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Abstract 13 

Nano-enabled materials are produced at growing volumes which increases the likelihood of 14 

nanoparticles being released into the environment. Constructed wetlands (CWs) are likely to 15 

receive wastewater containing nanoparticles leaching from products during usage. Therefore, 16 

we investigate the retention of silver nanoparticles (Ag-NPs) in microcosms simulating CWs 17 

treating domestic wastewater. The effects of aeration and organic matter content on the Ag-18 

NP removal efficiencies are studied in particular. CWs remove most of the Ag (80 % - 90 %) 19 

and the largest fraction of Ag is found in/on the biofilm. Detailed electron microscopy 20 

analyses suggest that Ag-NPs are transformed into Ag2S in all microcosm experiments. The 21 

good correlation between total suspended solids (TSS) and the Ag concentration measured in 22 

the effluent indicates that Ag-NPs are bound to the solids in the effluent. Aeration of the 23 
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microcosms does not affect the release of Ag-NPs from the systems but increasing organic 24 

matter leads to increased amounts of Ag passing the CWs, correlating with the increased 25 

release of TSS from the CWs. These results suggest that Ag-NPs are retained with the 26 

(suspended) solids in CWs and that the removal efficiency of TSS is an important factor 27 

determining the discharge of Ag-NPs from CWs.  28 

Key words 29 

Constructed wetland, silver nanoparticle, nanomaterial, ICP-MS, STEM-EDX, sulfidation, 30 

wastewater 31 

1. Introduction 32 

Silver nanoparticles (Ag-NPs) are used in common household products, such as textiles, 33 

biocidal sprays, food packaging material and toys, because of their antimicrobial properties 34 

(The Project of Emerging Nanotechnologies: Consumer Product Inventory, 2016). During 35 

washing, Ag-NPs can be released from textiles (Benn & Westerhoff, 2008; Mitrano et al., 36 

2014) and will thus be transported to the wastewater treatment plant through the municipal 37 

sewer system. Even though the concentration of Ag-NPs in the raw wastewater is currently 38 

low (Li et al., 2013), the predicted increase in their production and use may lead to elevated 39 

amounts of Ag-NPs released into the wastewater in the future (Peralta-Videa et al., 2011). The 40 

specific use of Ag-NPs in household products in combination with the toxicity of Ag (Doiron 41 

et al., 2012; Ratte, 1999) and the resulting environmental risk (Colvin, 2004), have led to 42 

several scientific publications studying the removal of Ag-NPs from wastewater streams 43 

(Kaegi et al., 2013; Lombi et al., 2013).  44 

These studies revealed that sulfidation of Ag-NPs and attachment of Ag-NPs to sludge 45 

biomass are the most important processes mitigating the toxicity of Ag-NPs (Reinsch et al., 46 
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2012) and removing them from the wastewater stream through sedimentation in a secondary 47 

clarifier. According to Kaegi et al. (2011), sulfidation of Ag-NPs is a fast process and at 48 

current Ag concentrations measured in wastewater, is neither limited by the sulfide 49 

availability in the wastewater nor by the hydraulic retention time in wastewater systems. Due 50 

to the efficient removal of Ag-NPs during the wastewater treatment (sulfidized) Ag-NPs will 51 

be accumulated in the sewage sludge. Kim et al. (2010) identified individual nanosized silver 52 

sulfide particles in the sludge of a full-scale wastewater treatment plant. In a microcosm study 53 

simulating emergent freshwater wetland, spiked Ag-NPs quickly settled to the bottom and 54 

transformed into Ag2S (Lowry et al., 2012a), further demonstrating the importance of the 55 

sulfidation of Ag-NPs. 56 

The removal of engineered nanoparticles (NPs) in constructed wetlands (CWs) has received 57 

little attention to date. CWs are often applied for domestic wastewater treatment, usually in 58 

remote areas and small communities, and can also be used to treat landfill leachate among 59 

others types of wastewater (Kadlec & Wallace, 2009). Different compositions of the influent 60 

water, different designs, operation principles and varying ages of the CWs affect the 61 

conditions within the CWs, for example, oxygen content, redox conditions, retention time, 62 

and accumulation of organic matter within the CWs. Aeration of CWs enhances their 63 

treatment efficiency (Fan et al., 2013; Nivala et al., 2007; Zhang et al., 2010), but aeration 64 

may result in the release of Ag+ due to the oxidative dissolution of Ag-NPs (Liu et al., 2011). 65 

