic response is governed by the stiffness K, the so-called
penalty stiffness, whose value is calculated as a function of the two
adjacent material stiffnesses [31]. It has been proved that its value has
no influence on the overall capsule-matrix stiffness [15]. Moreover, this
work assumes that the normal and shear penalty stiffnesses are
decoupled, therefore a pure normal opening of the interface does not
produce shear forces, and vice versa. Once the interface reaches the
peak stress T,, or equivalently, the interface surfaces separate a
distance §,, the initiation of debonding is triggered. More generally,
the initiation criterion is fulfilled when the following relation is met

T, 1T}
max § max1 0, s T
T )

where the subscripts n, s, t stand for the normal, shear and tangential
components of the interfacial stress. The starred stresses are the
maximum stresses withstood by the interface in the corresponding
direction (i.e., interface property) and are defined positive. This
condition prevents debonding initiation when the interacting surfaces
are only under pure normal compression.

If the aperture of the interface still continues, the process of
weakening is followed through Path (1), until reaching the critical
separation value §,°. At this state, within Path (3), the cohesive force
between surfaces vanishes and the energy dissipated in the process
corresponds to the interface fracture toughness (mode-I in this case
showed in Fig. 2). Path (2) represents intermediate unload/reload of
the interface after initiation and it yields the degradation given by

7,
T

K,=(1 - D)K, @
where the damage variable of the interface is
_ 6_:[ 61?_5" )
X €))

If the interface undergoes compression, the pressure overclosure
relationship governs the normal reaction, where the original penalty
stiffness K,, is used to prevent the interpenetration between both
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surfaces, as indicated by Path (4). It must be noted that Path (4) can
also be reached even when the Path (3) has been reached in a previous
stage; in this case both interface surfaces are treated as two non-
cohesive surfaces ruled only by the pressure overclosure relationship to
avoid the aforementioned surface overlapping. Regarding relative
tangential displacement (shear), when the interface is under compres-
sion but the shear cohesive stiffness is not damaged yet, the cohesive
attraction parallel to the surface is activated. If any of the two shear
stiffnesses reach the shear debonding initiation (see Eq. (6)), the
degradation process will occur similarly as shown in Fig. 2. Further-
more, if full shear debonding takes place under compression, a
frictional model can be considered. However, in the present paper,
for the sake of simplicity a frictionless contact is assumed.

The area below the curve in Fig. 2 provides the energy dissipated to
produce a new pair of fully disconnected surfaces, namely, the interface
fracture toughness. The positioning of the capsules with respect to the
applied load can generate mixed-mode propagation response of the
cohesive interface. The propagation mode mixity involves different
energies associated to the debonding capability in normal (n) and
parallel directions to the interface (s, t). This work assumes that the
interaction between the energies of each individual mode (i.e., n, s, t)
follows the Benzeggagh-Kenane [33] model given by

% _ vk * * ( Gs )}7
G* =G, + (Gg — G)| ——
G,+Gs
where G" is the total interface fracture energy, G, is the energy release
rate calculated from the traction and normal displacement during
interface opening, Gs is the energy release rate calculated from the
combined shear stress and its corresponding shear displacement
(namely, S collapses both s and t directions), and the power 5 is a
cohesive property parameter that describes the interaction between
modes. The properties G* and G{ represent the critical interface
toughness related to each direction separately. The debonding is
completed and can evolve when the total energy release rate calculated
is greater than or equal to G . For the sake of simplicity, this model
assumes that the critical fracture toughness is equal in all directions.
Also, taking into account the effect of this parameter on the re-
sponse [34], a tentative value = 1.45 has been used [35].

It is worth mentioning that, apart from these assumptions, more
elaborated criteria could have been used (e.g., ref. [34]). However,
given the high level of brittleness of the interface present in cementi-
tious-based materials (Section 3.3), they would produce negligible
effects in the mechanical response. Once the debonding has been
triggered by reaching the interface peak strength, the difference in
resistance to debonding between the three directions is negligible
compared to the effect driven by such peak value (the softening slope
is in general very steep for the studied cases). On the other hand, the

©)
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Fig. 3. Beam decomposition in three regions.

FEM

chemical affinity of the capsule and the matrix in polymer-based
systems leads to quite strong interfaces. This situation rarely produces
clear debonding, and therefore the breakage of the capsule becomes the
main dominant mechanism. Anyway, both situations of capsule break-
age and capsule debonding are equally studied in Section 4.1.

3. Model application to self-healing concrete

A common experimental setup used to assess the encapsulation-
based self-healing strategy in concrete structures consists of using a
classical three-point bending test [36-39]. Cylindrical capsules made of
glass containing the healing agent are introduced in the mold with the
help of a low-stiffness cord that sets their fixed position [39]. After
positioning the capsules, the concrete is poured into the mold, the
capsules being fully embedded in the concrete matrix. The choice of
using glass capsules is mainly due to the brittleness matching of both
materials at the scale size of the concrete constituents.

3.1. Concrete beams with embedded tubular capsules

This section presents a model that simulates the mechanical
response of a realistic-sized notched concrete beam with several glass
capsules embedded in the middle region of the beam, where a crack
propagates till getting the total fracture of the beam. The aim of this
sample model is to show how this methodology might be useful for
experimentalists in order to get a better understanding of the interac-
tion between cracks and capsules in a more realistic situation. Although
the present example might be considered illustrative, the model
developed for this work can easily be modified and used to explore
different situations that affect the capsule breakage. These factors could
be the number, size and positions of the capsules, as well as the possible
mismatch of material properties (for example, quasi-brittle polymeric
capsules), among others.

3.2. Numerical setup

This model consists of a rectangular beam composed by three
regions: a central part where capsules are embedded and two wings.
Fig. 3 shows schematically this composition.

The central part of the beam is numerically described by means of

Uy =0

Square cross-section Capsule dimensions Notch dimensions

50 mm 1.5mm
— S -«
100 mm @ 10 mm
l © © ¢
-
5mm

Fig. 4. (Top) Schematic view of the setup: geometry, global coordinate system, boundary
conditions and prescribed load. (Bottom) Cross-section of the beam, capsules dimensions
and geometry of the beam notch.

463

Materials & Design 130 (2017) 459-478

the extended finite element method, whereas both lateral wings are
described by using conventional finite elements. The central part
contains the capsules at certain prescribed locations and similarly to
this beam part, the capsules are also described by extended finite
elements. Capsules are joined to the matrix by means of cohesive
surfaces, as it will be shown later. The beam wings are connected to the
central part via tie constraints. This tie is a surface-based ligament that
makes it possible to join two different mesh types with different
element density. The aim of this arrangement is to speed up calculations
because the capsules have only been located in the neighborhood of the
notch, as it is shown in Fig. 4. In this bending test, it is expected that a
crack will emanate from the notch, and therefore, it will interact
directly with the capsules located nearby. This makes it possible to
study the role of the capsules in terms of effects of weakening or
strengthening of the overall beam strength.

The beam is subjected to a three-point-bending load, where the span
distance covers the whole beam length, as it is shown in Fig. 4 (top).
This configuration simplifies the mesh details of the wings, but it can
only be performed in a numerical test and not in a real specimen. Both
support lines have restricted vertical movement whereas only one of
them has restricted horizontal displacements along the axis-x. To
prevent any rigid body motion, two rear nodes of the support lines
are constrained along the the z-direction. The load is applied via a
prescribed quasi-static vertical displacement on the center-top line of
the beam as a linear function of time. This displacement at the instant ¢
is given by u,(z) = u;"*z/T, where 7 € [0,T]. All calculations performed
in this work make use of the implicit solver of Abaqus/Standard, where
the total duration of the load has been set T=1 and the maximum
prescribed deflection was u"* = 0.185 mm.

