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ABSTRACT

Complex software appliances can be deployed on hard-
ware with limited available computational resources. This
computational boundary puts an additional constraint on soft-
ware applications. This can be an issue for real-time appli-
cations with a fixed time constraint such as low delay video
encoding. In the context of High Efficiency Video Coding
(HEVC), a limited number of publications have focused on
controlling the complexity of an HEVC video encoder. In
this paper, a technique is proposed to control complexity by
deciding between 2Nx2N merge mode and full encoding, at
different Coding Unit (CU) depths. The technique is demon-
strated in two encoders. The results demonstrate fast conver-
gence to a given complexity threshold, and a limited loss in
rate-distortion performance (on average 2.84% Bjøntegaard
delta rate for 40% complexity reduction).

Index Terms— Complexity Constrained, Real-time en-
coding, HEVC

1. INTRODUCTION

When encoding in software, the encoding application itself
is usually not the only software process running on the host
machine. Other processes can run in parallel, including oper-
ating system processes, and even other encoders / decoders.
One example could be a cloud service transcoding a number
of video streams from one format to the other. When the load
on the host machine becomes significant, the software pro-
cesses may fight for the same resources and as such influence
each others processing speed. This can be problematic, par-
ticularly for a video encoder that is expected to deliver out-
put at regular time intervals. Although buffering may solve
some of these issues, adding a buffer introduces additional de-
lay that may not be desired in a low-delay video application.
Therefore, in many cases, the solution consists of carefully
fine tuning configuration parameters and/or overprovisioning
resources (e.g., selecting one of the more high-end cloud in-
stances). This results in additional effort and financial cost.

Furthermore, when over dimensioning the system for the
statically worst case (e.g., assuming that encoding every video
stream requires maximum complexity), the configuration may
be suboptimal for other cases since in these other cases sys-

tem resources may not be fully used. When more resources
are available, a video encoder may be able to improve qual-
ity further, for example. So instead of dimensioning a system
for the worst case, it would be interesting to assign a com-
plexity budget to each software process, and have the process
reconfigure itself to respect this budget. Such an automatic
reconfiguration is particularly useful in cases where the load
on the host changes dynamically and/or the same software is
expected to flexibly run on multiple hardware platforms (e.g.,
cloud instances of different providers).

In this paper, we will explore techniques for complex-
ity control in the context of High Efficiency Video Coding
(HEVC) [1] video encoding, a computationally complex pro-
cess. According to [2], by adding new compression tools
as well as extending already supported compression tools,
HEVC encoding consumes 9 to 502 % more computational
complexity compared to its predecessor H.264/AVC [3], de-
pending on the configuration settings. Note that the actual
computational complexity also depends on the complexity of
the video sequence being encoded which further motivates the
need for complexity control.

The state-of-the-art in complexity optimization for HEVC
is extensive. However, most algorithms described in the lit-
erature do not provide complexity control, but instead focus
only on reducing complexity, typically, through early termi-
nation of the mode decision or motion search process. For
example, Choi et al. [4] proposed to not evaluate split when
the best mode is skip. Jaehwan et al. [5] reduce complexity
with 35% by deciding early in the encoder evaluation process
whether or not to use SKIP mode. Miok et al. [6] propose to
terminate motion search early by estimating the RD cost of
the merge mode based on the results obtained for motion vec-
tor prediction. Zhaoqing et al. [7] propose to use a technique
for early merge mode decision based on information from the
all-zero block and motion estimation, exploiting also correla-
tion between different CU depths to reduce complexity.

A limited number of researchers have focused explicitly
on complexity control, often labeling their work as complexity
constrained encoding or complexity scalable encoding. For
example, Kannangara et al. [8] propose techniques for frame-
level complexity control of a real-time H.264/AVC encoder.
The complexity is controlled by choosing between fast en-
coding using SKIP mode or full evaluation, based on an es-



timation of the Lagrangian rate-distortion-complexity (RDC)
cost for both options. Correa et al. [9] propose a complexity
scalability method for HEVC in which CTUs are dynamically
constrained by limiting the prediction block (PB) and setting
a maximum tree depth for each CTU. Zhao et al. [10] pro-
pose a hierarchical complexity allocation scheme for HEVC
based on linear programming. While these methods can pro-
vide good complexity control, they report relatively high vari-
ation of the encoding time over multiple GOPs, which make
them less suitable for real-time low delay video encoding.

