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Samenvatting
– Summary in Dutch –

Een genoom omvat het genetisch materiaal van een organisme. Het bestaat uit DNA
(voluit: Desoxyribonucleı̈nezuur), een molecule die drager is van de genetische code
voor alle bouwblokken van levende organismen. DNA kan worden voorgesteld als een
sequentie van letters ACGT die corresponderen met de volgorde van de nucleotiden
binnen een DNA molecule. Het volledige menselijk genoom bestaat uit ongeveer 3
miljard baseparen, georganiseerd in 23 chromosoomparen. Tussen de genomen van
menselijke individuen zijn er ongeveer 0.1% of 3 miljoen verschillen in totaal. Dit
is een stuk kleiner dan het aantal verschillen tussen mensen en hun dichtste levende
verwanten, de bonobo’s en de chimpansees, die ongeveer 4% verschillen qua genoom.
De verschillen in DNA tussen individuen worden genetische varianten genoemd en
kunnen geı̈dentificeerd worden als nucleotidevarianten, invoegingen, verwijderingen
of structurele variaties. Deze genetische varianten maken ons uniek, maar kunnen
tevens de onderliggende oorzaak zijn van ziektes. Het identificeren van varianten is
dus belangrijk voor medisch onderzoek of in een klinische omgeving. Bijgevolg is
de ontwikkeling van snelle en betrouwbare methodes voor de identificatie van deze
varianten een belangrijke onderzoeksvraag.

Sinds het eerste menselijk genoom werd gesequentiëerd, een inspanning die 10
jaar duurde en 3 miljard USD kostte om te vervolledigen, is de techniek van het
sequentiëren van DNA sterk geëvolueerd. De zogenaamde volgende-generatie se-
quentiëringsmachines worden gekenmerkt door een enorme doorvoersnelheid en lage
kost. Zo kan bijvoorbeeld een modern Illuminasysteem ∼1.5 miljard reads genere-
ren in slechts enkele dagen. Dit leidt tot een enorme hoeveelheid aan ruwe gese-
quentiëerde data die verwerkt moet worden. Moderne Illuminasystemen ondersteunen
tevens het sequentiëren van RNA. RNA is, zoals DNA, een nucleı̈nezuursequentie.
Het is essentiëel voor het coderen, decoderen en reguleren van de expressie van genen
(een stuk van het nucleı̈nezuursequentie dat de moleculaire eenheid is van erfelijk-
heid). Bij het sequentiëren van RNA wordt eerst een complementaire DNA (cDNA)
streng gesynthetiseerd, die dan vervolgens wordt gesequentieerd.

Ruwe data kunnen op verschillende manieren worden verwerkt. In dit werk leggen
we de focus op het bepalen van genetische varianten. Dit houdt in dat de verschillen
tussen een gekend referentiegenoom en het gesequentieerde staal worden opgespoord.
Het Broad Instituut heeft een best practice computationele pijplijn beschreven voor
het identificeren van varianten voor zowel DNA en RNA data. Deze computationele
pijplijn bestaat uit het uitvoeren van enkele programma’s op de data in een bepaalde
volgorde met specifieke parameters. Eerst worden de reads gealigneerd ten opzichte
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van een gekend referentiegenoom. Voor elke read individueel wordt hierbij de meest
waarschijnlijke locatie in het genoom gezocht vanwaar de read afkomstig is. Vervol-
gens worden de gealigneerde reads verder verwerkt ter voorbereiding van het iden-
tificeren van de varianten. Dit houdt in dat de kwaliteitsscores van de nucleotiden
worden geherkalibreerd en dat reads in moeilijk genomische regio’s (gebieden met
veel herhalende patronen) worden geheraligneerd. Ten slotte worden de varianten
geı̈dentificeerd en opgeslagen voor verdere verwerking of analyse. Deze computati-
onele stappen zijn zeer rekenintensief: op één 24-core machine duurt het uitvoeren
van deze computationele pijplijn ongeveer 5 dagen, dit is langer dan de tijd voor het
sequentiëren zelf.

Om de uitvoeringstijd van de computationele pijplijn te minimaliseren hebben we
Halvade ontwikkeld. Het is een programma dat de ruwe gesequentiëerde data ver-
werkt en de identificatie van varianten uitvoert volgens de best practice richtlijnen
zoals gespecifieerd door het Broad Instituut. Gebruik makend van het MapReduce
programmeermodel kunnen we de computationele pijplijn schalen naar een omgeving
met meerdere computernodes en hierdoor de rekentijd reduceren. Dit is gebaseerd op
de observatie dat het aligneren van de data parallel is per read: het aligneren van een
bepaalde read is onafhankelijk van het aligneren van andere reads. Alle andere stap-
pen zijn dan weer parallel per genomische regio: het identificeren van varianten in een
genomische regio is onafhankelijk van het identificeren van varianten in andere ge-
nomische regio’s. Tussen beide fases in kunnen we gebruik maken van het efficiënte
sorteeralgoritme zoals geı̈mplementeerd in Hadoop. Halvade kan de tijdsduur voor
het uitvoeren van de computationele pijplijn op één machine reduceren van 5 dagen
naar 2 dagen, terwijl op een cluster met 15 machines de tijd verder gereduceerd wordt
naar 2 uur en 39 minuten. Deze versnelling laat ons toe de stap tussen de generatie
van ruwe data en het analyseren van de gevonden varianten te minimaliseren. Om de
nauwkeurigheid van Halvade te verifiëren hebben we de resultaten van de sequentiële
computationele pijplijn vergeleken met de resultaten van Halvade en we halen een
overeenkomst van meer dan 99%. Om de RNA-seq computationele pijplijn uit te voe-
ren, waarvoor tevens best practices richtlijnen geformuleerd werden door het Broad
Instituut, moest de aligneringsstap opgesplitst worden in Halvade naar een tweestaps
aligneringsalgoritme gebruikmakend van het programma STAR. Daarnaast dienden
nog enkele bijkomende stappen toegevoegd worden aan de voorbereidingsstap van
Halvade om de RNA-seq varianten te identificeren. Het uitvoeren van Halvade op
RNA-seq data vertoont een lagere parallelle efficiëntie in vergelijking met de DNA
data. Dit wordt veroorzaakt door het ongebalanceerde aantal reads over het genoom,
veroorzaakt door de verschillende expressieniveaus van de verschillende genen.

Uit een analyse van de performantie van Halvade is gebleken dat het aantal pa-
rallelle taken een grote invloed heeft op de totale tijdsduur. Meer parallelle taken
betekent dat meerdere onafhankelijke instanties van één programma opgestart kunnen
worden, terwijl ze anders meerdere CPU-cores moeten gebruiken via multithreading.
Dit leidde tot de conclusie dat enkele programma’s een slechte performantie vertonen
als multithreading gebruikt wordt. Daarnaast hebben we vastgesteld dat de verbin-
dingssnelheid tussen de machines in een cluster, het type opslagmedium en het type
gedistribueerd bestandsysteem een slechts een kleine invloed heeft op de totale uitvoe-
ringstijd. Ten slotte heeft het optimaliseren van het aantal reducetaken, en daardoor
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het aantal genomische regio’s dat Halvade moet verwerken, een grote invloed. Het
gecombineerde effect van deze optimalisaties resulteerde in een totale uitvoeringstijd
van 1 uur 21 minuten op een cluster met 15 machines wat overeen komt met een
parallelle efficiëntie van 59%.

Tijdens het analyseren van de varianten, worden vaak twee verschillende stalen
vergeleken. Zo kunnen bijvoorbeeld stalen uit gezond en kankerweefsel met me-
kaar worden vergeleken of worden mutaties binnen één staal geobserveerd op twee
verschillende tijdstippen. Deze analyse wordt typisch uitgevoerd in een interactieve
manier, waarbij telkens de data wordt gefilterd en vergeleken. Om dit type analyse te
optimaliseren hebben we een interactieve Spark Notebook ontwikkeld waar de data
gemakkelijk gefilterd en aangepast kan worden voor elke use case. De beslissing om
dit te ontwikkelen in Spark Notebooks is gebaseerd op de herbruikbaarheid van note-
books waardoor ze gemakkelijk kunnen aangewend worden voor verschillende use ca-
ses. We steunen hierbij op het ADAM project dat een API implementeert om VCF en
SAM geformatteerde data te verwerken binnen een Spark omgeving. De ontwikkelde
notebook ondersteunt het vergelijken van twee VCF bestanden alsook het filteren op
verschillende waarden uit het VCF bestandsformaat. Na het filteren worden de data
opnieuw vergeleken en wordt de overlap en de verschillen grafisch weergegeven. Dit
proces wordt uitgevoerd binnen een interactieve en quasi real-time omgeving.

Daarnaast werd een Spark Notebook ontwikkeld die drie verschillende VCF be-
standen met mekaar kan vergelijken. Als voorbeeld worden er drie verschillende se-
quentiëringstechnieken met mekaar vergeleken: RNA-seq, whole exome sequencing
(WES) en whole genome sequencing (WGS) data. Deze data werden verwerkt door
Halvade en de geı̈dentificeerde varianten werden daarna geanalyseerd op concordan-
tie en discordantie. Hierbij focussen we enkel op variatie op nucleotideniveau. In een
eerste observatie merken we dat bijna alle varianten die door zowel RNA-seq als WES
geı̈dentificeerd werden ook door WGS bevestigd worden. Slechts 0.5% van deze vari-
anten werden niet door WGS bevestigd. De varianten die enkel door RNA-seq werden
geı̈dentificeerd maar niet door WES, werden voor een groot deel bevestigd door WGS.
Ze vertonen een laag aantal reads op de corresponderende plaatsen in WES wat hun
afwezigheid in dit datatype verklaart. De varianten die niet door WGS bevestigd wer-
den vertonen een duidelijke aanrijking van RNA editing varianten wat wordt bevestigd
door een hoog aantal A-naar-I mutaties. Dit geeft aan dat evenzeer uit RNA-seq data
de varianten op een betrouwbare manier kunnen worden geı̈dentificeerd. WES vari-
anten die niet gevonden werden in RNA-seq data hadden geen of onvoldoende reads
in de RNA-seq data. Ook de meeste varianten die enkel in WGS gevonden werden
vertonen een zeer laag aantal reads op corresponderende locaties in zowel WES als
RNA-seq data.

Met Halvade bieden we een zeer snelle en schaalbare oplossing voor het ver-
werken van ruwe gesequentiëerde data voor zowel WGS, WES als RNA-seq se-
quentiëringsstrategiën. Met de toevoeging van Spark Notebooks die de varianten kan
vergelijken op interactieve wijze, verkrijgen we een volledige pijplijn van ruwe data
tot het analyseren van deze varianten. Door het gebruik van Hadoop MapReduce en
Spark is de volledig pijplijn beschikbaar in de cloud of op een lokale cluster.





Summary

A genome is the genetic material of an organism. It consists of Deoxyribonucleic
acid (DNA), a molecule that carries the genetic code for all building blocks of living
organisms. DNA can be represented as nucleic acid sequences, a succession of let-
ters ACGT that indicate the order of nucleotides within a DNA molecule. The entire
human genome is approximately 3 billion base pairs in size. In the cell, the genome
is organized in 23 chromosome pairs. Among the genomes of human individuals,
there are approximately 0.1% differences or roughly 3 million differences in total.
This is considerably smaller than the number of differences between humans and their
closest living relatives, the bonobos and chimpanzees, which have approximately 4%
differences. The differences among individuals are called genetic variants and can be
identified as single nucleotide variants, insertions, deletions or structural variations.
This variation is what make us unique, but can also be the underlying cause of cer-
tain diseases. The identification of genetic variants is therefore of use in medicinal
research or in a clinical setting and the development of reliable and fast methods to
identify these mutations is thus important.

Since the first human genome was sequenced, an effort that took 10 years and 3
billion USD to complete, the sequencing of DNA has progressed tremendously. The
next-generation sequencing machines have increased the sequencing speed consider-
ably. As an example, modern Illumina systems can generate ∼1.5 billion high accu-
racy reads in a matter of days. This leads to an enormous amount of raw sequencing
data that needs to be processed. Modern Illumina systems support sequencing of RNA
molecules as well. RNA is, like DNA, a nucleic acid sequence. It is essential in cod-
ing, decoding, regulating and expression of genes (a part of the nucleic sequence that
is the molecular unit of heredity). The sequencing is done by synthesizing a comple-
mentary DNA (cDNA) strand, complementary to the single stranded RNA, and then
sequencing the DNA strands.

Raw sequencing data can be processed in several ways. In this work we focus
on variant calling applications. In essence, the variant calling procedure involves the
identification of differences between a known reference and the sequenced sample.
The Broad Institute has formulated Best Practices recommendations for a computa-
tional pipeline for variant calling from both DNA and RNA sequencing data respec-
tively. This pipeline involves running a number of specific tools on the data in a spe-
cific order with certain parameter settings. It involves aligning the reads to a known
reference genome. For every read individually, the most likely genomic location from
which the read was derived is sought using a non-exact string matching procedure.
Next, aligned reads are prepared for variant calling. This includes recalibrating the
base quality scores and performing a realignment in difficult regions (regions with
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many repeating patterns and/or insertions of deletions). Lastly, the variants are called
and stored for further processing and analysis. These computational steps are very
compute-intensive: on a single 24-core node the processing time of this pipeline is
approximately 5 days, which is more than the time needed for the sequencing step
itself.

To minimize the runtime of this computational pipeline, we have developed Hal-
vade. It is a tool that processes raw sequencing data and performs variant calling
according to the Best Practices recommendations as formulated by the Broad Insti-
tute. The use of the MapReduce programming model allows us to scale the pipeline
to a multi-node setup and in turn reduce runtime. This is based on the observation
that the read alignment step is parallel by read, i.e., the alignment of one read is inde-
pendent of the alignment of other reads. The other steps are all parallel by genomic
region, i.e., variant calling in one region is independent of variant calling in another
region. In between both phases, we can rely on the efficient sorting functionality of
the Hadoop framework. Halvade decreases the runtime of the processing pipeline on
a single node from 5 days to 2 days, and on a 15-node cluster the runtime is further
decreased to 2 hours 39 minutes. This speedup allows for a minimization of time
between the production of the raw data and downstream variant analysis steps. To
confirm the accuracy of Halvade, we compared the output of Halvade with the out-
put of the sequential pipeline and found a concordance of over 99%. In order to also
support the RNA-seq variant calling pipeline, similarly described by the Broad Insti-
tute, the mapping step of Halvade had to be adjusted to a 2-step read alignment phase
using the STAR alignment tool. Moreover, some additional steps in the RNA-seq vari-
ant calling pipeline were added to Halvade. Processing RNA-seq data using Halvade
shows a lower parallel efficiency compared to the DNA data. This is because of the
unbalanced coverage that in turn is caused by different gene expression levels from
the data samples.

When further analyzing the performance of Halvade, we discovered that the num-
ber of parallel tasks has a big influence on the runtime. More parallel tasks means that
more parallel instances of a certain tool will be started instead of using the available
CPU-cores for multithreading. This is associated to the fact that certain individual
tools show limited multithreading scaling behavior. Additionally, we note that the in-
terconnection network of the cluster, the type of storage and the type of distributed
file system only have a small influence on the total runtime. Lastly, optimizing the
number of the reduce tasks and consequently the number of genomic regions Halvade
will process in parallel, has a big influence on performance. With all collective opti-
mizations in place we were able to further reduce the total runtime to only 1 hour and
21 minutes on a 15-node cluster, corresponding to a parallel efficiency of 59%.

When analyzing variant data, two samples often need to be compared, for example,
cancer versus a matching non-cancer sample or the mutations in a sample observed
in two distinct points in time. Typically, this analysis is performed in an iterative
way, where the data is filtered and compared in each step. To improve this kind of
analysis we have developed an interactive Spark Notebook where the data can easily
be filtered and modified for different use cases. The decision to develop this in a
Spark Notebook is based on the reproducibility of the notebooks which easily allows
processing different samples in a scalable manner. By using Spark we can rely on
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the ADAM project which provides an API for processing VCF and SAM formatted
data. In the notebook we compare two VCF files and support filtering on several fields
from the VCF format. After filtering, the VCF files are again compared and overlap is
visualized. This process is executed in an interactive and quasi real-time environment.

Additionally, we have developed a Spark Notebook to compare three sequencing
strategies on the same sample: RNA-seq, whole exome sequencing (WES) and whole
genome sequencing (WGS). Raw data is processed by Halvade and then compared
using this notebook. This analysis focused on unfiltered single nucleotide variants. A
first observation is that almost all variants that are called from both RNA and WES
are also confirmed in WGS. Only 0.5% of these variants are not confirmed by WGS.
For the variants only called from RNA-seq data but not from WES, a great deal are
confirmed by WGS. They show low only coverage in the WES data which explains
why they were not identified. The RNA-seq variants that are also not confirmed by
WGS show a clear presence of RNA editing indicated by a very high A-to-I mutation
count. This indicates that RNA-seq data can also be a reliable source for variant
calling. As for the WES variants not called in RNA-seq, we see that the coverage in
the RNA sample is severely lacking and thus does not provide enough information for
variant calling. Most of the mutations that are called only in WGS show a very low
coverage in both the WES and the RNA-seq data set.

With Halvade we provide a very fast solution to process raw sequenced reads for
WES, WGS and RNA sequencing strategies. With the addition of the Spark Notebook
that compares the variants achieved from Halvade, we essentially provide a pipeline
from raw sequencing reads to analysis ready variants. The use of Hadoop MapReduce
and Spark makes the entire pipeline available for use in the cloud as well as on a local
cluster.





1
Introduction

In this introduction we will first explain the process of DNA and RNA sequencing
with Illumina platforms as these are currently most commonly used for sequencing.
Next we explain how raw sequencing data is typically processed to identify genomic
variants in a sample with respect to a reference genome. This process involves several
computational steps and is described as a sequencing analysis pipeline. Best Practices
recommendations for this pipeline have been described by the Broad Institute and will
be explained in detail: what are the steps involved and what effect do they have on
the variant calling procedure? The parallelization of this pipeline is the main topic of
this thesis, and the used programming models and concepts will be introduced. Next,
we describe the process of analyzing the variants that have been identified with the
pipeline. Finally, we provide an overview of the different papers.

? ? ?

1.1 DNA sequencing
Deoxyribonucleic acid, or as it is more commonly referred to, DNA, is a molecule
that carries the genetic instructions used in the growth, development, functioning and
reproduction of all known living organisms. DNA, and RNA, are nucleic acid se-
quences and are one of the four major types of macromolecules that are essential to all
known forms of life. The other three are proteins, lipids and complex carbohydrates.
DNA molecules consist of two complementary strands coiled around each other to
form a double helix. The two DNA strands are composed of monomer units called
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nucleotides and are therefore called polynucleotides. Each nucleotide is composed of
a sugar called deoxyribose, a phosphate group and one of four nitrogen-containing nu-
cleobases: cytosine (C), guanine (G), adenine (A) or thymine (T). These nucleotides
are connected to one another by bonds between the sugar and phosphate of two adja-
cent nucleotides. The two DNA strands are bound together (A is paired with T while
C is paired with G) with hydrogen bonds to form the double-stranded DNA. Biolog-
ical information is stored in the DNA and both strands contain the same biological
information which makes it resistant to cleavage.

The DNA strands form chromosomes, and the human genome contains 23 pairs of
chromosomes, 22 pairs of autosomes and one pair of sex chromosomes, two X chro-
mosomes in females, while individuals with both X and Y chromosomes are males.
The genotype of an individual or organism consists of its genetic makeup, the genome,
and it determines the characteristics of that organism. Only a small portion (2%) of
the DNA is actually used for coding protein sequences, these are the genes and they
contain the code for making proteins. RNA strands are formed by using the DNA
as a template in a process called transcription. These RNA strands are in turn used
as a template to specify the amino acids within proteins in a process that is called
translation. The genes are made up of exons, which encodes part of the final mature
RNA (created by transcription from DNA), and introns which are removed by RNA
splicing before translation to proteins. A variant in or around a given gene can result
in changes in either the protein makeup or regulation for expression. This variant of a
given gene is called an allele, which in turn can produce different phenotypes. Pheno-
types are observable characteristics of the organism, e.g. the color of the eyes. If both
alleles at a gene on the homologous chromosomes are the same, the organism is ho-
mozygous with respect to that gene. Different alleles for that gene make the organism
heterozygous with respect to that gene.

The human genome is about 3 billion base pairs in size. Between the human
genome and that of its closest relative, the bonobos and chimpanzees, there are about
4% differences. However, also between individual humans there are differences, albeit
substantially less: only about 0.1% of the human genome differs between individuals,
amounting to about 3 million differences in total. These differences are called genetic
variants and can be identified as single nucleotide variants, insertions, deletions or
structural variations. An organism’s DNA affects how it looks, how it behaves and
also its physiology. Consequently, a mutation in the DNA can cause changes in looks,
behavior and physiology. Sometimes they can even be the cause for diseases. Find-
ing these variants and linking them to diseases is more and more used in medicinal
research and clinical settings. Therefore, it is important to have methods to identify
and analyze these mutations in a reliable and timely manner.

The first human genome has been sequenced in the Human Genome Project, a
3 billion USD undertaking that took nearly 10 years to complete. Since then, the
sequencing technologies have improved a lot and nowadays human genomes can be
sequenced much cheaper and at a faster rate. These new sequencing technologies are
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typically referred to as next-generation sequencing (NGS) platforms [1]. The output
of these sequencing machines are called reads, i.e., short parts of DNA sequences with
a typical length of about 50 to 250 nucleotides. For every base pair that is sequenced,
a corresponding quality score is provided by the sequencing platform. These per-
base qualities are encoded in an ASCII string where the ASCII value represents the
Phred-scaled quality score, which is equal to −10 log10 P {base is wrong}. These
sequencing machines are typically capable of sequencing both ends of a genomic
fragment resulting in paired-end reads. The use of paired-end reads improves the
accuracy of alignment and is especially beneficial in or near genomic rearrangements
and repetitive sequences as well as gene fusions and novel transcripts. The Illumina
sequencers (e.g. Illumina HiSeq) account for over 90% of all sequenced data today
and all Illumina NGS machines are capable of sequencing paired-end reads.

These reads or paired-end reads can be used either for de novo genome assembly
projects or for resequencing purposes. The former involves the reconstruction of the
genomic sequence without prior information. In the latter case, reads are aligned to a
known reference genome after which variation with respect to this reference genome
can be identified. The alignment step relies on an inexact string matching procedure
where it is assumed that there are only few errors from the sequencing machine and
few variants between the reference and the sequenced genome. In this dissertation
we focus on the computational aspect underlying the alignment and variant calling
steps, both for DNA or RNA sequencing data. Additionally, we investigate scalable
solutions for the downstream analysis of variants.

1.1.1 Illumina sequencing

Illumina sequencers use a technique called Illumina dye sequencing, enabling them to
determine a series of base pairs, thus forming a read. This technique was developed
by Shankar Balasubramanian and David Klenerman of Cambridge University. The
method is based on reversible dye-terminators that enable the identification of single
bases when they are introduced into DNA strands. It can be used for whole-genome
and targeted sequencing, as well as for transcriptome analysis, small RNA discovery
and more.

The sequencing technique consist of three steps. First is amplification, followed
by sequencing and lastly analysis. An overview of the sequencing process is shown
in Fig. 1.1. The first step starts with chopping the isolated DNA molecule into ran-
dom smaller pieces. Terminal sequences or adapters are added to both ends of all
the cut pieces as well as indices and other modifications. The adapter will be used in
the following steps of amplification and sequencing. The indices are used during the
sequencing to identify the samples. Over a 100 samples can be run in parallel. Dur-
ing the process the sequences with the same indices will be grouped together. Pieces
where the modifications were unsuccessful are washed away. The remaining pieces
are loaded onto a specialized chip (an acrylamide-coated glass flow cell), the termi-
nal sequences will match with and attach to oligonucleotides that are present on the
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bottom of the flow cell. The amplification and sequencing occurs on this flow cell.

Once the DNA molecules are attached to the flow cell, identical copies will be

DNA

1. Chop DNA molecule and add adapters

Adapters

2. Attach DNA to surface

3. Bridge amplification 4. Cluster creation

5. Determine bases

Laser
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C
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ATCT…

6. Align data

Reference

CTACGAGAGTCGAGACCAGATACCA

CTAGGAG       CGAGACCA
AGGAGAGTC           CCAGATACCA

TAGGAGAGT  GAGACCAGAT
AGAGTCCAG   

Variant          Artifact 

Figure 1.1: Illumina sequencing starts by adding adapters to the chopped DNA molecules.
These molecules are attached to a surface with the adapters. Next a bridge is formed and a
reverse strand is created through polymerase. Both strands are denatured and further used
to amplify in clusters with identical strands. Every cluster is now sequenced in parallel, base
per base the sequence is constructed by determining the light, and corresponding base, that is
emitted. During analysis overlapping areas are used to create contigs.
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created to form clusters. The goal is to amplify a single molecule so that you can
get a stronger signal and get better readings of the nucleotides. Several hundred or a
few thousand of identical molecules in a cluster are required. The strands are attached
to the flow cell with an adapter. Now the strand bends over and the adapter at the
other end is also attached to a corresponding oligo on the flow cell, forming a bridge.
Polymerases attach to the strand and the complementary strand is made, the reverse of
the original strand. Now the strands are straightened by denaturing the strands, while
remaining attached to the oligo at the bottom of the flow cell. This is called bridge
amplification and occurs in parallel for thousands of clusters on the flow cell. By per-
forming this process over and over again, a cluster of identical (forward and reverse)
strands of the original DNA molecule is created. This amplification is important for
the quality of the sequencing that will follow. By using identical strands, the same
nucleotides are expected at every position in the strand. If an abnormal sequence is
found, the other strands in the cluster can be used as verification.

A cluster is sequenced as a whole, but the reverse strands are washed off. This
leaves the cluster with all identical strands, this time only forward strands. The se-
quencing primers are attached to every strand in the cluster and fluorescent nucleotides
are added. A single nucleotide is added in every round of base identification. This also
means that the length of a sequence can be measured by the number of rounds the se-
quencing goes through. The four bases have a unique emission when a light source
is added, and every round this is recorded to identify one of the four bases. Once
the DNA strand is read, this added strand is washed away. Now the other end of the
strand will be read in order to create paired-end reads. This is done by again making
a bridge to one of an oligo on the flow cell. This time the forward strand is washed
away, leaving a cluster of reverse strands. And the sequencing process is repeated on
this end of the DNA sequence. The sequencing is performed on millions of clusters
in parallel, where each cluster has several hundreds of identical copies of the DNA
molecule from the PCR bridge amplification.

In the analysis this sequencing data is used to create longer fragments of DNA,
called contigs. These contigs are created by comparing fragments and finding over-
lapping areas between them and thus extending the contig. Without a reference this is
called de novo assembly, where the created contigs will form a new reference. With a
known reference, these contigs can be used to find variation between the sample and
the known reference. The latter will be the focus of this manuscript.

1.2 The DNA-seq variant calling pipeline

The life science application we focus on in this thesis is variant calling and analysis.
Variant calling determines the genetic differences between the sequenced sample and
a reference sequence. There are four types of differences, single nucleotide variants,
insertions, deletions (typically insertions and deletions are grouped together and called
indels) and structural variations. The Broad Institute has proposed pipelines for high-
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ACGCGTTGCAGATGACACCCGATTGTACACGACATGGT

CGCGTTGCACAT     
GCACATGACACC   

CACGCGAATGTA
CCGAATGTACAC

ATGACACCCGAA
ACACGACATGGT

ACGCGTTGCACA      
ATGTACACGACA

ACGCGTTGCAGATGACACCCGATTGTACACGACATGGT
|       |   |

ACGCGTTGCACA      |   |
CGCGTTGCACAT     |   |

GCACATGACACC   |
|ATGACACCCGAA
|    CACGCGAATGTA
|       CCGAATGTACAC  
|       |   ATGTACACGACA
|       |   |   ACACGACATGGT
|       |   |

ACGCGTTGCACATGACACCCGAATGTACACGACATGGT

CGCGTTGCACAT
GCACATGACACC
CACGCGAATGTA
CCGAATGTACAC
ATGACACCCGAA
ACACGACATGGT
ACGCGTTGCACA
ATGTACACGACA

Read mapping
Parallel by read

Sort

Variant calling
Parallel by region

Input reads REF

Figure 1.2: Simple example where the reads are first aligned to the reference. These are then
sorted according to the genomic position to which they align. Finally, the differences with the
reference and the reads are detected and used to call variants.

quality variant calling for both DNA and RNA sequencing data. We will first describe
this pipeline for DNA data after which we will clarify the differences and additions
that are required to run the same pipeline on transcriptomic data. The raw sequencing
data produced by sequencing machines is typically stored as FASTQ files. These files
contain the ASCII strings representing the sequenced read and the associated quality
string, as well as an identity string for every read to match paired-end reads.

The process involves two big steps. First, the reads are aligned to the reference
sequence, this is done using a tool called BWA (Burrows-Wheeler Aligner), which
takes the FASTQ file as input and outputs the aligned reads in SAM format. After the
alignment, the reads are sorted by genomic location to which they align and then the
second big step starts, which includes data preparation and variant calling. The data
preparation steps include duplicate marking, i.e., the identification of duplicated reads
that thus contain no additional information and the addition of read group information
to the SAM records. This preparation step formats the data according to very strict
standard imposed by GATK, which will perform the final computational steps. In or-
der to improve the variant calling quality the reads near putative insertions or deletions
(indels) are realigned and the quality score of each base is recalibrated based on a list
of known variants. GATK is then used to calls the variants using one of two supported
modules. A very simple overview of read alignment and variant calling (without the
data preprocessing steps in between) is shown in Fig. 1.2. Although sequencing errors
are relatively rare, they need to be taken into account to avoid false positive variants
from being called.

Calling variants from a typical whole genome sequencing (WGS) sample (50x
coverage) using the Best Practices pipeline from the Broad Institute is a very time-
consuming endeavor, amounting to 12 days on a single CPU core of a 24-core ma-
chine (dual socket Intel Xeon E5-2695 v2 @ 2.40 GHz) or 5 days when using all 24
cores of that machine. This pipeline is even more time consuming than the sequenc-
ing itself, which typically takes about two days on a HiSeq Illumina machine. Some
clinical applications require the analysis to be performed much faster. As an exam-
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ple, preimplantation genetic diagnosis (PGD) for in vitro fertilization (IVF) allows 48
hours in between taking a cell to sequence and the decision which of the embryos to
implant. These 48 hours include the sample preparation, sequencing and the analy-
sis. In this situation, 5 days clearly would not work and faster solutions need to be
available. Another important example is the latest Illumina X10 sequencing machine.
With this machine up to 18 000 samples can be sequenced in a year with a price under
1000 USD per sample. This price includes the cost of paying for the machine, sample
preparation and everything else it requires. This allows relatively cheap analysis of
a lot of samples, approximately 50 samples will be ready for analysis every single
day. The current pipeline runs 5 days on a single core. This means that 250 machines
would be needed to handle the maximum influx of data. This means that a big clus-
ter needs to be purchased, similar in price to that of the full price of the sequencing
machine itself. If the runtime of a sample can be reduced on a single core, the cost
of the accompanying cluster to analyze the data can be greatly reduced. Given the
limited speedup provided by multithreading [2] and the inability of the pipeline to use
multiple nodes, the development of a parallel multi-node framework is warranted.