The beam used in this work has a total length of 80 cm with a
squared cross-section of 10 cm, as it is shown in Fig. 4 (bottom). The
width of the central region has been set to 10 cm and the wings length
to 35cm each one. All capsules used in this model have tubular
geometry with a length of 50 mm. For convenience, the capsule
geometric ratio is defined by t/R, where t is the wall-thickness and R
stands for the internal radius. The notch performed in the beam has
been designed with a corner-beveled geometry, as it is shown in Fig. 4

I

/
/
/
L
/

/

Fig. 5. (Top) Capsules location and coordinate system. (Bottom) Detail of cross-section of
the mesh through the beam, using a maximum element size of 5mm for the matrix.
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(bottom). This geometry captures relatively well the similarities to
those notches produced after using a diamond saw in real concrete
beams in the lab [3]. Moreover, the selected geometry enhances the
regularity mesh with the minimum number of partitions. The height of
the notch is set to 10 mm with a width of 5 mm. Both dimensions
correspond to the common notch size performed in real tests [39].

Regarding the insertion of capsules in the beam, a script written in
Python programming language has been developed to be used in the
Abaqus' command line interface (CLI) [22]. This script locates the
capsules with prescribed user-defined coordinates, assuming that the
local axis of reference is in the middle of the bottom surface of the
beam, as it is shown in Fig. 5. Given the coordinates, the script creates
automatically all the needed partitions in the central region according
to the available space, in order to facilitate the subsequent meshing
process (intermediate lines in the same top figure). In that sense, the
necessary space required for the capsules is subtracted from the initially
solid beam, and the seeds along the circumferential edges of capsules
are adjusted to match those of the created tubular cavity in the beam
with the aim of getting a circumferentially conformal mesh, as Fig. 5
shows. This procedure via scripting discards the formation of distorted
elements and imposes a smoother gradient of element size from the
beam element size up to the capsule element size.

The capsules and the central region of the beam have been
discretized using 8-node linear brick elements with reduced-integration
and hourglass-control (C3D8R in Abaqus nomenclature) [22]. The
beam wings have been meshed using a fully regular grid of 25 mm
length where 20-node quadratic brick elements have been used
(C3D20), i.e. 224 elements per wing. Each capsule has uniformly been
meshed a minimum of 4 elements through the thickness. In Section 3.4,
devoted to the mesh effects, more details about element size employed
for the beam and the capsules are presented.

3.3. Material properties

The elastic response of the materials used to represent the concrete
and the capsules is isotropic, homogeneous and linear elastic, up to
reach fracture. Therefore, their parameters are then represented by the
Young's modulus, denoted by E, and the Poisson's ratio, denoted by v.
The matrix elasticity is chosen to represent a typical concrete [40] and
the elastic response of the glass is given by a conventional annealed
glass [41,42]. Table 1 summarizes the values of material properties
used in this work. The fracture properties are assumed to be those of
quasi-brittle materials, according to the proposed model described in
Section 2. The corresponding parameters are represented by the
maximum tensile strength, ¢, and the fracture energy, denoted by
G'. The subscripts “m”, “c” and stand for matrix, capsule and
interface, respectively.

There is a vast variety of concrete available depending on the
application, however, a common range of the critical stress intensity
factor for a typical unreinforced concrete under tension is
Kic=0.9 —1.5 MPaym [43-45]. Unless stated otherwise, this work
uses an intermediate value equal to 1.2 MPaym. In terms of fracture
energy, the latter value corresponds to G¥ =36 J/m? by using the
approximate relationship for stationary cracks G = K*/E and the
Young's modulus from Table 1. Similarly, the maximum tensile strength
of unreinforced concrete can vary within the range 2-5 MPa [40]. This
work makes use of a conservative value given by o =2.5 MPa.
Regarding the fracture parameters for glass, it is known that the tensile
strength exhibits a very high variability even when specimens similarly

@
1

Table 1
Material properties: E - Young modulus, v - Poisson ratio, 0" - Tensile strength and G~ -
Fracture toughness energy.

E (GPa) v(-) o’ (MPa) G" (J/m?
Matrix () 40 0.2 2.5 36, 75
Capsule () 70 0.2 60 8
Interface (;) - - 1,2,5,10 1
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produced are tested in the same conditions [46,47]. A common interval
of failure stress ranges from 15 to 200 MPa, depending on whether
some specific treatment is carried out in order to increase the mechan-
ical performance [48]. For the purposes of this work, an intermediate
value equal to 60 MPa has been used. This value represents approxi-
mately the strength value between a conventional annealed glass and a
heat-strengthened glass [47]. Similarly as for concrete, for reference,
the fracture energy for typical soda-lime glass in ambient air ranges
approximately from 6 to 9 J/m? [49,50]. A value equal to 8 J/m? has
been used in this work.

The maximum interface tensile strength (6*) formed between
concrete matrix and glass capsules, hereafter referred to as bonding
strength, provides a measure of the static normal load required to
separate a piece of concrete fully adhered to a flat glass surface. The
particular values of this interface strength are vaguely reported in the
literature, with the exception of some works [51,52]. In these works, a
glass-concrete interface was created just placing a conventional glass
plate in contact with fresh concrete, and allowing the bimaterial sample
to cure as usually done with pieces only made of concrete. In that sense,
no additive nor surface treatment to enhance the adherence between
both materials was used. These studies showed that this interface is
extremely brittle and the displacement involved to reach the interfacial
failure lies in the order of one micron. Furthermore, they also obtained
an average value of approximately 1 MPa, both debonding in mode-I
and mode-II. In this work, with the aim of investigating the applic-
ability of the proposed model, according to Table 1, a total of four
values of ¢;* have been studied. The values equal to 1 MPa and 2 MPa
might be considered as low-to-medium values of the capsule bonding
strength. However, the values 5 MPa and 10 MPa might be assumed as
strong interfacial values, in which case the surface would have been
treated in order to improve the adhesive strength. On the other hand,
the interfacial fracture toughness, denoted by G*, provides a measure of
the difficulty to extend an existing interfacial crack between the two
aforementioned adhered surfaces. For all cases studied in this work, this
value has been kept constant and equal to 1 J/m?. This value generates
a very brittle response typically found not only in glass-concrete
interfaces but also in interfaces formed between glass substrates and
different cementitious-based materials [17].

3.4. Mesh convergence

In order to establish the degree of mesh refinement required to
obtain reliable results, several preliminary calculations using a notched
beam without capsules have been studied. Five element sizes have been
used to mesh the central region of the beam: 15, 12.3, 9.6, 7.0 and 5
mm. As mentioned in Section 3.2, the element size of the beam wings
has been kept constant to 25 mm. It has been checked that using
smaller elements to mesh the wings has a negligible effect on the global
results, although it increases considerably the computational time.
Overall, all element sizes here tested are well below the value ruled by
the critical element size discussed in reference [53], and whose value is
of the order of half a meter for the concrete properties from Table 1.
However, given the size of the specimen, an adequate mesh size has to
be found in order to guarantee mesh independence in terms of size, as
XFEM is able to deal with the true discontinuous character of
cracks [54], unlike in a continuous damage approach [55].

Fig. 6 shows the force-displacement curves for two sets of simula-
tions. The first set, with curves in black color, corresponds to the
concrete properties defined as the reference properties (6=2.5 MPa,
G}¥=36 J/m?). The second set was performed using a concrete material
with the same tensile strength but setting a higher fracture toughness
(G¥=75 J/m?, curves in grey color). Due to this higher toughness, the
total imposed displacement was increased up to 0.24 mm, which is
enough deflection as to make the crack front pass clearly the neutral
axis of the beam. The aim of this analysis is to check whether the
element size chosen for the reference properties is also valid in case of
dealing with a tougher concrete. As it can be appreciated, using an
element size below 10 mm already produces a very similar response,
despite some small differences at the end of the load. This last part
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Fig. 6. Load-displacement curves for different element sizes.

corresponds to the moment when the crack has propagated more than
half beam thickness. This toughening region is very sensitive to the
specific trajectory followed by the crack tip. In that sense, any small
deviation can activate a more expensive propagation mode than mode-I
in bending. This situation can increase the force required to deflect the
beam. Under a pure mode-I at the crack tip, like in the present case, the
crack trajectory should be a plane perpendicular to the beam axis.
However, as it will be shown in Section 5.1, the current XFEM
implementation can introduce artifacts that are originated by a still
improvable interaction of the crack tip and the boundary between mesh
elements. It will be shown that as long as the crack lips intersect cleanly
the elements, the crack pattern seems to be physically plausible.