Ag+ may be of even greater environmental concern than Ag in its particulate form (Behra et 66 

al., 2013). Furthermore, the conditions within CWs can change dynamically over the typical 67 

lifetime of CWs (20 – 30 years) owing to changes on a time scale of minutes (e.g. accepting 68 

stormwater overflows) to years (e.g. clogging, vegetation development). Physicochemical 69 

conditions of the surrounding media influence the transformations of NPs, and thus define the 70 

persistence, reactivity, bioavailability and toxicity of (transformed) NPs in the environment 71 
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(Lowry et al., 2012b). To assess the risk associated with an increasing use of (Ag)-NPs in 72 

consumer products and to better understand the environmental distribution of (Ag-)NPs, it is 73 

therefore of interest to study the removal of (Ag-) NPs in CWs.  74 

Therefore, we investigated the retention of Ag-NPs in microcosms simulating CWs treating 75 

domestic wastewater and studied the distribution and transformation of Ag-NPs (citrate-76 

coated) within the CW microcosms. Although only one type of Ag-NP was studied, earlier 77 

research indicated that coating (citrate or PVP) does not affect the fate of Ag-NPs during 78 

wastewater treatment (Kaegi et al., 2013). We derived the removal efficiency of the Ag-NPs 79 

by comparing the Ag concentration measured in samples collected from the influent and from 80 

the effluent of the CWs. Ag concentrations of the digested biofilm and plant material were 81 

used to establish the distribution of Ag within the microcosms and the transformation 82 

(sulfidation) of the Ag-NPs in the biofilm was evaluated by detailed electron microscopy 83 

analyses. By aerating and adding organic matter (OM) to the microcosms we assessed 84 

whether these factors influence the amount of Ag discharged from the microcosms.  85 

2 Materials and methods  86 

2.1 Experimental design 87 

Microcosms simulating sub-surface flow CWs were monitored during this experiment. The 88 

experiment lasted for 25 weeks including an initial adaptation period during which the plants 89 

were allowed to grow and biofilm to develop before the Ag-NP dosing was initiated. The 90 

microcosms were sampled once a week for 18 weeks. To investigate the effect of aeration and 91 

OM on the performance of the CWs, different microcosms were set up as shown in Table 1. 92 

Aeration is sometimes applied in CWs to stimulate the removal of organic carbon (e.g. Fan et 93 

al., 2013), but could also foster the oxidation of Ag-NPs which may affect their fate in the 94 
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microcosms. During the lifetime of CWs, there is build-up of OM and reed leaves were added 95 

to simulate the accumulation of OM in an aging CW.  96 

Table 1 – Setup of the different treatments. The microcosms were constructed in triplicate for each treatment. 97 

Microcosm Aeration applied OM added Ag-NP added 

Air X - X 
OM - X X 
Positive control  - - X 
Negative control - - - 
 98 

The microcosms were built in polypropylene containers by filling them with 2 L of washed 99 

gravel (∅ 6/8 mm; porosity 36.5 % ± 1.3 %; Kranendonk NV, The Netherlands). A similar 100 

setup has been used earlier to assess the effects of ENMs on the microbial community in CW 101 

microcosms (Button et al., 2016). A schematic illustration of the setup can be found in Button 102 

et al. (2016). The chemical composition and the cation exchange capacity and pH of the 103 

gravel used have been reported earlier (Auvinen et al., 2016). The depth of the gravel layer 104 

was approximately 15 cm. The microcosms were planted with common reed (Phragmites 105 

australis), obtained from a local garden center. Little amounts of potting soil was still present 106 

between the fine roots upon planting. The setups were fitted with a 32-mm-diameter 107 

perforated central sampling tube and a small outlet spout made of silicone tubing with a 108 

plastic stopper for draining. The aeration was provided in the AIR microcosms with an 109 

aquarium air stone and pump (Hozelock 320). The reed leaves added in the OM microcosms 110 

were placed in a rain water tank for one month before the beginning of the experiment where 111 

the leaves partially degraded. Then, the leaves were chopped in small pieces and 100 g was 112 

mixed thoroughly with the gravel. 113 

In total, the influent water of the CWs was spiked 18 times with Ag-NPs (50 µg 114 

Ag/week/microcosm). The concentration occurring in the microcosms (100 µg/L) was higher 115 
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than expected to occur in real domestic wastewater (Blaser et al., 2008) to be able to detect 116 

residual Ag via microscopy and measure it in plant material where concentrations were 117 

predicted to remain low. Synthetic domestic wastewater (OECD 2001) was used as influent 118 