1.2.1 Read Alignment

The first step in the post-sequencing analysis pipeline is the alignment of the reads
to a known reference genome. Currently, over 60 short-read mappers are available
[3], where most were released after 2008 to cope with advances in high-throughput
sequencing technologies. In these mapping tools, the alignment can be stated as find-
ing all substrings m of a set of reference sequences R for a set of query sequences Q
that respect certain constraints (e.g. the number of mismatches/gaps allowed) and a
distance threshold k. The constraints vary depending on the type of data. Addition-
ally the mapping tool needs to take into account errors from the sequencing platform
and structural variation to try and find the true location of the fragment. The dis-
tance measure is generally used to allow for a number of variants and/or sequencing
errors. Additionally, read mappers take into account paired-end read information to
increase the specificity of the mapping process as this provides additional positional
information.

Most of these tools are based on a hashing algorithm or on the Burrows-Wheeler
Transform (BWT), a space-efficient index that accelerates the string matching pro-
cedure [4]. The tools based on the latter are faster, more memory-efficient and can
cope better with repetitive reads, but these are typically less sensitive. Hashing al-
gorithm based tools like Novoalign [5] and Stampy [6] are more accurate but have
a longer runtime. Typically, the workflow is divided into a preprocessing step and a
mapping step. The preprocessing step is done only once and involves indexing the
reference which can take several minutes to complete. After this the mapping using
the Burrows-Wheeler Alignment (BWA) tool [7], which relies on the BWT, runs re-
spectively 3 and 12 times faster than Novoalign and Stampy. The alignment itself
has a big influence on the variant calling in a later step. Misaligned reads can be the
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cause for detecting false positives during variant calling. Given the large number of
data generated from high-throughput sequencing machines, many tools provide a way
to align reads in parallel. Typically this is done for a shared-memory system where
multithreading is used.

1.2.1.1 DNA sequencing read alignment with BWA

The DNA-seq variant calling pipeline proposed by Broad Institute uses the BWA tool
for alignment. BWA or Burrows-Wheeler Alignment tool is an efficient short-read
alignment package that is based on backward search with Burrows-Wheeler Trans-
form (BWT). The backward search procedure effectively mimics the top-down traver-
sal on the prefix trie of the genome with a relatively small memory footprint. This
allows BWA to count the number of exact hits of a string of length m in o(m) time,
independent of the size of the genome. However, for inexact matching BWA samples
distinct substrings from the implicit prefix trie with an edit distance less than k with
respect to the query read. Additionally, because exact repeats are collapsed on a single
path on the prefix trie, BWA does not need to align the query read against every copy
of the repeat. With this BWA is able to achieve very high efficiency. To reduce the
memory overhead of the prefix trie, they can be made sparse, where only a fraction of
the trie is saved in memory and the rest is calculated on the fly.

To align reads with BWA, two options are provided. The first is to independently
align both ends of paired-end reads separately (with the bwa aln command) and then
to later combine these alignments to find the best alignment position (with the bwa
sampe command). The second method is to use bwa mem [8] which chooses be-
tween local and end-to-end alignments and is developed with longer paired-end reads
in mind. The algorithm is robust to sequencing errors and works on reads from 70 bp
to a few megabases. The typical read length of 100 bp per read in our tests is appli-
cable to both options. However, the performance tests in this thesis were conducted
with bwa aln and bwa sampe as those were the standard methods during the time of
benchmarking. The Broad Institute has since updated their pipeline to use bwa mem
instead because reads are typically produced with lengths longer than 70 bp. Both
alignment options use the BWA reference, which is a combination of the BWT and a
sparse suffix array (SA) of the genome sequence. Together they require approximately
5 GBytes of memory.

1.2.1.2 The SAM Format

The output from both alignment tools is formatted using the SAM format. A simple
example of this format is illustrated in Fig. 1.3. This format contains a header, which
provides information about the SAM format version, the reference sequence dictio-
nary, read group information and programs that produced or modified the SAM file.
After the header each line contains the alignment information for one read. The infor-
mation is tab separated and has 11 mandatory fields with optional fields at the end. The
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@HD     VN:1.5
@SQ     SN:1    LN:248956422
@SQ     SN:10   LN:133797422
@SQ     SN:11   LN:135086622
@SQ     SN:12   LN:133275309
@SQ     SN:13   LN:114364328
@SQ     SN:14   LN:107043718
@SQ     SN:15   LN:101991189
….
@RG     ID:GROUP1       LB:LIB1 PL:ILLUMINA     PU:UNIT1        SM:SAMPLE1
READ_ID_1    163    1      12061   0       76M =       12206   221     TGGAGTGG…    @DFAG>BF…      X0:i:7  X1:i:1  MD:Z:76 …
READ_ID_2    99      1      12127   0       76M     =       12177   126     GCCCCTGT…      ;DEEEBG?...        X0:i:6  X1:i:2  MD:Z:76 …
READ_ID_3    83      1      12206   0       76M     =       12061   -221    ACTTCTCT…       ?ECBFBGB…       X0:i:2  X1:i:3  MD:Z:76 …

Reference sequence dictionary

Information about SAM version

Read Group information

QNAME RNAME        MAPQ           RNEXT            TLEN    QUAL Optional fields

FLAG POS                CIGAR PNEXT SEQ

Figure 1.3: Simple SAM format example. The header contains the SAM version and the ref-
erence sequence dictionary. The read group information is also added to the header. Three
aligned reads are added as an example of the columnar SAM format.

first column contains the query name of the read, the second is a bit-wise flag contain-
ing additional information. This flag contains information about paired-end reads and
whether this alignment is a secondary alignment or not, whether it is flagged as a PCR
or optical duplicate. The third and fourth column respectively show the reference se-
quence name and the 1-based leftmost mapping position of the read. The fifth column
is the mapping quality which is equal to−10 log10 P {mapping position is wrong},
the sixth column provides the CIGAR string. This CIGAR string contains the exact
positions of indels or mismatches in the read. The next two columns contain the
reference sequence name and 1-based leftmost mapping position of the mate read in
paired-end alignment. The ninth column shows the signed observed template length,
equaling the total length on the reference sequence. The last two columns contain the
actual sequence fragment with the corresponding quality string. The quality string
contains the Phred-scaled score for every base pair in the sequence fragment as en-
coded as ASCII characters. The base quality is the Phred-scaled base error probability
which equals−10 log10 P {base is wrong} and is encoded as the ASCII character of
base quality plus 33. After these 11 mandatory fields, optional columns can be added
by the alignment tool. This can include other alignment metrics or information about
the read group. Based on the SAM format, which is human readable, a BAM format
is available as well. This BAM format is a binary representation of the SAM format
and is designed to compress reasonably well.

1.2.2 Marking PCR Duplicates

Some DNA samples only have a few DNA molecules that can be used in the sequenc-
ing machine. To get an overall better result of the sequencing we can amplify the
sample and get multiple clones. This is called Polymerase Chain Reaction or PCR
amplification. In this step multiple copies of each original genomic DNA molecule
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are created intentionally. This way, enough of them are available in order to se-
quence more accurately. The duplication occurs when two copies of the same original
molecule get onto different beads of different primer lawns in a flow cell. And because
of the random hybridization of the DNA molecules to beads, some PCR duplication is
inevitable. The ratio of duplicate DNA molecules depends on the amount of starting
material available. This can range from as low as 4% or up to 70% in some cases. An-
other cause of a high ratio is if the variance in fragment size is too big and the smaller
fragments end up being over-represented (as they are easier to PCR amplify) [9].

The PCR duplicates are identified and marked as such in order to take this infor-
mation into account when computing statistics. The duplicates cannot be identified
solely by alignment position as two distinct cDNA (a complementary DNA synthe-
sised from a single stranded RNA) fragments can produce reads that align to the same
position. The algorithm essentially finds the 5’ coordinates and mapping orientations
of each read pair. Determining the 5’ coordinate takes into account all clipping, indels,
gaps etc. in the aligned read. Next all reads with identical 5’ coordinates and orienta-
tions are marked as duplicates except the “best” pair, where the “best” pair is the read
pair with the highest sum of base qualities. This process is typically done with the
MarkDuplicates tool from the Picard [10] suite or rmdup from Samtools [11]. In the
proposed pipeline Picard is used.

1.2.3 Indel Realignment

Indels can cause incorrectly aligned reads, especially at the end of the reads. In turn,
these reads can cause the calling of false positive variants. Indel realignment is a step
where alignments are corrected near indels. This process is done in two steps. First
a list of regions where indel realignment is required is generated. Next, the reads
are realigned around the indels in the list of regions. The targets for realignment are
detected from three different origins. First, the known sites from databases, next,
where the original alignment shows an indel (in the CIGAR string) and lastly, where
evidence can be found that suggests a hidden indel. After the target locations are
determined all reads that overlap these regions are realigned.

To realign, the algorithm groups the reads in piles. These piles show reads that
have similar mismatches to the references. A score is given to every pile of reads,
representing the total sum of quality scores for all mismatching bases. If the score
is sufficiently better after realignment, then the proposed realignment is accepted. A
simple example is provided in Fig. 1.4 [12]. This step effectively eliminates a number
of false positive variants that would otherwise occur and is performed by GATK using
the RealignerTargetCreater and IndelRealigner modules for the respective steps.

1.2.4 Base Quality Score Recalibration

Data generated from sequencing machines include a quality score per base pair. This
quality score is a Phred score and equals−10 log10 P {base is wrong}. This means a
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Figure 1.4: Example of realigning reads to adjust for indels. Reads are grouped in piles with
similar variations. If a pile has consistent insertions, then these regions will be realigned taking
into account this new insertion.

6   2   2   11  13  21  13  21  2  16  21

REF T   C   G   G T   A   C   G   T   A   C

READ T   G   C   A   T   A   G   G A   A C

Phred score 15  11  11  20  22  30  22  30  11  25  30

dbSNP y   y y

Error? y           y

Average Phred score is 16 

Empirical Phred score is 7

Fixed Phred score Readjust Phred score by (16-7)=9

Figure 1.5: Trivial example of how BQSR works. The average Phred score is calculated from
the given Phred scores. The variants that are not in the dbSNP file are considered to be errors
(orange square). With this number a new empirical Phred score is calculated, after which the
difference with the average Phred score is added to the Phred scores of each base.

score of 10 represents an accuracy of 90%, 20 represents 99% accuracy, 30 represents
99.9% and so on. Base Quality Score Recalibration (BQSR) is a method to adjust the
Phred quality scores to be more accurate by looking at all the bases in the file instead of
looking at every base separately. To run BQSR a file is needed with all known Single-
Nucleotide Polymorphisms (SNPs). The National Institutes of Health (NIH) provides
a database of single SNPs called dbSNP, which is used in this pipeline. This file will
be used to identify “real” errors, in other words, SNPs that are not present in this file
will be marked as real sequencing errors. This is a statistically sound assumption,
given that there are over 12 million SNPs in this database and that a single individual
will have, on average, only about a 1000 SNPs not found in this file.

For a single read, the average Phred score is calculated by converting the
scores back to probabilities, taking the average of the per-nucleotide probabilities
and calculating the Phred score of this average probability. Next, per read the
“real” errors are counted and used to calculate an empirical Phred score, equal
to −10 log10 P {errors / readlength}. Now the difference between the empirical
Phred score and the average Phred score is used to correct the individual Phred scores
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so that the new average will equal the empirical Phred score. This process is illustrated
in Fig. 1.5. However, BQSR is performed on a collection of reads. This collection of
reads is first binned by read group since different sequencing machines may be cali-
brated differently. These read group bins are again binned by the quality scores since
the goal is to compare the scores reported by the sequencing machine to the empirical
scores we derive from the empirical error counts. For every read group quality bin
a new empirical score is derived by using the error count in that bin. This empirical
score is used as new score for bases with a quality equal to the quality of this bin
[13, 14].

BQSR requires two passes over the data, the first pass splits the data up as de-
scribed above and calculates new empirical scores for every quality present per read
group. The second pass uses this data to adjust the quality scores of every base in the
data file. The first pass is done by the BaseRecalibrator module from the GATK which
produces a table for the recalibration. The second pass is performed by the PrintReads
module from the GATK which uses this table to recalibrate all the base scores in the
input file.

1.2.5 Variant Calling using GATK

Converting base calls and quality scores from the sequencing machine into a set of
genotypes for each individual in a sample is often divided into two steps: calling single
nucleotide polymorphisms (or SNPs) and genotype calling [4]. SNP calling or variant
calling detects the sites where at least one base differs from the reference sequence
whereas genotype calling determines the genotype for every individual, typically for
each location where a variant has been detected. Basic variant calling simply counts
alleles at each site and uses cutoff rules to determine SNPs and genotypes. Typically,
only high-confidence bases are kept, bases with a Phred score below a certain thresh-
old are not used. This works well for regions with high coverage (more than 20 X).
However, newer methods tend to include uncertainty in a probabilistic framework, al-
lowing additional information like allele frequency patterns to be used. This yields
better results for regions with lower sequencing coverage. This method also provides
a measure of uncertainty.

The probability P (G | X) for a genotype G given the aligned read information X
can be expressed using Bayes’ formula as 1.1, where P (G) is the prior, P (X) is the
evidence and P (X | G) is the probability of observing the data X given the genotype
G.

P (G | X) =
P (X | G)P (G)

P (X)

=
P (X | G)P (G)∑
P (X | Gi)P (Gi)

(1.1)

This gives rise to the implicit assumption of independence among reads. This is where
marking PCR duplicates, indel realignment and BQSR gives additional accuracy as
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PCR artifacts and alignment errors can violate this independence assumption. The
prior P (G) can be chosen arbitrarily to assign equal probability to all genotypes or
based on external reference information like a SNP database (dbSNP). Another pos-
sibility is to use the observed genotypes in the actual data (i.e. empirical Bayes). The
genotype with the highest probability P is called. GATK provides the UnifiedGeno-
typer which can call genotypes in DNA sequencing data and the HaplotypeCaller
which supports calling genotypes in both DNA and RNA sequencing data.

1.2.5.1 UnifiedGenotyper

The UnifiedGenotyper is the first variant and genotype calling utility from GATK. It
is based on the probabilistic framework to call variants. This algorithm calculates the
likelihood L(G | X) that a genotype G is present given all the sequencing data for a
particular individual at a particular site X [15]. GATK ignores the denominator in the
Bayesian model as they are trying to calculate the most likely genotype, and this part
is the same for all genotypes.

L(G | X) = P (G)P (X | G) =
∏

b∈{good bases}

P (b | G) (1.2)

Now the likelihood can be calculated as 1.2 where P (G) is the prior and P (X | G)

is the probability of observing the data X given the genotype G. The prior P (G) is set
to 1 for single sample and then applied for multi-sample calculations, so we get a prod-
uct of the probabilities of the independent bases b given G. The bases are filtered to
only have reliable bases left based on base quality, read mapping quality, pair mapping
quality, etc. The likelihood L(b | G) is calculated using a platform-specific confusion
matrix. This error matrix contains information of the performance of a sequencing
system. The UnifiedGenotyper tool is very aggressive in calling variants in order to
be more sensitive. The side effect of this is that the output can contain many false
positives which can be filtered out in a later step. Additionally, it is not recommended
to use this tool for RNA-seq data. Tests show that it calls less than 50% of the true
positive indels for RNA-seq data that the HaplotypeCaller does call. Some function-
ality was added to this last tool that intelligently takes into account exon-intron split
regions to achieve higher accuracy.

1.2.5.2 HaplotypeCaller

This module uses local de novo assembly of haplotypes, which can process splice
junctions in RNA properly, to call SNPs and indels simultaneously [16]. A haplo-
type is a set of DNA variations that tend to be inherited together, which can refer to
a combination of alleles or a set of SNPs. The algorithm used to calculate the vari-
ant likelihood is not well-suited to extreme allele frequencies (relative to ploidy) as is
the case with somatic (cancer) variant discovery. GATK provides the MuTect2 module
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##fileformat=VCFv4.1
##FILTER=<ID=LowQual,Description="Low quality">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
…
##INFO=<ID=AN,Number=1,Type=Integer,Description="Total number of alleles in called genotypes">
…
##contig=<ID=1,length=248956422>##contig=<ID=10,length=133797422>
…
##reference=file:///path/to/ref.fasta
##SnpEffVersion="4.1k (build 2015-09-07), by Pablo Cingolani"
##SnpEffCmd="SnpEff filename.vcf"
…
#CHROM  POS     ID      REF     ALT     QUAL    FILTER  INFO    FORMAT  SAMPLE1
1     69270      .       A       G       37.74        .   AN=2;DP=2;…;ANN=G|synonymous_variant|…|                 GT:…:PL    1/1:....:65,6,0
1 69511      .       A       G       2169.77   .   AN=2;DP=82;…;ANN=G|missense_variant|…|                     GT:…:PL    1/1:...:2198,192,0
1     183629    .       G       A       71.03        .   AN=2;DP=4;…;ANN=A|downstream_gene_variant|….|     GT:….:PL   1/1:...:99,12,0

Data format

VCF version

Processing information

CHROM ID              ALT FILTER FORMAT

POS                  REF             QUAL INFO SAMPLE1

Information fields

Filter information

Genome reference information

Reference file

Columns & Sample name

Figure 1.6: VCF format example. The header contains information about filters, format and
info field abbreviations, the genome reference dictionary and information about the programs
that processed this file. Includes three variants to show the columnar VCF format.

which is more accurate for these types of variant calling but requires both a normal and
a tumor sample to run properly. As this thesis focuses on single sample analysis we
only consider the HaplotypeCaller. The algorithm used in this module has four steps.
The first is to identify active regions, these are regions where significant evidence of
variation is found. The second step uses a de Bruijn graph to locally reassemble the ac-
tive region to identify possible haplotypes. These haplotypes are realigned against the
reference haplotype using the Smith-Waterman algorithm to identify potential variant
sites. In the third step the paired-end reads are realigned to each haplotype using the
pairHMM algorithm. This gives a matrix of likelihoods for each haplotype which in
turn is used to obtain likelihood for alleles for each variant site. The last steps uses
Bayes’ rule described before to calculate the likelihoods of alleles given the read data
to calculate the likelihoods of each genotype per sample given the observed data for
that sample. Lastly the genotype with the highest likelihood is assigned to the sample.

1.2.5.3 The VCF Format

The VCF format is a text file format that stores variant information, a simple example
is shown in Fig. 1.6. It contains meta-information lines, a header and subsequently
one data line per variant. The meta-information lines start with ‘##’ followed by a
key-value pair. This contains information about the VCF format version, the file date,
reference file, contigs etc. The file format must always be present. After this, the
meta-information lines contain three optional entries: info, filter and format. The
info and format fields contain information about the similarly named columns in the
variant entries. The filter entries show the filters that have been applied to the VCF
file, e.g. quality equal to or greater than 10. Next comes the header line syntax: one
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line starting with ‘#’ followed by a tab-separated list that contains the column names
of the variant entries. There are 8 fixed, mandatory columns in this order: chrom, pos,
id, ref, alt, qual, filter and info. If genome data is present in the files, these are added
to the header by first showing the format column and then a column for every sample,
where the sample name is the name of the column.

After this, the actual variants are added, one variant per line. The fields are tab-
separated and follow the order of the header line. The chrom and pos column identify
the exact location and chromosome where the variant is found. The id field shows
the unique identifiers when available, e.g. the rs numbers from dbSNP. The ref and alt
fields show what nucleotides are found in the reference and the sample respectively.
These two fields can also be used to identify if a variant is an indel or a SNP. Qual
shows the Phred-scaled quality score for the assertion made in alt, and is equal to
−10log10Pr {call in alt is wrong}. The filter column shows pass if this variant has
passed all filters, if it does not this field contains all the failed filters in a semicolon-
separated list of codes for the filters. The info field contains additional information
that has been introduced in the meta-information fields. This contains a semicolon-
separated list of key-value pairs. Next are the genotype fields, with first a format field
which specifies the data types and order (colon-separated string). This is followed by
one field per sample, which contains a colon-separated string of the values in order for
that sample.

1.3 Differences for RNA sequencing data

1.3.1 RNA read alignment with STAR

As described in the Best Practices pipeline for RNA data the read alignment is per-
formed using STAR [17]. This RNA alignment tool achieves high speedups compared
with different tools (factor of >50) while keeping successful alignment rate very high.
The alignment of RNA data is different compared with the DNA alignment process.
This is because most eukaryotic genes consist of multiple exons, which can be spliced
together in several possible combinations. Here, two key tasks make the analysis com-
putationally intensive. First, alignments can contain mismatches and indels caused
by mutations or sequencing errors, this is identical to DNA sequencing. Second, the
alignment algorithm needs to take into account the possibility that reads can span mul-
tiple exons and can therefore have potentially large gaps corresponding to the intron
regions. The second task is unique to the alignment of RNA sequencing (RNA-seq)
data, but is crucial as it provides the connectivity information for the spliced RNA
molecules. STAR focuses solely on RNA-seq data whereas other RNA-seq alignment
tools are often extensions of existing DNA alignment tools. The algorithm used con-
sists of two major steps: a seed searching step and a clustering/stitching/scoring step.
The idea is to first do the sequential search for a Maximal Mappable Prefix (MMP).
The search for MMP’s gives the opportunity to detect de novo splice sites. Next, the
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seeds found in the first steps are combined and used to find the optimal alignment po-
sition. It is possible to use existing splice site information to improve the alignment.
When de novo splice sites are used from a previous alignment run, the total alignment
process is commonly referred to as 2-pass alignment. This algorithm uses an uncom-
pressed suffix array and thus uses a lot of memory for this step (the reference genome
for human genome is approximately 27 GBytes).

1.3.2 Split Reads By CIGAR String

This is a step that is only present in the RNA pipeline. This step splits reads into exon
segments, this means getting rid of the N’s of the alignment but retaining grouping
information. This first part includes all bases left of the first N element, the rest is
trimmed. The second part starts after this first N element until the next N elements and
so on. Additionally, this step also reassigns mapping qualities, because STAR assigns
good alignments a quality of 255, which represents an unknown quality according to
the SAM format specifications. So this quality is changed to the default value of 60.
This step is done by the SplitNCigars module from the GATK tool [18]. After this
step, the next two steps are identical to the DNA pipeline. The reads are realigned
near indel regions and the scores of the base qualities are recalibrated using a list of
known variants.

1.3.3 Variant calling with RNA-seq data

Variant calling for RNA-seq data can only be performed with the HaplotypeCaller
module from GATK and not with the UnifiedGenotyper. The latter does not recog-
nize reads that are split in parts caused by alternative splicing of the genes in RNA
sequencing data sets. The HaplotypeCaller supports through arguments given to the
GATK command to specify that RNA data is being processed. The basic algorithm
remains the same as explained in the previous section.

1.4 The MapReduce Programming Model

Prior to the development of a parallelized pipeline, we investigated a number of ex-
isting solutions. Crossbow [19], implements a similar pipeline and parallelizes this
pipeline using the MapReduce programming model. This similar pipeline is based
on alignment with Bowtie [20] and SOAPsnp [21]. MapReduce is similarly used to
accelerate the read alignment phase in CloudBurst [22], BigBWA [23] and DistMap
[24].

The MapReduce programming model is designed to handle big problems, i.e. a
huge amount of data. To handle this big data, the Hadoop implementation of MapRe-
duce provides access to a distributed file system. This means that data can easily be
split up and then accessed over multiple nodes. Another important aspect regarding
big data, is the fault-tolerant scheme Hadoop has provided. This means that hardware
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Big 
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Shuffle 
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Figure 1.7: Word count example of the MapReduce programming model. The input data is split
in a number of chunks that are processed in parallel during the map phase. Each mapper emits
<key-value> pairs where the key corresponds to an observed word and the value corresponds
to 1. The <keys-value> pairs are sorted according to key and sent to a number of parallel
reduce tasks where each individual reduce task will process one specific key (in this case: one
specific word) and all associated values (in this case: a number of 1s). In the reduce task, values
that correspond to specific key are aggregated. In this case the sum of all values is computed.
An output <key-value> pair is emitted, with again the key corresponding to a word and the
value to the number of times the word has been observed.

failure does not necessarily mean that the entire job has to be done again, instead only
the failed parts can be done again. The relatively easy nature of the problems is han-
dled in two big phases, a map phase and a reduce phase. The map simply organises
data by a key, after which the reduce aggregates the data corresponding to a single key.
The ‘hello world’ example that is typically used is counting the frequency of words
in a huge text. This problem is simple, counting occurrences of words, but the size of
the input data can make it a big problem.

The model consists of three consecutive parallel steps: map, sort and reduce, ex-
ecuted in this specific order. The map phase processes the input data and generates
a number of intermediary <key-value> pairs. These records are sorted and collected
by key. Each reduce task processes a single key by aggregating (or reducing) all cor-
responding values. The word count example starts by mapping every word in a given
input text to a <string-int> pair where the key is the word and the value is 1. The sort
phase sorts all the keys, in this case the words, and collects all values into an iterable
list. During the reduce phase every key has a corresponding list of values, these are all
summed to produce a total count of that word. This word count example is shown in
Fig. 1.7. The map and reduce phase are executed by map and reduce tasks which are
started by the framework. These map tasks read (a chunk of) the input data and pro-
cess this data and emit the <key-value> pairs to the framework. By default Hadoop
MapReduce starts only 1 reduce slot which processes all keys in the reduce step. To
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improve performance this number can be increased to increase the parallelism. To
assign every key to a different reduce task Hadoop uses a hash function on the key to
assign the key to a reduce task. To have optimal performance every reduce task should
have about the same amount of keys to process. Having a good hash function to divide
the keys over the reduce tasks results in a balanced load and correlates directly to the
achieved parallel efficiency. This simple programming model can be applied to a wide
range of problems that can be translated to this three step model.

Hadoop MapReduce version 2.0 and later uses Yarn as a scheduling system. With
Yarn the total number of map or reduce containers itself cannot be set, but instead
Yarn allows users to assign the required memory and cores for both the map and
reduce tasks per job. This gives a more flexible scheduling system as the resources
can easily be shared between different applications.

During the course of this thesis MapReduce has been used in several other tools
to parallelize this pipeline. MegaSeq [25] has implemented this pipeline to work on
Beagle, a Cray XE6 supercomputer at Argonne National Laboratories. However, this
tool aims at high throughput with concurrent multiple genome analysis instead of
single sample analysis. HugeSeq [26] is similar to MegaSeq as it also parallelizes on
a chromosome level instead of splitting on a deeper level like this thesis describes.
More similar to this method, with deeper level of splitting of the genomic regions, is
Churchill [27]. However, this pipeline is implemented using Bash and Python scripts
instead of the MapReduce to distribute the workload over the worker nodes using
either the Sun Grid Engine (SGE) or Portable Batch System (PBS).

1.4.1 Apache Spark and Spark Notebook

As the MapReduce programming model has a very linear data-flow structure, the data
is first described as key-value pairs which is then sorted, after which it is aggregated
by key. With this model, many problems can be solved, but is very limiting if one
wants to deviate from this simple data-flow structure. In response, Apache Spark
was introduced as a more flexible framework. Apache Spark provides an Application
Programming Interface (API) centered on a distributed data structure called resilient
distributed dataset (RDD). This is a read-only multiset of data items distributed over
a cluster of nodes, and is maintained in a fault-tolerant way. The API contains many
functions to be used on data in this RDD structure, including the map, sort and re-
duce functions from MapReduce. On top of this filter, union, intersection and more
functions are provided.

To use Spark, the cluster needs a cluster manager and a distributed file system.
For cluster management, Spark can run in stand-alone mode (native Spark Cluster) or
use Hadoop YARN or Apache Mesos. As for distributed file systems, Apache Spark
supports a wide variety, including Hadoop Distributed File System (HDFS), MapR
File System (MapR-FS), Cassandra, Amazon S3 and more. The Spark API has been
implemented in several programming languages, including Scala, Python and Java.
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The API includes higher-order model of programming, the instruction is passed to a
“driver” program which invokes parallel operations such as map, filter or reduce on an
RDD by passing a function to Spark, which in turn schedules the function’s execution
in parallel on the cluster. The RDDs themselves are immutable, so the output of
these functions are new RDDs which can be cached in memory if multiple access is
required. With this the performance can be considerably improved, if the data needs
to be accessed multiple times, e.g. in an iterative algorithm.

Spark Notebook [28] is a fork of the Scala Notebook, which changed its focus to
massive data set analysis with Apache Spark. A Notebook is a web-based code editor
that combines Scala code, SQL queries, Markup or even JavaScript in a collaborative
manner. This allows performing reproducible analysis, here with Scala and Apache
Spark as well as making graphs from the data.

1.4.2 VCF analysis and comparison

Often in VCF analysis, different VCF files are compared to one another. As an ex-
ample tumor and normal samples are often compared, as well as different alignment
tools can be compared or different sequencing strategies on the same sample (RNA-
seq, WES and WGS). The process of comparing the VCF files is often an iterative
process and requires manual intervention to determine the next set of filters. Tools
like vcftools [29] can be used to perform functions like compare, filter, intersect and
much more on a single or multiple VCF files. The iterative process includes filtering
of the VCF files and comparing the variants of both files after the filtering and this is
repeated until a certain goal is satisfied. To analyze the variants in a VCF file, these
are often annotated with SnpEff [30] and/or SnpSift [31] or tools with similar func-
tions. As an example SnpSift can detect if a variant is present in a database of known
variants, e.g. common variants or clinically important variants. SnpEff can be used to
annotate genetic variants and predict the effects it has (such as amino changes). Anno-
tation can for example provide information on the location of the variants (exon, intron
or intergene) or changes in protein codes like premature stop codons. This information
can be used to further filter and select variants during the variant comparison process.