Taking into account the computational cost of these simulations, as
Fig. 7 shows, for practical purposes an element size equal to 7.0 mm has
been used. As it can be seen, using a smaller size does not increase the
resolution of the response but increases the computational time
drastically. These analyses were carried out in a workstation with a
processor Intel Xeon E5-2667 2.9 GHz. The maximum amount of
memory used by the finest mesh was over 2.5 Gbytes. This is an
important practical feature because the introduction of capsules
necessarily enforces to use a finer mesh around and in the capsule
itself, as it is shown in Fig. 5.
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Fig. 7. Computational time to simulate fracture of a plain unreinforced concrete beam as
a function of the element size.
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Fig. 8. (Top) Load-displacement curves for different element sizes used to mesh the
capsule. (Bottom) Aspect of the capsule breakage under a bending deflection equal to
0.3mm.

A similar analysis has been performed to identify the optimal
element size for the glass capsules. Fig. 8 shows the results when a
single capsule was tested under three-point bending load. The capsule
has an internal radius of 1.5 mm and thickness of 0.175 mm. The
capsule is simply supported at the lowest points of each side, with a
span equals to its length, 50 mm. The load is applied at the middle of
the top part using a thin rigid stub that imposes a total displacement of
0.3 mm (see snapshot of Fig. 8). The capsule is not precracked, and it is
expected to initiate a crack due to bending at the middle of the bottom
part. This loading condition is not equivalent to the real one (i.e.,
embedded capsule that undergoes a combination of bending and
uniform traction), nevertheless, from the numerical point of view, this
test is equally useful to assess the mesh influence. Two mesh lengths
have been distinguished: 1, is the length of the element along the
capsule axis and l; stands for the length of the element used to
discretize the circumferential contour. The number of elements through
the thickness was fixed to 4 (that corresponds to a radial element length
of 44 ym). The sizes [, and I are the critical ones because they might be
bigger than the recommended critical element size for glass, which is
about 0.3 mm. Unfortunately, meshing with such a small element for
capsules would generate a huge final mesh for the whole problem
(beam with capsules) and it would become computationally unafford-
able. Therefore, several larger element sizes have been tried, with the
aim of determining which size can generate a reproducible and
characteristic mechanical response. Fig. 8 (top) shows the force-
displacement response for several combinations of I, and lc. The
expected response consists of three stages: (i) a linear response
corresponding to the bending load before failure, (ii) the initiation of
a crack, revealed by an interruption of the previous linear regime via a
force drop and (iii) crack propagation until the final fracture. It is worth
mentioning that a deflection of 0.3 mm was not enough to break the
capsule completely, as it is shown in Fig. 8 (bottom). In any case, this
level of maximum deformation was enough for the purposes of this
analysis. In that sense, it has been obtained that l, is the most critical
length, in such a way that using a value larger than 2 mm produces
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visible deviation of the expected response. However, using a circumfer-
ential length of 0.35mm or 0.26 mm produced small differences.
Therefore, the pair of values given by 1, = 1.7 mm (30 axial elements)
and I = 0.26 mm (a minimum of 40 circumferential elements) were
used, as they represent an acceptable compromise between accuracy
and computational effort. Regarding the interface, taking into account
the elasticity of the two adjacent materials (concrete and glass) and the
low level of bonding strength, it has been checked that the selected
meshes behave consistently with what has been reported by other
authors [31,56].

3.5. Interface effect on bending response

This section presents the mechanical response under bending of the
beam shown in Fig. 4. This beam contains two capsules, and they are
inserted with a distance of 25 mm above the notch.

By using the proposed model, two different, but related, mechanical
aspects are studied: on the one hand, the role of the insertion of
capsules in the reinforcement or weakening effect of the overall beam
strength under bending, and on the other hand, the analysis of which
interface strength and capsule size are more beneficial to make the
capsules break properly and, in this way, carry out the leaking of the
healing agent into the crack. Regarding the latest aspect, this work is
restricted to analyze the breakage of the capsules, and therefore they
are assumed empty.

It is worth mentioning that in the case studied, the beam has a
central notch to constrain the crack path along its middle plane with the
aim of enforcing the intersection with the capsules. This is a common
procedure used in lab tests [3,57,58]. Therefore, the path will not be
affected by the material properties as it might occur if the absence of
symmetries was constraining the problem [59].

Four values of the capsule geometric ratio were studied: t/R = 0.12,
0.23, 0.46, 0.8, being the pairs (t,R) = (0.175, 1.5), (0.4, 1.75), (0.92,
2) and (2, 2.5), respectively (in mm). According to Table 1, also four
values of the maximum interface tensile strength (¢;*) were used for
each geometric ratio. Therefore, these combinations of capsule size and
interface strength represented a total of 16 simulations.

Fig. 9 shows the response of the load as a function of the imposed
displacement for three representative cases of bonding strength and
capsular geometric ratio. In this plot, the case ¢ = 2 MPa has been
omitted because it produced a similar global response to the case 67 = 1
MPa. Similarly, for the sake of clarity, the case t/R = 0.23 has also been
omitted in this figure. For reference, the result obtained from a concrete
beam without capsules (labeled “Solid”, gray line) has also been
included in order to facilitate the comparison when the capsules are
present. As expected, the insertion of only two capsules has no effect on
the global elastic response, because the capsule volume fraction is still
very small compared to the volume fraction occupied by the concrete
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Fig. 10. Maximum force developed by the beam as a function of the geometric ratio and
different interface strength levels. (D = debonding, B = breakage).

material (=99.92% for the case t/R =0.8). Fig. 9 shows that the
insertion of two small capsules (t/R = 0.12) contributes very poorly to
the mechanical response, even though a strong bonding interface is
used. In any case, it is expected that capsules with low cross-sectional
geometric ratio (either the capsules detach or break), have a poor effect
on the overall response under bending, mainly due to the weak efforts
required to damage them. However, this situation changes when thicker
capsules are used, as it will be shown later on. Nevertheless, due to
practical reasons, such small capsule size is of great interest for
experimentalists in self-healing and therefore, the effect of the number
of capsules has been treated in more detail in the next Section 3.8. Also,
as general feature from all cases, the presence of the capsule seems to
make the shape of the curve sharper, being this a consequence of the
high degree of brittleness of the capsule as well as the low value of the
interface fracture energy (see Table 1). Fig. 9 clearly shows the
important effect of the geometric ratio: when the capsules are better
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bonded to the matrix, the maximum force developed under bending
also increases, although this increase, in a non-linear fashion somehow,
becomes more evident when thicker capsules are employed.

3.6. Capsule size effect

Fig. 10 presents the maximum force extracted from the load-
displacement curve as a function of the geometric ratio. In this plot,
the dotted gray line establishes the baseline in strength calculated from
the beam without capsules (Solid).

As it can be appreciated, albeit less visible in the previous Fig. 9, the
insertion of two small thin capsules (t/R = 0.12) already leads to a
moderate increase of the maximum load that the beam can resist under
bending. In terms of reinforcement effects, when the bonding strength
equals 1 MPa, Fig. 10 shows that an increase of the geometric ratio has
a moderate rise of the peak force, although the capsules debond
(labeled as “D”). This slight rise of load (for the thickest capsule up
to ~ 200N) can be due to the amount of surface initially in contact with
the matrix: a capsule with larger external diameter has a larger area
bonded to the matrix, and therefore, the force required to get separated
from the concrete is also higher (this surface is almost 3 times greater
for t/R = 0.8 compared to the case t/R = 0.12). When the interface
strength increases to 2 MPa, the effect of the geometric ratio leads to a
somewhat more visible effect on the peak force compared to the
previous case o = 1 MPa. Moreover, this level of bonding is already
sufficient to break the capsules with a geometric ratio t/R=0.12
(labeled as “B”, in Fig. 10). As mentioned before, this capsule size is
commonly used by experimentalists to test encapsulation-based self-
healing concrete, because sufficient amount of healing agent can be
introduced and dispersed by the concrete structure. Therefore, in terms
of achieving an adequate healing mechanism, this result suggests that,
as least, an interface strength of 2 MPa has to be ensured in order to
break and liberate the fluid content inside the crack gap. Conversely, a
weaker capsule-concrete interface would not be sufficient to break the
capsule and, as a consequence, the healing agent would not be released.