In this paper, a strategy based on minimizing the RD cost
error is proposed. In general, the proposed technique decides
between only evaluating 2Nx2N merge mode and full evalua-
tion of CUs by comparing the estimated RD cost error with a
dynamic threshold as described in Section 2. The proposed
complexity controller can adapt fast to the complexity tar-
get with acceptable Bjøntegaard Delta Rate (BD-rate) loss as
shown in Section 4. Finally, a conclusion is provided in Sec-
tion 5.

2. DEFINING A COMPLEXITY THRESHOLD

An HEVC encoder has a wide range of modes / CU structures
that can be evaluated to encode each frame. To control com-
plexity, our strategy is therefore to define a threshold that con-
strains this evaluation process. Since CUs at a higher depth
will only be evaluated when their parent CU evaluates to split
further, denote Ω the number of CUs (at different depths) that
are evaluated for an entire frame, out of a total of M possible
CUs. For a CU at index m in this list (with m ∈ {1, ...,M}),
evaluating the n’th mode (with n ∈ {1, ..., N})1 results in
distortion Dm,n and rate Rm,n, the lagrangian RD cost Jm,n
is defined with λ as the Lagrange multiplier:

Jm,n = Dm,n + λRm,n, (1)

In a typical encoder, only the coding mode with the lowest
Lagrange cost will actually be used for encoding. To this end,
denote Im,n the optimal RD cost for a CU at index m after
evaluating n modes.

The computational complexity required for evaluating
mode n for a given CU at index m will be denoted Cm,n.
When evaluating all CU configurations and coding modes,
the total frame complexity is given by

∑M
m=1

∑N
n=1 Cm,n.

2.1. Defining and simplifying the optimization problem

One way to reduce complexity is to not evaluate all encoding
modes / depths. To this end, denote αm the actual number
of encoding modes evaluated for a CU at index m (αm ∈
{1, ..., N}). Note that the value of αm can have an influence
on the list of evaluated CUs and therefore change Ω.

1N is defined a constant but this value can be different at different depths
and/or CU locations. As invalid encoding modes for a specific CU can be
ignored, this will not be indicated in the constant N for readability.

Clearly, when only a limited set of encoding modes is
evaluated (i.e., with αm < N ), there is a possible penalty
in terms of RD cost. This penalty will be called the RD cost
error Em,αm

:

Em,αm = Im,αm − Im,N . (2)

The RD cost error is zero when the optimal encoding
mode is within the first αm encoding modes, otherwise
Em,αm

will be positive. The challenge is now to intelli-
gently define these αm so that rate and distortion are opti-
mized while the reduced complexity CR does not exceed a
particular complexity threshold CT . In other words:

CR =

Ω∑
m=1

αm∑
n=1

Cm,n (3)

min
α0,...,αΩ

Ω∑
m=1

Em,αm subject to: CR ≤ CT . (4)

Solving this constrained optimization problem is com-
plex, particularly since the RD cost (and therefore also Im,αm

and Em,αm
) in general depends on decisions taken in the

context of previously coded CU’s. If the number of encoding
modes to evaluate has been severely restricted for a particu-
lar CU, the RD performance for that CU could be relatively
low, which increases the RD cost for spatially and temporally
neighboring CU’s trying to exploit correlation with this CU.

In this paper, αm is calculated as follows. First, we sim-
plify the problem by ignoring the dependency discussed in
the previous paragraph, and assuming that the value for αm
can be decided independently from other CU’s. In addition,
the goal of our technique is to distribute the Lagrange cost er-
ror Em,αm

equally across the frame. To cope with different
CU depths, we normalize the Lagrange cost error by divid-
ing it through the number of pixels at a certain depth. As
such, denote ĒT the Lagrange cost error target that we want
to achieve, per pixel. Also, denote Ēm,αm

the Lagrange cost
error Em,αm

per pixel.
This way, we reformulate Eq. 4 as:

min
α0,...,αΩ

Ω∑
m=1

|ĒT − Ēm,αm
| subject to: CR ≤ CT . (5)

Based on this equation we build a complexity controller
that will vary the target Lagrange error cost ĒT frame-by-
frame in an attempt to match the complexity target CT . Then,
given ĒT at the start of coding a frame, we estimate Ēm,αm

for each CU and determine when to stop encoding.