This comparison happens quite often and can be time consuming if big files are
compared. This is caused by the tools that are typically command line tools and many
lack multithreading. Another reason is the way the process works, first the files are
filtered and these output variants are then compared to see if a certain goal is met.
With an implementation to compare two or three VCF files in a Spark Notebook we
tackle both these problems. The Spark cluster allows for faster processing of files and
provides a scalable solution. The Notebook interface allows the iterative filtering to go
faster as good visual representations can be used. We implemented such a notebook
in the last chapter as a use case for variant analysis.
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1.5 Overview of the chapters
In the next chapter we will take a look at the post-sequencing analysis pipeline. We
use MapReduce to implement a parallel best-practices pipeline, we dub the program
Halvade [2], short for Hadoop ALignment and VAriant DEtection. The parallel ef-
ficiency and speedup are determined by running tests on a local Hadoop cluster and
Amazon EMR. And lastly, to confirm the accuracy of Halvade, we compare the out-
put to that of the original pipeline. We continue benchmarking Halvade in the third
chapter. We look at the influence of the number of parallel tasks, as well as the in-
fluence of the interconnection network, type of local disk and distributed file system.
These tests help us identify the bottlenecks and we attempt to alleviate them. We con-
clude the chapter with an overview of the new runtimes and speedups we achieve with
the optimizations. The RNA-seq pipeline is somewhat different from the DNA-based
pipeline. We implemented these changes to be able to run in Halvade. Halvade-RNA
is benchmarked and the accuracy measured. This is discussed in the fourth chapter.
The VCF files we get from Halvade can be used in analysis. In the fifth chapter we
talk about how we implement this in Spark Notebooks. As a proof of concept we
compare RNA-seq, WGS and WES data, we look at the concordance and discordance
between the three sequencing strategies. Finally, we end with an overview of all our
findings during the implementation and optimization of Halvade. We also give a sum-
mary of the VCF analysis we have performed, where we compare RNA-seq, WES and
WGS from the same sample. At the end of the chapter we talk about what can still be
accomplished and where this work can still be improved upon.
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2
Halvade: scalable sequence analysis

with MapReduce

In this chapter, we introduce Halvade, a parallel solution to the Best Practices
pipeline for variant calling recommended by the Broad Institute. Halvade uses
Hadoop MapReduce as programming model in order to achieve a highly scalable
and parallel result. Halvade is tested and evaluated for both correctness and perfor-
mance.
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Abstract Post-sequencing DNA analysis typically consists of read mapping followed
by variant calling. Especially for whole genome sequencing, this computational step
is very time consuming, even when using multithreading on a multi-core machine.
We present Halvade, a framework that enables sequencing pipelines to be executed in
parallel on a multi-node and/or multi-core compute infrastructure in a highly efficient
manner. As an example, a DNA sequencing analysis pipeline for variant calling has
been implemented according to the GATK Best Practices recommendations, support-
ing both whole genome and whole exome sequencing. Using a 15-node computer
cluster with 360 CPU cores in total, Halvade processes the NA12878 dataset (human,
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100 bp paired-end reads, 50x coverage) in less than 3 hours with very high parallel ef-
ficiency. Even on a single, multi-core machine, Halvade attains a significant speedup
compared to running the individual tools with multithreading. Halvade is written in
Java and uses the Hadoop MapReduce 2.0 API. It supports a wide range of distri-
butions of Hadoop, including Cloudera and Amazon EMR. Its source is available at
http://bioinformatics.intec.ugent.be/halvade under GPL license.

2.1 Introduction

The speed of DNA sequencing has increased considerably with the introduction of
next-generation sequencing platforms. For example, modern Illumina systems can
generate several hundreds of gigabases per run [1] with a high accuracy. This, in turn,
gives rise to several hundreds of GBytes of raw sequence data to be processed.

Post-sequencing DNA analysis typically consists of two major phases: (1) align-
ment of reads to a reference genome and (2) variant calling, i.e., the identification
of differences between the reference genome and the genome from which the reads
were sequenced. For both tasks, numerous tools have been described in literature, see
e.g. [2] and [3] for an overview. Especially for whole genome sequencing, applying
such tools is a computational bottleneck. To illustrate this, we consider the recently
proposed Best Practices pipeline for DNA sequencing analysis [4] that consists of
the Burrow-Wheeler Aligner (BWA) [5] for the alignment step, Picard [6] for data
preparation and the Genome Analysis Toolkit (GATK) [7, 8] for variant calling. On
a single node, the execution of this pipeline consumes more time than the sequenc-
ing step itself: a dataset consisting of 1.5 billion paired-end reads (Illumina Platinum
genomes, NA12878, 100 bp, 50-fold coverage, human genome) requires over 12 days
using a single CPU core of a 24-core machine (dual socket Intel Xeon E5-2695 v2
@ 2.40GHz): 172 hours for the alignment phase, 35 hours for data preparation (Pi-
card steps) and 80 hours for GATK, including local read realignment, base quality
score recalibration and variant calling. When allowing the involved tools to run mul-
tithreaded on the same machine, the runtime decreases only by a factor of roughly 2.5
to ∼5 days, indicative of a poor scaling behavior in some of the steps of the pipeline.

To overcome this bottleneck, we developed Halvade, a modular framework that
enables sequencing pipelines to be executed in parallel on a multi-node and/or multi-
core compute infrastructure. It is based on the simple observation that read mapping
is parallel by read, i.e., the alignment of a certain read is independent of the alignment
of another read. Similarly, variant calling is conceptually parallel by genomic region,
e.g., variant calling in a certain chromosomal region is independent of variant calling
in a different region. Therefore, multiple instances of a tool can be run in parallel
on a subset of the data. Halvade relies on the MapReduce programming model [9]
to execute tasks concurrently, both within and across compute nodes. The map phase
corresponds to the read mapping step while variant calling is performed during the
reduce phase. In between both phases, aligned reads are sorted in parallel according

http://bioinformatics.intec.ugent.be/halvade
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Figure 2.1: Overview of the Halvade framework. The entries of pairs of input FASTQ files
(containing paired-end reads) are interleaved and stored as smaller chunks. Map tasks are
executed in parallel, each task taking a single chunk as input and aligning the reads to a ref-
erence genome using an existing tool. The map tasks emit <key, value> pairs where the key
contains positional information of an aligned read and the value corresponds to a SAM record.
The aligned reads are grouped and sorted per chromosomal region. Chromosomal regions are
processed in parallel in the reduce phase, this includes data preparation and variant detection
again using tools of choice. Each reduce task outputs the variants of the region it processed.
These variants can optionally be merged into a single VCF file. Note that the name of the tools
shown correspond to those of the GATK Best Practices DNA-seq implementation in Halvade.

to genomic position. By making use of the aggregated compute power of multiple
machines, Halvade is able to strongly reduce the runtime for post-sequencing analy-
sis. A key feature of Halvade is that it achieves very high parallel efficiency which
means that computational resources are efficiently used to reduce runtime. Even on
a single, multi-core machine, the runtime can be reduced significantly as it is often
more efficient to run multiple instances of a tool, each instance with a limited number
of threads, compared to running only a single instance of that tool with many threads.
As an example, both whole genome and whole exome variant calling pipelines were
implemented in Halvade according to the GATK Best Practices recommendations (i.e.,
using BWA, Picard and GATK).

The MapReduce programming model has been used before in CloudBurst [10] and
DistMap [11] to accelerate the read mapping process and in Crossbow [12] to acceler-
ate a variant calling pipeline based on modified versions of Bowtie [13] and SOAPsnp
[14]. The Halvade framework extends these ideas, enabling the implementation of
complex pipelines while supporting different tools and versions. The software is de-
signed to achieve a good load balance, maximize data locality and minimize disk I/O
by avoiding file format conversions. As a result, Halvade achieves much higher paral-
lel efficiencies compared to similar tools.

More recently, MapReduce-like scripts were used in MegaSeq [15], a workflow
for concurrent multiple genome analysis on Beagle, a Cray XE6 supercomputer at Ar-
gonne National Laboratories. Like Halvade, MegaSeq implements a whole genome
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analysis pipeline based on the GATK Best Practices recommendations. However,
whereas MegaSeq focuses on a high throughput of many genomes using a specific,
extreme-scale compute platform, Halvade aims to maximally reduce the analysis run-
time for the processing of a single genome, while supporting a wide variety of com-
puter clusters. This approach is particularly of use in a clinical setting, where the anal-
ysis step will typically be performed on a local cluster within a hospital environment,
and where the time between obtaining a DNA sample from a patient and diagnosing
should be kept as small as possible. The source code of Halvade is publicly available.

2.2 Methods

2.2.1 Halvade framework

Halvade relies on the MapReduce programming model [9] to enable parallel,
distributed-memory computations. This model consists of two major phases: the map
and reduce phase. During the map phase, different map tasks are executed in paral-
lel, each task independently processing a chunk of the input data and producing as
output a number of intermediate <key, value> pairs. Next, the intermediate <key,
value> pairs emitted by all map tasks are sorted, in parallel, according to key by the
MapReduce framework. During the reduce phase, different reduce tasks are executed
in parallel, each reduce task independently processing a single key and its correspond-
ing values.

Conceptually, a read alignment and variant calling pipeline can be cast into the
MapReduce framework: read alignment is then performed in the map phase where
the different map tasks are processing parts of the input FASTQ files in parallel while
the variant calling and, if required, additional data preparation steps, are handled in
the reduce phase where the different reduce tasks are processing chromosomal regions
in parallel. Using the MapReduce framework, the reads are sorted according to their
aligned position and grouped by chromosomal region in between the two phases. The
Halvade framework provides access to data streams for individual tools that run in
parallel during read mapping and variant calling. An overview of the Halvade frame-
work is depicted in Fig. 2.1. The different computational steps are described in more
detail below.

2.2.1.1 Input data preparation

The input data typically consist of paired-end reads stored in two distinct, compressed
FASTQ files. We provide a separate tool called ‘Halvade Uploader’ which interleaves
the paired-end reads, storing paired reads next to each other, and splits the data in
chunks of about 60 MByte of compressed data. These chunks are transferred on-the-
fly to the file system from which they can be accessed by the worker nodes. In case a
generic Hadoop system is used, this is the Hadoop Distributed File System (HDFS);
in case Amazon EMR is used, chunks are uploaded to the Amazon Simple Storage
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Service (Amazon S3) using the Amazon S3 API. The number of input chunks cor-
responds to the number of map tasks that will be executed during the map phase.
The rationale behind the Halvade Uploader is that data have to be copied or uploaded
onto the compute infrastructure anyhow, and that decompressing, interleaving, split-
ting and again compressing can easily overlap with this transfer, thus reducing file
I/O to its minimum. The interleaving of paired-end reads ensures that both pairs are
accessible in a single task, which is required for the read alignment. The Halvade Up-
loader is multithreaded and operates on data streams, which means that its execution
can overlap with the data generation (i.e., sequencing) step itself.

Prior to the actual execution of the MapReduce job, additional preparatory steps
are required. First, the reference genome is partitioned into a pre-determined num-
ber of non-overlapping chromosomal regions of roughly equal size. The number of
chromosomal regions corresponds to the total number of reduce tasks that will be ex-
ecuted during the reduce phase and can be configured by the user based on the size
of the reference genome in question. Next, Halvade ensures that all required binaries
and configuration files are available on each worker node. It does so by adding all re-
quired files, in a compressed archive, to the distributed cache which is then copied to
each worker node and again decompressed. Note that when these files are persistently
stored onto the worker nodes, this preparatory step can be omitted.

2.2.1.2 Map phase – read alignment

For the map phase, one map task is created per input FASTQ chunk. These tasks are in
turn executed in parallel on the worker nodes by a number of mappers. Typically, the
number of map tasks� the number of mappers which means that each mapper will
process many tasks. Key to the MapReduce model is that a map task will preferably
be executed by a worker node that contains the input chunk locally on disk (as a part of
the HDFS) in order to minimize remote file access and thus network communication.
Each mapper first checks if the indexed reference genome is locally available and
retrieves it from HDFS or Amazon S3 when this is not the case. The input chunks are
read from HDFS or S3 and parsed into input <key, value> pairs using the Hadoop-
BAM [16] API. The values of these pairs contain the FASTQ entries and are streamed
to an instance of the alignment tool.

Halvade requires that the alignments are accessible in SAM format and provides
a SAM stream parser that will create the required intermediate <key, value> pairs.
This intermediate key represents a composite object that contains the chromosome
number and alignment position of a read, along with the identifier of the chromosomal
region to which it aligns. The value contains the corresponding SAM record, i.e., the
read itself and all metadata. Reads that cannot be aligned are optionally discarded.
For individual or paired-end reads that span the boundary of adjacent chromosomal
regions, two intermediate <key, value> pairs are created, one for each chromosomal
region. This redundancy ensures that all required data for the data preparation and
variant calling is available for each reduce task.
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After all map tasks are completed, the MapReduce framework sorts, in parallel,
the intermediate pairs according to chromosomal region (as part of the key). This way,
all reads that align to the same chromosomal region are grouped together thus forming
the input of a single reduce task. Halvade uses secondary sorting to further sort the
SAM records for each chromosomal region by genomic position. Both grouping and
sorting effectively replace the sorting of SAM records typically performed by tools
such as Picard or SAMtools [17] and are performed in a highly efficient manner by
the MapReduce framework.

2.2.1.3 Reduce phase – variant calling

When all data has been grouped and sorted, the different reduce tasks are executed
in parallel by different reducers. Again, the number of reduce tasks � the number
of reducers. Before the reads are processed, Halvade can copy to each worker node
additional files or databases that are required for variant calling. A specific task takes
as input all (sorted) intermediate <key, value> pairs for a single chromosomal region
and converts it to an input stream in SAM format. Halvade iterates over the SAM
records and creates a BED file [18] containing position intervals that cover all SAM
records in the chromosomal region. This file can optionally be used to specify relevant
intervals on which tools need to operate. Finally, instances of these tools are created
in order to perform the actual variant calling.

Typically, at the end of each reduce task, a VCF file has been produced which
contains all variants identified in the corresponding chromosomal region. Halvade
provides the option to merge these VCF files using an additional MapReduce job. In
this second job, the map phase uses the individual VCF files as input and the variants
are parsed as <key, value> pairs using Hadoop-BAM. The key contains the chro-
mosome identifier and the position of the variant, while the value contains all other
meta-information. These values are collected in a single reduce task, which writes the
aggregated output to either HDFS or Amazon S3. If variants at the same location are
found from SAM records that were sent to adjacent chromosomal regions, either all
are emitted or only the variant with the highest Phred-scaled quality score is retained.
Note that this second MapReduce job is very light-weight.

2.2.2 Best Practices DNA-seq implementation

In Halvade, a DNA-seq variant calling pipeline has been implemented according to the
Best Practices recommendations by [19]. Table 2.1 lists the different steps involved.

During the map phase, read alignment is performed by BWA; both BWA-mem and
BWA-aln with BWA-sampe are supported in our implementation. In case BWA-aln is
used, paired-end reads are again separated and aligned individually by two instances
of BWA-aln after which BWA-sampe is used to join these partial results. The standard
output stream of either BWA-sampe or BWA-mem is captured, and its SAM records
are parsed into intermediate <key, value> pairs.
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Table 2.1: Overview of the steps and tools involved in the DNA sequencing pipeline according
to the GATK Best Practices recommendations described by [19].

step program input output

align reads BWA FASTQ SAM
convert SAM to BAM Picard SAM BAM
sort reads Picard BAM BAM
mark duplicates Picard BAM BAM
identify realignment intervals GATK BAM intervals
realign intervals GATK BAM & intervals BAM
build BQSR table GATK BAM table
recalibrate base quality scores GATK BAM & table BAM
call variants GATK BAM VCF

In the reduce phase, the SAM stream is first prepared according to GATK’s re-
quirements, i.e., the read group information is added, read duplicates (i.e., reads that
are sequenced from the same DNA molecule) are marked and the data is converted
to the binary, compressed BAM format. Note that in the Best Practices recommen-
dations, read group information is added during read alignment. In Halvade, this is
postponed to the reduce phase in order to avoid sending this extra meta-information (as
part of the SAM record) over the network during sorting. For data preprocessing, Hal-
vade can use either Picard or elPrep (http://github.com/exascience/elprep) with SAM-
tools [17]. ElPrep is a tool that combines all data preparation steps and outputs a
SAM file that conforms to the GATK requirements. When using elPrep, the input
SAM records are streamed directly to elPrep for marking duplicate reads and adding
of read group information. Its resulting SAM file is then converted to BAM format us-
ing SAMtools. When using Picard, Halvade first writes the input SAM stream to local
disk in a compressed BAM file and then invokes the Picard MarkDuplicates and Ad-
dReadGroups modules. Note that both options (elPrep/SAMtools or Picard) produce
identical output. However, the combination of elPrep and SAMtools is considerably
faster than Picard.

Next, the actual GATK modules are executed. To correct potentially misaligned
bases in reads due to the presence of insertions or deletions, the RealignerTargetCre-
ator module is used to identify intervals that require realignment followed by the Indel-
Realigner module to perform the actual realignment. Next, using the dbSNP database
of known variants [20], the BaseRecalibrator module is used to generate co-variation
data tables that are then used by the PrintReads module to recalibrate the base quality
scores of the aligned reads. Finally, the actual variant calling is done using either the
HaplotypeCaller or UnifiedGenotyper module.

The DNA-seq analysis pipeline implementation in Halvade supports both whole
genome and exome sequencing analysis. One important difference to note is that an
additional BED file is required, containing the coordinates of the exome regions to be

http://github.com/exascience/elprep
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Figure 2.2: The parallel speedup (multithreading) of five GATK modules used in the Best Prac-
tices pipeline on a 16-core node with 94 GByte of RAM. The limited speedup prevents the effi-
cient use of this node with more than a handful of CPU cores. Option -nt denotes data threads
while option -nct denotes CPU threads (cfr. GATK manual).

processed by GATK. Additionally, the dbSNP database file used for the base quality
score recalibration must be compatible with the exome being targeted.

2.2.3 Optimizations

In order to get the best performance out of the available resources, two crucial factors
come into play. First, one needs to determine the optimal number of mappers (reduc-
ers) per node. This determines the number of map (reduce) tasks that will be executed
concurrently on a worker node. Second, the user needs to select an appropriate map
(reduce) task size. This determines the total number of map (reduce) tasks that will be
executed. Both factors are described below.

To exploit parallelism in a workstation with one or more multi-core CPUs, one
can either run a single instance of a tool with multithreading on all available CPU
cores, or run multiple instances of that tool, each instance using only a fraction of
the CPU cores. To illustrate the difference in performance, the parallel speedup for
different GATK modules as a function of number of threads was benchmarked on a
16-core machine (dual socket Intel Xeon CPU E5-2670 @ 2.60GHz) with 94 GByte
of RAM (Fig. 2.2). The benchmarks show that the maximum speedup gained by any
of the GATK modules, using 16 threads, is less than 10, with one module exhibiting
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no speedup at all. Most modules show good scaling behavior up to 4 or 8 threads,
but show only moderate reduction in runtime when the number of threads is increased
further. It is thus more beneficial to start multiple instances of GATK, each instance
using only a limited number of threads. Note that this is also true for Picard (which is
single-threaded) and to a lesser extent, also for BWA. This concept is used in Halvade,
which leads to better use of available resources and a higher overall parallel efficiency
(see The optimal number of parallel tasks per node). On the other hand, the maximum
number of parallel instances of a tool than can be run on a machine might be limited
due to memory constraints.

A second important factor is the optimal task size, which in turn determines the
total number of tasks. For the map phase, the task size is determined by the size
of a FASTQ chunk. Very few, large chunks will lead to a high per-task runtime but
an unevenly balanced workload, whereas many little files will result in a large task
scheduling and tool initialization overhead. After extensive testing, we determined
that a file size of about 60 MByte leads to the lowest runtime (see Influence of the
map/reduce task size). Such chunk size is sufficiently big to define a meaningful task
size, and small enough for a chunk to fit into a single HDFS block (default=64 MByte)
which is entirely stored on a single worker node. If that worker node processes the
corresponding map task, network traffic is avoided. Similarly, for the reduce phase,
the task size is determined by the size of the chromosomal regions.

For data preparation, Picard can be replaced by elPrep. This tool combines all data
preparation steps needed in the Best Practices pipeline. Whereas Picard requires file
I/O for every preparation step, elPrep avoids file I/O by running entirely in memory
and merges the computation of all steps in a single pass over the data. Using elPrep
for data preparation again gives a significant speedup for this phase in Halvade.

2.2.3.1 The optimal number of parallel tasks per node

Halvade can run several parallel tasks (mappers/reducers) per node to increase overall
performance. On nodes with a large number of CPU cores, it is often more efficient to
run several instances of a tool, each instance using only a limited number of threads
compared to the scenario of running a single instance of that tool using all available
CPU cores. This is illustrated in Fig. 2.3 for the map phase (BWA-aln and BWA-
sampe) on a 24-core machine of the Intel Big Data cluster using a small subset of
the NA12878 dataset. Running four parallel tasks per node, each task using 6 CPU
cores, significantly reduces the runtime compared to running only a single instance of
BWA using 24 threads. In this case, this effect is largely due to BWA-sampe, which
is single-threaded. Note that further increasing the number of parallel tasks per node
no longer results in a reduction of runtime. When using only a few threads per tool
instance, near optimal performance is already attained. Additionally, the maximum
number of tool instances can be limited by the available memory of the worker nodes.
Alignment tools require the reference genome and other data structures to be stored in
memory and hence exhibit a memory footprint of a few GBytes.
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Halvade can estimate the optimal number of tasks for both map and reduce phases
on any cluster based on memory requirements of the tools and the parallel efficiency
when running the tool with multithreading enabled.

2.2.3.2 Influence of the map/reduce task size

The load balancing of Halvade is determined by the size of the tasks of both map and
reduce phases. To illustrate this, Fig. 2.4 shows the distribution of runtimes for all
map tasks when using input chunks with a size of 60 MByte and 240 MByte, respec-
tively. The average task execution time when using 240 MByte input chunks is about
fourfold the average execution time when using 60 MByte input chunks. However,
the distribution of execution times when using 240 MByte chunks is, expressed in ab-
solute runtime, much wider than the distribution for 60 MByte chunks. In that case,
even when every mapper is processing a roughly equal number of map tasks, load is
not necessarily balanced. Additionally, because input chunks are stored on the HDFS
in blocks of 64 MByte (default on Apache Hadoop), a chunk with a size of 64 MByte
or smaller will be stored as a single HDFS block on a worker node in its entirety.
MapReduce will try to schedule the map task on a worker node that actually contains
the corresponding input chunk, thus avoiding (slow) network communication. Note
that a single HDFS block, is, again by default, replicated on three worker nodes to
prevent loss of data when a worker node fails. This provides extra scheduling flexi-
bility to MapReduce as it can now choose from three worker nodes that can process
the chunk without any required network communication. On the other hand, too small
input chunks lead to small tasks sizes with a relatively large task scheduling and tool
initialization overhead.

The same is true for the reduce tasks. If the genomic regions are too big, load
balancing will be poor. On the other hand, selecting too small genomic regions will
again suffer from increased overhead. Additionally, in order to compute accurate
base quality score recalibration tables, at least 500 000 reads are required per genomic
region (see Halvade accuracy assessment).

The runtime of Halvade is determined by the runtime of both map and reduce
phases. In the MapReduce framework, no reduce task can start before all map tasks
have finished. However, certain shuffle tasks can be started before all map tasks are
done. This has the advantage that network communication, typically a bottleneck
during data shuffling, is spread in time. However, this means that one or multiple
task slots will no longer be used for read mapping but for data shuffling. Because the
shuffle tasks can only finish once all map output has been determined, these shuffle
tasks will sometimes be idle and thus waste valuable resources. In order to avoid this,
Halvade is set to finish all map tasks prior to starting any shuffle & sort tasks.
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Figure 2.3: Runtime of the map phase (BWA-aln and BWA-sampe) using 1 task (24 CPU cores
per task), 2 tasks (12 CPU cores per task) and 4 tasks (6 CPU cores per task) in parallel per
node. Note that in all three cases, 14 worker nodes were used.

2.3 Results

Halvade was benchmarked on a whole genome human dataset (NA12878 from Illu-
mina Platinum Genomes). The dataset consists of 1.5 billion 100 bp paired-end reads
(50-fold coverage) stored in two 43 GByte compressed (gzip) FASTQ files. The soft-
ware was benchmarked on two distinct computer clusters, an Intel-provided big-data
cluster located in Swindon, U.K. and a commercial Amazon EMR cluster. Table 2.2
provides an overview of the runtime on these clusters. For these benchmarks, GATK
version 3.1.1, BWA version 0.7.5a, BEDTools version 2.17.0, elPrep version 1.0,
SAMtools version 0.1.19 and Picard version 1.112 were used. The dbSNP database
and human genome reference found in the GATK hg19 resource bundle 1 were used.
The reference genome was stripped of all alternate allele information and contains
chromosomes 1 through 22, M, X and Y.

2.3.1 Intel Big Data cluster benchmark

This cluster consists of 15 worker nodes, each containing 24 CPU cores (dual-socket
Intel Xeon CPU E5-2695 v2 @ 2.40GHz) and 62 GByte of RAM. The nodes each

1available to download at ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/hg19/
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60 MByte and 240 MByte.

dispose of four hard drives with a total capacity of 4 TByte, intended as HDFS storage
and a single 800 GByte solid-state drive (SSD) that is intended for local storage during
MapReduce jobs. The nodes are interconnected by a 10 Gbit/s Ethernet network.
Cloudera 5.0.1b which supports MapReduce 2.3 was used. Initially, the input FASTQ
files were present on a local disk of a single node. Using the Halvade Uploader,
both files were decompressed, interleaved, compressed into separate files of about
60 MByte each (1552 chunks in total) and copied onto the local HDFS storage. This
preprocessing step required ∼1.5 hours using 8 threads and can, in principle, overlap
with the generation of the sequence data itself. For the chromosomal regions, a size
of 2.5 Mbp was used, corresponding to 1261 reduce tasks in total.

Taking into account the memory requirements of the individual tools, the available
RAM (62 GByte) and the available number of CPU cores (24) of a worker node,
optimal performance on the Intel Big Data cluster was obtained using four parallel
map or reduce tasks per node. This translates to 15.5 GByte of RAM and 6 CPU
cores for each mapper/reducer. Fig. 2.5 shows the task execution over time. Load
is well-balanced, indicative of an efficient use of resources during both phases and
a good parallel efficiency. The scalability of Halvade was assessed by running the
analysis pipeline with an increasing number of 1 to 15 nodes. As Cloudera reserves
one slot for scheduling and job management, this corresponds to running 3 parallel
tasks (1 node) to 59 parallel tasks (15 nodes) in total. Fig. 2.6 depicts the parallel
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Figure 2.5: Task slot occupation of Halvade on the Intel Big Data cluster using 15 worker nodes
(4 parallel tasks/node) on the complete NA12878 dataset.

speedup as a function of the number of parallel tasks and provides an accurate view of
the scalability and efficiency. When using 59 tasks (15 nodes), we observe a speedup
of a factor 18.11 compared to using 3 tasks (1 node). This corresponds to a parallel
efficiency of 92,1%. In absolute terms, the runtime reduces from ∼48 hours (single
node) to 2 hours 39 minutes.

It is important to note that Halvade already attains a significant speedup when
applied to a single node (3 tasks and 18 CPU cores), compared to the scenario of
running the multithreaded versions of the individual tools using all 24 CPU cores. In-
deed, whereas Halvade requires ∼48 hours on a single node, ∼120 hours are required
when Halvade is not applied (speedup of a factor 2.5). This is due to the limited mul-
tithreaded scaling behavior of certain tools or modules (see Methods). It is hence far
more efficient to run multiple instances of e.g. GATK with a limited number of threads
per instance than letting GATK make use of all available cores. Ultimately, Halvade
achieves a∼45-fold speedup when applied to 15 nodes (2 hours 39 minutes) compared
to running the pipeline on a single node using only multithreading (120 hours).

2.3.2 Amazon EMR benchmark

Amazon Elastic Compute Cloud (Amazon EC2) provides, as a web service, a resize-
able compute cluster in the cloud. MapReduce can be used on this compute cluster
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Table 2.2: Runtime as a function of the number of parallel tasks (mappers/reducers) on the Intel
Big Data cluster and Amazon EMR.

Cluster # worker # parallel # CPU runtime
nodes tasks cores

Intel Big Data cluster 1 3 18 47h 59min
4 15 90 9h 54min
8 31 186 4h 50min

15 59 354 2h 39min

Amazon EMR 1 4 32 38h 38min
2 8 64 20h 19min
4 16 128 10h 20min
8 32 256 5h 13min

16 64 512 2h 44min

with a service called Amazon EMR. This provides access to a Hadoop MapReduce
cluster which can be chosen according to the requirements of the task at hand, e.g., the
number of nodes and the node type. The EMR cluster was initialized with the Amazon
Machine Images (AMI) v3.1.0, providing access to Hadoop MapReduce v2.4, which
takes∼5 minutes. One node is reserved for job scheduling and management while the
remainder is used as worker nodes.

Using the Halvade Uploader, the input data was preprocessed and uploaded to S3,
the Amazon cloud storage system, again as 1552 chunks. The uploading speed is
highly dependent on internet network conditions, which varies greatly. Again, this
step can overlap with the generation of the sequence data itself. As data stored on S3
is directly accessible by worker nodes, one can chose whether or not to copy these data
to HDFS prior to starting the MapReduce job. According to [21], data can be copied
between S3 and HDFS at a rate of 50 GByte per 19 minutes. However, for these
benchmarks, data was read directly from S3, as copying would increase the overall
runtime considerably.

For this benchmark, worker nodes of the type c3.8xlarge were used. Each node
provides 32 CPU cores (Intel Xeon E5-2680 v2 @ 2.80GHz), 60 GByte of RAM
and two 320 GByte SSDs which are available for both HDFS and intermediate data.
To obtain optimal performance, Halvade again assigned four parallel tasks per node,
with each task disposing of 8 CPU cores and 15 GByte of memory. The scalability
was assessed by running Halvade with an increasing number of 1 to 16 worker nodes.
When using 64 tasks (16 nodes), a speedup of a factor 14.16 is achieved compared
to using 4 tasks (1 node) (see Fig. 2.6). This corresponds to a parallel efficiency of
88.5%. In absolute terms, the total runtime is reduced from 38 hours 38 minutes (4
tasks) to 2 hours 44 minutes (64 tasks) (see Table 2.2).

The runtime on Amazon EMR is slightly higher than that obtained using the Intel
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Figure 2.6: The speedup (primary y-axis) and parallel efficiency (secondary y-axis) of Halvade
as a function of number of parallel tasks (cluster size) on both an Intel Big Data cluster and
Amazon EMR.

Big Data cluster, even though a higher number of CPU cores was used. This is be-
cause the Intel Big Data cluster is configured with a persistent HDFS, whereas for the
Amazon cluster, the HDFS is created on-the-fly when the MapReduce job starts. On
the Intel Big Data cluster, we can therefore instruct the Halvade Uploader to copy data
directly to the HDFS after which only limited network communication is required for
map tasks to access the data. On Amazon, Halvade accesses the data straight from
S3, which requires network communication and explains the increased runtime. With
a total runtime of less than 3 hours, the financial cost of a whole genome analysis
on Amazon EMR with 16 worker nodes amounts to 111.28 US dollar (based on the
pricing of May 2014).

2.3.3 Exome sequencing analysis benchmark

To assess the performance of Halvade on an exome sequencing dataset (Illumina
HiSeq NA12878), the same Amazon EMR cluster was used. The dataset consists
of 168 million 100 bp paired-end reads stored in eight ∼1.6 GByte compressed (gzip)
FASTQ files.