(490 mL per microcosm). The Ag-NPs were added in the influent to guarantee their even 119 

distribution of in the microcosm. The spiking of the influent was done individually per 120 

microcosm and the synthetic wastewater was added to the microcosm immediately after 121 

spiking the wastewater with Ag-NPs to minimize the holding time and possible subsequent 122 

transformations of Ag-NPs. In the study of Button et al. (2016) where same synthetic 123 

wastewater and Ag-NPs were used, no sulfidation nor chlorination was observed directly after 124 

adding the Ag-NPs to the wastewater solution. 125 

The microcosms were operated in batch mode with weekly draining of the effluent equating 126 

to a hydraulic retention time (HRT) of 7 days. The microcosms were drained top-down via the 127 

outlet spout so that the water was completely replaced by freshly prepared influent. The 128 

evaporating water was replaced twice a week with tap water. The effect of the replenished 129 

water on the salinity of the water inside the microcosms was expected to be insignificant due 130 

to the low volume added in the system (~100 mL/week/microcosm). 131 

2.2 Nanoparticle suspensions 132 

Citrate-coated Ag-NPs were obtained from PlasmaChem GmbH (Berlin, Germany) as a 133 

colloidal suspension (pH 6 – 8). The suspension was stored in the dark at 4 – 8 °C. The 134 

concentration of the stock dispersion was measured prior to use by inductively coupled 135 

plasma-mass spectrometry (ICP-MS) as described later in 2.3.2. The dispersion was digested 136 

prior to analysis as described later in 2.3.1 for influent and effluent samples. The Z-average 137 

hydrodynamic diameter of the particles in the stock solution was determined by using a 138 

Photon Correlation Spectrometer (PCS; 100M Malvern Instruments Ltd). All measurements 139 

were performed in triplicate at 25 °C using a helium-neon laser (633 nm) and a scattering 140 
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angle of 150°. The average particle size was determined based on intensity and number. The 141 

particles in the stock suspension were additionally investigated by a scanning transmission 142 

electron microscope (STEM) and the particle size distribution was extracted from STEM 143 

images using the ParticleSizer software (Wagner, 2016).   144 

2.3 Total silver analysis 145 

2.3.1 Digestion of the samples 146 

Influent and effluent water samples were digested in the microwave oven (Mars 5 and 6) after 147 

adding 4 mL of concentrated HNO3 and 1 mL of H2O2 to 10 mL of sample. The digestion 148 

program consisted of the following steps: 10 min at 55 °C; 10 min at 75 °C; 40 min at 100 °C. 149 

The performance of the digestion method was investigated as a preliminary study prior to 150 

another research project studying the fate of Ag-NPs in natural water samples previously 151 

conducted in our lab (Van Koetsem et al., 2015, 2016). 152 

At the end of the experiment, total Ag content in the different compartments of the 153 

microcosms was also determined. The gravel was mixed carefully after removing the plants 154 

and sub-samples of 100 g were treated with 100 mL of potassium-free phosphate buffer (10 155 

mM Na2HPO4 , 8.5 g/L NaCl, pH 7.4) to detach the biofilm and the organic matter from the 156 

gravel (Button et al., 2016). The sample was shaken (orbital shaker) in the buffer solution for 157 

2 h at moderate speed (200 rpm), after which the buffer was directly decanted. A sub-sample 158 

of 10 mL was digested following the protocol described above and the Ag concentration was 159 

measured to assess the fraction of Ag associated with the biofilm and the organic matter. To 160 

the remaining gravel sample 20 mL of 5 % HNO3 was added to allow the determination of Ag 161 

firmly attached to the gravel. After shaking the sample for 1 h at moderate speed (200 rpm), 162 

the acidic solution was directly decanted and 10 mL of sample was digested as described 163 

above. These sequential extractions were conducted in duplicate for each microcosm.  164 



8 
 

To determine the amount of Ag attached to the biofilm on the microcosm walls, 100 mL of 5 165 

% HNO3 and 5 mL H2O2 were added to the empty container after the experiment and shaken 166 

vigorously. 10 mL of sample were digested and analyzed for total Ag as described above.  167 