Following this reasoning, if for some practical reason, or technical
requirement, thicker capsules are used (for example, with the aim of
strengthening the beam simultaneously), the current model makes it
possible to quantify the strength level of the interface to trigger the
fracture of the capsule under certain level of deflection. In this
particular case, Fig. 10 shows that capsules with t/R = 0.23 require
an interface strength equal to 5 MPa to break them, while doubling this
value of t/R requires also to double the value of 5;* (t/R = 0.46 requires
10 MPa). However, with the insertion of much thicker capsules (t/
R =0.8), even 10 MPa is not sufficient to break the capsules, although
a considerable reinforcement is positively achieved.

3.7. Detailed inspection of breakage mechanism

As mentioned before, capsules with geometric ratio t/R =0.12
(t=0.175 mm, R = 1.5 mm) has been preferred for experimentalists
to perform laboratory tests to analyze the healing efficiency of the
encapsulated-based self-healing concrete. Therefore, this section pro-
vides a detailed analysis of the breakage sequence of the beam using
this capsule size.

This analysis presents the differences of the global response when
the capsules detach or break. Fig. 11 (a) shows the load-displacement
curve for the cases 6 = 1 MPa and 5, = 2 MPa. As it can be observed,
although both cases produced a very similar response, in fact, the
internal failure mechanism was different. As described before, these
thin capsules detached from the matrix when the interface strength was
1 MPa, however, they fractured when the interface increased to 2
MPa. The latter value seems to be high enough to transfer the stresses
from the matrix to the capsule. The point B marked in the solid curve in
Fig. 11 (a) indicates the moment in which a crack initiates in the
capsule. This crack can be appreciated in the zoomed region depicted in
Fig. 11 (b). Conversely, when the interface is weaker, that is, 1 MPa, at
that point the capsule initiates the debonding process: the interface
cannot withstand the pull-out stress and the capsule slides into the
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cavity. The point labeled D marked on the dotted curve in Fig. 11 (a)
indicates the moment immediately after full debonding occurred.
Likewise, a zoomed view of this state can be seen in Fig. 11 (b). In
this case, the capsule lost contact in the right side while its left side still
remained attached to the matrix. The points B’ and D’ correspond to two
more advanced stages during the bending process, in which the crack
has exceeded the neutral axis of the beam, and therefore, the overall
bending load has dropped significantly. This result suggests that the
distinction between the capsule failure and capsule debonding is almost
impossible to detect from the macroscopic point of view.

3.8. Effect of the number of capsules

This section analyzes the impact of the number of capsules with t/
R=0.12 inserted in the beam. A total of seven cases have been
simulated, from two capsules up to eight capsules. In all cases, the
capsules were located always at the same vertical distance from the
notch, as indicated in Fig. 5, and evenly distributed along the line
perpendicular to the beam axis. Similarly, the interface tensile strength
was set to o/ = 1 MPa for all cases.

Using this level of bonding strength, all capsules detached from the
concrete matrix, as it can be seen in the snapshots shown in Fig. 12.
This figure depicts two sample cases, the left one, a beam with 6
capsules and right one, a beam with 8 capsules. All cases studied
showed that all the capsules contained in the beam debonded simulta-
neously, although not all of them debonded at the same side of the
notch. The latter behavior might be originated by the solver itself, for
example, the order in which the equations are solved or the numerical
precision. In that sense, in a geometrically symmetric problem, small
numerical differences introduced by the mesh procedure, for example,
may trigger the initiation of debonding slightly sooner in one side than
in the other, in spite of both sides having reached the critical debonding
stress.

In terms of the force versus displacement curve, it is worth
mentioning that the eight cases produced a very similar overall
response, i.e. the same curve shape, looking all of them very similar
to the curves already depicted in Fig. 9 (left) and Fig. 11 (a). However,
some differences were recorded regarding the value of the maximum
load reached during the bending process. With the aim of presenting
more clearly these results, Fig. 13 shows the peak force extracted from
the load-displacement curve for each case simulated. This plot has
double y-axis: the left axis quantifies the total load experienced by the
beam, while the right axis (with font in gray color) quantifies the
average force contributed per capsule. This last number has been
defined as (Fiax — Fsolid)/N., Where F.x is the peak force obtained
under bending when N, capsules are inserted and Fy,);q stands for the
peak force obtained when the beam has no capsules (Solid case, see
horizontal black dashed line in Fig. 13).

Focusing on the reinforcement effects by inserting glass capsules,
these results not only show that increasing more capsules increases the
overall tensile strength too, but this increase occurs in a linear way (see
black squares). However, the force contribution per capsule decays as
the number of them increases (see gray circles). This behavior might be
explained by two counteracting events that are taking place simulta-
neously. On the one hand, the insertion of the capsules represents an
increase of resistance to the external load required to break the concrete
beam. This feature has been analyzed previously, and it happens
regardless of whether the capsules debond or break. On the other hand,
the gradual increase of capsules also leads to reduce progressively the
distance between them. As a consequence, this situation facilitates the
interaction of the stress fields generated by every capsule and therefore,
modifies the level of stress of the matrix housed in between them.

Fig. 14 shows the profile of tensile stress (o, parallel to x-axis)
extracted from the segment that stands along the beam depth and
passes through the center of the capsules (dotted line parallel to z-axis
depicted in upper snapshot). Two sample cases are depicted and
compared: a beam with 2 and 6 capsules, where the capsule inter-
distance are 50 mm and 14.38 mm, respectively. The data in both cases
were extracted at the same applied deflection (0.07 mm). At this stage,
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Fig. 11. Effect of the capsule bonding strength. Detail of the initiation failure mechanism of a beam with two capsules with geometric ratio t/R =0.12 for ;= 1 and 2 MPa (B=
breakage, D= debonding). (a) Load-displacement curve. (b) Detail of the capsule breakage and debonding.

Fig. 12. Zoomed view of the crack path and debonding of capsules: (left) beam with 6 capsules and (right) beam with 8 capsules (deformation scale factor x 100).

the crack front had not reached the capsules yet, as it can be observed in
the top image of Fig. 14. At the same level of applied deflection, the
tensile stress in the matrix is higher when the number of capsules
increases, or equivalently, when the distance between capsules is
shortened. In the regions where capsules are more densely clustered,
the intermediate matrix is being more susceptible to fail sooner despite
these capsules are working as reinforcement elements. Therefore, this
result might suggest that capsules should be sufficiently separated from
one another as to prevent their interaction, and therefore, to prevent a
premature failure of the matrix in between them. In other words, a
minimum capsular interdistance should be respected in order to get an
optimal overall performance. Further analysis to quantify an optimal
capsular clustering lies in the scope of forthcoming research.