Using an Amazon EMR cluster with 8 worker nodes (32 parallel tasks), Halvade
can call the variants in under one hour for a total cost of 19.64 US dollar (based on
the pricing of May 2014). As the input for exome analysis is considerably smaller, the
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load balancing is more challenging as there are only 225 map tasks and 469 reduce
tasks in total. A high parallel efficiency of about 90% is obtained when using 8 worker
nodes; the efficiency drops to about 70% when using 16 worker nodes (see Fig. 2.6).

2.3.4 Comparison with Crossbow

Several modifications to the source code of Crossbow [12] were required to enable the
software to run on the current version of Amazon EMR. Crossbow was benchmarked
on Amazon EC2 c1.xlarge instances with default settings. These instances have 8
CPU cores (dual-socket Intel Xeon E5410 @ 2.33GHz), 7 GByte of RAM and four
420 GByte hard drives. As Amazon uses one node for job scheduling and management
and the number of nodes available on demand is limited to 20, we ran benchmarks on
1, 10 and 19 worker nodes using a smaller dataset (ERR000589, human genome,
51 bp, ∼24 million paired-end reads). Table 2.3 shows an overview of the runtime
and parallel speedup achieved with Crossbow. A parallel efficiency of about 58% was
obtained using 19 worker nodes (152 CPU cores).

2.3.5 Halvade accuracy assessment

Halvade assumes that read mapping is parallel by read and that variant calling is paral-
lel by genomic region. However, the VCF file obtained by a parallel Halvade run can
differ slightly from that of a sequential run. To pinpoint the origin of this variation,
we compared the SAM/BAM files of a parallel and sequential run at several points
in the pipeline. To facilitate this procedure, we used the much smaller TAIR10 Ara-
bidopsis thaliana genome [22] with a subset of the Seattle-0 dataset (1001 Genomes
Project, available at http://1001genomes.org/data/SLU/SLUHenning2014/) as input.
We identified three distinct causes of variation in the resulting VCF files.

The first, and biggest cause of variation originates from the read alignment step.
Halvade splits the input FASTQ file in several smaller chunks to define parallel tasks
in the map phase. Running BWA separately on these chunks leads, for certain reads,
to a different alignment compared to running BWA on the original FASTQ file. To
confirm this, 2 million reads were aligned twice: (1) stored in a single FASTQ file
and (2) stored in four FASTQ files and aligned separately with four BWA instances.
The resulting SAM files reveal that about 6% of the alignments differ. Most of these
differences (80%) are alignments with same coordinate but with a different alignment
score. The other 20% are reads that map to a different genomic position, most of
which (90%) are mapped in repetitive regions. The other 10% represent reads with an
alignment score of zero or close to zero and are flagged as ‘unmapped’. We assume
that BWA estimates the insert length of the fragments from which the paired-end reads
were sequenced from a set of reads where both pairs map to non-repetitive regions. If
multiple instances of BWA are used on different input chunks, the different instances
use a different training set, and obtain a (slightly) different insert length. This would
explain the variation. Even though other sources of variation exist (see further), the
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Table 2.3: Parallel speedup obtained using Crossbow on Amazon EMR.

# worker nodes # CPU cores runtime speedup
1 8 19h 24min 1.00

10 80 2h 28min 7.86
19 152 1h 46min 10.98

variation in alignment appears to be the biggest cause of variation in the resulting VCF
file.

Second, during the reduce phase, reads that likely represent polymerase chain re-
action (PCR) duplicates are marked by Picard or elPrep. When applying this pro-
cedure on separate SAM file chunks, the mark duplicates algorithm might mark a
different read as ‘duplicated’ in case two reads map to the same coordinate and have
the same quality score, compared to running this procedure on a single SAM file.

The third difference originates from computation of the base quality score recal-
ibration (BQSR) tables. In Halvade, these statistics are computed individually per
chromosomal region, using only the reads that map to that chromosomal region, in-
stead of genome-wide (i.e., using all reads). This can result in slightly different recal-
ibration metrics, yielding small differences in quality scores after recalibration. How-
ever, the authors of GATK have analyzed the residual root-mean-square error (RMSE)
after recalibration when downsampling a dataset using the -L option of GATK 2. They
show that, when using at least 500 000 reads, the BQSR will produce near optimal re-
sults. The average number of reads that is used in each Halvade reduce task for whole
genome analysis is over 1.2 million. This means that the BQSR done in Halvade will
also produce near optimal recalibration. This is also ensured for exome sequencing by
using less reduce tasks in total and thus increasing the number of reads per task.

Finally, to assess the downstream effects of this variation, the VCF file obtained
with Halvade was compared to that obtained by a sequential run of the same pipeline,
now again for the human NA12878 dataset (see Table 2.4). A total of 4.2 million
variants were found both by Halvade and the reference run. This represents 99.1% of
all variants found by the reference run. Halvade detects 25 336 unique variants (not
found in the reference run), while 36 429 variants present in the reference VCF file
were not discovered using Halvade. Fig. 2.7 shows that almost all of these differences
correspond to variants with a very low ‘variant confidence score’, i.e., for which there
is very little sequence evidence that the variant is a true positive.

A similar quality check was performed for the exome sequencing dataset. In that
case, a reference VCF file was already provided, which was used to compare the output
of Halvade against. Most of the variants found by Halvade (97.5%) were also present
in the reference VCF. The different variants again has a low variant confidence score.

In conclusion, despite certain variation in SAM/BAM files that arises in certain
steps of the Halvade pipeline, the resulting VCF file is reliable and has excellent cor-

2described in http://gatkforums.broadinstitute.org/discussion/44/base-quality-score-recalibration-bqsr
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Table 2.4: Overlap and differences in variants in the VCF files obtained by a Halvade run and
a sequential reference run.

# variants Dataset intersection % match

25336 Found only by Halvade run 0.6
36429 Found only by reference run 0.9

4210001 Found by both reference & Halvade run 99.1 / 99.4
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Figure 2.7: Normalized frequency as a function of variant confidence score of variants (a) both
found by Halvade and a sequential reference run (b) only found by Halvade (c) only found by
the reference run.

respondence to that obtained by a sequential execution of the pipeline.

2.4 Discussion and Conclusion

Especially for whole genome sequencing, the post-sequencing analysis (runtime of
∼12 days, single-threaded) is more time-consuming than the actual sequencing (sev-
eral hours to a few days). Individual tools for mapping and variant calling are ma-
turing and pipeline guidelines such as the GATK Best Practices recommendations
are provided by their authors. However, existing tools currently have no support for
multi-node execution. Even though some of them support multithreading, the parallel
speedup that can be attained might be limited, especially when the number of CPU
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cores is high. As whole genome analysis is increasingly gaining attention, the need
for a solution is apparent.

Halvade provides a parallel, multi-node framework for read alignment and variant
calling that relies on the MapReduce programming model. Read alignment is then
performed during the map phase, while variant calling is handled in the reduce phase.
A variant calling pipeline based on the GATK Best Practices recommendations (BWA,
Picard and GATK) has been implemented in Halvade and shown to significantly re-
duce the runtime. On both a Cloudera cluster (15 worker nodes, 360 CPU cores) and a
commercial Amazon EMR cluster (16 worker nodes, 512 CPU cores), Halvade is able
to process a 50-fold coverage whole genome dataset in under 3 hours, with a parallel
efficiency of 92.1% and 88.5% respectively. To the best of our knowledge, these are
the highest efficiencies reported to date. Like Halvade, MegaSeq supports a pipeline
which is based on the GATK Best Practices recommendations. As the source code of
MegaSeq is not publicly available, a direct comparison to Halvade is difficult. [15]
estimate, based on benchmarks on 61 whole genomes, that 240 whole genomes could
be processed in 50.3 hours, using a supercomputer with 17 424 CPU cores (AMD
Magny-Cours @ 2.1 GHz). When rescaling this to 360 CPU cores @ 2.4 GHz, an
average runtime of 8.9 hours is obtained for a single genome. Halvade processes
such dataset in 2 hours and 39 minutes and thus provides for a more cost-effective
way to minimize runtime. It should be noted that (a) MegaSeq used the GATK Hap-
lotypeCaller whereas Halvade relied on the UnifiedGenotyper during benchmarking,
(b) additional variant annotation was performed in MegaSeq, (c) a comparison based
on the number of CPU cores and clock frequency alone has its limitations as also disk
speed, available RAM, network speed and other hardware aspects may play a role.

To enable multi-node parallelization of sequencing pipelines, Halvade provides
and manages parallel data streams to multiple instances of existing tools that run on
the different nodes. No modifications to these tools are required; they can thus easily
be replaced by newer versions. Functionality is provided to copy external files or
databases that might by required by tools to the worker nodes. To achieve optimal
performance on computer clusters with multi-core nodes, Halvade can be configured
to run multiple parallel instances of a tool per node, each instance using a limited
number of threads. This approach significantly increases the per-node performance as
the multithreaded scaling behavior of certain tools is limited. Indeed, on single a 24-
core node with three parallel tasks, Halvade already attains a speedup of 2.5 compared
to a multithreaded execution of the same tools in a single tasks.

In Halvade, it is assumed that read alignment is parallel by read and that variant
calling is parallel by genomic region. Certain tools, however, produce slightly differ-
ent results when they operate on only part of the data. We have analyzed these sources
of variation in detail. As for the accuracy of whole genome analysis, the variants
found by Halvade match more than 99% with variants in the validation set created by
a sequential run of the GATK Best Practices pipeline. Additionally, almost all the 1%
different variants have a very low variant score.
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In the implementation of the GATK Best Practices pipeline, the latest versions of
BWA, Picard and GATK are supported. Both whole genome and exome analysis are
supported. An RNA-seq variant calling pipeline is currently in development. Halvade
is built with the Hadoop MapReduce 2.0 API and thus supports all distributions of
Hadoop, including Amazon EMR and Cloudera. The Halvade source code available
at http://bioinformatics.intec.ugent.be/halvade under GPL license.

http://bioinformatics.intec.ugent.be/halvade
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3
Performance analysis of a parallel,

multi-node pipeline for DNA sequencing

In the previous chapter we analyzed the correctness and performance of Halvade.
This showed that the performance is good when comparing task speedup, but when
looking at the speedup compared to the single-core runtime we see a much lower
efficiency. In this chapter, we further analyze the performance bottlenecks of Halvade
and attempt to further increase the parallel efficiency.

? ? ?

Dries Decap, Joke Reumers, Charlotte Herzeel, Pascal Costanza
and Jan Fostier.
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Abstract Post-sequencing DNA analysis typically consists of read mapping followed
by variant calling and is very time-consuming, even on a multi-core machine. Re-
cently, we proposed Halvade, a parallel, multi-node implementation of a DNA se-
quencing pipeline according to the GATK Best Practices recommendations. The
MapReduce programming model is used to distribute the workload among different
workers. In this paper, we study the impact of different hardware configurations on
the performance of Halvade. Benchmarks indicate that especially the lack of good
multithreading capabilities in the existing tools (BWA, SAMtools, Picard, GATK)
cause suboptimal scaling behavior. We demonstrate that it is possible to circumvent
this bottleneck by using multiprocessing on high-memory machines rather than using
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multithreading. Using a 15-node cluster with 360 CPU cores in total, this results in
a runtime of 1h 21min. Compared to a single-threaded runtime of ∼12 days, this
corresponds to an overall parallel efficiency of 59%.

3.1 Introduction

The human DNA sequence was determined for the first time during the Human
Genome Project, a $3 billion undertaking launched in 1990 and declared complete
in 2003. Since then, the development of next-generation sequencing (NGS) platforms
has tremendously increased the throughput at which genomic data can be produced, at
a significantly lowered price. Nowadays, resequencing a human genome with a finan-
cial cost of under $1000 has become reality. Consequently, sequencing is becoming
more and more standard practice, not only in academic research but also in clinical
settings.

Several computational post-sequencing steps are required to transform raw se-
quencing data into a format that is usable for biological or clinical interpretation. In
case of Illumina platforms, which currently accounts for about 90% of all sequenc-
ing data produced worldwide, raw data consists of many short fragments (so-called
‘reads’) with a length of 100-250 bp and an error rate of ∼1%. In resequencing appli-
cations, these reads are aligned to a reference genome (‘read mapping’) followed by
the identification of differences between the reference genome and the aligned reads
(‘variant calling’).

For both tasks, numerous tools have been described in literature. The Broad In-
stitute has proposed Best Practices recommendations [1] for a DNA variant calling
pipeline based on BWA [2] for read alignment, SAMtools [3]/Picard [4] for data pre-
processing and GATK [5, 6] for variant calling. Especially for whole-genome datasets,
this pipeline is very time-consuming with a single-core runtime of ∼12 days to pro-
cess the NA12878 dataset (Illumina Platinum genomes, 1.5 billion paired-end reads,
100 bp, 50-fold coverage, human genome). Even when enabling multithreading sup-
port in the individual tools, the execution time for this dataset is still ∼5 days on a
24-core machine (dual socket Intel Xeon E5-2695 v2 @ 2.40GHz), indicative of poor
scaling behavior.

To deal with this bottleneck, we recently proposed Halvade [7], a parallel, multi-
node framework in which a variant calling pipeline has been implemented according
to the GATK Best Practices recommendations. Halvade relies on the MapReduce pro-
gramming model [8] to run multiple instances of existing tools (BWA, SAMtools/Pi-
card, GATK) in parallel both across and within nodes on subsets of the data. Halvade
is based on the simple observation that read mapping is parallel by read (i.e., aligning
a certain read does not depend on the alignment of other reads) while variant calling
is parallel by genomic region (i.e., variant calling in a certain genomic region does
not depend on variant calling in other genomic regions). During the map phase, BWA
is used to align reads to a reference genome in parallel, whereas data preprocessing
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Figure 3.1: Halvade MapReduce implementation of a variant calling pipeline. During the map
phase, input reads are aligned, in parallel, to a reference genome using BWA. Next, aligned
reads are sorted according to aligned position using the MapReduce sorting functionality. In
the reduce phase, variants are identified between the reference genome and aligned reads using
GATK.

(SAMtools/Picard) and variant calling (GATK) are handled during the reduce phase
by operating on different genomic regions in parallel. In between the map and reduce
step, the aligned reads are sorted according to genomic position using the MapRe-
duce sorting functionality. Fig. 3.1 presents an overview of Halvade. We refer to [7]
for implementation details. Halvade is written in Java using the Hadoop MapReduce
2.0 API. The source code is available at http://bioinformatics.intec.ugent.be/halvade
under GPL license.

In [7], it was demonstrated that Halvade strongly reduces runtime: on a 15-node
cluster, each node containing 24 CPU cores and 64 GByte of RAM, the NA12878
dataset was processed in 2h 39min. Additionally, it was shown that the multi-node
parallel efficiency of Halvade is excellent (around 90%), which means that the run-
time is significantly reduced by using 15 nodes compared to using only a single node.
However, significant performance loss can still be observed within each node. This
can be seen from the overall performance: with a runtime of 2h 39min using 360
CPU cores (15 nodes × 24 cores/node), a speedup of ∼108 is obtained compared to
a single-threaded runtime of ∼12 days. This corresponds to an overall parallel effi-
ciency of about 30%, suggesting the presence of certain performance bottlenecks. Un-
derstanding the performance of a sequencing pipeline is a non-trivial matter. Certain
components in the pipeline are very compute-intensive (e.g. read alignment) whereas
other components (e.g. data preprocessing) are mostly data-intensive. Therefore, cer-
tain tools might be CPU bound whereas others might be limited by I/O bandwidth.

In order to better understand the influence of hardware configuration on the per-
formance of sequencing pipelines, we have set up a range of benchmarks in order to
identify possible bottlenecks. Specifically, in this paper, we study the influence on the
total runtime of the amount of available RAM, the presence of NUMA domains, the
type of network interconnection, the use of solid-state disks versus hard-disk drives
and finally, the use of a distributed vs. centralized file system. We demonstrate that
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Table 3.1: Runtime and parallel efficiency as a function of the number of tasks per node.

map phase reduce phase total
1 task × 1 thread 14h 50min 15h 38min 30h 28min

n/a n/a n/a
1 task × 24 threads 4h 28min 12h 3min 16h 31min

13.84% 5.41% 7.69%
4 tasks × 6 threads 1h 21min 3h 6min 4h 27min

45.78% 21.01% 28.53%
24 tasks × 1 thread 47min 55min 1h 42min

78.80% 71.06% 74.67%

the use of high-memory machines and NUMA optimizations can further reduce the
overall runtime whereas other hardware aspects have only limited influence. Addi-
tionally, load balancing in both map and reduce phases was improved. Ultimately, the
combined effect of optimizations allows us to process the entire NA12878 dataset in
1h 21min, yielding an overall parallel efficiency of 59%, almost twice the efficiency
reported in [7].

Even though the benchmarks in this work were obtained using Halvade, much
of the analysis equally applies to alternative methods that implement sequencing
pipelines in a distributed manner. Like Halvade, BigBWA [9] leverages Hadoop
MapReduce to accelerate read mapping using BWA, but lacks variant calling function-
ality. The same functionality was recently also implemented on top of Spark by [10].
Both HugeSeq [11] and MegaSeq [12] implement a complete variant calling pipeline,
however, parallelism during variant calling is limited to concurrent processing of en-
tire chromosomes. In terms of functionality, Churchill [13] is similar to Halvade,
however, whereas Halvade is MapReduce-based, Churchill relies on a combination of
Bash and Python scripts to distribute the workload over the worker nodes using either
the Sun Grid Engine (SGE) or Portable Batch System (PBS).

3.2 Dataset and tool versions

In all benchmarks, variant calling was performed on a whole-genome DNA sequenc-
ing dataset (NA12878, human genome, Illumina Platinum Genomes) or a subset
thereof. The full dataset consists of 1.5 billion 100 bp paired-end reads (50-fold cov-
erage) stored in two 43 GByte compressed (gzip) FASTQ files.

The DNA sequencing pipeline, used in Halvade and based on the Best Practices
recommendations, consists of a number of existing tools. Reads are aligned using
BWA-aln and BWA-sampe version 0.7.12-r1044. Reads are sorted according to ge-
nomic positions using the Hadoop framework. Data preprocessing (SAM to BAM
conversion and read duplicate identification) is typically achieved using Picard. How-
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ever, in all benchmarks, we used elPrep version 1.0 as a drop-in replacement for Picard
as elPrep has a higher performance while producing identical output [14]. Indel re-
alignment, base quality score recalibration (BQSR) and variant calling steps are all
performed with GATK version 3.1.1. The dbSNP [15] database and human genome
reference found in the GATK hg19 resource bundle [16] were used.

3.3 Single Node Benchmarks

As the runtime of the complete NA12878 dataset on a single node is impractically
high, all benchmarks in this section were performed on a representative subset of 131
million paired-end reads (about 9% of the total number of reads). Benchmarks in this
section were run on a single 24-core node (dual Intel E5-2680v3 @ 2.50GHz) with
512 GByte of RAM.

3.3.1 Influence of the number of tasks per node

When running Halvade, the number of parallel tasks (mappers/reducers) per node can
have a big influence on performance. The number of tasks per node corresponds to
the number of instances of the individual tools (BWA, GATK, etc.) that are being
run concurrently on a machine. One scenario is to run only a single task and to use
the multithreading functionality of the tools to make use of the available cores. An
alternative scenario is to run multiple tasks in parallel on the same node, each task
then using only a fraction of the available cores. Because of suboptimal multithread-
ing scalability of certain individual tools, the choice in number of tasks can have a
big impact on runtime. This is illustrated in Table 3.1 where the runtime is shown for
three scenarios: (i) 1 task using 24 cores for multithreading; (ii) 4 tasks each using
6 cores for multithreading and (iii) 24 tasks without multithreading. The sequential
runtime (single core) of the pipeline is ∼30.5h. When allowing the individual tools
to run 24 threads on the same machine, the runtime reduces to ∼16.5h, resulting in a
very low parallel efficiency of only 7.7%. This poor scaling can be observed in both
map and reduce phase, but is especially pronounced in the reduce phase. It is caused
partly by the lack of multithreading support in some of the tools used, e.g. BWA
sampe and Picard. However, even the modules of GATK that do support multithread-
ing exhibit poor scaling behavior. When moving from multithreading to multitasking
as supported by Halvade, runtimes decrease significantly. Using 4 tasks with 6 threads
each, runtime reduces to ∼4.5 h. When using 24 tasks without multithreading, a run-
time of only 1h 42min is obtained, corresponding to a parallel efficiency of 74.7%.
We observed an increased CPU utilization during pipeline execution when using 24
parallel tasks compared to using multithreading in 1 task.

On this type of node, optimal runtime is achieved when using a maximum number
of tasks without multithreading. However, this is only possible because the node pro-
vides a sufficient amount of RAM. The memory bottleneck is caused by elPrep [14],
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which can be used as a drop-in replacement for Picard for data preprocessing. Even
though elPrep has a significantly higher performance, elPrep instances require more
memory, i.e., 16 GByte for elPrep versus 6 GByte for Picard. This means that running
24 parallel instances of elPrep requires 384 GByte RAM in total. For maximum per-
formance, we recommend the use of elPrep; if insufficient memory is available, users
can revert to Picard.

3.3.2 Influence of the presence of NUMA domains

Many recent systems make use of non-uniform memory access (NUMA) domains.
Each NUMA domain contains a number of CPU cores and part of the RAM. Cores
have faster access to memory that resides in the same NUMA domain (‘local’ access)
and slower access to memory that is outside this domain (‘remote’ access). Files
on disk that are accessed by a tool are typically buffered in memory by the Linux
operating system in order to accelerate future accesses to the same file. If different
processes are accessing the same file, this buffered copy of (part of) the file can be
located in a different NUMA domain than that of the core accessing it, resulting in
remote memory access. When such files are accessed frequently, this can result in
degraded performance.

To avoid this, we make distinct copies of the reference file on disk, one copy per
NUMA domain. The idea is that processes that belong to different NUMA domains
access different copies of the file, while processes within the same NUMA domain
access the same copy. This way, the original file contents will be buffered in each
NUMA domain and all processes will have fast access to the locally buffered copy.
We implemented this idea through the use of a wrapper script that makes the necessary
copies of input files on local scratch space and then passes the correct input filename to
each of the individual processes. The wrapper script relies on the ‘numactl’ utility to
find out in which NUMA domain a certain process is running. Note that this approach
increases the overall memory usage as the same data is buffered in memory multiple
times.

Using 24 tasks on a single node and the entire NA12878 dataset, Fig. 3.2 shows
the runtime of the different components (summed over all 24 tasks) of the pipeline
with and without the use of the wrappers. For most components, the influence is only
marginal, with the ScoreRecalibrator module from GATK being a notable exception.
In that particular case, a reduction in runtime of 45% can be observed when using
the wrapper script. The GATK ScoreRecalibration module relies intensively on the
dbSNP database file (roughly 10 GByte) to generate recalibration tables. In this case,
the improved NUMA data locality considerably improves runtime.
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Figure 3.2: Comparison of the runtime (summed over all 24 parallel tasks) for each individual
tool/module used in Halvade with and without optimized NUMA locality.
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Figure 3.3: Disk I/O (scratch) observed on a worker node. Note that almost no data is actually
being read from disk as data are still cached in memory.

3.4 Multi-node benchmarks

The benchmarks in this section were run on a big data cluster provided by Intel.
This cluster consists of 15 nodes, each node contains a dual socket Intel E5-2695 @
2.40GHz with 128 GByte of memory. This cluster was split in two, each containing 7
worker nodes. The first part had access to both a 200 GByte SSD and a 1 TByte HDD
as intermediate storage and was used to assess the influence of the use of SSDs. The
second part had access to a Lustre file system and a Hadoop setup with Intel’s Hadoop
Adapter for Lustre which was used to determine the influence of the used distributed
file system.
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Figure 3.4: Network I/O observed on a single worker node.

3.4.1 Influence of the use of solid state disks

Many tools within Halvade rely on local disk I/O (scratch). This includes reading the
reference genome and accessing the dbSNP database as well as writing and reading
intermediate data generated by the different GATK modules as well as BWA-aln and
BWA-sampe. We tested the performance difference between using solid state drives
(SSD) and regular hard disk drives (HDD). Test results indicate only minimal dif-
ferences in runtime. This is due to the relatively low overall disk usage during the
execution of the Halvade job. The disk I/O volume was measured in intervals of one
minute and converted to MB/s (see Fig. 3.3). With the exception of a peak during
sorting phase, the disk I/O is well below 100 MB/s (averaged over one minute) which
is well within the range of modern HDDs. During the entire job, volumes read from
disk were very low, leading us to the conclusion that almost all data written to local
disk was cached in memory by the operating system and again accessed from memory
in the next step.

Due to their reduced latency, SSDs have an advantage over HDDs when lots of
random access is required by an application. Even though during the execution of
Halvade, tens of GBytes of intermediate key-value pairs are sorted on disk, perfor-
mance is high even when using HDDs. This is due to the fact that Hadoop avoids
random disk access as much as possible by buffering and sorting record chunks in
memory and spilling them to disk only when they exceed a certain threshold.

3.4.2 Influence of the interconnection network

In between map and reduce phase, aligned reads are sorted according to genomic
position. This parallel sorting step involves the movement of large volumes of data
over the interconnection network. The network I/O volume was measured in intervals
of one minute and again converted to MB/s (see Fig. 3.4). Again, as network I/O is
below 100 MB/s, almost no performance benefit was observed by using an Infiniband
interconnect over a 10 Gbit Ethernet network.
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3.4.3 Influence of the file system

Traditionally, MapReduce relies on the Hadoop Distributed File System (HDFS) to
read input and write final output data. In that case, data is stored on the local disks
of the worker nodes in a distributed fashion. Alternatively, centralized file systems
such as IBM’s Generalized Parallel File System (GPFS) or the Intel Enterprise Edi-
tion for Lustre software can be used. In that case, data is stored on separate data
nodes and transferred to the worker nodes through an interconnection network. As the
pipeline is rather compute-intensive, all three systems were able to provide data to the
worker nodes at a sufficiently high rate, hence almost no performance difference was
observed. However, the use of Intel’s Hadoop Adapter for Lustre included in Intel
Enterprise Edition for Lustre software has two advantages. First, it decreases the time
spent during the sort & shuffle phase compared with HDFS/GPFS. Second, Lustre
uses less memory on the worker nodes. This can be important on nodes with limited
memory capacity. For instance, on nodes equipped with 64 GByte of RAM running
4 Halvade tasks, we noticed that certain reduce tasks failed because of memory short-
age. The cause of this is the difference in coverage over the different genomic regions
and thus some tasks will have more reads to process. These reduce tasks had to be
rescheduled causing an increase in runtime. On a 7-node cluster, the use of Intel’s
Hadoop Adapter for Lustre included in Intel Enterprise Edition for Lustre software
decreased the runtime from 5h 27min (using HDFS) to 4h 48min on the same cluster.

3.5 Benchmark of NA12878 dataset on a 15-node clus-
ter

Halvade was used to process the complete NA12878 dataset on a 15-node cluster,
each node containing 24 CPU cores (dual-socket Intel E5-2680v3 @ 2.50GHz) with
512 GByte of RAM and three solid-state drives (SSD) of 400 GByte in RAID 0 to
store intermediate data (local scratch). The nodes are interconnected through an FDR
Infiniband network and access a GPFS storage through a second Infiniband network.
Note that Lustre was not available on this cluster. Cloudera CDH 5.3 is deployed as
a Hadoop distribution by HanythingOnDemand [17]. Halvade was configured to use
24 tasks per node, hence up to 360 tasks (24 tasks × 15 nodes) were run in paral-
lel. NUMA optimizations were in place. On this cluster, Halvade completed read
alignment and variant calling of the NA12878 dataset in 1h 31min. Compared to a
single-threaded runtime of ∼12 days, this represents and overall speedup of a factor
of ∼190 or a parallel efficiency of 53%.

We can now compare this result to previously reported results in [7]. A runtime of
2h 39min was reported on a comparable 15-node cluster (again with 360 CPU cores),
however, in that case the nodes were equipped with only 64 GByte of memory. There-
fore, it was optimal to run only 4 parallel tasks per node, i.e., 60 parallel tasks (4 tasks
× 15 nodes) in total. As discussed before, the use of multithreading causing signifi-
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Figure 3.5: Panel A: distribution of runtime for map chunks of size 15, 30 and 60 MByte,
respectively. Numbers indicate the median runtime. Panel B: runtime of map tasks as a of
function of their position in the input FASTQ file.

cant loss of efficiency within each node, which largely accounts for the difference in
runtime.

Unfortunately, the increased number of parallel tasks also increases the task
scheduling overhead and makes it more difficult for the MapReduce framework to
evenly distribute the workload among the different tasks. In the next sections, we
investigate the underlying causes for load imbalance for the map and reduce phase
respectively.

3.5.1 Load balance considerations: map phase

Aligning 1.5 billion input reads to the reference genome exhibits an abundance of
parallelism, however, non-negligible load imbalance was observed during the map
phase. We investigated whether the load balancing could be improved by generating
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smaller input chunks. Chunk sizes of 60 MByte, 30 MByte and 15 MByte result in a
total of 1569, 2955 and 5831 input chunks respectively and lead to processing times
(map phase only) of 2760 s, 2723 s and 2720 s, respectively. Even though a smaller
chunk size effectively reduces idle time and thus improves load balancing, this effect
is almost entirely neutralized by increased overhead, most notably the BWA instance
initialization overhead.

Fig. 3.5A shows the distribution of execution times of map tasks for input chunk
sizes of 60 MByte, 30 MByte and 15 MByte respectively. These sizes correspond to
chunks containing respectively approximately 1 025 000, 525 000 and 275 000 reads.
The execution time of most chunks follows a Gaussian-shaped distribution. This can
be attributed to the well-known fact that the runtime to align individual reads exhibits
large variability [18], depending on its sequence contents and quality scores. However,
from Fig. 3.5A, it follows that the execution time of certain chunks is over three times
the mean execution time. This phenomenon is consistently observed for all chunk
sizes and cannot be attributed by the standard variation in read processing runtime.

Problematic input chunks appear to be spatially correlated to their position in the
original input FASTQ file (see Fig. 3.5B). This is especially pronounced at the end
of the FASTQ file. These chunks systematically contain more low-quality reads (see
Fig. 3.6A and B), which take much longer to align. The fact that the input FASTQ file
contains clusters of low-quality reads is likely caused by the fact that the NA12878
FASTQ file was generated from a sorted BAM file. Reads in the FASTQ file are
then also sorted according to their aligned genomic position while unalignable reads
occur at the end of the file. This explains the observed variation in Fig. 3.5B with
hard-to-align chunks around distinct highly repetitive genomic regions and at the end
of the FASTQ file. Simply shuffling the input FASTQ file prior to running Halvade
significantly reduces task execution variability (see Fig. 3.6C). Note that shuffling
FASTQ files that originate from BAM files is also recommended practice to prevent
biasing the fragment insert size calculation during alignment [19].