The plant samples were divided in two parts: aboveground tissue (i.e. stems and leaves) and 168 

belowground tissue. Due to the very fine structure of the roots, these samples may still have 169 

contained small amounts of potting soil. Both types of plant samples were dried in an oven 170 

overnight (40°C), cut into pieces and ground to a fine powder with mortar and pestle. A sub-171 

sample of 1 g of plant material was digested as described in Du Laing et al. (2003). Minor 172 

amounts of particulate matter were still observed in the digest. This material was left to settle, 173 

and only the supernatant was used for the analysis of total Ag.  174 

2.3.2 Analysis of Ag 175 

Digested samples (<15 mL) were first diluted to 25 mL with Milli-Q water and then diluted 176 

(1:10) with an acidified (1 % HNO3) internal standard (10 µg Ga/L and 10 µg Rh/L) solution. 177 

Thereafter, the total silver concentration was measured using ICP-MS (PerkinElmer Sciex 178 

Elan DRC-e). The instrumental parameters and the calibration ranges are given in the 179 

supplementary information section. External calibration standards were used for ICP-MS 180 

analyses, and recalibrations were performed every 20 samples. Blank samples and reference 181 

standards were included at the beginning and the end of each intra-analysis batch of 20 182 

samples for quality control purposes. The detection limit varied during the experiment 183 

between 0.02 and 0.12 µg Ag/L. The detection limit was defined as the sum of the average Ag 184 

concentration measured in blank samples and 3 times standard deviation of these samples. 185 

2.4 Total organic carbon, total suspended solids, dissolved oxygen and pH 186 

Thirteen weeks after the beginning of the Ag-NP spiking, total organic carbon (TOC) and 187 

total suspended solids (TSS) were determined on effluent samples weekly for five weeks. 188 
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TOC was measured in non-filtered samples using a TOC-analyzer (TOC‐VCPN, Shimadzu). 189 

The detection limit of these measurements varied between 1.2 and 3.9 mg/L. The detection 190 

limit was defined as the sum of the average TOC concentration measured in blank samples 191 

and 3 times standard deviation of these samples. TSS was determined gravimetrically after 192 

filtering 100 mL of effluent through a paper filter (Macherey Nagel 640m). The total Ag 193 

concentration in the filtrate was determined twice (analysis as described earlier in 2.3.1 and 194 

2.3.2). 195 

The dissolved oxygen (DO) content in the microcosms was measured twice during the 196 

experiment (week 4 and 7)  by using a portable DO meter (HI9142, Hanna Instruments). The 197 

DO was measured in situ 3-4 days after spiking of Ag-NPs by using the perforated sampling 198 

tube inside the microcosm. The pH was measured twice during the experiment (week 4 and 7) 199 

from the influent and drained effluents by using a bench-top pH meter (520A, Orion Research 200 

Inc.). 201 

2.5 STEM-EDX 202 

Samples from the stock suspension and from the biofilm extracts were analyzed using a 203 

scanning transmission electron microscope (STEM HD 2700Cs, Hitachi), operated at an 204 

acceleration voltage of 200 kV. Individual Ag-NPs, or their transformation products (Ag2S) 205 

were localized using a high-angle annular dark-field (HAADF) detector. Elemental analysis 206 

of selected NPs was performed with an energy-dispersive X-ray (EDX) analysis system 207 

(EDAX) attached to the microscope.  208 

A few drops of the stock suspension were pipetted on a holey carbon TEM grid (Plano, 209 

GmbH, Germany) and subsequently drawn through the grid by using a paper towel. After 210 

particle deposition, the grid was washed with a drop of demineralized water. Two preparation 211 

protocols were applied to deposit biofilm samples on TEM grids. The first protocol is very 212 
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simple and can be applied in any laboratory, however, it requires high particle concentrations 213 

due to the low amount of sample that is eventually retained on the TEM grid. The second 214 

protocol is more sophisticated and requires a dedicated infrastructure. However, suspension 215 

with much lower particle concentrations can successfully be prepared for STEM analyses, as 216 

the centrifugation procedure concentrates the particles from the suspension on the TEM grid.  217 

In the first protocol, a few drops of the aqueous biofilm extracts obtained after the extraction 218 

with phosphate buffer were drawn through a TEM grid (Plano GmbH,  Germany) with a 219 

paper towel. In the second protocol, the liquid samples (approximately 200 mL, duplicate 220 

samples from each microcosm were combined) were centrifuged (5 min at 700 x g) and the 221 

solid fraction was freeze dried and stored at -18°C. The samples were later thawed under a 222 

gentle argon flow, packed in moist absorbing clay and sent for further processing. The 223 

samples were ground to a fine powder with mortar and pestle. The powder was added to a 2.0 224 

mL Eppendorf tube and filled with 1.6 mL of ultrahigh quality water (NANOpure, Diamond, 225 