3. COMPLEXITY CONTROLLER

In the previous section we assumed that there are N encod-
ing modes. For the implementation in this paper, we simplify



this to two groups of encoding modes for explaining the con-
cept of the complexity controller and the experimental results.
Future work includes extending this technique in order to sup-
port more encoding modes. The two groups that are used are
respectively the 2Nx2N merge mode and another group con-
taining all other encoding modes. The 2Nx2N merge mode
has relative low complexity and is used frequently.

3.1. Deciding when to stop encoding

The encoder estimates Ēm,αm
to decide whether or not to

continue evaluating other modes, where Ēm,αm
is a normal-

ized version of Eq. 2. While Im,n is available at mode n,
Im,N is not available and therefore needs to be estimated.
Due to efficient construction of the merge candidate list, there
is a high probability that 2Nx2N merge mode is the optimal
encoding mode or has low RD cost difference with the op-
timal mode. So, high correlation is expected. Therefore, in
this paper a simple linear model is used to predict Im,N . The
coefficients of the linear model for depth {0, 1, 2, 3} are re-
spectively {0.87, 0.92, 0.94, 0.95}. A higher coefficient in-
dicates that on average a lower Ēm,αm

is expected if further
evaluation of encoding modes is not done. In future work, this
model can be extended with higher precision by using more
features of the CUs.

3.2. Designing the complexity controller

The goal of the complexity controller is to respect the com-
plexity target CT . There is a relation between CR and ĒT .
To investigate the relation between CR and ĒT , an anchor
encoder is used to extract Im,αm

and the encoding is re-run
with multiple thresholds ĒT . When ĒT = 0, the complexity
is reduced only on the CUs where the 2Nx2N merge mode
was the optimal mode. When ĒT > 0, different CUs will
stop encoding after mode αm when Im,αm

is below the nor-
malized threshold. The complexity reaches a minimum when
all CUs (at depth 0) only evaluate 2Nx2N merge mode. With
a prediction model, ĒT can be defined for a constrained com-
plexityCT . But, this model is not available for the complexity
controller in a real-time implementation. However, CR and
ĒT are respectively an increasing and a decreasing mono-
tonic function of αm (see Eq.4). Therefore, the complexity
controller can use ĒT to control the frame complexity CR,
due do the properties of monotonic functions.

This is a typical root finding problem. However, there are
additional difficulties compared to conventional root finding
algorithms. In this use case, while ĒT is a constant for a
frame, it does change slightly every frame due to the chang-
ing complexity of the video or inaccurate measurements of
the encoding complexity. Therefore, we need a complexity
controller that adapts ĒT continuously on a frame-by-frame
basis. In a conventional root-finding problem the algorithm
finds a point closer to the root at each iteration. In this case,

σ ← σ0
equal sign← True
function UPDATETHRESHOLD(CT , CR)

if (σ ≥ 0) 6= (CR > CT ) then
σ ← σ/− 2
equal sign← False

else
if equal sign then

σ ← 2σ
end if
equal sign← True

end if
ET ← max(0, ET + σ)

end function

Fig. 1: Pseudo code of the proposed complexity controller.

only a single iteration can be used each frame and the algo-
rithm can fine-tune this value on the next frame. Therefore,
the basic complexity controller proposed in this paper is based
on the root-finding bisection method. This proposed method
is explained with pseudo-code in Figure 1. If the root is out-
side the current interval, σ will be doubled if the previous
iteration was in the same direction (i.e. σ has the same sign).
Doubling σ allows the method to faster search for the correct
interval. When the interval with the root is found, σ is di-
vided by −2 (i.e. changing the direction), allowing more pre-
cise approximation of the correct value while still being able
adapt to local changes in the video or noise on the complexity
measurement. Finally, ĒT is incremented with the current σ
value. Note that σ and equal sign can be initialized with any
value (e.g. respectively σ0 and True), this will only have in-
fluence on the iterations needed to find the correct EF value.

4. EXPERIMENTAL RESULTS

The proposed method is evaluated using sequences from class
B described in the common test conditions of HEVC [11] (i.e.
Kimono, ParkScene, Cactus, BQTerrace, BasketballDrive).
The HM 16.2 reference encoder is used as an anchor. Later,
the real-time capability is demonstrated with x265. These ex-
periments focus on low delay settings (i.e. main tier and P
slices only), with QP values 22, 27, 32, 37 and open GOP
structure.