3.5.2 Load balance considerations: reduce phase

Whereas the map phase suffers only from mild load imbalance, the reduce phase can
exhibit a more severe imbalance. Again, even though genomic chunks are approxi-
mately equally sized, a large variability in task execution time can be observed (see
Fig. 3.7A). In part, this variability can be explained by a different number of reads that
map to a genomic chunk. It is well-known that biases during library preparation and
sequencing result in an uneven distribution of reads across the genome: while certain
regions are excessively sequenced, others lack coverage [20]. Fig. 3.7B shows the
correlation between the number of reads that map to a genomic chunk and runtime.
Clearly, while read coverage accounts for much of the runtime variability when using
the GATK UnifiedGenotyper module to call variants, the more recent HaplotypeCaller
module exhibits additional sources of runtime variability, making it difficult to balance
the load. When using the HaplotypeCaller module, we observed that genomic chunks
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with a highly non-uniform read coverage take significantly longer to process than ge-
nomic chunks with uniform read coverage, even though both chunks might have the
same total number of aligned reads. In contrast, the runtime of the UnifiedGenotyper
does not seem to be influenced by this, likely because the latter imposes a limit on the
number of reads that is considered per position (default 250).

Again, we investigated whether smaller genomic regions improves load balancing.
This effectively influences the number of reduce tasks as Halvade schedules one re-
duce task per genomic region. Unfortunately, reducing the size of the genomic regions
does not result in a proportional decrease in runtime as is shown in Fig. 3.7A. With
1303 reduce tasks, the median task runtime is 659 s. Reducing the size of the genomic
regions with a factor of four results in 5181 reduce tasks with a median task execution
time of 347 s, i.e., more than half of the original median task runtime. Certain GATK
modules have a fairly large overhead, regardless of the genomic region size that has
to be processed. Additionally, an increased number of genomic regions also results
in a higher number of interfaces between adjacent genomic regions. These interfaces
require special care as (paired-end) reads that span such boundaries are duplicated
in both regions. An increased number of interfaces hence results in more duplicated
reads and hence, overhead. Finally, task scheduling and tracking overhead might also
play a role.

Eventually, we obtained best performance when using only 647 genomic regions.
This is slightly less than twice the number of parallel reduce tasks (360). The idea
is that the biggest reduce tasks (in terms of number of aligned reads per genomic
chunk) are executed first tasks as these are most likely to contain stragglers. When a
reducer is finished with its first task, it can process a second, smaller task. We found
that this way of working results in a fair load balance while keeping the GATK tool
initialization overhead to a minimum. This improved load balancing strategy further
reduced runtime with 10 minutes to 1h 21min or an overall parallel efficiency of 59%.

Fig. 3.8 shows the task execution history. A slight load imbalance can be observed
in the map phase, however, this imbalance is largely compensated by the MapReduce
framework by scheduling shuffle tasks that copy data between nodes as required for
sorting. The simple load balancing strategy during the reduce phase can also be clearly
observed: when the first reduce tasks finish processing their first genomic chunk they
are allocated a second chunk. This causes a second wave of shuffle jobs to be triggered
in order to move these data to the worker node that requires it. Even though this way
of working does not result in a perfectly balanced load, we found that it resulted in the
lowest overall runtime.

To confirm our findings we evaluated the parallel efficiency on two additional
datasets. The first dataset is a whole genome DNA sequencing dataset (NA12877,
human genome, Illumina Platinum Genomes). This dataset consists of 1.47 billion
100 bp paired-end reads stored in two compressed (gzip) FASTQ files. The single-
threaded runtime on a 24-core machine (dual Intel E5-2680v3 @ 2.50GHz) with 512
GB of RAM is 10 days and 11 hours. With Halvade and all optimizations in place we
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achieve a runtime of 1h 11min on 15 nodes (360 processor cores), which again results
in an overall parallel efficiency of 59%.

The third dataset originates from the same individual (NA12877) but has a higher
sequencing depth of 200×, which amounts to approximately 5.97 billion 100 bp
paired-end reads stored in 14 pairs of compressed (gzip) FASTQ files. For this dataset
we estimated the single-threaded runtime, based on a linear extrapolation of the mea-
sured runtimes of each individual step on a subset of the reads. This leads to an
estimated runtime of 43 days and 23 hours. This runtime is likely an underestimation
of the actual runtime, as some components such as the sorting of SAM records have
a super linear time complexity. On the same 15-node cluster with all optimizations in
place, the runtime using Halvade is 5h 31min (measured on the entire dataset). This
leads to an overall estimated parallel efficiency of 53%. This shows that even for very
large datasets, Halvade can achieve very high efficiency.

3.6 Discussion and Conclusion

We investigated the impact of different hardware configurations on the runtime of
Halvade, a parallel, multi-node framework that implements a variant calling pipeline
according to the GATK Best Practices recommendations. Halvade relies on BWA for
read mapping and GATK for variant calling.

Even though Halvade is primarily intended to allow for a multi-node paralleliza-
tion of sequencing pipelines, Halvade can be used to significantly speed up post-
sequencing analysis on a single node. This is because the overall parallel efficiency of
the individual tools is very low: a speedup of approximately 2 is observed when mov-
ing from single-threaded execution to multithreaded execution on a 24-core machine.
Part of this poor scaling behavior can be explained by the fact that BWA-sampe and
Picard do not support multithreading, however, most of the GATK modules involved
in the pipeline also do not exhibit good scaling behavior. By using Halvade on high-
memory nodes, multithreading can be replaced by multitasking. The latter is far more
efficient, which has also been shown in [21], and a speedup of ∼18 is obtained on a
24-core machine.

Additionally, having much memory in a system allows to hold a copy of buffered
files in each of the NUMA domains. As such, CPU cores have access to a copy
in the local NUMA domain, thus avoiding remote memory access. For the GATK
ScoreRecalibrator module, this improves the runtime by nearly a factor of two.

Other hardware aspects, such as local disk speed (solid state drives vs. regular hard
disk drives), speed of interconnection network (Infiniband vs. Ethernet networks) or
file system (HDFS vs. GPFS) have only a minor influence on overall runtime. Even
though a typical whole-genome dataset involves hundreds of GBytes of input data and
a multiple thereof of intermediate data, the sequencing pipeline is mostly compute-
intensive and hence, runtime is mostly influenced by the compute capacity of a node,
rather than I/O speed.
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Subsequently, Intel Enterprise Edition for Lustre software was investigated. The
use of Intel’s Hadoop Adapter for Lustre included in Intel Enterprise Edition for Lustre
software simplifies the shuffle & sort which leads to better performance. Additionally,
Lustre uses less memory which can be important when high-memory machines are
not available.

Load balancing strategies for both map and reduce tasks were investigated. In both
cases, we found significant variability in task runtime. For the read mapping, these
could be primarily attributed to a FASTQ file that was generated from a sorted BAM
file. Simply shuffling the input sequences resulted in a more uniform task execution
time. For variant calling, most of the load imbalance is caused by a highly uneven
distribution of reads across the genome. Even when choosing genomic chunk size
based on the aligned number of reads, lots of runtime variability can be observed
due to excessively highly covered regions within a chunk. Unfortunately, attempts to
improve load balancing by choosing smaller task sizes are neutralized by increased
overhead. A simple load balancing strategy with few tasks corresponding to large
genomic regions appeared to yield best performance.

With all optimizations in place, Halvade is able to complete read alignment and
variant calling of the complete NA12878 dataset in 1 hour and 21 minutes on a 15-
node cluster, each node containing 24 CPU cores and 512 GByte of RAM. Compared
to a single-threaded runtime of ∼12 days for this pipeline, this represents an overall
speedup of a factor of ∼213 or a parallel efficiency of 59%.

Tools like BWA, SAMtools, Picard and GATK are widely adopted by the bioinfor-
matics community, however, they were not designed for parallel execution. With the
current status of multithreading performance in the available tools, it is best to config-
ure Halvade to use as many tasks on a node as possible. In principle, a careful design
of multithreaded software that is NUMA-aware and avoids false-sharing should lead
to a single-node performance similar to that of Halvade. In fact, multithreading facili-
tates automated load balancing which is hard to achieve in a multi-process MapReduce
settings.

It should be noted that highly parallel read mappers have been proposed that
are based on UPC++ (e.g. the UPC++ implementation of CUSHAW3 [22] or mer-
Aligner [23]) or that are suitable for GPU (e.g. CUSHAW [24] or SOAP3 [25])
or Xeon Phi coprocessors (e.g. MICA [26]). Additionally, parallel variant calling
pipelines have been proposed that do not rely on GATK. For example, SpeedSeq [27]
relies on a custom implementation for variant calling with improved performance
while ADAM [28] and Avocado [29] provide for a scalable variant calling frame-
work natively implemented in Spark. With this in mind, it should be clear that newly
proposed tools for read mapping and variant calling should not only be evaluated on
their accuracy and single-core performance, but also on their scaling behavior.
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4
Halvade-RNA: parallel variant calling

from transcriptomic data using
MapReduce

Up until now we have discussed the DNA sequencing pipeline implemented in Hal-
vade. In this chapter we introduce Halvade-RNA, which runs the RNA-seq pipeline in
a similar manner.
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Abstract Given the current cost-effectiveness of next-generation sequencing, the
amount of DNA-seq and RNA-seq data generated is ever increasing. One of the pri-
mary objectives of NGS experiments is calling genetic variants. While highly accu-
rate, most variant calling pipelines are not optimized to run efficiently on large data
sets. However, as variant calling in genomic data has become common practice, sev-
eral methods have been proposed to reduce runtime for DNA-seq analysis through the
use of parallel computing. Determining the effectively expressed variants from tran-
scriptomics (RNA-seq) data has only recently become possible, and as such does not
yet benefit from efficiently parallelized workflows. We introduce Halvade-RNA, a par-
allel, multi-node RNA-seq variant calling pipeline based on the GATK Best Practices
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recommendations. Halvade-RNA makes use of the MapReduce programming model
to create and manage parallel data streams on which multiple instances of existing
tools such as STAR and GATK operate concurrently. Whereas the single-threaded
processing of a typical RNA-seq sample requires ∼28h, Halvade-RNA reduces this
runtime to ∼2h using a small cluster with two 20-core machines. Even on a single,
multi-core workstation, Halvade-RNA can significantly reduce runtime compared to
using multithreading, thus providing for a more cost-effective processing of RNA-seq
data. Halvade-RNA is written in Java and uses the Hadoop MapReduce 2.0 API. It
supports a wide range of distributions of Hadoop, including Cloudera and Amazon
EMR.

4.1 Introduction

Recently, a number of methods have been introduced to accelerate read mapping
and variant calling through the use of parallel and distributed computing techniques:
HugeSeq [1], MegaSeq [2], Churchill [3] and Halvade [4] implement a DNA-seq vari-
ant calling pipeline according to the Best Practices recommendations [5] for use with
the GATK [6, 7] variant caller. These tools exploit the fact that read mapping is par-
allel by read, i.e., aligning one read is independent of the alignment of other reads,
while variant calling is parallel by genomic region, i.e., variant calling in a certain ge-
nomic region is independent of variant calling in other regions. As such, the runtime
to process whole genome or whole exome sequencing data sets is strongly reduced.
Other parallel DNA-seq variant calling pipelines that do not rely on GATK include
SpeedSeq [8] and ADAM [9].

Nowadays, RNA-seq datasets are becoming increasingly available. Even though
primarily intended to identify transcripts and quantify expression, RNA-seq data can
equally be used to call single nucleotide variants [10]. There are two main concep-
tual differences with DNA-seq based variant calling. First, the mapping step needs
to be modified to avoid false positive variant calling at exon-exon junctions, by us-
ing a sample-specific genome index containing junction information. Second, as the
assumptions on coverage depth and allelic balance used in DNA-seq based variant
calling do not hold in RNA-seq, where coverage depth is dependent on transcript ex-
pression, and allele-specific expression can influence allelic balance, the variant caller
should be adjusted accordingly. For that purpose, the GATK Best Practices recom-
mendations have been adapted to involve two passes of STAR [11] for spliced read
alignment, Picard (http://picard.sourceforge.net/) for data preprocessing and GATK
for variant calling. Processing a typical RNA-seq sample using this pipeline on a sin-
gle CPU core takes∼28 hours. Enabling multithreading on a 20-core machine reduces
runtime only by a factor of two, which indicates considerable loss of performance dur-
ing execution.

Here we present Halvade-RNA, a parallel framework for variant calling from
RNA-seq data that relies on the MapReduce programming model [12]. MapRe-

http://picard.sourceforge.net/
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Table 4.1: RNA-seq variant calling pipeline used in this work.

Step Tool Input Output
Read mapping (1st pass) STAR FASTQ SAM

+ index + splice junctions
Rebuild genome index STAR ref. genome new index

+ splice junctions
Read mapping (2nd pass) STAR FASTQ SAM

+ new index
Add read groups and sort Picard SAM BAM
Mark duplicates Picard BAM BAM
Split ‘N’ Trim GATK BAM BAM
Indel realignment GATK BAM BAM
Base quality score recalibration GATK BAM BAM
Variant calling GATK BAM VCF

duce has previously been used in bioinformatics for different applications [13–15].
Rather than relying on multithreading, Halvade-RNA runs several instances of the
different tools involved (STAR, Picard, GATK) in parallel on subsets of the data,
resulting in more efficient use of resources and thus lower cost of computing. In
addition to reducing the runtime of a single RNA-seq sample, Halvade-RNA accel-
erates batch processing of multiple RNA-seq samples on any compute infrastructure
on which Hadoop/MapReduce is installed, including public cloud platforms such as
Amazon Web Services. To the best of our knowledge, this is the first framework
to accelerate variant calling pipelines for RNA-seq data. The source is available at
http://bioinformatics.intec.ugent.be/halvade under GPL license.

4.2 Materials and Methods

4.2.1 RNA-seq variant calling pipeline

In this work, we adopt the GATK RNA-seq variant calling pipeline as described in
https://software.broadinstitute.org/gatk/guide/article?id=3891. Table 4.1 lists the dif-
ferent steps involved. In order to obtain accurate spliced read alignment, a two-step
approach using the STAR aligner is used as first described in [16]. During the first
pass, spliced alignment is performed without prior knowledge of splice sites. The
Broad Institute chose to use an approach in which existing splice site information is
not used in order to be independent of existing GTF or GFF files that are regularly
updated. Although it is possible to use existing splice site information to improve the
first pass, the Broad Institute did not validate this process, so we chose to stick with
their suggestion. Identified splice junctions are then incorporated in a new genome
index file which is subsequently used to guide the final alignments during the second
pass. Next, Picard is used to add read group information, sort the aligned records ac-

http://bioinformatics.intec.ugent.be/halvade
https://software.broadinstitute.org/gatk/guide/article?id=3891
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Figure 4.1: Overview of the RNA-seq pipeline in Halvade-RNA. In the first job, reads are
aligned in parallel in order to identify splice junctions and the reference genome index is re-
built using this information. In the second job, final alignments are produced and after sorting
and grouping the aligned reads by genomic region, the different Picard and GATK steps are
executed in parallel.

cording to genomic position, mark read duplicates and convert the SAM file to binary
BAM format. The GATK Split‘N’Trim module is used to split reads into different
exon segments and trim reads that overlap with intronic regions. Reads that contain
short insertions or deletions (indels) are realigned to avoid false positive variant calls
in later steps. Additionally, the per-base quality scores are recalibrated to accommo-
date certain batch artifacts. Finally, variants are called using the HaplotypeCaller and
written to VCF file.

4.2.2 The RNA Pipeline in MapReduce

Because the RNA-seq variant calling pipeline involves two passes of the STAR aligner,
it cannot be readily expressed in the Halvade MapReduce framework as implemented
for DNA-seq variant calling [4]. Whereas the DNA-seq variant calling pipeline could
be implemented using a single MapReduce job, two MapReduce jobs are required for
Halvade-RNA. Fig. 4.1 provides an overview of the framework.

First, the input FASTQ files are interleaved (such that paired-end reads are adja-
cent to each other) and split into smaller file chunks. During the map phase of the first
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MapReduce job, these input chunks are processed in parallel by multiple instances of
the STAR aligner. To avoid loading the reference genome index from disk by each
STAR instance individually, the genome index is first loaded in shared memory, after
which all the STAR instances on this node can access this genome index from RAM.
During this first alignment pass, the actual read alignments (i.e., the SAM records)
are ignored and only splice junction information is retained. For each read that spans
multiple exons, STAR produces a record containing junction information, such as ge-
nomic location and strand. The map tasks emit this information as intermediate <key,
value> pairs, with the key holding tuples of integers containing the contig index and
the position of the splice junction, and the value containing the STAR-generated string
with splice junction information. When all map tasks are finished, all intermediate
<key, value> pairs are sent to a single reducer and written to file. In the reduce task,
this file is subsequently used by STAR to build a new genome index that incorporates
this slice junction information. This is a purely sequential step, which should be kept
as short as possible. We therefore configure STAR to build a sparse index, where only
a fraction of the genomic locations are indexed. While using a sparse index results in a
slightly higher runtime during the second alignment phase, the reduced runtime during
index construction (5min for a typical RNA-seq sample, as opposed to approximately
30min for a dense index) ensures the lowest overall runtime.

The second MapReduce job is similar to the DNA-seq variant calling MapReduce
implementation and we refer to [4] for more details. RNA-seq reads are again aligned
in parallel during the map phase, using the newly constructed genome index. The
map tasks emit <key, value> pairs where the value represents an actual SAM record
and the key a composite structure that contains the genomic location to which the
read aligns. In between map and reduce phases, the intermediate <key, value> pairs
are sorted in parallel according to genomic location by the MapReduce framework
in a highly efficient manner. This step replaces the sorting functionality otherwise
achieved by Picard. The sorted SAM records are converted to BAM format using
Hadoop-BAM [17] and partitioned according to a user-specified number of genomic
regions.

During the reduce phase, remaining data preprocessing and variant calling steps
are performed in parallel through the concurrent processing of multiple genomic re-
gions. To achieve this, multiple instances of Picard and GATK are run in parallel,
each instance operating on a distinct genomic region. These steps are similar for the
DNA-seq variant calling pipeline. The only notable difference is the addition of the
Split‘N’Trim module. Called variants are written to VCF files, one VCF file per re-
duce task. Optionally, these partial VCF files can be merged into a single VCF file in
a third, lightweight MapReduce job. It should be noted that Halvade-RNA can also be
executed on existing BAM files. In that scenario, the first MapReduce job is skipped
and the map phase of the second job is modified in order to partition the provided
BAM file.

As RNA-seq analysis often involves the quantification of gene expression,
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Halvade-RNA provides the option to count the number of reads per exon. This is
done by the FeatureCounts tool [18] and is run per reduce task, and thus in parallel
per genomic region. Again, optionally, the counts per genomic region can be merged
into a single file using an additional lightweight MapReduce job.

Finally we remark that the used tools are still often improved and features are
added, so it is important to note that Halvade-RNA allows replacing the binaries of
the tools with newer versions, assuming that the command line arguments remain the
same. Similarly, new tools could easily be added by updating the source code and
calling the new tools appropriately.

4.2.3 Benchmark setup

Halvade-RNA was benchmarked on 9 RNA-seq samples (SNU-1033, SNU-1041,
SNU-1214, SNU-213, SNU-216, SNU-308, SNU-489, SNU-601, SNU-668) from
the Cancer Cell Line Encyclopedia [19], each sample containing approximately 175
million 101 bp paired-end reads originating from a poly(A) selection experiment.
The benchmarks were run using Halvade-RNA version 1.2.0, implemented using
STAR version 2.4.0h1, Picard version 1.112, GATK version 3.4 (nightly-2015-05-
12-gcdf54f8) and Java version 1.7.0, run on a Cloudera distribution based on Apache
Hadoop (CDH) 5.0.0 with Hadoop version 2.3.0. Note that Halvade-RNA has been
validated for compatibility with the more recent Hadoop version 2.6.0 (CDH version
5.10.0), Java version 1.8.0 and GATK version 3.7. We used a two-node cluster, each
node containing 20 CPU cores (dual-socket Intel Xeon E5-2660 v3 @ 2.60GHz) and
128 GByte of RAM. The nodes were interconnected by an FDR Infiniband network.
Halvade-RNA was configured to run 10 parallel instances of STAR per node (2 threads
per instance) and 20 parallel instances (single-threaded) of Picard and GATK per node.
This way, all available CPU cores are used.

Additionally, Halvade-RNA was compared with GNU parallel [20] for multi-
sample processing of all 9 samples. Halvade-RNA was run with identical config-
uration as described above. GNU parallel was configured to run per node a single
instance of STAR using all available CPU cores for multithreading, as STAR has very
good multithreading capabilities but uses up to 40 GByte of RAM per instance. Be-
cause the BAM processing and variant calling steps achieve poor speedups with mul-
tithreading, GNU parallel was configured to run multiple parallel instances of GATK
and Picard, each instance processing a different sample and using two threads (only
for GATK).

4.3 Results & Discussion

4.3.1 Parallel Performance

Four cases were set up to assess the performance of Halvade-RNA: i) the original
RNA-seq variant calling pipeline on a single CPU core, ii) the original RNA-seq
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Table 4.2: Benchmarks of the RNA-seq variant calling pipeline per sample.

Runtime for sample (speedup)
Classical

Sample 1 node × single core 1 node × 20 cores
SNU-1033 26h 6min (n/a) 12h 53min (2.03×)
SNU-1041 27h 48min (n/a) 12h 51min (2.16×)
SNU-1214 34h 40min (n/a) 13h 38min (2.54×)
SNU-213 27h 11min (n/a) 12h 59min (2.09×)
SNU-216 27h 21min (n/a) 13h 1min (2.10×)
SNU-308 27h 48min (n/a) 13h 25min (2.07×)
SNU-489 27h 10min (n/a) 12h 30min (2.17×)
SNU-601 26h 48min (n/a) 12h 59min (2.07×)
SNU-668 25h 59min (n/a) 12h 7min (2.14×)
average 27h 52min (n/a) 12h 56min (2.16×)

Halvade-RNA pipeline
Sample 1 node × 20 cores 2 nodes × 20 cores
SNU-1033 3h 25min (7.65×) 2h 44min (9.56×)
SNU-1041 3h 3min (9.09×) 1h 48min (15.46×)
SNU-1214 3h 33min (9.77×) 2h 23min (14.56×)
SNU-213 2h 50min (9.61×) 1h 44min (15.66×)
SNU-216 2h 46min (9.87×) 1h 44min (15.81×)
SNU-308 2h 48min (9.95×) 1h 43min (16.26×)
SNU-489 3h 8min (8.69×) 2h 16min (11.98×)
SNU-601 2h 59min (9.01×) 2h 5min (12.91×)
SNU-668 2h 49min (9.24×) 1h 52min (13.97×)
average 3h 2min (9.18×) 2h 2min (13.72×)

variant calling pipeline on 20 CPU cores, with multithreading enabled in both STAR
and GATK, iii) the Halvade-RNA pipeline on the same 20-core machine, and iv) the
Halvade-RNA pipeline on two 20-core machines (Table 4.2). For the original pipeline,
the obtained speedup using multithreading is only 2.16 on average (min: 2.03, max:
2.54). In contrast, Halvade-RNA shows a speedup of 9.18 on average (min: 7.65, max:
9.95) on the same node, indicating that Halvade-RNA is on average 4.25 times faster
when identical compute resources are used. Halvade-RNA relies primarily on multi-
tasking rather than multithreading, and measuring the average runtimes and speedups
per phase of the pipeline (Table 4.3) shows that especially for the variant calling steps
this proves to be more efficient. As such, Halvade-RNA not only reduces analysis
time but also substantially reduces the financial cost for computing. Using two nodes,
the average parallel speedup increases to 13.72 (min: 9.56, max: 16.26).

Note that similar results were obtained on a public cloud platform (Amazon EMR).
Using a single node of the type r3.8xlarge, we obtain an average execution time of 3h
29min per sample (min: 3h 4min, max: 4h 28min). Using two nodes, the average
runtime decreases to 2h 32min per sample (min: 2h 1min, max: 3h 46min). The
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Table 4.3: Average runtimes per phase of the RNA-seq pipeline.

Runtime (speedup) per phase
Pipeline No. of nodes and cores Pass 1 map Rebuild genome
Classical 1 node × single core 1h 19min (n/a) 4min (n/a)

1 node × 20 cores 6min (14.24×) 2min (2.18×)
Halvade-RNA 1 nodes × 20 cores 14min (5.69×) 4min (1.02×)

2 nodes × 20 cores 8min (9.29×) 4min (1.01×)
Pipeline No. of nodes and cores Pass 2 map Variant calling steps
Classical 1 node × single core 3h 29min (n/a) 23h 1min (n/a)

1 node × 20 cores 22min (9.69×) 12h 27min (1.85×)
Halvade-RNA 1 nodes × 20 cores 39min (5.29×) 2h 3min (11.21×)

2 nodes × 20 cores 22min (9.49×) 1h 26min (16.04×)

Amazon nodes have only 16 CPU cores and an additional data transfer from central
S3 storage to the local worker nodes storage is required which explains the slightly
higher runtimes. The average financial cost per sample was 14.15 US dollar when
using a single node and 20.48 US dollar when using two nodes (pricing of December
2016).

4.3.2 Multi-sample Throughput

Given the large variability in gene expression within one RNA-seq sample, certain
genomic chunks can have significantly more aligned reads. For example, in our ex-
periment, coverage depth between genomic chunks could vary as much as thousand
fold. As a consequence, there is large variability in execution time during the reduce
phases, making it more difficult to balance load than in the Halvade-DNA framework,
as coverage depth is more uniform in DNA-seq data. Fig. 4.2 shows the distribution of
the runtimes of the MapReduce tasks for sample SNU-668, other samples have sim-
ilar distributions. The map phases of both MapReduce jobs show a clear peak, with
the slight shift for the second map phase resulting from the use of a sparse genome
index. The variant calling reduce tasks show a very wide range of runtimes, ranging
from about a minute for the fastest task up to one hour for the slowest task. Further-
more, rebuilding the STAR genome (a sequential step) is a second source of losing
computing resources.

In a realistic scenario, the available compute infrastructure will be used to process
multiple samples. In that case, MapReduce jobs can be overlapped by using idle slots
to start processing the next sample, even though the current sample is not yet fully
completed. This way of working minimizes idle time and thus increases throughput.
Table 4.4 lists the total runtimes for processing all 9 samples. As a reference to calcu-
late the overall speedup, we use the sum of all runtimes on a single-threaded pipeline,
which is ∼251 hours. The multi-sample batch processing script (GNU parallel) for
the original pipeline processes the 9 samples in 40h 7min with 20 CPU cores on a sin-
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Table 4.4: Runtime for the batch processing of all 9 RNA-seq samples.

Pipeline No. of nodes and cores Sum of per-sample runtime (speedup)
Classical 1 node × single core 250h 52min (n/a)

1 node × 20 cores 116h 24min (2.16×)
2 node × 20 cores 63h 21m (3.96×)

Halvade-RNA 1 nodes × 20 cores 27h 20min (9.18×)
2 nodes × 20 cores 18h 17min (13.72×)

Pipeline No. of nodes and cores Batch processing runtime (speedup)
Classical 1 node × single core 250h 52min (n/a)

1 node × 20 cores 40h 7min (6.25×)
2 node × 20 cores 21h 3min (11.92×)

Halvade-RNA 1 nodes × 20 cores 22h 17min (11.26×)
2 nodes × 20 cores 11h 48min(21.26×)
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the quality distribution of all variants taken from all 9 samples.

gle node. Using two nodes, we distribute the samples over the two nodes and run the
sequential pipeline and the batch script for 4 and 5 samples per node (adjusted to run
with 24GB and 4 cores per sample in the GNU parallel steps), resulting in a total run-
time of 21h 3min. Using Halvade-RNA in batch mode, a total runtime of 22h 17min
is obtained using a single node and a total runtime of 11h 48min on two nodes. This is
respectively ∼4h and ∼6.5h faster compared to the sum of the per-sample runtimes.
Clearly, the ability to avoid idle time again significantly increases the efficient use of
compute resources.

4.3.3 Quality Assessment

Finally, we show the per-sample concordance in the variants called by the original
sequential pipeline and Halvade-RNA (Table 4.5). On average, 93.8% of the variants
found by the sequential pipeline are also called by Halvade-RNA. Variants that are
called in either only the sequential pipeline or only the Halvade-RNA pipeline are
supported by fewer reads and have a ∼8-fold lower average quality score compared
with the overlapping variants, and are thus more likely to be filtered from a high-
quality variant list. The normalized distribution of the variant quality for each of the
three subsets, matching variants and variants unique to either Halvade or the original
pipeline, is shown in Fig. 4.3. The origin of these discordant variants lies in the vari-
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Table 4.5: Per sample overlap and average quality score.

Sample Overlapping Avg. qual score Avg. qual score Avg. qual score
variants(%) overlapping Halvade-unique reference-unique

variants variants variants
SNU-1033 93.9 651.6 80.3 92.4
SNU-1041 93.4 803.2 85.6 92.7
SNU-1214 93.4 741.3 82.6 92.7
SNU-213 94.3 612.7 74.0 87.2
SNU-216 94.2 660.8 83.7 94.1
SNU-308 93.4 522.7 71.5 71.8
SNU-489 94.4 773.4 81.9 98.3
SNU-601 93.3 742.1 94.4 116.4
SNU-668 93.9 671.0 73.9 88.0

Average per-sample variant quality score (QUAL) for i) variants called by both the
single-threaded pipeline and Halvade-RNA on 2 nodes × 20 cores, ii) variants called
only by Halvade-RNA (‘Halvade-unique’), iii) variants called only by the
single-threaded pipeline (‘reference-unique’).

ability during the read mapping step. Typically these variants are located in regions
that are part of repeating patterns, causing the reads to align to multiple locations. Ei-
ther in the parallelized or in the original sequential pipeline, variants residing in these
regions have a high probability of being false positive calls.

4.4 Conclusion

We have implemented a parallelized variant calling pipeline for RNA-seq data using
a MapReduce approach, and compared the efficiency and accuracy of the pipeline to
the original sequential implementation. Running the original pipeline using a single
core requires on average 27.9 hours per sample. When enabling multithreading on
20 CPU cores in STAR and GATK, the average runtime per sample decreases to 12.9
hours, largely due to the poor scaling behavior of GATK. In contrast, on the same
node, when using Halvade-RNA configured to run 10 parallel instances of STAR (2
threads per instance) and 20 parallel instances (single threaded) of Picard and GATK,
average runtime decreases to ∼3 hours, corresponding to a parallel speedup of 9.18
over sequential execution of the pipeline. Clearly, the use of Halvade on a single
node strongly reduces average runtime and results in a more cost-effective use of the
compute resources. On two nodes, the average runtime further decreases to ∼2 hours.