4. Model application to self-healing polymers

Although there are several types of self-healing polymers [60], this
modeling application is focused on polymers with embedded micro-
capsules which carry the healing agent. This type of self-healing
polymers has been studied experimentally using the Tapered Double
Cantilever Beam (TDCB) specimen via the so-called White protocol [61].
The experiments show how the cracks go through the polymer breaking
the micro-capsules and, as consequence, delivering the healing agent in
the crack plane.
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4.1. Polymer matrix with spherical micro-capsules

Numerical simulations of the whole TDBC specimen with micro-
capsules are limited due to the difference of the dimensions between
both the specimen, with dimensions of millimeters, and the micro-
capsules, with radius of hundreds microns and a shell thickness of
hundreds of nanometers. In this section, the mechanical behavior of the
self-healing material is studied using a multi-scale approach. It is
assumed that the micro-capsules are evenly distributed in the polymer
matrix. Therefore, the material is described using a representative
volume element (RVE) that contains a single micro-capsule. A cube-
shaped RVE is selected for this work, where a micro-capsule with a
finite shell thickness is located in the center of the cube, as it can be
seen in Fig. 15. The three fundamental dimensions of the system are the
length of the cube [, the external radius of the micro-capsule R, and the
shell thickness of the micro-capsule t.. Using three-dimensional periodic
boundary conditions (PBCs), the RVE represents an infinite system and
can provide the mechanical response of an encapsulation-based self-
healing polymer. The periodic distribution of the micro-capsules is a
strong hypothesis which does not take into account the randomness of
the material. Yu et al. [62] showed that the particle clustering has
effects in the failure mechanisms. A similar trend in particle reinforced
metal matrix composites was found in ref. [63]. Further analysis of the
randomness effects is out of the scope of this paper.
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4.2. Representative volume element domain

This micro-scale model can be described by the external radius R,
and the volume fraction V; of the micro-capsule content, where V; is
defined as the volume of micro-capsules divided by the total volume.
Taking into account the periodicity, the RVE length [, which is the mean
distance between micro-capsules, can be calculated from the volume
fraction Vyand R, as follows

1=Rfv*‘34:;[.

The radius R, is an experimental value that ranges 25—250 um,
however, the volume fraction V; must be estimated. The range of V
can be calculated by assuming some hypotheses based on the expected
healing behavior. These hypotheses are described as follows. The
healing agent contained in a single micro-capsule must fill the crack
plane around it. Assuming that the micro-capsules are periodically
distributed, only one RVE with a horizontal crack in the equator is
considered. It is also considered that the crack has a constant gap and
the volume of healing agent spread in the crack gap is only the half of
the micro-capsule volume. This last assumption takes into account that
the micro-capsule has a shell thickness, the crack plane might have
some roughness, and some of the healing agent might remain in the
void after the capsule breakage.

This particular case does not include effects due to random
distributions, different aspect ratio or orientation of the capsules [64],
which are out of the scope of the present study.

Fig. 16 shows the minimum R, as a function of V; required to fill
different crack gaps. In the light of this result, a volume fraction
between 0.05 and 0.25 is necessary to fill a wide range of gaps between
5 and 50 um for the available micro-capsules, as it is marked by the gray
area in Fig. 16. This range agrees with the experimental values [65-67].

(10)

4.3. Numerical setup

The present micro-scale model consists of two parts described by
solid elements: the cubic matrix part with a spherical hole of radius R,
and the spherical shell of the micro-capsule with thickness t, located in
the hole. Each part has its own material properties and both are
descried by extended finite elements. Similarly to the previous model
from Section 3, quasi-brittle damage behavior is also used for the
polymer matrix and micro-capsule. Likewise, there are cohesive
surfaces between the external surface of the capsule shell and the
internal surface of the matrix in order to account for the capsule-matrix
interface (see Fig. 2).

PBCs have been implemented using node-to-node equation con-
straints. The global coordinate system is located in one of the bottom
vertices of the RVE, with the axis along the edges of the RVE (see
Fig. 15). The set of equations that describes the coupling between the
displacements of one node and its counterpart on the opposite surface is
given by

ut—ulm=g; Ai = u” Lj=xy2 1)
where &; are the components of the average strain tensor, Ai is the
current length of the RVE along the direction i and uf* stands for the
displacement component of the dummy node RPi. There are three
dummy nodes in the model, one per direction, which are used to
introduce the load condition. More detailed information about this
implementation can be consulted in ref. [68].

The RVE is loaded under tension in Y direction via a quasi-static
vertical displacement applied to the dummy node RPY. Therefore,
ufPY = u"7/T, where t € [0,T]. This implementation makes it possible
to take into account the Poison effect in the transverse plane XZ, in
which case the displacements u*** and u®"* are free. All the shear
components of the dummy nodes are set to zero because no shear
deformations are expected taking into account the symmetry of the
problem. The implicit solver of Abaqus/Standard has been used, where

the total duration of the load has been set T=1 and the maximum
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Fig. 15. Geometry of RVE with dimensions.
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Fig. 16. Minimum capsule radius (R.) versus the capsule volume fraction required to fill
different crack gaps (from 5 to 50 ym).

applied displacement was u,"* = 5 ym.

4.4. Material properties

Isotropic linear elastic material models have been used to describe
the behavior of the polymer and the shell of the micro-capsules until
failure. As mentioned, a quasi-brittle failure is assumed for each
material based on the maximum strength and fracture energy (see
Section 2.1). The typical materials used in an encapsulated-based self-
healing polymer consist in matrix made of epoxy resin (EPON) and a
micro-capsule of urea-formaldehyde [65]. The mechanical properties of
these materials are shown in Table 2.

It is important to mention that the epoxy properties for EPON are
obtained from the standard macroscopic experiment with dimensions of
millimeters. Therefore, these properties account for the bulk properties.
Although the elastic properties do not significantly change when
smaller samples are tested, the properties that describe the brittle

Table 2
Properties of self-polymer constituents.

E (GPa) v () o (MPa) G (J/m?
Matrix (,,)[65] 3.4 0.38 39 88
Capsule ()[69-71] 3.7 0.33 55 100
Interface (;) - - 1,2,5,10 0.1, 1, 10

behavior can significantly differ at micro-scale due to the size
effect [72]. Nevertheless, this study assumes that the epoxy properties
are the same for all the studied RVE models.

On the other hand, the properties of the urea-formaldehyde shell are
retrieved from micro experiment where micro-capsules are directly
used [69]. The stiffness of the urea-formaldehyde E_ has been calculated
indirectly from a model of the compression test of a micro-capsule.
Although the micro compression experiment is not dedicated to get the
maximum strength ¢, a range can be also extracted from the same
experiments, 69-118 MPa. This range is over the typical value
measured by different companies which make molded urea-formalde-
hyde, 55 MPa. In this study, we have assumed that ¢* = 55 MPa to
perform the simulations. Finally, the fracture energy G is estimated
from the adhesive experiments performed with urea-formaldehyde [71].
We have assumed a value of 100 J/m? which matches with the typical
fracture toughness of other thermosets measured in standard experi-
ments.

After the synthesis of the micro-capsules with the healing agent
encapsulated [73], they are mixed with the resin and cured under
standard conditions. A good affinity between the shell and the epoxy is
expected. Indeed, the experimental result of a crack which propagates
through the self-healing material shows that the interface is usually
strong enough to break the capsules. In a few cases, there are debonds
of the micro-capsules from the epoxy [74]. To the best of the author's
knowledge, there are no direct experimental values for the properties of
the interface. Therefore, a range of values is investigated as numerical
parameter, see Table 2.

4.5. Mesh convergence

The mesh used in this micro-scale model is constructed with 8-node
linear brick elements with full integration (C3D8 in Abaqus nomen-
clature [22]). After a study of mesh convergence similar to that
performed for the concrete beam model (see Section 3.4), the average
element size for all RVEs with different V; was fixed to 15 um. The
aspect of the resultant mesh is showed in Fig. 17. Taking into account
the interface properties, this size is below the value of the cohesive zone
length size discussed in [53]. Regarding the micro-capsule, two
elements through the thickness of the shell have been selected. It has
been checked that using more elements through the thickness does not
increase the accuracy, although increases noticeably the computational
effort.

4.6. Crack evolution with and without precrack

Due to the geometry of the RVE and the imposed PBCs, one single
horizontal crack located in the middle of the RVE is expected at the end
of the simulations. Two different scenarios are studied until complete
failure of the RVE (see Fig. 18). In the first scenario without initial
precrack, the initiation criteria of maximum principal stress will
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Fig. 17. Geometry of RVE with dimensions.