Barnstead, Thermo Scientific). The dispersion was vortexed for 1 min and then split into 2 226 

Eppendorf tubes. The two tubes were sonicated with a Hielscher UP200St Vial tweeter for 2 227 

minutes (amplitude 75 %, cycle 50 %). Temperature was monitored during sonication in a 228 

separate tube filled with distilled water and the temperature did not rise above 45°C. The 229 

dispersions were diluted to reach final concentrations of ~0.3 mg sample/mL and 0.07 mg 230 

sample/mL. Two different concentrations were used to evaluate which one is better suited for 231 

the STEM analysis. These suspensions were centrifuged (1 h at 25,000 x g) on Formvar – 232 

Carbon coated TEM-grids (Quantifoil Micro Tools GmbH, Germany). The described 233 

treatment was necessary to evenly distribute the NPs on the TEM grid. Due to the grinding 234 

and sonication process, no conclusions can be drawn about the association between the 235 

(transformed) Ag-NPs and other colloids/particles in the original sample but the speciation of 236 

Ag-NPs should not change during sample preparation. 237 
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2.6 Data analysis 238 

Statistical analyses were performed by using SPSS Statistics 22 software. Firstly, the data 239 

were examined for normal distribution using the Shapiro-Wilk’s test. Because the normality 240 

criterion of all samples was not met, a non-parametric test (Mann-Whitney U) was performed. 241 

This test was done pairwise to determine whether the Ag mass in the effluent and in the 242 

different compartments of the microcosm differed significantly between the treatments. The 243 

level of significance was set at p=0.05. 244 

3 Results  245 

3.1 Characterization of Ag-NPs 246 

The total Ag concentration of the stock Ag-NP suspension determined by ICP-MS was 97 ± 3 247 

mg/L. Results from PCS measurements showed a number-weighted average particle diameter 248 

of ~10 nm (11.1 ± 0.2 nm). However, the intensity-weighted average particle diameter was 249 

close to 100 nm (90.9 ± 7.9 nm) indicating that also larger particles (most probably Ag-NP 250 

aggregates) were present in the stock suspension. The particle size distribution extracted from 251 

TEM images (~150 particles) revealed an average diameter of ~13 nm (Figure 1) confirming 252 

that intensity-weighted particle size distributions were biased by the presence of aggregates.  253 

 254 
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Figure 1 – Left: STEM image of the Ag-NP from the stock dispersion. Right: particle size distribution 255 

extracted from STEM images. The distribution was fitted to a log-normal distribution. 256 

3.2 Dissolved oxygen (DO) and pH 257 

The influent had a pH of 8.0 whereas the pH of the effluents was slightly lower (7.4 – 7.7). 258 

Due to the similarity of the effluent pH in all treatments, the pH is not considered to have 259 

caused differences in the fate of Ag-NPs between the different treatments. In the aerated 260 

treatments, the DO concentration was 3.2 ± 0.1 mg/L. Without aeration, the DO concentration 261 

was 0 mg/L (detection limit reported by the manufacturer 0.1 mg/L).  262 

3.3 Total Ag concentration and removal of the Ag-NP in CWs 263 

After the initial acclimatization phase, 50 µg of Ag-NPs was spiked weekly during 18 weeks 264 

resulting in a total nominal mass of 900 µg of Ag-NPs added to the microcosms (except for 265 

the negative control). The Ag concentration in the influent water was measured in 15 out of 266 

18 spiking events (due to technical difficulties) and resulted in an average mass of 52 ± 5 µg 267 

of Ag applied per spiking event. For the mass balance calculations we assumed that an 268 

average mass of 52 µg Ag was dosed in the microcosms in three spiking events where the 269 

influent Ag concentration could not be measured. The total Ag concentration in the effluent 270 

(measured at 15 events) and the effluent volume were used to calculate the mass of total Ag 271 

leaving the microcosms. The total Ag mass released from the microcosms with the effluent 272 

was lowest for the positive control and for the aerated microcosms, 90.5 ± 56.8 µg and 94.4 ± 273 