Obtaining a good load balance across parallel tasks is challenging for RNA-seq
data, given the large variability in gene expression –and thus coverage depth– across
genomic regions. To minimize idle time introduced by slower jobs, Halvade-RNA can
be operated in batch mode. In that case, idle slots can be used to start processing the
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next sample even though the current sample is not yet fully completed. Processing
all of the 9 samples in batch mode on the two-node cluster yields a total runtime
of 11.8 hours. In comparison, running the pipeline in batch mode gives a runtime
of 21h on a two-node cluster. Even though batch mode does not decrease the per-
sample processing time below 2 hours, it considerably increases the overall throughput
through a more efficient use of compute infrastructure.

On average, variants identified by Halvade-RNA and the sequential pipeline have a
93.8% overlap. The variability is almost exclusively caused by variability during read
mapping. Variants called by either only Halvade-RNA or the sequential pipeline have
a much lower number of supporting reads and hence correspond to low-confidence
variants.



HALVADE-RNA 79

References

[1] Lam, H. Y. K., C. Pan, M. J. Clark, P. Lacroute, R. Chen, et al., 2012. Detecting
and annotating genetic variations using the HugeSeq pipeline. Nature Biotech-
nology, 30(3):226–229.

[2] Puckelwartz, M. J., L. L. Pesce, V. Nelakuditi, L. Dellefave-Castillo, J. R. Gol-
bus, et al., 2014. Supercomputing for the parallelization of whole genome anal-
ysis. Bioinformatics, 30(11):1508–1513.

[3] Kelly, B. J., J. R. Fitch, Y. Hu, D. J. Corsmeier, H. Zhong, et al., 2015. Churchill:
an ultra-fast, deterministic, highly scalable and balanced parallelization strategy
for the discovery of human genetic variation in clinical and population-scale
genomics. Genome biology, 16(1).

[4] Decap, D., J. Reumers, C. Herzeel, P. Costanza, and J. Fostier, 2015. Halvade:
scalable sequence analysis with MapReduce. Bioinformatics, pages btv179+.

[5] Van der Auwera, G. A., M. O. Carneiro, C. Hartl, R. Poplin, G. del Angel,
et al., 2013. From FastQ Data to High-Confidence Variant Calls: The Genome
Analysis Toolkit Best Practices Pipeline. Current protocols in bioinformatics /
editoral board, Andreas D. Baxevanis ... [et al.], 11(1110).

[6] McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, et al., 2010.
The Genome Analysis Toolkit: a MapReduce framework for analyzing next-
generation DNA sequencing data. Genome research, 20(9):1297–1303.

[7] DePristo, M. A., E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire, et al., 2011.
A framework for variation discovery and genotyping using next-generation DNA
sequencing data. Nature genetics, 43(5):491–498.

[8] Chiang, C., R. M. Layer, G. G. Faust, M. R. Lindberg, D. B. Rose, et al., 2015.
SpeedSeq: ultra-fast personal genome analysis and interpretation. Nat Meth,
12(10):966–968.

[9] Massie, M., F. Nothaft, C. Hartl, C. Kozanitis, A. Schumacher, et al., 2013.
Adam: Genomics formats and processing patterns for cloud scale computing.
Technical Report UCB/EECS-2013-207, EECS Department, University of Cali-
fornia, Berkeley.

[10] Piskol, R., G. Ramaswami, and J. B. B. Li, 2013. Reliable identification of
genomic variants from RNA-seq data. American journal of human genetics,
93(4):641–651.

[11] Dobin, A., C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, et al., 2012.
STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29(1):bts635–21.



80 CHAPTER 4

[12] Dean, J. and S. Ghemawat, 2008. MapReduce: Simplified Data Processing on
Large Clusters. Commun. ACM, 51(1):107–113.

[13] Schatz, M. C., 2009. CloudBurst: highly sensitive read mapping with MapRe-
duce. Bioinformatics, 25:1363–1369.

[14] Zou, Q., X.-B. Li, W.-R. Jiang, Z.-Y. Lin, G.-L. Li, et al., 2013. Survey of
MapReduce frame operation in bioinformatics. Briefings in Bioinformatics,
15(4):637–647.

[15] Zou, Q., Q. Hu, M. Guo, and G. Wang, 2015. Halign: Fast multiple similar
dna/rna sequence alignment based on the centre star strategy. Bioinformatics,
31(15):2475–2481.

[16] Engström, P. G., T. Steijger, B. Sipos, G. R. Grant, A. Kahles, et al., 2013.
Systematic evaluation of spliced alignment programs for RNA-seq data. Nature
Methods, 10(12):1185–1191.

[17] Niemenmaa, M., A. Kallio, A. Schumacher, P. Klemel, E. Korpelainen, et al.,
2012. Hadoop-BAM: Directly manipulating next generation sequencing data in
the cloud. Bioinformatics, 28:876–877.

[18] Liao, Y., G. K. Smyth, and W. Shi, 2014. featureCounts: an efficient general pur-
pose program for assigning sequence reads to genomic features. Bioinformatics
(Oxford, England), 30(7):923–930.

[19] Barretina, J., G. Caponigro, N. Stransky, K. Venkatesan, A. a. Margolin, et al.,
2012. The Cancer Cell Line Encyclopedia enables predictive modelling of anti-
cancer drug sensitivity. Nature, 483(7391):603–307.

[20] Tange, O., 2011. Gnu parallel - the command-line power tool. ;login: The
USENIX Magazine, 36(1):42–47.



5
WGS, WES and RNA variant

comparison and analysis

In this chapter we introduce a scalable, cloud-based framework for variant (VCF)
analysis. Using three samples for which RNA-seq, WES and WGS are available, we
perform a comparative analysis of the variants called from these three sequencing
technologies.

? ? ?

Abstract As sequencing of genomes and transcriptomes has become a commodity in
clinical and genetics research, next-generation sequencing datasets are becoming in-
creasingly larger. While analysis methods have matured along with the sequencing
technology, there are still a few obstacles before the analysis of these data becomes
a commodity as well. Firstly, read alignment and variant calling is very compute-
intensive. Recently, several methods have been proposed to significantly reduce run-
time for DNA-seq analysis through the use of parallel computing. The end point of
most analysis pipelines is the variant calling stage, usually in the VCF file format.
Clinical research questions need to be addressed by further analysis of these files, and
as these are still in the range of GBytes, there is a need for a scalable framework
for analyzing, comparing and visualizing large sets of VCF files from different omics
experiments in an interactive manner.

We have previously introduced a modular, scalable DNA-seq and RNA-seq variant
calling pipeline [1]. Halvade is built on top of MapReduce and is able to significantly
reduce runtime for variant calling on multi-core and/or multi-node compute infras-
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tructures. We demonstrate how resulting VCF files can be analyzed in a scalable,
interactive, visual and reproducible manner by making use of Spark Notebooks. This
approach was applied to a set of three cell line datasets from the Cancer Cell Line
Encyclopedia (CCLE), for which matched whole-genome, whole-exome and RNA-
seq data are available. Using the VCFs generated with Halvade-DNA and Halvade-
RNA, we demonstrate that the identified variants called according to the Broad’s Best
Practices are highly concordant, and that discordant calls between DNA and RNA
sequencing experiments can largely be attributed to RNA-editing and allele-specific
gene expression.

5.1 Introduction

Rapidly declining costs result in an increasing number of applications for next-
generation sequencing. Currently, it is possible to sequence the entire human genome
for under 1000 USD. In turn, this results in a rapidly increasing volume of raw ge-
nomic data that has to be stored and analyzed. Post-sequencing analysis often involves
aligning the reads to the reference genome (‘read mapping’) followed by the identi-
fication of differences between the reference genome and the sequenced individual
(‘variant calling’). These computational steps are very time-consuming: whereas the
actual sequencing can be completed in one or two days, the computational steps can
take more than two weeks, if executed sequentially (single core).

Recently, a number of methods have been introduced to accelerate the post-
sequencing analysis phase through the use of parallel and distributed computing. Of-
ten, these tools rely on BWA [2] for read mapping and GATK [3] for variant calling.
These tools exploit the fact that read mapping is parallel by read, i.e., aligning one
read is independent of the alignment of other reads while variant calling is parallel by
genomic region, i.e., variant calling in a certain genomic region is independent of vari-
ant calling in other regions. For example, BigBWA [4] leverages Hadoop MapReduce
[5] to accelerate read mapping using BWA, but has no functionality for variant calling.
A complete variant calling pipeline is implemented in both HugeSeq [6] and MegaSeq
[7], however, parallelism during variant calling is limited to concurrent processing of
entire chromosomes. Churchill [8] and Halvade [1] are both able to achieve a high
degree of parallelism by splitting chromosomes into smaller regions that are indepen-
dently processed. As such, both tools are able to process the NA12878 dataset (human
genome, 50X coverage, 1.5 billion 100 bp reads) in less than two hours on a mod-
est cluster. However, the tools different in the targeted platform: whereas Churchill
relies on a combination of Bash and Python scripts to distribute the workload over
the worker nodes using either the Sun Grid Engine (SGE) or Portable Batch System
(PBS), Halvade is cloud-based by adopting the MapReduce programming model.

Most tools implement a DNA-seq variant calling pipeline according to the GATK
Best Practices recommendations [9] for both whole-genome and whole-exome se-
quencing. However, RNA-seq datasets are becoming increasingly available (EN-
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CODE, CCLE, 1000 genomes, etc.). Even though primarily intended to identify
transcripts and quantify expression, RNA-seq data can equally be used to call ge-
nomic variants. Recently, a number of studies have been published in which variants
obtained through an RNA-seq datasets are compared to variants called using either
whole-genome sequencing [10, 11] or whole-exome sequencing. As is the case for
DNA sequencing, the Broad Institute has published Best Practices recommendations
for RNA sequencing as well 1. In essence, the two pipelines differ in the fact that
instead of relying on BWA for read mapping, the STAR aligner [12] is used to map
RNA-seq reads to a reference genome. As part of this work, we adopted Halvade
to accelerate a variant calling pipeline from RNA-seq data as well. Even though
RNA-seq datasets are typically smaller than whole-genome DNA-seq datasets, the
sequential processing (single core) of a typical RNA-seq sample takes more than a
day. Enabling multithreading a 20-core machine (dual socket Intel Xeon E5-2660 v3
@ 2.60 Ghz) reduces runtime only by half, indicative a poor scaling behavior, espe-
cially in the GATK steps. Rather than relying on multithreading, Halvade-RNA [13]
uses multiprocessing and data parallelization, starting several instances of the differ-
ent tools (STAR, GATK, etc.) on subsets of a data to significantly reduce runtime.
Additionally, Halvade-RNA can make use of several nodes in a compute cluster to
further reduce runtime, if needed. To the best of our knowledge, Halvade-RNA is the
first framework to accelerate RNA-seq pipelines. Halvade and Halvade-RNA accel-
erate batch processing of whole-genome, whole-exome and RNA-seq samples on any
compute infrastructure on which Hadoop/MapReduce is installed, including publicly
available cloud platforms such as Amazon.

The bulk of the computational burden lies in the steps that transform raw sequenc-
ing reads to genomic variants. During those steps, huge reductions in data volume
are achieved: hundreds of GBytes of sequencing data to a few GBytes for the derived
VCF files. However, an interactive, quasi real-time analysis and visualization of these
variant files, often containing millions of variants, is not feasible on a simple desktop
machine, especially when many files are involved. Currently, analysis, manipulation
and visualization of VCF files is usually done through a number of utilities, operated
from command-line, to filter, compare and visualize variants under study. As runtimes
of the individual tools are non-negligible, they do not provide a productive, respon-
sive or interactive working environment. This warrants the development of a scalable
platform for the analysis, manipulation and visualization of resulting VCF files.

In this chapter, we adopt the Spark platform and Notebook technology to analyze
and compare VCF files obtained from different omics experiments. Like MapReduce,
the Spark platform enables distributed processing of large datasets. However, whereas
MapReduce implements a single, three-stage programming model (map-sort-reduce),
Spark implements a much wider range of operations to filter and manipulate large
datasets in parallel. A second big difference is that while MapReduce relies on disk
I/O to store intermediate data, Spark provides the possibility to cache data in memory.

1The pipeline is described at https://software.broadinstitute.org/gatk/guide/article?id=3891.
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This feature is specifically beneficial when the same data is queried multiple times.
Additionally, the use of a Notebook enables users to control the Spark cluster in an
interactive manner. In contrast to well-defined, static workflows, such as the vari-
ant calling pipelines implemented in Halvade, researchers interested in the analysis
of VCF files benefit a lot from an interactive and visual environment, unimpeded by
scalability issues that may arise from dealing with large datasets. Notebooks run in a
web browser and allow users to manipulate data (filtering, set operations, visualiza-
tion, etc.) by issuing high-level commands. These commands are then processed by
the Spark cluster and parallelized in an automated manner: the workload is partitioned
among worker nodes that operate on the subset of data locally held in memory or on
disk. Finally, Notebooks allow users to quickly visualize datasets. To this end, large
datasets on the Spark cluster can be sampled and visualized in the web browser. We
demonstrate that the Spark platform and Notebook technology is a viable alternative
to a utility-based analysis from command line. To this end, we provide a proof-of-
concept by jointly analyzing three samples for which whole-genome, whole-exome
and RNA-seq data are available. Variants are called using Halvade and Halvade-RNA
and resulting VCF files were loaded onto a single node, 32-core Spark cluster. From
a Spark Notebook, we performed a three-way concordance and discordance analysis
among VCF files. Even though the 9 annotated VCF files are sized 22.5 GBytes alto-
gether, most of the analysis steps have a highly responsive, almost real-time behavior.
The combination of Halvade(-RNA) and Spark Notebook technology provides a fully
distributed analysis end-to-end framework, from raw molecular data to biological or
clinical interpretation.

5.2 Materials and Methods

5.2.1 Preprocessing the CCLE data

The data used in this analysis comes from the Cancer Cell Line Encyclopedia (CCLE)
project [14]. From the full manifest file of the TCGA CCLE Cell Line BAM files we
selected the samples where an WES, WGS and RNA-seq BAM file is available from
the same sample. These BAM files were downloaded with GeneTorrent version 3.8.7
and were converted back to FASTQ files. The WES samples consisted of approxi-
mately 90 million paired-end reads of 76 base pairs. The RNA data was sequenced
using poly-A selection and is not strand specific. It shows a bit more variance in
number of reads, between 160 million to 180 million 101 base pair long paired-end
reads. The WGS samples consisted of approximately 1.5 billion 101 base pair long
paired-end reads.

These were then used as input files for Halvade and Halvade-RNA. The read align-
ment and variant calling of these reads was done with Halvade [1] version 1.0.1, Hal-
vade runs the Best Practices pipelines according to the Broad Institute [9] for both
RNA-seq and DNA in a parallel way. Additionally, with Halvade we counted the
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Figure 5.1: Overview of the analysis process described before. First Halvade processes RNA-
seq, WES and WGS data and stores the output data on a shared file system. Next these variant
data (VCF files) are preprocessed: the coverage for all three datasets is computed and also
stored on the shared file system. As a final step, the data is analyzed in an interactive Spark
Notebook with near real-time performance. All these tools are available to be used in the cloud.

number of read per exon for the RNA-seq datasets using featureCounts [15] from the
Subread package. Halvade uses BWA version 0.7.5a, STAR version 2.4.0h1, Sam-
tools [16] version 0.1.19-44428cd, Picard [17] version 1.112(1930), GATK [3] version
nightly-2015-05-12-gcdf54f8 (this nightly build includes a bug fix for the SplitNCi-
gars command), featureCounts version 1.4.6-p4, elPrep [18] version 2.31. For both
DNA and RNA-seq pipelines, we used the HaplotypeCaller from GATK to call the
variants. These variants were afterwards annotated with known variants from Clin-
Var [19] and common SNPs (both database downloaded on 3 June 2015) with snpSift
[20] version 4.1k while gene effects were added with snpEff [21] version 4.1k. The
analysis was performed using Spark Notebook [22] which uses Scala (version 2.10.4),
Spark (version 1.4.1) and Hadoop 2.3.0 with Parquet support. To read and manipulate
the variants we used ADAM [23] version 0.17.1.

5.2.2 Hadoop, Spark and Spark Notebook

In this chapter we adopted cloud-compatible technologies. For Halvade we relied on
the Hadoop MapReduce framework to implement the GATK Best Practices pipeline
for both RNA-seq and DNA-seq data. Hadoop MapReduce is accessible through Ama-
zon Elastic MapReduce or similar publicly available services. Setting up an Amazon
AWS cluster with a specific version of Hadoop pre-installed is relatively easy. This
allows the use of Halvade when a local cluster is unavailable. In this project we based
much of our implementation on the ADAM interface which allows the use of Spark.
Spark is equally available on cloud environments such as Amazon AWS. However, us-
ing spark with the Spark shell or a bash command is not very practical as the process
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Figure 5.2: Overview of the distribution of the SNV counts for the different sequencing strate-
gies. The numbers represent the sum of all three samples for each collection.

of variant analysis requires manual selection of the next set of parameters to filter on.
With Spark Notebook we have access to the Spark environment within a graphical and
interactive environment. This notebook can visualize large-scale datasets in a scalable
manner thus providing for an interactive exploration of the data.

Because our analysis is based on the read coverage of the variant location in every
sample, we preprocessed the variants in Spark to count the coverage for the three
sequencing strategies for every variant. During this step, we use the BAM file that is
obtained from the read alignment step and contains the aligned reads right after the
BWA step. It does not include the indel realignment step so this might give some
very low noise in the numbers. The notebook reads the variants called from the RNA-
seq, WES and WGS datasets and keeps this list in memory. After this, each BAM
file containing the aligned reads is read and the coverage of each location in the list
is recorded and written to file. This preprocessing step speeds up the subsequent
phases of analysis. During the next phase, again written in a Spark Notebook, the
three samples are compared. In this case, the three sequencing strategies of the same
sample. In order to keep an interactive environment we keep the variants in memory,
including the corresponding calculated coverage numbers. This allows us to process
the subsets in near-real time. A number of processing steps are available, including
functions like filtering, base change counting and collecting annotation information.
An overview of all tools and interactions is depicted in Fig. 5.1.
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5.3 Analysis and Discussion

We first filtered the VCF files for WGS, WES and RNA-seq to retain only Single Nu-
cleotide Variants (SNVs). Indels were left out of this comparison as they are handled
in a somewhat different manner. The retained SNVs were split into seven collections
based on the overlap between RNA-seq, WGS and WES. This analysis is performed
for each sample individually. No cross-sample analysis is made. Fig. 5.2 displays the
aggregate number of variants for the three samples for every subset. We found that
each sample individually showed similar numbers for every subgroup. The functional
annotations for each of the seven subsets is displayed in Fig. 5.3. The functional an-
notation sometimes provides multiple possibilities for a single variant. In that case we
selected the first reported annotation for every variant.

5.3.1 RNA-WGS-WES concordant variants

First we look at the collection of variants that shows concordance between the three
sequencing strategies: RNA-seq, WES and WGS. The 68,192 variants in this collec-
tion correspond to 10.5% of the RNA-seq variants, 26.1% of the WES variants and
0.6% of the WGS variants. The variants found in this collection have high coverage
in all three datasets. The fraction of variants with coverage greater than or equal to 5
in RNA-seq, WES and WGS datasets is respectively 83.1%, 90.5% and 100%. Due
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to the fact that these variants were called by all three datatypes with a decent cover-
age, we can consider these variants to be true variants. Next, we take a look at the
snpEff functional annotations of these variants. We notice that 50.8% of these are
either synonymous or non-synonymous variants. This corresponds to substitutions of
bases in an exon of a gene coding for a protein. Synonymous variants are variants
that do not alter the amino acid sequence, while non-synonymous variants do alter the
amino acid sequence and consequently can have a biological impact on the organism.
It makes sense that the majority of the variants found in this collection are variants
found in exons, as these regions are primarily captured by WES. Another 42.2% con-
sists of variants in the upstream gene, downstream gene and intron variants. These
variants are in close proximity (respectively 5’, 3’ and intron regions of a gene) to
the exon regions. In whole exome sequencing the location where reads are sequenced
encapsulates the gene regions and thus can include these upstream and downstream
regions.

5.3.2 RNA-WES concordant variants

Next we consider the variants called by RNA-seq and WES but not by WGS. This
is a small collection containing only 532 variants. Notable is that 32% of these vari-
ants have a coverage less than 5 in WGS which might explain why they were not
picked up by that data type. The Ti/Tv ratio is a ratio of the number of transitions and
transversions. Transitions are interchanges of two-ring purines (A and G) or one-ring
pyrimidines (C and T). Transversions are mutations between purine and pyrimidine
and exchange between one-ring and two-ring structures. The Ti/Tv ratio for WGS is
expected to be approximately 2.1, while this is expected to be 3 or more for exome re-
gions. If the Ti/Tv ratio is closer to that of a random substitution (0.5), low-quality data
is implied [24]. The Ti/Tv ratio is 1.49 and is considerably different from the Ti/Tv
ratio of 2.68 for the RNA, WES and WGS concordant set, which would be expected
to be similar. This makes us believe that these variants are likely false positives.

If we look at the entire subset of RNA-seq and WES variants (68,192+532), we
see that 99.2% are confirmed by WGS. This gives rise to the conclusion that if WGS
were not available, 99.2% of the overlap between RNA-seq and WES are likely true
positives.

5.3.3 WGS-WES concordant variants

There are 181 649 WES and WGS concordant variants. Looking at the matching cov-
erage of all datasets for each of these variants, we see that there is a clear difference.
All variants have a coverage of 5 or higher in the WGS dataset. The WES coverage
shows that 83.4% have a coverage of 5 or higher whereas the RNA-seq dataset shows
that only 3.5% have a coverage of 5 or higher and that 79.6% of the variants called
have no coverage on those locations. This clearly shows that these variants are not
called in the RNA-seq dataset because there simply is not enough coverage at those
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Figure 5.4: Example of allele-specific expression. Showing that allele-specific expression will
not be called in RNA-seq when only the reference allele and not the mutation is expressed.

locations. Due to the lack of coverage in the RNA-seq dataset, the RNA-seq pipeline
does not call about 74.9% of the variants called in WES. Or in other words, we miss
about 60 000 variants per sample in RNA-seq in the exome due to low gene expression.

About 74% of the WGS and WES concordant variants are either upstream, down-
stream or intron variants and 16% are synonymous and non-synonymous variants.
Again we see that most of these variants belong to regions that are very close or are
contained in the exome. There are few synonymous and non-synonymous variants as
many of these do have coverage in RNA-seq and were confirmed by RNA-seq and do
not belong to this group.

Allele-specific expression

Next we attempt to identify why variants in this set are not called in RNA-seq even
with a coverage higher than or equal to 5. We assume that one of two things can
happen in this situation. Either the variant called by WES and WGS is a false positive
or the variant is not called due to allele-specific expression. Allele-specific expression
shows a (major) bias towards expressing one of two alleles. If the SNP is found in
one allele but not in the other, this can be the reason why RNA-seq cannot detect it.
If only the allele with the SNP is expressed or both alleles are expressed then this
variant will also be detected in the RNA-seq sample and thus is not in this collection.
However, if only the allele without the SNP is expressed, RNA-seq cannot call this
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SNP. This is shown in Fig. 5.4. This last situation corresponds to what we should find
in the variants with RNA-seq coverage. If the SNP only occurs in one strand, then
this variant should be a heterozygous call in the WES/WGS dataset. This means that
not all reads covering this position have this SNP. To show this we look at the fraction
of heterozygously called variants in this subgroup with and without coverage in the
RNA-seq sample. We filter out the variants with no RNA-seq coverage, as well as
make filtered groups where the RNA-seq coverage is bigger than at least 5, 10 or 20.
The number of variants with a minimum coverage of 5 is only about 3.4% of the entire
subcollection.

Fig. 5.5 shows a great increase in the fraction of heterozygous calls. About 39.5%
of the variants without RNA-seq coverage are heterozygous calls. This is roughly
80% when looking at the variants that have a coverage of 5 or more in RNA-seq. This
enrichment of heterozygous calls in WES/WGS is a strong indication of allele-specific
expression. This explains why the variants that do have coverage in RNA-seq are not
called in RNA-seq.

5.3.4 RNA-WGS concordant variants

Next we will discuss the RNA-seq and WGS concordant collection. Looking at the
coverage of these variants in the WES dataset, we notice that only 1% of these have
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a coverage greater than or equal to 5. This explains why WES is unable to call these
variants. A great deal of these variants (84%) are located in upstream and downstream
gene regions or are classified as intron or intergenic variants. This explains the lack of
coverage in the WES sample in those regions. Even though 13.8% of the variants are
synonymous or non-synonymous, which are variants located in an exon region, they
are probably not called due to lack of coverage. This shows that RNA-seq is able to
call variants in the exome, that you would otherwise miss by only performing WES.
Here, RNA-seq calls 20.9% additional variants that WES alone does not call.

5.3.5 WES-only variants

Looking at the variants only called by the WES pipeline we notice that 13.5% have a
coverage greater than 5 in RNA-seq while over 87% of these variants have a coverage
greater than 5 in the WGS dataset. This means that these variants are called by the
WES pipeline but are not confirmed by WGS although there are at least 5 reads at
that location. The lack of call in WGS together with the high coverage there excludes
allele-specific expression as a cause for this. This indicates that these are most likely
false positives called by WES or false negatives, i.e. actual variants that are not called
by WGS. The low Ti/Tv ratio of 1.11 and the low homozygous fraction (35% of these
variants) indicate that these are rather unexpected results for WES variants. This con-
firms our belief that these variants are most likely false positives. Previous studies
have shown that the false-positive rate in WES-only data is much higher than in the
WGS-only data, even in exon regions [25], which also confirms our findings.

5.3.6 WGS-only variants

The next collection we will discuss are the variants called only by the WGS pipeline.
We notice that the majority of these variants are not called in the WES and the RNA-
seq pipeline due to lack of coverage. Over 99% of these variants called only by WGS
have a coverage of 2 or less in both the WES and RNA-seq datasets. While 99.7%
of these variants have a coverage greater than or equal to 5 in the WGS dataset. This
obvious difference in coverage is why these variants are called only by WGS. To
explain this difference in coverage we look at the locations of these variants on the
genome. This shows that over 98% of these variants are classified as intergenic region,
intron variant, or upstream and downstream gene variants. These four regions explain
the lack of WES and RNA-seq coverage, as these are not part of the exome.

5.3.7 RNA-only variants

Lastly, we look at the variants called only by the RNA-seq pipeline. The numbers of
these variants change somewhat over the three samples: 45122, 58027 and 73884 vari-
ants for respectively hcc1954, hcc1143 and k-562. Looking at the coverage of these
variant locations in the datasets, we notice that a significant fraction lacks coverage
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in WES (85.5% have less than 5 coverage). Unexpectedly, we see that only 71.1% of
these have a coverage greater than or equal to 5 in the RNA-seq dataset itself while
this is 98.4% for the WGS dataset. The lack of coverage in WES could be explained
by the location of the variants, 83.7% are located in either upstream, downstream gene
regions, introns or intergenic regions, but it does not explain why WGS does not call
these. There are three reasons that could explain these variants; a) either we have low
coverage in both WGS and WES and thus cannot call them there, b) they are false
positives in the RNA-seq pipeline or c) they are variants caused by RNA editing. We
know that 98.4% have a high coverage in WGS so we can assume that the first reason
consists of only 1.6%. Similarly, we have counted the variants that are within the ex-
ome and have a coverage of at least 5 in the WES sample, this is approximately 3.9%.
We believe the false positives is a larger number as the RNA-seq alignment is more
complicated and will result in more errors regardless of the coverage in WES, i.e., we
believe there are more false positives in this set including variants without coverage in
WES. However, these false positives from RNA-seq and false negatives in the DNA
sequencing samples have to be confirmed by doing wet-lab verification. As we do
not know the fraction of false positives we decide to focus on the last reason, RNA
editing.

RNA editing

RNA editing is a process where the cell makes post-transcriptional changes to the
RNA molecule. This in turn changes the amino acid sequence which is crucial to
homeostasis and development of the cell. This does not include splicing or other RNA
processes like 5’-capping and 3’-polyadenylation. The editing may include insertions,
deletions and base substitutions. As we have filtered out the insertions and deletions
we will try to identify the base substitutions. From [26] we know that RNA editing in
mammals consists mainly of A-to-I mutations. This is identified as A-to-G variants, as
the Inosine is interpreted as Guanosine by the sequencing machinery. This means that
we expect a higher than normal number of A-to-G variants. This is indeed the case.
However, because our RNA-seq dataset was not strand specific, we cannot separate
A-to-G and T-to-C variants.

Fig. 5.6 shows the fraction of A-to-G and T-to-C variants in both filtered and unfil-
tered RNA-only and RNA-WGS concordant variants. This shows that the fraction of
A-to-G or T-to-C mutations is clearly higher in the RNA-only dataset than the RNA-
WGS concordant variants. In the unfiltered sets the fraction increases from about
34% to approximately 77%. Even when filtering on a read depth of 20 or higher to
eliminate the false positives, we see a similar situation.

The Alu family is a family of repetitive sequences in the human genome. The Alu
elements have over one million copies throughout the genome. These elements have
been important in explaining the evolution of primates. According to [27] many of
the RNA editing mutations occur in the Alu sequences. The fact that Alu regions are
part of repetitive sequences increases the possibility that reads are misaligned here.
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Figure 5.6: The homozygous fraction of subsets of the WGS-WES concordance set. Additionally
the fraction of the variants per subset is given to give a better perspective on the numbers.

However, as stated in [27] it is statistically improbable for SNPs to cluster A-to-G
substitutions almost exclusively in these regions and they believe these variants rep-
resent genuine RNA editing variants. They then showed that given these mutations in
repeat regions, the aligned locations of the reads were still the best match. If we filter
the RNA-only and RNA-WGS concordant variants on position with an Alu sequence,
we see that the fraction of A-to-G and T-to-C mutations increases for the RNA-only
variants but not for the RNA-WGS concordant set. If we go further and filter both on
position in Alu sequences and minimum coverage of 20, we get an even higher frac-
tion, approximately 97.7%. We see that the unfiltered set and filtered-on-coverage-20
set both give a higher count of RNA-WGS concordant variants. However, when fil-
tering these sets on the ALU-repeat regions we see that the RNA-only variants have
more variants in these regions. This shows that a big fraction of the RNA-only vari-
ants are in fact located in these Alu sequences. This makes us believe that we are in
fact dealing with RNA editing mutations. This also explains why a great deal of these
RNA-only variants cannot be called by WGS/WES sequencing.