Without precrack

Fig. 18. Crack evolution without and with precrack.

introduce horizontal cracks on the equator of the micro-capsule.
Because the matrix has lower maximum strength, the cracks are located
first in the matrix material. Then, the cracks will grow through the
matrix and the shell until they generate a complete horizontal free
plane. In the second scenario, a precrack is introduced horizontally
close to one of the lateral surfaces at middle height of the RVE (see left
image of “with precrack” sequence from Fig. 18). This precrack, located
at (x=0, y=1/2) and along the z direction, cuts the first row of
elements in the middle (the reason of this requirement will be explained
in Section 5.1). In this scenario, the PBC equations that couple the y
displacements between nodes from opposite surfaces in x direction are
eliminated. This modification of the PBC boundary conditions avoids
the restriction imposed by the vertical periodicity and makes possible
the crack propagation along the x direction. Under the imposed tension
load, the crack will propagate horizontally through the matrix until
reaching the shell of the micro-capsule. Then, the crack will embrace
the shell through the equator. Finally, once the capsule is fully
surrounded, the crack continues through the matrix and the shell until
the complete division of the whole domain in two parts (see right image
of “with precrack” sequence from Fig. 18).

It is important to mention, that in both scenarios the default
implementation of Abaqus XFEM has been used. Therefore, new cracks
cannot be initiated in an enriched region with a crack under propaga-

tion. This limitation affects the cracking sequence in the scenario “with
precrack” as it will be discussed in Section 5.2. Nevertheless, the
homogenized stress-strain behavior of the RVE is not affected.

In the next section, the crack initiation and propagation through the
matrix and the shell of the micro-capsule have been numerically studied
for both scenarios as function of the geometrical parameters, (volume
fraction V; and the geometric ratio t./R.) as well as the interface
properties.

4.7. Breakage and debonding of micro-capsules

In order to have a fully functional micro-encapsulation-based self-
healing polymer, it is essential that micro-capsules break when the
crack reaches them (see left state in Fig. 19). In case of micro-capsule
debonding, the crack simply grows through the epoxy matrix and the
interface. As a consequence, the micro-capsules detach from the matrix
without cracking themselves, as it is represented in the right image of
Fig. 19.

The sequence of micro-capsule debonding can be described gen-
erally for both scenarios: “without precrack” and “with precrack”.
Under the imposed vertical load, the debonding starts at the area with
maximum shear, which is located at = 45° with respect to the
horizontal plane of the micro-capsule equator. This feature has
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Fig. 19. Break (left) and debond (right) of the micro-capsules after the crack propagation along the horizontal middle plane.

similarly been observed by using cylindrical capsule under far-field
tensile stress [75]. Before the initialization or propagation of any crack
in the matrix, the debonding area growths around the initial debonding
at + 45°, leaving attached the top and bottom part of the interface.
Then, when the matrix crack propagates through the horizontal plane,
the interfacial debonding is completed and the micro-capsule is fully
detached from one of the spherical caps, top or bottom. Rounding errors
during the simulation leads to this non-symmetric debonding despite
the inherent symmetry present in the model.

The breakage or debonding of the micro-capsule depends on the
coupled effect of the material properties and the geometrical para-
meters. In this section, the limit conditions to produce the breakage or
debonding of the capsule are studied within a range of ¢ for different
t./R.. According to Table 2, four interface maximum tensile strengths
(6= 1,2, 5, 10 MPa) and three values of the interface fracture energy
(G*=0.1,1,10 J/m?) have been used. The simulations have been
carried out using four different geometric ratios, namely, t.,/R, = 0.011,
0.022, 0.055, 0.111. The geometric ratios correspond to micro-capsules
with four different thicknesses, t. = 1, 2, 5, 10 um and constant external
radius R, = 90 um. In all cases, two bounding values of volume fraction
from Fig. 16 have been analyzed (Vy=0.05, 0.25). Finally, the
scenarios without and with precrack have also been included in the
present study.

The different fracture responses have been analyzed and compared
using the homogenized true stress-strain curves. The homogenized true
stress is calculated from the true stress computed in each element and
taking into account the whole volume of the RVE (including the void).
The homogenized true strain is directly obtained from the applied
vertical displacement set in the PBC. Fig. 20 shows the response of the
homogenized true stress as a function of the homogenized true strain
for three geometric ratios, t./R.=0.022, 0.055, 0.111 and volume
fraction Vy= 0.25. The interface strength values ¢;* are 1, 2, 5 and 10
MPa, while G* has been kept constant and equal to 1 J/m>. For each
geometric ratio t./R,, the scenarios without and with precrack have
been studied. As reference, every plot in Fig. 20 also depicts the
homogenized mechanical response generated by a RVE with a void of
radius R,, i.e., the void case. The lower value of ¢ for each subfigure
represents the debonding limit (solid lines), which means that the
micro-capsule debonds during the crack propagation through the
matrix for 6 equal or below this value. On the other hand, the upper
value of ¢* represents the limit of capsule breakage (dashed lines). This
limit indicates that the micro-capsule will break if the used value of ¢
is equal or larger than it. From the stress-strain curves, the homo-
genized Young's modulus (or stiffness) E can be obtained from the
initial slope. Similarly, the maximum tensile strength, denoted by 0,45,
is obtained from the peak value of the curve. As Fig. 20 shows,
debonding or rupture of the capsule cannot be distinguished when
the geometric ratio is small (t./R. = 0.022). This difference becomes
more visible as this ratio increases (see cases t./R.= 0.055 and t./

R, =0.111).

As expected, after full breakage (or debonding), the response
obtained from all cases converges to the stress-strain response given
by the void case. It has been found that these limit values of breakage
(or debonding) of the capsule are the same regardless the presence of
the precrack. The main difference between both scenarios comes from
the fact that o0;,, reaches lower values in the scenario with precrack for
all the cases: the total area of crack propagation is reduced when the
precrack is introduced.

On the other hand, as a healthy exercise to check the reliability of
homogenization process, a simple calculation has been done. In the case
of a RVE with a void, it has been checked that the total fracture energy
obtained from the integral of the curve given by the homogenized stress
versus the imposed displacement (i.e., the area below the curve)
retrieves exactly the value of fracture energy of the pure matrix (G)
multiplied by the area of the horizontal crack. In that sense, the
presence of the micro-capsule increases the total fracture energy, more
noticeably for the case of breakage, which leads to a visible increment
of Opnax-

The maximum tensile strength 0,4 for each t./R, at different o* are
plotted in Fig. 21. The results of the histogram bars correspond with the
scenario without precrack, while the results with circles correspond
with the scenario with precrack. The cases with micro-capsule breakage
are labeled as “B” and the cases with capsule debonding are labeled as
“D”. For the lowest geometrical ratio t./R, = 0.011, the micro-capsule
breaks at the smallest ¢* studied, therefore, no debonding is possible
when ¢* is increased. In addition, using this geometric ratio, 0y, does
not change for any value of ¢, and whose value is slightly higher than
the value provided by the void case. When t./R. increases, the
debonding limit increases as well. Then, it is necessary to ensure a
stronger interface to avoid capsule debonding in the self-healing
polymer. If ¢ is equal or larger than 10 MPa, the micro-capsules
break for the studied range of t./R., and 0y, increases when t./R,
increases as well. On the contrary, a weak interface with low ¢ cannot
guarantee the breakage of the micro-capsules, and therefore, the
expected self-healing behavior might not be obtained.

The same simulations have been performed for the smallest volume
fraction considered in this work, Vy= 0.05. For the selected range of t./
R, and ¢, the results are the same to the case Vp=0.25 (Fig. 21).
Furthermore, simulations with different interface fracture energy,
G¥=0.1,1,10 J/m? have been done with t/R,=0.055 and
Vy=0.25. When ¢;* is equal or larger than the breakage limit of 5
MPa, no effect is observed due to the fact that the crack cannot
propagate through the interface. When ¢* is equal or smaller than the
debonding limit of 2 MPa, the stress-strain response changes slightly
compared to the results of G;* = 1J/m?. As summary, for G* = 10 J/m?,
Omax is equal to the reference case (20.4 MPa), whereas for G* = 0.1 J/
m?, Opnax drops down to the value of the void case (19.7 MPa).

Despite the typical geometric ratio of real micro-capsules (t./
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Fig. 21. Maximum stress until failure of the RVE as a function of the geometric ratio and
different interface strength levels (bars: without precrack, circles: with precrack).