17.8 µg, respectively (Table 2), and there was no significant difference between these 274 

treatments (p>0.05). The highest total mass of Ag was measured in the effluent of the 275 

microcosms with added OM, 190 ± 21.3 µg, which differed significantly from the other two 276 

set-ups (p<0.05). For the three events where no Ag concentrations were available, we used the 277 

average Ag concentrations in the effluent of the individual experiments to complete the mass 278 

balance calculations. The Ag fractions retained in the wetland microcosms, calculated from 279 
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the difference between integrated influent and effluent Ag masses, were 0.8 and 0.9. The 280 

lowest removal (80 %) was obtained for the OM treatment and in the other two treatments 281 

(positive control and air) 90 % of the Ag was removed. The Ag concentrations measured in all 282 

samples from the negative controls were below the detection limit. 283 

3.4 Distribution of Ag within the microcosms 284 

The largest percentage of Ag that was recovered within the microcosms, was found in the 285 

biofilm extracts (Table 2). Independent of the treatment, approximately 95 % of the Ag 286 

recovered was associated with the substrate (sub-samples biofilm and gravel). The large 287 

standard deviation associated with the Ag mass in the gravel of the OM treatment is caused by 288 

one of the six sub-samples, where unusually high Ag concentrations were obtained (Table 2). 289 

A few % of Ag was lost to the biofilm that grew on the walls of the microcosms and less than 290 

1 % was found in the plant roots. In the leaves and stems of the plants, the Ag concentrations 291 

remained below the detection limits. 292 
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Table 2 – The mass balance and distribution of total Ag within the microcosms. The total mass (µg Ag) is calculated for water and solid samples based on the measured 293 

concentration in the given medium and the volume or mass of the given medium.  294 

 Discharge and overall removal 
2
Distribution within the microcosm compartments  

Setup Influent Effluent 
1
Removal 

efficiency 

Biofilm Gravel Plant roots Plant 

shoots 

Microcosm 

walls 

3
Total 

recovery 

 µg Ag µg Ag % µg Ag % µg Ag % µg Ag % µg Ag % µg Ag % % 

Negative 

control 

<LOD <LOD - <LOD - <LOD - <LOD - <LOD - <LOD - - 

Positive 

control 
937±6 91±57 90 265±31 77 61±24 18 3.2±1.9 0.9 <LOD - 17±6 4.9 49 

OM 922±10 190±21 79 229±16 65 104±104 30 2.8±1.1 0.8 <LOD - 16±1 4.5 61 

Air 931±7 94±18 90 248±25 81 44±7 15 1.2±0.5 0.4 <LOD - 11±9 3.7 44 

1
 Calculated from the difference between Ag masses measured in the influent and in the effluent 295 

2
 Normalized by the sum of Ag mass recovered in the different microcosm compartments. The percentage represents the proportion of Ag mass recovered in a given 296 

compartment to the sum of Ag mass recovered in all microcosm compartments. 297 

3
 The percentage represents the proportion of Ag mass recovered in (effluent and all microcosm compartments) to the sum of Ag mass spiked (influent). 298 

LOD: limit of detection299 
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3.5 Correlation of TSS/TOC and total Ag content 300 

TSS and TOC were measured weekly between weeks 13 – 17 in the effluent samples. TSS 301 

concentrations in the effluents of the positive control and the aerated treatments ranged from 302 

3.7 to 178 mg/L, with the lowest values systematically measured in one of the three replicates 303 

of the positive control. The high TSS concentration in the effluents of the OM setups (121 – 304 

320 mg/L) demonstrates the effect of OM addition within the substrate. The solids in the 305 

effluents of the positive control and the aerated treatments originate from biofilm, degrading 306 

plant roots and potting soil that was still present between the roots upon planting. Similarly to 307 

the TSS values, the TOC concentrations in the effluents of the positive control, aerated and 308 

OM setups ranged from 4.7 to 97.9 mg/L, TOC being highest in the OM setups. A more 309 

detailed overview of the TSS and TOC concentrations in the different treatments can be found 310 

in the supplementary information section. 311 

The total Ag concentration correlated well with the TSS concentration in the effluent 312 

(R2=0.81, Figure 2). Also Ag and TOC concentrations were positively correlated, but the 313 

correlation was considerably less pronounced (R2=0.59) compared to the correlation observed 314 

between Ag and TSS. The Ag concentration in the filtrate from the TSS analysis was 315 

analyzed twice during the experiment. The total Ag concentration in these filtrates was below 316 

the detection limit in all samples (data not shown).   317 
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 318 
Figure 2 – Correlation between TSS or TOC and Ag concentration in microcosm effluents (n=45).   319 