Because WGS is typically more expensive than RNA-seq and WES, we tried to
see if it is possible to detect RNA editing mutations when only RNA-seq and WES are
available for a sample. To do this, there needs to be a way to separate the RNA-only
variants from the RNA-WGS concordant variants when WGS is not available. We
have found that there is no clear way of separating these two groups. When filtering the
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variants not called by WES on a given threshold for the coverage in the WES sample,
we see that both RNA-only and RNA-WGS show a similar fraction of variants being
filtered. This means that this scheme cannot be used to filter the RNA-only datasets.
Similarly, we have tried to filter on Alu sequences but have found no clear distinction
between the two groups. There were also no clear differences in quality, coverage or
similar statistics.

5.4 Conclusions

With Halvade, Halvade-RNA and the Spark Notebooks developed for the variant com-
parison tool, we provide a cloud solution for the entire variant calling pipeline starting
from alignment and ending with variant analysis. The Spark Notebook provides a way
to achieve reproducible results. Using HDFS, the Halvade results are readily available
to the variant analysis steps. We used the BAM files to get additional coverage infor-
mation for all samples and used this data for the variant analysis steps. The VCF files
were also annotated and to use this information ADAM had to be extended to handle
this information. The analysis tool is able to compare several VCF files of several
GBytes in size and perform near real-time responsiveness, while remaining scalable.
As a proof of concept of our variant comparison tool we implemented a Spark Note-
book that compares the variants of three sequencing strategies: RNA-seq, WES and
WGS.

Using the Spark Notebook, we were able to determine that variants called by both
RNA-seq and WES can be used confidently as over 99% of these are confirmed by the
WGS sample. Looking at the variants called by WES and WGS but not RNA-seq we
found that many variants here were not called due to lack of coverage (no expression).
Additionally, we gave a good indication that variants where RNA-seq did have cov-
erage were most likely not found in RNA-seq due to allele-specific expression. This
shows that RNA-seq misses some variants that WES did call, however the same can
be said for WES. We found a great deal of variants called by both RNA-seq and WGS
but not WES. This was mostly due to lack of coverage in the WES sample, mostly
located near regions close to the exome. The variants called only by WGS showed
no coverage in both the RNA-seq and WES dataset. A small amount of variants were
called only by WES, we surmised that these are most likely false positives. Lastly,
we looked at the variants called only by RNA-seq. These variants showed that a high
amount of A-to-G and T-to-C mutations were present, which are indicative of RNA
editing. Which would also explain why these variants cannot be called by WGS. As an
additional indication of RNA editing, we found that a great amount of these variants
were located in Alu sequences. We also discovered some of these variants are likely
false positives. The variants called only in the WGS pipeline represent 92.3% of all
variants called by the three pipelines. An additional 5.9% of all variants were called
by WGS and supported by either WES or RNA-seq or both. The remaining 1.8% of
the variants or called either by RNA-seq or WES or both. A small fraction of 1.7% of
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all variants are called only from the RNA-seq dataset and is caused by RNA editing,
where the mutation only occurs after transcription to RNA-seq and thus is not present
in the DNA sequence itself. The last 0.1% of all variants are the WES-only variants,
which was discussed before.

We believe that some additional improvements can be made, like adding stranded
whole RNA-seq which would eliminate the ambiguity that is present in the A-to-I
editing that we found in the RNA-seq only variants. We would also like to do wet-lab
experiments to confirm our findings, e.g. RNA editing variants.
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6
Conclusions and Future Research

6.1 Discussion

Sequencing technology has seen an incredibly fast evolution. The cost of sequenc-
ing has been greatly reduced while the sequencing speed has increased considerably
[1]. This means that more and more sequencing data is becoming available that needs
to be processed. The speed at which sequencing technology has evolved has sur-
passed Moore’s law [2], which means that the timely processing of this obtained data
is becoming more and more difficult. Here we looked at variant calling, which pro-
cesses the sequencing data and identifies variations with respect to a known reference
genome. The Best Practices pipeline [3] proposed by the Broad Institute shows the re-
quired steps to perform variant calling starting from raw sequencing data when GATK
is used as a variant caller. Tests show that this entire pipeline takes approximately 12
days using a single core or 5 days using a single 24-core machine for a human WGS
sample. This processing time is slower than the sequencing itself. As this data is used
in clinical settings or medicinal research, this step needs to be minimized in order to
allow timely analysis of the sample in question. We implemented our own pipeline
called Halvade, which is made for multi-node environments.

Based on the observation that read mapping is parallel by read while the variant
calling and the preparation steps are parallel by region we use the MapReduce par-
allelization model [4]. Every map or reduce task starts an instance of the tool that
performs the mapping, data preparation or variant calling. This allows us to use the
very efficient parallel sort of the framework which is required between read mapping
and variant calling. Similarly, the Hadoop MapReduce framework allows us to run
the pipeline on multiple nodes with relative ease. The reads are chopped into smaller
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files, keeping paired-end reads together. These smaller files are used as input for the
map tasks. Every map task streams the reads to the BWA alignment tool [5] and pro-
cesses the output of this tool. This output data is parsed into <key, value> pairs, then
grouped by genomic region and then sorted by position in that region. The number
of genomic regions determines the number of reduce tasks that will be started. The
reduce tasks stream the aligned reads to the required preparation tools and perform
indel realignment and base quality score recalibration (BQSR). After these steps the
read data is ready to be used for variant calling. The variant calling tool is called and
the output is streamed to a file on HDFS. On a single node the runtime of the human
whole genome sample is reduced from 5 days to approximately 2 days because multi-
ple tasks run on a single system. The runtime is greatly reduced when using multiple
nodes, on a 15-node machine the runtime is reduced to 2h 39min.

During the development of Halvade, Spark has become increasingly popular as an
alternative framework. Spark is not limited to the MapReduce programming model
and includes more functions to process data in parallel. Another advantage is that
Spark attempts to keep the data in memory as much as possible. This allows faster
access to the data and in turn should increase performance, especially when data is
accessed iteratively. However, we maintain the use of the Hadoop MapReduce frame-
work for Halvade. This decision is based on two observations. First, we use Hadoop
more as a resource distribution framework. Multi-processing gives better performance
than multithreading. We start a single instance per task and all tasks are distributed
over the cluster by the framework. Secondly, the process is not iterative, which is
where Spark would allow better performance. Because the input and output of the
tools is not the limiting factor of the performance, we estimate that keeping the data
in memory has very limited influence on the runtime.

The accuracy of the output of Halvade was compared to the output of the classical
pipeline. We achieve more than 99% matching variants between the two. Additionally,
almost all the variants that did not match had a very low variant confidence score. We
investigated the source of this discordance. The biggest reason for this discordance
is that read alignment occurs on only a part of the entire input. The first group of
reads are used as a training set to determine the insert length. This changes slightly
when a different training set is used. Marking PCR duplicates also gives rise to a very
small change. Selecting which read is real and which are duplicates is based on a
random factor. Lastly, the BQSR is based on a subset for every reduce task instead
of the complete dataset. This again introduces a small change in the base quality
scores. To achieve 100% concordance we would need to have global communication
in read alignment, PCR duplicate marking and BQSR. However, this would severely
influence the achieved performance and we estimate that the mismatching variants are
of low quality and will be filtered out in high quality variant analysis anyway. We note
that Halvade uses the tools described in the pipeline as is, this means that updates of
these tools can easily be used in Halvade. Halvade can use a new version simply by
replacing the binary file, provided that the arguments remain unchanged.
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Halvade shows promising speedups when comparing the number of Hadoop con-
tainers that are run. Comparing 3 Hadoop containers (one node) with 59 Hadoop
containers (15 nodes), we achieve a parallel efficiency of 92,1%. However, when
using the single threaded runtime instead of containers as a baseline, the parallel effi-
ciency is only about 30%. In an attempt to clarify this low parallel efficiency we tested
Halvade on several systems to compare different hardware. We found that having suf-
ficient memory influences the runtime the most, since this allows Halvade to run more
tasks in parallel instead of relying on multithreading. Some tools show a low mul-
tithreading efficiency and perform better when started in parallel. Taking advantage
of NUMA domains by using a separate copy of the reference data per domain also
gives a modest performance improvement. Surprisingly, other aspects like local disk
speed, speed of interconnection network or file system had only a minor influence on
the runtime. We believe that this is partly caused by the Hadoop framework that tries
to minimize the data transfers. Similarly, we believe that local disk speeds show so
little influence because only a small fraction of the runtime of all the tools is spend in
the input/output phases and often occurs simultaneously with the calculations of the
tool.

Halvade will most likely be used in some situations where the data needs to be
kept private, there are two options to realize this. The first is to have a private cluster
or cloud. This means that the data does not leave the company and this ensures the
safety of the data. The second is to use encryption with existing cloud solutions, e.g.
Amazon AWS. These cloud solutions typically provide encryption when storing data
but also when data is transferred between storage, compute node and the end-user.
This encryption ensures the privacy of the data in every step, Halvade can then run
in a virtual environment which decrypts the data, processes it, and the output is then
encrypted again.

We also note that simply by defining the Java heap memory for the Halvade Up-
loader, some speedups can be gained for the preprocessing. Without this variable
definition we had a runtime of about 1h 30min with 8 threads. Simply by defining the
Java heap memory as 32 GByte we were able to reduce this time to 1h 10min, again
with 8 threads. Not only does it increase speed, it also allows the use of more threads.
When increasing the number of threads without defining the Java heap memory an
out of memory error can occur. With 20 threads we can further reduce the runtime
to 48min. We would expect an even lower runtime, but since it is a data intensive
problem, it is limited by the hard disk drive I/O bandwidth and network connection
speeds.

Next we investigated load balancing strategies for both the map and reduce phases.
During the map phase, a big variation in task execution time is present. Some tasks
take up to 20 times longer to finish than others, which means load balancing becomes
more difficult. We found that the location of a read in the original input file has an
influence on the alignment time. We believe that the reads were likely aligned right
after sequencing, sorted by position, and then saved in that order. The reads that were
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not aligned were added at the end of the file. This explains why the last few tasks take
considerably longer. When shuffling the file, the reads that were not aligned are not
grouped together in the end and this means less variation in task runtime. However,
we noticed that shuffling the input files has a very limited influence on the total map
runtime. We believe this is caused by the increase in network activity because the
reads in the input files are not sorted anymore. This means that every map task has to
send a part of the aligned reads to (almost) every reduce task. For the reduce tasks we
discovered that the execution time changes only slightly for all balancing strategies
we tried, this left us with optimizing the number of reduce tasks. Using slightly less
than twice the maximum parallel reduce containers as the total number of reduce tasks
yields the best performance.

With all these optimizations we were able to reduce the runtime further to 1h
21min on a 15 node machine with 512 GByte of memory. This corresponds to a
parallel efficiency of 59%, nearly twice of what we achieved before.

The Best Practices pipeline for both DNA-seq and RNA-seq are very similar. In
Halvade we added the option to run this slightly different RNA-seq pipeline. This
meant re-implementing the alignment step. The RNA-seq alignment is based on STAR
and uses a two-pass alignment. This two-pass alignment includes the addition of
splice site information to the existing reference genome to increase alignment accu-
racy. This was implemented in two MapReduce jobs, the first runs the first alignment
step, collects the splice site information and then rebuilds the reference genome with
the additional information in the reduce step. The second alignment is then run with
the updated reference in the second MapReduce job and is followed first by sorting
and then running the data preparation and variant calling steps in the reduce phase.

In our RNA-seq benchmarks we used 9 RNA-seq samples from the Cancer Cell
Line Encyclopedia [6], the average runtime with the original pipeline on a single core
is 27.9h and goes down to 12.9h when using 20 cores. This shows poor scaling behav-
ior. With Halvade we were able to further reduce the runtime on a single node with 20
cores to ∼3h using 10 parallel tasks. This corresponds to a speedup of 9.18 compared
to the sequential pipeline. Using two of these nodes the average runtime is reduced to
∼2h. We found that running all 9 samples in batch mode reduced the runtime to a total
runtime of 11.8h. The parallel efficiency is considerably worse than when processing
DNA-seq data. Obtaining a good load balance across parallel tasks is challenging for
RNA-seq samples, as the reads per region is heavily influenced by the level of gene
expression. A second cause is the two-step alignment with STAR, in between the two
alignment steps, the found splice sites need to be added to the genome. In the sequen-
tial pipeline this is added on the fly. However, because all splice sites need to be used
to rebuild the genome, Halvade has to first collect all this information from all tasks to
do this. This process has to be done with a single task and is the cause of a very high
performance loss. We believe that this can be improved when STAR supports adding
this data to a reference already loaded in memory, which is not yet the case. However,
when running multiple samples in batch this single task can overlap with other tasks
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from another sample which makes up for some of the performance loss.

The variants found by Halvade showed a 93.8% overlap with the original pipeline.
The variability is almost exclusively caused by the difference attained by running the
alignment on parts of the reads instead of all reads. However, the variants that did
not match showed a lower number of reads supporting the call. Also, a high amount
of these variants are located in regions with repeating patterns where we know read
alignment is very difficult.

As an example use case we chose to compare variants called by three sequencing
strategies on the same sample: WES, WGS and RNA-seq. Halvade can process WES
and WGS, while Halvade-RNA can process the RNA-seq data. This gives us three
Variant Call Format (VCF) files from the same source sample that can be compared
and analyzed. To analyze this data, we implemented a VCF comparison tool using
Spark Notebooks. Spark Notebooks have the advantage that they provide a way to
achieve reproducible results. The access to HDFS through Spark allows very straight-
forward use of the VCF files in the Notebooks. We preprocessed these VCF files to
get the corresponding coverage in all three samples for all variants found. This prepro-
cessing step is somewhat time consuming which is why we store the data for later use.
The next steps that use this data now have access to this coverage information. Lastly,
we annotated the VCF files with SnpEff to be used in the analysis step. Using Spark
allowed us to use the ADAM API, which enables access to VCF and SAM files in a
Spark environment. This setup gave us a means to analyze VCF data in an iterative
way. Using a single 32-core node we achieved near real time filtering of the VCF data
(∼22.5 GBytes on disk and nearly double in memory).

We observe that 99% of the variants called by both RNA-seq and WES are also
confirmed by WGS and thus can be grouped as high confidence variants. The variants
called by WGS only were caused by lack of coverage in the other two sequencing
strategies. We found that RNA-seq calls variants confirmed by WGS but not WES,
and similarly WES calls variants confirmed by WGS but not by RNA-seq. The lack
of call in both cases is caused by different coverages in the respective locations.

This shows that both provide high confident variants that the other would miss.
Lastly we see a high amount of variants called by RNA-seq that are not confirmed
by WES nor WGS. These variants showed a very high amount of A-to-G and T-to-C
mutations, which probably indicate RNA editing. Many of these variants were located
in Alu sequences which again is an indication that these variants are caused by RNA
editing. We would like to verify these results with wet-lab experiments.

The latest version of Halvade is available for download on http://bioinformatics.
intec.ugent.be/halvade and runs on Hadoop MapReduce 2.0 or later (tested up to
Hadoop 2.6) and Java 1.7 or later. The version of Java you should use depends on
the GATK version. Since version 3.7 Java 1.8 is required while older versions use
Java 1.7.

http://bioinformatics.intec.ugent.be/halvade
http://bioinformatics.intec.ugent.be/halvade
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6.2 Future Work

Despite what we mentioned before, we do believe there is some merit in using Spark
instead of MapReduce as a framework for Halvade. We estimate that the pipelines
that are currently implemented would show limited or no improvement with Spark.
However, we believe that a more complex pipeline would benefit from a framework
that is not limited by only two functions, map and reduce. For one, it allows the
communication or broadcasts to all nodes in a more efficient manner. As there is no
strict map and reduce workflow, the programmer can easily adapt the workflow, this
allows for a broadcast in between every step. This could provide a solution for the
discordance caused by BQSR we had with Halvade. However, this would still lead
to a performance drop as all tasks would need to sync in between these steps, and
this always means that certain tasks will be idly waiting until all tasks are finished.
However, steps like this might be required for more advanced pipelines.

Spark also allows a Resilient Distributed Datasets (RDD) to be written to the dis-
tributed file system. This way, the data is saved in a file per partition grouped in a
folder. This can then again be read in Spark during later steps. This would eliminate
the merge VCF step in Halvade and would allow us to read the data from there in the
VCF comparison tool. However, often the files need to be annotated for analysis and
this would require some additional effort to incorporate.

As a next step we would like to see an implementation of more complex pipelines.
Somatic variant calling is an example of such a pipeline, this pipeline uses normal and
tumor input files. In variant calling you typically expect to see SNPs fall into one of
three bins of occurrence in the reads; 0%, 50%, or 100%, depending on whether they
are heterozygous or homozygous. For somatic variant calling, certain things need to
be taken into account. For example ploidy changes of a chromosome and that the
pipeline uses both the tumor and normal BAM files for the variant calling step. This
means both BAM files need to be prepared first. Next the tumor and normal samples
are both used as input for the alignment tool. This means some coordination between
all steps and input files is necessary.

Since single cell sequencing is becoming more important so it makes sense to
provide an option to run Halvade using single cell sequencing data. The pipeline to
process single cell RNA-seq (scRNA-seq) is very similar to our current implementa-
tion for the RNA-seq pipeline. An additional step would be to perform quality control
for the input reads, as these are typically lower quality than other sequencing proto-
cols. This could be added to the map phase before streaming the data to the alignment
tool.

Halvade now supports merging a BAM file after the read alignment step, which
allows the alignment of both files separately. However, the reduce step still includes
some steps that should be run on both files, like indel realignment and BQSR. Us-
ing the current MapReduce approach, Halvade would align both files separately after
which they are merged in a single reduce task, which would create a considerable per-
formance drop. We believe that Spark can provide a better solution for somatic variant
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calling pipelines.
Another interesting avenue to pursue is a new way the aligned reads and variant

data is represented in memory for the VCF comparison tool. This could allow more
optimized filtering, searching and comparison of variant collections. Now, we de-
pend on ADAM with an Avro representation of the variants. With this representation,
we save duplicate variants on the same position together and thus store redundant in-
formation. Additionally, different data structures could be used that allow for better
searching in intervals, which is often used when comparing VCF samples.

Because WGS is typically more expensive, we considered several ways to filter the
RNA editing variants when only RNA-seq and WES data from a sample are available.
However, we found that simply filtering on low WES coverage is not sufficient. This
will include the variants that RNA-seq called but were then confirmed by WGS, which
are not variants caused by RNA editing. We then looked at other filtering values like
quality and functional annotation, but found no clear distinction that would filter out
only the RNA editing variants. Even when using Alu regions as a filter, we found that
a part of these RNA-seq variants were confirmed by WGS. We would like to further
investigate how this can be done.

As stated before we would like to confirm our findings of the RNA-seq, WGS
and WES comparison with wet-lab experiments. This includes confirming that the
variants we considered to be caused by RNA editing are in fact RNA editing. To do
this we need to select certain variants that would need to be confirmed. We would like
to confirm high quality variants in the RNA-only collection. It would be interesting
to confirm both high and low quality variants found in the RNA-seq, WES and WGS
concordant collection. This would confirm our idea that variants called by all three
strategies can be considered true variants. But it would also be interesting to verify
the RNA-seq and WES concordant variants that are not confirmed by WGS: are these
false positives by both WES and RNA-seq or are they false negatives in WGS?
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A
Halvade Documentation

A.1 Introduction

Halvade is a Hadoop MapReduce implementation of the best practices pipeline from
Broad Institute for whole genome and exome sequencing (DNA) as well as RNA-
seq. Halvade will produce a VCF output file which contains the single nucleotide
variants (SNVs) and additionally insertions and deletions (indels) in certain pipelines.
This program requires Hadoop on either a local cluster with one or more nodes or
an Amazon EMR cluster to run. As Hadoop is typically run on a linux cluster, this
documentation only provides information for a linux setup. The new GATK 3.7 only
works with Java v1.8, so this version of Java should be installed on every node. For
older versions of GATK, Java v1.7 is required on every node.

Note: Halvade is available under the GNU license and provides a binary with all
open source tools. However, since the GATK has its own license, which is available
online here1, the GATK binary is not provided in the bin.tar.gz file and needs to be
added individually.

Halvade depends on existing tools to run the pipeline, these tools require addi-
tional data besides the raw sequenced reads. This data consists of the human genome
reference FASTA file, some additional files created using the reference and the dbSNP
database. The index file used in the BWA or STAR aligners are created with the tools
itself. The FASTA index and dictionary files used by the GATK are created by sam-

1https://www.broadinstitute.org/gatk/about/#licensing

https://www.broadinstitute.org/gatk/about/#licensing


108 APPENDIX A

tools and Picard. The naming convention for these files and additional information to
run Halvade is provided in this Halvade documentation.

A.1.1 Recipes

Two recipes have been created to run Halvade on WGS and RNA-seq data. These
show all commands needed to run Halvade with the example data. The recipe for
the DNA-seq pipeline can be found here2. The RNA-seq data is typically less big and
therefore we chose to provide a recipe to run the Halvade rna pipeline on a single node
Hadoop environment, which can be found here3.

A.2 Installation

Every Halvade release is available at github4. Download and extract the latest release,
currently v1.2.1:

1 wget h t t p s : / / g i t h u b . com / b i o i n t e c / h a l v a d e / r e l e a s e s / download / v1 . 2 . 1 /
Ha lvade v1 . 2 . 1 . t a r . gz

2 t a r −xvf Ha lvade v1 . 2 . 1 . t a r . gz

The files that are provided in this package are the following:

1 example . c o n f i g
2 runHa lvade . py
3 h a l v a d e b o o t s t r a p . sh
4 HalvadeWi thLibs . j a r
5 HalvadeUploade rWi thL ibs . j a r
6 b i n . t a r . gz

A.2.1 Build from source

Halvade can also be built from the source files. To do this, you first need to clone the
github repository and built the package with ant as follows:

1 g i t c l o n e h t t p s : / / g i t h u b . com / b i o i n t e c / h a l v a d e . g i t
2 cd h a l v a d e / h a l v a d e /
3 a n t
4 cd . . / h a l v a d e u p l o a d t o o l /
5 a n t
6 cd . . /

This will build the two jar files in the respective dist subdirectories. The scripts
and example configuration files can be found in the scripts directory, move the jar files
to the script directory so the scripts have access to the jar file:

1 cp h a l v a d e / d i s t / Ha lvadeWi thLibs . j a r s c r i p t s /
2 cp h a l v a d e u p l o a d t o o l / d i s t / Ha lvadeUp loade rWi thL ibs . j a r s c r i p t s /

2https://github.com/biointec/halvade/wiki/Recipe:-DNA-seq-with-Halvade-on-a-local-Hadoop-cluster
3https://github.com/biointec/halvade/wiki/Recipe:-RNA-seq-with-Halvade-on-a-local-Hadoop-cluster
4https://github.com/biointec/halvade/releases

https://github.com/biointec/halvade/wiki/Recipe:-DNA-seq-with-Halvade-on-a-local-Hadoop-cluster
https://github.com/biointec/halvade/wiki/Recipe:-RNA-seq-with-Halvade-on-a-local-Hadoop-cluster
https://github.com/biointec/halvade/releases
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The next step is to download the human genome reference files and prepare them
to use with Halvade.

A.3 The human genome reference
Halvade uses the genome reference FASTA file (ucsc.hg19.fasta), found in the
GATK resource bundle, to build the index files for both BWA and STAR. The FASTA
file comes with an index and a dictionary file. Additionally a full dbSNP file (version
138) is used when recalibrating the base scores for the reads. These files are all found
in the GATK resource bundle which is available here5. This FTP site has a limited
number of parallel downloads and might not load at these times. Here is how you
download the files using the terminal in the current directory, it is advised to make a
new directory for all reference files:

1 mkdir h a l v a d e r e f s /
2 cd h a l v a d e r e f s /
3 wget f t p : / / g s a p u b f t p−anonymous@ftp . b r o a d i n s t i t u t e . o rg / bu nd l e / hg19 /

ucsc . hg19 . f a s t a . gz
4 wget f t p : / / g s a p u b f t p−anonymous@ftp . b r o a d i n s t i t u t e . o rg / bu nd l e / hg19 /

ucsc . hg19 . f a s t a . f a i . gz
5 wget f t p : / / g s a p u b f t p−anonymous@ftp . b r o a d i n s t i t u t e . o rg / bu nd l e / hg19 /

ucsc . hg19 . d i c t . gz
6 mkdir dbsnp
7 cd dbsnp
8 wget f t p : / / g s a p u b f t p−anonymous@ftp . b r o a d i n s t i t u t e . o rg / bu nd l e / hg19 /

dbsnp 138 . hg19 . v c f . gz
9 wget f t p : / / g s a p u b f t p−anonymous@ftp . b r o a d i n s t i t u t e . o rg / bu nd l e / hg19 /

dbsnp 138 . hg19 . v c f . i d x . gz
10 cd . . /

Next we need to unzip all these files so they can be used in Halvade:
1 gu nz ip ucsc . hg19 . f a s t a . gz && g unz ip ucsc . hg19 . f a s t a . f a i . gz && g un z i p

ucsc . hg19 . d i c t . gz && \
2 gu nz ip dbsnp / dbsnp 138 . hg19 . v c f . gz && gu nz ip dbsnp / dbsnp 138 . hg19 . v c f

. i d x . gz

The index files, the reference and the dbSNP file need to be uploaded to the HDFS
server if a cluster with more than one node is used to run Halvade. Setting up Halvade
is described in the following parts of the documentation.

A.3.1 BWA reference for WGS/WES data

The BWA aligner is used for the whole genome and exome sequencing pipelines. A
BWT index of the reference FASTA file needs to be created to run BWA , which
needs to be accessible by Halvade so BWA can be started correctly. The BWA binary
is available in the bin.tar.gz archive, which is provided in every Halvade release.

1 t a r −xvf b i n . t a r . gz
2 . / b i n / bwa i n d e x ucsc . hg19 . f a s t a

5ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/2.8/hg19/

ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/2.8/hg19/
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This process will create 5 files with the provided name as a prefix, this naming con-
vention is important as Halvade finds this index by the FASTA prefix ucsc.hg19.

A.3.2 STAR reference for RNA-seq data

Note: The process to build the STAR index requires a minimum of 32 GBytes of
RAM, make sure there is sufficient RAM memory.

The RNA-seq pipeline uses the STAR aligner to perform the read alignment step.
Similarly to BWA, the STAR aligner requires an index of the reference FASTA file.
Again, this can be created by using the STAR binary which is provided in the bin.tar.gz
archive which is available in every Halvade release.

1 t a r −xvf b i n . t a r . gz
2 mkdir . / STAR ref /
3 . / b i n / STAR −−genomeDir . / STAR ref / −−g e n o m e F a s t a F i l e s uc sc . hg19 . f a s t a

−−runMode genomeGenera te −−runThreadN 4

The shown command to build the STAR genome index uses 4 threads, this should
be updated to reflect the number of cores available. After the STAR genome index has
been created, the provided output folder will contain all files needed by STAR and in
turn by Halvade.

A.4 Hadoop setup

Halvade runs on the Hadoop MapReduce framework, if Hadoop MapReduce version
2.0 or newer is already installed on your cluster, you can continue to the Hadoop
configuration section to make sure the advised configuration is enabled. Halvade uses
GATK, which requires a specific version of Java, version 3.7 requires Java v1.8. To
make sure GATK works as expected the correct version of Java needs to be installed
on every node in the cluster and set as the default Java instance, in Ubuntu use these
commands:

1 sudo ap t−g e t i n s t a l l openjdk−8− j r e
2 sudo upda te−a l t e r n a t i v e s −−c o n f i g j a v a

A.4.1 Single node

To run Hadoop on a single node, it is advised to install Hadoop in pseudo-distributed
mode. The following instructions are based on this6 tutorial and can be used for ad-
ditional information. Hadoop requires ssh and rsync to run, to install these on your
system, run these commands (on Ubuntu):

1 sudo ap t−g e t i n s t a l l s s h r s y n c

6https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-common/SingleCluster.html

https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-common/SingleCluster.html
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Download and unzip the Hadoop distribution (here 2.7.2):

1 wget h t t p : / / www. eu . apache . o rg / d i s t / hadoop / common / hadoop −2 . 7 . 2 / hadoop
−2 . 7 . 2 . t a r . gz

2 t a r −xvf hadoop −2 . 7 . 2 . t a r . gz

To configure the Hadoop installation to run in pseudo-distributed mode edit these
files as follows, creating the file or replacing the line if necessary:

etc/hadoop/hadoop-env.sh:

1 e x p o r t JAVA HOME=/ your / j a v a / b i n / d i r e c t o r y

etc/hadoop/core-site.xml:

1 <c o n f i g u r a t i o n >
2 <p r o p e r t y>
3 <name>f s . d e f a u l t F S </name>
4 <va lue>h d f s : / / l o c a l h o s t :9000< / va lue>
5 </ p r o p e r t y>
6 </ c o n f i g u r a t i o n >

etc/hadoop/hdfs-site.xml:

1 <c o n f i g u r a t i o n >
2 <p r o p e r t y>
3 <name>d f s . r e p l i c a t i o n </name>
4 <va lue >1</va lue>
5 </ p r o p e r t y>
6 </ c o n f i g u r a t i o n >

etc/hadoop/mapred-site.xml:

1 <c o n f i g u r a t i o n >
2 <p r o p e r t y>
3 <name>mapreduce . framework . name</name>
4 <va lue>yarn </ va lue>
5 </ p r o p e r t y>
6 </ c o n f i g u r a t i o n >

etc/hadoop/yarn-site.xml:

1 <c o n f i g u r a t i o n >
2 <p r o p e r t y>
3 <name>ya rn . nodemanager . aux−s e r v i c e s </name>
4 <va lue>m a p r e d u c e s h u f f l e </ va lue>
5 </ p r o p e r t y>
6 </ c o n f i g u r a t i o n >

Additionally we need to make sure that that the node can make a passwordless
connection to localhost with ssh, check if ssh localhost works without a pass-
word. If this isn’t the case run the following commands:

1 ssh−keygen − t dsa −P ’ ’ −f ˜ / . s s h / i d d s a
2 c a t ˜ / . s s h / i d d s a . pub >> ˜ / . s s h / a u t h o r i z e d k e y s
3 chmod 0600 ˜ / . s s h / a u t h o r i z e d k e y s

Now we need to format the NameNode and start the HDFS and Yarn services, do
this as follows:
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1 b i n / h d f s namenode −f o r m a t
2 s b i n / s t a r t −d f s . sh
3 s b i n / s t a r t −ya rn . sh
4 b i n / h d f s d f s −mkdir / u s e r
5 b i n / h d f s d f s −mkdir / u s e r /<username>

Now Hadoop can be run from the bin/hadoop command and for ease of use this
directory can be added to the PATH variable by adding this line to your .bashrc file:

1 e x p o r t PATH=$PATH : / hadoop / i n s t a l l / d i r / b i n

After the Hadoop configuration has been updated to run Halvade optimally on
your node, the services will need to be restarted. To restart the pseudo-distributed
Hadoop environment run these commands:

1 s b i n / s top−d f s . sh
2 s b i n / s top−ya rn . sh
3 s b i n / s t a r t −d f s . sh
4 s b i n / s t a r t −ya rn . sh

A.4.2 Multi node

For the Hadoop installation on a multi node cluster, we refer to the manual given by
Cloudera to install CDH 5 or later and configure the Hadoop cluster. You can find this
detailed description online here7.