R, =0.004, see ref. [65]) is still below the lowest value used in this
work (t./R. =0.011), no big differences should be expected from the
homogenized mechanical point of view. The stress-strain behavior of
the geometric ratio t./R, = 0.011 behaves almost like the void case (this
is the reason why this case is not shown in Fig. 21). Therefore, it is
expected that lower ratios than 0.011 will exhibit the same stress-strain
behavior as the void (t./R. = 0), and then, with a maximum strength
much closer to the void case. As a consequence, if t.,/R, < 0.011, it is
expected that the capsule will always break regardless the value of o
within the interval studied in this paper.

In that sense, from the FEM point of view, the numerical analysis of
much thinner shells would require the usage of shells elements. In this
case, the same combined strategy of XFEM and cohesive surfaces is less
obvious and it would demand considerable additional research.

It is worth mentioning that a strong interface between micro-
capsules and the matrix is usually expected. Experimental results
showed that the majority of micro-capsules broke along the crack path,
and only a very little fraction of them debonded from the matrix [74].
Therefore, in the following section, the mechanical properties of a
homogenized encapsulation-based self-healing polymer are studied as
function of the geometric parameters assuming a strong interface
(67 = 10 MPa).

eyy ()

eyy ()

eyy ()

Fig. 20. Stress-strain curves for different geometric ratios (t./R. = 0.022, 0.055, 0.111) and interface strength (5;*). Capsule volume fraction V= 0.25.

4.8. Mechanical properties prediction

It is known that the mechanical behavior of the polymer change
with the amount of micro-capsules [65,67]. As a general behavior, the
stiffness of the material and the maximum strength decrease when the
Vr of micro-capsules increases. In this section, simulations without
initial precrack are used to calculate the effective response of the
Young's modulus and the maximum tensile strength. The effective
Young's modulus E and maximum tensile strength 0;,,, are obtained
from the homogenized strain-stress curves. Both effective values have
been calculated under the hypothesis of PBC described before, therefore
some difference with the real ones are obviously expected. Never-
theless, the effective values obtained in these simulations are useful to
follow up the trend of these properties as function of V; and t./R..

Fig. 22 shows the effective stiffness and maximum strength as
function of the volume fraction V; for several cases with different
geometrical radius t,/R.. The stiffness E decreases with the V; as
expected, because the inclusion of micro-capsules can be considered
like the inclusion of voids in the matrix. When the geometrical radius
t./R. decreases, the decrease of E is more pronounced until reaching the
limit at t./R, = 0, which is the case of the void.

Although the stiffness E obtained from the experiment also de-
creases with Vj, its value is higher than the values from the simulations
(see experimental data by Brown in Fig. 22). One reason to explain this
difference might be that the core inside the micro-capsule (self-healing
agent with some water or air) can contribute to the homogenized
stiffness. Another plausible reason might be that the properties of the
epoxy matrix change when it is cured with the embedded micro-
capsules. These features lay out of the scope of the present paper.

The homogenized maximum strength 0y,qc also decreases when Vy
increases, as it is clearly shown in Fig. 22. Indeed, 0,4, decreases
abruptly when V; equals 5%, and then decreasing softly after such
value. It must be noted that, although with different values, this
tendency is also clearly observed in the experimental works from other
authors [65,67].

It is important to recall that this model uses PBC. The periodicity
produces correctly the interaction of stresses between capsules, how-
ever it also introduces the limitation of having a perfect distribution of
micro-capsules. In a random distribution of micro-capsules, a combina-
tion of normal and shear stress are expected around the micro-capsules,
what would lead to different 0,,,, and different location of the crack
initiation. Moreover, a periodic distribution assumes a prefixed crack
density because all the capsules will break at the same time. This is a
strong hypothesis and it might deviate the numerical value from the
experimental ones (where possibly only one crack is running through
the whole material). Although using PBC involves some limitations, the
homogenized material properties predicted by using the micro-model
show a good agreement with the experimental trend. This model can be
very useful to improve and to understand new encapsulation-based self-
healing polymers.
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Fig. 22. RVE homogenized stiffness E and maximum tensile strength 0;,4, as function of
the volume fraction Vy and the geometrical ratio t./R.. (Circles: experimental results by
Brown et. al [65]).

5. Modeling limitations of the implementation

This section discusses some important features that any researcher
should be aware of in case of using the current commercial implemen-
tation, which might strongly affect the reliability of the crack paths.
Although this finite element package makes it possible to simulate
arbitrary crack propagation, it is however very important to know and
assess the limitations of the implementation used to produce realistic
and reliable results.

Here two limitations are discussed. The first limitation is related
with the progression of the crack path when it grows close to the
element boundary. The second limitation is related with the default
implementation used to manage the initiation of multiple cracks in the
same enriched region where a crack already propagates.

5.1. Crack path close to the element boundary

A simple model has been created to establish the simulation
response when a crack path is spreading alongside and very close to
the boundary between two elements. For the sake of simplicity, this
model has been created assuming plane strain conditions, although the
same behavior and anomalous response is obtained under plane stress
and three-dimensional conditions.

Fig. 23 (left) shows the geometry of the specimen used in this
benchmark. It consists in a rectangular plate with dimensions W =10
mm, H = 20 mm and depth of 1 mm. In order to get the reaction forces,
two reference points are defined (RPT, RPB). These points are linked to
the node lines (NLT, NLB) through a constraint given by

RPp

NLp _
yP—uy P =0,

u
where u,, is the vertical displacement and p = T, B. The specimen is
stretched using a displacement-type controlled procedure. This action
has been done applying a prescribed displacement magnitude of
0.005 mm in vertical degree of freedom to the reference points. To
avoid rigid body movements along the x-axis, the upper and lower right
corner nodes are horizontally blocked. Regarding the mesh, a 4-node
bilinear plane strain quadrilateral elements (CPE4R for reduced inte-
gration and CPE4 for full integration) were used for this example. The
size of the elements, l,, was set 0.357 mm and the total number of
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elements generated was 1568. The elastic properties of the plate are
those for the matrix concrete showed in Table 1. The values of the
fracture parameters were modified in order to increase slightly the
degree of brittleness of the matrix. The selected parameters were
o =37 MPa and G = 12 J/m>.

In order to simplify the problem, this model does not account for
crack initiation, and therefore an initial precrack has been included (see
white segment in Fig. 23). This precrack consists in a small segment of
2 mm length placed on the left side of the central region of the plate. To
assess the anomalies during the crack propagation process, the para-
meter A is used to set the distance between the precrack and a boundary
element, as it is shown in Fig. 23 (right). Four scenarios have been
analyzed, namely:

® The precrack lays exactly in the middle of the element, i.e., A/
[.=0.5,

® The precrack is above the element boundary with A/l, = 0.028,

e The precrack is above the element boundary with A/l, = 0.0028 and

® There is a full overlap between the precrack and element boundary,
ie., A/l,=0.

Fig. 24 shows the mechanical response of the precracked solid plate
under tension and Fig. 25 shows the trajectory of the crack in two
stages: when the peak force occurs (Fig. 25a) and when the maximum
displacement has been reached (Fig. 25b).

This figure clearly exhibits the sensitivity of the crack trajectory as a
function of the distance to the element boundaries. Except for the case
where the crack line overlaps exactly with the boundary between
elements, the mechanical response is very similar, as it can be
appreciated in Fig. 24. However, there are still some differences in
the crack pattern, as for instance, the small artificial deviation when the
initial separation crack-boundary is A/l, = 0.0028. On the other hand, a
very anomalous behavior is found when the crack overlaps with the
boundary. As it is shown in Fig. 25b, some nodes are not able to get a
full separation. This artificial clamping promotes an extremely high
level of stress in those elements which are surrounding the crack.
Moreover, quite visible hour-glassing in the elements that surround the
crack lips is generated. Because of these large stresses, a sudden
multicracking event is achieved when all cracked elements reach the
crack initiation condition, despite the fact that there is no full physical
separation yet. The implication of this anomalous behavior is shown in
the force-displacement curve from Fig. 24 (case A/l, = 0): an artificial
increase of the fracture toughness is produced. This case has been
carried out using reduced integration, however similar results using full
integration were also achieved.