3.6 Morphology and elemental composition of Ag-NPs in the biofilm 320 

The detected Ag-NPs were of comparable sizes as the pristine particles in the stock 321 

suspension (Figure 3). EDX analyses of individual particles revealed that Ag was always 322 

associated with sulfur (S), suggesting that Ag-NPs transformed into Ag2S during the 323 

treatment. To a first approximation, the intensity ratio between S(Kα) and Ag(Lα) should 324 

reflect the atomic ratio of the transformed Ag-NPs. However, due to variable contributions of 325 

S from the background (organic matter) to the signal intensity, a quantitative evaluation of the 326 

signal intensities was not performed. Because of the presence of organic matter in the samples 327 

the recording of high resolution phase contrast images and phase identification based on 328 

lattice spacings was not possible. Thus, due to the small size of the particles and in 329 

combination with considerable amounts of S in the biofilms, the presence of minor amounts 330 

of metallic Ag (partially sulfidized Ag-NP) cannot be excluded. 331 
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 332 

Figure 3 – STEM images (high angular annular dark field) of (transformed) Ag-NPs detected in the biofilm 333 

of the different microcosms (left: positive control; middle: OM; right: air). Insets show the EDX spectra of the 334 

particles marked with the dashed circle. The varying Ag – S ratios result from the variable background 335 

contribution of S which is present in the biofilm. 336 

4 Discussion 337 

Our results revealed an efficient retention of Ag-NPs in the CWs and indicated that most of 338 

the retained Ag-NPs were attached to/incorporated in the biofilm. However, in total only 339 

between 40 % and 60 % of the total Ag was recovered. The results from the Ag measurements 340 

in the influent were in agreement with the nominal mass applied in the microcosms. In the 341 

effluent samples, no residual materials were observed in the digested samples. We thus 342 

assume that results from the influent and effluent measurements were very robust. However, it 343 

is not clear whether the sequential extraction procedure quantitatively extracted the Ag from 344 

the gravel. Also, after the acid treatment of the emptied microcosms, remaining biofilm 345 

material was observed on the walls. In addition, the digestion protocol did not completely 346 

digest the plant material as residual particulate matter was observed in the digest. Thus, we 347 

assume that the poor mass balance closure for Ag resulted from the non-quantitative recovery 348 

of Ag from the different compartments within the microcosm, and thus did not affect the 349 

results of the Ag removal efficiencies calculated for the CWs from measured influent and 350 

effluent Ag concentrations.  351 
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The good correlation between the TSS and the Ag content in the effluent observed in all 352 

experiments further suggests that Ag-NPs were dominantly attached to the particles/biomass 353 

leaving the CWs which is in good agreement with earlier laboratory-, pilot- and full-scale 354 

studies (e.g. Kaegi et al., 2011; Kim et al., 2010; Ma et al., 2014). In these studies it was 355 

concluded that the Ag-NPs mainly accumulate in sludge and are therefore efficiently removed 356 

from the water phase. This hypothesis is supported by the significantly higher Ag fraction that 357 

passed the CWs in the OM treatment and the correspondingly lower fraction found in the 358 

biofilm compared to the other treatments (Table 2). The addition of organic matter probably 359 

provided additional surfaces for the attachment of Ag-NPs but also resulted in a higher 360 

fraction of Ag that passed the CWs as more organic matter also left the CWs. However, the 361 

Ag fractions extracted from the microcosm walls at the end of the experiments were 362 

comparable for all three experiments (11 – 17 µg Ag) and may indicate that the addition of 363 

OM did not substantially affect the biofilm, but mainly provided additional surfaces for Ag-364 