A.4.3 Hadoop configuration

After Hadoop is installed, the configuration needs to be updated to run Halvade in
an optimal environment. In Halvade, each task processes a portion of the input data.
However, the execution time can vary to a certain degree. For this, the task timeout
needs to be set high enough, in mapred-site.xml change this property to 30
minutes or more:

1 <p r o p e r t y>
2 <name>mapreduce . t a s k . t i m e o u t </name>
3 <va lue >1800000</ va lue>
4 </ p r o p e r t y>

The Yarn scheduler needs to know how many cores and how much memory is
available on the nodes, this is set in yarn-site.xml. This is very important for the
number of tasks that will be started on the cluster. In this example, nodes with 128
GBytes of memory and 24 cores are used. Because some of the tools used benefit from
the hyperthreading capabilities of a CPU, the vcores is set to 48 if hyperthreading is
available:

1 <p r o p e r t y>
2 <name>ya rn . nodemanager . r e s o u r c e . memory−mb</name>
3 <va lue >131072</ va lue>

7http://www.cloudera.com/content/cloudera/en/documentation/cdh5/v5-0-0/CDH5-Installation-Guide/
cdh5ig cdh5 install.html

http://www.cloudera.com/content/cloudera/en/documentation/cdh5/v5-0-0/CDH5-Installation-Guide/cdh5ig_cdh5_install.html
http://www.cloudera.com/content/cloudera/en/documentation/cdh5/v5-0-0/CDH5-Installation-Guide/cdh5ig_cdh5_install.html
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4 </ p r o p e r t y>
5 <p r o p e r t y>
6 <name>ya rn . nodemanager . r e s o u r c e . cpu−vco re s </name>
7 <va lue >48</ va lue>
8 </ p r o p e r t y>
9 <p r o p e r t y>

10 <name>ya rn . s c h e d u l e r . maximum−a l l o c a t i o n−mb</name>
11 <va lue >131072</ va lue>
12 </ p r o p e r t y>
13 <p r o p e r t y>
14 <name>ya rn . s c h e d u l e r . minimum−a l l o c a t i o n−mb</name>
15 <va lue >512</ va lue>
16 </ p r o p e r t y>
17 <p r o p e r t y>
18 <name>ya rn . s c h e d u l e r . maximum−a l l o c a t i o n−vco re s </name>
19 <va lue >48</ va lue>
20 </ p r o p e r t y>
21 <p r o p e r t y>
22 <name>ya rn . s c h e d u l e r . minimum−a l l o c a t i o n−vco re s </name>
23 <va lue >1</va lue>
24 </ p r o p e r t y>

After this, the configuration needs to be pushed to all nodes and certain running
services restarted. On a multi node cluster the services running on different nodes need
to be restarted after distributing the configuration files, these following commands
assume a CDH 5 installation according to the guide shown before:

1 scp ∗− s i t e . xml myuser@myCDHnode−<n>.mycompany . com : / e t c / hadoop / con f .
m y c l u s t e r /

On the ResourceManager run:
1 sudo s e r v i c e hadoop−yarn−r e s o u r c e m a n a g e r r e s t a r t

On every NodeManager run:
1 sudo s e r v i c e hadoop−yarn−nodemanager r e s t a r t

On the JobHistory server run:
1 sudo s e r v i c e hadoop−mapreduce−h i s t o r y s e r v e r r e s t a r t

For the RNA-seq pipeline, the memory check needs to be disabled because Hal-
vade uses multiple instances of the STAR aligner when aligning the reads. The
genome index files are first loaded into shared memory so every instance can access
this instead of loading the reference itself. However, due to the way Hadoop checks
physical memory, which includes the shared memory, this check should be disabled.
To do this, add these properties to the yarn-site.xml file.

1 <p r o p e r t y>
2 <name>ya rn . nodemanager . vmem−check−enab led </name>
3 <va lue>f a l s e </ va lue>
4 </ p r o p e r t y>
5 <p r o p e r t y>
6 <name>ya rn . nodemanager . pmem−check−enab led </name>
7 <va lue>f a l s e </ va lue>
8 </ p r o p e r t y>
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A.4.4 Intel’s Hadoop Adapter for Lustre

When using Lustre as the file system instead of HDFS, using Intel’s adapter for Lustre
will increase the performance of Halvade. To enable the Adapter for Lustre you need
to change some configurations in your Hadoop installation. In core-site.xml you
need to point to the location of Lustre and set the Lustre FileSystem class, if Lustre is
mounted on /mnt/lustre/, add these to the file:

1 <p r o p e r t y>
2 <name>f s . d e f a u l t F S </name>
3 <va lue> l u s t r e : / / / < / va lue>
4 </ p r o p e r t y>
5 <p r o p e r t y>
6 <name>f s . l u s t r e . impl </name>
7 <va lue>org . apache . hadoop . f s . L u s t r e F i l e S y s t e m </ va lue>
8 </ p r o p e r t y>
9 <p r o p e r t y>

10 <name>f s . A b s t r a c t F i l e S y s t e m . l u s t r e . impl </name>
11 <va lue>org . apache . hadoop . f s . L u s t r e F i l e S y s t e m $ L u s t r e F s </ va lue>
12 </ p r o p e r t y>
13 <p r o p e r t y>
14 <name>f s . r o o t . d i r </name>
15 <va lue >/mnt / l u s t r e / hadoop </ va lue>
16 </ p r o p e r t y>

Additionally, you need to set the Shuffle class in mapred-site.xml:

1 <p r o p e r t y>
2 <name>mapreduce . j o b . map . o u t p u t . c o l l e c t o r . c l a s s </name>
3 <va lue>org . apache . hadoop . mapred . S h a r e d F s P l u g i n s$ M a p O u t p u t B u f f e r </

va lue>
4 </ p r o p e r t y>
5 <p r o p e r t y>
6 <name>mapreduce . j o b . r e d u c e . s h u f f l e . consumer . p l u g i n . c l a s s </name>
7 <va lue>org . apache . hadoop . mapred . S h a r e d F s P l u g i n s $ S h u f f l e </ va lue>
8 </ p r o p e r t y>

After adding these settings to the configuration, the files need to be pushed to
all nodes again and all services restarted, see above. Additionally the jar containing
Intel’s Adapter for Lustre should be available on all nodes and added to the classpath
of Hadoop. To do this you can find the directories that are currently in your hadoop
classpath and add the jar to one of these on every node. To find the directories, run
this command:

1 hadoop c l a s s p a t h

A.5 Uploading the references

The reference data needs to be available to all nodes in the cluster, which is why
they should be available on the distributed file system. When running Halvade, the
references will be copied to local scratch on every node when they need to be accessed
to increase the performance of subsequent accessing of the file.
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Note: The reference files shouldn’t be uploaded to the distributed file system if
a single node Hadoop environment is used. The tool would download them to local
scratch to use. Instead we put the files on local scratch and add some additional files so
that Halvade can find the correct references. Additionally, the refdir option should
be set that points to the directory with all reference files when running Halvade. There
are four files that are used to find the corresponding reference files and directories,
these should be added to correspond with the reference names:

1 t o u c h ucsc . hg19 . b w a r e f
2 t o u c h ucsc . hg19 . g a t k r e f
3 t o u c h STAR ref / . s t a r r e f
4 t o u c h dbsnp / . dbsnp

A.5.1 HDFS

The reference files need to be copied to the HDFS so that Halvade can distribute them
to every node to be used locally. Here we will create a directory on HDFS where all
the files will be collected, execute the following commands to do this:

1 h d f s d f s −mkdir −p / u s e r / ddecap / h a l v a d e / r e f / dbsnp
2 h d f s d f s −p u t ucsc . hg19 .∗ / u s e r / ddecap / h a l v a d e / r e f /
3 h d f s d f s −p u t dbsnp / dbsnp 138 . hg19 .∗ / u s e r / ddecap / h a l v a d e / r e f / dbsnp /
4

5 # f o r t h e RNA p i p e l i n e copy t h e STAR r e f :
6 h d f s d f s −p u t STAR ref / / u s e r / ddecap / h a l v a d e / r e f /

A.5.2 Amazon S3

To copy the files to Amazon AWS with the terminal the AWS Command Line Interface
needs to be installed using this8 documentation. If the bucket you want to use is called
halv bucket, execute the following commands:

1 aws s3 cp . / s3 : / / h a l v b u c k e t / u s e r / ddecap / h a l v a d e / r e f / −−i n c l u d e ”
ucsc . hg19 .∗ ”

2 aws s3 cp dbsnp / s3 : / / h a l v b u c k e t / u s e r / ddecap / h a l v a d e / r e f / dbsnp / −−
i n c l u d e ” dbsnp 138 . hg19 .∗ ”

3

4 # f o r t h e RNA p i p e l i n e copy t h e STAR r e f :
5 aws s3 cp STAR ref / s3 : / / h a l v b u c k e t / u s e r / ddecap / h a l v a d e / r e f / −−

r e c u r s i v e

A.5.3 GPFS & Lustre

Typically GPFS or Lustre are mounted on the directory on every node, the reference
files simply need to be copied to that directory. If /mnt/dfs is the mounted dis-
tributed file system, execute the following commands:

8http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html

http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
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1 mkdir −p / mnt / d f s / h a l v a d e / r e f / dbsnp
2 cp ucsc . hg19 .∗ / mnt / d f s / h a l v a d e / r e f /
3 cp −r dbsnp / dbsnp 138 . hg19 .∗ / mnt / d f s / h a l v a d e / r e f / dbsnp /
4

5 # f o r t h e RNA p i p e l i n e copy t h e STAR r e f :
6 cp −r STAR ref / / mnt / d f s / h a l v a d e / r e f /

A.6 Halvade Preprocessing
The Halvade Uploader will preprocesses the FASTQ files, this will interleave the
paired-end reads and split the files in pieces of 60MByte by default (this can be
changed with the -size option). The Halvade Uploader will automatically upload these
preprocessed files to the given output directory on either local scratch, GPFS, HDFS,
Amazon S3 or any other distributed file system.

Note: This step is not required if the input file is an aligned BAM file.

A.6.1 Performance

For better performance it is advised to increase the Java heap memory for the Hadoop
command, e.g. for 32GB:

1 e x p o r t HADOOP HEAPSIZE=32768

A.6.2 Synopsis

1 hadoop j a r Ha lvadeUp loade rWi thL ibs . j a r −1 / d i r / t o / i n p u t . m a n i f e s t −O /
h a l v a d e / o u t / − t 8

2 hadoop j a r Ha lvadeUp loade rWi thL ibs . j a r −1 / d i r / t o / r e a d s 1 . f a s t q −2 /
d i r / t o / r e a d s 2 . f a s t q −O / h a l v a d e / o u t / − t 8

3 hadoop j a r Ha lvadeUp loade rWi thL ibs . j a r −1 / d i r / t o / i n p u t . m a n i f e s t −O
s3 : / / bucketname / h a l v a d e / o u t / −p r o f i l e / d i r / t o / c r e d e n t i a l s . t x t − t 8

The manifest file contains per line a pair of files (reads 1 and reads 2) separated by
a tab:

1 / p a t h / t o / f i l e 1 r e a d s 1 . fq . gz / p a t h / t o / f i l e 1 r e a d s 2 . fq . gz
2 / p a t h / t o / f i l e 2 r e a d s 1 . fq . gz / p a t h / t o / f i l e 2 r e a d s 2 . fq . gz

A.6.3 options

The options are shown in table A.1 and table A.2.

A.7 Example datasets
The input data for these pipelines typically consist of either 2 FASTQ files for paired-
end reads or a BAM file containing already aligned reads.
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Table A.1: Halvade Uploader required options.

-1 STR

Manifest/Input file. This string gives the absolute path of the manifest
file or the first input FASTQ file. This manifest file contains a line per
file pair, separated by a tab: /dir/to/fastq1.fastq /dir/to/fastq2.fastq. If
this is equal to ‘-’ then the fastq reads are read from standard input.

-O STR
Output directory. This string gives the directory where the output files
will be put.

Table A.2: Halvade Uploader optional options.

-2 STR
Input file 2. This gives the second pair of paired-end reads in
a FASTQ file.

- -dfs
Input on a DFS. This enables reading data from a distributed
file system like HDFS and Amazon S3.

-i
Interleaved. This is used when one FASTQ input file is given,
the input file is assumed to have both pairs of paired-end
reads and the reads are interleaved.

- -lz4

Lz4 compression. This enables lz4 compression, this is faster
than gzip but will require more disk space. The lz4 compres-
sion library needs to be enabled in the Hadoop distribution
for this to work.

-p, - -profile STR

AWS profile. Gives the path of the credentials file used to
access S3. This should have been configured when installing
the Amazon EMR Command Line Interface. By default this
is ∼/.aws/credentials.

-s, - -size INT
Size. This sets the maximum file size (in bytes) of each in-
terleaved file [60MB].

–snappy

Snappy compression. This enables snappy compression, this
is faster than gzip but will require more disk space. Snappy
requires less disk space than lz4 and is comparable in com-
pression speed. The snappy compression library needs to be
enabled in the Hadoop distribution for this to work.

- -sse
Server side encryption. Turns on server side encryption
(SSE) when transferring the data to the Amazon S3 storage.

-t INT
Threads. This sets the number of threads used to preprocess
the input data. Performance will be limited if the heap mem-
ory isn’t sufficient.
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A.7.1 Whole genome sequencing sample

The whole genome sequencing sample is the NA12878 dataset, this dataset is typically
used in similar benchmarks and papers. This dataset consists of 1.5 billion paired-end
reads of 100 base pairs in length. This translates into a 50x coverage. Execute the
following commands to download and preprocess the data:

1 wget f t p : / / f t p . s r a . e b i . ac . uk / vo l1 / f a s t q / ERR194 / ERR194147 / ERR194147 1 .
f a s t q . gz

2 wget f t p : / / f t p . s r a . e b i . ac . uk / vo l1 / f a s t q / ERR194 / ERR194147 / ERR194147 2 .
f a s t q . gz

3 e x p o r t HADOOP HEAPSIZE=32768
4 hadoop j a r Ha lvadeUp loade rWi thL ibs . j a r −1 ERR194147 1 . f a s t q . gz −2

ERR194147 2 . f a s t q . gz \
5 −O / u s e r / ddecap / h a l v a d e / wgsin / − t 16

A.7.2 RNA-seq sample

The RNA-seq example dataset is found in the encode project under the SK-MEL-
5 experiment. The ENCSR201WVA dataset provides both paired FASTQ files and
aligned BAM files. In this example we will download a single replicate of the
ENCBS524EJL bio sample available in paired FASTQ files. To download and pre-
process the FASTQ files run these commands in the terminal:

1 wget h t t p s : / / www. e n c o d e p r o j e c t . o rg / f i l e s / ENCFF005NLJ / @@download /
ENCFF005NLJ . f a s t q . gz

2 wget h t t p s : / / www. e n c o d e p r o j e c t . o rg / f i l e s / ENCFF635CQM / @@download /
ENCFF635CQM . f a s t q . gz

3 e x p o r t HADOOP HEAPSIZE=32768
4 hadoop j a r Ha lvadeUp loade rWi thL ibs . j a r −1 ENCFF005NLJ . f a s t q . gz −2

ENCFF635CQM . f a s t q . gz \
5 −O / u s e r / ddecap / h a l v a d e / r n a i n / − t 16

A.8 Run Halvade

To run Halvade the GATK binary needs to be added to the bin.tar.gz file by
executing the following commands:

1 t a r −xvf b i n . t a r . gz
2 rm b i n . t a r . gz
3 cp GenomeAnalysisTK . j a r b i n /
4 t a r −c v z f b i n . t a r . gz b i n /∗

Similar to the reference files, this file needs to be uploaded to the distributed file
system if a cluster with more than one node is used. Run this command when using
HDFS as distributed storage:

1 h d f s d f s −p u t b i n . t a r . gz / u s e r / ddecap / h a l v a d e /
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A.8.1 Configuration

Halvade is started using a python script runHalvade.py, this script reads the con-
figuration from a file given in the first argument. This file contains all options you in-
tend to give to the Halvade command. The configuration file uses a = character when
a value needs to be provided to the option and the value should be quoted if it is a
string. To add an options without arguments add a new line with just the option name.
Commented lines, starting with #, are ignored by the script. The example.config
file contains the most basic example, in which the necessary options are provided. The
file looks like this:

1 N=5
2 M=128
3 C=24
4 B=” / u s e r / ddecap / h a l v a d e / b i n . t a r . gz ”
5 D=” / u s e r / ddecap / h a l v a d e / r e f / dbsnp / dbsnp 138 . hg19 . v c f ”
6 R=” / u s e r / ddecap / h a l v a d e / r e f / uc sc . hg19 ”
7 I =” / u s e r / ddecap / h a l v a d e / i n / ”
8 O=” / u s e r / ddecap / h a l v a d e / o u t / ”

To run the RNA-seq pipeline two additional options need to be provided:

1 s t a r =” / u s e r / ddecap / h a l v a d e / r e f / STAR ref / ”
2 r n a

If the nodes in the cluster have hyperthreading enabled, add the smt option to
improve performance. To run the pipeline with a bam file as input, add the bam
option.

Note: When running the Halvade job on a single node, it is not required to
upload the reference files to the distributed file system. However, the input data should
still be preprocessed with the Halvade Uploader tool and put on the distributed file
system. Running Halvade in this setup, some additional files should be present to
allow Halvade to find the references, these should have been added in a previous step.
To show Halvade where to find the reference files, add the directory where the required
files can be found like this:

1 r e f d i r =” / u s e r / ddecap / h a l v a d e / r e f / ”

This folder is expected to be on local scratch or a mounted distributed file system
so this doesn’t require a prefix.

A.8.2 Run

When all desired configuration for Halvade have been added to the config file, simply
run the following command to start Halvade:

1 py thon runHa lvade . py
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This will start Halvade, which in turn will start the necessary Hadoop jobs. The
script will return the ID of the process (PID) which is used in the filenames to store the
standard out and error logs, halvadePID.stdout and halvadePID.stderr. The output
of Halvade will be a single VCF file which can be found in the subdirectory merge
of the provided output directory.

A.8.3 Amazon AWS

To run Halvade on an Amazon EMR cluster, the AWS Command Line Interface needs
to be installed, installation instructions can be found here9. To run Halvade on Ama-
zon EMR, some additional configurations need to be added so the runHalvade.py
script knows Halvade should be started on Amazon EMR. As the Halvade jar isn’t
available on every node yet, this needs to be uploaded to Amazon S3 first. Similarly,
the bootstrap script, which creates the halvade/ directory on the mounted SSD’s
for intermediate data, needs to be uploaded as well.

1 aws s3 cp HalvadeWi thLibs . j a r s3 : / / h a l v b u c k e t / u s e r / ddecap / h a l v a d e /
r e f /

2 aws s3 cp h a l v a d e b o o t s t r a p . sh s3 : / / h a l v b u c k e t / u s e r / ddecap / h a l v a d e /
r e f /

To use Halvade on Amazon EMR an AMI version of 3.1.0 or newer should be
used. Add the following EMR configuration to run Halvade on Amazon EMR:

1 e m r j a r =” s3 : / / h a l v b u c k e t / u s e r / ddecap / h a l v a d e / Ha lvadeWi thLibs . j a r ”
2 e m r s c r i p t =” s3 : / / h a l v b u c k e t / u s e r / ddecap / h a l v a d e / h a l v a d e b o o t s t r a p . sh

”
3 e m r t y p e =” c3 . 8 x l a r g e ”
4 emr ami v =” 3 . 1 . 0 ”
5 tmp=” / mnt / h a l v a d e / ”
6 e m r s 3 l o g g i n g =” s3 : / / h a l v b u c k e t / u s e r / ddecap / h a l v a d e / l o g s / ”

The tmp option is updated to point to the local SSD’s on the Amazon EMR nodes,
which are mounted in the /mnt/ folder. The emr s3logging argument is used to
save all Hadoop master and task logs for debugging purposes.

Additionally, to run the script, the default EMR roles need to be created in order
to work, run this command:

1 aws emr c r e a t e−d e f a u l t−r o l e s

A.9 Halvade Options
Any directory given in the command line option needs to be accessible by all nodes.
This can be either on HDFS, GPFS, Amazon S3 or any other distributed file sys-
tem. When using one node this can also be local scratch. If no prefix is used, HDFS
will be used by default. However, the default file system can be changed with the
fs.defaultFS configuration of Hadoop. When this is changed the directories can

9http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html

http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
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simply be given without any prefix, else a prefix file:/// needs to be given for
local scratch and mounted GPFS directories. For data stored on S3 when using the
Amazon EMR service, the directories need to contain the bucket name as a prefix, e.g.
S3://bucketname/. A script runHalvade.py is provided to gather all options
in a simple config file which then calls Halvade with all provided options. The options
are shown in table A.3, table A.4, table A.5, table A.6, table A.7 and table A.8.

Table A.3: Halvade required options.

-B STR
Binary location. This string gives the location where
bin.tar.gz is located.

-D STR
DBSNP file location. This string gives the absolute filename
of the DBSNP file, this file needs to be compatible with the
reference FASTA file provided by the -R option.

-I STR
Input directory. The string points to the directory containing
the preprocessed input or BAM file on the used file system.

-O STR
Output directory. This string points to the directory which
will contain the output VCF file of Halvade.

-R STR

Reference Location. This string gives the prefix (without
.fasta) of the absolute filename of the reference in FASTA
format. The corresponding index files, built with BWA,
needs to be in this directory having the same prefix as the
reference FASTA file. The STAR genome index can be lo-
cated in a different folder.

-M, - -mem INT
Memory size. This gives the total memory each node in the
cluster has. The memory size is given in GB.

-N, - -nodes INT

Node count. This gives the total number of nodes in the local
cluster or the number of nodes you want to request when
using Amazon EMR. Amazon AWS has a limit of 20 nodes
unless the nodes are reserved for an extended period of time.

-C, - -vcores INT
Vcores count. This gives the number of cores that can be
used per node on the cluster (to enable simultaneous multi-
threading use the - -smt option).

Table A.4: Halvade optional options, part 1.

-A, - -justalign
Just align. This option is used to only align the data. The
aligned reads are written to the output folder set with the -O
option.
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Table A.5: Halvade optional options, part 2.

- -aln INT

Select Aligner. Sets the aligner used in Halvade. Possi-
ble values are 0 (bwa aln+sampe)[default], 1 (bwa mem),
2 (bowtie2), 3 (cushaw2). Note that these tools need to be
present in the bin.tar.gz file.

- -bam

Bam input. This option enables reading aligned BAM input,
using this will avoid realigning. If a realignment is required,
the data needs to be transformed to FASTQ files, shuffled and
preprocessed for Halvade.

- -bed STR

Bed region. This option uses a BED file to split the genome
in genomic regions that will be processed by one reduce task.
This is used when feature count is enabled and the bed region
give the known gene boundaries to avoid counting double.

- -CA STR=STR

Custom arguments. This options allows the tools run with
Halvade to be run with additional arguments. The arguments
are given in this form: toolname=extra arguments. All op-
tions must be correct for the tool in question, multiple ar-
guments can be added by giving a quoted string and sep-
arating the arguments with a space. Possible tool names
are bwa aln, bwa mem, bwa sampe, star, elprep, samtools -
view, bedtools bdsnp, bedtools exome, picard buildbamin-
dex, picard addorreplacereadgroup, picard markduplicates,
picard cleansam, gatk realignertargetcreator, gatk indelre-
aligner, gatk baserecalibrator, gatk printreads, gatk com-
binevariants, gatk variantcaller, gatk variantannotator, gatk -
variantfiltration, gatk splitncigarreads.

- -combine

Combine VCF. With this option Halvade will combine VCF
files in the input directory and not perform variant calling if
the relevant files are found. This is done by default after the
variant calling.

- -count
Count reads. This counts the reads per Halvade region, this
is only used for debugging purposes.

- -drop
Drop. Halvade will drop all paired-end reads where the pairs
are aligned to different chromosomes.

- -dryrun
Dry run. This will initialize Halvade, which calculates the
task sizes and region sizes of the chromosomes, but Halvade
will not execute the Hadoop jobs.

- -fbed STR

Filter on bed. This option will enable the reads to be filtered
on the given bed file before performing the GATK steps. This
is typically used in an exome dataset where only reads in a
known bed file are expected.
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Table A.6: Halvade optional options, part 3.

- -filter dbsnp

Filter dbsnp. This flag turns on filtering of the dbSNP file
before using it in the GATK. This can improve performance
in some cases but typically the overhead of converting is too
big.

- -gff STR
GFF file. This sets the GFF file that will be used by Feature-
counts to count the number of reads per exon.

-H, - -haplotypecaller

HaplotypeCaller. With this option Halvade will use the Hap-
lotypeCaller tool from GATK instead of the UnifiedGeno-
typer tool, which is used by default. This is the newer variant
caller which is slower but more accurate.

- -id STR
Read Group ID. This string sets the Read Group ID which
will be used when adding Read Group information to the in-
termediate results. [GROUP1]

- -illumina
Convert Illumina scores. This Option forces Halvade to con-
vert every base pair quality to the Illumina format.

-J STR

Java. This string sets the location of the Java binary, this file
should be present on every node in the cluster. If this is not
set Halvade with use the default Java. This can be used if the
default Java is 1.6 and GATK requires version 1.7.

- -keep
Keep intermediate files. This option enables all intermedi-
ate files to be kept in the temporary folder set by tmp. This
allows the user to check the data after processing.

- -lb STR
Read Group Library. This string sets the Read Group Library
which will be used when adding Read Group information to
the intermediate results. [LIB1]

- -mapmem INT
Map Memory. This sets the memory available for the con-
tainers assigned for the map tasks.

- -merge bam
Merge BAM output. With this option set, Halvade will not
perform variant calling but only read alignment. All align-
ments will be merged into 1 output BAM file.

- -mpn INT

Maps per node. This overrides the number of map tasks that
are run simultaneously on each node. Only use this when the
number of map containers per node does not make sense for
your cluster.

- -elprep

elPrep. Use elPrep in the preprocessing steps, by default Pi-
card is used which is a slower but requires less memory. El-
Prep provides a more efficient execution of the preprocessing
algorithms.

- -pl STR
Read Group Platform. This string sets the Read Group Plat-
form which will be used when adding Read Group informa-
tion to the intermediate results. [ILLUMINA]
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Table A.7: Halvade optional options, part 4.

- -pu STR
Read Group Platform Unit. This string sets the Read Group Plat-
form Unit which will be used when adding Read Group informa-
tion to the intermediate results. [UNIT1]

- -redistribute
Redistribute Cores. This is an optimization to better utilize the
CPU cores at the end of the map phase, to improve load balanc-
ing. Only use when the cores per container is less than 4.

- -redmem INT
Reduce Memory. This sets the memory available for the con-
tainers assigned for the reduce tasks.

- -refdir STR

Reference directory. This sets the reference directory on local
scratch, Halvade will use this directory to find existing refer-
ences on each node. This directory needs to be accessible by all
nodes, but can be a local disk or a network disk. Halvade finds
the reference files by looking for files in the directory or subdi-
rectory with these suffixes: .bwa ref, .gatk ref, .star ref, .dbsnp.
This folder is expected to be on local scratch or a mounted dis-
tributed file system so this doesn’t require any prefix.

- -remove dups
Remove Duplicates. This will remove the found PCR duplicates
in the corresponding step.

- -report all

Report all output. This option will give all VCF output records
in the merged output file. By default the VCF record with the
highest score will be kept if multiple records are found at the
same location.

- -rna

RNA pipeline. This options enables Halvade to run the RNA-
seq pipeline instead of the default DNA pipeline. This option
requires an additional argument -S which points to the STAR
genome directory.

- -rpn INT

Reduces per node. This overrides the number of reduce tasks
that are run simultaneously on each node. Only use this when
the number of reduce containers per node does not make sense
for your cluster.

-S, - -star STR
Star genome. This gives the directory of the STAR genome ref-
erence.

- -scc INT
stand call conf. The value of this option will be used for the
stand call conf when calling the GATK Variant Caller.

- -sec INT
stand emit conf. The value of this option will be used for the
stand emit conf when calling the GATK Variant Caller.

- -single
Single-end reads. This option sets the input to be single-ended
reads. By default, Halvade reads in paired-end interleaved
FASTQ files.

- -sm STR
Read Group Sample Name. This string sets the Read Group
Sample Name which will be used when adding Read Group in-
formation to the intermediate results. [SAMPLE1]
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Table A.8: Halvade optional options, part 5.

- -smt
Simultaneous multithreading. This option enables Halvade to
use simultaneous multithreading on each node.

- -stargtf STR
GFF for STAR. This option point to the GFF/GTF file to be used
when rebuilding the STAR genome, this can improve accuracy
when finding splice sites.

- -tmp STR
Temporary directory. This string gives the location where inter-
mediate files will be stored. This should be on a local disk for
every node for optimal performance.

- -update rg
Update read group. This forces the readgroup to be updated to
the one provided by the options, even if the input is read from a
BAM file with a read group present.

-v INT
Verbosity. This sets the verbosity level for debugging, default is
[2].

A.10 Troubleshooting

A.10.1 Find the logs to solve Halvade errors

If Halvade doesn’t finish due to an error, the error itself is printed in the output of
the Hadoop command. However, more information can be found in the individual
task stderr logs of the MapReduce job. The location of these log files is set in the
MapReduce settings. Typically these are stored at $yarn.log.dir/userlogs
or if the YARN LOG DIR environment is set under $YARN LOG DIR/userlogs.
It’s highly likely that all reduce tasks give a similar result, so look at the stderr log of
any reduce task. This log will show where Halvade is running into problems. If it isn’t
clear from the log, try to run the last command, with the error, manually. The exact
command should be printed in the log as an array of strings, run this command with
the shown option.

A.10.2 Halvade with BAM input seems stuck at the MarkDupli-
cates step

If the stderr log of a reduce task shows it started the MarkDuplicates file but didn’t
finish in a considerable time. Then it is highly likely it is finding incorrect aligned
reads and giving error messages that slow the process to the point where it seems stuck.
If this is the case, look at the header file of the BAM file and the fasta dictionary file, if
the contig order is different then this is the source of the problem. Halvade assigns the
contig by index in the sequence dictionary when reading the bam files and this causes
wrong matching between steps. To fix this, the sequence dictionary of the bam files
needs to be reordered so that it’s the same as the dictionary file. This can be done with
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the following command, after which the output file is used as input for Halvade.

1 j a v a − j a r p i c a r d . j a r ReorderSam I = i n p u t . bam O= o u t p u t . bam R= r e f e r e n c e .
f a s t a
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