5.2. Multiple cracks in an enriched region

It is worth mentioning that the Abaqus/XFEM implementation
cannot treat the initiation of cracks as a fully independent event.
Abaqus makes use of the internal continuous damage variable
STATUSXFEM, whose values are within the interval [0,1]. A value
equal to O indicates a fully intact element. A situation with
0 < STATUSXFEM < 1 indicates a certain level of damage that corre-
sponds to the softening region of Fig. 1. Within this region, although the
solid element is already damaged, it can still carry stresses. If STA-
TUSXFEM equals 1, the element is fully damaged and stresses cannot be
transferred anymore. The behavior by default does not allow for
initiating a new crack in the same enriched region until the current
running crack is fully broken (i.e., this running crack must fulfill exactly
STATUSXFEM =1 in all the damaged elements). However, it might
occur that some matrix elements in the same enriched domain already
satisfy the crack initiation criterion even when the elements containing
the tip of the existing crack still meet the condition STATUSXFEM < 1.
This situation represents a drawback, and as a consequence, it might
lead to doubtful results. Nevertheless, this limitation can be overcome
by using the undocumented option *enrichment activation,
activate=multicracks within the section *STEP in the Abaqus
input file.
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Fig. 23. (Left) Precracked solid plate specimen. (Right) Detail of the gap between the precrack and an element boundary.
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Fig. 24. Reaction force versus displacement curve obtained from precracked solid plate
specimen.

The activation of multicrack mode has been tested for both
scenarios described in Section 4.6: without and with precrack. In the
first scenario, without precrack, multiple initial cracks are generated
simultaneously around the equator, see without precrack images in
Fig. 26. This initial multicracking is allowed by the default setup
whenever it is produced exactly within the same time increment.
Therefore, regardless the activation of the option multicracks, the
same results are obtained as in Section 4.6. Hence, the propagation and
coalescence of these initially-created multiple cracks in a single big
horizontal crack seems to be a realistic result, where the elements in
this horizontal region undergo the highest stress.

In the second scenario, with precrack, no secondary cracks can be
developed by using the default setup (multicracks is not activated).
Therefore, only the propagation of the prescribed precrack is produced
(see “with precrack” images in Fig. 18). However, it has been checked
that the stresses of the matrix elements around the micro-capsule
equator already fulfill the initiation criterion when the crack begins to
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touch the capsule shell. Therefore, the simulation by activating multi-
cracks shows a different cracking sequence in the matrix, see “with
precrack” images in Fig. 26. First, the precrack propagates through the
matrix until it reaches the shell, as usual. But this time, secondary
cracks in the matrix elements initiate diametrically opposed to the
crack front. Hence, both crack fronts propagate around the capsule
equator to coalesce in a single crack. Finally, this single crack ends its
propagation through the entire matrix and capsule that splits up the
cubic domain in two halves. Unfortunately, the solver presents diffi-
culties to get convergence in the last time-step because an unrealistic
number of cracks are suddenly initiated. This effect leads to finish the
simulations abruptly. Nevertheless, albeit the fracture sequence is
different due to the presence of secondary cracks, it must be highlighted
that the homogenized stress-strain response of the RVE does not
essentially change compared to the case when the feature multi-
cracks is not activated. Therefore, for sake of simplicity, the default
setup implementation has been used in the current study in order to
avoid convergence problems at the end of the simulations.

6. Conclusions

This paper presents two 3D models based on the combination of the
eXtended Finite Element Method (XFEM) and the Cohesive Surfaces
technique (CS) to study the process of fracture in encapsulated self-
healing materials. A complete summary of both numerical approaches
is presented, as well as their main features, limitations and similarities
between them. The interpretation of the material properties required
for each approach has also been discussed and correlated to the
experimental measurements available from the practical point of view.
Using this methodology, the role of the bonding strength between the
capsule and the matrix has been studied in two different material
systems: concrete and polymers. The main purpose of this paper is to
show how this methodology can be useful for experimentalists in order
to get a better understanding of the interaction between cracks and
capsules.

A realistic-size concrete beam model under three-point bending load
has been developed. This setup is used to assess the encapsulation-
based self-healing strategy in concrete structures at lab level. A macro-
scale model has been used to investigate the effect of the insertion of
tubular glass capsules in the overall bending response. In order to make
the computation affordable and usable for experimentalists in the
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AT, = 0.0028

(a) Peak force state.

FREH N 5
(b) Final state.

Fig. 25. Crack pattern of the solid plate containing an initial precrack of length a = 2 mm (deformation scale factor: x20). (a) Peak force and (b) Final state.

Without precrack and multicracks activated

Fig. 26. Crack evolution without and with precrack when multicracks is activated.
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future, the beam is decomposed in two regions: (i) a central region that
contains the embedded glass capsules, where XFEM and cohesive
surfaces are used and (ii) two lateral regions, or wings, described by
conventional FEM. Both regions are conveniently tied to fulfill the
material continuity of the beam. A thorough convergence analysis of
the mesh has been performed in order to ensure the reliability of the
results. Two mechanical aspects are studied: the role of the insertion of
capsules in the reinforcement or weakening effect of the overall beam
strength under bending, and the analysis of which interface strength
and capsule size are more beneficial to make the capsules break
properly (and deliver the healing agent into the crack). Therefore, this
model is restricted to analyze the breakage of the capsules, where the
capsules are assumed empty. Given a fixed external capsule radius of
1.5 mm (commonly used in lab tests), the model predicts that using
capsules with t/R < 0.12, a minimum interface strength of 2 MPa has
to be ensured to break and liberate the healing agent. If this ratio
increases, the required minimum bonding strength also increases, but in
a non-linear way. If this increase of interface strength cannot be
technically achieved in the lab (e.g., by capsule surface treatment),
the self-healing strategy will not take effect, as the capsule will debond
from the matrix. However, a non-negligible strengthening of the beam
can be obtained as side-effect due to the reinforcement introduced by
the capsules. On the other hand, the effect of the number of capsules
and the clustering have also been analyzed. A number of capsules
between 1 and 8 has been progressively located close to the notch of the
beam. As a result, a light increase of the peak force in bending is
observed (compared to the bending response of a solid beam).
Conversely, it has been noted the following trend: in regions where
the capsules are densely clustered, the concrete material is more
susceptible to fail sooner despite the reinforcement effect provided by
the capsules. Therefore, this result might indicate that the global beam
response might suffer an important weakening if the capsular inter-
distance decreases sufficiently.

Regarding the material system that involves polymers, an encapsu-
lation-based self-healing polymer has been studied using a simple
micro-scale model that makes use of a Representative Volume
Element (RVE). Similarly to the previous macro-scale model, the
damage has been introduced with the combination of XFEM elements
in both materials, the polymer matrix and the shell capsule. Both
constituents are joined by using cohesive surfaces. The results show that
both types of damages, the material fracture and the capsule debond-
ing, can coexist for the studied range of mechanical properties. The
limit of breakage and debonding of micro-capsules has been studied
without and with a preexisting crack. In terms of global mechanical
response, it is found that both scenarios provide indistinguishable
homogenized stress-strain curves, despite the fact that both crack
sequence and crack pattern are different. The overall material proper-
ties of the self-healing polymer have been calculated for a wide range of
volume fractions and different capsule geometric ratios. Despite the
quantitative differences between the experimental available data and
the micro-model predictions (due to simplifications), it has been found
a very good agreement from the qualitative point of view. As a matter
of fact, the present model catches very well the trend of variation of the
elasticity and stress at failure as a function of the volume fraction.

To finish, a note of caution. An important advantage provided by
the present commercial implementation is its capability of predicting
arbitrary crack paths in any specimen under load. This capability is
undoubtedly a huge help for researchers to understand and to predict
the global response obtained from real experiments. That being said, it
is worth mentioning to know and bear in mind the limitations explained
in this work, because they might represent an important bias. These
biases can introduce some uncontrolled or hardly detectable artifacts in
the final results that hinder their interpretation for further applications.
This situation might become even worse when the model is particularly
elaborated and its physical response is far from being intuitive or
predictable.
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