NP attachment. Furthermore, the total recovery of Ag was highest in the OM experiment, 365 

which is in line with our hypothesis that the poor Ag mass closure is related to the incomplete 366 

extraction/digestion of Ag from the compartments within the CWs. The higher Ag fraction 367 

passing though the CWs in the OM experiment therefore resulted in reduced amounts of Ag 368 

remaining in the CWs which in turn improved the mass closure of Ag.  369 

In general, the high retention efficiencies of 80 % – 90 % of Ag-NPs in combination with the 370 

fact that Ag-NPs are dominantly attached to organic matter are consistent with high annual 371 

mean removal efficiencies (80 ± 15 %) of TSS reported from 17 CWs (Vymazal, 2009). The 372 

results indicate that the retention of solids in the wetland becomes essential in limiting the 373 

release of Ag (or particulate bound pollutants in general), which again is in line with the 374 

absence of Ag in filtered effluents samples. The low concentrations detected in the filtrates 375 

could be caused by adsorption of free Ag-NPs and Ag+ on the paper filter. However, Van 376 
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Koetsem et al. (2016) has studied the recovery of these citrate-coated Ag-NPs and Ag+ during 377 

filtration through the same paper filters as used in this study and they concluded that 378 

approximately 60 % and 95 % of Ag-NPs and Ag+ were recovered in the filtrates, 379 

respectively. Hence, it is logical to assume that the low concentrations observed in the filtrates 380 

of this study indicate only negligible amounts of free Ag+, and even Ag-NPs, in the samples. 381 

Aeration did not result in an increased concentration of Ag in the water phase although 382 

aeration could have caused Ag+ formation through oxidative dissolution of Ag-NPs (Liu et al., 383 

2011). This can be well explained by the sulfidation of the Ag-NPs, which was also observed 384 

by STEM-EDX in samples from the aerated microcosms. Sulfidation results in dramatically 385 

reduced release of Ag+ (Levard et al., 2011). As the DO in the aerated microcosms remained 386 

rather low (3.2 mg/L), it may well be possible that anoxic zones were present within the 387 

matrix or the biofilm where sulfate reducing bacteria may have developed.  388 

In this study, we used citrate-coated Ag-NPs and another coating might stabilize Ag-NPs 389 

more efficiently. However, also polyvinylipyrrolidone (PVP) which sterically stabilizes the 390 

particles did not influence the removal efficiencies during activated sludge treatment (Kaegi 391 

et al., 2013) . Thus, we assume that our results are also applicable for Ag-NPs with other 392 

types of coatings.  393 

5 Conclusions 394 

Ag-NPs were very efficiently removed (80 - 90 %) from synthetic wastewater in microcosms 395 

simulating CWs. The largest fraction of Ag-NPs was attached to or incorporated in the 396 

biofilm developed on the gravel bed of the CWs. The fraction of Ag-NPs that passed the 397 

CWs, was bound to solids present in the effluent. Thus, an increasing retention of TSS in 398 

CWs would lead to a proportional decrease in Ag being discharged from the CWs. Results 399 

from STEM-EDX analyses suggested that Ag-NPs were dominantly sulfidized, even in the 400 
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aerated treatments. Anoxic/anaerobic zones within the biofilm most likely favored the growth 401 

of sulfate reducing bacteria resulting in the sulfidation of the Ag-NPs. Aeration did not affect 402 

the retention efficiency of total Ag in the microcosms and the distribution of total Ag in the 403 

aerated microcosms was similar to that of the positive control. The addition of OM provided 404 

additional surfaces for the attachment of Ag-NPs and resulted in a slightly reduced retention 405 

of Ag-NPs in the microcosms due to increased discharge of TSS with the effluent. Although 406 

this study describes laboratory-scale setups many conclusions and predictions on the fate of 407 

ENMs in full-scale CWs can be made. The biofilm is likely to function as the main sink for 408 

the Ag-NPs due to its high affinity for Ag-NPs. The biofilm thickness and the percentage of 409 

substrate covered by biofilm will increase with operation time and are thus higher in full-scale 410 

CWs than the studied microcosms, hence indicating larger biomass being able to accumulate 411 

Ag-NPs in full-scale CWs than in the microcosms studied. Also, plant roots, occupying a 412 

large volume in full-scale CWs, offer an important attachment site for biofilm and hence for 413 

Ag-NPs. As Ag-NPs are mainly accumulating in biofilm sudden high flow of influent, large 414 

fluctuations in aeration force or the presence of toxic compounds in the influent could induce 415 

the detachment of biofilm and hence, cause temporary release of (transformed) Ag-NPs from 416 

the CW. As the CW ages and more organic matter is accumulating within the CW bed, 417 

clogging could occur and lead to short-circuiting and possibly increased discharge of Ag-NPs. 418 

In general, the results obtained in this study implicate that the biofilm in CWs will act as a 419 

sink for Ag-NPs, similarly to activated sludge, and the release of (transformed) Ag-NPs is 420 

during normal operation primarily determined by the discharge of TSS. 421 
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