Table 1 shows the encoding time (ET) per frame for
QP=22, for the anchor and proposed method. For the anchor,
although encoding settings are identical, there is a significant
difference in encoding time (i.e., 42.8%) between Cactus
(highest encoding time) and Kimono (lowest encoding time).
For the proposed method, a complexity target of 40 seconds
per frame was defined. The encoder initializes during the
first frames in an attempt to find the RD cost threshold us-
ing the bisection method, as described in Section 3. After
this initialization phase, the complexity controller adapts the
threshold frame-by-frame, and manages to keep computa-
tional complexity close to the complexity budget, with an
average deviation of 0.57 seconds (1.4%). Reduced complex-



Table 1: Encoding time per frame with QP=22 for the anchor
encoder and the complexity constrained encoder with a com-
plexity target of 40 sec/frame. The table provides the average
encoding time (ET), PSNR and bitrate.

Anchor CCE

ET PSNR Rate ET PSNR Rate
Sequence (sec) (dB) (Mbit/s) (sec) (dB) (Mbit/s)

basketballdrive 65.56 42.69 55.04 40.26 42.59 53.13
bqterrace 73.89 42.93 135.55 39.95 42.62 137.52
cactus 77.09 41.70 92.99 40.10 41.57 94.52
kimono 53.71 43.63 12.69 39.87 43.59 12.49
parkscene 59.82 42.26 20.99 40.09 42.18 20.88

Table 2: Comparison of encoding time (ET) and BD-rate
(BDR) for different complexity thresholds with proposed
method and two fixed complexity reduction methods (Early
skip detection (ESD) and maximum CU depth 2 (MD2)).

Proposed Method Fixed Complexity Reduction

Sequence 80% 40% ESD [5] MD2

ET BDR ET BDR ET BDR ET BDR

basketballdrive 0.79 0.07 0.40 6.47 0.74 2.22 0.42 8.98
bqterrace 0.79 1.72 0.39 11.17 0.77 1.56 0.43 6.90
cactus 0.78 0.18 0.39 10.49 0.76 2.00 0.41 12.20
kimono 0.79 0.11 0.40 4.98 0.78 2.37 0.40 3.24
parkscene 0.79 0.00 0.40 13.52 0.69 2.28 0.43 14.18

ity comes at a limited cost, e.g., 0.13 dB PSNR loss and 1.6%
bitrate loss for a complexity reduction of 48% for the Cactus
sequence.

Fig. 2 shows RD curves for Kimono sequence and differ-
ent complexity targets (CT). The CT is defined relative to the
anchor encoding time at same QP point. For a complexity
target of 80%, the BD-rate increase ranges from 0.00% (for
ParkScene) to 1.72% (for BqTerrace).

The proposed method for complexity control is compared
with a number of fixed complexity methods incorporated in
the HM encoder (see Table 2). Using early skip detection
(ESD) [5], an average complexity of 74.8% (relative to the
anchor) is measured. When only a maximum CU depth of
2 (MD2) is allowed, an average encoding time of 41.8% of
the anchor encoding is measured. While our technique pro-
vides complexity control, and in general better RD perfor-
mance compared to the ESD and MD2 methods. Occasion-
ally, the latter methods show better performance, indicating
that there is still room for improving our technique further.

The proposed method has been ported to the x265 en-
coder [12] to demonstrate real-time encoding on constrained
systems. When only 2 threads are used on an Intel Xeon CPU
E5-2620 v3 running at 2.40GHz, the x265 encoder is only
running real-time when configured on a bitrate smaller than
500 kbps. With the proposed method, x265 can encode real-
time at all bitrates. The PSNR loss is illustrated for the ki-
mono sequence in Fig. 3. For a bitrate of 2309 kbps, there is
0.75 dB PSNR loss with 44% complexity reduction.
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5. CONCLUSION

In this paper we proposed a technique to control the computa-
tional complexity of an HEVC encoder. This technique con-
sisted of adaptively deciding between 2Nx2N merge mode or
full evaluation, based on a dynamic threshold on the expected
RD cost error. Our method operates independently of the
host system and the video sequence, and enables constrain-
ing the encoding complexity to a given complexity target (af-
ter a short initialization phase). Therefore, this technique al-
lows to use software encoding in complexity constrained en-
vironments with optimal usage of the available computational
complexity (e.g. cloud encoding). The technique is evalu-
ated in two HEVC implementations (e.g. HM and x265) and
the results show that the technique is effective, providing fast
convergence while incurring only a limited loss in RD perfor-
mance. Possible extensions on this method have already been
identified and are planned as future work.
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